Poly1305 Class

Properties   Methods   Events   Config Settings   Errors  

The Poly1305 class may be used to produce a MAC (or Tag) value using the Poly1305 algorithm.

Syntax

Poly1305

Remarks

The Poly1305 class implements the Poly1305 algorithm defined in RFC 7539. This may be used to compute a MAC (or Tag) value on data of any length.

The Key must be set to a 256 bit (32 byte) key before computing the MAC. The computed MAC is 128 bit (32 bytes) in size.

ComputeMAC Notes

ComputeMAC computes the MAC (Message Authentication Code) from the input data.

Before calling this method set Key to a 256 bit (32 byte) key. If EncodeMAC is set to True (default) the output data will be hex encoded.

Input Notes

The class will determine the source of the input based on which properties are set.

The order in which the input properties are checked are as follows:

When a valid source is found the search stops.

After calling this method MACValue will be populated with the computed 128 bit (16 byte) value.

ComputeMAC Example

Poly1305 poly1305 = new Poly1305(); poly1305.KeyB = new byte[] { 0x1c, 0x92, 0x40, 0xa5, 0xeb, 0x55, 0xd3, 0x8a, 0xf3, 0x33, 0x88, 0x86, 0x04, 0xf6, 0xb5, 0xf0, 0x47, 0x39, 0x17, 0xc1, 0x40, 0x2b, 0x80, 0x09, 0x9d, 0xca, 0x5c, 0xbc, 0x20, 0x70, 0x75, 0xc0 }; poly1305.InputMessage = "Hello Polly"; poly1305.EncodeMAC = true; //hex output poly1305.ComputeMAC(); //This outputs "113019A3ACF5ED2FBB7A45AC1FD67DA1" Console.WriteLine(poly1305.MACValue);

ComputeMACBlock Notes

ComputeMACBlock allows input to the class to be specified in blocks. This method will return the MAC value only when the parameter LastBlock is True.

InputBuffer specifies the input data.

LastBlock specifies whether the block is the last block. If this is False the method will return an empty byte array.

To calculate the MAC value of data that is broken apart into multiple blocks make multiple calls to this method. For instance: //Encode output in hex poly1305.EncodeMAC = true; //hex output //Pass any number of parts, of any size poly1305.ComputeMACBlock(part1,false); poly1305.ComputeMACBlock(part2,false); poly1305.ComputeMACBlock(part3,false); //Pass true for the last block poly1305.ComputeMACBlock(lastPart,true); //The MACValue property holds the MAC value Console.WriteLine(poly1305.MACValue);

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

EncodeMACWhether the MAC value is hex encoded.
InputFileThe file to process.
InputMessageThe message to process.
KeyThe 256 bit (32 byte) key to be used when computing a MAC (Message Authentication Code).
MACValueThe computed MAC value.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

ComputeMACComputes the MAC.
ComputeMACBlockComputes the MAC value of specified data.
ConfigSets or retrieves a configuration setting.
ResetResets the class.
SetInputStreamSets the stream from which the class will read data.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

ErrorInformation about errors during data delivery.
ProgressFired as progress is made.

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

BuildInfoInformation about the product's build.
CodePageThe system code page used for Unicode to Multibyte translations.
LicenseInfoInformation about the current license.
MaskSensitiveWhether sensitive data is masked in log messages.
ProcessIdleEventsWhether the class uses its internal event loop to process events when the main thread is idle.
SelectWaitMillisThe length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.
UseInternalSecurityAPITells the class whether or not to use the system security libraries or an internal implementation.

EncodeMAC Property (Poly1305 Class)

Whether the MAC value is hex encoded.

Syntax

ANSI (Cross Platform)
int GetEncodeMAC();
int SetEncodeMAC(int bEncodeMAC); Unicode (Windows) BOOL GetEncodeMAC();
INT SetEncodeMAC(BOOL bEncodeMAC);
int ipworksencrypt_poly1305_getencodemac(void* lpObj);
int ipworksencrypt_poly1305_setencodemac(void* lpObj, int bEncodeMAC);
bool GetEncodeMAC();
int SetEncodeMAC(bool bEncodeMAC);

Default Value

TRUE

Remarks

This property specifies whether the computed MAC value is hex encoded. When set to True (default) the class will hex encoded the computed MAC for easier use. Set this value to False to obtain the MAC value in an unmodified form.

The default value is True.

Data Type

Boolean

InputFile Property (Poly1305 Class)

The file to process.

