XMLSig Class

Properties   Methods   Events   Config Settings   Errors  

The XMLSig class is used to sign XML and verify signed XML.

Syntax

XMLSig

Remarks

The XMLSig component provides an easy to use API for signing and verifying signed XML. The Sign method will create signed XML with an enveloped signature. The VerifySignature method will attempt to verify the signature(s) within a XML document.

Sign

Before calling Sign specify the XML to sign by setting InputFile, or InputXML.

The Reference* properties must be set. At least one reference must be set. A reference defines the XML element to sign, and the options that specify how it is transformed and hashed during the signing process.

Set Certificate to a certificate with private key.

Optionally set the CanonicalizationMethod. This determines how the signature itself is canonicalized. SigningAlgorithm defines the algorithm used to sign. The SignatureXPath property may be set to specify the location in the XML document where the signature will be placed.

Lastly, call Sign to sign the XML.

The following properties are applicable when calling this method:

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:
  • OutputFile
  • OutputXML: The output data is written to this property if no other destination is specified.

Verify a Signature

When VerifySignature is called, the class will scan the XML document and fire the SignatureInfo event for each signature that is found. When the SignatureInfo event fires the Reference* properties will be populated.

Within the SignatureInfo event the ReferenceXMLElement property must be set to the location of the XML element to which the signature applies. The ReferenceURI property may contain data helpful to locating the XML element.

The ReferenceXMLElement property specifies the XPath to the element. For instance:

/root/myElement XPath syntax
/root/[1] XPath syntax using an index
/root/ns:myElement XPath syntax where the element has a namespace
myElement Just the element name
@id=myid Attribute selector: This will select an element with an attribute "id" whose value is "myid".
/root/myElement[1]/ns:name2[@attr=attrValue] XPath syntax using an index and attribute selector

The signature is verified either using a key parsed from the signed XML, or using the certificate specified by the SignerCert* properties. The class will automatically parse the signer certificate (if present) from the signed XML and populate the SignerCert* properties with the parsed value.

When SignatureInfo fires, if the SignerCertParsed parameter is True the SignerCert* properties may be inspected to see the details of the parsed certificate. If SignerCertParsed is False, then the SignerCert* properties must be set to a valid certificate for signature verification to proceed.

When the SignatureInfo event finishes firing, the certificate present in the SignerCert* properties will be used to verify the signature, whether this is the certificate automatically parsed by the class or a different certificate specified within the event.

If the signature was successfully verified the method will return without error. If the signature was not verified the method fails with an error.

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

CanonicalizationMethodThe canonicalization method applied to the signature.
CertEncodedThis is the certificate (PEM/Base64 encoded).
CertStoreThis is the name of the certificate store for the client certificate.
CertStorePasswordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
CertStoreTypeThis is the type of certificate store for this certificate.
CertSubjectThis is the subject of the certificate used for client authentication.
HMACKeyThe HMAC key used with the 'HMAC-SHA1' signing algorithm.
InputFileThe XML file to process.
InputXMLThe XML to process.
OutputFileThe output file.
OutputXMLThe output XML after processing.
OverwriteIndicates whether or not the class should overwrite files.
ReferenceCountThe number of records in the Reference arrays.
ReferenceHashAlgorithmThis property defines the hash algorithm to apply to the element specified by XMLElement .
ReferenceHashValueThis property holds the calculated hash value for the specified XMLElement .
ReferenceTransformAlgorithmsThis property specifies a comma separated list of canonicalization algorithms to be applied to XMLElement .
ReferenceURIThis property is the URI of the reference.
ReferenceXMLElementThis property specifies XML element to sign or verify using XPath notation.
SignatureXPathThe XPath of the signature.
SignerCertEncodedThis is the certificate (PEM/Base64 encoded).
SignerCertStoreThis is the name of the certificate store for the client certificate.
SignerCertStorePasswordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
SignerCertStoreTypeThis is the type of certificate store for this certificate.
SignerCertSubjectThis is the subject of the certificate used for client authentication.
SigningAlgorithmThe signing algorithm.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

ConfigSets or retrieves a configuration setting.
DoEventsProcesses events from the internal message queue.
ResetResets the class.
SetInputStreamSets the stream from which the class will read data to sign or verify.
SetOutputStreamThe stream to which the class will write the signed or verified XML.
SignSigns the XML.
VerifySignatureVerifies signed XML.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

ErrorFired when information is available about errors during data delivery.
ProgressFired as progress is made.
SignatureInfoFired when a signature is found.
StatusProvides information about the current operation.

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

KeyNameThe name of the key used to sign the XML.
LogLevelSpecifies the level of detail that is logged.
NormalizeLineEndingsWhether to normalize line endings when calculating the reference digest.
PreserveWhitespaceWhether to preserve whitespace in the signature.
ReadFromProgressEventWhether to read input data from inside the progress event.
SignatureRelationshipWhether the signature is a child or sibling of the SignatureXPath.
SignerCertCountThe number of parsed signer certificates when verifying a signature.
SignerCertEncoded[i]The parsed signer certificate.
SignWithCryptoAPIWhether to use the Crypto API for signing operations.
WriteToProgressEventWhether to write output data so it is accessible from inside the progress event.
BuildInfoInformation about the product's build.
CodePageThe system code page used for Unicode to Multibyte translations.
LicenseInfoInformation about the current license.
MaskSensitiveWhether sensitive data is masked in log messages.
ProcessIdleEventsWhether the class uses its internal event loop to process events when the main thread is idle.
SelectWaitMillisThe length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

CanonicalizationMethod Property (XMLSig Class)

The canonicalization method applied to the signature.

Syntax

ANSI (Cross Platform)
int GetCanonicalizationMethod();
int SetCanonicalizationMethod(int iCanonicalizationMethod); Unicode (Windows) INT GetCanonicalizationMethod();
INT SetCanonicalizationMethod(INT iCanonicalizationMethod);

Possible Values

CM_C14N(0), 
CM_C14NCOMMENTS(1),
CM_C14N11(2),
CM_C14N11COMMENTS(3),
CM_EXC_C14N(4),
CM_EXC_C14NCOMMENTS(5)
int ipworksencrypt_xmlsig_getcanonicalizationmethod(void* lpObj);
int ipworksencrypt_xmlsig_setcanonicalizationmethod(void* lpObj, int iCanonicalizationMethod);
int GetCanonicalizationMethod();
int SetCanonicalizationMethod(int iCanonicalizationMethod);

Default Value

0

Remarks

This property specifies the canonicalization method that is applied to the signature. This may be set before calling Sign. This will be set automatically after calling VerifySignature. Possible values are:

0 (cmC14N - default) Canonical XML version 1.0
1 (cmC14NComments) Canonical XML version 1.0 with comments
2 (cmC14N11) Canonical XML version 1.1
3 (cmC14N11) Canonical XML version 1.1 with comments
4 (cmExcC14N) Exclusive XML canonicalization version 1.0
5 (cmExcC14NComments) Exclusive XML canonicalization version 1.0 with comments

This property is not available at design time.

