Docs

IPWorks 2022 .NET Edition

Version 22.0 [Build 8171]

Telnet Component

Properties   Methods   Events   Configuration Settings   Errors  

The Telnet Component is used to communicate with servers implementing the TELNET protocol.

Syntax

nsoftware.IPWorks.Telnet

Remarks

The Telnet Component supports both plaintext and SSL/TLS connections. When connecting over SSL/TLS the SSLServerAuthentication event allows you to check the server identity and other security attributes. The SSLStatus event provides information about the SSL handshake. Additional SSL related settings are also supported via the Config method.

The Telnet Component provides a simple interface to Telnet communications as specified by RFC 854. It allows sending of Telnet command codes to remote Telnet servers and it scans the input data for Telnet commands. Appropriate events are fired for received commands.

The connection interface is very similar to that of IPPort. The same properties and events are used for sending and receiving normal data, and the same property set is used for setting properties of the connection. The Telnet Component adds a number of properties like Command, DoOption, etc. which allow sending of Telnet commands to the other end. The respective events (Command, Do, etc.) are fired when the corresponding Telnet commands are received.

Property List


The following is the full list of the properties of the component with short descriptions. Click on the links for further details.

AcceptDataEnables or disables data reception (the DataIn event).
BytesSentThe number of bytes actually sent after an assignment to DataToSend .
Command*This property is deprecated. Please use the SendCommand method instead.
ConnectedTriggers a connection or disconnection.
DataToSend*This property is deprecated. Please use the SendBytes method or the SendText method instead.
DontOption*This property is deprecated. Please use the SendDontOption method instead.
DoOption*This property is deprecated. Please use the SendDoOption method instead.
DoSubOption*This property is deprecated. Please use the SendDoSubOption method instead.
FirewallA set of properties related to firewall access.
KeepAliveWhen True, KEEPALIVE packets are enabled (for long connections).
LingerWhen set to True, connections are terminated gracefully.
LocalHostThe name of the local host or user-assigned IP interface through which connections are initiated or accepted.
LocalPortThe TCP port in the local host where IPPort binds.
RemoteHostThe address of the remote host. Domain names are resolved to IP addresses.
RemotePortThe secure Telnet port in the remote host (default is 23).
SSLAcceptServerCertInstructs the component to unconditionally accept the server certificate that matches the supplied certificate.
SSLCertThe certificate to be used during SSL negotiation.
SSLEnabledWhether TLS/SSL is enabled.
SSLProviderTBD.
SSLServerCertThe server certificate for the last established connection.
SSLStartModeDetermines how the component starts the SSL negotiation.
TimeoutA timeout for the component.
TransparentWhen True, Telnet command processing is disabled.
UrgentData*This property is deprecated. Please use the SendUrgentBytes method or the SendUrgentText method instead.
WillOption*This property is deprecated. Please use the SendWillOption method instead.
WontOption*This property is deprecated. Please use the SendWontOption method instead.

Method List


The following is the full list of the methods of the component with short descriptions. Click on the links for further details.

ConfigSets or retrieves a configuration setting.
ConnectConnects to a remote host.
ConnectToConnects to a remote host.
DisconnectDisconnect from the remote host.
DoEventsProcesses events from the internal message queue.
PauseDataPauses data reception.
ProcessDataRe-enables data reception after a call to PauseData
ResetReset the component.
SendSends binary data to the remote host.
SendBytesSends binary data to the remote host.
SendCommandSends a single character Telnet command code to the server.
SendDontOptionThis method sends a single character Telnet option code to the server with the Telnet DONT command.
SendDoOptionThis method sends a single character Telnet option code to the server with the Telnet DO command.
SendDoSubOptionThis methods sends a Telnet SubOption to send to the server with the SubOption command.
SendTextSends text to the remote host.
SendUrgentBytesUrgently sends binary data to the remote host.
SendUrgentTextUrgently sends text to the remote host.
SendWillOptionThis method sends a single character Telnet option code the server with the Telnet WILL command.
SendWontOptionThis method sends a single character Telnet option code to the server with the Telnet WONT command.

Event List


The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.

CommandFired when a Telnet command comes from the Telnet server.
ConnectedFired immediately after a connection completes (or fails).
ConnectionStatusFired to indicate changes in connection state.
DataInFired when data is received from the remote host.
DisconnectedFired when a connection is closed.
DoFired when a Telnet DO OPTION command comes from the Telnet server.
DontFired when a Telnet DONT OPTION command comes from the Telnet server.
ErrorInformation about errors during data delivery.
ReadyToSendFired when the component is ready to send data.
SSLServerAuthenticationFired after the server presents its certificate to the client.
SSLStatusShows the progress of the secure connection.
SubOptionFired when a Telnet SubOption command comes from the Telnet server.
WillFired when a Telnet WILL OPTION command comes from the Telnet server.
WontFired when a Telnet WONT OPTION command comes from the Telnet server.

Configuration Settings


The following is a list of configuration settings for the component with short descriptions. Click on the links for further details.

CloseStreamAfterTransferIf true, the component will close the upload or download stream after the transfer.
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the component whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallListenerIf true, the component binds to a SOCKS firewall as a server (IPPort only).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the component binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
UseNTLMv2Whether to use NTLM V2.
CACertFilePathsThe paths to CA certificate files when using Mono on Unix/Linux.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertsA newline separated list of CA certificate to use during SSL client authentication.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated ciphersuite.
SSLNegotiatedCipherStrengthReturns the negotiated ciphersuite strength.
SSLNegotiatedCipherSuiteReturns the negotiated ciphersuite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedProtocolReturns the negotiated protocol version.
SSLProviderThe name of the security provider to use.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificate to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when UseInternalSecurityAPI is True.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13ProviderThe TLS 1.3 implementation to be used.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
GUIAvailableTells the component whether or not a message loop is available for processing events.
LicenseInfoInformation about the current license.
UseInternalSecurityAPITells the component whether or not to use the system security libraries or an internal implementation.

AcceptData Property (Telnet Component)

Enables or disables data reception (the DataIn event).

Syntax

public bool AcceptData { get; set; }
Public Property AcceptData As Boolean

Default Value

True

Remarks

This property enables or disables data reception (the DataIn event). Setting this property to False, temporarily disables data reception (and the DataIn event). Setting this property to True, re-enables data reception.

Note: It is recommended to use the PauseData or ProcessData method instead of setting this property.

This property is not available at design time.

BytesSent Property (Telnet Component)

The number of bytes actually sent after an assignment to DataToSend .

Syntax

public int BytesSent { get; }
Public ReadOnly Property BytesSent As Integer

Default Value

0

Remarks

The BytesSent property shows how many bytes were sent after the last assignment to DataToSend or UrgentData. Please check the DataToSend property for more information.

This property is read-only and not available at design time.

Command Property (Telnet Component)

A single character Telnet command code to be sent to the server.

Syntax

public int Command { set; }
Public WriteOnly Property Command As Integer

Default Value

0

Remarks

Codes for Telnet commands and their meanings are defined in the Telnet RFCs. Here are some examples:

241 (NOP)No operation.
242 (Data Mark)The data stream portion of a Synch. This should always be accompanied by a TCP Urgent notification.
243 (Break)NVT character BRK.
244 (Interrupt Process)The function IP.
245 (Abort Output)The function AO.
246 (Are You There)The function AYT.
247 (Erase Character)The function EC.
248 (Erase Line)The function EL.
249 (Go Ahead)The GA signal.

