IPWorks Encrypt 2022 Java Edition
Version 22.0 [Build 8369]

SMIME Class

Properties   Methods   Events   Config Settings   Errors  

The SMIME class implements the S/MIME standard for encryption and decryption with public key cryptography and X.509 digital certificates.

Syntax

ipworksencrypt.Smime

Remarks

The SMIME class implements the S/MIME V3 standard for encryption and decryption using Public Key Cryptography Standards (PKCS). In addition the class can be used to both generate and verify RSA digital signatures. Using this class for decrypting or signing requires a valid digital certificate with a private key.

Before performing an operation the input and output values should be specified.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

The headers of the input message (if any) will be read from InputMessageHeaders or InputMessageHeadersString.

The headers of the resulting message will be available in the OutputMessageHeaders and OutputMessageHeadersString properties.

Signing

To sign the current data included in the input message with a certificate, the Certificate property must be set to a valid Certificate object for the signing certificate. The IncludeCertificate and DetachedSignature properties allow you to specify additional details about the signing process. By setting IncludeCertificate to true, digital certificates can be encoded and included in message signature when signing the document. Including a certificate is the preferred method of building signed messages. In addition the SMIME class can also generate PKCS #7 formatted detached digital signatures and envelopes by specifying DetachedSignature.

Encrypting

To encrypt a message with the class in a PKCS envelope, you must first specify the Certificate for each recipient in the RecipientCerts collection to encrypt the message with. You can easily add these with the AddRecipientCert method. Once you have done this you can call the Encrypt method to encrypt the message with the recipient certificates.

In addition, the class allows you to sign and encrypt simultaneously with the SignAndEncrypt method. You must set all of the properties needed for both Sign and Encrypt

The result of the encrypted or signed data will be replaced in the OutputMessage property and the OutputMessageHeaders property will be filled with the appropriate mime headers if applicable.

Decrypting

Decrypting PKCS envelopes is handled with the Decrypt method. When this method is called, the class will attempt to find an appropriate certificate in the Certificate property that matches the encrypting certificate. If it cannot find an appropriate certificate an exception will be thrown and the message will not be decrypted.

Verifying Signatures

In addition the SMIME class can be used to verify signatures included in signed messages or documents. After specifying the input, VerifySignature can then be used to verify the signature. If the message does not have a certificate attached more then likely an exception will be thrown and the class will not be able to verify the signature. If VerifySignature is successful, the SignerCert and SignerCertChain properties will be filled with the certificate information of the message signer. This information can be used to verify the signing certificates.

Similar to SignAndEncrypt, DecryptAndVerifySignature can be used to both decrypt and verify the message in Message.

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

CertificateThis property includes the current selected certificate.
DetachedSignatureThis property specifies whether to include a detached signature when signing a message.
EncryptingAlgorithmThe property includes textual description of the encrypting algorithm.
IncludeCertificateThis property specifies whether to include the signer's certificate with the signed message.
IncludeChainThis property specifies whether to include the signer's certificate chain with the signed message.
IncludeHeadersThis property tells the class whether to include the headers when encoding the message.
InputFileThis property includes the file to process.
InputMessageThis property includes the message to process.
InputMessageHeadersThis property includes a collection of headers from the S/MIME message.
InputMessageHeadersStringThis property includes the string version of headers from the S/MIME message.
InternalHeadersThis property includes the headers of the MIME entity inside the encrypted or signed message.
OutputFileThe output file.
OutputMessageThe output message after processing.
OutputMessageHeadersCollection of headers from the SMIME message.
OutputMessageHeadersStringString version of headers from the SMIME message.
OverwriteIndicates whether or not the class should overwrite files.
RecipientCertsThe collection of recipient certificates of the message.
SignerCertContains the certificate of the message signer.
SignerCertChainThe certificate chain of the signing certificate.
SigningAlgorithmTextual description of the signature hash algorithm.
UseOAEPWhether to use Optimal Asymmetric Encryption Padding (OAEP).
UsePSSWhether to use RSA-PSS during signing and verification.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

AddRecipientCertThis method is used to add recipient certificates used to encrypt messages.
CheckMessageEncryptedThis method checks whether or not the current message is encrypted.
CheckMessageSignedThis method checks whether or not the current message is signed.
ConfigSets or retrieves a configuration setting.
DecryptThis method decrypts the current Message .
DecryptAndVerifySignatureThis method decrypts and verifies the signature of the current message.
EncryptThis method encrypts the message.
GetRecipientInfoThis method gets the recipient information for an encrypted message.
GetSignerCertInfoThis method gets the signature information for an signed message.
ResetResets the class properties.
SetInputStreamSets the stream from which the class will read data to encode or decode.
SetOutputStreamThe stream to which the class will write the fully encoded or decoded S/MIME data.
SignSigns the current message.
SignAndEncryptSigns and encrypts the current message.
VerifySignatureVerifies the signature of the current message.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

ErrorInformation about errors during data delivery.
RecipientInfoFired for each recipient certificate of the encrypted message.
SignerCertInfoFired during verification of the signed message.