Data Type

Integer

CertEncoded Property (XMLSig Class)

This is the certificate (PEM/Base64 encoded).

Syntax

ANSI (Cross Platform)
int GetCertEncoded(char* &lpCertEncoded, int &lenCertEncoded);
int SetCertEncoded(const char* lpCertEncoded, int lenCertEncoded); Unicode (Windows) INT GetCertEncoded(LPSTR &lpCertEncoded, INT &lenCertEncoded);
INT SetCertEncoded(LPCSTR lpCertEncoded, INT lenCertEncoded);
int ipworksencrypt_xmlsig_getcertencoded(void* lpObj, char** lpCertEncoded, int* lenCertEncoded);
int ipworksencrypt_xmlsig_setcertencoded(void* lpObj, const char* lpCertEncoded, int lenCertEncoded);
QByteArray GetCertEncoded();
int SetCertEncoded(QByteArray qbaCertEncoded);

Default Value

""

Remarks

This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The CertStore and CertSubject properties also may be used to specify a certificate.

When CertEncoded is set, a search is initiated in the current CertStore for the private key of the certificate. If the key is found, CertSubject is updated to reflect the full subject of the selected certificate; otherwise, CertSubject is set to an empty string.

This property is not available at design time.

Data Type

Binary String

CertStore Property (XMLSig Class)

This is the name of the certificate store for the client certificate.

Syntax

ANSI (Cross Platform)
int GetCertStore(char* &lpCertStore, int &lenCertStore);
int SetCertStore(const char* lpCertStore, int lenCertStore); Unicode (Windows) INT GetCertStore(LPSTR &lpCertStore, INT &lenCertStore);
INT SetCertStore(LPCSTR lpCertStore, INT lenCertStore);
int ipworksencrypt_xmlsig_getcertstore(void* lpObj, char** lpCertStore, int* lenCertStore);
int ipworksencrypt_xmlsig_setcertstore(void* lpObj, const char* lpCertStore, int lenCertStore);
QByteArray GetCertStore();
int SetCertStore(QByteArray qbaCertStore);

Default Value

"MY"

Remarks

This is the name of the certificate store for the client certificate.

The CertStoreType property denotes the type of the certificate store specified by CertStore. If the store is password protected, specify the password in CertStorePassword.

CertStore is used in conjunction with the CertSubject property to specify client certificates. If CertStore has a value, and CertSubject or CertEncoded is set, a search for a certificate is initiated. Please see the CertSubject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

Data Type

Binary String

CertStorePassword Property (XMLSig Class)

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

ANSI (Cross Platform)
char* GetCertStorePassword();
int SetCertStorePassword(const char* lpszCertStorePassword); Unicode (Windows) LPWSTR GetCertStorePassword();
INT SetCertStorePassword(LPCWSTR lpszCertStorePassword);
char* ipworksencrypt_xmlsig_getcertstorepassword(void* lpObj);
int ipworksencrypt_xmlsig_setcertstorepassword(void* lpObj, const char* lpszCertStorePassword);
QString GetCertStorePassword();
int SetCertStorePassword(QString qsCertStorePassword);

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Data Type

String

CertStoreType Property (XMLSig Class)

This is the type of certificate store for this certificate.

Syntax

ANSI (Cross Platform)
int GetCertStoreType();
int SetCertStoreType(int iCertStoreType); Unicode (Windows) INT GetCertStoreType();
INT SetCertStoreType(INT iCertStoreType);

Possible Values

CST_USER(0), 
CST_MACHINE(1),
CST_PFXFILE(2),
CST_PFXBLOB(3),
CST_JKSFILE(4),
CST_JKSBLOB(5),
CST_PEMKEY_FILE(6),
CST_PEMKEY_BLOB(7),
CST_PUBLIC_KEY_FILE(8),
CST_PUBLIC_KEY_BLOB(9),
CST_SSHPUBLIC_KEY_BLOB(10),
CST_P7BFILE(11),
CST_P7BBLOB(12),
CST_SSHPUBLIC_KEY_FILE(13),
CST_PPKFILE(14),
CST_PPKBLOB(15),
CST_XMLFILE(16),
CST_XMLBLOB(17),
CST_JWKFILE(18),
CST_JWKBLOB(19),
CST_SECURITY_KEY(20),
CST_BCFKSFILE(21),
CST_BCFKSBLOB(22),
CST_PKCS11(23),
CST_AUTO(99)
int ipworksencrypt_xmlsig_getcertstoretype(void* lpObj);
int ipworksencrypt_xmlsig_setcertstoretype(void* lpObj, int iCertStoreType);
int GetCertStoreType();
int SetCertStoreType(int iCertStoreType);

Default Value

0

Remarks

This is the type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: this store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the CertStore and set CertStorePassword to the PIN.

Code Example. SSH Authentication with Security Key:

Copy
certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

Data Type

Integer

CertSubject Property (XMLSig Class)

This is the subject of the certificate used for client authentication.

Syntax

ANSI (Cross Platform)
char* GetCertSubject();
int SetCertSubject(const char* lpszCertSubject); Unicode (Windows) LPWSTR GetCertSubject();
INT SetCertSubject(LPCWSTR lpszCertSubject);
char* ipworksencrypt_xmlsig_getcertsubject(void* lpObj);
int ipworksencrypt_xmlsig_setcertsubject(void* lpObj, const char* lpszCertSubject);
QString GetCertSubject();
int SetCertSubject(QString qsCertSubject);

Default Value

""

Remarks

This is the subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

Data Type

String

HMACKey Property (XMLSig Class)

The HMAC key used with the 'HMAC-SHA1' signing algorithm.

Syntax

ANSI (Cross Platform)
int GetHMACKey(char* &lpHMACKey, int &lenHMACKey);
int SetHMACKey(const char* lpHMACKey, int lenHMACKey); Unicode (Windows) INT GetHMACKey(LPSTR &lpHMACKey, INT &lenHMACKey);
INT SetHMACKey(LPCSTR lpHMACKey, INT lenHMACKey);
int ipworksencrypt_xmlsig_gethmackey(void* lpObj, char** lpHMACKey, int* lenHMACKey);
int ipworksencrypt_xmlsig_sethmackey(void* lpObj, const char* lpHMACKey, int lenHMACKey);
QByteArray GetHMACKey();
int SetHMACKey(QByteArray qbaHMACKey);

Default Value

""

Remarks

This property defines the HMAC key to be used when SigningAlgorithm is set to "HMAC-SHA1". This must be set before calling before calling Sign.