This property is write-only and not available at design time.

Connected Property (Telnet Component)

Triggers a connection or disconnection.

Syntax

public bool Connected { get; set; }
Public Property Connected As Boolean

Default Value

False

Remarks

Setting the Connected property to True makes the component attempt to connect to the host identified by the RemoteHost property. If successful, after the connection is achieved, the value of the property changes to True and the Connected event is fired.

Setting Connected to False closes the connection. How and when the connection is closed is controlled by the Linger property.

Note: It is recommended to use the Connect or Disconnect method instead of setting this property.

This property is not available at design time.

DataToSend Property (Telnet Component)

A string of data to be sent to the remote host.

Syntax

public string DataToSend { set; }
public byte[] DataToSendB { set; }
Public WriteOnly Property DataToSend As String
Public WriteOnly Property DataToSendB As Byte()

Default Value

""

Remarks

Assigning a string to the DataToSend property makes the component send the string to the remote host. The Send method provides similar functionality.

If you are sending data to the remote host faster than it can process it, or faster than the network's bandwidth allows, the outgoing queue might fill up. When this happens, the operation fails with exception 10035: "[10035] Operation would block" (WSAEWOULDBLOCK). You can check this error, and then try to send the data again. The BytesSent property shows how many bytes were sent (if any). If 0 bytes were sent, then you can wait for the ReadyToSend event before attempting to send data again. (However, please note that ReadyToSend is not fired when part of the data is successfully sent).

This property is write-only and not available at design time.

DontOption Property (Telnet Component)

A single character Telnet option code to be sent to the server with the Telnet DONT command.

Syntax

public int DontOption { set; }
Public WriteOnly Property DontOption As Integer

Default Value

0

Remarks

For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

This property is write-only and not available at design time.

DoOption Property (Telnet Component)

A single character Telnet option code to be sent to the server with the Telnet DO command.

Syntax

public int DoOption { set; }
Public WriteOnly Property DoOption As Integer

Default Value

0

Remarks

For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

This property is write-only and not available at design time.

DoSubOption Property (Telnet Component)

A Telnet SubOption to send to the server with the SubOption command.

Syntax

public string DoSubOption { set; }
public byte[] DoSubOptionB { set; }
Public WriteOnly Property DoSubOption As String
Public WriteOnly Property DoSubOptionB As Byte()

Default Value

""

Remarks

For a list of valid Telnet suboptions and their descriptions please look at the Telnet RFCs.

You don't need to specify the suboption start and suboption end codes. Those are appended automatically by the component. For example, to send a terminal type suboption to request setting the terminal type to 'vt100', you must send ASCII 24, followed by ASCII 0, followed by "vt100" (without the quotes).

This property is write-only and not available at design time.

Firewall Property (Telnet Component)

A set of properties related to firewall access.

Syntax

public Firewall Firewall { get; set; }
Public Property Firewall As Firewall

Remarks

This is a Firewall type property which contains fields describing the firewall through which the component will attempt to connect.

KeepAlive Property (Telnet Component)

When True, KEEPALIVE packets are enabled (for long connections).

Syntax

public bool KeepAlive { get; set; }
Public Property KeepAlive As Boolean

Default Value

False

Remarks

The KeepAlive enables the SO_KEEPALIVE option on the socket. This option prevents long connections from timing out in case of inactivity.

Please note that system TCP/IP stack implementations are not required to support SO_KEEPALIVE.

Linger Property (Telnet Component)

When set to True, connections are terminated gracefully.

Syntax

public bool Linger { get; set; }
Public Property Linger As Boolean

Default Value

True

Remarks

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), there are two scenarios for determining how long the connection will linger. The first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP protocol timeout expires.

In the second scenario, LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the component returns control immediately, the system could hold system resources until all pending data is sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (by a client acknowledgment, for example), setting this property to False might be the appropriate course of action.

LocalHost Property (Telnet Component)

The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

public string LocalHost { get; set; }
Public Property LocalHost As String

Default Value

""

Remarks

The LocalHost property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.

If the component is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

NOTE: LocalHost is not persistent. You must always set it in code, and never in the property window.

LocalPort Property (Telnet Component)

The TCP port in the local host where IPPort binds.

Syntax

public int LocalPort { get; set; }
Public Property LocalPort As Integer

Default Value

0

Remarks

The LocalPort property must be set before a connection is attempted. It instructs the component to bind to a specific port (or communication endpoint) in the local machine.

Setting it to 0 (default) enables the TCP/IP stack to choose a port at random. The chosen port will be shown by the LocalPort property after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set the LocalPort property when a connection is active will generate an error.

The LocalPort property is useful when trying to connect to services that require a trusted port in the client side.

RemoteHost Property (Telnet Component)

The address of the remote host. Domain names are resolved to IP addresses.

Syntax

public string RemoteHost { get; set; }
Public Property RemoteHost As String

Default Value

""

Remarks

This property specifies the IP address (IP number in dotted internet format) or Domain Name of the remote host. It is set before a connection is attempted and cannot be changed once a connection is established.

If this property is set to a Domain Name, a DNS request is initiated, and upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, an error is returned.

If the component is configured to use a SOCKS firewall, the value assigned to this property may be preceded with an "*". If this is the case, the host name is passed to the firewall unresolved and the firewall performs the DNS resolution.

Example (Connecting)

IPPortControl.RemoteHost = "MyHostNameOrIP" IPPortControl.RemotePort = 777 IPPortControl.Connected = true

RemotePort Property (Telnet Component)

The secure Telnet port in the remote host (default is 23).

Syntax

public int RemotePort { get; set; }
Public Property RemotePort As Integer

Default Value

23

Remarks

For implicit SSL, use port 992 (please refer to the SSLStartMode property for more information).

A valid port number (a value between 1 and 65535) is required for the connection to take place. The property must be set before a connection is attempted and cannot be changed once a connection is established. Any attempt to change this property while connected will fail with an error.

This property is not available at design time.

SSLAcceptServerCert Property (Telnet Component)

Instructs the component to unconditionally accept the server certificate that matches the supplied certificate.

Syntax

public Certificate SSLAcceptServerCert { get; set; }
Public Property SSLAcceptServerCert As Certificate

Remarks

If it finds any issues with the certificate presented by the server, the component will normally terminate the connection with an error.

You may override this behavior by supplying a value for SSLAcceptServerCert. If the certificate supplied in SSLAcceptServerCert is the same as the certificate presented by the server, then the server certificate is accepted unconditionally, and the connection will continue normally.

Please note that this functionality is provided only for cases where you otherwise know that you are communicating with the right server. If used improperly, this property may create a security breach. Use it at your own risk.

SSLCert Property (Telnet Component)

The certificate to be used during SSL negotiation.

Syntax

public Certificate SSLCert { get; set; }
Public Property SSLCert As Certificate

Remarks

The digital certificate that the component will use during SSL negotiation. Set this property to a valid certificate before starting SSL negotiation. To set a certificate, you may set the Encoded field to the encoded certificate. To select a certificate, use the store and subject fields.

SSLEnabled Property (Telnet Component)

Whether TLS/SSL is enabled.

Syntax

public bool SSLEnabled { get; set; }
Public Property SSLEnabled As Boolean

Default Value

False

Remarks

This setting specifies whether TLS/SSL is enabled in the component. When False (default) the component operates in plaintext mode. When True TLS/SSL is enabled.

TLS/SSL may also be enabled by setting SSLStartMode. Setting SSLStartMode will automatically update this property value.

This property is not available at design time.