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

ApplyB64EncodingInstructs the class to base64 encode the message when signing or encrypting.
CloseInputStreamAfterProcessDetermines whether or not the input stream is closed after processing.
CloseOutputStreamAfterProcessDetermines whether or not the output stream is closed after processing.
CSPThe Cryptographic Service Provider.
GenerateSignatureTimestampWhether to generate timestamps in signatures.
IncludeHeadersTells the class whether to include the headers when encoding the message.
IncludeInternalHeadersTells the class whether or not to include the internal headers when encoding the message.
InputContentTransferEncodingSets the Content-Transfer-Encoding for the signed message.
InputContentTypeSets the Content-Type for the signed message.
InputMessageEncryptedWhether or not the input message is encrypted.
InputMessageSignedWhether or not the input message is signed.
OAEPMGF1HashAlgorithmThe MGF1 hash algorithm used with OAEP.
OAEPParamsThe hex encoded OAEP parameters.
OAEPRSAHashAlgorithmThe RSA hash algorithm used with OAEP.
ParseInternalHeadersTells the class whether or not to parse the message part headers when decrypting a message.
RecipientCertUsed to specify the public certificate when using a PEM key to decrypt.
RecipientCertFileUsed to specify the public certificate file when using a PEM key to decrypt.
RecipientInfoTypeThe type of signer information to include in the signed message.
SignerInfoTypeThe type of signer information to include in the signed message.
UseAlgorithmOIDsWhether OIDs are used when providing information about the algorithms.
UseCryptoAPIWhether to use the Microsoft Crypto API for cryptographic message generation.
VerifyCertChainWhether to verify the certificate chain of the certificate used to sign the message.
BuildInfoInformation about the product's build.
GUIAvailableTells the class whether or not a message loop is available for processing events.
LicenseInfoInformation about the current license.
UseDaemonThreadsWhether threads created by the class are daemon threads.
UseInternalSecurityAPITells the class whether or not to use the system security libraries or an internal implementation.

Certificate Property (SMIME Class)

This property includes the current selected certificate.

Syntax


public Certificate getCertificate();


public void setCertificate(Certificate certificate);

Remarks

This property is populated when a specified certificate is found or loaded by the class. This property is used to specify private keys. Set this property to a valid Certificate object to perform different operations, such as Sign, Decrypt, SignAndEncrypt, or DecryptAndVerifySignature.

DetachedSignature Property (SMIME Class)

This property specifies whether to include a detached signature when signing a message.

Syntax


public boolean isDetachedSignature();


public void setDetachedSignature(boolean detachedSignature);

Default Value

True

Remarks

This property specifies whether to include a detached signature when signing a message. If the value of this property is True, Message will be encoded as a multipart/signed MIME message with a detached signature when calling Sign. This will create a message with two MIME parts, one with the contents of Message, and another with the detached signature.

If this property is False, the current contents of Message will be PKCS encoded and included with the signature in Message. This will create a single-part message with no MIME boundaries.

EncryptingAlgorithm Property (SMIME Class)

The property includes textual description of the encrypting algorithm.

Syntax


public String getEncryptingAlgorithm();


public void setEncryptingAlgorithm(String encryptingAlgorithm);

Default Value

"3DES"

Remarks

This property contains either the name of the algorithm (such as 3DES or AES), or an object identifier (OID) string representing the algorithm.

Possible values are as follows:

  • "3DES"
  • "DES"
  • "RC2CBC40"
  • "RC2CBC64"
  • "RC2CBC128" or "RC2"
  • "AESCBC128" or "AES"
  • "AESCBC192"
  • "AESCBC256"
  • "AESGCM128" or "AESGCM"
  • "AESGCM192"
  • "AESGCM256"

IncludeCertificate Property (SMIME Class)

This property specifies whether to include the signer's certificate with the signed message.

Syntax


public boolean isIncludeCertificate();


public void setIncludeCertificate(boolean includeCertificate);

Default Value

True

Remarks

If this property is set to True, the certificate used to sign the message will be encoded and included in a message signature when calling Sign or SignAndEncrypt.

Including a certificate is the preferred method of building signed messages. If you do not include a certificate, the message recipient may not be able to verify the sender's signature.

IncludeChain Property (SMIME Class)

This property specifies whether to include the signer's certificate chain with the signed message.

Syntax


public boolean isIncludeChain();


public void setIncludeChain(boolean includeChain);

Default Value

False

Remarks

If this property is set to True, the entire certificate's chain that was used to sign the message will be encoded and included in the message signature when calling Sign or SignAndEncrypt.

Note: To include the chain, the IncludeCertificate property must also be set to true.

IncludeHeaders Property (SMIME Class)

This property tells the class whether to include the headers when encoding the message.

Syntax


public boolean isIncludeHeaders();


public void setIncludeHeaders(boolean includeHeaders);

Default Value

False

Remarks

If True, the class will include the headers when Sign, Encrypt, or SignAndEncrypt are called. If False, only the message will be encoded.

The default value for IncludeHeaders is False.

InputFile Property (SMIME Class)

This property includes the file to process.

Syntax


public String getInputFile();


public void setInputFile(String inputFile);

Default Value

""

Remarks

This property specifies the file to be processed. Set this property to the full or relative path to the file that will be processed.

Encrypt and/or Sign

When encrypting or signing, this may be set to a file containing content that will be encrypted and/or signed.

Decrypt and/or Verify

When decrypting or verifying a signature, this may be set to a file containing the fully encoded S/MIME message.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

The headers of the input message (if any) will be read from InputMessageHeaders or InputMessageHeadersString.

InputMessage Property (SMIME Class)

This property includes the message to process.

Syntax


public byte[] getInputMessage();


public void setInputMessage(byte[] inputMessage);

Default Value

""

Remarks

This property specifies the message to be processed.

