RSA Module
Properties Methods Events Config Settings Errors
Implements RSA public-key cryptography to encrypt/decrypt and sign/verify messages.
Syntax
IPWorksEncrypt.RSA
Remarks
The RSA class implements RSA public-key cryptography to encrypt/decrypt messages and sign/verify hash signatures.
To begin you must either specify an existing key or create a new key. Existing private keys may be specified by setting Key. To create a new key call CreateKey. Alternatively an existing certificate may be specified by setting Certificate
Signing
To sign data first set Key or Certificate. Specify the input data using InputFile or InputMessage. Next call Sign. The class will populate HashValue and HashSignature. After calling Sign the public key must be sent to the recipient along with HashSignature.
Encrypting
To encrypt data set RecipientKey or RecipientCert. Specify the input data using InputFile or InputMessage. Next call Encrypt. The class will populate OutputMessage, or write to the file specified by OutputFile.
Signature Verification
To verify a signature specify the input data using InputFile or InputMessage. Set SignerKey or SignerCert. Next set HashSignature and call VerifySignature. The VerifySignature method will return True if the signature was successfully verified.
Decrypting
To decrypt data first set Key or Certificate. Specify the input data using InputFile or InputMessage. Next call Decrypt. The class will populate OutputMessage, or write to the file specified by OutputFile.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
RSA Keys
A RSA key is made up of a number of individual parameters.
The public key consists of the following parameters:
- KeyModulus
- KeyExponent
The class also includes the KeyPublicKey property which holds the PEM formatted public key for ease of use. This is helpful if you are in control of both sides of the encryption/signing and decryption/signature verification process. When sending the public key to a recipient note that not all implementations will support using the PEM formatted value in KeyPublicKey in which case the individual parameters must be sent.
The private key may be represented in one of two ways. Both are mathematically equivalent. Private key format 1:
- KeyModulus
- KeyP
- KeyQ
- KeyDP
- KeyDQ
- KeyModulus
- KeyD
Property List
The following is the full list of the properties of the module with short descriptions. Click on the links for further details.
Certificate | The certificate used for signing and decryption. |
HashAlgorithm | The hash algorithm used for signing and signature verification. |
HashSignature | The hash signature. |
HashValue | The hash value of the data. |
InputFile | The file to process. |
InputMessage | The message to process. |
Key | The RSA key. |
OutputFile | The output file when encrypting or decrypting. |
OutputMessage | The output message after processing. |
Overwrite | Indicates whether or not the module should overwrite files. |
RecipientCert | The certificate used for encryption. |
RecipientKey | The recipient's public key used when encrypting. |
SignerCert | The certificate used for signature verification. |
SignerKey | The public key used to verify the signature. |
UseHex | Whether input or output is hex encoded. |
UseOAEP | Whether to use Optimal Asymmetric Encryption Padding (OAEP). |
UsePSS | Whether to use RSA-PSS during signing and verification. |
Method List
The following is the full list of the methods of the module with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
CreateKey | Creates a new key. |
Decrypt | Decrypts the input data using the specified private key. |
Encrypt | Encrypts the input data using the recipient's public key. |
Reset | Resets the module. |
Sign | Creates a hash signature. |
VerifySignature | Verifies the signature for the specified data. |
Event List
The following is the full list of the events fired by the module with short descriptions. Click on the links for further details.
Error | Fired when information is available about errors during data delivery. |
Progress | Fired as progress is made. |
Config Settings
The following is a list of config settings for the module with short descriptions. Click on the links for further details.
KeyFormat | How the public and private key are formatted. |
KeySize | The size, in bits, of the secret key. |
OAEPMGF1HashAlgorithm | The MGF1 hash algorithm used with OAEP. |
OAEPParams | The hex encoded OAEP parameters. |
OAEPRSAHashAlgorithm | The RSA hash algorithm used with OAEP. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitiveData | Whether sensitive data is masked in log messages. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
Certificate Property (RSA Module)
The certificate used for signing and decryption.
Syntax
public var certificate: Certificate { get {...} set {...} }
@property (nonatomic,readonly,assign,getter=certEffectiveDate) NSString* certEffectiveDate; - (NSString*)certEffectiveDate; @property (nonatomic,readonly,assign,getter=certExpirationDate) NSString* certExpirationDate; - (NSString*)certExpirationDate; @property (nonatomic,readonly,assign,getter=certExtendedKeyUsage) NSString* certExtendedKeyUsage; - (NSString*)certExtendedKeyUsage; @property (nonatomic,readonly,assign,getter=certFingerprint) NSString* certFingerprint; - (NSString*)certFingerprint; @property (nonatomic,readonly,assign,getter=certFingerprintSHA1) NSString* certFingerprintSHA1; - (NSString*)certFingerprintSHA1; @property (nonatomic,readonly,assign,getter=certFingerprintSHA256) NSString* certFingerprintSHA256; - (NSString*)certFingerprintSHA256; @property (nonatomic,readonly,assign,getter=certIssuer) NSString* certIssuer; - (NSString*)certIssuer; @property (nonatomic,readonly,assign,getter=certPrivateKey) NSString* certPrivateKey; - (NSString*)certPrivateKey; @property (nonatomic,readonly,assign,getter=certPrivateKeyAvailable) BOOL certPrivateKeyAvailable; - (BOOL)certPrivateKeyAvailable; @property (nonatomic,readonly,assign,getter=certPrivateKeyContainer) NSString* certPrivateKeyContainer; - (NSString*)certPrivateKeyContainer; @property (nonatomic,readonly,assign,getter=certPublicKey) NSString* certPublicKey; - (NSString*)certPublicKey; @property (nonatomic,readonly,assign,getter=certPublicKeyAlgorithm) NSString* certPublicKeyAlgorithm; - (NSString*)certPublicKeyAlgorithm; @property (nonatomic,readonly,assign,getter=certPublicKeyLength) int certPublicKeyLength; - (int)certPublicKeyLength; @property (nonatomic,readonly,assign,getter=certSerialNumber) NSString* certSerialNumber; - (NSString*)certSerialNumber; @property (nonatomic,readonly,assign,getter=certSignatureAlgorithm) NSString* certSignatureAlgorithm; - (NSString*)certSignatureAlgorithm; @property (nonatomic,readwrite,assign,getter=certStore,setter=setCertStore:) NSString* certStore; - (NSString*)certStore; - (void)setCertStore :(NSString*)newCertStore; @property (nonatomic,readwrite,assign,getter=certStoreB,setter=setCertStoreB:) NSData* certStoreB; - (NSData*)certStoreB; - (void)setCertStoreB :(NSData*)newCertStore; @property (nonatomic,readwrite,assign,getter=certStorePassword,setter=setCertStorePassword:) NSString* certStorePassword; - (NSString*)certStorePassword; - (void)setCertStorePassword :(NSString*)newCertStorePassword; @property (nonatomic,readwrite,assign,getter=certStoreType,setter=setCertStoreType:) int certStoreType; - (int)certStoreType; - (void)setCertStoreType :(int)newCertStoreType; @property (nonatomic,readonly,assign,getter=certSubjectAltNames) NSString* certSubjectAltNames; - (NSString*)certSubjectAltNames; @property (nonatomic,readonly,assign,getter=certThumbprintMD5) NSString* certThumbprintMD5; - (NSString*)certThumbprintMD5; @property (nonatomic,readonly,assign,getter=certThumbprintSHA1) NSString* certThumbprintSHA1; - (NSString*)certThumbprintSHA1; @property (nonatomic,readonly,assign,getter=certThumbprintSHA256) NSString* certThumbprintSHA256; - (NSString*)certThumbprintSHA256; @property (nonatomic,readonly,assign,getter=certUsage) NSString* certUsage; - (NSString*)certUsage; @property (nonatomic,readonly,assign,getter=certUsageFlags) int certUsageFlags; - (int)certUsageFlags; @property (nonatomic,readonly,assign,getter=certVersion) NSString* certVersion; - (NSString*)certVersion; @property (nonatomic,readwrite,assign,getter=certSubject,setter=setCertSubject:) NSString* certSubject; - (NSString*)certSubject; - (void)setCertSubject :(NSString*)newCertSubject; @property (nonatomic,readwrite,assign,getter=certEncoded,setter=setCertEncoded:) NSString* certEncoded; - (NSString*)certEncoded; - (void)setCertEncoded :(NSString*)newCertEncoded; @property (nonatomic,readwrite,assign,getter=certEncodedB,setter=setCertEncodedB:) NSData* certEncodedB; - (NSData*)certEncodedB; - (void)setCertEncodedB :(NSData*)newCertEncoded;
Default Value
False
Remarks
This property specifies a certificate with private key.
This may be set instead of Key. This allows a Certificate object to be used instead of a RSAKey object. This certificate is used when calling Sign and Decrypt. The specified certificate must have a private key.
If both this property and Key are specified, Key will be used and this property will be ignored.
HashAlgorithm Property (RSA Module)
The hash algorithm used for signing and signature verification.
Syntax
public var hashAlgorithm: RSAHashAlgorithms { get {...} set {...} }
public enum RSAHashAlgorithms: Int32 { case rhaSHA1 = 0 case rhaSHA224 = 1 case rhaSHA256 = 2 case rhaSHA384 = 3 case rhaSHA512 = 4 case rhaRIPEMD160 = 5 case rhaMD2 = 6 case rhaMD5 = 7 case rhaMD5SHA1 = 8 }
@property (nonatomic,readwrite,assign,getter=hashAlgorithm,setter=setHashAlgorithm:) int hashAlgorithm; - (int)hashAlgorithm; - (void)setHashAlgorithm :(int)newHashAlgorithm;
Default Value
2
Remarks
This property specifies the hash algorithm used for signing and signature verification. Possible values are:
0 (rhaSHA1) | SHA-1 |
1 (rhaSHA224) | SHA-224 |
2 (rhaSHA256 - default) | SHA-256 |
3 (rhaSHA384) | SHA-384 |
4 (rhaSHA512) | SHA-512 |
5 (rhaRIPEMD160) | RIPEMD-160 |
6 (rhaMD2) | MD2 |
7 (rhaMD5) | MD5 |
8 (rhaMD5SHA1) | MD5SHA1 |
HashSignature Property (RSA Module)
The hash signature.
Syntax
public var hashSignature: String { get {...} set {...} }
public var hashSignatureB: Data { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=hashSignature,setter=setHashSignature:) NSString* hashSignature; - (NSString*)hashSignature; - (void)setHashSignature :(NSString*)newHashSignature; @property (nonatomic,readwrite,assign,getter=hashSignatureB,setter=setHashSignatureB:) NSData* hashSignatureB; - (NSData*)hashSignatureB; - (void)setHashSignatureB :(NSData*)newHashSignature;
Default Value
""
Remarks
This property holds the computed hash signature. This is populated after calling Sign. This must be set before calling VerifySignature.
HashValue Property (RSA Module)
The hash value of the data.
Syntax
public var hashData: String { get {...} set {...} }
public var hashDataB: Data { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=hashValue,setter=setHashValue:) NSString* hashValue; - (NSString*)hashValue; - (void)setHashValue :(NSString*)newHashValue; @property (nonatomic,readwrite,assign,getter=hashValueB,setter=setHashValueB:) NSData* hashValueB; - (NSData*)hashValueB; - (void)setHashValueB :(NSData*)newHashValue;
Default Value
""
Remarks
This property holds the computed hash value for the specified data. This is populated when calling Sign or VerifySignature when an input file is specified by setting InputFile or InputMessage.
If you know the hash value prior to using the class you may specify the pre-computed hash value here.
Hash Notes
The class will determine whether or not to recompute the hash based on the properties that are set. If a file is specified by InputFile or InputMessage, the hash will be recomputed when calling Sign or VerifySignature. If the HashValue property is set, the class will only sign the hash or verify the hash signature. Setting InputFile or InputMessage clears the HashValue property. Setting the HashValue property clears the input file selection.
InputFile Property (RSA Module)
The file to process.
Syntax
public var inputFile: String { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=inputFile,setter=setInputFile:) NSString* inputFile; - (NSString*)inputFile; - (void)setInputFile :(NSString*)newInputFile;
Default Value
""
Remarks
This property specifies the file to be processed. Set this property to the full or relative path to the file which will be processed.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- InputFile
- InputMessage
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
InputMessage Property (RSA Module)
The message to process.
Syntax
public var inputMessage: String { get {...} set {...} }
public var inputMessageB: Data { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=inputMessage,setter=setInputMessage:) NSString* inputMessage; - (NSString*)inputMessage; - (void)setInputMessage :(NSString*)newInputMessage; @property (nonatomic,readwrite,assign,getter=inputMessageB,setter=setInputMessageB:) NSData* inputMessageB; - (NSData*)inputMessageB; - (void)setInputMessageB :(NSData*)newInputMessage;
Default Value
""
Remarks
This property specifies the message to be processed.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- InputFile
- InputMessage
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
Key Property (RSA Module)
The RSA key.
