AzureRelayReceiver Class
Properties Methods Events Config Settings Errors
An Azure Relay Service listener to accept and communicate with clients.
Syntax
class ipworksmq.AzureRelayReceiver
Remarks
The AzureRelayReceiver class implements the listener role in the Azure Relay service. The class will connect to the server and listen for incoming connections. Once a connection is established data can be exchange freely in both directions allowing a flexible messaging environment.
Authenticating and Listening
Authentication to Azure Relay is performed using the Shared Access Key Name and Shared Access Key created from the Azure portal for the Relay. To begin listening for incoming connections set listening to True.
When set to True the class will immediately attempt to make a connection to the Azure Relay Service and begin listening. The following properties are applicable when setting listening:
- access_key (required)
- access_key_name (required)
- hybrid_connection (required)
- namespace_address (required)
- default_timeout
- forwarding_host
- forwarding_port
To stop listening set listening to False. To shutdown the server including existing connections call shutdown.
Handling Connections
When a connection is made the on_connection_request event fires with information about the connecting client. From within this event the client connection may be accepted (default) or rejected.
If the client connection is accepted the on_connection_connected and on_connection_ready_to_send events fire when the connection completes and is ready to send and receive data.
When data is received from the client the on_connection_data_in event fires with the received data.
To send data to the client set azure_relay_connection_data_to_send or call send, send_file, or send_text.
When the client disconnects the on_connection_disconnected event fires. To initiate the client disconnection call disconnect.
Handling HTTP Connections
Azure Relay also supports HTTP connections which follow a request/response model. When an HTTP request is received the on_http_request event fires with information about the request including the request body. Save the ConnectionId value obtained within on_http_request for use with send_http_response.
To send a HTTP response call send_http_response with the ConnectionId, status code and description, and any response day to be sent back to the client.
Forwarding Connections
The class supports forwarding incoming connection to a separate destination. This functionality allows AzureRelayReceiver to act as a proxy for incoming requests. When forwarding_host and forwarding_port are set anytime a connection is made the class will establish a separate connection to the forwarding_host and forward all incoming traffic. Responses from the forwarding_host are then automatically sent back over the connection.
When connection forwarding is used no special steps are needed to send or receive data. Data flows freely between the connected client and the forwarding_host.
Note: Forwarding is not supported for HTTP requests.
Code Example (WebSockets)
Azurerelayreceiver listener = new Azurerelayreceiver();
listener.AccessKey = "9oKRDwjl0s440MlLUi4qHxDL34j1FS6K3t5TRoJ216c=";
listener.AccessKeyName = "RootManageSharedAccessKey";
listener.NamespaceAddress = "myrelay.servicebus.windows.net";
listener.HybridConnection = "hc1";
listener.OnConnectionRequest += (s, e) =>
{
Console.WriteLine("Connection Request From: " + e.RemoteAddress + ":" + e.RemotePort);
e.Accept = true;
};
listener.OnConnectionReadyToSend += (s, e) =>
{
Console.WriteLine("Connection [" + e.ConnectionId + "] connected and ready to send and receive.");
};
listener.OnConnectionDataIn += (s, e) =>
{
Console.WriteLine("Received data from " + e.ConnectionId + ": " + e.Text);
//echo the data back
listener.SendText(e.ConnectionId, e.Text);
Console.WriteLine("Echoed received data back");
};
listener.Listening = true;
while (true)
listener.DoEvents();
Code Example (HTTP)
Azurerelaylistener listener = new Azurerelaylistener();
listener.AccessKey = "9oKRDwjl0s440MlLUi4qHxDL34j1FS6K3t5TRoJ216c=";
listener.AccessKeyName = "RootManageSharedAccessKey";
listener.NamespaceAddress = "myrelay.servicebus.windows.net";
listener.HybridConnection = "hc1";
listener.OnHTTPRequest += (s, e) => {
Console.WriteLine("HTTP Request from " + e.RemoteAddress + ":" + e.RemotePort);
Console.WriteLine("HTTP Method: " + e.RequestMethod);
Console.WriteLine("HTTP Request: " + e.RequestData);
myConnectionId = e.ConnectionId;
};
//Send a response using the ConnectionId value from the HTTPRequest event
listener.SendHTTPResponse(myConnectionId, 200, "OK", myResponseBody);
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
access_key | The Shared Access Key. |
access_key_name | The Shared Access Key Name. |
connected | This shows whether the class is connected. |
azure_relay_connection_count | The number of records in the AzureRelayConnection arrays. |
azure_relay_connection_accept_data | Setting this property to False, temporarily disables data reception (and the ConnectionDataIn event) on the connection. |
azure_relay_connection_address | This property holds the rendezvous URL to which the connection specific websocket connection will be made. |
azure_relay_connection_bytes_sent | This property shows how many bytes were sent after the last assignment to DataToSend . |
azure_relay_connection_connected | This property is used to disconnect individual connections and/or show their status. |
azure_relay_connection_connect_headers | A JSON object containing the HTTP headers that have been supplied by the sender to the Azure Relay service. |
azure_relay_connection_connection_id | This property contains an identifier generated by the class to identify each connection. |
azure_relay_connection_data_format | The format of the data being sent. |
azure_relay_connection_data_to_send | This property contains a string of data to be sent to the remote host. |
azure_relay_connection_extensions | The WebSocket extensions sent by the client in the initial WebSocket connection request. |
azure_relay_connection_host | The Host header value of the connected client. |
azure_relay_connection_id | This property holds the Id of the connection. |
azure_relay_connection_ready_to_send | This indicates whether the class is ready to send data. |
azure_relay_connection_remote_address | This property holds the IP address of the connecting client. |
azure_relay_connection_remote_port | This property holds the port of the connecting client. |
azure_relay_connection_sub_protocols | The subprotocols (application-level protocols layered over the WebSocket Protocol) sent by the client in the initial WebSocket connection request. |
azure_relay_connection_timeout | This property specifies a timeout for the class. |
default_timeout | An initial timeout value to be used by incoming connections. |
firewall_auto_detect | This property tells the class whether or not to automatically detect and use firewall system settings, if available. |
firewall_type | This property determines the type of firewall to connect through. |
firewall_host | This property contains the name or IP address of firewall (optional). |
firewall_password | This property contains a password if authentication is to be used when connecting through the firewall. |
firewall_port | This property contains the transmission control protocol (TCP) port for the firewall Host . |
firewall_user | This property contains a user name if authentication is to be used connecting through a firewall. |
forwarding_host | The address to which traffic will automatically be forwarded. |
forwarding_port | The port to which traffic will automatically be forwarded. |
hybrid_connection | The hybrid connection name. |
listening | If , the class is listening for incoming connections. |
local_host | The name of the local host or user-assigned IP interface through which connections are initiated or accepted. |
namespace_address | The namespace address of the relay. |
proxy_auth_scheme | This property is used to tell the class which type of authorization to perform when connecting to the proxy. |
proxy_auto_detect | This property tells the class whether or not to automatically detect and use proxy system settings, if available. |
proxy_password | This property contains a password if authentication is to be used for the proxy. |
proxy_port | This property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80). |
proxy_server | If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified. |
proxy_ssl | This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy. |
proxy_user | This property contains a username if authentication is to be used for the proxy. |
ssl_accept_server_cert_encoded | This is the certificate (PEM/Base64 encoded). |
ssl_cert_encoded | This is the certificate (PEM/Base64 encoded). |
ssl_cert_store | This is the name of the certificate store for the client certificate. |
ssl_cert_store_password | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
ssl_cert_store_type | This is the type of certificate store for this certificate. |
ssl_cert_subject | This is the subject of the certificate used for client authentication. |
ssl_provider | This specifies the SSL/TLS implementation to use. |
ssl_server_cert_encoded | This is the certificate (PEM/Base64 encoded). |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
config | Sets or retrieves a configuration setting. |
disconnect | This method disconnects the specified client. |
do_events | Processes events from the internal message queue. |
interrupt | Interrupts a synchronous send to the remote host. |
pause_data | This method pauses data reception. |
process_data | This method reenables data reception after a call to PauseData . |
send | Sends binary data to the client. |
send_bytes | This method sends binary data to the specified client. |
send_file | This method sends the file to the remote host. |
send_http_response | Send the HTTP response. |
send_text | Sends text data to the client. |
shutdown | This method shuts down the server. |
start_listening | Starts listening for incoming connections. |
stop_listening | This method stops listening for new connections. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
on_connected | Fired immediately after the WebSocket handshake completes (or fails). |
on_connection_connected | Fired when a client has connected. |
on_connection_data_in | Fired when data is received. |
on_connection_disconnected | Fired when a WebSocket connection is disconnected. |
on_connection_error | Information about errors during data delivery. |
on_connection_ready_to_send | Fired when the class is ready to send data. |
on_connection_request | Fires when a WebSocket connection is requested. |