Encrypt and/or Sign

When encrypting or signing, this may be set to the content that will be encrypted and/or signed.

Decrypt and/or Verify

When decrypting or verifying a signature, this may be set to the fully encoded S/MIME message.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

The headers of the input message (if any) will be read from InputMessageHeaders or InputMessageHeadersString.

InputMessageHeaders Property (SMIME Class)

This property includes a collection of headers from the S/MIME message.

Syntax


public HeaderList getInputMessageHeaders();


public void setInputMessageHeaders(HeaderList inputMessageHeaders);

Remarks

This property contains a collection of headers from the S/MIME message.

This property may be set to the headers of the message that will be decrypted/verified.

This property is not available at design time.

InputMessageHeadersString Property (SMIME Class)

This property includes the string version of headers from the S/MIME message.

Syntax


public String getInputMessageHeadersString();


public void setInputMessageHeadersString(String inputMessageHeadersString);

Default Value

""

Remarks

This property contains the string version of headers from the S/MIME message.

This property may be set to the headers of the message that will be decrypted/verified.

InternalHeaders Property (SMIME Class)

This property includes the headers of the MIME entity inside the encrypted or signed message.

Syntax


public String getInternalHeaders();


public void setInternalHeaders(String internalHeaders);

Default Value

""

Remarks

After an encryption, decryption, signing, or verification operation is completed, this property shows the headers of the encrypted or signed message part.

This property is not available at design time.

OutputFile Property (SMIME Class)

The output file.

Syntax


public String getOutputFile();


public void setOutputFile(String outputFile);

Default Value

""

Remarks

This property specifies the file to which the output will be written. This may be set to an absolute or relative path.

Encrypt and/or Sign

When encrypting or signing this specifies a file where the fully encoded S/MIME message will be written.

Decrypt and/or Verify

When decrypting or verifying a signature this specifies a file where the decrypted/verified content will be written.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

The headers of the resulting message will be available in the OutputMessageHeaders and OutputMessageHeadersString properties.

OutputMessage Property (SMIME Class)

The output message after processing.

Syntax


public byte[] getOutputMessage();


Default Value

""

Remarks

This property will be populated with the output of the operation if OutputFile and SetOutputStream are not set.

Encrypt and/or Sign

When encrypting or signing this will hold the fully encoded S/MIME message.

Decrypt and/or Verify

When decrypting or verifying a signature this will hold the decrypted/verified content.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

The headers of the resulting message will be available in the OutputMessageHeaders and OutputMessageHeadersString properties.

This property is read-only.

OutputMessageHeaders Property (SMIME Class)

Collection of headers from the SMIME message.

Syntax


public HeaderList getOutputMessageHeaders();


Remarks

The class will populate this property after signing and/or encrypting.

The user should use these additional headers when emailing or sending the OutputMessage. This can be done by including these headers in the OtherHeaders property of the class that you wish to send the message with.

After the decryption or verification, this property contains the headers of the verified or decrypted message.

This property is read-only and not available at design time.

OutputMessageHeadersString Property (SMIME Class)

String version of headers from the SMIME message.

Syntax


public String getOutputMessageHeadersString();


Default Value

""

Remarks

This property contains the string version of headers from the SMIME message. The class will populate this property after signing and/or encrypting.

The user should use these additional headers when emailing or sending the OutputMessage. This can be done by including these headers in the OtherHeaders property of the class that you wish to send the message with.

After the decryption or verification, this property contains the headers of the verified or decrypted message.

This property is read-only.

Overwrite Property (SMIME Class)

Indicates whether or not the class should overwrite files.

Syntax


public boolean isOverwrite();


public void setOverwrite(boolean overwrite);

Default Value

True

Remarks

This property indicates whether or not the class will overwrite OutputFile. If Overwrite is False, an error will be thrown whenever OutputFile exists before an operation. The default value is False.

RecipientCerts Property (SMIME Class)

The collection of recipient certificates of the message.

Syntax


public CertificateList getRecipientCerts();


public void setRecipientCerts(CertificateList recipientCerts);

Remarks

This property is used to specify the certificates of the intended recipients of the encrypted message. This property must be set prior to calling Encrypt or SignAndEncrypt methods.

This property's collection must be filled out with valid public key Certificate type objects. To set a certificate, you may set the Encoded field to the encoded certificate. To select a certificate, use the Store and Subject fields.

This collection is indexed from 0 to size -1.

This property is not available at design time.

SignerCert Property (SMIME Class)

Contains the certificate of the message signer.

Syntax


public Certificate getSignerCert();


public void setSignerCert(Certificate signerCert);

Remarks

This property contains the certificate of the message signer. When calling VerifySignature or DecryptAndVerifySignature this property will contain the certificate of the sender if attached.

To verify messages without an attached certificate, set this property before calling VerifySignature or DecryptAndVerifySignature.

SignerCertChain Property (SMIME Class)

The certificate chain of the signing certificate.

Syntax


public CertificateList getSignerCertChain();


Remarks

This property contains the certificate chain of the signing certificate. When calling VerifySignature or DecryptAndVerifySignature, this property will be populated with the certificate chain of the sender if attached.

NOTE: The SignerCert property will contain the signing certificate. The certificates in the signing certificate's chain will be placed in this property's collection.

This property is read-only and not available at design time.

SigningAlgorithm Property (SMIME Class)

Textual description of the signature hash algorithm.