SSLProvider Property (Telnet Component)

TBD.

Syntax

public TelnetSSLProviders SSLProvider { get; set; }

enum TelnetSSLProviders { sslpAutomatic, sslpPlatform, sslpInternal }
Public Property SSLProvider As TelnetSSLProviders

Enum TelnetSSLProviders sslpAutomatic sslpPlatform sslpInternal End Enum

Default Value

0

Remarks

TBD.

SSLServerCert Property (Telnet Component)

The server certificate for the last established connection.

Syntax

public Certificate SSLServerCert { get; }
Public ReadOnly Property SSLServerCert As Certificate

Remarks

SSLServerCert contains the server certificate for the last established connection.

SSLServerCert is reset every time a new connection is attempted.

This property is read-only.

SSLStartMode Property (Telnet Component)

Determines how the component starts the SSL negotiation.

Syntax

public TelnetSSLStartModes SSLStartMode { get; set; }

enum TelnetSSLStartModes { sslAutomatic, sslImplicit, sslExplicit, sslNone }
Public Property SSLStartMode As TelnetSSLStartModes

Enum TelnetSSLStartModes sslAutomatic sslImplicit sslExplicit sslNone End Enum

Default Value

3

Remarks

The SSLStartMode property may have one of the following values:

0 (sslAutomatic)If the remote port is set to the standard plaintext port of the protocol (where applicable), the component will behave the same as if SSLStartMode is set to sslExplicit. In all other cases, SSL negotiation will be implicit (sslImplicit).
1 (sslImplicit)The SSL negotiation will start immediately after the connection is established.
2 (sslExplicit)The component will first connect in plaintext, and then explicitly start SSL negotiation through a protocol command such as STARTTLS.
3 (sslNone - default)No SSL negotiation, no SSL security. All communication will be in plaintext mode.

Timeout Property (Telnet Component)

A timeout for the component.

Syntax

public int Timeout { get; set; }
Public Property Timeout As Integer

Default Value

0

Remarks

If the Timeout property is set to 0, all operations return immediately, potentially failing with an 'WOULDBLOCK' error if data can't be sent or received immediately.

If Timeout is set to a positive value, the component will automatically retry each operation that would otherwise result in a 'WOULDBLOCK' error for a maximum of Timeout seconds.

The component will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not "freeze" and remains responsive.

If Timeout expires, and the operation is not yet complete, the component throws an exception.

Please note that by default, all timeouts are inactivity timeouts, i.e. the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.

The default value for the Timeout property is 0 (asynchronous operation).

Note: when a communication component behaves asynchronously in .NET, some events can fire from the background threads used to process socket IO. This can cause problems in GUI applications where there is logic inside an asynchronous event that interacts with the GUI. In .NET, most GUI controls will not allow themselves to be accessed from any thread other than the one that created them due to potential deadlocking issues. To ensure the user can do this, the .NET GUI API supplies a BeginInvoke method that can be used to access GUI controls from other threads, such as the ones that fire events. You can also set the InvokeThrough property of the communication component to any control on the GUI form to direct the component to forward all events through that control.

Transparent Property (Telnet Component)

When True, Telnet command processing is disabled.

Syntax

public bool Transparent { get; set; }
Public Property Transparent As Boolean

Default Value

False

Remarks

The Transparent property allows you to enable or disable Telnet command processing. When command processing is disabled, any data received is provided with no modifications.

UrgentData Property (Telnet Component)

A string of data to be sent urgently (out-of-band) to the remote host.

Syntax

public string UrgentData { set; }
public byte[] UrgentDataB { set; }
Public WriteOnly Property UrgentData As String
Public WriteOnly Property UrgentDataB As Byte()

Default Value

""

Remarks

The UrgentData property behaves exactly like the DataToSend property except that the data is sent Out Of Band (urgent). This means that the data assigned to UrgentData will bypass the normal TCP queuing mechanism. Use this property with caution.

This property is write-only and not available at design time.

WillOption Property (Telnet Component)

A single character Telnet option code to be sent to the server with the Telnet WILL command.

Syntax

public int WillOption { set; }
Public WriteOnly Property WillOption As Integer

Default Value

0

Remarks

For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

This property is write-only and not available at design time.

WontOption Property (Telnet Component)

A single character Telnet option code to be sent to the server with the Telnet WONT command.

Syntax

public int WontOption { set; }
Public WriteOnly Property WontOption As Integer

Default Value

0

Remarks

For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

This property is write-only and not available at design time.

Config Method (Telnet Component)

Sets or retrieves a configuration setting.

Syntax

public string Config(string configurationString);

Async Version
public async Task<string> Config(string configurationString);
public async Task<string> Config(string configurationString, CancellationToken cancellationToken);
Public Function Config(ByVal ConfigurationString As String) As String

Async Version
Public Function Config(ByVal ConfigurationString As String) As Task(Of String)
Public Function Config(ByVal ConfigurationString As String, cancellationToken As CancellationToken) As Task(Of String)

Remarks

Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Connect Method (Telnet Component)

Connects to a remote host.

Syntax

public void Connect();

Async Version
public async Task Connect();
public async Task Connect(CancellationToken cancellationToken);
Public Sub Connect()

Async Version
Public Sub Connect() As Task
Public Sub Connect(cancellationToken As CancellationToken) As Task

Remarks

This method connects to the remote host specified by RemoteHost. For instance: component.RemoteHost = "MyHostNameOrIP"; component.Connect();

To specify a non-standard port number set RemotePort before calling this method.

ConnectTo Method (Telnet Component)

Connects to a remote host.

Syntax

public void ConnectTo(string host);

Async Version
public async Task ConnectTo(string host);
public async Task ConnectTo(string host, CancellationToken cancellationToken);
Public Sub ConnectTo(ByVal Host As String)

Async Version
Public Sub ConnectTo(ByVal Host As String) As Task
Public Sub ConnectTo(ByVal Host As String, cancellationToken As CancellationToken) As Task

Remarks

This method connects to the remote host specified by the Host. For instance: component.Connect("MyTelnetServer");

To specify a non-standard port number set RemotePort before calling this method.

Disconnect Method (Telnet Component)

Disconnect from the remote host.

Syntax

public void Disconnect();

Async Version
public async Task Disconnect();
public async Task Disconnect(CancellationToken cancellationToken);
Public Sub Disconnect()

Async Version
Public Sub Disconnect() As Task
Public Sub Disconnect(cancellationToken As CancellationToken) As Task

Remarks

Calling this method is equivalent to setting the Connected property to False.

DoEvents Method (Telnet Component)

Processes events from the internal message queue.

Syntax

public void DoEvents();
Public Sub DoEvents()

Remarks

When DoEvents is called, the component processes any available events. If no events are available, it waits for a preset period of time, and then returns.

PauseData Method (Telnet Component)

Pauses data reception.

Syntax

public void PauseData();

Async Version
public async Task PauseData();
public async Task PauseData(CancellationToken cancellationToken);
Public Sub PauseData()

Async Version
Public Sub PauseData() As Task
Public Sub PauseData(cancellationToken As CancellationToken) As Task

Remarks

This method pauses data reception when called. While data reception is paused the DataIn event will not fire. Call ProcessData to re-enable data reception.

ProcessData Method (Telnet Component)

Re-enables data reception after a call to PauseData

Syntax

public void ProcessData();

Async Version
public async Task ProcessData();
public async Task ProcessData(CancellationToken cancellationToken);
Public Sub ProcessData()

Async Version
Public Sub ProcessData() As Task
Public Sub ProcessData(cancellationToken As CancellationToken) As Task

Remarks

This method re-enables data reception after a previous call to PauseData. When PauseData is called the DataIn event will not fire. To re-enable data reception and allow DataIn to fire call this method.