This property is also applicable when calling VerifySignature. This may be set before calling VerifySignature or from within the SignatureInfo event.

This property is not available at design time.

Data Type

Binary String

InputFile Property (XMLSig Class)

The XML file to process.

Syntax

ANSI (Cross Platform)
char* GetInputFile();
int SetInputFile(const char* lpszInputFile); Unicode (Windows) LPWSTR GetInputFile();
INT SetInputFile(LPCWSTR lpszInputFile);
char* ipworksencrypt_xmlsig_getinputfile(void* lpObj);
int ipworksencrypt_xmlsig_setinputfile(void* lpObj, const char* lpszInputFile);
QString GetInputFile();
int SetInputFile(QString qsInputFile);

Default Value

""

Remarks

This property specifies the file to be processed. Set this property to the full or relative path to the file which will be processed.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:
  • OutputFile
  • OutputXML: The output data is written to this property if no other destination is specified.

This property is not available at design time.

Data Type

String

InputXML Property (XMLSig Class)

The XML to process.

Syntax

ANSI (Cross Platform)
char* GetInputXML();
int SetInputXML(const char* lpszInputXML); Unicode (Windows) LPWSTR GetInputXML();
INT SetInputXML(LPCWSTR lpszInputXML);
char* ipworksencrypt_xmlsig_getinputxml(void* lpObj);
int ipworksencrypt_xmlsig_setinputxml(void* lpObj, const char* lpszInputXML);
QString GetInputXML();
int SetInputXML(QString qsInputXML);

Default Value

""

Remarks

This property specifies the XML to be processed.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:
  • OutputFile
  • OutputXML: The output data is written to this property if no other destination is specified.

This property is not available at design time.

Data Type

String

OutputFile Property (XMLSig Class)

The output file.

Syntax

ANSI (Cross Platform)
char* GetOutputFile();
int SetOutputFile(const char* lpszOutputFile); Unicode (Windows) LPWSTR GetOutputFile();
INT SetOutputFile(LPCWSTR lpszOutputFile);
char* ipworksencrypt_xmlsig_getoutputfile(void* lpObj);
int ipworksencrypt_xmlsig_setoutputfile(void* lpObj, const char* lpszOutputFile);
QString GetOutputFile();
int SetOutputFile(QString qsOutputFile);

Default Value

""

Remarks

This property specifies the file to which the output will be written. This may be set to an absolute or relative path.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:
  • OutputFile
  • OutputXML: The output data is written to this property if no other destination is specified.

This property is not available at design time.

Data Type

String

OutputXML Property (XMLSig Class)

The output XML after processing.

Syntax

ANSI (Cross Platform)
char* GetOutputXML();
int SetOutputXML(const char* lpszOutputXML); Unicode (Windows) LPWSTR GetOutputXML();
INT SetOutputXML(LPCWSTR lpszOutputXML);
char* ipworksencrypt_xmlsig_getoutputxml(void* lpObj);
int ipworksencrypt_xmlsig_setoutputxml(void* lpObj, const char* lpszOutputXML);
QString GetOutputXML();
int SetOutputXML(QString qsOutputXML);

Default Value

""

Remarks

This property will be populated with the output from the operation if OutputFile is not set.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:
  • OutputFile
  • OutputXML: The output data is written to this property if no other destination is specified.

This property is not available at design time.

Data Type

String

Overwrite Property (XMLSig Class)

Indicates whether or not the class should overwrite files.

Syntax

ANSI (Cross Platform)
int GetOverwrite();
int SetOverwrite(int bOverwrite); Unicode (Windows) BOOL GetOverwrite();
INT SetOverwrite(BOOL bOverwrite);
int ipworksencrypt_xmlsig_getoverwrite(void* lpObj);
int ipworksencrypt_xmlsig_setoverwrite(void* lpObj, int bOverwrite);
bool GetOverwrite();
int SetOverwrite(bool bOverwrite);

Default Value

FALSE

Remarks

This property indicates whether or not the class will overwrite OutputFile. If Overwrite is False, an error will be thrown whenever OutputFile exists before an operation. The default value is False.

Data Type

Boolean

ReferenceCount Property (XMLSig Class)

The number of records in the Reference arrays.

Syntax

ANSI (Cross Platform)
int GetReferenceCount();
int SetReferenceCount(int iReferenceCount); Unicode (Windows) INT GetReferenceCount();
INT SetReferenceCount(INT iReferenceCount);
int ipworksencrypt_xmlsig_getreferencecount(void* lpObj);
int ipworksencrypt_xmlsig_setreferencecount(void* lpObj, int iReferenceCount);
int GetReferenceCount();
int SetReferenceCount(int iReferenceCount);

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at ReferenceCount - 1.

This property is not available at design time.

Data Type

Integer

ReferenceHashAlgorithm Property (XMLSig Class)

This property defines the hash algorithm to apply to the element specified by XMLElement .

Syntax

ANSI (Cross Platform)
char* GetReferenceHashAlgorithm(int iReferenceIndex);
int SetReferenceHashAlgorithm(int iReferenceIndex, const char* lpszReferenceHashAlgorithm); Unicode (Windows) LPWSTR GetReferenceHashAlgorithm(INT iReferenceIndex);
INT SetReferenceHashAlgorithm(INT iReferenceIndex, LPCWSTR lpszReferenceHashAlgorithm);
char* ipworksencrypt_xmlsig_getreferencehashalgorithm(void* lpObj, int referenceindex);
int ipworksencrypt_xmlsig_setreferencehashalgorithm(void* lpObj, int referenceindex, const char* lpszReferenceHashAlgorithm);
QString GetReferenceHashAlgorithm(int iReferenceIndex);
int SetReferenceHashAlgorithm(int iReferenceIndex, QString qsReferenceHashAlgorithm);

Default Value

"SHA1"

Remarks

This property defines the hash algorithm to apply to the element specified by ReferenceXMLElement. Possible values are:

  • "SHA1" (default)
  • "SHA256"
  • "SHA512"

The ReferenceIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ReferenceCount property.

This property is not available at design time.

Data Type

String

ReferenceHashValue Property (XMLSig Class)

This property holds the calculated hash value for the specified XMLElement .

Syntax

ANSI (Cross Platform)
char* GetReferenceHashValue(int iReferenceIndex);

Unicode (Windows)
LPWSTR GetReferenceHashValue(INT iReferenceIndex);
char* ipworksencrypt_xmlsig_getreferencehashvalue(void* lpObj, int referenceindex);
QString GetReferenceHashValue(int iReferenceIndex);

Default Value

""

Remarks

This property holds the calculated hash value for the specified ReferenceXMLElement.

The ReferenceIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ReferenceCount property.

This property is read-only and not available at design time.

Data Type

String

ReferenceTransformAlgorithms Property (XMLSig Class)

This property specifies a comma separated list of canonicalization algorithms to be applied to XMLElement .

Syntax

ANSI (Cross Platform)
char* GetReferenceTransformAlgorithms(int iReferenceIndex);
int SetReferenceTransformAlgorithms(int iReferenceIndex, const char* lpszReferenceTransformAlgorithms); Unicode (Windows) LPWSTR GetReferenceTransformAlgorithms(INT iReferenceIndex);
INT SetReferenceTransformAlgorithms(INT iReferenceIndex, LPCWSTR lpszReferenceTransformAlgorithms);
char* ipworksencrypt_xmlsig_getreferencetransformalgorithms(void* lpObj, int referenceindex);
int ipworksencrypt_xmlsig_setreferencetransformalgorithms(void* lpObj, int referenceindex, const char* lpszReferenceTransformAlgorithms);
QString GetReferenceTransformAlgorithms(int iReferenceIndex);
int SetReferenceTransformAlgorithms(int iReferenceIndex, QString qsReferenceTransformAlgorithms);

Default Value

"C14N"

Remarks

This property specifies a comma separated list of canonicalization algorithms to be applied to ReferenceXMLElement. The XML data specified by ReferenceXMLElement will be transformed using the specified algorithm(s) before the HashAlgorithm is applied. The default value is "C14N". Possible values are:

"C14N" Canonical XML version 1.0
"C14N_COMMENTS" Canonical XML version 1.0 with comments
"C14N11" Canonical XML version 1.1
"C14N11_COMMENTS" Canonical XML version 1.1 with comments
"EXC_C14N" Exclusive XML canonicalization version 1.0
"EXC_C14N_COMMENTS" Exclusive XML canonicalization version 1.0 with comments

The ReferenceIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ReferenceCount property.

This property is not available at design time.

Data Type

String

ReferenceURI Property (XMLSig Class)

This property is the URI of the reference.

Syntax

ANSI (Cross Platform)
char* GetReferenceURI(int iReferenceIndex);
int SetReferenceURI(int iReferenceIndex, const char* lpszReferenceURI); Unicode (Windows) LPWSTR GetReferenceURI(INT iReferenceIndex);
INT SetReferenceURI(INT iReferenceIndex, LPCWSTR lpszReferenceURI);
char* ipworksencrypt_xmlsig_getreferenceuri(void* lpObj, int referenceindex);
int ipworksencrypt_xmlsig_setreferenceuri(void* lpObj, int referenceindex, const char* lpszReferenceURI);
QString GetReferenceURI(int iReferenceIndex);
int SetReferenceURI(int iReferenceIndex, QString qsReferenceURI);

Default Value

""

Remarks

This property is the URI of the reference. The value specified here identifies the data within the document.

When signing, this value may be set to a URI reference which identifies ReferenceXMLElement. ReferenceXMLElement must be set separately.

When verifying, this value may be checked within the SignatureInfo event to identify the location of ReferenceXMLElement. ReferenceXMLElement must be set separately.

The ReferenceIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ReferenceCount property.

This property is not available at design time.

Data Type

String

ReferenceXMLElement Property (XMLSig Class)

This property specifies XML element to sign or verify using XPath notation.

Syntax

ANSI (Cross Platform)
char* GetReferenceXMLElement(int iReferenceIndex);
int SetReferenceXMLElement(int iReferenceIndex, const char* lpszReferenceXMLElement); Unicode (Windows) LPWSTR GetReferenceXMLElement(INT iReferenceIndex);
INT SetReferenceXMLElement(INT iReferenceIndex, LPCWSTR lpszReferenceXMLElement);
char* ipworksencrypt_xmlsig_getreferencexmlelement(void* lpObj, int referenceindex);
int ipworksencrypt_xmlsig_setreferencexmlelement(void* lpObj, int referenceindex, const char* lpszReferenceXMLElement);
QString GetReferenceXMLElement(int iReferenceIndex);
int SetReferenceXMLElement(int iReferenceIndex, QString qsReferenceXMLElement);

Default Value

"/"

Remarks

This property specifies XML element to sign or verify using XPath notation. When signing, this must be set before calling Sign. When verifying, this must be set from within the SignatureInfo event. The ReferenceURI property may be used to help identify the correct XML element.

/root/myElement XPath syntax
/root/[1] XPath syntax using an index
/root/ns:myElement XPath syntax where the element has a namespace
myElement Just the element name
@id=myid Attribute selector: This will select an element with an attribute "id" whose value is "myid".
/root/myElement[1]/ns:name2[@attr=attrValue] XPath syntax using an index and attribute selector

The ReferenceIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ReferenceCount property.

This property is not available at design time.

Data Type

String

SignatureXPath Property (XMLSig Class)

The XPath of the signature.

Syntax

ANSI (Cross Platform)
char* GetSignatureXPath();
int SetSignatureXPath(const char* lpszSignatureXPath); Unicode (Windows) LPWSTR GetSignatureXPath();
INT SetSignatureXPath(LPCWSTR lpszSignatureXPath);
char* ipworksencrypt_xmlsig_getsignaturexpath(void* lpObj);
int ipworksencrypt_xmlsig_setsignaturexpath(void* lpObj, const char* lpszSignatureXPath);
QString GetSignatureXPath();
int SetSignatureXPath(QString qsSignatureXPath);

Default Value

"/"

Remarks

This property specifies the XPath in the XML where the signature will be placed.

This may be set before calling Sign. This property will be populated when calling VerifySignature.

The default value is "/".

This property is not available at design time.

Data Type

String

SignerCertEncoded Property (XMLSig Class)

This is the certificate (PEM/Base64 encoded).

Syntax

ANSI (Cross Platform)
int GetSignerCertEncoded(char* &lpSignerCertEncoded, int &lenSignerCertEncoded);
int SetSignerCertEncoded(const char* lpSignerCertEncoded, int lenSignerCertEncoded); Unicode (Windows) INT GetSignerCertEncoded(LPSTR &lpSignerCertEncoded, INT &lenSignerCertEncoded);
INT SetSignerCertEncoded(LPCSTR lpSignerCertEncoded, INT lenSignerCertEncoded);
int ipworksencrypt_xmlsig_getsignercertencoded(void* lpObj, char** lpSignerCertEncoded, int* lenSignerCertEncoded);
int ipworksencrypt_xmlsig_setsignercertencoded(void* lpObj, const char* lpSignerCertEncoded, int lenSignerCertEncoded);
QByteArray GetSignerCertEncoded();
int SetSignerCertEncoded(QByteArray qbaSignerCertEncoded);

Default Value

""

Remarks

This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SignerCertStore and SignerCertSubject properties also may be used to specify a certificate.