Syntax


public String getSigningAlgorithm();


public void setSigningAlgorithm(String signingAlgorithm);

Default Value

"SHA256"

Remarks

This property specifies the hash algorithm used to prepare the message digest for signature.

This property must contain either the name of the algorithm (such as "MD5" or "SHA1"), or an object id (OID) string representing the hash algorithm. Possible values are:

  • sha1
  • md5
  • sha-256 (default)
  • sha-384
  • sha-512
  • sha-224

When read, the value of the property always contains the OID of the algorithm, or an empty string if the algorithm is unknown.

UseOAEP Property (SMIME Class)

Whether to use Optimal Asymmetric Encryption Padding (OAEP).

Syntax


public boolean isUseOAEP();


public void setUseOAEP(boolean useOAEP);

Default Value

False

Remarks

Whether to use Optimal Asymmetric Encryption Padding (OAEP). By default this value is False and the class will use PKCS1.

To specify non-default OAEP options please see OAEPRSAHashAlgorithm, OAEPMGF1HashAlgorithm, and OAEPParams

UsePSS Property (SMIME Class)

Whether to use RSA-PSS during signing and verification.

Syntax


public boolean isUsePSS();


public void setUsePSS(boolean usePSS);

Default Value

False

Remarks

This property specifies whether RSA-PSS will be used when signing and verifying messages. The default value is False.

AddRecipientCert Method (Smime Class)

This method is used to add recipient certificates used to encrypt messages.

Syntax

public void addRecipientCert(byte[] certEncoded);

Remarks

This method is used to add recipient certificates to the internal MessageRecipients collection used to encrypt the Message. The recipient certificate must be a valid PKCS-encoded certificate. If the certificate provided is Base64 encoded, it will be decoded first by the object.

The CertMgr class may be used to retrieve the appropriate certificate from the system.

CheckMessageEncrypted Method (Smime Class)

This method checks whether or not the current message is encrypted.

Syntax

public boolean checkMessageEncrypted();

Remarks

This method is used to check whether or not the current message is encrypted. This method will return True, if the current message appears to be encrypted, according to the value of OutputMessageHeaders.

CheckMessageSigned Method (Smime Class)

This method checks whether or not the current message is signed.

Syntax

public boolean checkMessageSigned();

Remarks

This method is used to check whether or not the current message is signed. This method will return True, if the current message appears to be signed, according to the value of OutputMessageHeaders.

Note: A message that is both signed and encrypted will not appear to be signed until after it is decrypted.

Config Method (Smime Class)

Sets or retrieves a configuration setting.

Syntax

public String config(String configurationString);

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Decrypt Method (Smime Class)

This method decrypts the current Message .

Syntax

public void decrypt();

Remarks

This method takes attempts to decrypt the encrypted message using the certificate in Certificate.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

The headers of the input message (if any) will be read from InputMessageHeaders or InputMessageHeadersString.

The headers of the resulting message will be available in the OutputMessageHeaders and OutputMessageHeadersString properties.

DecryptAndVerifySignature Method (Smime Class)

This method decrypts and verifies the signature of the current message.

Syntax

public void decryptAndVerifySignature();

Remarks

This method attempts to both decrypt and verify the signature of the message. All of the properties affected by calling the Decrypt and VerifySignature methods are affected in the same manner.

Note: This function does not attempt to check the validity of the signing certificate.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

The headers of the input message (if any) will be read from InputMessageHeaders or InputMessageHeadersString.

The headers of the resulting message will be available in the OutputMessageHeaders and OutputMessageHeadersString properties.

Encrypt Method (Smime Class)

This method encrypts the message.

Syntax

public void encrypt();

Remarks

This method encrypts the data specified in SetInputStream, InputFile or InputMessage in a PKCS-encoded envelope with all of the recipient certificates specified in the MessageRecipients collection.

The result of the encrypted data will be written to the stream specified by SetOutputStream, OutputFile, or OutputMessage. The OutputMessageHeaders property will be filled with the required S/MIME headers.

Note: The message headers, including the Sender, Recipient(s), and Subject, are not encrypted. If this is sensitive information, consider including these headers in the message body as a MIME entity and providing other headers for the S/MIME wrapper.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

The headers of the input message (if any) will be read from InputMessageHeaders or InputMessageHeadersString.

The headers of the resulting message will be available in the OutputMessageHeaders and OutputMessageHeadersString properties.

GetRecipientInfo Method (Smime Class)

This method gets the recipient information for an encrypted message.

Syntax

public void getRecipientInfo();

Remarks

This method will fire a RecipientInfo event for every recipient certificate for which the Message has been encrypted. The event will contain information about the Issuer and the SerialNumber for each recipient of the message.

GetSignerCertInfo Method (Smime Class)

This method gets the signature information for an signed message.

Syntax

public void getSignerCertInfo();

Remarks

This method retrieves information about the certificate used to sign the message. This may be called before calling VerifySignature to determine which certificate should be loaded for verification.

When this method is called, the SignerCertInfo event fires once for each signer of the message. Use the parameters of the SignerCertInfo to determine which certificate to specify before calling VerifySignature.

Note: Use of this method is optional. If no certificate is specified before calling VerifySignature, the class will fire the SignerCertInfo and a certificate may be loaded from within the event at that time (if necessary).

Reset Method (Smime Class)

Resets the class properties.

