XMLEncrypt Class
Properties Methods Events Config Settings Errors
The XMLEncrypt class is used to encrypt and decrypt XML.
Syntax
XMLEncrypt
Remarks
The XMLEncrypt class provides a simple API for encrypting and decrypting XML. The Encrypt method will encrypt the XML document, or a specific element. Multiple elements may be encrypted at one time by setting EncryptedDataDetails. The Decrypt method will decrypt the XML document.
The class supports encrypting and decrypting with a shared SymmetricKey, and also using asymmetric encryption to encrypt the SymmetricKey (session key) via the RecipientCert and Certificate properties.
Encrypt
To begin first specify a XML document by setting InputFile, or InputXML.
The EncryptedDataDetails property specify the XML element to encrypt. By default the entire XML document is encrypted.
The SymmetricKey property specifies the key which will be used to encrypt the data.
If the RecipientCert property is set, then the SymmetricKey will be encrypted and included in the encrypted data. This allows for the recipient to decrypt the key, with their certificate. Encrypting the symmetric key is also referred to as using a session key. The benefit of using certificate to encrypt and decrypt a session key (SymmetricKey) is that knowledge of the key value is not needed ahead of time to process the encrypted data. Note that if specified, RecipientCert MUST have a RSA key, not a DSA key.
If the RecipientCert property is not set, then the recipient must know the value of SymmetricKey before decrypting the XML. The KeyName setting may be set to provide a key identifier to the recipient.
Optionally set EncryptingAlgorithm, and then call Encrypt to encrypt the XML.
The following properties are applicable when calling this method:
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:- OutputFile
- OutputXML: The output data is written to this property if no other destination is specified.
Decrypt
To begin first specify a XML document by setting InputFile, or InputXML.
The SymmetricKey property specifies the key used to decrypt the data. This may be set before calling Decrypt or inside the EncryptedDataInfo event. The EncryptedDataInfo event fires once for each encrypted element when Decrypt is called.
If the data was encrypted using an session key, set the Certificate property to the certificate with private key before calling Decrypt. The certificate will be used to decrypt the encrypted session key. In this case the SymmetricKey property is ignored.
The following properties are applicable when calling this method:
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:- OutputFile
- OutputXML: The output data is written to this property if no other destination is specified.
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
Certificate | The certificate used for decryption. |
EncryptedDataDetails | A collection of encrypted data details. |
EncryptingAlgorithm | Then encryption algorithm used when encrypting. |
InputFile | The XML file to process. |
InputXML | The XML to process. |
OutputFile | The output file. |
OutputXML | The output XML after processing. |
Overwrite | Indicates whether or not the class should overwrite files. |
RecipientCert | The certificate used for encryption. |
SymmetricKey | The symmetric key used to encrypt and decrypt the XML. |
UseOAEP | Whether to use Optimal Asymmetric Encryption Padding (OAEP). |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
Decrypt | Decrypts the XML. |
DoEvents | This method processes events from the internal message queue. |
Encrypt | Encrypts the XML. |
Reset | Resets the class. |
SetInputStream | Sets the stream from which the class will read data to encrypt or decrypt. |
SetOutputStream | The stream to which the class will write the encrypted or decrypted XML. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
EncryptedDataInfo | Fired once for each encrypted element when Decrypt is called. |
Error | Fired when information is available about errors during data delivery. |
Progress | Fired as progress is made. |
Status | Provides information about the current operation. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
DecryptWithCryptoAPI | Whether to use the Crypto API for decrypt operations. |
EncryptedKeyXPath | The XPath of the EncryptedKey element. |
KeyName | The name of the key used to encrypt the XML. |
LogLevel | Specifies the level of detail that is logged. |
OAEPMGF1HashAlgorithm | The MGF1 hash algorithm used with OAEP. |
OAEPParams | The hex encoded OAEP parameters. |
OAEPRSAHashAlgorithm | The RSA hash algorithm used with OAEP. |
OAEPRSAHashAlgorithm | The RSA hash algorithm used when encrypting a key. |
ReadFromProgressEvent | Whether to read input data from inside the progress event. |
WriteToProgressEvent | Whether to write output data so it is accessible from inside the progress event. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitiveData | Whether sensitive data is masked in log messages. |
ProcessIdleEvents | Whether the class uses its internal event loop to process events when the main thread is idle. |
SelectWaitMillis | The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process. |
UseFIPSCompliantAPI | Tells the class whether or not to use FIPS certified APIs. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
Certificate Property (XMLEncrypt Class)
The certificate used for decryption.