When SignerCertEncoded is set, a search is initiated in the current SignerCertStore for the private key of the certificate. If the key is found, SignerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SignerCertSubject is set to an empty string.

This property is not available at design time.

Data Type

Binary String

SignerCertStore Property (XMLSig Class)

This is the name of the certificate store for the client certificate.

Syntax

ANSI (Cross Platform)
int GetSignerCertStore(char* &lpSignerCertStore, int &lenSignerCertStore);
int SetSignerCertStore(const char* lpSignerCertStore, int lenSignerCertStore); Unicode (Windows) INT GetSignerCertStore(LPSTR &lpSignerCertStore, INT &lenSignerCertStore);
INT SetSignerCertStore(LPCSTR lpSignerCertStore, INT lenSignerCertStore);
int ipworksencrypt_xmlsig_getsignercertstore(void* lpObj, char** lpSignerCertStore, int* lenSignerCertStore);
int ipworksencrypt_xmlsig_setsignercertstore(void* lpObj, const char* lpSignerCertStore, int lenSignerCertStore);
QByteArray GetSignerCertStore();
int SetSignerCertStore(QByteArray qbaSignerCertStore);

Default Value

"MY"

Remarks

This is the name of the certificate store for the client certificate.

The SignerCertStoreType property denotes the type of the certificate store specified by SignerCertStore. If the store is password protected, specify the password in SignerCertStorePassword.

SignerCertStore is used in conjunction with the SignerCertSubject property to specify client certificates. If SignerCertStore has a value, and SignerCertSubject or SignerCertEncoded is set, a search for a certificate is initiated. Please see the SignerCertSubject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

Data Type

Binary String

SignerCertStorePassword Property (XMLSig Class)

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

ANSI (Cross Platform)
char* GetSignerCertStorePassword();
int SetSignerCertStorePassword(const char* lpszSignerCertStorePassword); Unicode (Windows) LPWSTR GetSignerCertStorePassword();
INT SetSignerCertStorePassword(LPCWSTR lpszSignerCertStorePassword);
char* ipworksencrypt_xmlsig_getsignercertstorepassword(void* lpObj);
int ipworksencrypt_xmlsig_setsignercertstorepassword(void* lpObj, const char* lpszSignerCertStorePassword);
QString GetSignerCertStorePassword();
int SetSignerCertStorePassword(QString qsSignerCertStorePassword);

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Data Type

String

SignerCertStoreType Property (XMLSig Class)

This is the type of certificate store for this certificate.

Syntax

ANSI (Cross Platform)
int GetSignerCertStoreType();
int SetSignerCertStoreType(int iSignerCertStoreType); Unicode (Windows) INT GetSignerCertStoreType();
INT SetSignerCertStoreType(INT iSignerCertStoreType);

Possible Values

CST_USER(0), 
CST_MACHINE(1),
CST_PFXFILE(2),
CST_PFXBLOB(3),
CST_JKSFILE(4),
CST_JKSBLOB(5),
CST_PEMKEY_FILE(6),
CST_PEMKEY_BLOB(7),
CST_PUBLIC_KEY_FILE(8),
CST_PUBLIC_KEY_BLOB(9),
CST_SSHPUBLIC_KEY_BLOB(10),
CST_P7BFILE(11),
CST_P7BBLOB(12),
CST_SSHPUBLIC_KEY_FILE(13),
CST_PPKFILE(14),
CST_PPKBLOB(15),
CST_XMLFILE(16),
CST_XMLBLOB(17),
CST_JWKFILE(18),
CST_JWKBLOB(19),
CST_SECURITY_KEY(20),
CST_BCFKSFILE(21),
CST_BCFKSBLOB(22),
CST_PKCS11(23),
CST_AUTO(99)
int ipworksencrypt_xmlsig_getsignercertstoretype(void* lpObj);
int ipworksencrypt_xmlsig_setsignercertstoretype(void* lpObj, int iSignerCertStoreType);
int GetSignerCertStoreType();
int SetSignerCertStoreType(int iSignerCertStoreType);

Default Value

0

Remarks

This is the type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: this store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the SignerCertStore and set SignerCertStorePassword to the PIN.

Code Example. SSH Authentication with Security Key:

Copy
certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

Data Type

Integer

SignerCertSubject Property (XMLSig Class)

This is the subject of the certificate used for client authentication.

Syntax

ANSI (Cross Platform)
char* GetSignerCertSubject();
int SetSignerCertSubject(const char* lpszSignerCertSubject); Unicode (Windows) LPWSTR GetSignerCertSubject();
INT SetSignerCertSubject(LPCWSTR lpszSignerCertSubject);
char* ipworksencrypt_xmlsig_getsignercertsubject(void* lpObj);
int ipworksencrypt_xmlsig_setsignercertsubject(void* lpObj, const char* lpszSignerCertSubject);
QString GetSignerCertSubject();
int SetSignerCertSubject(QString qsSignerCertSubject);

Default Value

""

Remarks

This is the subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

Data Type

String

SigningAlgorithm Property (XMLSig Class)

The signing algorithm.

Syntax

ANSI (Cross Platform)
char* GetSigningAlgorithm();
int SetSigningAlgorithm(const char* lpszSigningAlgorithm); Unicode (Windows) LPWSTR GetSigningAlgorithm();
INT SetSigningAlgorithm(LPCWSTR lpszSigningAlgorithm);
char* ipworksencrypt_xmlsig_getsigningalgorithm(void* lpObj);
int ipworksencrypt_xmlsig_setsigningalgorithm(void* lpObj, const char* lpszSigningAlgorithm);
QString GetSigningAlgorithm();
int SetSigningAlgorithm(QString qsSigningAlgorithm);

Default Value

""

Remarks

This property specifies the signing algorithm.

This may be set before calling Sign. This value will be set after calling VerifySignature. Possible values are:

  • "RSA-SHA1" (default)
  • "RSA-SHA256"
  • "DSA-SHA1"
  • "HMAC-SHA1"
Note: When set to "HMAC-SHA1" HMACKey must also be set.

This property is not available at design time.

Data Type

String

Config Method (XMLSig Class)

Sets or retrieves a configuration setting.

