ECC Class
Properties Methods Events Config Settings Errors
The ECC (Elliptic Curve Cryptography) class implements ECDSA, EdDSA, ECDH, and ECIES operations.
Syntax
ECC
Remarks
The ECC (Elliptic Curve Cryptography) class implements ECDSA (Elliptic Curve Digital Signature Algorithm), EdDSA (Edwards-curve Digital Signature Algorithm), ECDH (Elliptic Curve Diffie Hellman), and ECIES (Elliptic Curve Integrated Encryption Scheme) operations. The class supports the following common operations:
- CreateKey allows key creation using algorithms such as secp256r1, secp384r1, secp521r1, X25519, X448, Ed25519, Ed448, and more.
- ComputeSecret computes a shared secret between two parties using a public and private key (ECDH).
- Sign and VerifySignature provides a way to digitally sign data and verify signatures (ECDSA and EdDSA).
- Encrypt and Decrypt encrypt and decrypt data using a public and private key (ECIES).
The class is very flexible and offers many properties and configuration settings to configure it. The sections below detail the use of the class for each of the major operations listed above.
Key Creation and Management
CreateKey creates a new public and private key.
When this method is called, Key is populated with the generated key. The PublicKey and PrivateKey fields hold the PEM formatted public and private key for ease of use. This is helpful for storing or transporting keys more easily.
The KeyAlgorithm parameter specifies the algorithm for which the key is intended to be used. Possible values are:
NIST, Koblitz, and Brainpool Curve Notes
Keys for use with NIST curves (secp256r1, secp384r1, secp521r1), Koblitz curves (secp160k1, secp192k1, secp224k1, secp256k1), and Brainpool curves are made up of a number of individual parameters.
The public key consists of the following parameters:
The private key consists of one value:
Curve25519 and Curve448 Notes
Keys for use with Curve25519 or Curve448 are made up of a private key and public key field.
XPk holds the public key.
XSk holds the private key.
Create Key Example (secp256r1 - PEM)
//Create a key using secp256r1
Ecc ecc = new Ecc();
ecc.CreateKey("secp256r1");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
string privKey = ecc.Key.PrivateKey; //PEM formatted key
string pubKey = ecc.Key.PublicKey; //PEM formatted key
//Load the saved key
ecc.Reset();
ecc.Key.PublicKey = pubKey;
ecc.Key.PrivateKey = privKey;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
Create Key Example (secp256r1 - Raw Key Params)
//Create a key using secp256r1 and store/load the key using the individual params
Ecc ecc = new Ecc();
ecc.CreateKey("secp256r1");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
byte[] K = ecc.Key.KB; //Private key param
byte[] Rx = ecc.Key.RxB; //Public key param
byte[] Ry = ecc.Key.RyB; //Public key param
//Load the saved key
ecc.Reset();
ecc.Key.Algorithm = ECAlgorithms.eaSecp256r1; //This MUST be set manually when using key params directly
ecc.Key.KB = K;
ecc.Key.RxB = Rx;
ecc.Key.RyB = Ry;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
Create Key Example (Ed25519 - PEM)
//Create a key using Ed25519
Ecc ecc = new Ecc();
ecc.CreateKey("Ed25519");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
string privKey = ecc.Key.PrivateKey; //PEM formatted key
string pubKey = ecc.Key.PublicKey; //PEM formatted key
//Load the saved key
ecc.Reset();
ecc.Key.PublicKey = pubKey;
ecc.Key.PrivateKey = privKey;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
Create Key Example (Ed25519 - Raw Key Params)
//Create a key using Ed25519 and store/load the key using the individual params
Ecc ecc = new Ecc();
ecc.CreateKey("Ed25519");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
byte[] XPk = ecc.Key.XPkB; //Public key data
byte[] XSk = ecc.Key.XSkB; //Secret key data
//Load the saved key
ecc.Reset();
ecc.Key.Algorithm = ECAlgorithms.eaEd25519; //This MUST be set manually when using key params directly
ecc.Key.XPkB = XPk;
ecc.Key.XSkB = XSk;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
Compute Secret (ECDH)
This method computes a shared secret using Elliptic Curve Diffie Hellman (ECDH).
When this method is called, the class will use the public key specified by PublicKey and the private key specified by Key to compute a shared secret, or secret agreement. The ComputeSecretKDF property specifies the Hash or HMAC algorithm that is applied to the raw secret. The resulting value is held by SharedSecret. The following properties are applicable when calling this method:
- Key (required)
- PublicKey (required)
- ComputeSecretKDF (optional)
See ComputeSecretKDF for details on advanced settings that may be applicable for the chosen algorithm.
Keys created with the Ed25519 and Ed448 algorithms are not supported when calling this method.
Compute Secret Example
//Create a key for Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("X25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Create a key for Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("X25519");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Note: the public keys must be exchanged between parties by some mechanism
//Create the shared secret on Party 1
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv; //Private key of this party
ecc1.RecipientKey.PublicKey = ecc2_pub; //Public key of other party
ecc1.UseHex = true; //Hex encodes the shared secret bytes for easier display/storage
ecc1.ComputeSecret();
Console.WriteLine(ecc1.SharedSecret);
//Create the shared secret on Party 2
ecc2.Reset();
ecc2.Key.PrivateKey = ecc2_priv; //Private key of this party
ecc2.RecipientKey.PublicKey = ecc1_pub; //Public key of other party
ecc2.UseHex = true; //Hex encodes the shared secret bytes for easier display/storage
ecc2.ComputeSecret();
Console.WriteLine(ecc2.SharedSecret); //This will match the shared secret created by ecc1.
Signing (ECDSA and EdDSA)
Sign will create a hash signature using ECDSA or EdDSA. The class will use the key specified by Key to hash the input data and sign the resulting hash.
Key must contain a private key created with a valid ECDSA or EdDSA algorithm. Algorithm is used to determine the eligibility of the key for this operation. Supported algorithms for signing are:
- NIST Curves (secp256r1, secp384r1, secp521r1)
- Koblitz Curves (secp160k1, secp192k1, secp224k1, secp256k1)
- Brainpool Curves
- Ed25519 and Ed448
See CreateKey for details about key creation and algorithms.
When this method is called, data will be read from the InputFile or InputMessage.
The hash to be signed will be computed using the specified HashAlgorithm. The computed hash is stored in the HashValue property. The signed hash is stored in the HashSignature property.
To sign a hash without first computing it, set HashValue to a previously computed hash for the input data. Note: HashValue is not applicable when signing with a PureEdDSA algorithm such as Ed25519 or Ed448.
The Progress event will fire with updates for the hash computation progress only. The hash signature creation process is quick and does not require progress updates.
After calling Sign, the public key must be sent to the recipient along with HashSignature and the original input data so the other party may perform signature verification.
The following properties are applicable when calling this method:
- Key (required)
- HashAlgorithm (applicable to ECDSA only)
- HashEdDSA (applicable to EdDSA only)
- HashValue (not applicable to PureEdDSA)
- UseHex
The following properties are populated after calling this method:
When the Algorithm is Ed25519 or Ed448, the following additional parameters are applicable:
EdDSA keys can be used with a PureEdDSA algorithm (Ed25519/Ed448) or a HashEdDSA (Ed25519ph, Ed448ph) algorithm. This is controlled by the HashEdDSA property. By default, the class uses the PureEdDSA algorithm.
The PureEdDSA algorithm requires two passes over the input data but provides collision resilience. The collision resilience of PureEdDSA means that even if it is feasible to compute collisions for the hash function, the algorithm is still secure. When using PureEdDSA, HashValue is not applicable.
When using a HashEdDSA algorithm, the input is pre-hashed and supports a single pass over the data during the signing operation. To enable HashEdDSA, set HashEdDSA to True.
To specify context data when using Ed25519 or Ed448, set EdDSAContext.
Sign And Verify Example (ECDSA)
//Create an ECDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("secp256r1");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - PureEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - HashEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.HashEdDSA = true; //Use "ed25519ph"
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.HashEdDSA = true;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Verifying (ECDSA and EdDSA)
VerifySignature will verify a hash signature and return True if successful or False otherwise.
Before calling this method, specify the input file by setting InputFile or InputMessage.
A public key and the hash signature are required to perform the signature verification. Specify the public key in SignerKey. Specify the hash signature in HashSignature.
When this method is called, the class will compute the hash for the specified file and populate HashValue. It will verify the signature using the specified SignerKey and HashSignature.
To verify the hash signature without first computing the hash, simply specify HashValue before calling this method. Note: HashValue is not applicable when the message was signed with a PureEdDSA algorithm such as Ed25519 or Ed448.
The Progress event will fire with updates for the hash computation progress only. The hash signature verification process is quick and does not require progress updates.
The following properties are applicable when calling this method:
- HashSignature (required)
- SignerKey (required)
- EdDSAContext (applicable to EdDSA only)
- HashAlgorithm (applicable to ECDSA only)
- HashEdDSA (applicable to EdDSA only)
- HashValue (not applicable to PureEdDSA)
- UseHex
Sign And Verify Example (ECDSA)
//Create an ECDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("secp256r1");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - PureEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - HashEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.HashEdDSA = true; //Use "ed25519ph"
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.HashEdDSA = true;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Encrypting (ECIES)
Encrypt encrypts the specified data with the ECDSA public key specified in RecipientKey.
Encryption is performed using ECIES which requires an ECDSA key. RecipientKey must contain an ECDSA key. Algorithm is used to determine the eligibility of the key for this operation. Supported algorithms for encryption are:
- NIST Curves (secp256r1, secp384r1, secp521r1)
- Koblitz Curves (secp160k1, secp192k1, secp224k1, secp256k1)
- Brainpool Curves
See CreateKey for details about key creation and algorithms.
When this method is called, the class will encrypt the specified data using ECIES and the encrypted data will be output. To hex encode the output, set UseHex to True.
The following properties are applicable when calling this method:
- EncryptionAlgorithm
- HMACAlgorithm
- HMACOptionalInfo
- HMACKeySize
- IV
- KDF
- KDFHashAlgorithm
- KDFOptionalInfo
- UseHex
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
Encrypt and Decrypt Example
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (AES with IV)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
//Use an IV (16 bytes for AES) - In a real environment this should be random
byte[] IV = new byte[] { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F };
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc1.IVB = IV;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message and the IV to Party 2
//Decrypt the message using the private key for Party 2 and the IV
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc2.IVB = IV;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (XOR Encryption Algorithm)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (KDF Options)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.KDF = "KDF1"; //Use KDF1
ecc1.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc1.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f"); //Hex encoded string
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.KDF = "KDF1";
ecc2.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc2.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f");
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Decrypting (ECIES)
Decrypt decrypts the specified data with the ECDSA private key specified in Key.
Decryption is performed using ECIES which requires an ECDSA key. Key must contain an ECDSA key. Algorithm is used to determine the eligibility of the key for this operation. Supported algorithms for encryption are:
- NIST Curves (secp256r1, secp384r1, secp521r1)
- Koblitz Curves (secp160k1, secp192k1, secp224k1, secp256k1)
- Brainpool Curves
See CreateKey for details about key creation and algorithms.