Syntax

ANSI (Cross Platform)
char* GetInputFile();
int SetInputFile(const char* lpszInputFile); Unicode (Windows) LPWSTR GetInputFile();
INT SetInputFile(LPCWSTR lpszInputFile);
char* ipworksencrypt_poly1305_getinputfile(void* lpObj);
int ipworksencrypt_poly1305_setinputfile(void* lpObj, const char* lpszInputFile);
QString GetInputFile();
int SetInputFile(QString qsInputFile);

Default Value

""

Remarks

This property specifies the file to be processed. Set this property to the full or relative path to the file which will be processed.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

  • SetOutputStream
  • OutputFile
  • OutputMessage: The output data is written to this property if no other destination is specified.

When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

Data Type

String

InputMessage Property (Poly1305 Class)

The message to process.

Syntax

ANSI (Cross Platform)
int GetInputMessage(char* &lpInputMessage, int &lenInputMessage);
int SetInputMessage(const char* lpInputMessage, int lenInputMessage); Unicode (Windows) INT GetInputMessage(LPSTR &lpInputMessage, INT &lenInputMessage);
INT SetInputMessage(LPCSTR lpInputMessage, INT lenInputMessage);
int ipworksencrypt_poly1305_getinputmessage(void* lpObj, char** lpInputMessage, int* lenInputMessage);
int ipworksencrypt_poly1305_setinputmessage(void* lpObj, const char* lpInputMessage, int lenInputMessage);
QByteArray GetInputMessage();
int SetInputMessage(QByteArray qbaInputMessage);

Default Value

""

Remarks

This property specifies the message to be processed.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

  • SetOutputStream
  • OutputFile
  • OutputMessage: The output data is written to this property if no other destination is specified.

When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

Data Type

Binary String

Key Property (Poly1305 Class)

The 256 bit (32 byte) key to be used when computing a MAC (Message Authentication Code).

Syntax

ANSI (Cross Platform)
int GetKey(char* &lpKey, int &lenKey);
int SetKey(const char* lpKey, int lenKey); Unicode (Windows) INT GetKey(LPSTR &lpKey, INT &lenKey);
INT SetKey(LPCSTR lpKey, INT lenKey);
int ipworksencrypt_poly1305_getkey(void* lpObj, char** lpKey, int* lenKey);
int ipworksencrypt_poly1305_setkey(void* lpObj, const char* lpKey, int lenKey);
QByteArray GetKey();
int SetKey(QByteArray qbaKey);

Default Value

""

Remarks

This property holds the secret key used when computing the MACValue. The key must be 256 bits (32 bytes) long.

Data Type

Binary String

MACValue Property (Poly1305 Class)

The computed MAC value.

Syntax

ANSI (Cross Platform)
int GetMACValue(char* &lpMACValue, int &lenMACValue);

Unicode (Windows)
INT GetMACValue(LPSTR &lpMACValue, INT &lenMACValue);
int ipworksencrypt_poly1305_getmacvalue(void* lpObj, char** lpMACValue, int* lenMACValue);
QByteArray GetMACValue();

Default Value

""

Remarks

The 128 bit (16 byte) MAC value calculated after calling ComputeMAC.

This property is read-only.

Data Type

Binary String

ComputeMAC Method (Poly1305 Class)

Computes the MAC.

Syntax

ANSI (Cross Platform)
int ComputeMAC();

Unicode (Windows)
INT ComputeMAC();
int ipworksencrypt_poly1305_computemac(void* lpObj);
int ComputeMAC();

Remarks

ComputeMAC computes the MAC (Message Authentication Code) from the input data.

Before calling this method set Key to a 256 bit (32 byte) key. If EncodeMAC is set to True (default) the output data will be hex encoded.

Input Notes

The class will determine the source of the input based on which properties are set.

The order in which the input properties are checked are as follows:

When a valid source is found the search stops.

After calling this method MACValue will be populated with the computed 128 bit (16 byte) value.

ComputeMAC Example

Poly1305 poly1305 = new Poly1305(); poly1305.KeyB = new byte[] { 0x1c, 0x92, 0x40, 0xa5, 0xeb, 0x55, 0xd3, 0x8a, 0xf3, 0x33, 0x88, 0x86, 0x04, 0xf6, 0xb5, 0xf0, 0x47, 0x39, 0x17, 0xc1, 0x40, 0x2b, 0x80, 0x09, 0x9d, 0xca, 0x5c, 0xbc, 0x20, 0x70, 0x75, 0xc0 }; poly1305.InputMessage = "Hello Polly"; poly1305.EncodeMAC = true; //hex output poly1305.ComputeMAC(); //This outputs "113019A3ACF5ED2FBB7A45AC1FD67DA1" Console.WriteLine(poly1305.MACValue);

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

ComputeMACBlock Method (Poly1305 Class)

Computes the MAC value of specified data.