on_connection_status | Fired to indicate changes in connection state. |
on_disconnected | This event is fired when a connection is closed. |
on_error | Fired when information is available about errors during data delivery. |
on_header | This event is fired every time a header line comes in. |
on_http_request | Fires when an HTTP request is received. |
on_log | Fires once for each log message. |
on_redirect | This event is fired when a redirection is received from the server. |
on_ssl_server_authentication | Fired after the server presents its certificate to the client. |
on_ssl_status | Fired when secure connection progress messages are available. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
AccessToken | Returns an access token for use outside of the classes. |
AutoRenewThreshold | The threshold in seconds after which the token is renewed. |
AzureRelayKeepAliveTime | The inactivity period in seconds before a ping packet is sent to keep the connection alive. |
DiagnosticId | A diagnostic id used to enable end-to-end tracing. |
LogLevel | The level of detail that is logged. |
TokenValidity | The validity time in seconds of the access token. |
BufferMessage | Indicates whether or not the entire message is buffered before firing the DataIn event. |
DisconnectStatusCode | Specifies the status code when closing a connection. |
DisconnectStatusDescription | Specifies the message associated with the disconnect status code. |
MaxFrameSize | Specifies the maximum size of the outgoing message in bytes before fragmentation occurs. |
MessageLength[ConnectionId] | The length of the message (in bytes) when sending asynchronously. |
WaitForCloseResponse | Determines whether or not the class will forcibly close a connection. |
AllowedClients | A comma-separated list of host names or IP addresses that can access the class. |
BindExclusively | Whether or not the class considers a local port reserved for exclusive use. |
BlockedClients | A comma-separated list of host names or IP addresses that cannot access the class. |
ConnectionUID | The unique connectionId for a connection. |
DefaultConnectionTimeout | The inactivity timeout applied to the SSL handshake. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
KeepAliveInterval | The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received. |
KeepAliveRetryCount | The number of keep-alive packets to be sent before the remotehost is considered disconnected. |
KeepAliveTime | The inactivity time in milliseconds before a TCP keep-alive packet is sent. |
MaxConnections | The maximum number of connections available. |
MaxReadTime | The maximum time spent reading data from each connection. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
TcpNoDelay | Whether or not to delay when sending packets. |
UseIOCP | Whether to use the completion port I/O model. |
UseIPv6 | Whether to use IPv6. |
UseWindowsMessages | Whether to use the WSAAsyncSelect I/O model. |
LogSSLPackets | Controls whether SSL packets are logged when using the internal security API. |
OpenSSLCADir | The path to a directory containing CA certificates. |
OpenSSLCAFile | Name of the file containing the list of CA's trusted by your application. |
OpenSSLCipherList | A string that controls the ciphers to be used by SSL. |
OpenSSLPrngSeedData | The data to seed the pseudo random number generator (PRNG). |
ReuseSSLSession | Determines if the SSL session is reused. |
SSLCACertFilePaths | The paths to CA certificate files on Unix/Linux. |
SSLCACerts | A newline separated list of CA certificate to use during SSL client authentication. |
SSLCheckCRL | Whether to check the Certificate Revocation List for the server certificate. |
SSLCheckOCSP | Whether to use OCSP to check the status of the server certificate. |
SSLCipherStrength | The minimum cipher strength used for bulk encryption. |
SSLEnabledCipherSuites | The cipher suite to be used in an SSL negotiation. |
SSLEnabledProtocols | Used to enable/disable the supported security protocols. |
SSLEnableRenegotiation | Whether the renegotiation_info SSL extension is supported. |
SSLIncludeCertChain | Whether the entire certificate chain is included in the SSLServerAuthentication event. |
SSLKeyLogFile | The location of a file where per-session secrets are written for debugging purposes. |
SSLNegotiatedCipher | Returns the negotiated cipher suite. |
SSLNegotiatedCipherStrength | Returns the negotiated cipher suite strength. |
SSLNegotiatedCipherSuite | Returns the negotiated cipher suite. |
SSLNegotiatedKeyExchange | Returns the negotiated key exchange algorithm. |
SSLNegotiatedKeyExchangeStrength | Returns the negotiated key exchange algorithm strength. |
SSLNegotiatedVersion | Returns the negotiated protocol version. |
SSLSecurityFlags | Flags that control certificate verification. |
SSLServerCACerts | A newline separated list of CA certificate to use during SSL server certificate validation. |
TLS12SignatureAlgorithms | Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal. |
TLS12SupportedGroups | The supported groups for ECC. |
TLS13KeyShareGroups | The groups for which to pregenerate key shares. |
TLS13SignatureAlgorithms | The allowed certificate signature algorithms. |
TLS13SupportedGroups | The supported groups for (EC)DHE key exchange. |
access_key Property
The Shared Access Key.
Syntax
def get_access_key() -> str: ... def set_access_key(value: str) -> None: ...
access_key = property(get_access_key, set_access_key)
Default Value
""
Remarks
This property specifies the Shared Access Key to use when authenticating. This is the primary or secondary key of the shared access policy created in the Azure portal. For instance 8oKRDwkl0s440MlLUi4qHxDL34j1FS6K3t5TRoJ216c=.
access_key_name Property
The Shared Access Key Name.
Syntax
def get_access_key_name() -> str: ... def set_access_key_name(value: str) -> None: ...
access_key_name = property(get_access_key_name, set_access_key_name)
Default Value
""
Remarks
This property specifies the Shared Access Key name to use when authenticating. This is the name of the shared access policy created in the Azure portal. For instance RootManageSharedAccessKey.
connected Property
This shows whether the class is connected.
Syntax
def get_connected() -> bool: ... def set_connected(value: bool) -> None: ...
connected = property(get_connected, set_connected)
Default Value
FALSE
Remarks
This property is used to determine whether or not the class is connected to the remote host.
Note: It is recommended to use the connect or disconnect method instead of setting this property.
azure_relay_connection_count Property
The number of records in the AzureRelayConnection arrays.
Syntax
def get_azure_relay_connection_count() -> int: ...
azure_relay_connection_count = property(get_azure_relay_connection_count, None)
Default Value
0
Remarks
This property controls the size of the following arrays:
- azure_relay_connection_accept_data
- azure_relay_connection_address
- azure_relay_connection_bytes_sent
- azure_relay_connection_connected
- azure_relay_connection_connect_headers
- azure_relay_connection_connection_id
- azure_relay_connection_data_format
- azure_relay_connection_data_to_send
- azure_relay_connection_extensions
- azure_relay_connection_host
- azure_relay_connection_id
- azure_relay_connection_ready_to_send
- azure_relay_connection_remote_address
- azure_relay_connection_remote_port
- azure_relay_connection_sub_protocols
- azure_relay_connection_timeout
This property is read-only.
azure_relay_connection_accept_data Property
Setting this property to False, temporarily disables data reception (and the ConnectionDataIn event) on the connection.
Syntax
def get_azure_relay_connection_accept_data(connection_id: int) -> bool: ... def set_azure_relay_connection_accept_data(connection_id: int, value: bool) -> None: ...
Default Value
TRUE
Remarks
Setting this property to False, temporarily disables data reception (and the on_connection_data_in event) on the connection. Setting this to True, re-enables data reception.
The connection_id parameter specifies the index of the item in the array. The size of the array is controlled by the azure_relay_connection_count property.
azure_relay_connection_address Property
This property holds the rendezvous URL to which the connection specific websocket connection will be made.
Syntax
def get_azure_relay_connection_address(connection_id: int) -> str: ...
Default Value
""
Remarks
This property holds the rendezvous URL to which the connection specific websocket connection will be made. This is for information only, no action needs to be taken based on this value. For instance: wss://g21-prod-by3-003-sb.servicebus.windows.net/$hc/hc1?sb-hc-action=accept&sb-hc-id=2d4acb89-7d15-4aeb-bcd5-66e031580a90_G21_G1
The connection_id parameter specifies the index of the item in the array. The size of the array is controlled by the azure_relay_connection_count property.
This property is read-only.
azure_relay_connection_bytes_sent Property
This property shows how many bytes were sent after the last assignment to DataToSend .
Syntax
def get_azure_relay_connection_bytes_sent(connection_id: int) -> int: ...
Default Value
0
Remarks
This property shows how many bytes were sent after the last assignment to azure_relay_connection_data_to_send. Please check azure_relay_connection_data_to_send for more information.
Note: This property will always return 0 when the class is operating in the synchronous mode (i.e., the azure_relay_connection_timeout property is set to a positive value).
The connection_id parameter specifies the index of the item in the array. The size of the array is controlled by the azure_relay_connection_count property.
This property is read-only.
azure_relay_connection_connected Property
This property is used to disconnect individual connections and/or show their status.
Syntax
def get_azure_relay_connection_connected(connection_id: int) -> bool: ... def set_azure_relay_connection_connected(connection_id: int, value: bool) -> None: ...
Default Value
FALSE
Remarks
This property is used to disconnect individual connections and/or show their status.
The azure_relay_connection_connected property may be set to false to close the connection.
azure_relay_connection_connected also shows the status of a particular connection (connected/disconnected).
The connection_id parameter specifies the index of the item in the array. The size of the array is controlled by the azure_relay_connection_count property.
azure_relay_connection_connect_headers Property
A JSON object containing the HTTP headers that have been supplied by the sender to the Azure Relay service.
Syntax
def get_azure_relay_connection_connect_headers(connection_id: int) -> str: ...
