Docs

IPWorks 2022 .NET Edition

Version 22.0 [Build 8171]

SysLog Component

Properties   Methods   Events   Configuration Settings   Errors  

The Syslog component is used to send and receive network system log packets.

Syntax

nsoftware.IPWorks.Syslog

Remarks

The Syslog component implements a lightweight BSD syslog client as specified in RFC 3164 (UDP), RFC 5425 (SSL/TLS), and RFC 6587 (TCP). The component is used to send and receive BSD system network logging packets.

The first step in using the Syslog component is to set LocalHost and LocalPort to the interface and port on which the host will be receiving syslog packets, then set Active to True. For each packet, the component will parse the headers and message and fire a PacketIn event.

Property List


The following is the full list of the properties of the component with short descriptions. Click on the links for further details.

ActiveEnables or disables sending and receiving of data.
LocalHostThe name of the local host or user-assigned IP interface through which connections are initiated or accepted.
LocalPortThe port in the local host where Syslog binds.
RemoteHostSets a specific host for outgoing log packets.
RemotePortSets a specific port for outgoing log packets.
SSLAcceptServerCertInstructs the component to unconditionally accept the server certificate that matches the supplied certificate.
SSLAuthenticateClientsIf true, the server asks the client(s) for a certificate.
SSLCertThe certificate to be used during SSL negotiation.
SSLEnabledWhether TLS/SSL is enabled.
SSLServerCertThe server certificate for the last established connection.
UseTCPWhether to use TCP.

Method List


The following is the full list of the methods of the component with short descriptions. Click on the links for further details.

ActivateEnables sending and receiving of data.
ConfigSets or retrieves a configuration setting.
DeactivateDisables sending and receive of data.
DoEventsProcesses events from the internal message queue.
ResetReset the component.
ResolveRemoteHostResolves the hostname in RemoteHost to an IP address.
SendPacketSend a log packet to RemoteHost .

Event List


The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.

ConnectedFired immediately after a connection completes (or fails).
ConnectionStatusTBD.
DisconnectedTBD.
ErrorInformation about errors during data delivery.
PacketInFires whenever a system log packet is received.
SSLClientAuthenticationFired when the client presents its credentials to the server.
SSLServerAuthenticationFires when connecting to the server.
SSLStatusShows the progress of the secure connection.

Configuration Settings


The following is a list of configuration settings for the component with short descriptions. Click on the links for further details.

AcceptDataWhether the component can accept/receive data.
AppNameSets the App-Name field in RFC 5424.
DelayHostResolutionWhether the hostname is resolved when RemoteHost is set.
MsgIdSets the MsgId field in RFC 5424.
ProcIdSets the ProcId field in RFC 5424.
ReceivedAppNameReturns the value of the App-Name field in RFC 5424.
ReceivedMsgIdReturns the value of the MsgId field in RFC 5424.
ReceivedProcIdReturns the value of the ProcId field in RFC 5424.
ReceivedSDElementCountReturns the number of Structured-data elements in RFC 5424.
ReceivedSDElementIdReturns the Sd-Id value of the Sd-element with the specified SDElementIndex in RFC 5424.
ReceivedSDElementIndexReturns the index of the Structured-Data element in RFC 5424.
ReceivedSDParamCountReturns the number of the Sd-param values for the specified SDElementIndex in RFC 5424.
ReceivedSDParamNameReturns the name of the SD-Param field in RFC 5424.
ReceivedSDParamValueReturns the value of the SD-Param field in RFC 5424.
SDElementCountSets the number of Structured-data elements in RFC 5424.
SDElementIdSets the Sd-Id value of the Sd-element with the specified SDElementIndex in RFC 5424.
SDElementIndexSets the index of the Structured-Data element in RFC 5424.
SDParamCountSets the number of the Sd-param values for the specified SDElementIndex in RFC 5424.
SDParamNameSets the name of the SD-Param field in RFC 5424.
SDParamValueSets the value of the SD-Param field in RFC 5424.
TCPMessageDelimiterThe message delimiter to use (if any) when sending and receiving over TCP.
UseHostnameDetermines if the local host name or IP address is used in the Syslog header.
UseLocalTimeIndicates whether to use local time or GMT time for packet timestamps.
VersionDetermines which Syslog version to use.
CaptureIPPacketInfoUsed to capture the packet information.
DelayHostResolutionWhether the hostname is resolved when RemoteHost is set.
DestinationAddressUsed to get the destination address from the packet information.
DontFragmentUsed to set the Don't Fragment flag of outgoing packets.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the component binds.
MaxPacketSizeThe maximum length of the packets that can be received.
QOSDSCPValueUsed to specify an arbitrary QOS/DSCP setting (optional).
QOSTrafficTypeUsed to specify QOS/DSCP settings (optional).
ShareLocalPortIf set to True, allows more than one instance of the component to be active on the same local port.
UseConnectionDetermines whether to use a connected socket.
UseIPv6Whether or not to use IPv6.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
GUIAvailableTells the component whether or not a message loop is available for processing events.
LicenseInfoInformation about the current license.
UseInternalSecurityAPITells the component whether or not to use the system security libraries or an internal implementation.

Active Property (SysLog Component)

Enables or disables sending and receiving of data.

Syntax

public bool Active { get; set; }
Public Property Active As Boolean

Default Value

False

Remarks

Setting the Active property to True makes the component create a communication endpoint (socket) which can be used for sending and receiving UDP datagrams. Setting it to False destroys the socket and disables data communications.

Note: It is recommended to use the Activate or Deactivate method instead of setting this property.

This property is not available at design time.

LocalHost Property (SysLog Component)

The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

public string LocalHost { get; set; }
Public Property LocalHost As String

Default Value

""

Remarks

The LocalHost property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.