Syntax
public var key: RSAKey { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=keyD,setter=setKeyD:) NSString* keyD; - (NSString*)keyD; - (void)setKeyD :(NSString*)newKeyD; @property (nonatomic,readwrite,assign,getter=keyDB,setter=setKeyDB:) NSData* keyDB; - (NSData*)keyDB; - (void)setKeyDB :(NSData*)newKeyD; @property (nonatomic,readwrite,assign,getter=keyDP,setter=setKeyDP:) NSString* keyDP; - (NSString*)keyDP; - (void)setKeyDP :(NSString*)newKeyDP; @property (nonatomic,readwrite,assign,getter=keyDPB,setter=setKeyDPB:) NSData* keyDPB; - (NSData*)keyDPB; - (void)setKeyDPB :(NSData*)newKeyDP; @property (nonatomic,readwrite,assign,getter=keyDQ,setter=setKeyDQ:) NSString* keyDQ; - (NSString*)keyDQ; - (void)setKeyDQ :(NSString*)newKeyDQ; @property (nonatomic,readwrite,assign,getter=keyDQB,setter=setKeyDQB:) NSData* keyDQB; - (NSData*)keyDQB; - (void)setKeyDQB :(NSData*)newKeyDQ; @property (nonatomic,readwrite,assign,getter=keyExponent,setter=setKeyExponent:) NSString* keyExponent; - (NSString*)keyExponent; - (void)setKeyExponent :(NSString*)newKeyExponent; @property (nonatomic,readwrite,assign,getter=keyExponentB,setter=setKeyExponentB:) NSData* keyExponentB; - (NSData*)keyExponentB; - (void)setKeyExponentB :(NSData*)newKeyExponent; @property (nonatomic,readwrite,assign,getter=keyInverseQ,setter=setKeyInverseQ:) NSString* keyInverseQ; - (NSString*)keyInverseQ; - (void)setKeyInverseQ :(NSString*)newKeyInverseQ; @property (nonatomic,readwrite,assign,getter=keyInverseQB,setter=setKeyInverseQB:) NSData* keyInverseQB; - (NSData*)keyInverseQB; - (void)setKeyInverseQB :(NSData*)newKeyInverseQ; @property (nonatomic,readwrite,assign,getter=keyModulus,setter=setKeyModulus:) NSString* keyModulus; - (NSString*)keyModulus; - (void)setKeyModulus :(NSString*)newKeyModulus; @property (nonatomic,readwrite,assign,getter=keyModulusB,setter=setKeyModulusB:) NSData* keyModulusB; - (NSData*)keyModulusB; - (void)setKeyModulusB :(NSData*)newKeyModulus; @property (nonatomic,readwrite,assign,getter=keyP,setter=setKeyP:) NSString* keyP; - (NSString*)keyP; - (void)setKeyP :(NSString*)newKeyP; @property (nonatomic,readwrite,assign,getter=keyPB,setter=setKeyPB:) NSData* keyPB; - (NSData*)keyPB; - (void)setKeyPB :(NSData*)newKeyP; @property (nonatomic,readwrite,assign,getter=keyPrivateKey,setter=setKeyPrivateKey:) NSString* keyPrivateKey; - (NSString*)keyPrivateKey; - (void)setKeyPrivateKey :(NSString*)newKeyPrivateKey; @property (nonatomic,readwrite,assign,getter=keyPublicKey,setter=setKeyPublicKey:) NSString* keyPublicKey; - (NSString*)keyPublicKey; - (void)setKeyPublicKey :(NSString*)newKeyPublicKey; @property (nonatomic,readwrite,assign,getter=keyQ,setter=setKeyQ:) NSString* keyQ; - (NSString*)keyQ; - (void)setKeyQ :(NSString*)newKeyQ; @property (nonatomic,readwrite,assign,getter=keyQB,setter=setKeyQB:) NSData* keyQB; - (NSData*)keyQB; - (void)setKeyQB :(NSData*)newKeyQ;
Default Value
False
Remarks
This property specifies the RSA key used to sign or decrypt data. This property must be set before calling Sign or Decrypt. Alternatively, a certificate may be specified by setting Certificate
RSA Keys
A RSA key is made up of a number of individual parameters.
The public key consists of the following parameters:
- KeyModulus
- KeyExponent
The class also includes the KeyPublicKey property which holds the PEM formatted public key for ease of use. This is helpful if you are in control of both sides of the encryption/signing and decryption/signature verification process. When sending the public key to a recipient note that not all implementations will support using the PEM formatted value in KeyPublicKey in which case the individual parameters must be sent.
The private key may be represented in one of two ways. Both are mathematically equivalent. Private key format 1:
- KeyModulus
- KeyP
- KeyQ
- KeyDP
- KeyDQ
- KeyModulus
- KeyD
OutputFile Property (RSA Module)
The output file when encrypting or decrypting.
Syntax
public var outputFile: String { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=outputFile,setter=setOutputFile:) NSString* outputFile; - (NSString*)outputFile; - (void)setOutputFile :(NSString*)newOutputFile;
Default Value
""
Remarks
This property specifies the file to which the output will be written when Encrypt or Decrypt is called. This may be set to an absolute or relative path.
This property is only applicable to Encrypt and Decrypt.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
OutputMessage Property (RSA Module)
The output message after processing.
Syntax
@property (nonatomic,readonly,assign,getter=outputMessage) NSString* outputMessage; - (NSString*)outputMessage; @property (nonatomic,readonly,assign,getter=outputMessageB) NSData* outputMessageB; - (NSData*)outputMessageB;
Default Value
""
Remarks
This property will be populated with the output from the operation if OutputFile is not set.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
This property is read-only.
Overwrite Property (RSA Module)
Indicates whether or not the module should overwrite files.
Syntax
public var overwrite: Bool { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=overwrite,setter=setOverwrite:) BOOL overwrite; - (BOOL)overwrite; - (void)setOverwrite :(BOOL)newOverwrite;
Default Value
False
Remarks
This property indicates whether or not the class will overwrite OutputFile. If Overwrite is False, an error will be thrown whenever OutputFile exists before an operation. The default value is False.
RecipientCert Property (RSA Module)
The certificate used for encryption.