Default Value
""
Remarks
A JSON object containing the HTTP headers that have been supplied by the sender to the Azure Relay service. For instance:
"connectHeaders": { "Sec-WebSocket-Key": "QocLBwK5J40Qp35L2duoBg==", "Sec-WebSocket-Version": "13", "Origin": "null", "Connection": "Upgrade", "Upgrade": "websocket", "Accept-Encoding": "gzip, deflate", "Host": "nstest.servicebus.windows.net", "User-Agent": "IPWorks HTTP Component - www.nsoftware.com" }
The connection_id parameter specifies the index of the item in the array. The size of the array is controlled by the azure_relay_connection_count property.
This property is read-only.
azure_relay_connection_connection_id Property
This property contains an identifier generated by the class to identify each connection.
Syntax
def get_azure_relay_connection_connection_id(connection_id: int) -> str: ...
Default Value
""
Remarks
This property contains an identifier generated by the class to identify each connection. This identifier is unique to this connection.
The connection_id parameter specifies the index of the item in the array. The size of the array is controlled by the azure_relay_connection_count property.
This property is read-only.
azure_relay_connection_data_format Property
The format of the data being sent.
Syntax
def get_azure_relay_connection_data_format(connection_id: int) -> int: ... def set_azure_relay_connection_data_format(connection_id: int, value: int) -> None: ...
Default Value
0
Remarks
The format of the data being sent. When data is sent over an established connection it is either considered as text or binary data. Text data is UTF-8 encoded. Binary data has no encoding associated with it.
Possible values are:
0 (dfAutomatic - default) | The class will attempt to automatically determine the correct data format. This is suitable for most cases. |
1 (dfText) | The class will UTF-8 encode the specified data before sending. Data that has already been UTF-8 encoded may also be supplied. |
2 (dfBinary) | The class will send the data exactly as it is provided. |
9 (dfPing) | The class will send the ping with data exactly as it is provided. |
10 (dfPong) | The class will send the pong with data exactly as it is provided. |
The connection_id parameter specifies the index of the item in the array. The size of the array is controlled by the azure_relay_connection_count property.
azure_relay_connection_data_to_send Property
This property contains a string of data to be sent to the remote host.
Syntax
def set_azure_relay_connection_data_to_send(connection_id: int, value: bytes) -> None: ...
Default Value
""
Remarks
This property contains a string of data to be sent to the remote host. Write-only property.
Assigning a string to the azure_relay_connection_data_to_send makes the class send the string to the remote host. The send method provides similar functionality.
If you are sending data to the remote host faster than it can process it, or faster than the network's bandwidth allows, the outgoing queue might fill up. When this happens, the operation fails with error 10035: "[10035] Operation would block" (WSAEWOULDBLOCK). You can check this error, and then try to send the data again. . The bytes_sent property shows how many bytes were sent (if any). If 0 bytes were sent, then you can wait for the on_ready_to_send event before attempting to send data again.
Note: The on_ready_to_send event is not fired when part of the data is sent successfully.
The connection_id parameter specifies the index of the item in the array. The size of the array is controlled by the azure_relay_connection_count property.
This property is write-only.
azure_relay_connection_extensions Property
The WebSocket extensions sent by the client in the initial WebSocket connection request.
Syntax
def get_azure_relay_connection_extensions(connection_id: int) -> str: ...
Default Value
""
Remarks
The WebSocket extensions sent by the client in the initial WebSocket connection request.
The connection_id parameter specifies the index of the item in the array. The size of the array is controlled by the azure_relay_connection_count property.
This property is read-only.
azure_relay_connection_host Property
The Host header value of the connected client.
Syntax
def get_azure_relay_connection_host(connection_id: int) -> str: ...
Default Value
""
Remarks
The Host header value of the connected client.
The connection_id parameter specifies the index of the item in the array. The size of the array is controlled by the azure_relay_connection_count property.
This property is read-only.
azure_relay_connection_id Property
This property holds the Id of the connection.
Syntax
def get_azure_relay_connection_id(connection_id: int) -> str: ...
Default Value
""
Remarks
This property holds the Id of the connection. If an Id was specified by the client it is present here, otherwise the Azure Relay service generates a value. For instance: 2d4acb89-7d15-4aeb-bcd5-66e031580a90_G21_G1.
The connection_id parameter specifies the index of the item in the array. The size of the array is controlled by the azure_relay_connection_count property.
This property is read-only.
azure_relay_connection_ready_to_send Property
This indicates whether the class is ready to send data.
Syntax
def get_azure_relay_connection_ready_to_send(connection_id: int) -> bool: ...
Default Value
FALSE
Remarks
This indicates whether the class is ready to send data.
This property indicates that the underlying TCP/IP subsystem is ready to accept data. This is True after a client connects but will become False after a failed azure_relay_connection_data_to_send.
After a failed azure_relay_connection_data_to_send, the on_ready_to_send event will fire and this property will be True when data can be sent again.
The connection_id parameter specifies the index of the item in the array. The size of the array is controlled by the azure_relay_connection_count property.
This property is read-only.
azure_relay_connection_remote_address Property
This property holds the IP address of the connecting client.
Syntax
def get_azure_relay_connection_remote_address(connection_id: int) -> str: ...
Default Value
""
Remarks
This property holds the IP address of the connecting client.
The connection_id parameter specifies the index of the item in the array. The size of the array is controlled by the azure_relay_connection_count property.
This property is read-only.
azure_relay_connection_remote_port Property
This property holds the port of the connecting client.
Syntax
def get_azure_relay_connection_remote_port(connection_id: int) -> int: ...
Default Value
0
Remarks
This property holds the port of the connecting client.
The connection_id parameter specifies the index of the item in the array. The size of the array is controlled by the azure_relay_connection_count property.
This property is read-only.
azure_relay_connection_sub_protocols Property
The subprotocols (application-level protocols layered over the WebSocket Protocol) sent by the client in the initial WebSocket connection request.
Syntax
def get_azure_relay_connection_sub_protocols(connection_id: int) -> str: ...
Default Value
""
Remarks
The subprotocols (application-level protocols layered over the WebSocket Protocol) sent by the client in the initial WebSocket connection request.
The connection_id parameter specifies the index of the item in the array. The size of the array is controlled by the azure_relay_connection_count property.
This property is read-only.
azure_relay_connection_timeout Property
This property specifies a timeout for the class.
Syntax
def get_azure_relay_connection_timeout(connection_id: int) -> int: ... def set_azure_relay_connection_timeout(connection_id: int, value: int) -> None: ...
Default Value
0
Remarks
This property specifies a timeout for the class.
If the azure_relay_connection_timeout property is set to 0, all operations return immediately, potentially failing with a WOULDBLOCK error if data cannot be sent immediately.
If azure_relay_connection_timeout is set to a positive value, data is sent in a blocking manner and the class will wait for the operation to complete before returning control. The class will handle any potential WOULDBLOCK errors internally and automatically retry the operation for a maximum of azure_relay_connection_timeout seconds.
The class will use do_events to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not "freeze" and remains responsive.
If timeout expires, and the operation is not yet complete, the class fails with an error.
Please note that by default, all timeouts are inactivity timeouts, i.e. the timeout period is extended by timeout seconds when any amount of data is successfully sent or received.
The default value for the azure_relay_connection_timeout property is 0(asynchronous operation).
The connection_id parameter specifies the index of the item in the array. The size of the array is controlled by the azure_relay_connection_count property.
default_timeout Property
An initial timeout value to be used by incoming connections.
Syntax
def get_default_timeout() -> int: ... def set_default_timeout(value: int) -> None: ...
default_timeout = property(get_default_timeout, set_default_timeout)
Default Value
0
Remarks
This property is used by the class to set the operational timeout value of all inbound connections once they are established.
By default, the timeout is 0, meaning that all inbound connections will behave asynchronously.
firewall_auto_detect Property
This property tells the class whether or not to automatically detect and use firewall system settings, if available.
Syntax
def get_firewall_auto_detect() -> bool: ... def set_firewall_auto_detect(value: bool) -> None: ...
firewall_auto_detect = property(get_firewall_auto_detect, set_firewall_auto_detect)
Default Value
FALSE
Remarks
This property tells the class whether or not to automatically detect and use firewall system settings, if available.
firewall_type Property
This property determines the type of firewall to connect through.
Syntax
def get_firewall_type() -> int: ... def set_firewall_type(value: int) -> None: ...
firewall_type = property(get_firewall_type, set_firewall_type)
Default Value
0
Remarks
This property determines the type of firewall to connect through. The applicable values are as follows:
fwNone (0) | No firewall (default setting). |
fwTunnel (1) | Connect through a tunneling proxy. firewall_port is set to 80. |
fwSOCKS4 (2) | Connect through a SOCKS4 Proxy. firewall_port is set to 1080. |
fwSOCKS5 (3) | Connect through a SOCKS5 Proxy. firewall_port is set to 1080. |
fwSOCKS4A (10) | Connect through a SOCKS4A Proxy. firewall_port is set to 1080. |
firewall_host Property
This property contains the name or IP address of firewall (optional).
Syntax
def get_firewall_host() -> str: ... def set_firewall_host(value: str) -> None: ...
firewall_host = property(get_firewall_host, set_firewall_host)
Default Value
""
Remarks
This property contains the name or IP address of firewall (optional). If a firewall_host is given, the requested connections will be authenticated through the specified firewall when connecting.