If the component is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

NOTE: LocalHost is not persistent. You must always set it in code, and never in the property window.

LocalPort Property (SysLog Component)

The port in the local host where Syslog binds.

Syntax

public int LocalPort { get; set; }
Public Property LocalPort As Integer

Default Value

514

Remarks

The LocalPort property must be set before Syslog is activated (Active is set to True). It instructs the component to bind to a specific port (or communication endpoint) in the local machine.

Setting it to 0 (default) enables the TCP/IP stack to choose a port at random. The chosen port will be shown by the LocalPort property after the connection is established.

LocalPort cannot be changed once the component is Active. Any attempt to set the LocalPort property when the component is Active will generate an error.

The LocalPort property is useful when trying to connect to services that require a trusted port in the client side.

RemoteHost Property (SysLog Component)

Sets a specific host for outgoing log packets.

Syntax

public string RemoteHost { get; set; }
Public Property RemoteHost As String

Default Value

"255.255.255.255"

Remarks

When a call is made to the SendPacket method, the component will send it to whatever value is in RemoteHost. The default value is the broadcast address, "255.255.255.255".

RemotePort Property (SysLog Component)

Sets a specific port for outgoing log packets.

Syntax

public int RemotePort { get; set; }
Public Property RemotePort As Integer

Default Value

514

Remarks

When a call is made to the SendPacket method, the component will send to RemoteHost on RemotePort. The default value is 514, the standard port as defined in the BSD syslog RFC 3164.

SSLAcceptServerCert Property (SysLog Component)

Instructs the component to unconditionally accept the server certificate that matches the supplied certificate.

Syntax

public Certificate SSLAcceptServerCert { get; set; }
Public Property SSLAcceptServerCert As Certificate

Remarks

If it finds any issues with the certificate presented by the server, the component will normally terminate the connection with an error.

You may override this behavior by supplying a value for SSLAcceptServerCert. If the certificate supplied in SSLAcceptServerCert is the same as the certificate presented by the server, then the server certificate is accepted unconditionally, and the connection will continue normally.

Please note that this functionality is provided only for cases where you otherwise know that you are communicating with the right server. If used improperly, this property may create a security breach. Use it at your own risk.

SSLAuthenticateClients Property (SysLog Component)

If true, the server asks the client(s) for a certificate.

Syntax

public bool SSLAuthenticateClients { get; set; }
Public Property SSLAuthenticateClients As Boolean

Default Value

False

Remarks

This property is used in conjunction with the SSLClientAuthentication event. Please refer to the documentation of the SSLClientAuthentication event for details.

SSLCert Property (SysLog Component)

The certificate to be used during SSL negotiation.

Syntax

public Certificate SSLCert { get; set; }
Public Property SSLCert As Certificate

Remarks

The digital certificate that the component will use during SSL negotiation. Set this property to a valid certificate before starting SSL negotiation. To set a certificate, you may set the Encoded field to the encoded certificate. To select a certificate, use the store and subject fields.

SSLEnabled Property (SysLog Component)

Whether TLS/SSL is enabled.

Syntax

public bool SSLEnabled { get; set; }
Public Property SSLEnabled As Boolean

Default Value

False

Remarks

This setting specifies whether TLS/SSL is enabled in the component. When False (default) the component operates in plaintext mode. When True TLS/SSL is enabled.

Note: TLS/SSL can only be used when UseTCP is true.

This property is not available at design time.

SSLServerCert Property (SysLog Component)

The server certificate for the last established connection.

Syntax

public Certificate SSLServerCert { get; }
Public ReadOnly Property SSLServerCert As Certificate

Remarks

SSLServerCert contains the server certificate for the last established connection.

SSLServerCert is reset every time a new connection is attempted.

This property is read-only.

UseTCP Property (SysLog Component)

Whether to use TCP.

Syntax

public bool UseTCP { get; set; }
Public Property UseTCP As Boolean

Default Value

False

Remarks

This property specifies whether TCP is used. By default this proprety is False and UDP is used. When set to True TCP will be used as the underlying protocol.

When set to True the following additional settings are also applicable:

Activate Method (SysLog Component)

Enables sending and receiving of data.

Syntax

public void Activate();

Async Version
public async Task Activate();
public async Task Activate(CancellationToken cancellationToken);
Public Sub Activate()

Async Version
Public Sub Activate() As Task
Public Sub Activate(cancellationToken As CancellationToken) As Task

Remarks

This method enables sending and receiving of data. When called the component will create a communication endpoint (socket) which can be used for sending and receiving UDP messages. This method must be called before using the component to send and receive data.

If the UseConnection configuration setting is set to true, then a local association (connection) to the remote host is also created.

Config Method (SysLog Component)

Sets or retrieves a configuration setting.

Syntax

public string Config(string configurationString);

Async Version
public async Task<string> Config(string configurationString);
public async Task<string> Config(string configurationString, CancellationToken cancellationToken);
Public Function Config(ByVal ConfigurationString As String) As String

Async Version
Public Function Config(ByVal ConfigurationString As String) As Task(Of String)
Public Function Config(ByVal ConfigurationString As String, cancellationToken As CancellationToken) As Task(Of String)

Remarks

Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Deactivate Method (SysLog Component)

Disables sending and receive of data.

Syntax

public void Deactivate();

Async Version
public async Task Deactivate();
public async Task Deactivate(CancellationToken cancellationToken);
Public Sub Deactivate()

Async Version
Public Sub Deactivate() As Task
Public Sub Deactivate(cancellationToken As CancellationToken) As Task

Remarks

This method disables sending and receiving of data. When called the component will destroy the existing socket and disable data communications.

DoEvents Method (SysLog Component)

Processes events from the internal message queue.