Note: This method is only used after previously calling PauseData. It does not need to be called to process incoming data by default.

Reset Method (Telnet Component)

Reset the component.

Syntax

public void Reset();

Async Version
public async Task Reset();
public async Task Reset(CancellationToken cancellationToken);
Public Sub Reset()

Async Version
Public Sub Reset() As Task
Public Sub Reset(cancellationToken As CancellationToken) As Task

Remarks

This method will reset the component's properties to their default values.

Send Method (Telnet Component)

Sends binary data to the remote host.

Syntax

public void Send(byte[] text);

Async Version
public async Task Send(byte[] text);
public async Task Send(byte[] text, CancellationToken cancellationToken);
Public Sub Send(ByVal Text As String)

Async Version
Public Sub Send(ByVal Text As String) As Task
Public Sub Send(ByVal Text As String, cancellationToken As CancellationToken) As Task

Remarks

This method sends the specified binary data to the remote host. To send text use the SendText method instead.

SendBytes Method (Telnet Component)

Sends binary data to the remote host.

Syntax

public void SendBytes(byte[] data);

Async Version
public async Task SendBytes(byte[] data);
public async Task SendBytes(byte[] data, CancellationToken cancellationToken);
Public Sub SendBytes(ByVal Data As String)

Async Version
Public Sub SendBytes(ByVal Data As String) As Task
Public Sub SendBytes(ByVal Data As String, cancellationToken As CancellationToken) As Task

Remarks

This method sends the specified binary data to the remote host. To send text use the SendText method instead.

SendCommand Method (Telnet Component)

Sends a single character Telnet command code to the server.

Syntax

public void SendCommand(int command);

Async Version
public async Task SendCommand(int command);
public async Task SendCommand(int command, CancellationToken cancellationToken);
Public Sub SendCommand(ByVal Command As Integer)

Async Version
Public Sub SendCommand(ByVal Command As Integer) As Task
Public Sub SendCommand(ByVal Command As Integer, cancellationToken As CancellationToken) As Task

Remarks

This method sends the single character command code specified by Command to the server. Codes for Telnet commands and their meanings are defined in the Telnet RFCs. Some common commands are:

241 (NOP)No operation.
242 (Data Mark)The data stream portion of a Synch. This should always be accompanied by a TCP Urgent notification.
243 (Break)NVT character BRK.
244 (Interrupt Process)The function IP.
245 (Abort Output)The function AO.
246 (Are You There)The function AYT.
247 (Erase Character)The function EC.
248 (Erase Line)The function EL.
249 (Go Ahead)The GA signal.

SendDontOption Method (Telnet Component)

This method sends a single character Telnet option code to the server with the Telnet DONT command.

Syntax

public void SendDontOption(int dontOption);

Async Version
public async Task SendDontOption(int dontOption);
public async Task SendDontOption(int dontOption, CancellationToken cancellationToken);
Public Sub SendDontOption(ByVal DontOption As Integer)

Async Version
Public Sub SendDontOption(ByVal DontOption As Integer) As Task
Public Sub SendDontOption(ByVal DontOption As Integer, cancellationToken As CancellationToken) As Task

Remarks

For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

SendDoOption Method (Telnet Component)

This method sends a single character Telnet option code to the server with the Telnet DO command.

Syntax

public void SendDoOption(int doOption);

Async Version
public async Task SendDoOption(int doOption);
public async Task SendDoOption(int doOption, CancellationToken cancellationToken);
Public Sub SendDoOption(ByVal DoOption As Integer)

Async Version
Public Sub SendDoOption(ByVal DoOption As Integer) As Task
Public Sub SendDoOption(ByVal DoOption As Integer, cancellationToken As CancellationToken) As Task

Remarks

For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

SendDoSubOption Method (Telnet Component)

This methods sends a Telnet SubOption to send to the server with the SubOption command.

Syntax

public void SendDoSubOption(byte[] doSubOption);

Async Version
public async Task SendDoSubOption(byte[] doSubOption);
public async Task SendDoSubOption(byte[] doSubOption, CancellationToken cancellationToken);
Public Sub SendDoSubOption(ByVal DoSubOption As String)

Async Version
Public Sub SendDoSubOption(ByVal DoSubOption As String) As Task
Public Sub SendDoSubOption(ByVal DoSubOption As String, cancellationToken As CancellationToken) As Task

Remarks

Valid suboptions and their descriptions are defined in the Telnet RFCs.

For example, to send a terminal type suboption to request setting the terminal type to 'vt100', send ASCII 24, followed by ASCII 0, followed by vt100.

Suboption start and end codes are automatically added by the component.

SendText Method (Telnet Component)

Sends text to the remote host.

Syntax

public void SendText(string text);

Async Version
public async Task SendText(string text);
public async Task SendText(string text, CancellationToken cancellationToken);
Public Sub SendText(ByVal Text As String)

Async Version
Public Sub SendText(ByVal Text As String) As Task
Public Sub SendText(ByVal Text As String, cancellationToken As CancellationToken) As Task

Remarks

This method sends the specified text to the remote host. To send binary data use the SendBytes method instead.

SendUrgentBytes Method (Telnet Component)

Urgently sends binary data to the remote host.

Syntax

public void SendUrgentBytes(byte[] urgentBytes);

Async Version
public async Task SendUrgentBytes(byte[] urgentBytes);
public async Task SendUrgentBytes(byte[] urgentBytes, CancellationToken cancellationToken);
Public Sub SendUrgentBytes(ByVal UrgentBytes As String)

Async Version
Public Sub SendUrgentBytes(ByVal UrgentBytes As String) As Task
Public Sub SendUrgentBytes(ByVal UrgentBytes As String, cancellationToken As CancellationToken) As Task

Remarks

This method sends the bytes specified by UrgentBytes as urgent data (out-of-band) to the remote host. To send text urgently use the SendUrgentText method instead.

Data sent using this method will bypass the normal TCP queuing mechanism. Use this method with caution.

SendUrgentText Method (Telnet Component)

Urgently sends text to the remote host.

Syntax

public void SendUrgentText(string urgentText);

Async Version
public async Task SendUrgentText(string urgentText);
public async Task SendUrgentText(string urgentText, CancellationToken cancellationToken);
Public Sub SendUrgentText(ByVal UrgentText As String)

Async Version
Public Sub SendUrgentText(ByVal UrgentText As String) As Task
Public Sub SendUrgentText(ByVal UrgentText As String, cancellationToken As CancellationToken) As Task

Remarks

This method sends the text specified by UrgentText as urgent data (out-of-band) to the remote host. To send binary data urgently use the SendUrgentBytes method instead.

Data sent using this method will bypass the normal TCP queuing mechanism. Use this method with caution.

SendWillOption Method (Telnet Component)

This method sends a single character Telnet option code the server with the Telnet WILL command.

Syntax

public void SendWillOption(int willOption);

Async Version
public async Task SendWillOption(int willOption);
public async Task SendWillOption(int willOption, CancellationToken cancellationToken);
Public Sub SendWillOption(ByVal WillOption As Integer)

Async Version
Public Sub SendWillOption(ByVal WillOption As Integer) As Task
Public Sub SendWillOption(ByVal WillOption As Integer, cancellationToken As CancellationToken) As Task

Remarks

For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

SendWontOption Method (Telnet Component)

This method sends a single character Telnet option code to the server with the Telnet WONT command.