Syntax

ANSI (Cross Platform)
char* Config(const char* lpszConfigurationString);

Unicode (Windows)
LPWSTR Config(LPCWSTR lpszConfigurationString);
char* ipworksencrypt_xmlsig_config(void* lpObj, const char* lpszConfigurationString);
QString Config(const QString& qsConfigurationString);

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

DoEvents Method (XMLSig Class)

Processes events from the internal message queue.

Syntax

ANSI (Cross Platform)
int DoEvents();

Unicode (Windows)
INT DoEvents();
int ipworksencrypt_xmlsig_doevents(void* lpObj);
int DoEvents();

Remarks

When DoEvents is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Reset Method (XMLSig Class)

Resets the class.

Syntax

ANSI (Cross Platform)
int Reset();

Unicode (Windows)
INT Reset();
int ipworksencrypt_xmlsig_reset(void* lpObj);
int Reset();

Remarks

When called, the component will reset all of its properties to their default values.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

SetInputStream Method (XMLSig Class)

Sets the stream from which the class will read data to sign or verify.

Syntax

ANSI (Cross Platform)
int SetInputStream(IPWorksEncryptStream* sInputStream);

Unicode (Windows)
INT SetInputStream(IPWorksEncryptStream* sInputStream);
int ipworksencrypt_xmlsig_setinputstream(void* lpObj, IPWorksEncryptStream* sInputStream);
int SetInputStream(IPWorksEncryptStream* sInputStream);

Remarks

This method sets the stream from which the class will read data to sign or verify. If an input stream is set before calling Sign or VerifySignature, the data is read from the input stream instead of from the InputFile or InputXML properties.

The content of the stream will be read from the current position all the way to the end and no bytes will be skipped.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:
  • OutputFile
  • OutputXML: The output data is written to this property if no other destination is specified.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

SetOutputStream Method (XMLSig Class)

The stream to which the class will write the signed or verified XML.

Syntax

ANSI (Cross Platform)
int SetOutputStream(IPWorksEncryptStream* sOutputStream);

Unicode (Windows)
INT SetOutputStream(IPWorksEncryptStream* sOutputStream);
int ipworksencrypt_xmlsig_setoutputstream(void* lpObj, IPWorksEncryptStream* sOutputStream);
int SetOutputStream(IPWorksEncryptStream* sOutputStream);

Remarks

This method sets the stream to which the class will write the signed or verified XML. If an output stream is set before calling Sign or VerifySignature, the class will write the data to the output stream instead of populating OutputXML or writing to OutputFile.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:
  • OutputFile
  • OutputXML: The output data is written to this property if no other destination is specified.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Sign Method (XMLSig Class)

Signs the XML.

Syntax

ANSI (Cross Platform)
int Sign();

Unicode (Windows)
INT Sign();
int ipworksencrypt_xmlsig_sign(void* lpObj);
int Sign();

Remarks

This methods signs the XML.

Before calling Sign specify the XML to sign by setting InputFile, or InputXML.

The Reference* properties must be set. At least one reference must be set. A reference defines the XML element to sign, and the options that specify how it is transformed and hashed during the signing process.

Set Certificate to a certificate with private key.

Optionally set the CanonicalizationMethod. This determines how the signature itself is canonicalized. SigningAlgorithm defines the algorithm used to sign. The SignatureXPath property may be set to specify the location in the XML document where the signature will be placed.

Lastly, call Sign to sign the XML.

The following properties are applicable when calling this method:

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:
  • OutputFile
  • OutputXML: The output data is written to this property if no other destination is specified.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

VerifySignature Method (XMLSig Class)

Verifies signed XML.

Syntax

ANSI (Cross Platform)
int VerifySignature();

Unicode (Windows)
INT VerifySignature();
int ipworksencrypt_xmlsig_verifysignature(void* lpObj);
int VerifySignature();

Remarks

This method verifies signatures contained in the XML.

When VerifySignature is called, the class will scan the XML document and fire the SignatureInfo event for each signature that is found. When the SignatureInfo event fires the Reference* properties will be populated.

Within the SignatureInfo event the ReferenceXMLElement property must be set to the location of the XML element to which the signature applies. The ReferenceURI property may contain data helpful to locating the XML element.

The ReferenceXMLElement property specifies the XPath to the element. For instance:

/root/myElement XPath syntax
/root/[1] XPath syntax using an index
/root/ns:myElement XPath syntax where the element has a namespace
myElement Just the element name
@id=myid Attribute selector: This will select an element with an attribute "id" whose value is "myid".
/root/myElement[1]/ns:name2[@attr=attrValue] XPath syntax using an index and attribute selector

The signature is verified either using a key parsed from the signed XML, or using the certificate specified by the SignerCert* properties. The class will automatically parse the signer certificate (if present) from the signed XML and populate the SignerCert* properties with the parsed value.

When SignatureInfo fires, if the SignerCertParsed parameter is True the SignerCert* properties may be inspected to see the details of the parsed certificate. If SignerCertParsed is False, then the SignerCert* properties must be set to a valid certificate for signature verification to proceed.

When the SignatureInfo event finishes firing, the certificate present in the SignerCert* properties will be used to verify the signature, whether this is the certificate automatically parsed by the class or a different certificate specified within the event.

If the signature was successfully verified the method will return without error. If the signature was not verified the method fails with an error.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Error Event (XMLSig Class)

Fired when information is available about errors during data delivery.

Syntax

ANSI (Cross Platform)
virtual int FireError(XMLSigErrorEventParams *e);
typedef struct {
int ErrorCode;
const char *Description; int reserved; } XMLSigErrorEventParams;
Unicode (Windows) virtual INT FireError(XMLSigErrorEventParams *e);
typedef struct {
INT ErrorCode;
LPCWSTR Description; INT reserved; } XMLSigErrorEventParams;
#define EID_XMLSIG_ERROR 1

virtual INT IPWORKSENCRYPT_CALL FireError(INT &iErrorCode, LPSTR &lpszDescription);
class XMLSigErrorEventParams {
public:
  int ErrorCode();

  const QString &Description();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Error(XMLSigErrorEventParams *e);
// Or, subclass XMLSig and override this emitter function. virtual int FireError(XMLSigErrorEventParams *e) {...}

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

Progress Event (XMLSig Class)

Fired as progress is made.