Syntax

public void DoEvents();
Public Sub DoEvents()

Remarks

When DoEvents is called, the component processes any available events. If no events are available, it waits for a preset period of time, and then returns.

Reset Method (SysLog Component)

Reset the component.

Syntax

public void Reset();

Async Version
public async Task Reset();
public async Task Reset(CancellationToken cancellationToken);
Public Sub Reset()

Async Version
Public Sub Reset() As Task
Public Sub Reset(cancellationToken As CancellationToken) As Task

Remarks

This method will reset the component's properties to their default values.

ResolveRemoteHost Method (SysLog Component)

Resolves the hostname in RemoteHost to an IP address.

Syntax

public void ResolveRemoteHost();

Async Version
public async Task ResolveRemoteHost();
public async Task ResolveRemoteHost(CancellationToken cancellationToken);
Public Sub ResolveRemoteHost()

Async Version
Public Sub ResolveRemoteHost() As Task
Public Sub ResolveRemoteHost(cancellationToken As CancellationToken) As Task

Remarks

This method resolves the hostname specified by RemoteHost to an IP address. The resolved value is available in the RemoteHost property after this method returns.

In most cases calling this method is not necessary, the component will resolve the hostname automatically when necessary. If DelayHostResolution is true this method may be called to manually resolve RemoteHost if desired.

SendPacket Method (SysLog Component)

Send a log packet to RemoteHost .

Syntax

public void SendPacket(int facility, int severity, string message);

Async Version
public async Task SendPacket(int facility, int severity, string message);
public async Task SendPacket(int facility, int severity, string message, CancellationToken cancellationToken);
Public Sub SendPacket(ByVal Facility As Integer, ByVal Severity As Integer, ByVal Message As String)

Async Version
Public Sub SendPacket(ByVal Facility As Integer, ByVal Severity As Integer, ByVal Message As String) As Task
Public Sub SendPacket(ByVal Facility As Integer, ByVal Severity As Integer, ByVal Message As String, cancellationToken As CancellationToken) As Task

Remarks

System log packets are composed of three main sections, each of which can be broken down into two smaller pieces.

The first section is the PRI, which contains the originating Facility and Severity of the Message. Facility is a value from 0 to 23, with each value being a different part of the system:

0Kernel messages
1User-level messages
2Mail system
3System daemons
4Security/authorization messages
5Messages generated internally by syslogd
6Line printer subsystem
7Network news subsystem
8UUCP subsystem
9Clock daemon
10Security/authorization messages
11FTP daemon
12NTP subsystem
13Log audit
14Log alert
15Clock daemon
16Local use
17Local use
18Local use
19Local use
20Local use
21Local use
22Local use
23Local use

Severity is a value from 0 to 7 using the following convention:

0Emergency - the system is unusable
1Alert - action must be taken immediately
2Critical - critical conditions exist
3Error - error conditions exist
4Warning - warning conditions exist
5Notice - normal but significant condition
6Informational - informative message
7Debug - debug-level messages

The section sections contains a timestamp and hostname, both of which are automatically generated by the component. The third section is the Message itself.

Connected Event (SysLog Component)

Fired immediately after a connection completes (or fails).

Syntax

public event OnConnectedHandler OnConnected;

public delegate void OnConnectedHandler(object sender, SyslogConnectedEventArgs e);

public class SyslogConnectedEventArgs : EventArgs {
  public string RemoteAddress { get; }

  public int RemotePort { get; }

  public int StatusCode { get; }

  public string Description { get; }

}
Public Event OnConnected As OnConnectedHandler

Public Delegate Sub OnConnectedHandler(sender As Object, e As SyslogConnectedEventArgs)

Public Class SyslogConnectedEventArgs Inherits EventArgs
  Public ReadOnly Property RemoteAddress As String

  Public ReadOnly Property RemotePort As Integer

  Public ReadOnly Property StatusCode As Integer

  Public ReadOnly Property Description As String

End Class

Remarks

This event fires after a connection completes or fails.

StatusCode is the value returned by the system TCP/IP stack. This will be 0 if the connection was successful.

Description contains a human readable description of the status. This will be "OK" if the connectino was successful.

RemoteAddress is the IP address of the remote host.

RemotePort is the port on the remote host.

ConnectionStatus Event (SysLog Component)

TBD.

Syntax

public event OnConnectionStatusHandler OnConnectionStatus;

public delegate void OnConnectionStatusHandler(object sender, SyslogConnectionStatusEventArgs e);

public class SyslogConnectionStatusEventArgs : EventArgs {
  public string ConnectionEvent { get; }

  public int StatusCode { get; }

  public string Description { get; }

}
Public Event OnConnectionStatus As OnConnectionStatusHandler

Public Delegate Sub OnConnectionStatusHandler(sender As Object, e As SyslogConnectionStatusEventArgs)

Public Class SyslogConnectionStatusEventArgs Inherits EventArgs
  Public ReadOnly Property ConnectionEvent As String

  Public ReadOnly Property StatusCode As Integer

  Public ReadOnly Property Description As String

End Class

Remarks

TBD.

Disconnected Event (SysLog Component)

TBD.

Syntax

public event OnDisconnectedHandler OnDisconnected;

public delegate void OnDisconnectedHandler(object sender, SyslogDisconnectedEventArgs e);

public class SyslogDisconnectedEventArgs : EventArgs {
  public string RemoteAddress { get; }

  public int RemotePort { get; }

  public int StatusCode { get; }

  public string Description { get; }

}
Public Event OnDisconnected As OnDisconnectedHandler

Public Delegate Sub OnDisconnectedHandler(sender As Object, e As SyslogDisconnectedEventArgs)

Public Class SyslogDisconnectedEventArgs Inherits EventArgs
  Public ReadOnly Property RemoteAddress As String

  Public ReadOnly Property RemotePort As Integer

  Public ReadOnly Property StatusCode As Integer

  Public ReadOnly Property Description As String

End Class

Remarks

TBD.