When this method is called, the class will decrypt the specified data using ECIES and the decrypted data will be output. If the input data was originally hex encoded, set UseHex to True.
The following properties are applicable when calling this method:
- EncryptionAlgorithm
- HMACAlgorithm
- HMACOptionalInfo
- HMACKeySize
- IV
- KDF
- KDFHashAlgorithm
- KDFOptionalInfo
- UseHex
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
Encrypt and Decrypt Example
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (AES with IV)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
//Use an IV (16 bytes for AES) - In a real environment this should be random
byte[] IV = new byte[] { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F };
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc1.IVB = IV;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message and the IV to Party 2
//Decrypt the message using the private key for Party 2 and the IV
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc2.IVB = IV;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (XOR Encryption Algorithm)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (KDF Options)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.KDF = "KDF1"; //Use KDF1
ecc1.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc1.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f"); //Hex encoded string
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.KDF = "KDF1";
ecc2.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc2.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f");
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
Certificate | The certificate used for signing and decryption. |
ComputeSecretKDF | The key derivation function. |
EncryptionAlgorithm | The encryption algorithm to use. |
HashAlgorithm | The hash algorithm used for hash computation. |
HashEdDSA | Whether to use HashEdDSA when signing with an Ed25519 or Ed448 key. |
HashSignature | The hash signature. |
HashValue | The hash value of the data. |
HMACAlgorithm | The HMAC algorithm to use during encryption. |
InputFile | The file to process. |
InputMessage | The message to process. |
IV | The initialization vector (IV) used when encrypting. |
KDF | The key derivation function used during encryption and decryption. |
KDFHashAlgorithm | The KDF hash algorithm to use when encrypting and decrypting. |
Key | The ECC key. |
OutputFile | The output file when encrypting or decrypting. |
OutputMessage | The output message when encrypting or decrypting. |
Overwrite | Indicates whether or not the class should overwrite files. |
RecipientCert | The certificate used for encryption and computing a shared secret. |
RecipientKey | The public key used to compute the shared secret. |
SharedSecret | The computed shared secret. |
SignerCert | The certificate used for signature verification. |
SignerKey | The public key used to verify the signature. |
UseHex | Whether binary values are hex encoded. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
ComputeSecret | Computes a shared secret. |
Config | Sets or retrieves a configuration setting. |
CreateKey | Creates a new key. |
Decrypt | Decrypted the specified data. |
Encrypt | Encrypts the specified data. |
Reset | Resets the class. |
SetInputStream | Sets the stream from which the class will read data to encrypt or decrypt. |
SetOutputStream | Sets the stream to which the class will write encrypted or decrypted data. |
Sign | Creates a hash signature using ECDSA or EdDSA. |
VerifySignature | Verifies the signature for the specified data. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
Error | Fired when information is available about errors during data delivery. |
Progress | Fired as progress is made. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
AppendSecret | An optional string to append to the secret agreement. |
CNGECDHKey | The CNG ECDH key. |
CNGECDSAKey | The CNG ECDSA key. |
ConcatAlgorithmId | The AlgorithmId subfield of the OtherInfo field. |
ConcatHashAlgorithm | The hash algorithm to use when ComputeSecretKDF is Concat. |
ConcatPartyUInfo | The PartyUInfo subfield of the OtherInfo field. |
ConcatPartyVInfo | The PartyVInfo subfield of the OtherInfo field. |
ConcatSuppPrivInfo | The SuppPrivInfo subfield of the OtherInfo field. |
ConcatSuppPubInfo | The SuppPubInfo subfield of the OtherInfo field. |
ECDSASignatureFormat | The format of the HashSignature when using ECDSA keys. |
EdDSAContext | A hex encoded string holding the bytes of the context when signing or verifying with Ed25519ctx. |
EncryptionKeySize | The encryption key size. |
HMACKey | A key to use when generating a Hash-based Message Authentication Code (HMAC). |
HMACKeySize | The HMAC key size to be used during encryption. |
HMACOptionalInfo | Optional data to be used during encryption and decryption during the HMAC step. |
KDFOptionalInfo | Optional data to be used during encryption and decryption during the key derivation step. |
PrependSecret | An optional string to prepend to the secret agreement. |
StrictKeyValidation | Whether to validate provided public keys based on private keys. |
TLSLabel | The TLS PRF label. |
TLSSeed | The TLS PRF Seed. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitiveData | Whether sensitive data is masked in log messages. |
ProcessIdleEvents | Whether the class uses its internal event loop to process events when the main thread is idle. |
SelectWaitMillis | The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process. |
UseFIPSCompliantAPI | Tells the class whether or not to use FIPS certified APIs. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
Certificate Property (ECC Class)
The certificate used for signing and decryption.
Syntax
IPWorksEncryptCertificate* GetCertificate(); int SetCertificate(IPWorksEncryptCertificate* val);
char* ipworksencrypt_ecc_getcerteffectivedate(void* lpObj);
char* ipworksencrypt_ecc_getcertexpirationdate(void* lpObj);
char* ipworksencrypt_ecc_getcertextendedkeyusage(void* lpObj);
char* ipworksencrypt_ecc_getcertfingerprint(void* lpObj);
char* ipworksencrypt_ecc_getcertfingerprintsha1(void* lpObj);
char* ipworksencrypt_ecc_getcertfingerprintsha256(void* lpObj);
char* ipworksencrypt_ecc_getcertissuer(void* lpObj);
char* ipworksencrypt_ecc_getcertprivatekey(void* lpObj);
int ipworksencrypt_ecc_getcertprivatekeyavailable(void* lpObj);
char* ipworksencrypt_ecc_getcertprivatekeycontainer(void* lpObj);
char* ipworksencrypt_ecc_getcertpublickey(void* lpObj);
char* ipworksencrypt_ecc_getcertpublickeyalgorithm(void* lpObj);
int ipworksencrypt_ecc_getcertpublickeylength(void* lpObj);
char* ipworksencrypt_ecc_getcertserialnumber(void* lpObj);
char* ipworksencrypt_ecc_getcertsignaturealgorithm(void* lpObj);
int ipworksencrypt_ecc_getcertstore(void* lpObj, char** lpCertStore, int* lenCertStore);
int ipworksencrypt_ecc_setcertstore(void* lpObj, const char* lpCertStore, int lenCertStore);
char* ipworksencrypt_ecc_getcertstorepassword(void* lpObj);
int ipworksencrypt_ecc_setcertstorepassword(void* lpObj, const char* lpszCertStorePassword);
int ipworksencrypt_ecc_getcertstoretype(void* lpObj);
int ipworksencrypt_ecc_setcertstoretype(void* lpObj, int iCertStoreType);
char* ipworksencrypt_ecc_getcertsubjectaltnames(void* lpObj);
char* ipworksencrypt_ecc_getcertthumbprintmd5(void* lpObj);
char* ipworksencrypt_ecc_getcertthumbprintsha1(void* lpObj);
char* ipworksencrypt_ecc_getcertthumbprintsha256(void* lpObj);
char* ipworksencrypt_ecc_getcertusage(void* lpObj);
int ipworksencrypt_ecc_getcertusageflags(void* lpObj);
char* ipworksencrypt_ecc_getcertversion(void* lpObj);
char* ipworksencrypt_ecc_getcertsubject(void* lpObj);
int ipworksencrypt_ecc_setcertsubject(void* lpObj, const char* lpszCertSubject);
int ipworksencrypt_ecc_getcertencoded(void* lpObj, char** lpCertEncoded, int* lenCertEncoded);
int ipworksencrypt_ecc_setcertencoded(void* lpObj, const char* lpCertEncoded, int lenCertEncoded);
QString GetCertEffectiveDate(); QString GetCertExpirationDate(); QString GetCertExtendedKeyUsage(); QString GetCertFingerprint(); QString GetCertFingerprintSHA1(); QString GetCertFingerprintSHA256(); QString GetCertIssuer(); QString GetCertPrivateKey(); bool GetCertPrivateKeyAvailable(); QString GetCertPrivateKeyContainer(); QString GetCertPublicKey(); QString GetCertPublicKeyAlgorithm(); int GetCertPublicKeyLength(); QString GetCertSerialNumber(); QString GetCertSignatureAlgorithm(); QByteArray GetCertStore();
int SetCertStore(QByteArray qbaCertStore); QString GetCertStorePassword();
int SetCertStorePassword(QString qsCertStorePassword); int GetCertStoreType();
int SetCertStoreType(int iCertStoreType); QString GetCertSubjectAltNames(); QString GetCertThumbprintMD5(); QString GetCertThumbprintSHA1(); QString GetCertThumbprintSHA256(); QString GetCertUsage(); int GetCertUsageFlags(); QString GetCertVersion(); QString GetCertSubject();
int SetCertSubject(QString qsCertSubject); QByteArray GetCertEncoded();
int SetCertEncoded(QByteArray qbaCertEncoded);
Remarks
This property specifies a certificate with a private key.
This may be set instead of Key, allowing a Certificate object to be used instead of a ECCKey object. This certificate is used when calling Sign and Decrypt. The specified certificate must have a private key.
If both this property and Key are specified, Key will be used and this property will be ignored.
Data Type
ComputeSecretKDF Property (ECC Class)
The key derivation function.
Syntax
ANSI (Cross Platform) int GetComputeSecretKDF();
int SetComputeSecretKDF(int iComputeSecretKDF); Unicode (Windows) INT GetComputeSecretKDF();
INT SetComputeSecretKDF(INT iComputeSecretKDF);
Possible Values
EKD_SHA1(0),
EKD_SHA256(1),
EKD_SHA384(2),
EKD_SHA512(3),
EKD_MD2(4),
EKD_MD4(5),
EKD_MD5(6),
EKD_HMACSHA1(7),
EKD_HMACSHA256(8),
EKD_HMACSHA384(9),
EKD_HMACSHA512(10),
EKD_HMACMD5(11),
EKD_TLS(12),
EKD_CONCAT(13)
int ipworksencrypt_ecc_getcomputesecretkdf(void* lpObj);
int ipworksencrypt_ecc_setcomputesecretkdf(void* lpObj, int iComputeSecretKDF);
int GetComputeSecretKDF();
int SetComputeSecretKDF(int iComputeSecretKDF);
Default Value
1
Remarks
This property specifies the key derivation function (KDF) and algorithm to use when calling ComputeSecret.
Possible values are:
0 (ekdSHA1) | SHA-1 |
1 (ekdSHA256 - default) | SHA-256 |
2 (ekdSHA384) | SHA-384 |
3 (ekdSHA512) | SHA-512 |
4 (ekdMD2) | MD2 |
5 (ekdMD4) | MD4 |
6 (ekdMD5) | MD5 |
7 (ekdHMACSHA1) | HMAC-SHA1 |
8 (ekdHMACSHA256) | HMAC-SHA256 |
9 (ekdHMACSHA384) | HMAC-SHA384 |
10 (ekdHMACSHA512) | HMAC-SHA512 |
11 (ekdHMACMD5) | HMAC-MD5 |
12 (ekdTLS) | TLS |
13 (ekdConcat) | Concat |
HMAC Notes
If an HMAC algorithm is selected, HMACKey may optionally be set to specify the key.