Syntax
public var recipientCert: Certificate { get {...} set {...} }
@property (nonatomic,readonly,assign,getter=recipientCertEffectiveDate) NSString* recipientCertEffectiveDate; - (NSString*)recipientCertEffectiveDate; @property (nonatomic,readonly,assign,getter=recipientCertExpirationDate) NSString* recipientCertExpirationDate; - (NSString*)recipientCertExpirationDate; @property (nonatomic,readonly,assign,getter=recipientCertExtendedKeyUsage) NSString* recipientCertExtendedKeyUsage; - (NSString*)recipientCertExtendedKeyUsage; @property (nonatomic,readonly,assign,getter=recipientCertFingerprint) NSString* recipientCertFingerprint; - (NSString*)recipientCertFingerprint; @property (nonatomic,readonly,assign,getter=recipientCertFingerprintSHA1) NSString* recipientCertFingerprintSHA1; - (NSString*)recipientCertFingerprintSHA1; @property (nonatomic,readonly,assign,getter=recipientCertFingerprintSHA256) NSString* recipientCertFingerprintSHA256; - (NSString*)recipientCertFingerprintSHA256; @property (nonatomic,readonly,assign,getter=recipientCertIssuer) NSString* recipientCertIssuer; - (NSString*)recipientCertIssuer; @property (nonatomic,readonly,assign,getter=recipientCertPrivateKey) NSString* recipientCertPrivateKey; - (NSString*)recipientCertPrivateKey; @property (nonatomic,readonly,assign,getter=recipientCertPrivateKeyAvailable) BOOL recipientCertPrivateKeyAvailable; - (BOOL)recipientCertPrivateKeyAvailable; @property (nonatomic,readonly,assign,getter=recipientCertPrivateKeyContainer) NSString* recipientCertPrivateKeyContainer; - (NSString*)recipientCertPrivateKeyContainer; @property (nonatomic,readonly,assign,getter=recipientCertPublicKey) NSString* recipientCertPublicKey; - (NSString*)recipientCertPublicKey; @property (nonatomic,readonly,assign,getter=recipientCertPublicKeyAlgorithm) NSString* recipientCertPublicKeyAlgorithm; - (NSString*)recipientCertPublicKeyAlgorithm; @property (nonatomic,readonly,assign,getter=recipientCertPublicKeyLength) int recipientCertPublicKeyLength; - (int)recipientCertPublicKeyLength; @property (nonatomic,readonly,assign,getter=recipientCertSerialNumber) NSString* recipientCertSerialNumber; - (NSString*)recipientCertSerialNumber; @property (nonatomic,readonly,assign,getter=recipientCertSignatureAlgorithm) NSString* recipientCertSignatureAlgorithm; - (NSString*)recipientCertSignatureAlgorithm; @property (nonatomic,readwrite,assign,getter=recipientCertStore,setter=setRecipientCertStore:) NSString* recipientCertStore; - (NSString*)recipientCertStore; - (void)setRecipientCertStore :(NSString*)newRecipientCertStore; @property (nonatomic,readwrite,assign,getter=recipientCertStoreB,setter=setRecipientCertStoreB:) NSData* recipientCertStoreB; - (NSData*)recipientCertStoreB; - (void)setRecipientCertStoreB :(NSData*)newRecipientCertStore; @property (nonatomic,readwrite,assign,getter=recipientCertStorePassword,setter=setRecipientCertStorePassword:) NSString* recipientCertStorePassword; - (NSString*)recipientCertStorePassword; - (void)setRecipientCertStorePassword :(NSString*)newRecipientCertStorePassword; @property (nonatomic,readwrite,assign,getter=recipientCertStoreType,setter=setRecipientCertStoreType:) int recipientCertStoreType; - (int)recipientCertStoreType; - (void)setRecipientCertStoreType :(int)newRecipientCertStoreType; @property (nonatomic,readonly,assign,getter=recipientCertSubjectAltNames) NSString* recipientCertSubjectAltNames; - (NSString*)recipientCertSubjectAltNames; @property (nonatomic,readonly,assign,getter=recipientCertThumbprintMD5) NSString* recipientCertThumbprintMD5; - (NSString*)recipientCertThumbprintMD5; @property (nonatomic,readonly,assign,getter=recipientCertThumbprintSHA1) NSString* recipientCertThumbprintSHA1; - (NSString*)recipientCertThumbprintSHA1; @property (nonatomic,readonly,assign,getter=recipientCertThumbprintSHA256) NSString* recipientCertThumbprintSHA256; - (NSString*)recipientCertThumbprintSHA256; @property (nonatomic,readonly,assign,getter=recipientCertUsage) NSString* recipientCertUsage; - (NSString*)recipientCertUsage; @property (nonatomic,readonly,assign,getter=recipientCertUsageFlags) int recipientCertUsageFlags; - (int)recipientCertUsageFlags; @property (nonatomic,readonly,assign,getter=recipientCertVersion) NSString* recipientCertVersion; - (NSString*)recipientCertVersion; @property (nonatomic,readwrite,assign,getter=recipientCertSubject,setter=setRecipientCertSubject:) NSString* recipientCertSubject; - (NSString*)recipientCertSubject; - (void)setRecipientCertSubject :(NSString*)newRecipientCertSubject; @property (nonatomic,readwrite,assign,getter=recipientCertEncoded,setter=setRecipientCertEncoded:) NSString* recipientCertEncoded; - (NSString*)recipientCertEncoded; - (void)setRecipientCertEncoded :(NSString*)newRecipientCertEncoded; @property (nonatomic,readwrite,assign,getter=recipientCertEncodedB,setter=setRecipientCertEncodedB:) NSData* recipientCertEncodedB; - (NSData*)recipientCertEncodedB; - (void)setRecipientCertEncodedB :(NSData*)newRecipientCertEncoded;
Default Value
False
Remarks
This property specifies a certificate for encryption.
This may be set instead of RecipientKey. This allows a Certificate object to be used instead of a RSAKey object. This certificate is used when calling Encrypt.
If both this property and RecipientKey are specified, RecipientKey will be used and this property will be ignored.
RecipientKey Property (RSA Module)
The recipient's public key used when encrypting.