Syntax

public void SendWontOption(int wontOption);

Async Version
public async Task SendWontOption(int wontOption);
public async Task SendWontOption(int wontOption, CancellationToken cancellationToken);
Public Sub SendWontOption(ByVal WontOption As Integer)

Async Version
Public Sub SendWontOption(ByVal WontOption As Integer) As Task
Public Sub SendWontOption(ByVal WontOption As Integer, cancellationToken As CancellationToken) As Task

Remarks

For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

Command Event (Telnet Component)

Fired when a Telnet command comes from the Telnet server.

Syntax

public event OnCommandHandler OnCommand;

public delegate void OnCommandHandler(object sender, TelnetCommandEventArgs e);

public class TelnetCommandEventArgs : EventArgs {
  public int CommandCode { get; }

}
Public Event OnCommand As OnCommandHandler

Public Delegate Sub OnCommandHandler(sender As Object, e As TelnetCommandEventArgs)

Public Class TelnetCommandEventArgs Inherits EventArgs
  Public ReadOnly Property CommandCode As Integer

End Class

Remarks

Codes for Telnet commands and their meanings are defined in the Telnet RFCs. Here are some examples:

241 (NOP)No operation.
242 (Data Mark)The data stream portion of a Synch. This should always be accompanied by a TCP Urgent notification.
243 (Break)NVT character BRK.
244 (Interrupt Process)The function IP.
245 (Abort Output)The function AO.
246 (Are You There)The function AYT.
247 (Erase Character)The function EC.
248 (Erase Line)The function EL.
249 (Go Ahead)The GA signal.

Connected Event (Telnet Component)

Fired immediately after a connection completes (or fails).

Syntax

public event OnConnectedHandler OnConnected;

public delegate void OnConnectedHandler(object sender, TelnetConnectedEventArgs e);

public class TelnetConnectedEventArgs : EventArgs {
  public int StatusCode { get; }

  public string Description { get; }

}
Public Event OnConnected As OnConnectedHandler

Public Delegate Sub OnConnectedHandler(sender As Object, e As TelnetConnectedEventArgs)

Public Class TelnetConnectedEventArgs Inherits EventArgs
  Public ReadOnly Property StatusCode As Integer

  Public ReadOnly Property Description As String

End Class

Remarks

If the connection is made normally, StatusCode is 0 and Description is "OK".

If the connection fails, StatusCode has the error code returned by the TCP/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

Please refer to the Error Codes section for more information.

ConnectionStatus Event (Telnet Component)

Fired to indicate changes in connection state.

Syntax

public event OnConnectionStatusHandler OnConnectionStatus;

public delegate void OnConnectionStatusHandler(object sender, TelnetConnectionStatusEventArgs e);

public class TelnetConnectionStatusEventArgs : EventArgs {
  public string ConnectionEvent { get; }

  public int StatusCode { get; }

  public string Description { get; }

}
Public Event OnConnectionStatus As OnConnectionStatusHandler

Public Delegate Sub OnConnectionStatusHandler(sender As Object, e As TelnetConnectionStatusEventArgs)

Public Class TelnetConnectionStatusEventArgs Inherits EventArgs
  Public ReadOnly Property ConnectionEvent As String

  Public ReadOnly Property StatusCode As Integer

  Public ReadOnly Property Description As String

End Class

Remarks

The ConnectionStatus event is fired when the connection state changes: completion of a firewall or proxy connection, completion of a security handshake, etc.

The ConnectionEvent parameter indicates the type of connection event. Values may include:

Firewall connection complete.
SSL or S/Shell handshake complete (where applicable).
Remote host connection complete.
Remote host disconnected.
SSL or S/Shell connection broken.
Firewall host disconnected.

StatusCode has the error code returned by the TCP/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

DataIn Event (Telnet Component)

Fired when data is received from the remote host.

Syntax

public event OnDataInHandler OnDataIn;

public delegate void OnDataInHandler(object sender, TelnetDataInEventArgs e);

public class TelnetDataInEventArgs : EventArgs {
  public string Text { get; }
public byte[] TextB { get; } }
Public Event OnDataIn As OnDataInHandler

Public Delegate Sub OnDataInHandler(sender As Object, e As TelnetDataInEventArgs)

Public Class TelnetDataInEventArgs Inherits EventArgs
  Public ReadOnly Property Text As String
Public ReadOnly Property TextB As Byte() End Class

Remarks

Trapping the DataIn event is your only chance to get the data coming from the other end of the connection. The incoming data is provided through the Text parameter.

Note that events are not re-entrant. Performing time consuming operations within this event will prevent it from firing again in a timely manner and may impact overall performance.

Disconnected Event (Telnet Component)

Fired when a connection is closed.

Syntax

public event OnDisconnectedHandler OnDisconnected;

public delegate void OnDisconnectedHandler(object sender, TelnetDisconnectedEventArgs e);

public class TelnetDisconnectedEventArgs : EventArgs {
  public int StatusCode { get; }

  public string Description { get; }

}
Public Event OnDisconnected As OnDisconnectedHandler

Public Delegate Sub OnDisconnectedHandler(sender As Object, e As TelnetDisconnectedEventArgs)

Public Class TelnetDisconnectedEventArgs Inherits EventArgs
  Public ReadOnly Property StatusCode As Integer

  Public ReadOnly Property Description As String

End Class

Remarks

If the connection is broken normally, StatusCode is 0 and Description is "OK".

If the connection is broken for any other reason, StatusCode has the error code returned by the TCP/IP subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.

Please refer to the Error Codes section for more information.

Do Event (Telnet Component)

Fired when a Telnet DO OPTION command comes from the Telnet server.

Syntax

public event OnDoHandler OnDo;

public delegate void OnDoHandler(object sender, TelnetDoEventArgs e);

public class TelnetDoEventArgs : EventArgs {
  public int OptionCode { get; }

}
Public Event OnDo As OnDoHandler

Public Delegate Sub OnDoHandler(sender As Object, e As TelnetDoEventArgs)

Public Class TelnetDoEventArgs Inherits EventArgs
  Public ReadOnly Property OptionCode As Integer

End Class

Remarks

The OptionCode parameter identifies the option code. For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

Dont Event (Telnet Component)

Fired when a Telnet DONT OPTION command comes from the Telnet server.

Syntax

public event OnDontHandler OnDont;

public delegate void OnDontHandler(object sender, TelnetDontEventArgs e);

public class TelnetDontEventArgs : EventArgs {
  public int OptionCode { get; }

}
Public Event OnDont As OnDontHandler

Public Delegate Sub OnDontHandler(sender As Object, e As TelnetDontEventArgs)

Public Class TelnetDontEventArgs Inherits EventArgs
  Public ReadOnly Property OptionCode As Integer

End Class

Remarks

The OptionCode parameter identifies the option code. For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

Error Event (Telnet Component)

Information about errors during data delivery.

Syntax

public event OnErrorHandler OnError;

public delegate void OnErrorHandler(object sender, TelnetErrorEventArgs e);

public class TelnetErrorEventArgs : EventArgs {
  public int ErrorCode { get; }

  public string Description { get; }

}
Public Event OnError As OnErrorHandler

Public Delegate Sub OnErrorHandler(sender As Object, e As TelnetErrorEventArgs)

Public Class TelnetErrorEventArgs Inherits EventArgs
  Public ReadOnly Property ErrorCode As Integer

  Public ReadOnly Property Description As String

End Class

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the component throws an exception.

ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

ReadyToSend Event (Telnet Component)

Fired when the component is ready to send data.

Syntax

public event OnReadyToSendHandler OnReadyToSend;

public delegate void OnReadyToSendHandler(object sender, TelnetReadyToSendEventArgs e);

public class TelnetReadyToSendEventArgs : EventArgs {
}
Public Event OnReadyToSend As OnReadyToSendHandler

Public Delegate Sub OnReadyToSendHandler(sender As Object, e As TelnetReadyToSendEventArgs)

Public Class TelnetReadyToSendEventArgs Inherits EventArgs
End Class

Remarks

The ReadyToSend event indicates that the underlying TCP/IP subsystem is ready to accept data after a failed DataToSend. The event is also fired immediately after a connection to the remote host is established.

SSLServerAuthentication Event (Telnet Component)

Fired after the server presents its certificate to the client.

Syntax

public event OnSSLServerAuthenticationHandler OnSSLServerAuthentication;

public delegate void OnSSLServerAuthenticationHandler(object sender, TelnetSSLServerAuthenticationEventArgs e);

public class TelnetSSLServerAuthenticationEventArgs : EventArgs {
  public string CertEncoded { get; }
public byte[] CertEncodedB { get; } public string CertSubject { get; } public string CertIssuer { get; } public string Status { get; } public bool Accept { get; set; } }
Public Event OnSSLServerAuthentication As OnSSLServerAuthenticationHandler

Public Delegate Sub OnSSLServerAuthenticationHandler(sender As Object, e As TelnetSSLServerAuthenticationEventArgs)

Public Class TelnetSSLServerAuthenticationEventArgs Inherits EventArgs
  Public ReadOnly Property CertEncoded As String
Public ReadOnly Property CertEncodedB As Byte() Public ReadOnly Property CertSubject As String Public ReadOnly Property CertIssuer As String Public ReadOnly Property Status As String Public Property Accept As Boolean End Class

Remarks

This event is where the client can decide whether to continue with the connection process or not. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether to continue or not.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string "OK"). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

SSLStatus Event (Telnet Component)

Shows the progress of the secure connection.

Syntax

public event OnSSLStatusHandler OnSSLStatus;

public delegate void OnSSLStatusHandler(object sender, TelnetSSLStatusEventArgs e);

public class TelnetSSLStatusEventArgs : EventArgs {
  public string Message { get; }

}
Public Event OnSSLStatus As OnSSLStatusHandler

Public Delegate Sub OnSSLStatusHandler(sender As Object, e As TelnetSSLStatusEventArgs)

Public Class TelnetSSLStatusEventArgs Inherits EventArgs
  Public ReadOnly Property Message As String

End Class

Remarks

The event is fired for informational and logging purposes only. Used to track the progress of the connection.

SubOption Event (Telnet Component)

Fired when a Telnet SubOption command comes from the Telnet server.

Syntax

public event OnSubOptionHandler OnSubOption;

public delegate void OnSubOptionHandler(object sender, TelnetSubOptionEventArgs e);

public class TelnetSubOptionEventArgs : EventArgs {
  public string SubOption { get; }
public byte[] SubOptionB { get; } }
Public Event OnSubOption As OnSubOptionHandler

Public Delegate Sub OnSubOptionHandler(sender As Object, e As TelnetSubOptionEventArgs)

Public Class TelnetSubOptionEventArgs Inherits EventArgs
  Public ReadOnly Property SubOption As String
Public ReadOnly Property SubOptionB As Byte() End Class

Remarks

The SubOption parameter contains the suboption data as sent by the other end. The enclosing suboption command codes are stripped away.

For a list of valid Telnet suboptions and their descriptions please look at the Telnet RFCs.

Will Event (Telnet Component)

Fired when a Telnet WILL OPTION command comes from the Telnet server.

Syntax

public event OnWillHandler OnWill;

public delegate void OnWillHandler(object sender, TelnetWillEventArgs e);

public class TelnetWillEventArgs : EventArgs {
  public int OptionCode { get; }

}
Public Event OnWill As OnWillHandler

Public Delegate Sub OnWillHandler(sender As Object, e As TelnetWillEventArgs)

Public Class TelnetWillEventArgs Inherits EventArgs
  Public ReadOnly Property OptionCode As Integer

End Class

Remarks

For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

Wont Event (Telnet Component)

Fired when a Telnet WONT OPTION command comes from the Telnet server.

Syntax

public event OnWontHandler OnWont;

public delegate void OnWontHandler(object sender, TelnetWontEventArgs e);

public class TelnetWontEventArgs : EventArgs {
  public int OptionCode { get; }

}
Public Event OnWont As OnWontHandler

Public Delegate Sub OnWontHandler(sender As Object, e As TelnetWontEventArgs)

Public Class TelnetWontEventArgs Inherits EventArgs
  Public ReadOnly Property OptionCode As Integer

End Class

Remarks

The OptionCode parameter identifies the option code. For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

Certificate Type

This is the digital certificate being used.

Remarks

This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.

Fields

EffectiveDate
String

This is the date on which this certificate becomes valid. Before this date, it is not valid. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

Encoded
String

This is the certificate (PEM/base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

EncodedB
Byte []

This is the certificate (PEM/base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

ExpirationDate
String

This is the date the certificate expires. After this date, the certificate will no longer be valid. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

ExtendedKeyUsage
String

This is a comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

Fingerprint
String

This is the hex-encoded, 16-byte MD5 fingerprint of the certificate.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

FingerprintSHA1
String

This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

FingerprintSHA256
String

This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

Issuer
String

This is the issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.

PrivateKey
String

This is the private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.

PrivateKeyAvailable
Boolean

This field shows whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).

PrivateKeyContainer
String

This is the name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.

PublicKey
String

This is the public key of the certificate. The key is provided as PEM/Base64-encoded data.

PublicKeyAlgorithm
String

This field contains the textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

PublicKeyLength
Integer

This is the length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

SerialNumber
String

This is the serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

SignatureAlgorithm
String

The field contains the text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

Store
String

This is the name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e. PKCS12 certificate store).

StoreB
Byte []

This is the name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e. PKCS12 certificate store).

StorePassword
String

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

StoreType
CertStoreTypes

This is the type of certificate store for this certificate.

The component supports both public and private keys in a variety of formats. When the cstAuto value is used the component will automatically determine the type. This field can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user. Note: this store type is not available in Java.
1 (cstMachine)For Windows, this specifies that the certificate store is a machine store. Note: this store type is not available in Java.
2 (cstPFXFile)The certificate store is the name of a PFX (PKCS12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in PFX (PKCS12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates. Note: this store type is only available in Java.
5 (cstJKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in Java Key Store (JKS) format. Note: this store type is only available in Java.
6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
20 (cstSecurityKey)The certificate is present on a physical security key accessible via a PKCS11 interface.

To use a security key the necessary data must first be collected using the CertMgr component. The ListStoreCertificates method may be called after setting CertStoreType to cstSecurityKey, CertStorePassword to the PIN, and CertStore to the full path of the PKCS11 dll. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example: SSH Authentication with Security Key certmgr.CertStoreType = CertStoreTypes.cstSecurityKey; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstSecurityKey, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store). Note: this store type is only available in Java and .NET.
22 (cstBCFKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format. Note: this store type is only available in Java and .NET.
99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

Subject
String

This is the subject of the certificate used for client authentication.