TLS Notes
When set to TLS, TLSSeed and TLSLabel are required. In addition, PrependSecret and AppendSecret are not applicable.
Concat Notes
If Concat is selected, the following configuration settings are applicable:
- ConcatAlgorithmId (required)
- ConcatPartyUInfo (required)
- ConcatPartyVInfo (required)
- ConcatSuppPubInfo
- ConcatSuppPrivInfo
- ConcatHashAlgorithm
Data Type
Integer
EncryptionAlgorithm Property (ECC Class)
The encryption algorithm to use.
Syntax
ANSI (Cross Platform) int GetEncryptionAlgorithm();
int SetEncryptionAlgorithm(int iEncryptionAlgorithm); Unicode (Windows) INT GetEncryptionAlgorithm();
INT SetEncryptionAlgorithm(INT iEncryptionAlgorithm);
Possible Values
IES_AES(0),
IES_TRIPLE_DES(1),
IES_XOR(2)
int ipworksencrypt_ecc_getencryptionalgorithm(void* lpObj);
int ipworksencrypt_ecc_setencryptionalgorithm(void* lpObj, int iEncryptionAlgorithm);
int GetEncryptionAlgorithm();
int SetEncryptionAlgorithm(int iEncryptionAlgorithm);
Default Value
0
Remarks
This setting specifies the encryption algorithm to use when Encrypt is called. This must also be set before calling Decrypt to match the algorithm used during the initial encryption.
Possible values are:
- 0 (iesAES - default)
- 1 (iesTripleDES)
- 2 (iesXOR)
AES Notes
When EncryptionAlgorithm is set to iesAES, AES CBC with a default key size of 256 bits is used. To specify a different key size, set EncryptionKeySize.Data Type
Integer
HashAlgorithm Property (ECC Class)
The hash algorithm used for hash computation.
Syntax
ANSI (Cross Platform) int GetHashAlgorithm();
int SetHashAlgorithm(int iHashAlgorithm); Unicode (Windows) INT GetHashAlgorithm();
INT SetHashAlgorithm(INT iHashAlgorithm);
Possible Values
EHA_SHA1(0),
EHA_SHA224(1),
EHA_SHA256(2),
EHA_SHA384(3),
EHA_SHA512(4),
EHA_MD2(5),
EHA_MD4(6),
EHA_MD5(7),
EHA_MD5SHA1(8),
EHA_RIPEMD160(9)
int ipworksencrypt_ecc_gethashalgorithm(void* lpObj);
int ipworksencrypt_ecc_sethashalgorithm(void* lpObj, int iHashAlgorithm);
int GetHashAlgorithm();
int SetHashAlgorithm(int iHashAlgorithm);
Default Value
2
Remarks
This property specifies the hash algorithm used for hash computation. This is only applicable when calling Sign or VerifySignature and Algorithm specifies a ECDSA key (NIST, Koblitz, or Brainpool curve). Possible values are:
0 (ehaSHA1) | SHA-1 |
1 (ehaSHA224) | SHA-224 |
2 (ehaSHA256 - default) | SHA-256 |
3 (ehaSHA384) | SHA-384 |
4 (ehaSHA512) | SHA-512 |
5 (ehaMD2) | MD2 |
6 (ehaMD4) | MD4 |
7 (ehaMD5) | MD5 |
8 (ehaMD5SHA1) | MD5SHA-1 |
9 (ehaRIPEMD160) | RIPEMD-160 |
When Algorithm specifies an EdDSA key, this setting is not applicable as the hash algorithm is defined by the specification as SHA-512 for Ed25519 and SHAKE-256 for Ed448.
Data Type
Integer
HashEdDSA Property (ECC Class)
Whether to use HashEdDSA when signing with an Ed25519 or Ed448 key.
Syntax
ANSI (Cross Platform) int GetHashEdDSA();
int SetHashEdDSA(int bHashEdDSA); Unicode (Windows) BOOL GetHashEdDSA();
INT SetHashEdDSA(BOOL bHashEdDSA);
int ipworksencrypt_ecc_gethasheddsa(void* lpObj);
int ipworksencrypt_ecc_sethasheddsa(void* lpObj, int bHashEdDSA);
bool GetHashEdDSA();
int SetHashEdDSA(bool bHashEdDSA);
Default Value
FALSE
Remarks
This setting specifies whether to use the HashEdDSA algorithm when signing and verifying with Ed25519 or Ed448 keys.
If set to True, the class will use the HashEdDSA algorithm (Ed25519ph or Ed448ph) when signing and verifying. When using a HashEdDSA algorithm, the input is pre-hashed and supports a single pass over the data during the signing operation.
If set to False (default), the class will use the PureEdDSA algorithm (Ed25519 or Ed448) when signing. The PureEdDSA requires two passes over the input data but provides collision resilience. The collision resilience of PureEdDSA means that even if it is feasible to compute collisions for the hash function, the algorithm is still secure.
This property is only applicable when calling Sign and Algorithm is set to Ed25519 or Ed448.
If this property is set before calling Sign, it must be set before calling VerifySignature.
Data Type
Boolean
HashSignature Property (ECC Class)
The hash signature.
Syntax
ANSI (Cross Platform) int GetHashSignature(char* &lpHashSignature, int &lenHashSignature);
int SetHashSignature(const char* lpHashSignature, int lenHashSignature); Unicode (Windows) INT GetHashSignature(LPSTR &lpHashSignature, INT &lenHashSignature);
INT SetHashSignature(LPCSTR lpHashSignature, INT lenHashSignature);
int ipworksencrypt_ecc_gethashsignature(void* lpObj, char** lpHashSignature, int* lenHashSignature);
int ipworksencrypt_ecc_sethashsignature(void* lpObj, const char* lpHashSignature, int lenHashSignature);
QByteArray GetHashSignature();
int SetHashSignature(QByteArray qbaHashSignature);
Default Value
""
Remarks
This property holds the computed hash signature. This is populated after calling Sign. This must be set before calling VerifySignature.
Data Type
Binary String
HashValue Property (ECC Class)
The hash value of the data.
Syntax
ANSI (Cross Platform) int GetHashValue(char* &lpHashValue, int &lenHashValue);
int SetHashValue(const char* lpHashValue, int lenHashValue); Unicode (Windows) INT GetHashValue(LPSTR &lpHashValue, INT &lenHashValue);
INT SetHashValue(LPCSTR lpHashValue, INT lenHashValue);
int ipworksencrypt_ecc_gethashvalue(void* lpObj, char** lpHashValue, int* lenHashValue);
int ipworksencrypt_ecc_sethashvalue(void* lpObj, const char* lpHashValue, int lenHashValue);
QByteArray GetHashValue();
int SetHashValue(QByteArray qbaHashValue);
Default Value
""
Remarks
This property holds the computed hash value for the specified data. This is populated when calling Sign or VerifySignature when an input file is specified by setting InputFile or InputMessage.
Pre-existing hash values may be set to this property before calling Sign or VerifySignature. If you know the hash value prior to using the class, you may specify the pre-computed hash value here.
This setting is not applicable to PureEdDSA algorithms. If Algorithm is Ed25519 or Ed448 and HashEdDSA is False (default), the PureEdDSA algorithm is used and HashValue is not applicable.
Hash Notes
The class will determine whether or not to recompute the hash based on the properties that are set. If a file is specified by InputFile or InputMessage, the hash will be recomputed when calling Sign or VerifySignature. If the HashValue property is set, the class will only sign the hash or verify the hash signature. Setting InputFile or InputMessage clears the HashValue property. Setting the HashValue property clears the input file selection.
Data Type
Binary String
HMACAlgorithm Property (ECC Class)
The HMAC algorithm to use during encryption.
Syntax
ANSI (Cross Platform) int GetHMACAlgorithm();
int SetHMACAlgorithm(int iHMACAlgorithm); Unicode (Windows) INT GetHMACAlgorithm();
INT SetHMACAlgorithm(INT iHMACAlgorithm);
Possible Values
IES_HMACSHA1(0),
IES_HMACSHA224(1),
IES_HMACSHA256(2),
IES_HMACSHA384(3),
IES_HMACSHA512(4),
IES_HMACRIPEMD160(5)
int ipworksencrypt_ecc_gethmacalgorithm(void* lpObj);
int ipworksencrypt_ecc_sethmacalgorithm(void* lpObj, int iHMACAlgorithm);
int GetHMACAlgorithm();
int SetHMACAlgorithm(int iHMACAlgorithm);
Default Value
2
Remarks
This property specifies the HMAC algorithm to use when encrypting. The HMAC algorithm is used when Encrypt and Decrypt are called to protect and verify data. Possible values are:
- 0 (iesHMACSHA1)
- 1 (iesHMACSHA224)
- 2 (iesHMACSHA256 - Default)
- 3 (iesHMACSHA384)
- 4 (iesHMACSHA512)
- 5 (iesHMACRIPEMD160)
This property is only applicable when calling Encrypt or Decrypt.
Data Type
Integer
InputFile Property (ECC Class)
The file to process.
Syntax
ANSI (Cross Platform) char* GetInputFile();
int SetInputFile(const char* lpszInputFile); Unicode (Windows) LPWSTR GetInputFile();
INT SetInputFile(LPCWSTR lpszInputFile);
char* ipworksencrypt_ecc_getinputfile(void* lpObj);
int ipworksencrypt_ecc_setinputfile(void* lpObj, const char* lpszInputFile);
QString GetInputFile();
int SetInputFile(QString qsInputFile);
Default Value
""
Remarks
This property specifies the file to be processed. Set this property to the full or relative path to the file which will be processed.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- SetInputStream
- InputFile
- InputMessage
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
Data Type
String
InputMessage Property (ECC Class)
The message to process.
Syntax
ANSI (Cross Platform) int GetInputMessage(char* &lpInputMessage, int &lenInputMessage);
int SetInputMessage(const char* lpInputMessage, int lenInputMessage); Unicode (Windows) INT GetInputMessage(LPSTR &lpInputMessage, INT &lenInputMessage);
INT SetInputMessage(LPCSTR lpInputMessage, INT lenInputMessage);
int ipworksencrypt_ecc_getinputmessage(void* lpObj, char** lpInputMessage, int* lenInputMessage);
int ipworksencrypt_ecc_setinputmessage(void* lpObj, const char* lpInputMessage, int lenInputMessage);
QByteArray GetInputMessage();
int SetInputMessage(QByteArray qbaInputMessage);
Default Value
""
Remarks
This property specifies the message to be processed.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- SetInputStream
- InputFile
- InputMessage
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
Data Type
Binary String
IV Property (ECC Class)
The initialization vector (IV) used when encrypting.