Syntax
public var recipientKey: RSAKey { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=recipientKeyExponent,setter=setRecipientKeyExponent:) NSString* recipientKeyExponent; - (NSString*)recipientKeyExponent; - (void)setRecipientKeyExponent :(NSString*)newRecipientKeyExponent; @property (nonatomic,readwrite,assign,getter=recipientKeyExponentB,setter=setRecipientKeyExponentB:) NSData* recipientKeyExponentB; - (NSData*)recipientKeyExponentB; - (void)setRecipientKeyExponentB :(NSData*)newRecipientKeyExponent; @property (nonatomic,readwrite,assign,getter=recipientKeyModulus,setter=setRecipientKeyModulus:) NSString* recipientKeyModulus; - (NSString*)recipientKeyModulus; - (void)setRecipientKeyModulus :(NSString*)newRecipientKeyModulus; @property (nonatomic,readwrite,assign,getter=recipientKeyModulusB,setter=setRecipientKeyModulusB:) NSData* recipientKeyModulusB; - (NSData*)recipientKeyModulusB; - (void)setRecipientKeyModulusB :(NSData*)newRecipientKeyModulus; @property (nonatomic,readwrite,assign,getter=recipientKeyPublicKey,setter=setRecipientKeyPublicKey:) NSString* recipientKeyPublicKey; - (NSString*)recipientKeyPublicKey; - (void)setRecipientKeyPublicKey :(NSString*)newRecipientKeyPublicKey;
Default Value
False
Remarks
This property specifies the recipient's public key. This property must be set before calling Encrypt. Alternatively, a certificate may be specified by setting RecipientCert
RSA Keys
A RSA key is made up of a number of individual parameters.
The public key consists of the following parameters:
- KeyModulus
- KeyExponent
The class also includes the KeyPublicKey property which holds the PEM formatted public key for ease of use. This is helpful if you are in control of both sides of the encryption/signing and decryption/signature verification process. When sending the public key to a recipient note that not all implementations will support using the PEM formatted value in KeyPublicKey in which case the individual parameters must be sent.
The private key may be represented in one of two ways. Both are mathematically equivalent. Private key format 1:
- KeyModulus
- KeyP
- KeyQ
- KeyDP
- KeyDQ
- KeyModulus
- KeyD
SignerCert Property (RSA Module)
The certificate used for signature verification.
Syntax
public var signerCert: Certificate { get {...} set {...} }
@property (nonatomic,readonly,assign,getter=signerCertEffectiveDate) NSString* signerCertEffectiveDate; - (NSString*)signerCertEffectiveDate; @property (nonatomic,readonly,assign,getter=signerCertExpirationDate) NSString* signerCertExpirationDate; - (NSString*)signerCertExpirationDate; @property (nonatomic,readonly,assign,getter=signerCertExtendedKeyUsage) NSString* signerCertExtendedKeyUsage; - (NSString*)signerCertExtendedKeyUsage; @property (nonatomic,readonly,assign,getter=signerCertFingerprint) NSString* signerCertFingerprint; - (NSString*)signerCertFingerprint; @property (nonatomic,readonly,assign,getter=signerCertFingerprintSHA1) NSString* signerCertFingerprintSHA1; - (NSString*)signerCertFingerprintSHA1; @property (nonatomic,readonly,assign,getter=signerCertFingerprintSHA256) NSString* signerCertFingerprintSHA256; - (NSString*)signerCertFingerprintSHA256; @property (nonatomic,readonly,assign,getter=signerCertIssuer) NSString* signerCertIssuer; - (NSString*)signerCertIssuer; @property (nonatomic,readonly,assign,getter=signerCertPrivateKey) NSString* signerCertPrivateKey; - (NSString*)signerCertPrivateKey; @property (nonatomic,readonly,assign,getter=signerCertPrivateKeyAvailable) BOOL signerCertPrivateKeyAvailable; - (BOOL)signerCertPrivateKeyAvailable; @property (nonatomic,readonly,assign,getter=signerCertPrivateKeyContainer) NSString* signerCertPrivateKeyContainer; - (NSString*)signerCertPrivateKeyContainer; @property (nonatomic,readonly,assign,getter=signerCertPublicKey) NSString* signerCertPublicKey; - (NSString*)signerCertPublicKey; @property (nonatomic,readonly,assign,getter=signerCertPublicKeyAlgorithm) NSString* signerCertPublicKeyAlgorithm; - (NSString*)signerCertPublicKeyAlgorithm; @property (nonatomic,readonly,assign,getter=signerCertPublicKeyLength) int signerCertPublicKeyLength; - (int)signerCertPublicKeyLength; @property (nonatomic,readonly,assign,getter=signerCertSerialNumber) NSString* signerCertSerialNumber; - (NSString*)signerCertSerialNumber; @property (nonatomic,readonly,assign,getter=signerCertSignatureAlgorithm) NSString* signerCertSignatureAlgorithm; - (NSString*)signerCertSignatureAlgorithm; @property (nonatomic,readwrite,assign,getter=signerCertStore,setter=setSignerCertStore:) NSString* signerCertStore; - (NSString*)signerCertStore; - (void)setSignerCertStore :(NSString*)newSignerCertStore; @property (nonatomic,readwrite,assign,getter=signerCertStoreB,setter=setSignerCertStoreB:) NSData* signerCertStoreB; - (NSData*)signerCertStoreB; - (void)setSignerCertStoreB :(NSData*)newSignerCertStore; @property (nonatomic,readwrite,assign,getter=signerCertStorePassword,setter=setSignerCertStorePassword:) NSString* signerCertStorePassword; - (NSString*)signerCertStorePassword; - (void)setSignerCertStorePassword :(NSString*)newSignerCertStorePassword; @property (nonatomic,readwrite,assign,getter=signerCertStoreType,setter=setSignerCertStoreType:) int signerCertStoreType; - (int)signerCertStoreType; - (void)setSignerCertStoreType :(int)newSignerCertStoreType; @property (nonatomic,readonly,assign,getter=signerCertSubjectAltNames) NSString* signerCertSubjectAltNames; - (NSString*)signerCertSubjectAltNames; @property (nonatomic,readonly,assign,getter=signerCertThumbprintMD5) NSString* signerCertThumbprintMD5; - (NSString*)signerCertThumbprintMD5; @property (nonatomic,readonly,assign,getter=signerCertThumbprintSHA1) NSString* signerCertThumbprintSHA1; - (NSString*)signerCertThumbprintSHA1; @property (nonatomic,readonly,assign,getter=signerCertThumbprintSHA256) NSString* signerCertThumbprintSHA256; - (NSString*)signerCertThumbprintSHA256; @property (nonatomic,readonly,assign,getter=signerCertUsage) NSString* signerCertUsage; - (NSString*)signerCertUsage; @property (nonatomic,readonly,assign,getter=signerCertUsageFlags) int signerCertUsageFlags; - (int)signerCertUsageFlags; @property (nonatomic,readonly,assign,getter=signerCertVersion) NSString* signerCertVersion; - (NSString*)signerCertVersion; @property (nonatomic,readwrite,assign,getter=signerCertSubject,setter=setSignerCertSubject:) NSString* signerCertSubject; - (NSString*)signerCertSubject; - (void)setSignerCertSubject :(NSString*)newSignerCertSubject; @property (nonatomic,readwrite,assign,getter=signerCertEncoded,setter=setSignerCertEncoded:) NSString* signerCertEncoded; - (NSString*)signerCertEncoded; - (void)setSignerCertEncoded :(NSString*)newSignerCertEncoded; @property (nonatomic,readwrite,assign,getter=signerCertEncodedB,setter=setSignerCertEncodedB:) NSData* signerCertEncodedB; - (NSData*)signerCertEncodedB; - (void)setSignerCertEncodedB :(NSData*)newSignerCertEncoded;
Default Value
False
Remarks
This property specifies a certificate for signature verification.