Error Event (SysLog Component)

Information about errors during data delivery.

Syntax

public event OnErrorHandler OnError;

public delegate void OnErrorHandler(object sender, SyslogErrorEventArgs e);

public class SyslogErrorEventArgs : EventArgs {
  public int ErrorCode { get; }

  public string Description { get; }

}
Public Event OnError As OnErrorHandler

Public Delegate Sub OnErrorHandler(sender As Object, e As SyslogErrorEventArgs)

Public Class SyslogErrorEventArgs Inherits EventArgs
  Public ReadOnly Property ErrorCode As Integer

  Public ReadOnly Property Description As String

End Class

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the component throws an exception.

ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

PacketIn Event (SysLog Component)

Fires whenever a system log packet is received.

Syntax

public event OnPacketInHandler OnPacketIn;

public delegate void OnPacketInHandler(object sender, SyslogPacketInEventArgs e);

public class SyslogPacketInEventArgs : EventArgs {
  public int FacilityCode { get; }

  public string Facility { get; }

  public int SeverityCode { get; }

  public string Severity { get; }

  public string Timestamp { get; }

  public string Hostname { get; }

  public string Message { get; }

  public bool Conforms { get; }

  public string Packet { get; }
public byte[] PacketB { get; } public string SourceAddress { get; } public int SourcePort { get; } }
Public Event OnPacketIn As OnPacketInHandler

Public Delegate Sub OnPacketInHandler(sender As Object, e As SyslogPacketInEventArgs)

Public Class SyslogPacketInEventArgs Inherits EventArgs
  Public ReadOnly Property FacilityCode As Integer

  Public ReadOnly Property Facility As String

  Public ReadOnly Property SeverityCode As Integer

  Public ReadOnly Property Severity As String

  Public ReadOnly Property Timestamp As String

  Public ReadOnly Property Hostname As String

  Public ReadOnly Property Message As String

  Public ReadOnly Property Conforms As Boolean

  Public ReadOnly Property Packet As String
Public ReadOnly Property PacketB As Byte() Public ReadOnly Property SourceAddress As String Public ReadOnly Property SourcePort As Integer End Class

Remarks

System log packets are composed of three main sections, each of which can be broken down into two smaller pieces.

The first section is the PRI, which contains the originating FacilityCode and SeverityCode of the Message. FacilityCode is a value from 0 to 23, with each value being a different part of the system. Facility is a string representation of FacilityCode based on the following convention:

0Kernel messages
1User-level messages
2Mail system
3System daemons
4Security/authorization messages
5Messages generated internally by syslogd
6Line printer subsystem
7Network news subsystem
8UUCP subsystem
9Clock daemon
10Security/authorization messages
11FTP daemon
12NTP subsystem
13Log audit
14Log alert
15Clock daemon
16Local use
17Local use
18Local use
19Local use
20Local use
21Local use
22Local use
23Local use

SeverityCode is a value from 0 to 7. Severity is a string representation of SeverityCode using the following convention:

0Emergency - the system is unusable.
1Alert - action must be taken immediately.
2Critical - critical conditions exist.
3Error - error conditions exist.
4Warning - warning conditions exist.
5Notice - normal but significant condition.
6Informational - informative message.
7Debug - debug-level messages.

The second section contains the Timestamp and Hostname. Timestamp is a string that should conform to the standard structure "MMM DD, HH:MM:SS". The component will search for the Timestamp and verify that it conforms. If it conforms, the component will set Hostname, otherwise, everything after the PRI will be placed in Message.

If Conforms is TRUE, then the original syslog packet conforms to the syslog RFC and Timestamp, Hostname, and Message will all have valid values. Otherwise, you should parse the contents of Packet to verify the fields manually.

SourceAddress and SourcePort are the address and port from which Packet was sent. This can be an intermediate syslog server that is simply forwarding packets from the original host.

SSLClientAuthentication Event (SysLog Component)

Fired when the client presents its credentials to the server.

Syntax

public event OnSSLClientAuthenticationHandler OnSSLClientAuthentication;

public delegate void OnSSLClientAuthenticationHandler(object sender, SyslogSSLClientAuthenticationEventArgs e);

public class SyslogSSLClientAuthenticationEventArgs : EventArgs {
  public string RemoteAddress { get; }

  public int RemotePort { get; }

  public string CertEncoded { get; }
public byte[] CertEncodedB { get; } public string CertSubject { get; } public string CertIssuer { get; } public string Status { get; } public bool Accept { get; set; } }
Public Event OnSSLClientAuthentication As OnSSLClientAuthenticationHandler

Public Delegate Sub OnSSLClientAuthenticationHandler(sender As Object, e As SyslogSSLClientAuthenticationEventArgs)

Public Class SyslogSSLClientAuthenticationEventArgs Inherits EventArgs
  Public ReadOnly Property RemoteAddress As String

  Public ReadOnly Property RemotePort As Integer

  Public ReadOnly Property CertEncoded As String
Public ReadOnly Property CertEncodedB As Byte() Public ReadOnly Property CertSubject As String Public ReadOnly Property CertIssuer As String Public ReadOnly Property Status As String Public Property Accept As Boolean End Class

Remarks

This event fires when a client connects to the component and presents a certificate for authentication. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether to continue or not.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string "OK").

RemoteAddress is the IP address of the connecting client.

RemotePort is the source port of the connecting client.

CertEncoded is the base64 encoded certificate presented by the client.

CertSubject is the subject of the certificate presented by the client.

CertIssuer is the subject of the issuer of the certificate presented by the client.

Status is the stauts of the certificate.

Accept defines whether the certificate is accepted.