Syntax
ANSI (Cross Platform) int GetIV(char* &lpIV, int &lenIV);
int SetIV(const char* lpIV, int lenIV); Unicode (Windows) INT GetIV(LPSTR &lpIV, INT &lenIV);
INT SetIV(LPCSTR lpIV, INT lenIV);
int ipworksencrypt_ecc_getiv(void* lpObj, char** lpIV, int* lenIV);
int ipworksencrypt_ecc_setiv(void* lpObj, const char* lpIV, int lenIV);
QByteArray GetIV();
int SetIV(QByteArray qbaIV);
Default Value
""
Remarks
This property optionally specifies an IV to be used when calling Encrypt or Decrypt. If specified, the IV is used by EncryptionAlgorithm during encryption.
If not specified, the class will create an IV filled with null bytes (zeros). Since the encryption key is only used once, the use of null bytes in the IV is considered acceptable and is a standard practice.
The length of the IV should be as follows:
EncryptionAlgorithm | IV Length (in bytes) |
AES | 16 |
3DES | 8 |
This setting is not applicable when EncryptionAlgorithm is set to XOR.
Data Type
Binary String
KDF Property (ECC Class)
The key derivation function used during encryption and decryption.
Syntax
ANSI (Cross Platform) char* GetKDF();
int SetKDF(const char* lpszKDF); Unicode (Windows) LPWSTR GetKDF();
INT SetKDF(LPCWSTR lpszKDF);
char* ipworksencrypt_ecc_getkdf(void* lpObj);
int ipworksencrypt_ecc_setkdf(void* lpObj, const char* lpszKDF);
QString GetKDF();
int SetKDF(QString qsKDF);
Default Value
"KDF2"
Remarks
This property specifies the key derivation function (KDF) to use when encrypting and decrypting. Possible values are:
- "KDF1"
- "KDF2" (default)
This property is only applicable when calling Encrypt or Decrypt.
Data Type
String
KDFHashAlgorithm Property (ECC Class)
The KDF hash algorithm to use when encrypting and decrypting.
Syntax
ANSI (Cross Platform) int GetKDFHashAlgorithm();
int SetKDFHashAlgorithm(int iKDFHashAlgorithm); Unicode (Windows) INT GetKDFHashAlgorithm();
INT SetKDFHashAlgorithm(INT iKDFHashAlgorithm);
Possible Values
IES_SHA1(0),
IES_SHA224(1),
IES_SHA256(2),
IES_SHA384(3),
IES_SHA512(4)
int ipworksencrypt_ecc_getkdfhashalgorithm(void* lpObj);
int ipworksencrypt_ecc_setkdfhashalgorithm(void* lpObj, int iKDFHashAlgorithm);
int GetKDFHashAlgorithm();
int SetKDFHashAlgorithm(int iKDFHashAlgorithm);
Default Value
2
Remarks
This property specifies the hash algorithm to use when deriving a key using the specified KDF. Possible values are:
- 0 (iesSHA1)
- 1 (iesSHA224)
- 2 (iesSHA256)
- 3 (iesSHA384)
- 4 (iesSHA512)
This property is only applicable when calling Encrypt or Decrypt.
Data Type
Integer
Key Property (ECC Class)
The ECC key.
Syntax
IPWorksEncryptECCKey* GetKey(); int SetKey(IPWorksEncryptECCKey* val);
int ipworksencrypt_ecc_getkeyalgorithm(void* lpObj);
int ipworksencrypt_ecc_setkeyalgorithm(void* lpObj, int iKeyAlgorithm);
int ipworksencrypt_ecc_getkeyk(void* lpObj, char** lpKeyK, int* lenKeyK);
int ipworksencrypt_ecc_setkeyk(void* lpObj, const char* lpKeyK, int lenKeyK);
char* ipworksencrypt_ecc_getkeyprivatekey(void* lpObj);
int ipworksencrypt_ecc_setkeyprivatekey(void* lpObj, const char* lpszKeyPrivateKey);
char* ipworksencrypt_ecc_getkeypublickey(void* lpObj);
int ipworksencrypt_ecc_setkeypublickey(void* lpObj, const char* lpszKeyPublicKey);
int ipworksencrypt_ecc_getkeyrx(void* lpObj, char** lpKeyRx, int* lenKeyRx);
int ipworksencrypt_ecc_setkeyrx(void* lpObj, const char* lpKeyRx, int lenKeyRx);
int ipworksencrypt_ecc_getkeyry(void* lpObj, char** lpKeyRy, int* lenKeyRy);
int ipworksencrypt_ecc_setkeyry(void* lpObj, const char* lpKeyRy, int lenKeyRy);
int ipworksencrypt_ecc_getkeyxpk(void* lpObj, char** lpKeyXPk, int* lenKeyXPk);
int ipworksencrypt_ecc_setkeyxpk(void* lpObj, const char* lpKeyXPk, int lenKeyXPk);
int ipworksencrypt_ecc_getkeyxsk(void* lpObj, char** lpKeyXSk, int* lenKeyXSk);
int ipworksencrypt_ecc_setkeyxsk(void* lpObj, const char* lpKeyXSk, int lenKeyXSk);
int GetKeyAlgorithm();
int SetKeyAlgorithm(int iKeyAlgorithm); QByteArray GetKeyK();
int SetKeyK(QByteArray qbaKeyK); QString GetKeyPrivateKey();
int SetKeyPrivateKey(QString qsKeyPrivateKey); QString GetKeyPublicKey();
int SetKeyPublicKey(QString qsKeyPublicKey); QByteArray GetKeyRx();
int SetKeyRx(QByteArray qbaKeyRx); QByteArray GetKeyRy();
int SetKeyRy(QByteArray qbaKeyRy); QByteArray GetKeyXPk();
int SetKeyXPk(QByteArray qbaKeyXPk); QByteArray GetKeyXSk();
int SetKeyXSk(QByteArray qbaKeyXSk);
Remarks
This property specifies the ECC private key. This property must be set before calling Sign or ComputeSecret.
NIST, Koblitz, and Brainpool Curve Notes
Keys for use with NIST curves (secp256r1, secp384r1, secp521r1), Koblitz curves (secp160k1, secp192k1, secp224k1, secp256k1), and Brainpool curves are made up of a number of individual parameters.
The public key consists of the following parameters:
The private key consists of one value:
Curve25519 and Curve448 Notes
Keys for use with Curve25519 or Curve448 are made up of a private key and public key field.
XPk holds the public key.
XSk holds the private key.
Data Type
OutputFile Property (ECC Class)
The output file when encrypting or decrypting.
Syntax
ANSI (Cross Platform) char* GetOutputFile();
int SetOutputFile(const char* lpszOutputFile); Unicode (Windows) LPWSTR GetOutputFile();
INT SetOutputFile(LPCWSTR lpszOutputFile);
char* ipworksencrypt_ecc_getoutputfile(void* lpObj);
int ipworksencrypt_ecc_setoutputfile(void* lpObj, const char* lpszOutputFile);
QString GetOutputFile();
int SetOutputFile(QString qsOutputFile);
Default Value
""
Remarks
This property specifies the file to which the output will be written when Encrypt or Decrypt is called. This may be set to an absolute or relative path.
This property is only applicable to Encrypt and Decrypt.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
Data Type
String
OutputMessage Property (ECC Class)
The output message when encrypting or decrypting.
Syntax
ANSI (Cross Platform) int GetOutputMessage(char* &lpOutputMessage, int &lenOutputMessage); Unicode (Windows) INT GetOutputMessage(LPSTR &lpOutputMessage, INT &lenOutputMessage);
int ipworksencrypt_ecc_getoutputmessage(void* lpObj, char** lpOutputMessage, int* lenOutputMessage);
QByteArray GetOutputMessage();
Default Value
""
Remarks
This property will be populated with the output after calling Encrypt or Decrypt if OutputFile is not set.
This property is only applicable to Encrypt and Decrypt.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
This property is read-only and not available at design time.
Data Type
Binary String
Overwrite Property (ECC Class)
Indicates whether or not the class should overwrite files.
Syntax
ANSI (Cross Platform) int GetOverwrite();
int SetOverwrite(int bOverwrite); Unicode (Windows) BOOL GetOverwrite();
INT SetOverwrite(BOOL bOverwrite);
int ipworksencrypt_ecc_getoverwrite(void* lpObj);
int ipworksencrypt_ecc_setoverwrite(void* lpObj, int bOverwrite);
bool GetOverwrite();
int SetOverwrite(bool bOverwrite);
Default Value
FALSE
Remarks
This property indicates whether or not the class will overwrite OutputFile. If Overwrite is False, an error will be thrown whenever OutputFile exists before an operation. The default value is False.
Data Type
Boolean
RecipientCert Property (ECC Class)
The certificate used for encryption and computing a shared secret.