Syntax
IPWorksEncryptCertificate* GetCertificate(); int SetCertificate(IPWorksEncryptCertificate* val);
char* ipworksencrypt_xmlencrypt_getcerteffectivedate(void* lpObj);
char* ipworksencrypt_xmlencrypt_getcertexpirationdate(void* lpObj);
char* ipworksencrypt_xmlencrypt_getcertextendedkeyusage(void* lpObj);
char* ipworksencrypt_xmlencrypt_getcertfingerprint(void* lpObj);
char* ipworksencrypt_xmlencrypt_getcertfingerprintsha1(void* lpObj);
char* ipworksencrypt_xmlencrypt_getcertfingerprintsha256(void* lpObj);
char* ipworksencrypt_xmlencrypt_getcertissuer(void* lpObj);
char* ipworksencrypt_xmlencrypt_getcertprivatekey(void* lpObj);
int ipworksencrypt_xmlencrypt_getcertprivatekeyavailable(void* lpObj);
char* ipworksencrypt_xmlencrypt_getcertprivatekeycontainer(void* lpObj);
char* ipworksencrypt_xmlencrypt_getcertpublickey(void* lpObj);
char* ipworksencrypt_xmlencrypt_getcertpublickeyalgorithm(void* lpObj);
int ipworksencrypt_xmlencrypt_getcertpublickeylength(void* lpObj);
char* ipworksencrypt_xmlencrypt_getcertserialnumber(void* lpObj);
char* ipworksencrypt_xmlencrypt_getcertsignaturealgorithm(void* lpObj);
int ipworksencrypt_xmlencrypt_getcertstore(void* lpObj, char** lpCertStore, int* lenCertStore);
int ipworksencrypt_xmlencrypt_setcertstore(void* lpObj, const char* lpCertStore, int lenCertStore);
char* ipworksencrypt_xmlencrypt_getcertstorepassword(void* lpObj);
int ipworksencrypt_xmlencrypt_setcertstorepassword(void* lpObj, const char* lpszCertStorePassword);
int ipworksencrypt_xmlencrypt_getcertstoretype(void* lpObj);
int ipworksencrypt_xmlencrypt_setcertstoretype(void* lpObj, int iCertStoreType);
char* ipworksencrypt_xmlencrypt_getcertsubjectaltnames(void* lpObj);
char* ipworksencrypt_xmlencrypt_getcertthumbprintmd5(void* lpObj);
char* ipworksencrypt_xmlencrypt_getcertthumbprintsha1(void* lpObj);
char* ipworksencrypt_xmlencrypt_getcertthumbprintsha256(void* lpObj);
char* ipworksencrypt_xmlencrypt_getcertusage(void* lpObj);
int ipworksencrypt_xmlencrypt_getcertusageflags(void* lpObj);
char* ipworksencrypt_xmlencrypt_getcertversion(void* lpObj);
char* ipworksencrypt_xmlencrypt_getcertsubject(void* lpObj);
int ipworksencrypt_xmlencrypt_setcertsubject(void* lpObj, const char* lpszCertSubject);
int ipworksencrypt_xmlencrypt_getcertencoded(void* lpObj, char** lpCertEncoded, int* lenCertEncoded);
int ipworksencrypt_xmlencrypt_setcertencoded(void* lpObj, const char* lpCertEncoded, int lenCertEncoded);
QString GetCertEffectiveDate(); QString GetCertExpirationDate(); QString GetCertExtendedKeyUsage(); QString GetCertFingerprint(); QString GetCertFingerprintSHA1(); QString GetCertFingerprintSHA256(); QString GetCertIssuer(); QString GetCertPrivateKey(); bool GetCertPrivateKeyAvailable(); QString GetCertPrivateKeyContainer(); QString GetCertPublicKey(); QString GetCertPublicKeyAlgorithm(); int GetCertPublicKeyLength(); QString GetCertSerialNumber(); QString GetCertSignatureAlgorithm(); QByteArray GetCertStore();
int SetCertStore(QByteArray qbaCertStore); QString GetCertStorePassword();
int SetCertStorePassword(QString qsCertStorePassword); int GetCertStoreType();