SSLServerAuthentication Event (SysLog Component)

Fires when connecting to the server.

Syntax

public event OnSSLServerAuthenticationHandler OnSSLServerAuthentication;

public delegate void OnSSLServerAuthenticationHandler(object sender, SyslogSSLServerAuthenticationEventArgs e);

public class SyslogSSLServerAuthenticationEventArgs : EventArgs {
  public string RemoteAddress { get; }

  public int RemotePort { get; }

  public string CertEncoded { get; }
public byte[] CertEncodedB { get; } public string CertSubject { get; } public string CertIssuer { get; } public string Status { get; } public bool Accept { get; set; } }
Public Event OnSSLServerAuthentication As OnSSLServerAuthenticationHandler

Public Delegate Sub OnSSLServerAuthenticationHandler(sender As Object, e As SyslogSSLServerAuthenticationEventArgs)

Public Class SyslogSSLServerAuthenticationEventArgs Inherits EventArgs
  Public ReadOnly Property RemoteAddress As String

  Public ReadOnly Property RemotePort As Integer

  Public ReadOnly Property CertEncoded As String
Public ReadOnly Property CertEncodedB As Byte() Public ReadOnly Property CertSubject As String Public ReadOnly Property CertIssuer As String Public ReadOnly Property Status As String Public Property Accept As Boolean End Class

Remarks

This event is where the client can decide whether to continue with the connection process or not. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether to continue or not.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string "OK"). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

RemoteAddress is the IP address of the server.

RemotePort is the source port of the server.

CertEncoded is the base64 encoded certificate presented by the server.

CertSubject is the subject of the certificate presented by the server.

CertIssuer is the subject of the issuer of the certificate presented by the server.

Status is the stauts of the certificate.

Accept defines whether the certificate is accepted.

SSLStatus Event (SysLog Component)

Shows the progress of the secure connection.

Syntax

public event OnSSLStatusHandler OnSSLStatus;

public delegate void OnSSLStatusHandler(object sender, SyslogSSLStatusEventArgs e);

public class SyslogSSLStatusEventArgs : EventArgs {
  public string RemoteAddress { get; }

  public int RemotePort { get; }

  public string Message { get; }

}
Public Event OnSSLStatus As OnSSLStatusHandler

Public Delegate Sub OnSSLStatusHandler(sender As Object, e As SyslogSSLStatusEventArgs)

Public Class SyslogSSLStatusEventArgs Inherits EventArgs
  Public ReadOnly Property RemoteAddress As String

  Public ReadOnly Property RemotePort As Integer

  Public ReadOnly Property Message As String

End Class

Remarks

The event is fired for informational and logging purposes only. It is used to track the progress of the connection.

RemoteAddress is the IP address of the remote machine.

RemotePort is the port of the remote machine.

Message is the log message.

Certificate Type

This is the digital certificate being used.

Remarks

This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.

Fields

EffectiveDate
String

This is the date on which this certificate becomes valid. Before this date, it is not valid. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

Encoded
String

This is the certificate (PEM/base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

EncodedB
Byte []

This is the certificate (PEM/base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

ExpirationDate
String

This is the date the certificate expires. After this date, the certificate will no longer be valid. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

ExtendedKeyUsage
String

This is a comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

Fingerprint
String

This is the hex-encoded, 16-byte MD5 fingerprint of the certificate.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

FingerprintSHA1
String

This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

FingerprintSHA256
String

This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

Issuer
String

This is the issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.

PrivateKey
String

This is the private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.

PrivateKeyAvailable
Boolean

This field shows whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).

PrivateKeyContainer
String

This is the name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.

PublicKey
String

This is the public key of the certificate. The key is provided as PEM/Base64-encoded data.

PublicKeyAlgorithm
String

This field contains the textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

PublicKeyLength
Integer

This is the length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

SerialNumber
String

This is the serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

SignatureAlgorithm
String

The field contains the text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

Store
String

This is the name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e. PKCS12 certificate store).

StoreB
Byte []

This is the name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e. PKCS12 certificate store).

StorePassword
String

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

StoreType
CertStoreTypes

This is the type of certificate store for this certificate.

The component supports both public and private keys in a variety of formats. When the cstAuto value is used the component will automatically determine the type. This field can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user. Note: this store type is not available in Java.
1 (cstMachine)For Windows, this specifies that the certificate store is a machine store. Note: this store type is not available in Java.
2 (cstPFXFile)The certificate store is the name of a PFX (PKCS12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in PFX (PKCS12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates. Note: this store type is only available in Java.
5 (cstJKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in Java Key Store (JKS) format. Note: this store type is only available in Java.
6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
20 (cstSecurityKey)The certificate is present on a physical security key accessible via a PKCS11 interface.

To use a security key the necessary data must first be collected using the CertMgr component. The ListStoreCertificates method may be called after setting CertStoreType to cstSecurityKey, CertStorePassword to the PIN, and CertStore to the full path of the PKCS11 dll. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example: SSH Authentication with Security Key certmgr.CertStoreType = CertStoreTypes.cstSecurityKey; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstSecurityKey, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store). Note: this store type is only available in Java and .NET.
22 (cstBCFKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format. Note: this store type is only available in Java and .NET.
99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

Subject
String

This is the subject of the certificate used for client authentication.

This field will be populated with the full subject of the loaded certificate. When loading a certificate the subject is used to locate the certificate in the store.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma separated list of distinguished name fields and values. For instance "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are displayed below.

FieldMeaning
CNCommon Name. This is commonly a host name like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma it must be quoted.

SubjectAltNames
String

This field contains comma-separated lists of alternative subject names for the certificate.

ThumbprintMD5
String

This field contains the MD5 hash of the certificate. If the hash does not already exist, it is computed.