Syntax
IPWorksEncryptCertificate* GetRecipientCert(); int SetRecipientCert(IPWorksEncryptCertificate* val);
char* ipworksencrypt_ecc_getrecipientcerteffectivedate(void* lpObj);
char* ipworksencrypt_ecc_getrecipientcertexpirationdate(void* lpObj);
char* ipworksencrypt_ecc_getrecipientcertextendedkeyusage(void* lpObj);
char* ipworksencrypt_ecc_getrecipientcertfingerprint(void* lpObj);
char* ipworksencrypt_ecc_getrecipientcertfingerprintsha1(void* lpObj);
char* ipworksencrypt_ecc_getrecipientcertfingerprintsha256(void* lpObj);
char* ipworksencrypt_ecc_getrecipientcertissuer(void* lpObj);
char* ipworksencrypt_ecc_getrecipientcertprivatekey(void* lpObj);
int ipworksencrypt_ecc_getrecipientcertprivatekeyavailable(void* lpObj);
char* ipworksencrypt_ecc_getrecipientcertprivatekeycontainer(void* lpObj);
char* ipworksencrypt_ecc_getrecipientcertpublickey(void* lpObj);
char* ipworksencrypt_ecc_getrecipientcertpublickeyalgorithm(void* lpObj);
int ipworksencrypt_ecc_getrecipientcertpublickeylength(void* lpObj);
char* ipworksencrypt_ecc_getrecipientcertserialnumber(void* lpObj);
char* ipworksencrypt_ecc_getrecipientcertsignaturealgorithm(void* lpObj);
int ipworksencrypt_ecc_getrecipientcertstore(void* lpObj, char** lpRecipientCertStore, int* lenRecipientCertStore);
int ipworksencrypt_ecc_setrecipientcertstore(void* lpObj, const char* lpRecipientCertStore, int lenRecipientCertStore);
char* ipworksencrypt_ecc_getrecipientcertstorepassword(void* lpObj);
int ipworksencrypt_ecc_setrecipientcertstorepassword(void* lpObj, const char* lpszRecipientCertStorePassword);
int ipworksencrypt_ecc_getrecipientcertstoretype(void* lpObj);
int ipworksencrypt_ecc_setrecipientcertstoretype(void* lpObj, int iRecipientCertStoreType);
char* ipworksencrypt_ecc_getrecipientcertsubjectaltnames(void* lpObj);
char* ipworksencrypt_ecc_getrecipientcertthumbprintmd5(void* lpObj);
char* ipworksencrypt_ecc_getrecipientcertthumbprintsha1(void* lpObj);
char* ipworksencrypt_ecc_getrecipientcertthumbprintsha256(void* lpObj);
char* ipworksencrypt_ecc_getrecipientcertusage(void* lpObj);
int ipworksencrypt_ecc_getrecipientcertusageflags(void* lpObj);
char* ipworksencrypt_ecc_getrecipientcertversion(void* lpObj);
char* ipworksencrypt_ecc_getrecipientcertsubject(void* lpObj);
int ipworksencrypt_ecc_setrecipientcertsubject(void* lpObj, const char* lpszRecipientCertSubject);
int ipworksencrypt_ecc_getrecipientcertencoded(void* lpObj, char** lpRecipientCertEncoded, int* lenRecipientCertEncoded);
int ipworksencrypt_ecc_setrecipientcertencoded(void* lpObj, const char* lpRecipientCertEncoded, int lenRecipientCertEncoded);
QString GetRecipientCertEffectiveDate(); QString GetRecipientCertExpirationDate(); QString GetRecipientCertExtendedKeyUsage(); QString GetRecipientCertFingerprint(); QString GetRecipientCertFingerprintSHA1(); QString GetRecipientCertFingerprintSHA256(); QString GetRecipientCertIssuer(); QString GetRecipientCertPrivateKey(); bool GetRecipientCertPrivateKeyAvailable(); QString GetRecipientCertPrivateKeyContainer(); QString GetRecipientCertPublicKey(); QString GetRecipientCertPublicKeyAlgorithm(); int GetRecipientCertPublicKeyLength(); QString GetRecipientCertSerialNumber(); QString GetRecipientCertSignatureAlgorithm(); QByteArray GetRecipientCertStore();
int SetRecipientCertStore(QByteArray qbaRecipientCertStore); QString GetRecipientCertStorePassword();
int SetRecipientCertStorePassword(QString qsRecipientCertStorePassword); int GetRecipientCertStoreType();
int SetRecipientCertStoreType(int iRecipientCertStoreType); QString GetRecipientCertSubjectAltNames(); QString GetRecipientCertThumbprintMD5(); QString GetRecipientCertThumbprintSHA1(); QString GetRecipientCertThumbprintSHA256(); QString GetRecipientCertUsage(); int GetRecipientCertUsageFlags(); QString GetRecipientCertVersion(); QString GetRecipientCertSubject();
int SetRecipientCertSubject(QString qsRecipientCertSubject); QByteArray GetRecipientCertEncoded();
int SetRecipientCertEncoded(QByteArray qbaRecipientCertEncoded);
Remarks
This property specifies a certificate for encryption and computing a shared secret.
This may be set instead of RecipientKey, allowing a Certificate object to be used instead of a ECCKey object. This certificate is used when calling Encrypt and ComputeSecret.
If both this property and RecipientKey are specified, RecipientKey will be used and this property will be ignored.
Data Type
RecipientKey Property (ECC Class)
The public key used to compute the shared secret.
Syntax
IPWorksEncryptECCKey* GetRecipientKey(); int SetRecipientKey(IPWorksEncryptECCKey* val);
int ipworksencrypt_ecc_getrecipientkeyalgorithm(void* lpObj);
int ipworksencrypt_ecc_setrecipientkeyalgorithm(void* lpObj, int iRecipientKeyAlgorithm);
char* ipworksencrypt_ecc_getrecipientkeypublickey(void* lpObj);
int ipworksencrypt_ecc_setrecipientkeypublickey(void* lpObj, const char* lpszRecipientKeyPublicKey);
int ipworksencrypt_ecc_getrecipientkeyrx(void* lpObj, char** lpRecipientKeyRx, int* lenRecipientKeyRx);
int ipworksencrypt_ecc_setrecipientkeyrx(void* lpObj, const char* lpRecipientKeyRx, int lenRecipientKeyRx);
int ipworksencrypt_ecc_getrecipientkeyry(void* lpObj, char** lpRecipientKeyRy, int* lenRecipientKeyRy);
int ipworksencrypt_ecc_setrecipientkeyry(void* lpObj, const char* lpRecipientKeyRy, int lenRecipientKeyRy);
int ipworksencrypt_ecc_getrecipientkeyxpk(void* lpObj, char** lpRecipientKeyXPk, int* lenRecipientKeyXPk);
int ipworksencrypt_ecc_setrecipientkeyxpk(void* lpObj, const char* lpRecipientKeyXPk, int lenRecipientKeyXPk);
int GetRecipientKeyAlgorithm();
int SetRecipientKeyAlgorithm(int iRecipientKeyAlgorithm); QString GetRecipientKeyPublicKey();
int SetRecipientKeyPublicKey(QString qsRecipientKeyPublicKey); QByteArray GetRecipientKeyRx();
int SetRecipientKeyRx(QByteArray qbaRecipientKeyRx); QByteArray GetRecipientKeyRy();
int SetRecipientKeyRy(QByteArray qbaRecipientKeyRy); QByteArray GetRecipientKeyXPk();
int SetRecipientKeyXPk(QByteArray qbaRecipientKeyXPk);
Remarks
This property specifies the public key used to compute the shared secret. If RecipientCert is not specified, this must be set before calling ComputeSecret.
Data Type
SharedSecret Property (ECC Class)
The computed shared secret.
Syntax
Default Value
""
Remarks
This property holds the shared secret computed by ComputeSecret.
This property is read-only.
Data Type
Binary String
SignerCert Property (ECC Class)
The certificate used for signature verification.
Syntax
IPWorksEncryptCertificate* GetSignerCert(); int SetSignerCert(IPWorksEncryptCertificate* val);
char* ipworksencrypt_ecc_getsignercerteffectivedate(void* lpObj);
char* ipworksencrypt_ecc_getsignercertexpirationdate(void* lpObj);
char* ipworksencrypt_ecc_getsignercertextendedkeyusage(void* lpObj);
char* ipworksencrypt_ecc_getsignercertfingerprint(void* lpObj);
char* ipworksencrypt_ecc_getsignercertfingerprintsha1(void* lpObj);
char* ipworksencrypt_ecc_getsignercertfingerprintsha256(void* lpObj);
char* ipworksencrypt_ecc_getsignercertissuer(void* lpObj);
char* ipworksencrypt_ecc_getsignercertprivatekey(void* lpObj);
int ipworksencrypt_ecc_getsignercertprivatekeyavailable(void* lpObj);
char* ipworksencrypt_ecc_getsignercertprivatekeycontainer(void* lpObj);
char* ipworksencrypt_ecc_getsignercertpublickey(void* lpObj);
char* ipworksencrypt_ecc_getsignercertpublickeyalgorithm(void* lpObj);
int ipworksencrypt_ecc_getsignercertpublickeylength(void* lpObj);
char* ipworksencrypt_ecc_getsignercertserialnumber(void* lpObj);
char* ipworksencrypt_ecc_getsignercertsignaturealgorithm(void* lpObj);
int ipworksencrypt_ecc_getsignercertstore(void* lpObj, char** lpSignerCertStore, int* lenSignerCertStore);
int ipworksencrypt_ecc_setsignercertstore(void* lpObj, const char* lpSignerCertStore, int lenSignerCertStore);
char* ipworksencrypt_ecc_getsignercertstorepassword(void* lpObj);
int ipworksencrypt_ecc_setsignercertstorepassword(void* lpObj, const char* lpszSignerCertStorePassword);
int ipworksencrypt_ecc_getsignercertstoretype(void* lpObj);
int ipworksencrypt_ecc_setsignercertstoretype(void* lpObj, int iSignerCertStoreType);
char* ipworksencrypt_ecc_getsignercertsubjectaltnames(void* lpObj);
char* ipworksencrypt_ecc_getsignercertthumbprintmd5(void* lpObj);
char* ipworksencrypt_ecc_getsignercertthumbprintsha1(void* lpObj);
char* ipworksencrypt_ecc_getsignercertthumbprintsha256(void* lpObj);
char* ipworksencrypt_ecc_getsignercertusage(void* lpObj);
int ipworksencrypt_ecc_getsignercertusageflags(void* lpObj);
char* ipworksencrypt_ecc_getsignercertversion(void* lpObj);
char* ipworksencrypt_ecc_getsignercertsubject(void* lpObj);
int ipworksencrypt_ecc_setsignercertsubject(void* lpObj, const char* lpszSignerCertSubject);
int ipworksencrypt_ecc_getsignercertencoded(void* lpObj, char** lpSignerCertEncoded, int* lenSignerCertEncoded);
int ipworksencrypt_ecc_setsignercertencoded(void* lpObj, const char* lpSignerCertEncoded, int lenSignerCertEncoded);
QString GetSignerCertEffectiveDate(); QString GetSignerCertExpirationDate(); QString GetSignerCertExtendedKeyUsage(); QString GetSignerCertFingerprint(); QString GetSignerCertFingerprintSHA1(); QString GetSignerCertFingerprintSHA256(); QString GetSignerCertIssuer(); QString GetSignerCertPrivateKey(); bool GetSignerCertPrivateKeyAvailable(); QString GetSignerCertPrivateKeyContainer(); QString GetSignerCertPublicKey(); QString GetSignerCertPublicKeyAlgorithm(); int GetSignerCertPublicKeyLength(); QString GetSignerCertSerialNumber(); QString GetSignerCertSignatureAlgorithm(); QByteArray GetSignerCertStore();
int SetSignerCertStore(QByteArray qbaSignerCertStore); QString GetSignerCertStorePassword();
int SetSignerCertStorePassword(QString qsSignerCertStorePassword); int GetSignerCertStoreType();
int SetSignerCertStoreType(int iSignerCertStoreType); QString GetSignerCertSubjectAltNames(); QString GetSignerCertThumbprintMD5(); QString GetSignerCertThumbprintSHA1(); QString GetSignerCertThumbprintSHA256(); QString GetSignerCertUsage(); int GetSignerCertUsageFlags(); QString GetSignerCertVersion(); QString GetSignerCertSubject();
int SetSignerCertSubject(QString qsSignerCertSubject); QByteArray GetSignerCertEncoded();
int SetSignerCertEncoded(QByteArray qbaSignerCertEncoded);
Remarks
This property specifies a certificate for signature verification.
This may be set instead of SignerKey, allowing a Certificate object to be used instead of a ECCKey object. This certificate is used when calling VerifySignature.
If both this property and SignerKey are specified, SignerKey will be used and this property will be ignored.
Data Type
SignerKey Property (ECC Class)
The public key used to verify the signature.