Syntax

ANSI (Cross Platform)
virtual int FireProgress(XMLSigProgressEventParams *e);
typedef struct {
int64 BytesProcessed;
int PercentProcessed;
int Operation;
int IsEOF; int reserved; } XMLSigProgressEventParams;
Unicode (Windows) virtual INT FireProgress(XMLSigProgressEventParams *e);
typedef struct {
LONG64 BytesProcessed;
INT PercentProcessed;
INT Operation;
BOOL IsEOF; INT reserved; } XMLSigProgressEventParams;
#define EID_XMLSIG_PROGRESS 2

virtual INT IPWORKSENCRYPT_CALL FireProgress(LONG64 &lBytesProcessed, INT &iPercentProcessed, INT &iOperation, BOOL &bIsEOF);
class XMLSigProgressEventParams {
public:
  qint64 BytesProcessed();

  int PercentProcessed();

  int Operation();

  bool IsEOF();
  void SetIsEOF(bool bIsEOF);

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Progress(XMLSigProgressEventParams *e);
// Or, subclass XMLSig and override this emitter function. virtual int FireProgress(XMLSigProgressEventParams *e) {...}

Remarks

This event is fired automatically as data is processed by the class.

The PercentProcessed parameter indicates the current status of the operation.

The BytesProcessed parameter holds the total number of bytes processed so far.

The Operation parameter is only applicable when either ReadFromProgressEvent or WriteToProgressEvent is set to True. This parameter defines whether a Read or Write operation is required. If the configuration settings are not set this parameter will always return 0. Possible values are:

0None
1Read
2Write

The IsEOF parameter is only applicable when either ReadFromProgressEvent or WriteToProgressEvent is set to True. This parameter defines whether the Read or Write operation is complete. When the Operation is Read (1) this parameter must be set to indicate that all data has been supplied to the class. When the Operation is Write (2) this value may be queried to determine when all data has been processed.

SignatureInfo Event (XMLSig Class)

Fired when a signature is found.

Syntax

ANSI (Cross Platform)
virtual int FireSignatureInfo(XMLSigSignatureInfoEventParams *e);
typedef struct {
const char *SignatureId;
int SignerCertParsed; int reserved; } XMLSigSignatureInfoEventParams;
Unicode (Windows) virtual INT FireSignatureInfo(XMLSigSignatureInfoEventParams *e);
typedef struct {
LPCWSTR SignatureId;
BOOL SignerCertParsed; INT reserved; } XMLSigSignatureInfoEventParams;
#define EID_XMLSIG_SIGNATUREINFO 3

virtual INT IPWORKSENCRYPT_CALL FireSignatureInfo(LPSTR &lpszSignatureId, BOOL &bSignerCertParsed);
class XMLSigSignatureInfoEventParams {
public:
  const QString &SignatureId();

  bool SignerCertParsed();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void SignatureInfo(XMLSigSignatureInfoEventParams *e);
// Or, subclass XMLSig and override this emitter function. virtual int FireSignatureInfo(XMLSigSignatureInfoEventParams *e) {...}

Remarks

This event fires when calling VerifySignature for each signature found within the XML document.

SignatureId is the id of the signature.

SignerCertParsed indicates whether the signer's certificate was automatically parsed from the signed XML.

Verification Notes

When VerifySignature is called, the class will scan the XML document and fire the SignatureInfo event for each signature that is found. When the SignatureInfo event fires the Reference* properties will be populated.

Within the SignatureInfo event the ReferenceXMLElement property must be set to the location of the XML element to which the signature applies. The ReferenceURI property may contain data helpful to locating the XML element.

The ReferenceXMLElement property specifies the XPath to the element. For instance:

/root/myElement XPath syntax
/root/[1] XPath syntax using an index
/root/ns:myElement XPath syntax where the element has a namespace
myElement Just the element name
@id=myid Attribute selector: This will select an element with an attribute "id" whose value is "myid".
/root/myElement[1]/ns:name2[@attr=attrValue] XPath syntax using an index and attribute selector

The signature is verified either using a key parsed from the signed XML, or using the certificate specified by the SignerCert* properties. The class will automatically parse the signer certificate (if present) from the signed XML and populate the SignerCert* properties with the parsed value.

When SignatureInfo fires, if the SignerCertParsed parameter is True the SignerCert* properties may be inspected to see the details of the parsed certificate. If SignerCertParsed is False, then the SignerCert* properties must be set to a valid certificate for signature verification to proceed.

When the SignatureInfo event finishes firing, the certificate present in the SignerCert* properties will be used to verify the signature, whether this is the certificate automatically parsed by the class or a different certificate specified within the event.

If the signature was successfully verified the method will return without error. If the signature was not verified the method fails with an error.

Status Event (XMLSig Class)

Provides information about the current operation.

Syntax

ANSI (Cross Platform)
virtual int FireStatus(XMLSigStatusEventParams *e);
typedef struct {
const char *Message; int reserved; } XMLSigStatusEventParams;
Unicode (Windows) virtual INT FireStatus(XMLSigStatusEventParams *e);
typedef struct {
LPCWSTR Message; INT reserved; } XMLSigStatusEventParams;
#define EID_XMLSIG_STATUS 4

virtual INT IPWORKSENCRYPT_CALL FireStatus(LPSTR &lpszMessage);
class XMLSigStatusEventParams {
public:
  const QString &Message();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Status(XMLSigStatusEventParams *e);
// Or, subclass XMLSig and override this emitter function. virtual int FireStatus(XMLSigStatusEventParams *e) {...}

Remarks

The event is fired for informational and logging purposes only. It may be used to track the progress of an operation.

The level of detail is controlled by the LogLevel setting.

IPWorksEncryptStream Type

Syntax

IPWorksEncryptStream (declared in ipworksencrypt.h)

Remarks

The XMLSig class includes one or more API members that take a stream object as a parameter. To use such API members, create a concrete class that implements the IPWorksEncryptStream interface and pass the XMLSig class an instance of that concrete class.

When implementing the IPWorksEncryptStream interface's properties and methods, they must behave as described below. If the concrete class's implementation does not behave as expected, undefined behavior may occur.

Properties

CanRead Whether the stream supports reading.

bool CanRead() { return true; }
CanSeek Whether the stream supports seeking.

bool CanSeek() { return true; }
CanWrite Whether the stream supports writing.

bool CanWrite() { return true; }
Length Gets the length of the stream, in bytes.

int64 GetLength() = 0;

Methods

Close Closes the stream, releasing all resources currently allocated for it.

void Close() {}

This method is called automatically when an IPWorksEncryptStream object is deleted.

Flush Forces all data held by the stream's buffers to be written out to storage.

int Flush() { return 0; }

Must return 0 if flushing is successful; or -1 if an error occurs or the stream is closed. If the stream does not support writing, this method must do nothing and return 0.

Read Reads a sequence of bytes from the stream and advances the current position within the stream by the number of bytes read.

int Read(void* buffer, int count) = 0;

Buffer specifies the buffer to populate with data from the stream. Count specifies the number of bytes that should be read from the stream.

Must return the total number of bytes read into Buffer; this may be less than Count if that many bytes are not currently available, or 0 if the end of the stream has been reached. Must return -1 if an error occurs, if reading is not supported, or if the stream is closed.