ThumbprintSHA1
String

This field contains the SHA-1 hash of the certificate. If the hash does not already exist, it is computed.

ThumbprintSHA256
String

This field contains the SHA-256 hash of the certificate. If the hash does not already exist, it is computed.

Usage
String

This field contains the text description of UsageFlags.

This value will be of one or more of the following strings and will be separated by commas:

  • Digital Signatures
  • Key Authentication
  • Key Encryption
  • Data Encryption
  • Key Agreement
  • Certificate Signing
  • Key Signing

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

UsageFlags
Integer

This field contains the flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:

0x80Digital Signatures
0x40Key Authentication
0x20Key Encryption
0x10Data Encryption
0x08Key Agreement
0x04Certificate Signing
0x02Key Signing

Please see the Usage field for a text representation of UsageFlags.

This functionality currently is not available when the provider is OpenSSL.

Version
String

This field contains the certificate's version number. The possible values are the strings "V1", "V2", and "V3".

Constructors

public Certificate();
Public Certificate()

Creates a Certificate instance whose properties can be set. This is useful for use with CERTMGR when generating new certificates.

public Certificate(string certificateFile);
Public Certificate(ByVal CertificateFile As String)

Opens CertificateFile and reads out the contents as an X509 public key.

public Certificate(byte[] certificateData);
Public Certificate(ByVal CertificateData As Byte())

Parses CertificateData as an X509 public key.

public Certificate(CertStoreTypes certStoreType, string store, string storePassword, string subject);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Subject As String)

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X509 certificate's subject Distinguished Name (DN).

public Certificate(CertStoreTypes certStoreType, string store, string storePassword, string subject, string configurationString);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Subject As String, ByVal ConfigurationString As String)

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. ConfigurationString is a newline separated list of name-value pairs that may be used to modify the default behavior. Possible values include "PersistPFXKey", which shows whether or not the PFX key is persisted after performing operations with the private key. This correlates to the PKCS12_NO_PERSIST_KEY CyrptoAPI option. The default value is True (the key is persisted). "Thumbprint" - a MD5, SHA1, or SHA256 thumbprint of the certificate to load. When specified, this value is used to select the certificate in the store. This is applicable to cstUser, cstMachine, cstPublicKeyFile, and cstPFXFile store types. "UseInternalSecurityAPI" shows whether the platform (default) or the internal security API is used when performing certificate-related operations. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X509 certificate's subject Distinguished Name (DN).

public Certificate(CertStoreTypes certStoreType, string store, string storePassword, byte[] encoded);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Encoded As Byte())

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will load Encoded as an X509 certificate and search the opened store for a corresponding private key.

public Certificate(CertStoreTypes certStoreType, byte[] storeBlob, string storePassword, string subject);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal StoreBlob As Byte(), ByVal StorePassword As String, ByVal Subject As String)

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. StoreBlob is a string (binary- or base64-encoded) containing the certificate data. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X509 certificate's subject Distinguished Name (DN).

public Certificate(CertStoreTypes certStoreType, byte[] storeBlob, string storePassword, string subject, string configurationString);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal StoreBlob As Byte(), ByVal StorePassword As String, ByVal Subject As String, ByVal ConfigurationString As String)

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. StoreBlob is a string (binary- or base64-encoded) containing the certificate data. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X509 certificate's subject Distinguished Name (DN).

public Certificate(CertStoreTypes certStoreType, byte[] storeBlob, string storePassword, byte[] encoded);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal StoreBlob As Byte(), ByVal StorePassword As String, ByVal Encoded As Byte())

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a string (binary- or base64-encoded) containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will load Encoded as an X509 certificate and search the opened store for a corresponding private key.

Configuration Settings (SysLog Component)

The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

Syslog Configuration Settings

AcceptData:   Whether the component can accept/receive data.

When set to false the component will no longer be able to accept any data. The PacketIn event will not fire.

The default is true.

AppName:   Sets the App-Name field in RFC 5424.

This setting specifies the App-Name field of the message as defined in RFC 5424

Note: This setting is only applicable when Version is set to 1 (RFC 5424)

DelayHostResolution:   Whether the hostname is resolved when RemoteHost is set.

This setting specifies whether a hostname is resolved immediately when RemoteHost is set. If true the component will resolve the hostname and the IP address will be present in the RemoteHost property. If false, the hostname is not resolved until needed by the component when a method to connect or send data is called. If desired, ResolveRemoteHost may called to manually resolve the value in RemoteHost at any time.

The default value is false for the default library and true for the Async library. The default value is false.

MsgId:   Sets the MsgId field in RFC 5424.

This setting specifies the MsgId field as defined in RFC 5424.

Note: This setting is only applicable when Version is set to 1 (RFC 5424)

ProcId:   Sets the ProcId field in RFC 5424.

This setting specifies the ProcId field as defined in RFC 5424.

Note: This setting is only applicable when Version is set to 1 (RFC 5424)

ReceivedAppName:   Returns the value of the App-Name field in RFC 5424.

This setting returns the value of the App-Name field in RFC 5424.

This setting is applicable when receiving messages.

Note: This setting is only applicable when Version is set to 1 (RFC 5424)

ReceivedMsgId:   Returns the value of the MsgId field in RFC 5424.

This setting returns the value of the MsgId field in RFC 5424.

This setting is applicable when receiving messages.

Note: This setting is only applicable when Version is set to 1 (RFC 5424)

ReceivedProcId:   Returns the value of the ProcId field in RFC 5424.

This setting returns the value of the ProcId field in RFC 5424.

This setting is applicable when receiving messages.

Note: This setting is only applicable when Version is set to 1 (RFC 5424)

ReceivedSDElementCount:   Returns the number of Structured-data elements in RFC 5424.

This setting returns the number of Structured-data elements in RFC 5424.