This may be set instead of SignerKey. This allows a Certificate object to be used instead of a RSAKey object. This certificate is used when calling VerifySignature.
If both this property and SignerKey are specified, SignerKey will be used and this property will be ignored.
SignerKey Property (RSA Module)
The public key used to verify the signature.
Syntax
public var signerKey: RSAKey { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=signerKeyExponent,setter=setSignerKeyExponent:) NSString* signerKeyExponent; - (NSString*)signerKeyExponent; - (void)setSignerKeyExponent :(NSString*)newSignerKeyExponent; @property (nonatomic,readwrite,assign,getter=signerKeyExponentB,setter=setSignerKeyExponentB:) NSData* signerKeyExponentB; - (NSData*)signerKeyExponentB; - (void)setSignerKeyExponentB :(NSData*)newSignerKeyExponent; @property (nonatomic,readwrite,assign,getter=signerKeyModulus,setter=setSignerKeyModulus:) NSString* signerKeyModulus; - (NSString*)signerKeyModulus; - (void)setSignerKeyModulus :(NSString*)newSignerKeyModulus; @property (nonatomic,readwrite,assign,getter=signerKeyModulusB,setter=setSignerKeyModulusB:) NSData* signerKeyModulusB; - (NSData*)signerKeyModulusB; - (void)setSignerKeyModulusB :(NSData*)newSignerKeyModulus; @property (nonatomic,readwrite,assign,getter=signerKeyPublicKey,setter=setSignerKeyPublicKey:) NSString* signerKeyPublicKey; - (NSString*)signerKeyPublicKey; - (void)setSignerKeyPublicKey :(NSString*)newSignerKeyPublicKey;
Default Value
False
Remarks
This property specifies the public key used to verify the signature. This public key corresponds to the private key used when creating the signature. This must be set before calling VerifySignature. Alternatively, a certificate may be specified by setting SignerCert
RSA Keys
A RSA key is made up of a number of individual parameters.
The public key consists of the following parameters:
- KeyModulus
- KeyExponent
The class also includes the KeyPublicKey property which holds the PEM formatted public key for ease of use. This is helpful if you are in control of both sides of the encryption/signing and decryption/signature verification process. When sending the public key to a recipient note that not all implementations will support using the PEM formatted value in KeyPublicKey in which case the individual parameters must be sent.
The private key may be represented in one of two ways. Both are mathematically equivalent. Private key format 1:
- KeyModulus
- KeyP
- KeyQ
- KeyDP
- KeyDQ
- KeyModulus
- KeyD
UseHex Property (RSA Module)
Whether input or output is hex encoded.
Syntax
public var useHex: Bool { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=useHex,setter=setUseHex:) BOOL useHex; - (BOOL)useHex; - (void)setUseHex :(BOOL)newUseHex;
Default Value
False
Remarks
This property specifies whether the encrypted data, HashValue, and HashSignature are hex encoded.
If set to True, when Encrypt is called the class will perform the encryption as normal and then hex encode the output. OutputMessage or OutputFile will hold hex encoded data.
If set to True, when Decrypt is called the class will expect InputMessage or InputFile to hold hex encoded data. The class will then hex decode the data and perform decryption as normal.
If set to True, when Sign is called the class will compute the hash for the specified file and populate HashValue with the hex encoded hash value. It will then create the hash signature and populate HashSignature with the hex encoded hash signature value. If HashValue is specified directly, it must be a hex encoded value.
If set to True, when VerifySignature is called the class will compute the hash value for the specified file and populate HashValue with the hex encoded hash value. It will then hex decode HashSignature and verify the signature. HashSignature must hold a hex encoded value. If HashValue is specified directly, it must be a hex encoded value.
UseOAEP Property (RSA Module)
Whether to use Optimal Asymmetric Encryption Padding (OAEP).
Syntax
public var useOAEP: Bool { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=useOAEP,setter=setUseOAEP:) BOOL useOAEP; - (BOOL)useOAEP; - (void)setUseOAEP :(BOOL)newUseOAEP;
Default Value
False
Remarks
Whether to use Optimal Asymmetric Encryption Padding (OAEP). By default this value is False and the class will use PKCS1.
Note: When set to True the HashAlgorithm is also applicable when calling Encrypt and Decrypt.
UsePSS Property (RSA Module)
Whether to use RSA-PSS during signing and verification.
Syntax
public var usePSS: Bool { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=usePSS,setter=setUsePSS:) BOOL usePSS; - (BOOL)usePSS; - (void)setUsePSS :(BOOL)newUsePSS;
Default Value
False
Remarks
This property specifies whether RSA-PSS will be used when signing and verifying messages. The default value is False.
Config Method (RSA Module)
Sets or retrieves a configuration setting.
Syntax
- (NSString*)config:(NSString*)configurationString;
Remarks
Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
CreateKey Method (RSA Module)
Creates a new key.
Syntax
public func createKey() throws -> Void
- (void)createKey;
Remarks
This method creates a new public and private key.
When calling CreateKey the Key property is populated with a new private and public key.
RSA Keys
A RSA key is made up of a number of individual parameters.
The public key consists of the following parameters:
- KeyModulus
- KeyExponent
The class also includes the KeyPublicKey property which holds the PEM formatted public key for ease of use. This is helpful if you are in control of both sides of the encryption/signing and decryption/signature verification process. When sending the public key to a recipient note that not all implementations will support using the PEM formatted value in KeyPublicKey in which case the individual parameters must be sent.
The private key may be represented in one of two ways. Both are mathematically equivalent. Private key format 1:
- KeyModulus
- KeyP
- KeyQ
- KeyDP
- KeyDQ
- KeyModulus
- KeyD
Decrypt Method (RSA Module)
Decrypts the input data using the specified private key.
Syntax
public func decrypt() throws -> Void
- (void)decrypt;
Remarks
This method decrypts the input data using the private key specified in Key. Alternatively, a certificate may be specified by setting Certificate.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
Key Size and the Maximum Length of Data
RSA has an upper limit to the amount of data that can be encrypted or decrypted, also known as message length. This can typically be calculated as the size of the key minus the size of the RSA header and padding.