Syntax

public void reset();

Remarks

This method resets the values of all message and certificate properties. It is an easy way to reset the class properties before starting to populate with new values.

SetInputStream Method (Smime Class)

Sets the stream from which the class will read data to encode or decode.

Syntax

public void setInputStream(java.io.InputStream inputStream);

Remarks

This method sets the stream from which the class will read data to encode or decode.

Encrypt and/or Sign

When encrypting or signing this may be set to a stream with the content that will be encrypted and/or signed.

Decrypt and/or Verify

When decrypting or verifying a signature this may be set to a stream with the fully encoded S/MIME message.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

The headers of the input message (if any) will be read from InputMessageHeaders or InputMessageHeadersString.

SetOutputStream Method (Smime Class)

The stream to which the class will write the fully encoded or decoded S/MIME data.

Syntax

public void setOutputStream(java.io.OutputStream outputStream);

Remarks

This method contains the stream to which the class will write the fully encoded or decoded S/MIME data.

Encrypt and/or Sign

When encrypting or signing this may be set to a stream where the fully encoded S/MIME message will be written.

Decrypt and/or Verify

When decrypting or verifying a signature this may be set to a stream where the decrypted/verified content will be written.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

  • SetOutputStream
  • OutputFile
  • OutputMessage: The output data is written to this property if no other destination is specified.

When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

The headers of the resulting message will be available in the OutputMessageHeaders and OutputMessageHeadersString properties.

Sign Method (Smime Class)

Signs the current message.

Syntax

public void sign();

Remarks

This method digitally signs the input data with the the certificate provided. Certificates are provided by specifying the Certificate property. The IncludeCertificate and DetachedSignature properties allow you to specify addition details about what to include when signing the message.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

The headers of the input message (if any) will be read from InputMessageHeaders or InputMessageHeadersString.

The headers of the resulting message will be available in the OutputMessageHeaders and OutputMessageHeadersString properties.

SignAndEncrypt Method (Smime Class)

Signs and encrypts the current message.

Syntax

public void signAndEncrypt();

Remarks

This method both signs and encrypts the input message into a single PKCS encoded envelope. The value in DetachedSignature is ignored: the class will always generate an attached signature when calling this method. All other properties used by calling the Sign and Encrypt methods are used in the same manner.

Please note that the message headers, including the Sender, Recipient(s), and Subject, are not encrypted. If this is sensitive information, consider including these headers in the message body as a MIME entity, and providing other headers for the S/MIME wrapper.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

The headers of the input message (if any) will be read from InputMessageHeaders or InputMessageHeadersString.

The headers of the resulting message will be available in the OutputMessageHeaders and OutputMessageHeadersString properties.

VerifySignature Method (Smime Class)

Verifies the signature of the current message.

Syntax

public void verifySignature();

Remarks

This method attempts to verify the signature of the input message. If the message does not have a certificate attached, the class will attempt to verify the signature using the certificate supplied in SignerCert (if any). If no certificate is found, the class throws an exception.

If this method is successful, the SignerCert property will contain the certificate information of the message signer.

NOTE: This function does not attempt to check the validity of the signing certificate itself.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

The headers of the input message (if any) will be read from InputMessageHeaders or InputMessageHeadersString.

The headers of the resulting message will be available in the OutputMessageHeaders and OutputMessageHeadersString properties.

Error Event (Smime Class)

Information about errors during data delivery.

Syntax

public class DefaultSmimeEventListener implements SmimeEventListener {
  ...
  public void error(SmimeErrorEvent e) {}
  ...
}

public class SmimeErrorEvent {
  public int errorCode;
  public String description;
}

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the class throws an exception.

ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

RecipientInfo Event (Smime Class)

Fired for each recipient certificate of the encrypted message.

Syntax

public class DefaultSmimeEventListener implements SmimeEventListener {
  ...
  public void recipientInfo(SmimeRecipientInfoEvent e) {}
  ...
}

public class SmimeRecipientInfoEvent {
  public String issuer;
  public String serialNumber;
  public String subjectKeyIdentifier;
  public String encryptionAlgorithm;
}

Remarks

When GetRecipientInfo is called on a valid encrypted message, this event will fire once for each recipient certificate that the message has been encrypted for. This may be used to identify the certificate to load.

Issuer is the subject of the issuer certificate.

SerialNumber is the serial number of the encryption certificate.

SubjectKeyIdentifier is the X.509 subjectKeyIdentifier extension value of the certificate used to sign the message encoded as a hex string.

EncryptionAlgorithm is the encryption algorithm used to encrypt the message. Possible values are:

  • "3DES"
  • "DES"
  • "RC2CBC40"
  • "RC2CBC64"
  • "RC2CBC128" or "RC2"
  • "AESCBC128" or "AES"
  • "AESCBC192"
  • "AESCBC256"
  • "AESGCM128" or "AESGCM"
  • "AESGCM192"
  • "AESGCM256"

SignerCertInfo Event (Smime Class)

Fired during verification of the signed message.

Syntax

public class DefaultSmimeEventListener implements SmimeEventListener {
  ...
  public void signerCertInfo(SmimeSignerCertInfoEvent e) {}
  ...
}

public class SmimeSignerCertInfoEvent {
  public String issuer;
  public String serialNumber;
  public String subjectKeyIdentifier;
  public byte[] certEncoded;
}

Remarks

During verification, this event will be raised while parsing the signer's certificate information. The parameters which are populated depends on the options used when the message was originally signed. This information may be used to select the correct certificate for SignerCert in order to verify the signature. The following parameters may be populated.