This setting is applicable when receiving messages.

Note: This setting is only applicable when Version is set to 1 (RFC 5424)

ReceivedSDElementId:   Returns the Sd-Id value of the Sd-element with the specified SDElementIndex in RFC 5424.

This setting returns the Sd-Id value of the SD-element with the specified SDElementIndex.

This setting is applicable when receiving messages.

Note: This setting is only applicable when Version is set to 1 (RFC 5424)

ReceivedSDElementIndex:   Returns the index of the Structured-Data element in RFC 5424.

This setting returns the index of the Structured-Data element as defined in RFC 5424.

This setting is applicable when receiving messages.

Note: This setting is only applicable when Version is set to 1 (RFC 5424)

ReceivedSDParamCount:   Returns the number of the Sd-param values for the specified SDElementIndex in RFC 5424.

This setting returns the number of the SD-param values for the specified SDElementIndex.

This setting is applicable when receiving messages.

Note: This setting is only applicable when Version is set to 1 (RFC 5424)

ReceivedSDParamName:   Returns the name of the SD-Param field in RFC 5424.

This setting returns the name of the SD-Param field as defined in RFC 5424. Append the index in square brackets to refer to the SD-Param field in the specified index: SDParamName[index]

This setting is applicable when receiving messages.

Note: This setting is only applicable when Version is set to 1 (RFC 5424)

ReceivedSDParamValue:   Returns the value of the SD-Param field in RFC 5424.

This setting returns the value of the SD-Param field as defined in RFC 5424. Append the index in square brackets to refer to the SD-Param field in the specified index: SDParamValue[index]

This setting is applicable when receiving messages.

Note: This setting is only applicable when Version is set to 1 (RFC 5424)

The example below demonstrates how to obtain the structured data information from a received message: int ReceivedSDElementCount = Int32.Parse(syslog.Config("ReceivedSDElementCount")); for(int i=0; i < ReceivedSDElementCount; i++) { syslog.Config("ReceivedSDElementIndex="+ i.ToString()); int ReceivedSDParamCount = Int32.Parse(syslog.Config("ReceivedSDParamCount")); for(int j=0; j < ReceivedSDParamCount; j++) { Console.WriteLine("Param Name: " + syslog.Config("ReceivedSDParamName[" + j.ToString() + "]")); Console.WriteLine("Param Value: " + syslog.Config("ReceivedSDParamValue[" + j.ToString() + "]")); } }

SDElementCount:   Sets the number of Structured-data elements in RFC 5424.

This setting specifies the number of Structured-data elements in RFC 5424.

Note: This setting is only applicable when Version is set to 1 (RFC 5424)

SDElementId:   Sets the Sd-Id value of the Sd-element with the specified SDElementIndex in RFC 5424.

This setting specifies the Sd-Id value of the SD-element with the specified SDElementIndex.

Note: This setting is only applicable when Version is set to 1 (RFC 5424)

SDElementIndex:   Sets the index of the Structured-Data element in RFC 5424.

This setting specifies the index of the Structured-Data element as defined in RFC 5424.

Note: This setting is only applicable when Version is set to 1 (RFC 5424)

SDParamCount:   Sets the number of the Sd-param values for the specified SDElementIndex in RFC 5424.

This setting specifies the number of the SD-param values for the specified SDElementIndex.

Note: This setting is only applicable when Version is set to 1 (RFC 5424)

SDParamName:   Sets the name of the SD-Param field in RFC 5424.

This setting specifies the name of the SD-Param field as defined in RFC 5424. Append the index in square brackets to refer to the SD-Param field in the specified index: SDParamName[index]

Note: This setting is only applicable when Version is set to 1 (RFC 5424)

SDParamValue:   Sets the value of the SD-Param field in RFC 5424.

This setting specifies the value of the SD-Param field as defined in RFC 5424. Append the index in square brackets to refer to the SD-Param field in the specified index: SDParamValue[index]

Note: This setting is only applicable when Version is set to 1 (RFC 5424)

The example below demonstrates how to set the Struct-Data configs: syslog.Config("SDElementCount=2"); syslog.Config("SDElementIndex=0"); syslog.Config("SDElementID=examplePriority@32473"); syslog.Config("SDParamCount=1"); syslog.Config("SDParamName[0]=class"); syslog.Config("SDParamValue[0]=high"); syslog.Config("SDElementIndex=1"); syslog.Config("SDElementID=exampleSDID@32473"); syslog.Config("SDParamCount=2"); syslog.Config("SDParamName[0]=iut"); syslog.Config("SDParamValue[0]=3"); syslog.Config("SDParamName[1]=eventSource"); syslog.Config("SDParamValue[1]=Application");

TCPMessageDelimiter:   The message delimiter to use (if any) when sending and receiving over TCP.

When UseTCP is set to True messages may be sent and received using either Octet Counting or Non-Transparent-Framing schemes to separate mesagges sent over the wire. This setting defines the delimiter to use in the Non-Transparent-Framing scheme when sending messages. Possible values are:

0 (None - Default) Octet Counting is used, there is no delimiter character
1 (Cr) The carriage return character is used as a message delimiter
2 (Lf) The line feed character is used as a message delimiter
3 (CrLf) The two character carriage return line feed sequence is used as a message delimiter
4 (Null) A single null byte is used as a message delimiter

This setting is only applicable when sending a message and UseTCP is set to True.

UseHostname:   Determines if the local host name or IP address is used in the Syslog header.

If set to false the component will use the IP address of the local host name in the header of the Syslog packet. The default value is true.

UseLocalTime:   Indicates whether to use local time or GMT time for packet timestamps.

Setting this to True will generate timestamps based on the time in your locality, taking into account your time zone. When this option is False (default), GMT timestamps are generated.

Version:   Determines which Syslog version to use.