If this property is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, the class fails with an error.
firewall_password Property
This property contains a password if authentication is to be used when connecting through the firewall.
Syntax
def get_firewall_password() -> str: ... def set_firewall_password(value: str) -> None: ...
firewall_password = property(get_firewall_password, set_firewall_password)
Default Value
""
Remarks
This property contains a password if authentication is to be used when connecting through the firewall. If firewall_host is specified, the firewall_user and firewall_password properties are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.
firewall_port Property
This property contains the transmission control protocol (TCP) port for the firewall Host .
Syntax
def get_firewall_port() -> int: ... def set_firewall_port(value: int) -> None: ...
firewall_port = property(get_firewall_port, set_firewall_port)
Default Value
0
Remarks
This property contains the transmission control protocol (TCP) port for the firewall firewall_host. See the description of the firewall_host property for details.
Note: This property is set automatically when firewall_type is set to a valid value. See the description of the firewall_type property for details.
firewall_user Property
This property contains a user name if authentication is to be used connecting through a firewall.
Syntax
def get_firewall_user() -> str: ... def set_firewall_user(value: str) -> None: ...
firewall_user = property(get_firewall_user, set_firewall_user)
Default Value
""
Remarks
This property contains a user name if authentication is to be used connecting through a firewall. If the firewall_host is specified, this property and firewall_password properties are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.
forwarding_host Property
The address to which traffic will automatically be forwarded.
Syntax
def get_forwarding_host() -> str: ... def set_forwarding_host(value: str) -> None: ...
forwarding_host = property(get_forwarding_host, set_forwarding_host)
Default Value
""
Remarks
forwarding_host optionally specifies an address to which traffic will be automatically forwarded. Traffic will only be forwarded if both forwarding_host and forwarding_port are specified.
When a connection is made the class will automatically establish a connection to forwarding_host on the port specified by forwarding_port. Data will then flow freely between the connected client and the forwarding_host.
Note: This functionality is not applicable to HTTP requests.
forwarding_port Property
The port to which traffic will automatically be forwarded.
Syntax
def get_forwarding_port() -> int: ... def set_forwarding_port(value: int) -> None: ...
forwarding_port = property(get_forwarding_port, set_forwarding_port)
Default Value
0
Remarks
forwarding_port is used together with forwarding_host to define a location where traffic is automatically forwarded.
forwarding_host optionally specifies an address to which traffic will be automatically forwarded. Traffic will only be forwarded if both forwarding_host and forwarding_port are specified.
When a connection is made the class will automatically establish a connection to forwarding_host on the port specified by forwarding_port. Data will then flow freely between the connected client and the forwarding_host.
Note: This functionality is not applicable to HTTP requests.
hybrid_connection Property
The hybrid connection name.
Syntax
def get_hybrid_connection() -> str: ... def set_hybrid_connection(value: str) -> None: ...
hybrid_connection = property(get_hybrid_connection, set_hybrid_connection)
Default Value
""
Remarks
This setting specifies the name of the hybrid connection that was created in the Azure portal. For instance hc1.
listening Property
If , the class is listening for incoming connections.
Syntax
def get_listening() -> bool: ... def set_listening(value: bool) -> None: ...
listening = property(get_listening, set_listening)
Default Value
FALSE
Remarks
This setting indicates whether the class accepts incoming connections. When True the class has connected to the Azure Service and started listening for incoming connections. The initiate the conenction and begin listening clal the start_listening method.
Note: Use the start_listening and stop_listening methods to control whether the class is listening.
local_host Property
The name of the local host or user-assigned IP interface through which connections are initiated or accepted.
Syntax
def get_local_host() -> str: ... def set_local_host(value: str) -> None: ...
local_host = property(get_local_host, set_local_host)
Default Value
""
Remarks
The local_host property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.
In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.
If the class is connected, the local_host property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
NOTE: local_host is not persistent. You must always set it in code, and never in the property window.
namespace_address Property
The namespace address of the relay.
Syntax
def get_namespace_address() -> str: ... def set_namespace_address(value: str) -> None: ...
namespace_address = property(get_namespace_address, set_namespace_address)
Default Value
""
Remarks
This property specifies the full fully qualified domain name of the relay namespace. For instance myrelay.servicebus.windows.net.
proxy_auth_scheme Property
This property is used to tell the class which type of authorization to perform when connecting to the proxy.
Syntax
def get_proxy_auth_scheme() -> int: ... def set_proxy_auth_scheme(value: int) -> None: ...
proxy_auth_scheme = property(get_proxy_auth_scheme, set_proxy_auth_scheme)
Default Value
0
Remarks
This property is used to tell the class which type of authorization to perform when connecting to the proxy. This is used only when the proxy_user and proxy_password properties are set.
proxy_auth_scheme should be set to authNone (3) when no authentication is expected.
By default, proxy_auth_scheme is authBasic (0), and if the proxy_user and proxy_password properties are set, the component will attempt basic authentication.
If proxy_auth_scheme is set to authDigest (1), digest authentication will be attempted instead.
If proxy_auth_scheme is set to authProprietary (2), then the authorization token will not be generated by the class. Look at the configuration file for the class being used to find more information about manually setting this token.
If proxy_auth_scheme is set to authNtlm (4), NTLM authentication will be used.
For security reasons, setting this property will clear the values of proxy_user and proxy_password.
proxy_auto_detect Property
This property tells the class whether or not to automatically detect and use proxy system settings, if available.
Syntax
def get_proxy_auto_detect() -> bool: ... def set_proxy_auto_detect(value: bool) -> None: ...
proxy_auto_detect = property(get_proxy_auto_detect, set_proxy_auto_detect)
Default Value
FALSE
Remarks
This property tells the class whether or not to automatically detect and use proxy system settings, if available. The default value is False.
proxy_password Property
This property contains a password if authentication is to be used for the proxy.
Syntax
def get_proxy_password() -> str: ... def set_proxy_password(value: str) -> None: ...
proxy_password = property(get_proxy_password, set_proxy_password)
Default Value
""
Remarks
This property contains a password if authentication is to be used for the proxy.
If proxy_auth_scheme is set to Basic Authentication, the proxy_user and proxy_password are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].
If proxy_auth_scheme is set to Digest Authentication, the proxy_user and proxy_password properties are used to respond to the Digest Authentication challenge from the server.
If proxy_auth_scheme is set to NTLM Authentication, the proxy_user and proxy_password properties are used to authenticate through NTLM negotiation.
proxy_port Property
This property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80).
Syntax
def get_proxy_port() -> int: ... def set_proxy_port(value: int) -> None: ...
proxy_port = property(get_proxy_port, set_proxy_port)
Default Value
80
Remarks
This property contains the Transmission Control Protocol (TCP) port for the proxy proxy_server (default 80). See the description of the proxy_server property for details.
proxy_server Property
If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.
Syntax
def get_proxy_server() -> str: ... def set_proxy_server(value: str) -> None: ...
proxy_server = property(get_proxy_server, set_proxy_server)
Default Value
""
Remarks
If a proxy proxy_server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.
If the proxy_server property is set to a domain name, a DNS request is initiated. Upon successful termination of the request, the proxy_server property is set to the corresponding address. If the search is not successful, an error is returned.
proxy_ssl Property
This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy.
Syntax
def get_proxy_ssl() -> int: ... def set_proxy_ssl(value: int) -> None: ...
proxy_ssl = property(get_proxy_ssl, set_proxy_ssl)
Default Value
0
Remarks
This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy. The applicable values are as follows:
psAutomatic (0) | Default setting. If the url is an https URL, the class will use the psTunnel option. If the url is an http URL, the class will use the psNever option. |
psAlways (1) | The connection is always SSL enabled. |
psNever (2) | The connection is not SSL enabled. |
psTunnel (3) | The connection is made through a tunneling (HTTP) proxy. |
proxy_user Property
This property contains a username if authentication is to be used for the proxy.
Syntax
def get_proxy_user() -> str: ... def set_proxy_user(value: str) -> None: ...
proxy_user = property(get_proxy_user, set_proxy_user)
Default Value
""
Remarks
This property contains a username if authentication is to be used for the proxy.
If proxy_auth_scheme is set to Basic Authentication, the proxy_user and proxy_password properties are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].
If proxy_auth_scheme is set to Digest Authentication, the proxy_user and proxy_password properties are used to respond to the Digest Authentication challenge from the server.
If proxy_auth_scheme is set to NTLM Authentication, the proxy_user and proxy_password properties are used to authenticate through NTLM negotiation.
ssl_accept_server_cert_encoded Property
This is the certificate (PEM/Base64 encoded).
Syntax
def get_ssl_accept_server_cert_encoded() -> bytes: ... def set_ssl_accept_server_cert_encoded(value: bytes) -> None: ...
ssl_accept_server_cert_encoded = property(get_ssl_accept_server_cert_encoded, set_ssl_accept_server_cert_encoded)
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The ssl_accept_server_cert_store and ssl_accept_server_cert_subject properties also may be used to specify a certificate.