Issuer specifies the subject of the issuer of the certificate used to sign the message.

SerialNumber is the serial number of the certificate used to sign the message.

SubjectKeyIdentifier is the X.509 subjectKeyIdentifier extension value of the certificate used to sign the message encoded as a hex string.

CertEncoded is the PEM (base64 encoded) public certificate needed to verify the signature. Note: when this value is present the class will automatically use this value to perform signature verification.

The SignerCert property may be set from within this event. In this manner the decision of which signer certificate to load may be delayed until the parameters of this event are inspected and the correct certificate can be located and loaded.

Certificate Type

This is the digital certificate being used.

Remarks

This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.

Fields

EffectiveDate
String

This is the date on which this certificate becomes valid. Before this date, it is not valid. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

Encoded
String

This is the certificate (PEM/base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

EncodedB
byte[]

This is the certificate (PEM/base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

ExpirationDate
String

This is the date the certificate expires. After this date, the certificate will no longer be valid. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

ExtendedKeyUsage
String

This is a comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

Fingerprint
String

This is the hex-encoded, 16-byte MD5 fingerprint of the certificate.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

FingerprintSHA1
String

This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

FingerprintSHA256
String

This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

Issuer
String

This is the issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.

KeyPassword
String

This is the password for the certificate's private key (if any).

Some certificate stores may individually protect certificates' private keys, separate from the standard protection offered by the StorePassword. KeyPassword. This field can be used to read such password-protected private keys.

Note: this property defaults to the value of StorePassword. To clear it, you must set the property to the empty string (""). It can be set at any time, but when the private key's password is different from the store's password, then it must be set before calling PrivateKey.

PrivateKey
String

This is the private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.

PrivateKeyAvailable
boolean

This field shows whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).

PrivateKeyContainer
String

This is the name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.

PublicKey
String

This is the public key of the certificate. The key is provided as PEM/Base64-encoded data.

PublicKeyAlgorithm
String

This field contains the textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

PublicKeyLength
int

This is the length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

SerialNumber
String

This is the serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

SignatureAlgorithm
String

The field contains the text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

Store
String

This is the name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

In Java, the certificate store normally is a file containing certificates and optional private keys.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e. PKCS12 certificate store).

StoreB
byte[]

This is the name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

In Java, the certificate store normally is a file containing certificates and optional private keys.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e. PKCS12 certificate store).

StorePassword
String

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

StoreType
int

This is the type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used the class will automatically determine the type. This field can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user. Note: this store type is not available in Java.
1 (cstMachine)For Windows, this specifies that the certificate store is a machine store. Note: this store type is not available in Java.
2 (cstPFXFile)The certificate store is the name of a PFX (PKCS12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in PFX (PKCS12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates. Note: this store type is only available in Java.
5 (cstJKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in Java Key Store (JKS) format. Note: this store type is only available in Java.
6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
20 (cstSecurityKey)The certificate is present on a physical security key accessible via a PKCS11 interface.

To use a security key the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstSecurityKey, CertStorePassword to the PIN, and CertStore to the full path of the PKCS11 dll. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example: SSH Authentication with Security Key certmgr.CertStoreType = CertStoreTypes.cstSecurityKey; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstSecurityKey, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store). Note: this store type is only available in Java and .NET.
22 (cstBCFKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format. Note: this store type is only available in Java and .NET.
99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

Subject
String

This is the subject of the certificate used for client authentication.

This field will be populated with the full subject of the loaded certificate. When loading a certificate the subject is used to locate the certificate in the store.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma separated list of distinguished name fields and values. For instance "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are displayed below.

FieldMeaning
CNCommon Name. This is commonly a host name like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma it must be quoted.

SubjectAltNames
String

This field contains comma-separated lists of alternative subject names for the certificate.

ThumbprintMD5
String

This field contains the MD5 hash of the certificate. If the hash does not already exist, it is computed.

ThumbprintSHA1
String

This field contains the SHA-1 hash of the certificate. If the hash does not already exist, it is computed.

ThumbprintSHA256
String

This field contains the SHA-256 hash of the certificate. If the hash does not already exist, it is computed.

Usage
String

This field contains the text description of UsageFlags.

This value will be of one or more of the following strings and will be separated by commas:

  • Digital Signatures
  • Key Authentication
  • Key Encryption
  • Data Encryption
  • Key Agreement
  • Certificate Signing
  • Key Signing

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

UsageFlags
int

This field contains the flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:

0x80Digital Signatures
0x40Key Authentication
0x20Key Encryption
0x10Data Encryption
0x08Key Agreement
0x04Certificate Signing
0x02Key Signing

Please see the Usage field for a text representation of UsageFlags.

This functionality currently is not available when the provider is OpenSSL.

Version
String

This field contains the certificate's version number. The possible values are the strings "V1", "V2", and "V3".