0 (RFC 3164 - Default) Uses RFC 3164
1 (RFC 5424) Uses RFC 5424

This setting specifies which version of Syslog will be used.

Note: This setting should be set before setting any of the AppName, MsgId, ProcId

UDPPort Configuration Settings

CaptureIPPacketInfo:   Used to capture the packet information.

If this is set to true, the component will capture the IP packet information.

The default value for this setting is False.

Note: This setting is only available in Windows.

DelayHostResolution:   Whether the hostname is resolved when RemoteHost is set.

This setting specifies whether a hostname is resolved immediately when RemoteHost is set. If true the component will resolve the hostname and the IP address will be present in the RemoteHost property. If false, the hostname is not resolved until needed by the component when a method to connect or send data is called. If desired, ResolveRemoteHost may called to manually resolve the value in RemoteHost at any time.

The default value is false for the default library and true for the Async library. The default value is false.

DestinationAddress:   Used to get the destination address from the packet information.

If CaptureIPPacketInfo is set to true, then this will be populated with the packet's destination address when a packet is received. This information will be accessible in the DataIn event.

Note: This setting is only available in Windows.

DontFragment:   Used to set the Don't Fragment flag of outgoing packets.

When set to True, packets sent by the component will have the Don't Fragment flag set. The default value is False.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.

If the component is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the component binds.

This must be set before a connection is attempted. It instructs the component to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxPacketSize:   The maximum length of the packets that can be received.

This setting specifies the maximum size of the datagrams that the component will accept without truncation.

QOSDSCPValue:   Used to specify an arbitrary QOS/DSCP setting (optional).

UseConnection must be True to use this setting. This option allows you to specify an arbitrary DSCP value between 0 and 63. The default is 0. When set to the default value the component will not set a DSCP value.

Note: This setting uses the qWAVE API is only available on Windows 7, Windows Server 2008 R2, and later.

QOSTrafficType:   Used to specify QOS/DSCP settings (optional).

UseConnection must be True to use this setting. You may specify either the text or integer values: BestEffort (0), Background (1), ExcellentEffort (2), AudioVideo (3), Voice (4), and Control (5).

Note: This setting uses the qWAVE API which is only available on Windows Vista and Windows Server 2008 or above.

Note: QOSTrafficType must be set before setting Active to true.

ShareLocalPort:   If set to True, allows more than one instance of the component to be active on the same local port.

This option must be set before the component is activated through the Active property or it will have no effect.

The default value for this setting is False.

UseConnection:   Determines whether to use a connected socket.

UseConnection specifies whether the component should use a connected socket or not. The connection is defined as an association in between the local address/port and the remote address/port. As such, this is not a connection in the traditional TCP sense. What it means is only that the component will send and receive data only to and from the specified destination.

The default value for this setting is False.

UseIPv6:   Whether or not to use IPv6.

By default, the component expects an IPv4 address for local and remote host properties, and will create an IPv4 socket. To use IPv6 instead, set this to True.

Socket Configuration Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for UDP ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g. headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Configuration Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

GUIAvailable:   Tells the component whether or not a message loop is available for processing events.

In a GUI-based application, long-running blocking operations may cause the application to stop responding to input until the operation returns. The component will attempt to discover whether or not the application has a message loop and, if one is discovered, it will process events in that message loop during any such blocking operation.

In some non-GUI applications, an invalid message loop may be discovered that will result in errant behavior. In these cases, setting GUIAvailable to false will ensure that the component does not attempt to process external events.

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a component is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
UseInternalSecurityAPI:   Tells the component whether or not to use the system security libraries or an internal implementation.

By default the component will use the system security libraries to perform cryptographic functions. When set to False calls to unmanaged code will be made. In certain environments this is not desirable. To use a completely managed security implementation set this setting to True. Setting this to True tells the component to use the internal implementation instead of using the system's security API.

Note: This setting is static. The value set is applicable to all components used in the application.

When this value is set the product's system DLL is no longer required as a reference, as all unmanaged code is stored in that file.

Trappable Errors (SysLog Component)

SysLog Errors

451   Unable to acquire valid system time.

UDPPort Errors

104   UDPPort is already Active.
106   You cannot change the LocalPort while the component is Active.
107   You cannot change the LocalHost at this time. A connection is in progress.
109   The component must be Active for this operation.
112   Cannot change MaxPacketSize while the component is Active.
113   Cannot change ShareLocalPort option while the component is Active.
114   Cannot change RemoteHost when UseConnection is set and the component Active.
115   Cannot change RemotePort when UseConnection is set and the component is Active.
116   RemotePort can't be zero when UseConnection is set. Please specify a valid service port number.
117   Cannot change UseConnection while the component is Active.
118   Message can't be longer than MaxPacketSize.
119   Message too short.
434   Unable to convert string to selected CodePage

SSL Errors

270   Cannot load specified security library.
271   Cannot open certificate store.
272   Cannot find specified certificate.
273   Cannot acquire security credentials.
274   Cannot find certificate chain.
275   Cannot verify certificate chain.
276   Error during handshake.
280   Error verifying certificate.
281   Could not find client certificate.
282   Could not find server certificate.
283   Error encrypting data.
284   Error decrypting data.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on non-socket.
10039   [10039] Destination address required.
10040   [10040] Message too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol not supported.
10044   [10044] Socket type not supported.
10045   [10045] Operation not supported on socket.
10046   [10046] Protocol family not supported.
10047   [10047] Address family not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Can't assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Can't send after socket shutdown.
10059   [10059] Too many references, can't splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock not loaded yet.
11001   [11001] Host not found.
11002   [11002] Non-authoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).

Copyright (c) 2022 /n software inc. - All rights reserved.
IPWorks 2022 .NET Edition - Version 22.0 [Build 8171]