Seek Sets the current position within the stream based on a particular point of origin.

int64 Seek(int64 offset, int seekOrigin) = 0;

Offset specifies the offset in the stream to seek to, relative to SeekOrigin. Valid values for SeekOrigin are:

  • 0: Seek from beginning.
  • 1: Seek from current position.
  • 2: Seek from end.

Must return the new position within the stream; or -1 if an error occurs, if seeking is not supported, or if the stream is closed (however, see note below). If -1 is returned, the current position within the stream must remain unchanged.

Note: If the stream is not closed, it must always be possible to call this method with an Offset of 0 and a SeekOrigin of 1 to obtain the current position within the stream, even if seeking is not otherwise supported.

Write Writes a sequence of bytes to the stream and advances the current position within the stream by the number of bytes written.

int Write(const void* buffer, int count) = 0;

Buffer specifies the buffer with data to write to the stream. Count specifies the number of bytes that should be written to the stream.

Must return the total number of bytes written to the stream; this may be less than Count if that many bytes could not be written. Must return -1 if an error occurs, if writing is not supported, or if the stream is closed.

Config Settings (XMLSig Class)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

XMLSig Config Settings

KeyName:   The name of the key used to sign the XML.

This setting optionally holds the key name which may be useful to the recipient to help identify the key used to create the signature. This may be set before calling Sign. When calling VerifySignature this may be queried inside the SignatureInfo event.

Note that this value is only informative, it does not affect processing.

LogLevel:   Specifies the level of detail that is logged.

This setting controls the level of detail that is logged through the Status event. Possible values are:

0 (None)No events are logged.
1 (Info - default)Informational events are logged.
2 (Verbose)Detailed data is logged.
3 (Debug)Debug data is logged.
NormalizeLineEndings:   Whether to normalize line endings when calculating the reference digest.

This setting specifies whether to normalize line endings when calculating the reference digest. When set to True all line endings will be converted to LF. The default value is True.

PreserveWhitespace:   Whether to preserve whitespace in the signature.

This setting specifies whether whitespace is preserved when canonicalizing XML. The default value is False.

ReadFromProgressEvent:   Whether to read input data from inside the progress event.

When set to True this setting allows input data to be specified from within the Progress event. The class will repeatedly fire the Progress event to ask for data. Inside the event set InputXML when the Operation parameter of the event is 1 (Read). When all data has been provided set the IsEOF parameter of the event to True. This allows input data to be chunked and provided piece by piece. The default value is False.

SignatureRelationship:   Whether the signature is a child or sibling of the SignatureXPath.

This setting specifies whether the created signature is included as a child or sibling of the element specified by SignatureXPath. If this is set to 0 (default), the signature is inserted as a child of the element. If this is set to 1, the signature is inserted as a sibling after the element. The default value is 0 (child).

Example: SignatureRelationship is set to 0 (child - default)

Copy
xmlsig1.SignatureXPath = "/root/node1";
Produces XML like:

<root>
  <node1>
    <ds:Signature>...</ds:Signature>
  </node1>
  <node2></node2>
  <node3></node3>
</root>

Example: SignatureRelationship is set to 1 (sibling)

Copy
xmlsig1.SignatureXPath = "/root/node1"; xmlsig1.Config("SignatureRelationship=1");
Produces XML like:

<root>
  <node1></node1>
  <ds:Signature>...</ds:Signature>
  <node2></node2>
  <node3></node3>
</root>

SignerCertCount:   The number of parsed signer certificates when verifying a signature.

This setting is populated when calling VerifySignature. It holds the number of signer certificates that were parsed from the message. In most cases a single certificate is present and SignerCert is populated. In some cases, multiple certificates in a chain may be present, in that case each parsed certificate can be accessed via this property and SignerCertEncoded. For instance:

Copy
int certCount = Int32.Parse(xmlsig.Config("SignerCertCount")); for(int i=0;i<certCount;i++) { Console.WriteLine(xmlsig.Config("SignerCertEncoded[ " + i + "]")); }

SignerCertEncoded[i]:   The parsed signer certificate.

This setting is used in conjunction with SignerCertCount to retrieve the base64 encoded signer certificate parsed from the message. Valid values for the index are from 0 to SignerCertCount - 1. SignerCertEncoded

SignWithCryptoAPI:   Whether to use the Crypto API for signing operations.

This setting determines whether to use the Microsoft Crypto API to sign. This is helpful in cases where the certificate is present in the Windows Certificate Store but the private key is not marked as exportable. For instance when using a USB security key. The default value is False.

Note: This functionality is only available on Windows.

WriteToProgressEvent:   Whether to write output data so it is accessible from inside the progress event.

When set to True this setting allows output data to be obtained from within the Progress event. The class will repeatedly fire the Progress event to provide output data. Inside the event check OutputXML when the Operation parameter of the event is 2 (Write). The IsEOF parameter should be checked inside the event to determine when all output data has been provided. This allows output data to be chunked and obtained piece by piece. The default value is False.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8
The following is a list of valid code page identifiers for Mac OS only:
IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitive:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.

This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

ProcessIdleEvents:   Whether the class uses its internal event loop to process events when the main thread is idle.

If set to False, the class will not fire internal idle events. Set this to False to use the class in a background thread on Mac OS. By default, this setting is True.

SelectWaitMillis:   The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.

If there are no events to process when DoEvents is called, the class will wait for the amount of time specified here before returning. The default value is 20.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to false, the class will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.

On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.

To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.

Trappable Errors (XMLSig Class)

Error Handling (C++)

Call the GetLastErrorCode() method to obtain the last called method's result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. Known error codes are listed below. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

XMLSig Errors

602   Unsupported value. Check the description for details.
603   Failed to match the digest value during signature verification.
604   Signature verification failed.
605   Could not find the referenced element.
606   No valid signature was found in the document.
607   Failed to write output.
608   Invalid SignatureXPath value.
611   Failed parsing certificate data.

XML Errors

101   Invalid attribute index.
102   No attributes available.
103   Invalid namespace index.
104   No namespaces available.
105   Invalid element index.
106   No elements available.
107   Attribute does not exist.
201   Unbalanced element tag.
202   Unknown element prefix (can't find namespace).
203   Unknown attribute prefix (can't find namespace).
204   Invalid XML markup.
205   Invalid end state for parser.
206   Document contains unbalanced elements.
207   Invalid XPath.
208   No such child.
209   Top element does not match start of path.
210   DOM tree unavailable (set BuildDOM to true and reparse).
302   Can't open file.
401   Invalid XML would be generated.
402   An invalid XML name has been specified.