int SetCertStoreType(int iCertStoreType); QString GetCertSubjectAltNames(); QString GetCertThumbprintMD5(); QString GetCertThumbprintSHA1(); QString GetCertThumbprintSHA256(); QString GetCertUsage(); int GetCertUsageFlags(); QString GetCertVersion(); QString GetCertSubject();
int SetCertSubject(QString qsCertSubject); QByteArray GetCertEncoded();
int SetCertEncoded(QByteArray qbaCertEncoded);
Remarks
This property specifies a certificate with private key.
If the encrypted XML contains an encrypted key this property specifies the certificate with private key to be used to decrypt the key. This is applicable when calling Decrypt.
Data Type
EncryptedDataDetails Property (XMLEncrypt Class)
A collection of encrypted data details.
Syntax
IPWorksEncryptList<IPWorksEncryptXMLEncryptedDataDetail>* GetEncryptedDataDetails(); int SetEncryptedDataDetails(IPWorksEncryptList<IPWorksEncryptXMLEncryptedDataDetail>* val);
int ipworksencrypt_xmlencrypt_getencrypteddatadetailcount(void* lpObj);
int ipworksencrypt_xmlencrypt_setencrypteddatadetailcount(void* lpObj, int iEncryptedDataDetailCount);
char* ipworksencrypt_xmlencrypt_getencrypteddatadetailid(void* lpObj, int encrypteddatadetailindex);
int ipworksencrypt_xmlencrypt_setencrypteddatadetailid(void* lpObj, int encrypteddatadetailindex, const char* lpszEncryptedDataDetailId);
char* ipworksencrypt_xmlencrypt_getencrypteddatadetailmimetype(void* lpObj, int encrypteddatadetailindex);
int ipworksencrypt_xmlencrypt_setencrypteddatadetailmimetype(void* lpObj, int encrypteddatadetailindex, const char* lpszEncryptedDataDetailMIMEType);
int ipworksencrypt_xmlencrypt_getencrypteddatadetailscope(void* lpObj, int encrypteddatadetailindex);
int ipworksencrypt_xmlencrypt_setencrypteddatadetailscope(void* lpObj, int encrypteddatadetailindex, int iEncryptedDataDetailScope);
char* ipworksencrypt_xmlencrypt_getencrypteddatadetailxmlelement(void* lpObj, int encrypteddatadetailindex);
int ipworksencrypt_xmlencrypt_setencrypteddatadetailxmlelement(void* lpObj, int encrypteddatadetailindex, const char* lpszEncryptedDataDetailXMLElement);
int GetEncryptedDataDetailCount();
int SetEncryptedDataDetailCount(int iEncryptedDataDetailCount); QString GetEncryptedDataDetailId(int iEncryptedDataDetailIndex);
int SetEncryptedDataDetailId(int iEncryptedDataDetailIndex, QString qsEncryptedDataDetailId); QString GetEncryptedDataDetailMIMEType(int iEncryptedDataDetailIndex);
int SetEncryptedDataDetailMIMEType(int iEncryptedDataDetailIndex, QString qsEncryptedDataDetailMIMEType); int GetEncryptedDataDetailScope(int iEncryptedDataDetailIndex);
int SetEncryptedDataDetailScope(int iEncryptedDataDetailIndex, int iEncryptedDataDetailScope); QString GetEncryptedDataDetailXMLElement(int iEncryptedDataDetailIndex);
int SetEncryptedDataDetailXMLElement(int iEncryptedDataDetailIndex, QString qsEncryptedDataDetailXMLElement);
Remarks
This property holds a collection of details about the XML elements to be encrypted. This may be populated before calling Encrypt. If this is not populated, then the entire XML document will be encrypted.