When ssl_accept_server_cert_encoded is set, a search is initiated in the current ssl_accept_server_cert_store for the private key of the certificate. If the key is found, ssl_accept_server_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_accept_server_cert_subject is set to an empty string.
ssl_cert_encoded Property
This is the certificate (PEM/Base64 encoded).
Syntax
def get_ssl_cert_encoded() -> bytes: ... def set_ssl_cert_encoded(value: bytes) -> None: ...
ssl_cert_encoded = property(get_ssl_cert_encoded, set_ssl_cert_encoded)
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The ssl_cert_store and ssl_cert_subject properties also may be used to specify a certificate.
When ssl_cert_encoded is set, a search is initiated in the current ssl_cert_store for the private key of the certificate. If the key is found, ssl_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_cert_subject is set to an empty string.
ssl_cert_store Property
This is the name of the certificate store for the client certificate.
Syntax
def get_ssl_cert_store() -> bytes: ... def set_ssl_cert_store(value: bytes) -> None: ...
ssl_cert_store = property(get_ssl_cert_store, set_ssl_cert_store)
Default Value
"MY"
Remarks
This is the name of the certificate store for the client certificate.
The ssl_cert_store_type property denotes the type of the certificate store specified by ssl_cert_store. If the store is password protected, specify the password in ssl_cert_store_password.
ssl_cert_store is used in conjunction with the ssl_cert_subject property to specify client certificates. If ssl_cert_store has a value, and ssl_cert_subject or ssl_cert_encoded is set, a search for a certificate is initiated. Please see the ssl_cert_subject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
ssl_cert_store_password Property
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
def get_ssl_cert_store_password() -> str: ... def set_ssl_cert_store_password(value: str) -> None: ...
ssl_cert_store_password = property(get_ssl_cert_store_password, set_ssl_cert_store_password)
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
ssl_cert_store_type Property
This is the type of certificate store for this certificate.
Syntax
def get_ssl_cert_store_type() -> int: ... def set_ssl_cert_store_type(value: int) -> None: ...
ssl_cert_store_type = property(get_ssl_cert_store_type, set_ssl_cert_store_type)
Default Value
0
Remarks
This is the type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: this store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the ssl_cert_store and set ssl_cert_store_password to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
ssl_cert_subject Property
This is the subject of the certificate used for client authentication.
Syntax
def get_ssl_cert_subject() -> str: ... def set_ssl_cert_subject(value: str) -> None: ...
ssl_cert_subject = property(get_ssl_cert_subject, set_ssl_cert_subject)
Default Value
""
Remarks
This is the subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
ssl_provider Property
This specifies the SSL/TLS implementation to use.
Syntax
def get_ssl_provider() -> int: ... def set_ssl_provider(value: int) -> None: ...
ssl_provider = property(get_ssl_provider, set_ssl_provider)
Default Value
0
Remarks
This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic) the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.
Possible values are:
0 (sslpAutomatic - default) | Automatically selects the appropriate implementation. |
1 (sslpPlatform) | Uses the platform/system implementation. |
2 (sslpInternal) | Uses the internal implementation. |
In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.
When Automatic is selected, on Windows the class will use the platform implementation. On Linux/macOS the class will use the internal implementation. When TLS 1.3 is enabled via SSLEnabledProtocols the internal implementation is used on all platforms.
ssl_server_cert_encoded Property
This is the certificate (PEM/Base64 encoded).
Syntax
def get_ssl_server_cert_encoded() -> bytes: ...
ssl_server_cert_encoded = property(get_ssl_server_cert_encoded, None)
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The ssl_server_cert_store and ssl_server_cert_subject properties also may be used to specify a certificate.
When ssl_server_cert_encoded is set, a search is initiated in the current ssl_server_cert_store for the private key of the certificate. If the key is found, ssl_server_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_server_cert_subject is set to an empty string.
This property is read-only.
config Method
Sets or retrieves a configuration setting.
Syntax
def config(configuration_string: str) -> str: ...
Remarks
config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
disconnect Method
This method disconnects the specified client.
Syntax
def disconnect(connection_id: int) -> None: ...
Remarks
Calling this method will disconnect the client specified by the ConnectionId parameter.
do_events Method
Processes events from the internal message queue.
Syntax
def do_events() -> None: ...
Remarks
When do_events is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.
interrupt Method
Interrupts a synchronous send to the remote host.
Syntax
def interrupt(connection_id: int) -> None: ...
Remarks
This property is called using the Connection ID if you wish to interrupt a connection and stop a file from uploading without disconnecting the client connected to the class. If you use send_file to upload a file, the class will run synchronously on that Connection ID until it is completed.
pause_data Method
This method pauses data reception.
Syntax
def pause_data(connection_id: int) -> None: ...
Remarks
This method pauses data reception for the connection identified by ConnectionId when called. While data reception is paused, the on_data_in event will not fire for the specified connection. Call process_data to reenable data reception.
process_data Method
This method reenables data reception after a call to PauseData .
Syntax
def process_data(connection_id: int) -> None: ...
Remarks
This method reenables data reception for the connection identified by ConnectionId after a previous call to pause_data. When pause_data is called, the on_data_in event will not fire for the specified connection. To reenable data reception and allow on_data_in to fire, call this method.
Note: This method is used only after previously calling pause_data. It does not need to be called to process incoming data by default.
send Method
Sends binary data to the client.
Syntax
def send(connection_id: int, data: bytes) -> None: ...
Remarks
This method sends the binary data specified by Data to the client specified by ConnectionId.
send_bytes Method
This method sends binary data to the specified client.
Syntax
def send_bytes(connection_id: int, data: bytes) -> None: ...
Remarks
This method sends binary data to the client identified by ConnectionId. To send text, use the send_text method instead.
When azure_relay_connection_timeout is set to 0, the class will behave asynchronously. If you are sending data to the remote host faster than it can process it, or faster than the network's bandwidth allows, the outgoing queue might fill up. When this happens, the operation fails with error 10035: "[10035] Operation would block" (WSAEWOULDBLOCK). You can check this error, and then try to send the data again. . The bytes_sent property shows how many bytes were sent (if any). If 0 bytes were sent, then you can wait for the on_ready_to_send event before attempting to send data again.
Note: The on_ready_to_send event is not fired when part of the data is sent successfully.
send_file Method
This method sends the file to the remote host.
Syntax
def send_file(connection_id: int, file_name: str) -> None: ...
Remarks
This method sends the file to the client specified by the ConnectionId.
send_http_response Method
Send the HTTP response.
Syntax
def send_http_response(connection_id: int, status_code: int, status_description: str, response_data: bytes) -> None: ...
Remarks
This method sends an HTTP response to the HTTP request identified by ConnectionId.
The response status code and description, as well as the response body, are sent to the client using this method. The ConnectionId value should be obtained from the on_http_request event.
StatusCode is the three digit HTTP status code to return, for instance 200.
StatusDescription is the text corresponding to the StatusCode. For instance OK.
ResponseBody specifies the body to be sent back to the client (if any).
Code Example (HTTP)
Azurerelaylistener listener = new Azurerelaylistener();
listener.AccessKey = "9oKRDwjl0s440MlLUi4qHxDL34j1FS6K3t5TRoJ216c=";
listener.AccessKeyName = "RootManageSharedAccessKey";
listener.NamespaceAddress = "myrelay.servicebus.windows.net";
listener.HybridConnection = "hc1";
listener.OnHTTPRequest += (s, e) => {
Console.WriteLine("HTTP Request from " + e.RemoteAddress + ":" + e.RemotePort);
Console.WriteLine("HTTP Method: " + e.RequestMethod);
Console.WriteLine("HTTP Request: " + e.RequestData);
myConnectionId = e.ConnectionId;
};
//Send a response using the ConnectionId value from the HTTPRequest event
listener.SendHTTPResponse(myConnectionId, 200, "OK", myResponseBody);
send_text Method
Sends text data to the client.
Syntax
def send_text(connection_id: int, text: str) -> None: ...
Remarks
This method sends text to the client identified by ConnectionId. To send binary data, use the send_bytes method instead.
When azure_relay_connection_timeout is set to 0, the class will behave asynchronously. If you are sending data to the remote host faster than it can process it, or faster than the network's bandwidth allows, the outgoing queue might fill up. When this happens, the operation fails with error 10035: "[10035] Operation would block" (WSAEWOULDBLOCK). You can check this error, and then try to send the data again. . The bytes_sent property shows how many bytes were sent (if any). If 0 bytes were sent, then you can wait for the on_ready_to_send event before attempting to send data again.
Note: The on_ready_to_send event is not fired when part of the data is sent successfully.
This method sends text to the client identified by ConnectionId. Data sent with this method will always be treated as text data regardless of the value of azure_relay_connection_data_format. The class will UTF-8 encode the supplied text.
shutdown Method
This method shuts down the server.
Syntax
def shutdown() -> None: ...
Remarks
This method shuts down the server. Calling this method is equivalent to calling stop_listening and then breaking every client connection by calling disconnect.
start_listening Method
Starts listening for incoming connections.
Syntax
def start_listening() -> None: ...
Remarks
This method begins listening for incoming connections on the port specified by local_port. Once listening events will fire as new clients connect and data is transferred.