This field will be populated with the full subject of the loaded certificate. When loading a certificate the subject is used to locate the certificate in the store.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma separated list of distinguished name fields and values. For instance "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are displayed below.

FieldMeaning
CNCommon Name. This is commonly a host name like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma it must be quoted.

SubjectAltNames
String

This field contains comma-separated lists of alternative subject names for the certificate.

ThumbprintMD5
String

This field contains the MD5 hash of the certificate. If the hash does not already exist, it is computed.

ThumbprintSHA1
String

This field contains the SHA-1 hash of the certificate. If the hash does not already exist, it is computed.

ThumbprintSHA256
String

This field contains the SHA-256 hash of the certificate. If the hash does not already exist, it is computed.

Usage
String

This field contains the text description of UsageFlags.

This value will be of one or more of the following strings and will be separated by commas:

  • Digital Signatures
  • Key Authentication
  • Key Encryption
  • Data Encryption
  • Key Agreement
  • Certificate Signing
  • Key Signing

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

UsageFlags
Integer

This field contains the flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:

0x80Digital Signatures
0x40Key Authentication
0x20Key Encryption
0x10Data Encryption
0x08Key Agreement
0x04Certificate Signing
0x02Key Signing

Please see the Usage field for a text representation of UsageFlags.

This functionality currently is not available when the provider is OpenSSL.

Version
String

This field contains the certificate's version number. The possible values are the strings "V1", "V2", and "V3".

Constructors

public Certificate();
Public Certificate()

Creates a Certificate instance whose properties can be set. This is useful for use with CERTMGR when generating new certificates.

public Certificate(string certificateFile);
Public Certificate(ByVal CertificateFile As String)

Opens CertificateFile and reads out the contents as an X509 public key.

public Certificate(byte[] certificateData);
Public Certificate(ByVal CertificateData As Byte())

Parses CertificateData as an X509 public key.

public Certificate(CertStoreTypes certStoreType, string store, string storePassword, string subject);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Subject As String)

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X509 certificate's subject Distinguished Name (DN).

public Certificate(CertStoreTypes certStoreType, string store, string storePassword, string subject, string configurationString);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Subject As String, ByVal ConfigurationString As String)

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. ConfigurationString is a newline separated list of name-value pairs that may be used to modify the default behavior. Possible values include "PersistPFXKey", which shows whether or not the PFX key is persisted after performing operations with the private key. This correlates to the PKCS12_NO_PERSIST_KEY CyrptoAPI option. The default value is True (the key is persisted). "Thumbprint" - a MD5, SHA1, or SHA256 thumbprint of the certificate to load. When specified, this value is used to select the certificate in the store. This is applicable to cstUser, cstMachine, cstPublicKeyFile, and cstPFXFile store types. "UseInternalSecurityAPI" shows whether the platform (default) or the internal security API is used when performing certificate-related operations. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X509 certificate's subject Distinguished Name (DN).

public Certificate(CertStoreTypes certStoreType, string store, string storePassword, byte[] encoded);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Encoded As Byte())

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will load Encoded as an X509 certificate and search the opened store for a corresponding private key.

public Certificate(CertStoreTypes certStoreType, byte[] storeBlob, string storePassword, string subject);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal StoreBlob As Byte(), ByVal StorePassword As String, ByVal Subject As String)

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. StoreBlob is a string (binary- or base64-encoded) containing the certificate data. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X509 certificate's subject Distinguished Name (DN).

public Certificate(CertStoreTypes certStoreType, byte[] storeBlob, string storePassword, string subject, string configurationString);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal StoreBlob As Byte(), ByVal StorePassword As String, ByVal Subject As String, ByVal ConfigurationString As String)

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. StoreBlob is a string (binary- or base64-encoded) containing the certificate data. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X509 certificate's subject Distinguished Name (DN).

public Certificate(CertStoreTypes certStoreType, byte[] storeBlob, string storePassword, byte[] encoded);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal StoreBlob As Byte(), ByVal StorePassword As String, ByVal Encoded As Byte())

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a string (binary- or base64-encoded) containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will load Encoded as an X509 certificate and search the opened store for a corresponding private key.

Firewall Type

The firewall the component will connect through.

Remarks

When connecting through a firewall, this type is used to specify different properties of the firewall such as the firewall Host and the FirewallType.

Fields

AutoDetect
Boolean

This field tells the component whether or not to automatically detect and use firewall system settings, if available.

FirewallType
FirewallTypes

This field determines the type of firewall to connect through. The applicable values are the following:

fwNone (0)No firewall (default setting).
fwTunnel (1)Connect through a tunneling proxy. Port is set to 80.
fwSOCKS4 (2)Connect through a SOCKS4 Proxy. Port is set to 1080.
fwSOCKS5 (3)Connect through a SOCKS5 Proxy. Port is set to 1080.
fwSOCKS4A (10)Connect through a SOCKS4A Proxy. Port is set to 1080.

Host
String

This field contains the name or IP address of firewall (optional). If a Host is given, the requested connections will be authenticated through the specified firewall when connecting.

If this field is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this field is set to the corresponding address. If the search is not successful, the component throws an exception.

Password
String

This field contains a password if authentication is to be used when connecting through the firewall. If Host is specified, the User and Password fields are used to connect and authenticate to the given firewall. If the authentication fails, the component throws an exception.

Port
Integer

This field contains the TCP port for the firewall Host. See the description of the Host field for details.

Note that this field is set automatically when FirewallType is set to a valid value. See the description of the FirewallType field for details.

User
String

This field contains a user name if authentication is to be used connecting through a firewall. If the Host is specified, this field and Password fields are used to connect and authenticate to the given Firewall. If the authentication fails, the component throws an exception.

Constructors

public Firewall();
Public Firewall()

Configuration Settings (Telnet Component)

The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

IPPort Configuration Settings

CloseStreamAfterTransfer:   If true, the component will close the upload or download stream after the transfer.

This setting determines whether the input or output stream is closed after the transfer completes. When set to True (default), all streams will be closed after a transfer is completed. In order to keep streams open after the transfer of data, set this to False. the default value is True.

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the component will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the component whether or not to automatically detect and use firewall system settings, if available.

This setting is provided for use by components that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

NOTE: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallListener:   If true, the component binds to a SOCKS firewall as a server (IPPort only).

This entry is for IPPort only and does not work for other components that descend from IPPort.

If this entry is set, the component acts as a server. RemoteHost and RemotePort are used to tell the SOCKS firewall in which address and port to listen to. The firewall rules may ignore RemoteHost, and it is recommended that RemoteHost be set to empty string in this case.

RemotePort is the port in which the firewall will listen to. If set to 0, the firewall will select a random port. The binding (address and port) is provided through the ConnectionStatus event.

The connection to the firewall is made by calling the Connect method.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the component throws an exception.

NOTE: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

Note that the FirewallPort is set automatically when FirewallType is set to a valid value.

NOTE: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

NOTE: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the component throws an exception.

NOTE: This setting is provided for use by components that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to true. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgement is received from the remote host the keep-alive packet will be re-sent. This setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to true. By default the operating system will determine the time a connection is idle before a TCP keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), there are two scenarios for determining how long the connection will linger. The first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP protocol timeout expires.

In the second scenario, LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the component returns control immediately, the system could hold system resources until all pending data is sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (by a client acknowledgment, for example), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, to leave the socket connection linger. This value is 0 by default, which means it will use the default IP protocol timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.

If the component is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the component binds.