Syntax
IPWorksEncryptECCKey* GetSignerKey(); int SetSignerKey(IPWorksEncryptECCKey* val);
int ipworksencrypt_ecc_getsignerkeyalgorithm(void* lpObj);
int ipworksencrypt_ecc_setsignerkeyalgorithm(void* lpObj, int iSignerKeyAlgorithm);
char* ipworksencrypt_ecc_getsignerkeypublickey(void* lpObj);
int ipworksencrypt_ecc_setsignerkeypublickey(void* lpObj, const char* lpszSignerKeyPublicKey);
int ipworksencrypt_ecc_getsignerkeyrx(void* lpObj, char** lpSignerKeyRx, int* lenSignerKeyRx);
int ipworksencrypt_ecc_setsignerkeyrx(void* lpObj, const char* lpSignerKeyRx, int lenSignerKeyRx);
int ipworksencrypt_ecc_getsignerkeyry(void* lpObj, char** lpSignerKeyRy, int* lenSignerKeyRy);
int ipworksencrypt_ecc_setsignerkeyry(void* lpObj, const char* lpSignerKeyRy, int lenSignerKeyRy);
int ipworksencrypt_ecc_getsignerkeyxpk(void* lpObj, char** lpSignerKeyXPk, int* lenSignerKeyXPk);
int ipworksencrypt_ecc_setsignerkeyxpk(void* lpObj, const char* lpSignerKeyXPk, int lenSignerKeyXPk);
int GetSignerKeyAlgorithm();
int SetSignerKeyAlgorithm(int iSignerKeyAlgorithm); QString GetSignerKeyPublicKey();
int SetSignerKeyPublicKey(QString qsSignerKeyPublicKey); QByteArray GetSignerKeyRx();
int SetSignerKeyRx(QByteArray qbaSignerKeyRx); QByteArray GetSignerKeyRy();
int SetSignerKeyRy(QByteArray qbaSignerKeyRy); QByteArray GetSignerKeyXPk();
int SetSignerKeyXPk(QByteArray qbaSignerKeyXPk);
Remarks
This property specifies the public key used to verify the signature. This public key corresponds to the private key used when creating the signature. This must be set before calling VerifySignature.
Data Type
UseHex Property (ECC Class)
Whether binary values are hex encoded.
Syntax
ANSI (Cross Platform) int GetUseHex();
int SetUseHex(int bUseHex); Unicode (Windows) BOOL GetUseHex();
INT SetUseHex(BOOL bUseHex);
int ipworksencrypt_ecc_getusehex(void* lpObj);
int ipworksencrypt_ecc_setusehex(void* lpObj, int bUseHex);
bool GetUseHex();
int SetUseHex(bool bUseHex);
Default Value
FALSE
Remarks
This setting specifies whether various calculated values are hex encoded. If set to False (default), all data is provided as-is with no encoding.
If set to True, certain properties are hex encoded when populated for ease of display, transport, and storage.
Compute Secret Notes
This property specifies whether SharedSecret is hex encoded when ComputeSecret is called.
Sign and Verify Notes
This property specifies whether HashValue and HashSignature are hex encoded.
If set to True, when Sign is called the class will compute the hash for the specified file and populate HashValue with the hex encoded hash value. It will then create the hash signature and populate HashSignature with the hex encoded hash signature value. If HashValue is specified directly, it must be a hex encoded value.
If set to True, when VerifySignature is called the class will compute the hash value for the specified file and populate HashValue with the hex encoded hash value. It will then hex decode HashSignature and verify the signature. HashSignature must hold a hex encoded value. If HashValue is specified directly, it must be a hex encoded value.
Encrypt and Decrypt Notes
If set to True, when Encrypt is called the class will perform the encryption as normal and then hex encode the output. OutputMessage or OutputFile will hold hex encoded data.
If set to True, when Decrypt is called the class will expect InputMessage or InputFile to hold hex encoded data. The class will then hex decode the data and perform decryption as normal.
Data Type
Boolean
ComputeSecret Method (ECC Class)
Computes a shared secret.
Syntax
ANSI (Cross Platform) int ComputeSecret(); Unicode (Windows) INT ComputeSecret();
int ipworksencrypt_ecc_computesecret(void* lpObj);
int ComputeSecret();
Remarks
This method computes a shared secret using Elliptic Curve Diffie Hellman (ECDH).
When this method is called, the class will use the public key specified by PublicKey and the private key specified by Key to compute a shared secret, or secret agreement. The ComputeSecretKDF property specifies the Hash or HMAC algorithm that is applied to the raw secret. The resulting value is held by SharedSecret. The following properties are applicable when calling this method:
- Key (required)
- PublicKey (required)
- ComputeSecretKDF (optional)
See ComputeSecretKDF for details on advanced settings that may be applicable for the chosen algorithm.
Keys created with the Ed25519 and Ed448 algorithms are not supported when calling this method.
Compute Secret Example
//Create a key for Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("X25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Create a key for Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("X25519");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Note: the public keys must be exchanged between parties by some mechanism
//Create the shared secret on Party 1
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv; //Private key of this party
ecc1.RecipientKey.PublicKey = ecc2_pub; //Public key of other party
ecc1.UseHex = true; //Hex encodes the shared secret bytes for easier display/storage
ecc1.ComputeSecret();
Console.WriteLine(ecc1.SharedSecret);
//Create the shared secret on Party 2
ecc2.Reset();
ecc2.Key.PrivateKey = ecc2_priv; //Private key of this party
ecc2.RecipientKey.PublicKey = ecc1_pub; //Public key of other party
ecc2.UseHex = true; //Hex encodes the shared secret bytes for easier display/storage
ecc2.ComputeSecret();
Console.WriteLine(ecc2.SharedSecret); //This will match the shared secret created by ecc1.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Config Method (ECC Class)
Sets or retrieves a configuration setting.
Syntax
ANSI (Cross Platform) char* Config(const char* lpszConfigurationString); Unicode (Windows) LPWSTR Config(LPCWSTR lpszConfigurationString);
char* ipworksencrypt_ecc_config(void* lpObj, const char* lpszConfigurationString);
QString Config(const QString& qsConfigurationString);
Remarks
Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
CreateKey Method (ECC Class)
Creates a new key.
Syntax
ANSI (Cross Platform) int CreateKey(const char* lpszKeyAlgorithm); Unicode (Windows) INT CreateKey(LPCWSTR lpszKeyAlgorithm);
int ipworksencrypt_ecc_createkey(void* lpObj, const char* lpszKeyAlgorithm);
int CreateKey(const QString& qsKeyAlgorithm);
Remarks
CreateKey creates a new public and private key.
When this method is called, Key is populated with the generated key. The PublicKey and PrivateKey fields hold the PEM formatted public and private key for ease of use. This is helpful for storing or transporting keys more easily.
The KeyAlgorithm parameter specifies the algorithm for which the key is intended to be used. Possible values are:
NIST, Koblitz, and Brainpool Curve Notes
Keys for use with NIST curves (secp256r1, secp384r1, secp521r1), Koblitz curves (secp160k1, secp192k1, secp224k1, secp256k1), and Brainpool curves are made up of a number of individual parameters.
The public key consists of the following parameters:
The private key consists of one value:
Curve25519 and Curve448 Notes
Keys for use with Curve25519 or Curve448 are made up of a private key and public key field.
XPk holds the public key.
XSk holds the private key.
Create Key Example (secp256r1 - PEM)
//Create a key using secp256r1
Ecc ecc = new Ecc();
ecc.CreateKey("secp256r1");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
string privKey = ecc.Key.PrivateKey; //PEM formatted key
string pubKey = ecc.Key.PublicKey; //PEM formatted key
//Load the saved key
ecc.Reset();
ecc.Key.PublicKey = pubKey;
ecc.Key.PrivateKey = privKey;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
Create Key Example (secp256r1 - Raw Key Params)
//Create a key using secp256r1 and store/load the key using the individual params
Ecc ecc = new Ecc();
ecc.CreateKey("secp256r1");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
byte[] K = ecc.Key.KB; //Private key param
byte[] Rx = ecc.Key.RxB; //Public key param
byte[] Ry = ecc.Key.RyB; //Public key param
//Load the saved key
ecc.Reset();
ecc.Key.Algorithm = ECAlgorithms.eaSecp256r1; //This MUST be set manually when using key params directly
ecc.Key.KB = K;
ecc.Key.RxB = Rx;
ecc.Key.RyB = Ry;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
Create Key Example (Ed25519 - PEM)
//Create a key using Ed25519
Ecc ecc = new Ecc();
ecc.CreateKey("Ed25519");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
string privKey = ecc.Key.PrivateKey; //PEM formatted key
string pubKey = ecc.Key.PublicKey; //PEM formatted key
//Load the saved key
ecc.Reset();
ecc.Key.PublicKey = pubKey;
ecc.Key.PrivateKey = privKey;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
Create Key Example (Ed25519 - Raw Key Params)
//Create a key using Ed25519 and store/load the key using the individual params
Ecc ecc = new Ecc();
ecc.CreateKey("Ed25519");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
byte[] XPk = ecc.Key.XPkB; //Public key data
byte[] XSk = ecc.Key.XSkB; //Secret key data
//Load the saved key
ecc.Reset();
ecc.Key.Algorithm = ECAlgorithms.eaEd25519; //This MUST be set manually when using key params directly
ecc.Key.XPkB = XPk;
ecc.Key.XSkB = XSk;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Decrypt Method (ECC Class)
Decrypted the specified data.
Syntax
ANSI (Cross Platform) int Decrypt(); Unicode (Windows) INT Decrypt();
int ipworksencrypt_ecc_decrypt(void* lpObj);
int Decrypt();
Remarks
Decrypt decrypts the specified data with the ECDSA private key specified in Key.
Decryption is performed using ECIES which requires an ECDSA key. Key must contain an ECDSA key. Algorithm is used to determine the eligibility of the key for this operation. Supported algorithms for encryption are:
- NIST Curves (secp256r1, secp384r1, secp521r1)
- Koblitz Curves (secp160k1, secp192k1, secp224k1, secp256k1)
- Brainpool Curves
See CreateKey for details about key creation and algorithms.
When this method is called, the class will decrypt the specified data using ECIES and the decrypted data will be output. If the input data was originally hex encoded, set UseHex to True.
The following properties are applicable when calling this method:
- EncryptionAlgorithm
- HMACAlgorithm
- HMACOptionalInfo
- HMACKeySize
- IV
- KDF
- KDFHashAlgorithm
- KDFOptionalInfo
- UseHex
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
Encrypt and Decrypt Example
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (AES with IV)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
//Use an IV (16 bytes for AES) - In a real environment this should be random
byte[] IV = new byte[] { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F };
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc1.IVB = IV;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message and the IV to Party 2
//Decrypt the message using the private key for Party 2 and the IV
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc2.IVB = IV;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (XOR Encryption Algorithm)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (KDF Options)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.KDF = "KDF1"; //Use KDF1
ecc1.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc1.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f"); //Hex encoded string
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.KDF = "KDF1";
ecc2.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc2.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f");
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Encrypt Method (ECC Class)
Encrypts the specified data.
Syntax
ANSI (Cross Platform) int Encrypt(); Unicode (Windows) INT Encrypt();
int ipworksencrypt_ecc_encrypt(void* lpObj);
int Encrypt();
Remarks
Encrypt encrypts the specified data with the ECDSA public key specified in RecipientKey.