Constructors

public Certificate();

Creates a Certificate instance whose properties can be set. This is useful for use with CERTMGR when generating new certificates.

public Certificate( certificateFile);

Opens CertificateFile and reads out the contents as an X509 public key.

public Certificate( certificateData);

Parses CertificateData as an X509 public key.

public Certificate( certStoreType,  store,  storePassword,  subject);

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X509 certificate's subject Distinguished Name (DN).

public Certificate( certStoreType,  store,  storePassword,  subject,  configurationString);

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. ConfigurationString is a newline separated list of name-value pairs that may be used to modify the default behavior. Possible values include "PersistPFXKey", which shows whether or not the PFX key is persisted after performing operations with the private key. This correlates to the PKCS12_NO_PERSIST_KEY CyrptoAPI option. The default value is True (the key is persisted). "Thumbprint" - a MD5, SHA1, or SHA256 thumbprint of the certificate to load. When specified, this value is used to select the certificate in the store. This is applicable to cstUser, cstMachine, cstPublicKeyFile, and cstPFXFile store types. "UseInternalSecurityAPI" shows whether the platform (default) or the internal security API is used when performing certificate-related operations. After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X509 certificate's subject Distinguished Name (DN).

public Certificate( certStoreType,  store,  storePassword,  encoded);

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the class will load Encoded as an X509 certificate and search the opened store for a corresponding private key.

public Certificate( certStoreType,  storeBlob,  storePassword,  subject);

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. StoreBlob is a string (binary- or base64-encoded) containing the certificate data. StorePassword is the password used to protect the store. After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X509 certificate's subject Distinguished Name (DN).

public Certificate( certStoreType,  storeBlob,  storePassword,  subject,  configurationString);

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. StoreBlob is a string (binary- or base64-encoded) containing the certificate data. StorePassword is the password used to protect the store. After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X509 certificate's subject Distinguished Name (DN).

public Certificate( certStoreType,  storeBlob,  storePassword,  encoded);

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a string (binary- or base64-encoded) containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the class will load Encoded as an X509 certificate and search the opened store for a corresponding private key.

Header Type

This is an HTTP header as it is received from the server.

Remarks

When a header is received through a Header event, it is parsed into a Header type. This type contains a Field, and its corresponding Value.

Fields

Field
String

This field contains the name of the HTTP Header (this is the same case as it is delivered).

Value
String

This field contains the Header contents.

Constructors

public Header();



public Header( field,  value);



Config Settings (Smime Class)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

SMIME Config Settings

ApplyB64Encoding:   Instructs the class to base64 encode the message when signing or encrypting.

This setting allows you to control the base64 encoding of the resulting message. By default, this value is true, and the message will be base64 encoded when signing or encrypting.

NOTE: When signing, this config may only be used when DetachedSignature is false.

CloseInputStreamAfterProcess:   Determines whether or not the input stream is closed after processing.

Determines whether or not the input stream set by SetInputStream is closed after processing is complete. The default value is False.

CloseOutputStreamAfterProcess:   Determines whether or not the output stream is closed after processing.

Determines whether or not the output stream set by SetOutputStream is closed after processing is complete. The default value is False.

CSP:   The Cryptographic Service Provider.

For the Win32 editions, the name of the Cryptographic Service Provider used to provide access to encryption/decryption and signature operations.

NOTE: This config may only be used when the UseCryptoAPI is true.

GenerateSignatureTimestamp:   Whether to generate timestamps in signatures.

If GenerateSignatureTimestamp is True, a timestamp will be generated and added to all signatures created by the class.

The default value is True.

IncludeHeaders:   Tells the class whether to include the headers when encoding the message.

If true, the class will include the headers when Sign, Encrypt, or SignAndEncrypt are called. If false, only the message will be encoded.

The default value for IncludeHeaders is false.

IncludeInternalHeaders:   Tells the class whether or not to include the internal headers when encoding the message.

If true, the class will include the internal message part headers when Sign, Encrypt, or SignAndEncrypt are called. When set to false, only the message will be encoded.

The default value for IncludeInternalHeaders is true.

InputContentTransferEncoding:   Sets the Content-Transfer-Encoding for the signed message.

This setting specifies the Content-Transfer-Encoding header value in signed messages. By default the class will automatically determine the Content-Transfer-Encoding based on the file extension set in InputFile, however this setting may be set to override the determined value or to specify a value if data is read from InputMessage.

If no value is specified and a value cannot be automatically determined the default value 7bit will be used.

Note: This setting is only applicable when calling Sign or SignAndEncrypt and DetachedSignature is True.

InputContentType:   Sets the Content-Type for the signed message.

This setting specifies the Content-Type header value in signed messages. By default the class will automatically determine the Content-Type based on the file extension set in InputFile, however this setting may be set to override the determined value or to specify a value if data is read from InputMessage.

If no value is specified and a value cannot be automatically determined the default value text/plain; charset="iso-8859-1" will be used.

Note: This setting is only applicable when calling Sign or SignAndEncrypt and DetachedSignature is True.

InputMessageEncrypted:   Whether or not the input message is encrypted.

This will return true if the input message appears to be encrypted according to the value of InputMessageHeaders.

InputMessageSigned:   Whether or not the input message is signed.

This will return true if the input message appears to be signed according to the value of InputMessageHeaders.

OAEPMGF1HashAlgorithm:   The MGF1 hash algorithm used with OAEP.

This configuration setting specifies the MGF1 hash algorithm used when UseOAEP is set to True. The default value is SHA256. Possible values are as follows:

  • "SHA1"
  • "SHA224"
  • "SHA256" (default)
  • "SHA384"
  • "SHA512"
  • "RIPEMD160"
  • "MD2"
  • "MD5"
  • "MD5SHA1"
OAEPParams:   The hex encoded OAEP parameters.

This configuration setting optionally specifies OAEP parameters to be used when UseOAEP is set to True. The specified value should be hex encoded.