Syntax

ANSI (Cross Platform)
char* ComputeMACBlock(const char* lpInputBuffer, int lenInputBuffer, int bLastBlock, int *lpSize = NULL);

Unicode (Windows)
LPSTR ComputeMACBlock(LPCSTR lpInputBuffer, INT lenInputBuffer, BOOL bLastBlock, LPINT lpSize = NULL);
char* ipworksencrypt_poly1305_computemacblock(void* lpObj, const char* lpInputBuffer, int lenInputBuffer, int bLastBlock, int *lpSize);
QByteArray ComputeMACBlock(QByteArray qbaInputBuffer, bool bLastBlock);

Remarks

ComputeMACBlock allows input to the class to be specified in blocks. This method will return the MAC value only when the parameter LastBlock is True.

InputBuffer specifies the input data.

LastBlock specifies whether the block is the last block. If this is False the method will return an empty byte array.

To calculate the MAC value of data that is broken apart into multiple blocks make multiple calls to this method. For instance: //Encode output in hex poly1305.EncodeMAC = true; //hex output //Pass any number of parts, of any size poly1305.ComputeMACBlock(part1,false); poly1305.ComputeMACBlock(part2,false); poly1305.ComputeMACBlock(part3,false); //Pass true for the last block poly1305.ComputeMACBlock(lastPart,true); //The MACValue property holds the MAC value Console.WriteLine(poly1305.MACValue);

Error Handling (C++)

This method returns a Binary String value (with length lpSize); after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

Config Method (Poly1305 Class)

Sets or retrieves a configuration setting.

Syntax

ANSI (Cross Platform)
char* Config(const char* lpszConfigurationString);

Unicode (Windows)
LPWSTR Config(LPCWSTR lpszConfigurationString);
char* ipworksencrypt_poly1305_config(void* lpObj, const char* lpszConfigurationString);
QString Config(const QString& qsConfigurationString);

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

Reset Method (Poly1305 Class)

Resets the class.

Syntax

ANSI (Cross Platform)
int Reset();

Unicode (Windows)
INT Reset();
int ipworksencrypt_poly1305_reset(void* lpObj);
int Reset();

Remarks

When called, the class will reset all of its properties to their default values.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

SetInputStream Method (Poly1305 Class)

Sets the stream from which the class will read data.

Syntax

ANSI (Cross Platform)
int SetInputStream(IPWorksEncryptStream* sInputStream);

Unicode (Windows)
INT SetInputStream(IPWorksEncryptStream* sInputStream);
int ipworksencrypt_poly1305_setinputstream(void* lpObj, IPWorksEncryptStream* sInputStream);
int SetInputStream(IPWorksEncryptStream* sInputStream);

Remarks

This method sets the stream from which the class will read data.

Input Notes

The class will determine the source of the input based on which properties are set.

The order in which the input properties are checked are as follows:

When a valid source is found the search stops.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Error Event (Poly1305 Class)

Information about errors during data delivery.

Syntax

ANSI (Cross Platform)
virtual int FireError(Poly1305ErrorEventParams *e);
typedef struct {
int ErrorCode;
const char *Description; int reserved; } Poly1305ErrorEventParams;
Unicode (Windows) virtual INT FireError(Poly1305ErrorEventParams *e);
typedef struct {
INT ErrorCode;
LPCWSTR Description; INT reserved; } Poly1305ErrorEventParams;
#define EID_POLY1305_ERROR 1

virtual INT IPWORKSENCRYPT_CALL FireError(INT &iErrorCode, LPSTR &lpszDescription);
class Poly1305ErrorEventParams {
public:
  int ErrorCode();

  const QString &Description();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Error(Poly1305ErrorEventParams *e);
// Or, subclass Poly1305 and override this emitter function. virtual int FireError(Poly1305ErrorEventParams *e) {...}

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.

ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

Progress Event (Poly1305 Class)

Fired as progress is made.