When not using OAEP, the following formula and table can be referenced. (RSA Key Bytes) - (Header Bytes) = Length of data, where Header Bytes is always 11.
RSA Key Length (bits) | Length (bits) | Length (bytes) |
1024 | 936 | 117 |
2048 | 1960 | 245 |
3072 | 2984 | 373 |
4096 | 4008 | 501 |
When using OAEP, the following formula and table can be referenced. (RSA Key Bytes) - (2 * Hash Length Bytes) - 2 = Length of data. The table below assumes SHA-256 for the hash, so Hash Length Bytes is 32.
RSA Key Length (bits) | Length (bits) | Length (bytes) |
1024 | 496 | 62 |
2048 | 1520 | 190 |
3072 | 2544 | 318 |
4096 | 3568 | 446 |
Encrypt Method (RSA Module)
Encrypts the input data using the recipient's public key.
Syntax
public func encrypt() throws -> Void
- (void)encrypt;
Remarks
This method encrypts the input data using the public key specified in RecipientKey. Alternatively, a certificate may be specified by setting RecipientCert.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
Key Size and the Maximum Length of Data
RSA has an upper limit to the amount of data that can be encrypted or decrypted, also known as message length. This can typically be calculated as the size of the key minus the size of the RSA header and padding.
When not using OAEP, the following formula and table can be referenced. (RSA Key Bytes) - (Header Bytes) = Length of data, where Header Bytes is always 11.
RSA Key Length (bits) | Length (bits) | Length (bytes) |
1024 | 936 | 117 |
2048 | 1960 | 245 |
3072 | 2984 | 373 |
4096 | 4008 | 501 |
When using OAEP, the following formula and table can be referenced. (RSA Key Bytes) - (2 * Hash Length Bytes) - 2 = Length of data. The table below assumes SHA-256 for the hash, so Hash Length Bytes is 32.
RSA Key Length (bits) | Length (bits) | Length (bytes) |
1024 | 496 | 62 |
2048 | 1520 | 190 |
3072 | 2544 | 318 |
4096 | 3568 | 446 |
Reset Method (RSA Module)
Resets the component.
Syntax
public func reset() throws -> Void
- (void)reset;
Remarks
When called, the class will reset all of its properties to their default values.
Sign Method (RSA Module)
Creates a hash signature.
Syntax
public func sign() throws -> Void
- (void)sign;
Remarks
This method will create a hash signature.
Before calling this method specify the input file by setting InputFile or InputMessage.
A key is required to create the hash signature. You may create a new key by calling CreateKey, or specify an existing key pair in Key. Alternatively, a certificate may be specified by setting Certificate. When this method is called the class will compute the hash for the specified file and populate HashValue. It will then create the hash signature using the specified Key and populate HashSignature.
To create the hash signature without first computing the hash simply specify HashValue before calling this method.
The Progress event will fire with updates for the hash computation progress only. The hash signature creation process is quick and does not require progress updates.
VerifySignature Method (RSA Module)
Verifies the signature for the specified data.
Syntax
public func verifySignature() throws -> Bool
- (BOOL)verifySignature;
Remarks
This method will verify a hash signature.
Before calling this method specify the input file by setting InputFile or InputMessage.
A public key and the hash signature are required to perform the signature verification. Specify the public key in SignerKey. Alternatively, a certificate may be specified by setting SignerCert. Specify the hash signature in HashSignature.
When this method is called the class will compute the hash for the specified file and populate HashValue. It will verify the signature using the specified SignerKey and HashSignature.
To verify the hash signature without first computing the hash simply specify HashValue before calling this method.
The Progress event will fire with updates for the hash computation progress only. The hash signature verification process is quick and does not require progress updates.
Error Event (RSA Module)
Fired when information is available about errors during data delivery.
Syntax
- (void)onError:(int)errorCode :(NSString*)description;
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the class .
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
Progress Event (RSA Module)
Fired as progress is made.
Syntax
- (void)onProgress:(long long)bytesProcessed :(int)percentProcessed;
Remarks
This event is fired automatically as data is processed by the class.
The PercentProcessed parameter indicates the current status of the operation.
The BytesProcessed parameter holds the total number of bytes processed so far.
Certificate Type
This is the digital certificate being used.
Remarks
This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.
Fields
effectiveDate
String (read-only)
Default Value: ""
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
expirationDate
String (read-only)
Default Value: ""
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
extendedKeyUsage
String (read-only)
Default Value: ""
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
fingerprint
String (read-only)
Default Value: ""
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
fingerprintSHA1
String (read-only)
Default Value: ""
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
fingerprintSHA256
String (read-only)
Default Value: ""
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
issuer
String (read-only)
Default Value: ""
The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.
privateKey
String (read-only)
Default Value: ""
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The may be available but not exportable. In this case, returns an empty string.
privateKeyAvailable
Bool (read-only)
Default Value: False
Whether a is available for the selected certificate. If is True, the certificate may be used for authentication purposes (e.g., server authentication).
privateKeyContainer
String (read-only)
Default Value: ""
The name of the container for the certificate (if available). This functionality is available only on Windows platforms.
publicKey
String (read-only)
Default Value: ""
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
publicKeyAlgorithm
String (read-only)
Default Value: ""
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
publicKeyLength
Int32 (read-only)
Default Value: 0
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
serialNumber
String (read-only)
Default Value: ""
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
signatureAlgorithm
String (read-only)
Default Value: ""
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
storeB
Data
Default Value: "MY"
The name of the certificate store for the client certificate.
The property denotes the type of the certificate store specified by . If the store is password-protected, specify the password in .
is used in conjunction with the property to specify client certificates. If has a value, and or is set, a search for a certificate is initiated. Please see the property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
store
String
Default Value: "MY"
The name of the certificate store for the client certificate.
The property denotes the type of the certificate store specified by . If the store is password-protected, specify the password in .
is used in conjunction with the property to specify client certificates. If has a value, and or is set, a search for a certificate is initiated. Please see the property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
storePassword
String
Default Value: ""
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
storeType
CertStoreTypes
Default Value: 0
The type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the and set to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
subjectAltNames
String (read-only)
Default Value: ""
Comma-separated lists of alternative subject names for the certificate.
thumbprintMD5
String (read-only)
Default Value: ""
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
thumbprintSHA1
String (read-only)
Default Value: ""
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
thumbprintSHA256
String (read-only)
Default Value: ""
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
usage
String (read-only)
Default Value: ""
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
usageFlags
Int32 (read-only)
Default Value: 0
The flags that show intended use for the certificate. The value of is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the property for a text representation of .