OAEPRSAHashAlgorithm:   The RSA hash algorithm used with OAEP.

This configuration setting specifies that RSA hash algorithm used when UseOAEP is set to True. The default value is SHA256. Possible values are as follows:

  • "SHA1"
  • "SHA224"
  • "SHA256" (default)
  • "SHA384"
  • "SHA512"
  • "RIPEMD160"
  • "MD2"
  • "MD5"
  • "MD5SHA1"
ParseInternalHeaders:   Tells the class whether or not to parse the message part headers when decrypting a message.

If true, the class will parse the internal message part headers when Decrypt, or DecryptAndVerifySignature are called. These headers will be placed in the InternalHeaders property. If false, the entire message will be decoded.

The default value for ParseInternalHeaders is true.

RecipientCert:   Used to specify the public certificate when using a PEM key to decrypt.

When decrypting, the class must search through the Recipient Info collection to find which encrypted key to use for decryption. Since PEM keys do not contain a serial number or any additional information about the key itself, the public key associated with this private key must be supplied.

This configuration may be set to the entire blob of the public certificate the class should use to select the correct recipient encrypted key to use for decryption.

RecipientCertFile:   Used to specify the public certificate file when using a PEM key to decrypt.

When decrypting, the class must search through the Recipient Info collection to find which encrypted key to use for decryption. Since PEM keys do not contain a serial number or any additional information about the key itself, the public key associated with this private key must be supplied.

This configuration may be set to the file which contains the public certificate the class should use to select the correct recipient encrypted key to use for decryption.

RecipientInfoType:   The type of signer information to include in the signed message.

This configuration setting specifies which type of information about the recipient's encryption certificate is included in the encrypted message. Possible values are as follows:

  • 0 (issuerAndSerialNumber - default)
  • 1 (subjectKeyIdentifier)

Note: When subjectKeyIdentifier is selected, the recipient's encryption certificate must contain the subjectKeyIdentifier extension.

SignerInfoType:   The type of signer information to include in the signed message.

This configuration setting specifies which type of information about the signer certificate is included in the signed message. Possible values are as follows:

  • 0 (issuerAndSerialNumber - default)
  • 1 (subjectKeyIdentifier)

Note: When subjectKeyIdentifier is selected, the signing certificate must contain the subjectKeyIdentifier extension.

UseAlgorithmOIDs:   Whether OIDs are used when providing information about the algorithms.

This configuration setting controls whether the EncryptionAlgorithm parameter of the RecipientInfo event is populated with the name of the algorithm, such as 3DES or the corresponding OID such as 1.2.840.113549.3.7.

The default value is False, and the name of the algorithm is used. Set this to True to use the object identifiers instead.

UseCryptoAPI:   Whether to use the Microsoft Crypto API for cryptographic message generation.

If UseCryptoAPI is set to true, the class will use the Microsoft Crypto API to process encrypted and/or signed data. Note that compression will be impossible in this case.

If set to false (the default), the class will use its internal S/MIME engine.

VerifyCertChain:   Whether to verify the certificate chain of the certificate used to sign the message.

This setting specifies whether the signer certificate used to sign the message is validated when VerifySignature is called.

If set to True the class will verify that the issuer(s) of the signer certificate are valid and trusted on the system.

If set to False (default) the certificate chain is not validated.

This setting does not affect whether the digital signature of the signed message is verified. This setting affects only whether the trust and validity of the signer certificate chain is evaluated.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

GUIAvailable:   Tells the class whether or not a message loop is available for processing events.

In a GUI-based application, long-running blocking operations may cause the application to stop responding to input until the operation returns. The class will attempt to discover whether or not the application has a message loop and, if one is discovered, it will process events in that message loop during any such blocking operation.

In some non-GUI applications, an invalid message loop may be discovered that will result in errant behavior. In these cases, setting GUIAvailable to false will ensure that the class does not attempt to process external events.

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
UseDaemonThreads:   Whether threads created by the class are daemon threads.

If set to True (default), when the class creates a thread, the thread's Daemon property will be explicitly set to True. When set to False, the class will not set the Daemon property on the created thread. The default value is True.

UseInternalSecurityAPI:   Tells the class whether or not to use the system security libraries or an internal implementation.

By default the class will use the system security libraries to perform cryptographic functions where applicable. Setting this to true tells the class to use the internal implementation instead of using the system's security API.

Trappable Errors (Smime Class)

SMIME Errors

10191   Invalid index (RecipientIndex).
10192   Message decoding error (code).
10193   Unexpected message type.
10194   Unsupported hashing/signing algorithm.
10195   The message doesn't have any signers.
10196   The message signature could not be verified.
10197   Could not locate a suitable decryption certificate.
10198   The signer certificate could not be found.
10199   No signing certificate was supplied for signing the message.
10201   The specified certificate was not the one required.
10202   The specified certificate could not be found.
10221   Could not acquire CSP.
10222   Type validation error.
10223   Unsupported key size.
10224   Unrecognized Content-Type object identifier.
10225   Unrecognized public key format.
10226   No choices specified.
10228   Must specify output stream.
10280   Invalid Part Index.
10281   Unknown MIME type.
10283   No MIME-boundary found.
10280   Error decoding certificate.

Copyright (c) 2022 /n software inc. - All rights reserved.
IPWorks Encrypt 2022 Java Edition - Version 22.0 [Build 8369]