Syntax

ANSI (Cross Platform)
virtual int FireProgress(Poly1305ProgressEventParams *e);
typedef struct {
int64 BytesProcessed;
int PercentProcessed; int reserved; } Poly1305ProgressEventParams;
Unicode (Windows) virtual INT FireProgress(Poly1305ProgressEventParams *e);
typedef struct {
LONG64 BytesProcessed;
INT PercentProcessed; INT reserved; } Poly1305ProgressEventParams;
#define EID_POLY1305_PROGRESS 2

virtual INT IPWORKSENCRYPT_CALL FireProgress(LONG64 &lBytesProcessed, INT &iPercentProcessed);
class Poly1305ProgressEventParams {
public:
  qint64 BytesProcessed();

  int PercentProcessed();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Progress(Poly1305ProgressEventParams *e);
// Or, subclass Poly1305 and override this emitter function. virtual int FireProgress(Poly1305ProgressEventParams *e) {...}

Remarks

This event is fired automatically as data is processed by the class.

The PercentProcessed parameter indicates the current status of the operation.

The BytesProcessed parameter holds the total number of bytes processed so far.

IPWorksEncryptStream Type

Syntax

IPWorksEncryptStream (declared in ipworksencrypt.h)

Remarks

The Poly1305 class includes one or more API members that take a stream object as a parameter. To use such API members, create a concrete class that implements the IPWorksEncryptStream interface and pass the Poly1305 class an instance of that concrete class.

When implementing the IPWorksEncryptStream interface's properties and methods, they must behave as described below. If the concrete class's implementation does not behave as expected, undefined behavior may occur.

Properties

CanRead Whether the stream supports reading.

bool CanRead() { return true; }
CanSeek Whether the stream supports seeking.

bool CanSeek() { return true; }
CanWrite Whether the stream supports writing.

bool CanWrite() { return true; }
Length Gets the length of the stream, in bytes.

int64 GetLength() = 0;

Methods

Close Closes the stream, releasing all resources currently allocated for it.

void Close() {}

This method is called automatically when an IPWorksEncryptStream object is deleted.

Flush Forces all data held by the stream's buffers to be written out to storage.

int Flush() { return 0; }

Must return 0 if flushing is successful; or -1 if an error occurs or the stream is closed. If the stream does not support writing, this method must do nothing and return 0.

Read Reads a sequence of bytes from the stream and advances the current position within the stream by the number of bytes read.

int Read(void* buffer, int count) = 0;

Buffer specifies the buffer to populate with data from the stream. Count specifies the number of bytes that should be read from the stream.

Must return the total number of bytes read into Buffer; this may be less than Count if that many bytes are not currently available, or 0 if the end of the stream has been reached. Must return -1 if an error occurs, if reading is not supported, or if the stream is closed.

Seek Sets the current position within the stream based on a particular point of origin.

int64 Seek(int64 offset, int seekOrigin) = 0;

Offset specifies the offset in the stream to seek to, relative to SeekOrigin. Valid values for SeekOrigin are:

  • 0: Seek from beginning.
  • 1: Seek from current position.
  • 2: Seek from end.

Must return the new position within the stream; or -1 if an error occurs, if seeking is not supported, or if the stream is closed (however, see note below). If -1 is returned, the current position within the stream must remain unchanged.

Note: If the stream is not closed, it must always be possible to call this method with an Offset of 0 and a SeekOrigin of 1 to obtain the current position within the stream, even if seeking is not otherwise supported.

Write Writes a sequence of bytes to the stream and advances the current position within the stream by the number of bytes written.

int Write(const void* buffer, int count) = 0;

Buffer specifies the buffer with data to write to the stream. Count specifies the number of bytes that should be written to the stream.

Must return the total number of bytes written to the stream; this may be less than Count if that many bytes could not be written. Must return -1 if an error occurs, if writing is not supported, or if the stream is closed.

Config Settings (Poly1305 Class)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8
The following is a list of valid code page identifiers for Mac OS only:
IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitive:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.

This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

ProcessIdleEvents:   Whether the class uses its internal event loop to process events when the main thread is idle.

If set to False, the class will not fire internal idle events. Set this to False to use the class in a background thread on Mac OS. By default, this setting is True.

SelectWaitMillis:   The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.

If there are no events to process when DoEvents is called, the class will wait for the amount of time specified here before returning. The default value is 20.

UseInternalSecurityAPI:   Tells the class whether or not to use the system security libraries or an internal implementation.

When set to false, the class will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this setting to true tells the class to use the internal implementation instead of using the system security libraries.

On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.

To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.

Trappable Errors (Poly1305 Class)

Error Handling (C++)

Call the GetLastErrorCode() method to obtain the last called method's result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. Known error codes are listed below. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

Poly1305 Errors

104   Cannot read or write file.
108   Invalid key size.
304   Cannot write file.
305   Cannot read file.