This functionality currently is not available when the provider is OpenSSL.
version
String (read-only)
Default Value: ""
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
subject
String
Default Value: ""
The subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
encodedB
Data
Default Value: ""
The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The and properties also may be used to specify a certificate.
When is set, a search is initiated in the current for the private key of the certificate. If the key is found, is updated to reflect the full subject of the selected certificate; otherwise, is set to an empty string.
encoded
String
Default Value: ""
The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The and properties also may be used to specify a certificate.
When is set, a search is initiated in the current for the private key of the certificate. If the key is found, is updated to reflect the full subject of the selected certificate; otherwise, is set to an empty string.
Constructors
public init()
Creates a instance whose properties can be set. This is useful for use with when generating new certificates.
public init(encoded: )
Parses Encoded as an X.509 public key.
public init(storeType: , store: , storePassword: , subject: )
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.
After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.
public init(storeType: , store: , storePassword: , subject: )
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.
After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.
RSAKey Type
Contains the typical parameters for the RSA algorithm.
Remarks
This type is made up of fields that represent the private and public key parameters used by the RSA algorithm.
RSA Keys
A RSA key is made up of a number of individual parameters.
The public key consists of the following parameters:
- KeyModulus
- KeyExponent
The class also includes the KeyPublicKey property which holds the PEM formatted public key for ease of use. This is helpful if you are in control of both sides of the encryption/signing and decryption/signature verification process. When sending the public key to a recipient note that not all implementations will support using the PEM formatted value in KeyPublicKey in which case the individual parameters must be sent.
The private key may be represented in one of two ways. Both are mathematically equivalent. Private key format 1:
- KeyModulus
- KeyP
- KeyQ
- KeyDP
- KeyDQ
- KeyModulus
- KeyD
Fields
dB
Data
Default Value: ""
Represents the D parameter for the RSA algorithm.
d
String
Default Value: ""
Represents the D parameter for the RSA algorithm.
dpB
Data
Default Value: ""
Represents the DP parameter for the RSA algorithm.
dp
String
Default Value: ""
Represents the DP parameter for the RSA algorithm.
dqB
Data
Default Value: ""
Represents the DQ parameter for the RSA algorithm.
dq
String
Default Value: ""
Represents the DQ parameter for the RSA algorithm.
exponentB
Data
Default Value: ""
Represents the Exponent parameter for the RSA algorithm.
exponent
String
Default Value: ""
Represents the Exponent parameter for the RSA algorithm.
inverseQB
Data
Default Value: ""
Represents the InverseQ parameter for the RSA algorithm. This parameter is optional and is automatically calculated as necessary.
inverseQ
String
Default Value: ""
Represents the InverseQ parameter for the RSA algorithm. This parameter is optional and is automatically calculated as necessary.
modulusB
Data
Default Value: ""
Represents the Modulus parameter for the RSA algorithm.
modulus
String
Default Value: ""
Represents the Modulus parameter for the RSA algorithm.
pB
Data
Default Value: ""
Represents the P parameter for the RSA algorithm.
p
String
Default Value: ""
Represents the P parameter for the RSA algorithm.
privateKey
String
Default Value: ""
This property is a PEM formatted private key. The purpose of this property is to allow easier management of the private key parameters by using only a single value.
publicKey
String
Default Value: ""
This property is a PEM formatted public key. The purpose of this property is to allow easier management of the public key parameters by using only a single value.
qB
Data
Default Value: ""
Represents the Q parameter for the RSA algorithm.
q
String
Default Value: ""
Represents the Q parameter for the RSA algorithm.
Constructors
public init()
The default constructor creates a new RSAKey instance but does not assign a public or private key.
public init(modulus: , exponent: )
The public key constructor assigns an existing public key.
public init(modulus: , d: , p: , q: , dP: , dQ: )
The private key constructor assigns an existing private key. Any valid combination of parameters representing a private key may be supplied. See the description at the top of this page for details on RSA private key formats.
Config Settings (RSA Module)
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.RSA Config Settings
- 0 (PEM - PKCS#1)
- 1 (XML)
- 2 (PEM - PKCS#8 - default)
- "SHA1"
- "SHA224"
- "SHA256" (default)
- "SHA384"
- "SHA512"
- "RIPEMD160"
- "MD2"
- "MD5"
- "MD5SHA1"
Note: This setting is not applicable when UseFIPSCompliantAPI is set to or when the private key of the signing certificate is not exportable since the underlying system implementation does not support separate OAEPRSAHashAlgorithm and OAEPMGF1HashAlgorithm values. In this case the OAEPRSAHashAlgorithm is also used for MGF1.
- "SHA1"
- "SHA224"
- "SHA256" (default)
- "SHA384"
- "SHA512"
- "RIPEMD160"
- "MD2"
- "MD5"
- "MD5SHA1"
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
Setting this configuration setting to tells the class to use the internal implementation instead of using the system security libraries.
This setting is set to by default on all platforms.
Trappable Errors (RSA Module)
RSA Errors
102 | No Key specified. |
104 | Cannot read or write file. |
105 | key parameters incorrect. |
106 | Cannot create hash. |
111 | OutputFile already exists and Overwrite is False. |
113 | Input data or HashValue must be specified. |
121 | Invalid certificate. |
124 | HashSignature must be specified. |
304 | Cannot write file. |
305 | Cannot read file. |
306 | Cannot create file. |
1101 | Missing RSA parameter: Modulus |
1102 | Invalid RSA parameter: Modulus cannot be zero. |
1103 | Missing RSA parameters: Public or Private exponent must be present. |
1104 | Invalid RSA parameter: Exponent cannot be zero. |
1105 | Invalid RSA parameter: D cannot be zero. |
1106 | Invalid hash algorithm. |
1107 | Missing hash value. |
1108 | HashSignature must be specified. |
1109 | Invalid hash size. |
1110 | Public key must be specified. |
1111 | Key must be specified. |
1112 | RSA key too short to sign message. |
1113 | Missing the data to encrypt/decrypt. |
1114 | Invalid cipher length. The data may not have been encrypted with the public key corresponding to the specified private key data. |
1115 | Invalid cipher text. The data may not have been encrypted with the public key corresponding to the specified private key data. |
1116 | Inadequate padding. The data may not have been encrypted with the public key corresponding to the specified private key data. |
1117 | Missing delimiter. The data may not have been encrypted with the public key corresponding to the specified private key data. |
1118 | Message too long. |