Encryption is performed using ECIES which requires an ECDSA key. RecipientKey must contain an ECDSA key. Algorithm is used to determine the eligibility of the key for this operation. Supported algorithms for encryption are:
- NIST Curves (secp256r1, secp384r1, secp521r1)
- Koblitz Curves (secp160k1, secp192k1, secp224k1, secp256k1)
- Brainpool Curves
See CreateKey for details about key creation and algorithms.
When this method is called, the class will encrypt the specified data using ECIES and the encrypted data will be output. To hex encode the output, set UseHex to True.
The following properties are applicable when calling this method:
- EncryptionAlgorithm
- HMACAlgorithm
- HMACOptionalInfo
- HMACKeySize
- IV
- KDF
- KDFHashAlgorithm
- KDFOptionalInfo
- UseHex
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
Encrypt and Decrypt Example
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (AES with IV)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
//Use an IV (16 bytes for AES) - In a real environment this should be random
byte[] IV = new byte[] { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F };
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc1.IVB = IV;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message and the IV to Party 2
//Decrypt the message using the private key for Party 2 and the IV
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc2.IVB = IV;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (XOR Encryption Algorithm)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (KDF Options)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.KDF = "KDF1"; //Use KDF1
ecc1.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc1.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f"); //Hex encoded string
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.KDF = "KDF1";
ecc2.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc2.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f");
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Reset Method (ECC Class)
Resets the class.
Syntax
ANSI (Cross Platform) int Reset(); Unicode (Windows) INT Reset();
int ipworksencrypt_ecc_reset(void* lpObj);
int Reset();
Remarks
When called, the class will reset all of its properties to their default values.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SetInputStream Method (ECC Class)
Sets the stream from which the class will read data to encrypt or decrypt.
Syntax
ANSI (Cross Platform) int SetInputStream(IPWorksEncryptStream* sInputStream); Unicode (Windows) INT SetInputStream(IPWorksEncryptStream* sInputStream);
int ipworksencrypt_ecc_setinputstream(void* lpObj, IPWorksEncryptStream* sInputStream);
int SetInputStream(IPWorksEncryptStream* sInputStream);
Remarks
This method sets the stream from which the class will read data to encrypt or decrypt.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- SetInputStream
- InputFile
- InputMessage
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SetOutputStream Method (ECC Class)
Sets the stream to which the class will write encrypted or decrypted data.
Syntax
ANSI (Cross Platform) int SetOutputStream(IPWorksEncryptStream* sOutputStream); Unicode (Windows) INT SetOutputStream(IPWorksEncryptStream* sOutputStream);
int ipworksencrypt_ecc_setoutputstream(void* lpObj, IPWorksEncryptStream* sOutputStream);
int SetOutputStream(IPWorksEncryptStream* sOutputStream);
Remarks
This method sets the stream to which the class will write encrypted or decrypted data.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Sign Method (ECC Class)
Creates a hash signature using ECDSA or EdDSA.
Syntax
ANSI (Cross Platform) int Sign(); Unicode (Windows) INT Sign();
int ipworksencrypt_ecc_sign(void* lpObj);
int Sign();
Remarks
Sign will create a hash signature using ECDSA or EdDSA. The class will use the key specified by Key to hash the input data and sign the resulting hash.
Key must contain a private key created with a valid ECDSA or EdDSA algorithm. Algorithm is used to determine the eligibility of the key for this operation. Supported algorithms for signing are:
- NIST Curves (secp256r1, secp384r1, secp521r1)
- Koblitz Curves (secp160k1, secp192k1, secp224k1, secp256k1)
- Brainpool Curves
- Ed25519 and Ed448
See CreateKey for details about key creation and algorithms.
When this method is called, data will be read from the InputFile or InputMessage.
The hash to be signed will be computed using the specified HashAlgorithm. The computed hash is stored in the HashValue property. The signed hash is stored in the HashSignature property.
To sign a hash without first computing it, set HashValue to a previously computed hash for the input data. Note: HashValue is not applicable when signing with a PureEdDSA algorithm such as Ed25519 or Ed448.
The Progress event will fire with updates for the hash computation progress only. The hash signature creation process is quick and does not require progress updates.
After calling Sign, the public key must be sent to the recipient along with HashSignature and the original input data so the other party may perform signature verification.
The following properties are applicable when calling this method:
- Key (required)
- HashAlgorithm (applicable to ECDSA only)
- HashEdDSA (applicable to EdDSA only)
- HashValue (not applicable to PureEdDSA)
- UseHex
The following properties are populated after calling this method:
When the Algorithm is Ed25519 or Ed448, the following additional parameters are applicable:
EdDSA keys can be used with a PureEdDSA algorithm (Ed25519/Ed448) or a HashEdDSA (Ed25519ph, Ed448ph) algorithm. This is controlled by the HashEdDSA property. By default, the class uses the PureEdDSA algorithm.
The PureEdDSA algorithm requires two passes over the input data but provides collision resilience. The collision resilience of PureEdDSA means that even if it is feasible to compute collisions for the hash function, the algorithm is still secure. When using PureEdDSA, HashValue is not applicable.
When using a HashEdDSA algorithm, the input is pre-hashed and supports a single pass over the data during the signing operation. To enable HashEdDSA, set HashEdDSA to True.
To specify context data when using Ed25519 or Ed448, set EdDSAContext.
Sign And Verify Example (ECDSA)
//Create an ECDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("secp256r1");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - PureEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - HashEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.HashEdDSA = true; //Use "ed25519ph"
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.HashEdDSA = true;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
VerifySignature Method (ECC Class)
Verifies the signature for the specified data.
Syntax
ANSI (Cross Platform) bool VerifySignature(); Unicode (Windows) INT VerifySignature();
bool ipworksencrypt_ecc_verifysignature(void* lpObj);
bool VerifySignature();
Remarks
VerifySignature will verify a hash signature and return True if successful or False otherwise.
Before calling this method, specify the input file by setting InputFile or InputMessage.
A public key and the hash signature are required to perform the signature verification. Specify the public key in SignerKey. Specify the hash signature in HashSignature.
When this method is called, the class will compute the hash for the specified file and populate HashValue. It will verify the signature using the specified SignerKey and HashSignature.
To verify the hash signature without first computing the hash, simply specify HashValue before calling this method. Note: HashValue is not applicable when the message was signed with a PureEdDSA algorithm such as Ed25519 or Ed448.
The Progress event will fire with updates for the hash computation progress only. The hash signature verification process is quick and does not require progress updates.
The following properties are applicable when calling this method:
- HashSignature (required)
- SignerKey (required)
- EdDSAContext (applicable to EdDSA only)
- HashAlgorithm (applicable to ECDSA only)
- HashEdDSA (applicable to EdDSA only)
- HashValue (not applicable to PureEdDSA)
- UseHex
Sign And Verify Example (ECDSA)
//Create an ECDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("secp256r1");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - PureEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - HashEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.HashEdDSA = true; //Use "ed25519ph"
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.HashEdDSA = true;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Error Handling (C++)
This method returns a Boolean value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
Error Event (ECC Class)
Fired when information is available about errors during data delivery.
Syntax
ANSI (Cross Platform) virtual int FireError(ECCErrorEventParams *e);
typedef struct {
int ErrorCode;
const char *Description; int reserved; } ECCErrorEventParams;
Unicode (Windows) virtual INT FireError(ECCErrorEventParams *e);
typedef struct {
INT ErrorCode;
LPCWSTR Description; INT reserved; } ECCErrorEventParams;
#define EID_ECC_ERROR 1 virtual INT IPWORKSENCRYPT_CALL FireError(INT &iErrorCode, LPSTR &lpszDescription);
class ECCErrorEventParams { public: int ErrorCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Error(ECCErrorEventParams *e);
// Or, subclass ECC and override this emitter function. virtual int FireError(ECCErrorEventParams *e) {...}
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
Progress Event (ECC Class)
Fired as progress is made.
Syntax
ANSI (Cross Platform) virtual int FireProgress(ECCProgressEventParams *e);
typedef struct {
int64 BytesProcessed;
int PercentProcessed; int reserved; } ECCProgressEventParams;
Unicode (Windows) virtual INT FireProgress(ECCProgressEventParams *e);
typedef struct {
LONG64 BytesProcessed;
INT PercentProcessed; INT reserved; } ECCProgressEventParams;
#define EID_ECC_PROGRESS 2 virtual INT IPWORKSENCRYPT_CALL FireProgress(LONG64 &lBytesProcessed, INT &iPercentProcessed);
class ECCProgressEventParams { public: qint64 BytesProcessed(); int PercentProcessed(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Progress(ECCProgressEventParams *e);
// Or, subclass ECC and override this emitter function. virtual int FireProgress(ECCProgressEventParams *e) {...}
Remarks
This event is fired automatically as data is processed by the class.
The PercentProcessed parameter indicates the current status of the operation.
The BytesProcessed parameter holds the total number of bytes processed so far.
Certificate Type
This is the digital certificate being used.
Syntax
IPWorksEncryptCertificate (declared in ipworksencrypt.h)
Remarks
This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.
Fields
EffectiveDate
char* (read-only)
Default Value: ""
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
ExpirationDate
char* (read-only)
Default Value: ""
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
ExtendedKeyUsage
char* (read-only)
Default Value: ""
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
Fingerprint
char* (read-only)
Default Value: ""
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
FingerprintSHA1
char* (read-only)
Default Value: ""
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
FingerprintSHA256
char* (read-only)
Default Value: ""
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
Issuer
char* (read-only)
Default Value: ""
The issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.
PrivateKey
char* (read-only)
Default Value: ""
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.
PrivateKeyAvailable
int (read-only)
Default Value: FALSE
Whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).
PrivateKeyContainer
char* (read-only)
Default Value: ""
The name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.
PublicKey
char* (read-only)
Default Value: ""
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
PublicKeyAlgorithm
char* (read-only)
Default Value: ""
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
PublicKeyLength
int (read-only)
Default Value: 0
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
SerialNumber
char* (read-only)
Default Value: ""
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
SignatureAlgorithm
char* (read-only)
Default Value: ""
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
Store
char*
Default Value: "MY"
The name of the certificate store for the client certificate.
The StoreType field denotes the type of the certificate store specified by Store. If the store is password-protected, specify the password in StorePassword.
Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
StorePassword
char*
Default Value: ""
If the type of certificate store requires a password, this field is used to specify the password needed to open the certificate store.
StoreType
int
Default Value: 0
The type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This field can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
SubjectAltNames
char* (read-only)
Default Value: ""
Comma-separated lists of alternative subject names for the certificate.
ThumbprintMD5
char* (read-only)
Default Value: ""
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA1
char* (read-only)
Default Value: ""
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA256
char* (read-only)
Default Value: ""
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
Usage
char* (read-only)
Default Value: ""
The text description of UsageFlags.
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
UsageFlags
int (read-only)
Default Value: 0
The flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the Usage field for a text representation of UsageFlags.
This functionality currently is not available when the provider is OpenSSL.
Version
char* (read-only)
Default Value: ""
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
Subject
char*
Default Value: ""
The subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the field is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Encoded
char*
Default Value: ""
The certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.
When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.
Constructors
Certificate()
Creates a instance whose properties can be set. This is useful for use with when generating new certificates.