This must be set before a connection is attempted. It instructs the component to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This setting optionally specifies a semicolon separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to true, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this config is set to false.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the component will use IPv4 exclusively. When set to 1, the component will use IPv6 exclusively. To instruct the component to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are:

0 IPv4 Only
1 IPv6 Only
2 IPv6 with IPv4 fallback

UseNTLMv2:   Whether to use NTLM V2.

When authenticating with NTLM this setting specifies whether NTLM V2 is used. By default this value is False and NTLM V1 will be used. Set this to True to use NTLM V2.

SSL Configuration Settings

CACertFilePaths:   The paths to CA certificate files when using Mono on Unix/Linux.

This setting specifies the paths on disk to CA certificate files when using Mono on Unix/Linux. It is not applicable in any other circumstances.

The value is formatted as a list of paths separated by semicolons. The component will check for the existence of each file in the order specified. When a file is found the CA certificates within the file will be loaded and used to determine the validity of server certificates.

The default value is:

/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When the UseInternalSecurityAPI configuration setting is True, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this setting has no effect if UseInternalSecurityAPI is False.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to true, the component will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the component is the same.

SSLCACerts:   A newline separated list of CA certificate to use during SSL client authentication.

This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This setting specifies whether the component will check the Certificate Revocation List specified by the server certificate. If set to true the component will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The component will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the component throws an exception.

When set to false (default) the CRL check will not be performed by the component.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

The enabled cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the component will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when UseInternalSecurityAPI is False (default): obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when UseInternalSecurityAPI is False (default) include:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when UseInternalSecurityAPI is True: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA"); Possible values when UseInternalSecurityAPI is True include:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_DH_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_DSS_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

Used to enable/disable the supported security protocols.

Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default)
TLS1.1768 (Hex 300) (Default)
TLS1 192 (Hex C0) (Default)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList setting.

Note: TLS 1.1 and TLS1.2 support are only available starting with Windows 7.

Note: Enabling TLS 1.3 will automatically set UseInternalSecurityAPI to True.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is true by default, but can be set to false to disable the extension.

This setting is only applicable when UseInternalSecurityAPI is set to true.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

Note: When UseInternalSecurityAPI is set to True this value is automatically set to True. This is needed for proper validation when using the internal provider.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the component will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the component will only append, it will not overwrite previous values.

Note: This setting is only applicable when UseInternalSecurityAPI is set to True.

SSLNegotiatedCipher:   Returns the negotiated ciphersuite.

Returns the ciphersuite negotiated during the SSL handshake.

Note: For server components (e.g. IPDaemon) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated ciphersuite strength.

Returns the strength of the ciphersuite negotiated during the SSL handshake.

Note: For server components (e.g. IPDaemon) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated ciphersuite.

Returns the ciphersuite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g. IPDaemon) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

Returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. IPDaemon) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

Returns the strenghth of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. IPDaemon) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedProtocol:   Returns the negotiated protocol version.

Returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g. IPDaemon) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedProtocol[connId]");

SSLProvider:   The name of the security provider to use.

Change this setting to use security providers other than the system default.

Use this setting with caution. Disabling SSL security or pointing to the wrong provider could potentially cause serious security vulnerabilities in your application.

The special value "*" (default) picks the default SSL provider defined in the system.

The special value "Internal" picks the internal SSL implementation. This does not rely on any system libraries. This is equivalent to setting UseInternalSecurityAPI to True.

Note: On Windows systems, the default SSL Provider is "Microsoft Unified Security Protocol Provider" and cannot be changed except to a value of "Internal".

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown Certificate Authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown Certificate Authority revocation status.
0x00000800Ignore unknown Root revocation status.
0x00008000Allow test Root certificate.
0x00004000Trust test Root certificate.
0x80000000Ignore non-matching CN (certificate CN not-matching server name).

This functionality is currently not available in Java or when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificate to use during SSL server certificate validation.

This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when UseInternalSecurityAPI is True.

This setting specifies the allowed server certificate signature algorithms when UseInternalSecurityAPI is True and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the component will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the component throws an exception.

The format of this value is a comma separated list of hash-signature combinations. For instance: IPPort.Config("UseInternalSecurityAPI=true"); IPPort.Config("SSLEnabledProtocols=3072"); //TLS 1.2 IPPort.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This setting specifies a comma separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and UseInternalSecurityAPI is set to True, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional round trip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.

In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13Provider:   The TLS 1.3 implementation to be used.

This setting specifies the TLS 1.3 implementation which will be used when TLS 1.3 is enabled via SSLEnabledProtocols. Possible values are:

  • 0 (Internal - Default)
  • 1 (Platform)

The platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider) please be aware of the following notes:

  • The platform provider is only available on Windows 11 / Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This setting holds a comma separated list of allowed signature algorithms. Possible values are:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This setting is only applicable when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. This setting should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Configuration Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for UDP ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g. headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Configuration Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

GUIAvailable:   Tells the component whether or not a message loop is available for processing events.

In a GUI-based application, long-running blocking operations may cause the application to stop responding to input until the operation returns. The component will attempt to discover whether or not the application has a message loop and, if one is discovered, it will process events in that message loop during any such blocking operation.

In some non-GUI applications, an invalid message loop may be discovered that will result in errant behavior. In these cases, setting GUIAvailable to false will ensure that the component does not attempt to process external events.

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a component is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
UseInternalSecurityAPI:   Tells the component whether or not to use the system security libraries or an internal implementation.

By default the component will use the system security libraries to perform cryptographic functions. When set to False calls to unmanaged code will be made. In certain environments this is not desirable. To use a completely managed security implementation set this setting to True. Setting this to True tells the component to use the internal implementation instead of using the system's security API.

Note: This setting is static. The value set is applicable to all components used in the application.

When this value is set the product's system DLL is no longer required as a reference, as all unmanaged code is stored in that file.

Trappable Errors (Telnet Component)

Telnet Errors

118   Firewall Error. Error message contains detailed description.
191   SubOption string too long. Truncated.
4001   Telnet protocol error (Invalid server response).

The component may also return one of the following error codes, which are inherited from other components.

IPPort Errors

100   You cannot change the RemotePort at this time. A connection is in progress.
101   You cannot change the RemoteHost (Server) at this time. A connection is in progress.
102   The RemoteHost address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the LocalPort at this time. A connection is in progress.
107   You cannot change the LocalHost at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   RemotePort cannot be zero. Please specify a valid service port number.
117   Cannot change UseConnection option while the component is Active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
303   Could not open file.
434   Unable to convert string to selected CodePage
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

SSL Errors

270   Cannot load specified security library.
271   Cannot open certificate store.
272   Cannot find specified certificate.
273   Cannot acquire security credentials.
274   Cannot find certificate chain.
275   Cannot verify certificate chain.
276   Error during handshake.
280   Error verifying certificate.
281   Could not find client certificate.
282   Could not find server certificate.
283   Error encrypting data.
284   Error decrypting data.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on non-socket.
10039   [10039] Destination address required.
10040   [10040] Message too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol not supported.
10044   [10044] Socket type not supported.
10045   [10045] Operation not supported on socket.
10046   [10046] Protocol family not supported.
10047   [10047] Address family not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Can't assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Can't send after socket shutdown.
10059   [10059] Too many references, can't splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock not loaded yet.
11001   [11001] Host not found.
11002   [11002] Non-authoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).

Copyright (c) 2022 /n software inc. - All rights reserved.
IPWorks 2022 .NET Edition - Version 22.0 [Build 8171]