To stop listening for new connections call stop_listening. To stop listening for new connections and disconnect all existing clients call shutdown.
The following properties are applicable when calling this method:
- access_key (required)
- access_key_name (required)
- hybrid_connection (required)
- namespace_address (required)
- default_timeout
- forwarding_host
- forwarding_port
stop_listening Method
This method stops listening for new connections.
Syntax
def stop_listening() -> None: ...
Remarks
This method stops listening for new connections. After being called, any new connection attempts will be rejected. Calling this method does not disconnect existing connections.
To stop listening and to disconnect all existing clients, call shutdown instead.
on_connected Event
Fired immediately after the WebSocket handshake completes (or fails).
Syntax
class AzureRelayReceiverConnectedEventParams(object): @property def status_code() -> int: ... @property def description() -> str: ... # In class AzureRelayReceiver: @property def on_connected() -> Callable[[AzureRelayReceiverConnectedEventParams], None]: ... @on_connected.setter def on_connected(event_hook: Callable[[AzureRelayReceiverConnectedEventParams], None]) -> None: ...
Remarks
The on_connected event will fire after the entire WebSocket connection and handshake process finishes (of fails). This consists of 3 steps: the initial TCP connection (along with SSL negotiation, if used), the HTTP "Upgrade" request, and the 101 HTTP response.
If the connection is made normally, StatusCode is 0 and Description is "OK".
If the connection fails, StatusCode has the error code returned by the TCP/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.
Please refer to the Error Codes section for more information.
on_connection_connected Event
Fired when a client has connected.
Syntax
class AzureRelayReceiverConnectionConnectedEventParams(object): @property def connection_id() -> int: ... # In class AzureRelayReceiver: @property def on_connection_connected() -> Callable[[AzureRelayReceiverConnectionConnectedEventParams], None]: ... @on_connection_connected.setter def on_connection_connected(event_hook: Callable[[AzureRelayReceiverConnectionConnectedEventParams], None]) -> None: ...
Remarks
This event fires when a client has successfully established a WebSocket connection.
ConnectionId identifies the connection.
on_connection_data_in Event
Fired when data is received.
Syntax
class AzureRelayReceiverConnectionDataInEventParams(object): @property def connection_id() -> int: ... @property def data_format() -> int: ... @property def text() -> bytes: ... @property def eom() -> bool: ... # In class AzureRelayReceiver: @property def on_connection_data_in() -> Callable[[AzureRelayReceiverConnectionDataInEventParams], None]: ... @on_connection_data_in.setter def on_connection_data_in(event_hook: Callable[[AzureRelayReceiverConnectionDataInEventParams], None]) -> None: ...
Remarks
The on_data_in event provides the data received from the client identified by the ConnectionId parameter.
The incoming data is provided through the Text parameter.
The DataFormat parameter identifies the encoding (if any) of the data. Possible value are:
0 | If line_mode is disabled, a value of 0 indicates a continuation packet. If line_mode is enabled the value will always be 0, regardless of packet type. |
1 | The data is UTF-8 encoded. |
2 | The data is binary and has no encoding. |
The EOM parameter stands for End Of Message. By default the class will fire the on_data_in event as data is received. Larger messages will be fragmented and will cause the event to fire multiple times. When EOM is true within the event this indicates the current fragment is also the final fragment of the message. The class may also be configured to buffer the message internally until the complete message is received. To enable this set BufferMessage to true.
The EOL parameter stands for End of Line. When line_mode is false, EOL will always be false. When line_mode is true, EOL will be True if the on_data_in event fired because an EOL was received, and false if the on_data_in event fired because MaxLineLength was reached.
on_connection_disconnected Event
Fired when a WebSocket connection is disconnected.
Syntax
class AzureRelayReceiverConnectionDisconnectedEventParams(object): @property def connection_id() -> int: ... @property def status_code() -> int: ... @property def description() -> str: ... # In class AzureRelayReceiver: @property def on_connection_disconnected() -> Callable[[AzureRelayReceiverConnectionDisconnectedEventParams], None]: ... @on_connection_disconnected.setter def on_connection_disconnected(event_hook: Callable[[AzureRelayReceiverConnectionDisconnectedEventParams], None]) -> None: ...
Remarks
When the connection is closed the StatusCode parameter may be used to determine if the disconnect occurred normally or if there was an error condition. If the connection is closed normally the StatusCode will be 1000. The Description parameter will contain a textual description returned by the server. Common StatusCode values are:
1000 (default) | Normal closure. |
1001 | The resource is going away. For instance the server is shutting down or a browser is navigating away from the page. |
1002 | A protocol error occurred. |
1003 | Unexpected data was received (e.g., an endpoint that only accepts text data could send this if binary data is received). |
1007 | Invalid payload data was received (e.g., an endpoint that receives non-UTF-8 data in a text message could send this). |
1008 | A generic code that indicates the endpoint received a message that violates its policy. |
1009 | A message that was too large was received. |
1010 | A required extension could not be negotiated. |
1011 | An unexpected error occurred. |
on_connection_error Event
Information about errors during data delivery.
Syntax
class AzureRelayReceiverConnectionErrorEventParams(object): @property def connection_id() -> int: ... @property def error_code() -> int: ... @property def description() -> str: ... # In class AzureRelayReceiver: @property def on_connection_error() -> Callable[[AzureRelayReceiverConnectionErrorEventParams], None]: ... @on_connection_error.setter def on_connection_error(event_hook: Callable[[AzureRelayReceiverConnectionErrorEventParams], None]) -> None: ...
Remarks
The on_error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.
ConnectionId contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
on_connection_ready_to_send Event
Fired when the class is ready to send data.
Syntax
class AzureRelayReceiverConnectionReadyToSendEventParams(object): @property def connection_id() -> int: ... # In class AzureRelayReceiver: @property def on_connection_ready_to_send() -> Callable[[AzureRelayReceiverConnectionReadyToSendEventParams], None]: ... @on_connection_ready_to_send.setter def on_connection_ready_to_send(event_hook: Callable[[AzureRelayReceiverConnectionReadyToSendEventParams], None]) -> None: ...
Remarks
The on_ready_to_send event indicates that the underlying TCP/IP subsystem is ready to accept data after a failed data_to_send. The event is also fired immediately after a connection is established.
on_connection_request Event
Fires when a WebSocket connection is requested.
Syntax
class AzureRelayReceiverConnectionRequestEventParams(object): @property def accept() -> bool: ... @accept.setter def accept(value) -> None: ... @property def rendezvous_address() -> str: ... @property def id() -> str: ... @property def connect_headers() -> str: ... @property def sub_protocols() -> str: ... @property def extensions() -> str: ... @property def host() -> str: ... @property def remote_address() -> str: ... @property def remote_port() -> int: ... @property def status_code() -> int: ... @status_code.setter def status_code(value) -> None: ... @property def status_description() -> str: ... @status_description.setter def status_description(value) -> None: ... # In class AzureRelayReceiver: @property def on_connection_request() -> Callable[[AzureRelayReceiverConnectionRequestEventParams], None]: ... @on_connection_request.setter def on_connection_request(event_hook: Callable[[AzureRelayReceiverConnectionRequestEventParams], None]) -> None: ...
Remarks
This event fires when a client requests a connection. The parameters of this event may be used to determine whether to accept or reject the connection.
To accept a connection set Accept to True (default). To reject a connection set Accept to False and set StatusCode and StatusDescription.
Accept defines whether the connection request is accepted or rejected. The default value is True. Set this to False to reject the connection.
RendezvousAddress holds the rendezvous URL to which the connection specific websocket connection will be made. This is informational only.
Id holds the Id of the connection. If an Id was specified by the client it is present here, otherwise the Azure Relay Service generates a value. For instance: b3ac97ea-d0f0-4286-bf1d-d493a4a22c27_G23_G22.
ConnectHeaders contains a JSON object with the HTTP headers that have been supplied by the sender to the Azure Relay service. For instance:
"connectHeaders": { "Sec-WebSocket-Key": "wIdDlRBg\/J\/Hx12q6iFdUQ==", "Sec-WebSocket-Version": "13", "Origin": "null", "Connection": "Upgrade", "Upgrade": "websocket", "Accept-Encoding": "gzip, deflate", "Host": "nstest.servicebus.windows.net", "User-Agent": "IPWorks HTTP Component - www.nsoftware.com" }
SubProtocols holds the subprotocols (application-level protocols layered over the WebSocket Protocol) sent by the client in the initial WebSocket connection request.
Extensions holds the WebSocket extensions sent by the client in the initial WebSocket connection request.
Host is the Host header value of the connected client.
RemoteAddress is the IP address of the connecting client.
RemotePort is the port used by the connecting client.
StatusCode is a 3 digit HTTP status code used when Accept is set to False. Set this to any 3 digit HTTP status code when rejecting a connection. For instance: 404.
StatusDescription should be set to the text description corresponding to the StatusCode value when rejecting a connection. For instance: Not Found.
on_connection_status Event
Fired to indicate changes in connection state.