Certificate(const char* lpEncoded, int lenEncoded)
Parses Encoded as an X.509 public key.
Certificate(int iStoreType, const char* lpStore, int lenStore, const char* lpszStorePassword, const char* lpszSubject)
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.
After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.
ECCKey Type
Contains the parameters for the ECC algorithm.
Syntax
IPWorksEncryptECCKey (declared in ipworksencrypt.h)
Remarks
This type is made up of fields that represent the private and public key parameters used by the ECC operations. The PrivateKey and PublicKey parameters hold a PEM formatted value for easy transport and storage of keys.
NIST, Koblitz, and Brainpool Curve Notes
Keys for use with NIST curves (secp256r1, secp384r1, secp521r1), Koblitz curves (secp160k1, secp192k1, secp224k1, secp256k1), and Brainpool curves are made up of a number of individual parameters.
The public key consists of the following parameters:
The private key consists of one value:
Curve25519 and Curve448 Notes
Keys for use with Curve25519 or Curve448 are made up of a private key and public key field.
XPk holds the public key.
XSk holds the private key.
Fields
Algorithm
int
Default Value: 0
This field holds the algorithm associated with the key. Possible values are:
- 0 (eaSecp256r1)
- 1 (eaSecp384r1)
- 2 (eaSecp521r1)
- 3 (eaEd25519)
- 4 (eaEd448)
- 5 (eaX25519)
- 6 (eaX448)
- 7 (eaSecp160k1)
- 8 (eaSecp192k1)
- 9 (eaSecp224k1)
- 10 (eaSecp256k1)
- 11 (eaBrainpoolP160r1)
- 12 (eaBrainpoolP192r1)
- 13 (eaBrainpoolP224r1)
- 14 (eaBrainpoolP256r1)
- 15 (eaBrainpoolP320r1)
- 16 (eaBrainpoolP384r1)
- 17 (eaBrainpoolP512r1)
- 18 (eaBrainpoolP160t1)
- 19 (eaBrainpoolP192t1)
- 20 (eaBrainpoolP224t1)
- 21 (eaBrainpoolP256t1)
- 22 (eaBrainpoolP320t1)
- 23 (eaBrainpoolP384t1)
- 24 (eaBrainpoolP512t1)
When assigning a key using the PEM formatted PrivateKey and PublicKey, the Algorithm field will be automatically updated with the key algorithm.
When assigning a key using the raw key parameters (K, Rx, and Ry for NIST or XPk, and XSk for Curve25519/Curve448), the Algorithm field must be set manually to the key algorithm.
The following table summarizes the supported operations for keys created with each algorithm:
KeyAlgorithm | Supported Operations |
secp256r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
secp384r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
secp521r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
X25519 | ECDH (ComputeSecret) |
X448 | ECDH (ComputeSecret) |
Ed25519 | EdDSA (Sign and VerifySignature) |
Ed448 | EdDSA (Sign and VerifySignature) |
secp160k1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
secp192k1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
secp224k1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
secp256k1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP160r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP192r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP224r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP256r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP320r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP384r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP512r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP160t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP192t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP224t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP256t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP320t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP384t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP512t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
K
char*
Default Value: ""
Represents the private key (K) parameter.
Note: This value is only applicable when using a NIST, Koblitz, or Brainpool curve.
PrivateKey
char*
Default Value: ""
This field is a PEM formatted private key. The purpose of this field is to allow easier management of the private key parameters by using only a single value.
PublicKey
char*
Default Value: ""
This field is a PEM formatted public key. The purpose of this field is to allow easier management of the public key parameters by using only a single value.
Rx
char*
Default Value: ""
Represents the public key's Rx parameter.
Note: This value is only applicable when using a NIST, Koblitz, or Brainpool curve.
Ry
char*
Default Value: ""
Represents the public key's Ry parameter.
Note: This value is only applicable when using a NIST, Koblitz, or Brainpool curve.
XPk
char*
Default Value: ""
Holds the public key data.
Note: This value is only applicable when using Curve25519 or Curve448.
XSk
char*
Default Value: ""
Holds the private key data.
Note: This value is only applicable when using Curve25519 or Curve448.
Constructors
ECCKey()
The default constructor creates a new ECCKey instance but does not assign a public or private key.
ECCKey(const char* lpRx, int lenRx, const char* lpRy, int lenRy, int iAlgorithm)
The public key constructor assigns an existing public key.
ECCKey(const char* lpK, int lenK, const char* lpRx, int lenRx, const char* lpRy, int lenRy, int iAlgorithm)
The private key constructor assigns an existing private key.
IPWorksEncryptStream Type
Syntax
IPWorksEncryptStream (declared in ipworksencrypt.h)
Remarks
The ECC class includes one or more API members that take a stream object as a parameter. To use such API members, create a concrete class that implements the IPWorksEncryptStream interface and pass the ECC class an instance of that concrete class.
When implementing the IPWorksEncryptStream interface's properties and methods, they must behave as described below. If the concrete class's implementation does not behave as expected, undefined behavior may occur.
Properties | |
CanRead |
Whether the stream supports reading.
bool CanRead() { return true; } |
CanSeek |
Whether the stream supports seeking.
bool CanSeek() { return true; } |
CanWrite |
Whether the stream supports writing.
bool CanWrite() { return true; } |
Length |
Gets the length of the stream, in bytes.
int64 GetLength() = 0; |
Methods | |
Close |
Closes the stream, releasing all resources currently allocated for it.
void Close() {} This method is called automatically when an IPWorksEncryptStream object is deleted. |
Flush |
Forces all data held by the stream's buffers to be written out to storage.
int Flush() { return 0; } Must return 0 if flushing is successful; or -1 if an error occurs or the stream is closed. If the stream does not support writing, this method must do nothing and return 0. |
Read |
Reads a sequence of bytes from the stream and advances the current position within the stream by the number of bytes read.
int Read(void* buffer, int count) = 0; Buffer specifies the buffer to populate with data from the stream. Count specifies the number of bytes that should be read from the stream. Must return the total number of bytes read into Buffer; this may be less than Count if that many bytes are not currently available, or 0 if the end of the stream has been reached. Must return -1 if an error occurs, if reading is not supported, or if the stream is closed. |
Seek |
Sets the current position within the stream based on a particular point of origin.
int64 Seek(int64 offset, int seekOrigin) = 0; Offset specifies the offset in the stream to seek to, relative to SeekOrigin. Valid values for SeekOrigin are:
Must return the new position within the stream; or -1 if an error occurs, if seeking is not supported, or if the stream is closed (however, see note below). If -1 is returned, the current position within the stream must remain unchanged. Note: If the stream is not closed, it must always be possible to call this method with an Offset of 0 and a SeekOrigin of 1 to obtain the current position within the stream, even if seeking is not otherwise supported. |
Write |
Writes a sequence of bytes to the stream and advances the current position within the stream by the number of bytes written.
int Write(const void* buffer, int count) = 0; Buffer specifies the buffer with data to write to the stream. Count specifies the number of bytes that should be written to the stream. Must return the total number of bytes written to the stream; this may be less than Count if that many bytes could not be written. Must return -1 if an error occurs, if writing is not supported, or if the stream is closed. |
Config Settings (ECC Class)
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.ECC Config Settings
Note: This is not applicable when ComputeSecretKDF is set to 12 (ekdTLS).
This setting is required when ComputeSecretKDF is set to ekdConcat. This setting is only applicable when calling ComputeSecret.
- SHA1
- SHA224
- SHA256 (default)
- SHA384
- SHA512
- RIPEMD160
This setting is required when ComputeSecretKDF is set to ekdConcat. This setting is only applicable when calling ComputeSecret.
This setting is required when ComputeSecretKDF is set to ekdConcat. This setting is only applicable when calling ComputeSecret.
This setting is optional when ComputeSecretKDF is set to ekdConcat. This setting is only applicable when calling ComputeSecret.
This setting is optional when ComputeSecretKDF is set to ekdConcat. This setting is only applicable when calling ComputeSecret.
- 0 (Concatenated - default)
- 1 (ASN)
Note: This setting is only applicable when Algorithm is set to a NIST, Koblitz, or Brainpool curve.
This setting is only applicable when Algorithm is set to Ed25519 or Ed448. When this setting is specified, the Algorithm is Ed25519, and HashEdDSA is False, the class will automatically use Ed25519ctx.
If this value is specified before calling Sign, it must also be set prior to calling VerifySignature.
- 128
- 192
- 256 (default)
This is only applicable when calling ComputeSecret.
This setting is only applicable when calling Encrypt or Decrypt.
The value specified in this setting must a hex string.
If specified, this must be set before calling both Encrypt and Decrypt.
The value specified in this setting must a hex string.
If specified, this must be set before calling both Encrypt and Decrypt.
Note: This is not applicable when ComputeSecretKDF is set to 12 (ekdTLS).
When using keys with the algorithm Ed25519, Ed448, X25519, or X448, the class will calculate the public key based on the provided private key and compare it to the provided public key to ensure they match.
When using keys with a NIST, Koblitz, or Brainpool curve, the class will perform calculations to verify that the public key is a point on the curve. The class will also calculate the public key based on the provided private key and compare it to the provided public key to ensure they match.
The default value is False and the class will use the public and private keys as provided without any additional checks.
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
On Linux, the C++ edition requires installation of the FIPS-enabled OpenSSL library. The OpenSSL FIPS provider version must be at least 3.0.0. For additional information and instructions regarding the installation and activation of the FIPS-enabled OpenSSL library, please refer to the following link: https://github.com/openssl/openssl/blob/master/README-FIPS.md
To ensure the class utilizes the FIPS-enabled OpenSSL library, the obfuscated source code should first be compiled with OpenSSL enabled, as described in the Supported Platforms section. Additionally, the FIPS module should be enabled and active. If the obfuscated source code is not compiled as mentioned, or the FIPS module is inactive, the class will throw an appropriate error assuming FIPS mode is enabled.
FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting that applies to all instances of all classes of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.
For more details, please see the FIPS 140-2 Compliance article.
Note: This setting is applicable only on Windows.
Note: Enabling FIPS compliance requires a special license; please contact sales@nsoftware.com for details.
Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.
On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.
To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.
Trappable Errors (ECC Class)
Error Handling (C++)
Call the GetLastErrorCode() method to obtain the last called method's result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. Known error codes are listed below. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
ECC Errors
102 | No Key specified. |
104 | Cannot read or write file. |
111 | OutputFile already exists and Overwrite is False. |
120 | Invalid curve. |
124 | HashSignature must be specified. |
304 | Cannot write file. |
305 | Cannot read file. |
306 | Cannot create file. |
1401 | Specified ECC parameters are invalid. |
1402 | Missing hash value. |
1403 | Public key must be specified. |
1404 | Key must be specified. |
1405 | HashSignature must be specified. |
1406 | Invalid key size. |
1407 | Invalid TLS seed. TLSSeed must be 64 bytes long. |
1408 | Invalid TLS label. |
1409 | Unsupported key format. |
1410 | Unsupported curve. |