Syntax
class AzureRelayReceiverConnectionStatusEventParams(object): @property def connection_event() -> str: ... @property def status_code() -> int: ... @property def description() -> str: ... # In class AzureRelayReceiver: @property def on_connection_status() -> Callable[[AzureRelayReceiverConnectionStatusEventParams], None]: ... @on_connection_status.setter def on_connection_status(event_hook: Callable[[AzureRelayReceiverConnectionStatusEventParams], None]) -> None: ...
Remarks
The on_connection_status event is fired when the connection state changes: completion of a firewall or proxy connection, completion of a security handshake, etc.
The ConnectionEvent parameter indicates the type of connection event. Values may include:
Firewall connection complete. | |
SSL handshake complete (where applicable). | |
WebSocket handshake complete. | |
Remote host connection complete. | |
Remote host disconnected. | |
WebSocket connection broken. | |
SSL connection broken. | |
Firewall host disconnected. |
on_disconnected Event
This event is fired when a connection is closed.
Syntax
class AzureRelayReceiverDisconnectedEventParams(object): @property def status_code() -> int: ... @property def description() -> str: ... # In class AzureRelayReceiver: @property def on_disconnected() -> Callable[[AzureRelayReceiverDisconnectedEventParams], None]: ... @on_disconnected.setter def on_disconnected(event_hook: Callable[[AzureRelayReceiverDisconnectedEventParams], None]) -> None: ...
Remarks
If the connection is broken normally, StatusCode is 0 and Description is "OK".
If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.
Please refer to the Error Codes section for more information.
on_error Event
Fired when information is available about errors during data delivery.
Syntax
class AzureRelayReceiverErrorEventParams(object): @property def error_code() -> int: ... @property def description() -> str: ... # In class AzureRelayReceiver: @property def on_error() -> Callable[[AzureRelayReceiverErrorEventParams], None]: ... @on_error.setter def on_error(event_hook: Callable[[AzureRelayReceiverErrorEventParams], None]) -> None: ...
Remarks
The on_error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
on_header Event
This event is fired every time a header line comes in.
Syntax
class AzureRelayReceiverHeaderEventParams(object): @property def field() -> str: ... @property def value() -> str: ... # In class AzureRelayReceiver: @property def on_header() -> Callable[[AzureRelayReceiverHeaderEventParams], None]: ... @on_header.setter def on_header(event_hook: Callable[[AzureRelayReceiverHeaderEventParams], None]) -> None: ...
Remarks
The Field parameter contains the name of the HTTP header (which is the same as it is delivered). The Value parameter contains the header contents.
If the header line being retrieved is a continuation header line, then the Field parameter contains "" (empty string).
on_http_request Event
Fires when an HTTP request is received.
Syntax
class AzureRelayReceiverHTTPRequestEventParams(object): @property def connection_id() -> int: ... @property def rendezvous_address() -> str: ... @property def id() -> str: ... @property def request_headers() -> str: ... @property def request_target() -> str: ... @property def request_method() -> str: ... @property def host() -> str: ... @property def remote_address() -> str: ... @property def remote_port() -> int: ... @property def request_data() -> bytes: ... # In class AzureRelayReceiver: @property def on_http_request() -> Callable[[AzureRelayReceiverHTTPRequestEventParams], None]: ... @on_http_request.setter def on_http_request(event_hook: Callable[[AzureRelayReceiverHTTPRequestEventParams], None]) -> None: ...
Remarks
This event fires when an HTTP request is received. The parameters of this event describe the details of the HTTP request.
The ConnectionId value must be saved and used when calling send_http_response.
Parameter Descriptions
ConnectionId contains an identifier generated by the class to identify each connection. This identifier is unique to this connection.
RendezvousAddress holds the rendezvous URL to which the connection specific websocket connection may be made. This is for information only, no action needs to be taken based on this value. For instance: wss://g2-prod-by3-003-sb.servicebus.windows.net/$hc/hc1?sb-hc-action=request&sb-hc-id=e1df5efe-0988-450c-9512-f9f1d91b39a0_G2
Id holds the Id of the connection. If an Id was specified by the client it is present here, otherwise the Azure Relay service generates a value. For instance: 2d4acb89-7d15-4aeb-bcd5-66e031580a90_G21_G1.
RequestHeaders contains a JSON object containing the HTTP headers supplied to the Azure Relay service by the sender. Note that authorization values used to authenticate to the Azure Relay service, as well as all headers defined in RFC 7230 with the exception of Via are also stripped. For instance headers such as Content-Length are stripped by the relay and are not present in this value. For instance:
"requestHeaders": { "Accept-Encoding": "gzip, deflate", "Host": "nstest.servicebus.windows.net", "User-Agent": "IPWorks HTTP Component - www.nsoftware.com", "Via": "1.1 nstest.servicebus.windows.net" }
RequestTarget is the request target including query string params, as defined in RFC 7230 section 5.3. For instance /hc1.
RequestMethod contains HTTP method sent in the request. For instance POST or GET.
Hostholds the Host header value of the connected client.
RemoteHost contains the IP address of the remote host that initiated the HTTP request (the client).
RemotePort contains the port used by the remote host to establish the connection.
RequestData holds the body of the HTTP request (if any).
on_log Event
Fires once for each log message.
Syntax
class AzureRelayReceiverLogEventParams(object): @property def connection_id() -> int: ... @property def log_level() -> int: ... @property def message() -> str: ... @property def log_type() -> str: ... # In class AzureRelayReceiver: @property def on_log() -> Callable[[AzureRelayReceiverLogEventParams], None]: ... @on_log.setter def on_log(event_hook: Callable[[AzureRelayReceiverLogEventParams], None]) -> None: ...
Remarks
This event fires once for each log message generated by the class. The verbosity is controlled by the LogLevel setting.
LogLevel indicates the level of message. Possible values are:
0 (None) | No events are logged. |
1 (Info - default) | Informational events are logged. |
2 (Verbose) | Detailed data is logged. |
3 (Debug) | Debug data is logged. |
The value 1 (Info) logs basic information including the URL, HTTP version, and connection status details.
The value 2 (Verbose) logs additional information about the initial HTTP request.
The value 3 (Debug) logs additional debug information (if available).
Message is the log entry.
LogType identifies the type of log entry. Possible values are:
- "Info"
- "Error"
- "Verbose"
- "Debug"
on_redirect Event
This event is fired when a redirection is received from the server.
Syntax
class AzureRelayReceiverRedirectEventParams(object): @property def location() -> str: ... @property def accept() -> bool: ... @accept.setter def accept(value) -> None: ... # In class AzureRelayReceiver: @property def on_redirect() -> Callable[[AzureRelayReceiverRedirectEventParams], None]: ... @on_redirect.setter def on_redirect(event_hook: Callable[[AzureRelayReceiverRedirectEventParams], None]) -> None: ...
Remarks
This event is fired in cases in which the client can decide whether or not to continue with the redirection process. The Accept parameter is always True by default, but if you do not want to follow the redirection, Accept may be set to False, in which case the class fails with an error. Location is the location to which the client is being redirected. Further control over redirection is provided in the follow_redirects property.
on_ssl_server_authentication Event
Fired after the server presents its certificate to the client.
Syntax
class AzureRelayReceiverSSLServerAuthenticationEventParams(object): @property def cert_encoded() -> bytes: ... @property def cert_subject() -> str: ... @property def cert_issuer() -> str: ... @property def status() -> str: ... @property def accept() -> bool: ... @accept.setter def accept(value) -> None: ... # In class AzureRelayReceiver: @property def on_ssl_server_authentication() -> Callable[[AzureRelayReceiverSSLServerAuthenticationEventParams], None]: ... @on_ssl_server_authentication.setter def on_ssl_server_authentication(event_hook: Callable[[AzureRelayReceiverSSLServerAuthenticationEventParams], None]) -> None: ...
Remarks
During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.
When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.
on_ssl_status Event
Fired when secure connection progress messages are available.
Syntax
class AzureRelayReceiverSSLStatusEventParams(object): @property def message() -> str: ... # In class AzureRelayReceiver: @property def on_ssl_status() -> Callable[[AzureRelayReceiverSSLStatusEventParams], None]: ... @on_ssl_status.setter def on_ssl_status(event_hook: Callable[[AzureRelayReceiverSSLStatusEventParams], None]) -> None: ...
Remarks
The event is fired for informational and logging purposes only. This event tracks the progress of the connection.
AzureRelayReceiver Config Settings
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.AzureRelayReceiver Config Settings
The value will be in the format:
SharedAccessSignature sr=sb%3a%2f%2fnstest.servicebus.windows.net%2fhc1&sig=a2EjYWw%2fDlg%2bPcNb%2fC7%2fxBbM11JjfgdO6ZVsQRm18Gg%3d&se=1555368805&skn=RootManageSharedAccessKey
When connected to the Azure Relay a Shared Access Token grants access to the service. After TokenValidity seconds this token will expire. To prevent disconnection the class will automatically renew the token once the remaining seconds on the life of the token is below this threshold.
For instance if AutoRenewThreshold is set to 100 (seconds). Once the class token is valid for only 99 seconds it will be automatically renewed.
The default value is 300 (seconds).
The default value is 0 (disabled).
Note: This functionality is not yet supported
0 (None) | No events are logged. |
1 (Info - default) | Informational events are logged. |
2 (Verbose) | Detailed data is logged. |
3 (Debug) | Debug data is logged. |
The value 1 (Info) logs basic information about the connection and connecting clients.
The value 2 (Verbose) logs detailed information about each connection and the control connection.
The value 3 (Debug) logs additional debug information (if any).
WebSocketServer Config Settings
1000 (default) | Normal closure. |
1001 | The resource is going away. For instance the server is shutting down or a browser is navigating away from the page. |
1002 | A protocol error occurred. |
1003 | Unexpected data was received (e.g., an endpoint that only accepts text data could send this if binary data is received). |
1007 | Invalid payload data was received (e.g., an endpoint that receives non-UTF-8 data in a text message could send this). |
1008 | A generic code that indicates the endpoint received a message that violates its policy. |
1009 | A message that was too large was received. |
1010 | A required extension could not be negotiated. |
1011 | An unexpected error occurred. |
When a message is fragmented, the receiving side may check the EOM parameter of the on_data_in event to determine when the message is complete.
Note: When timeout is set to 0 messages that are fragmented are always sent as individual smaller messages and EOM will always be True in the on_data_in event on the receiving side.
When default_timeout is set to 0 the class operates asynchronously and by default all data sent when send is called or azure_relay_connection_data_to_send is set is considered a complete message. Each packet leaving the class has the End-of-Message flag set.
To send messages which may be fragmented, set MessageLength to the length of the message (in bytes) that is being sent. When set the class will consider the next MessageLength bytes sent as part of a single message and only the last packet will set the End-of-Message flag.
This setting is helpful when data is organized into messages and the receiving side expected the End-of-Message flag to signal the end of a message.
Note: This setting is only applicable when default_timeout is set to 0. When default_timeout is set to a positive value the message data may be passed in its entirety to azure_relay_connection_data_to_send or send and will be automatically handled as needed by the class.
TCPServer Config Settings
When a client connects, the client's address is checked against the list defined here. If there is no match, the on_connection_request event fires with an Accept value set to False. If no action is taken within the on_connection_request event, the client will be disconnected.
When a client connects, the client's address is checked against the list defined here. If there is a match, the on_connection_request event fires with an Accept value set to False. If no action is taken within the on_connection_request event, the client will not be connected.
Connection5UID = obj.config("ConnectionUID[5]")
Note: This is applicable only to incoming SSL connections. This should be set only if there is a specific reason to do so.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated, the InBufferSize reverts to its defined size. The same thing will happen if you attempt to make it too large or too small.
InBufferSize is shared among incoming connections. When the property is set, the corresponding value is set for incoming connections as they are accepted. Existing connections are not modified.
Note: This value is not applicable in macOS.
Note: This configuration setting is available only in the Unix platform, and it is not supported in macOS or FreeBSD.
Note: Unix/Linux operating systems limit the number of simultaneous connections to 1024.
The default value is 50 (milliseconds).
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same thing will happen if you attempt to make it too large or too small.
OutBufferSize is shared among incoming connections. When the property is set, the corresponding value is set for incoming connections as they are accepted. Existing connections are not modified.
By default, this config is set to false.
Nothing else is required to begin accepting IOCP connections. One major benefit to using this model is that there will be no thread blocked waiting for a request to complete. The system notifies the process through an Asynchronous Procedure Call (APC) once the device driver finishes servicing the I/O request. IOCP allows a single I/O worker thread handle multiple clients' input/output "fairly".
Note: When set to True, this setting will automatically set UseWindowsMessages to False.
0 | IPv4 Only |
1 | IPv6 Only |
2 | IPv6 and IPv4 |
Nothing else is required to begin accepting connections using the Windows message queue. In high-traffic environments, messages will be discarded if the queue is full. Additionally, because a single window procedure will service all events on thousands of sockets, the Windows message queue is not scalable from a performance perspective.
If this setting is set to False, the class will instead use the Winsock select model instead.
SSL Config Settings
When enabled, SSL packet logs are output using the on_ssl_status event, which will fire each time an SSL packet is sent or received.
Enabling this setting has no effect if ssl_provider is set to Platform.
The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
If set to true, the class will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the class is the same.
The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.
The default value is:
/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When set to 0 (default) the CRL check will not be performed by the class. When set to 1, it will attempt to perform the CRL check, but will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.
This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.
When set to 0 (default) the class will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.
This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.
Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the on_ssl_status event.
Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when ssl_provider is set to Platform:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when ssl_provider is set to Platform include:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA");
Possible values when ssl_provider is set to Internal include:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default) |
TLS1.1 | 768 (Hex 300) (Default) |
TLS1 | 192 (Hex C0) (Default) |
SSL3 | 48 (Hex 30) [Platform Only] |
SSL2 | 12 (Hex 0C) [Platform Only] |
SSLEnabledProtocols - TLS 1.3 Notes
By default when TLS 1.3 is enabled the class will use the internal TLS implementation when the ssl_provider is set to Automatic for all editions.
In editions which are designed to run on Windows ssl_provider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider) please be aware of the following notes:
- The platform provider is only available on Windows 11 / Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the class when the ssl_provider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and ssl_provider needs to be set to platform.
This setting is only applicable when ssl_provider is set to Internal.
If set to True all certificates returned by the server will be present in the Encoded parameter of the on_ssl_server_authentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the class will only append, it will not overwrite previous values.
Note: This setting is only applicable when ssl_provider is set to Internal.
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown Certificate Authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown Certificate Authority revocation status. |
0x00000800 | Ignore unknown Root revocation status. |
0x00008000 | Allow test Root certificate. |
0x00004000 | Trust test Root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN not-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
The value of this setting is a newline (CrLf) separated list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When specified the class will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the class fails with an error.
The format of this value is a comma separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and ssl_provider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.
In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
AzureRelayReceiver Errors
WebSocketServer Errors
4202 Error sending data to the connected client. |
TCPServer Errors
100 You cannot change the remote_port at this time. A connection is in progress. | |
101 You cannot change the remote_host at this time. A connection is in progress. | |
102 The remote_host address is invalid (0.0.0.0). | |
104 TCPServer is already listening. | |
106 Cannot change local_port when TCPServer is listening. | |
107 Cannot change local_host when TCPServer is listening. | |
108 Cannot change MaxConnections when TCPServer is listening. | |
112 You cannot change MaxLineLength at this time. A connection is in progress. | |
116 remote_port cannot be zero. Please specify a valid service port number. | |
126 Invalid ConnectionId. | |
135 Operation would block. |
SSL Errors
270 Cannot load specified security library. | |
271 Cannot open certificate store. | |
272 Cannot find specified certificate. | |
273 Cannot acquire security credentials. | |
274 Cannot find certificate chain. | |
275 Cannot verify certificate chain. | |
276 Error during handshake. | |
280 Error verifying certificate. | |
281 Could not find client certificate. | |
282 Could not find server certificate. | |
283 Error encrypting data. | |
284 Error decrypting data. |
TCP/IP Errors
10004 [10004] Interrupted system call. | |
10009 [10009] Bad file number. | |
10013 [10013] Access denied. | |
10014 [10014] Bad address. | |
10022 [10022] Invalid argument. | |
10024 [10024] Too many open files. | |
10035 [10035] Operation would block. | |
10036 [10036] Operation now in progress. | |
10037 [10037] Operation already in progress. | |
10038 [10038] Socket operation on non-socket. | |
10039 [10039] Destination address required. | |
10040 [10040] Message too long. | |
10041 [10041] Protocol wrong type for socket. | |
10042 [10042] Bad protocol option. | |
10043 [10043] Protocol not supported. | |
10044 [10044] Socket type not supported. | |
10045 [10045] Operation not supported on socket. | |
10046 [10046] Protocol family not supported. | |
10047 [10047] Address family not supported by protocol family. | |
10048 [10048] Address already in use. | |
10049 [10049] Can't assign requested address. | |
10050 [10050] Network is down. | |
10051 [10051] Network is unreachable. | |
10052 [10052] Net dropped connection or reset. | |
10053 [10053] Software caused connection abort. | |
10054 [10054] Connection reset by peer. | |
10055 [10055] No buffer space available. | |
10056 [10056] Socket is already connected. | |
10057 [10057] Socket is not connected. | |
10058 [10058] Can't send after socket shutdown. | |
10059 [10059] Too many references, can't splice. | |
10060 [10060] Connection timed out. | |
10061 [10061] Connection refused. | |
10062 [10062] Too many levels of symbolic links. | |
10063 [10063] File name too long. | |
10064 [10064] Host is down. | |
10065 [10065] No route to host. | |
10066 [10066] Directory not empty | |
10067 [10067] Too many processes. | |
10068 [10068] Too many users. | |
10069 [10069] Disc Quota Exceeded. | |
10070 [10070] Stale NFS file handle. | |
10071 [10071] Too many levels of remote in path. | |
10091 [10091] Network subsystem is unavailable. | |
10092 [10092] WINSOCK DLL Version out of range. | |
10093 [10093] Winsock not loaded yet. | |
11001 [11001] Host not found. | |
11002 [11002] Non-authoritative 'Host not found' (try again or check DNS setup). | |
11003 [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP. | |
11004 [11004] Valid name, no data record (check DNS setup). |