This property is not available at design time.
Data Type
IPWorksEncryptXMLEncryptedDataDetail
EncryptingAlgorithm Property (XMLEncrypt Class)
Then encryption algorithm used when encrypting.
Syntax
ANSI (Cross Platform) char* GetEncryptingAlgorithm();
int SetEncryptingAlgorithm(const char* lpszEncryptingAlgorithm); Unicode (Windows) LPWSTR GetEncryptingAlgorithm();
INT SetEncryptingAlgorithm(LPCWSTR lpszEncryptingAlgorithm);
char* ipworksencrypt_xmlencrypt_getencryptingalgorithm(void* lpObj);
int ipworksencrypt_xmlencrypt_setencryptingalgorithm(void* lpObj, const char* lpszEncryptingAlgorithm);
QString GetEncryptingAlgorithm();
int SetEncryptingAlgorithm(QString qsEncryptingAlgorithm);
Default Value
"3DES"
Remarks
This property specifies the encryption algorithm to use when encrypting. Possible values are:
- "3DES" (default)
- "DES"
- "AES128"
- "AES192"
- "AES256"
Data Type
String
InputFile Property (XMLEncrypt Class)
The XML file to process.
Syntax
ANSI (Cross Platform) char* GetInputFile();
int SetInputFile(const char* lpszInputFile); Unicode (Windows) LPWSTR GetInputFile();
INT SetInputFile(LPCWSTR lpszInputFile);
char* ipworksencrypt_xmlencrypt_getinputfile(void* lpObj);
int ipworksencrypt_xmlencrypt_setinputfile(void* lpObj, const char* lpszInputFile);
QString GetInputFile();
int SetInputFile(QString qsInputFile);
Default Value
""
Remarks
This property specifies the file to be processed. Set this property to the full or relative path to the file which will be processed.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- InputFile
- InputXML
- OutputFile
- OutputXML: The output data is written to this property if no other destination is specified.
This property is not available at design time.
Data Type
String
InputXML Property (XMLEncrypt Class)
The XML to process.
Syntax
ANSI (Cross Platform) char* GetInputXML();
int SetInputXML(const char* lpszInputXML); Unicode (Windows) LPWSTR GetInputXML();
INT SetInputXML(LPCWSTR lpszInputXML);
char* ipworksencrypt_xmlencrypt_getinputxml(void* lpObj);
int ipworksencrypt_xmlencrypt_setinputxml(void* lpObj, const char* lpszInputXML);
QString GetInputXML();
int SetInputXML(QString qsInputXML);
Default Value
""
Remarks
This property specifies the XML to be processed.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- InputFile
- InputXML
- OutputFile
- OutputXML: The output data is written to this property if no other destination is specified.
This property is not available at design time.
Data Type
String
OutputFile Property (XMLEncrypt Class)
The output file.
Syntax
ANSI (Cross Platform) char* GetOutputFile();
int SetOutputFile(const char* lpszOutputFile); Unicode (Windows) LPWSTR GetOutputFile();
INT SetOutputFile(LPCWSTR lpszOutputFile);
char* ipworksencrypt_xmlencrypt_getoutputfile(void* lpObj);
int ipworksencrypt_xmlencrypt_setoutputfile(void* lpObj, const char* lpszOutputFile);
QString GetOutputFile();
int SetOutputFile(QString qsOutputFile);
Default Value
""
Remarks
This property specifies the file to which the output will be written. This may be set to an absolute or relative path.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:- OutputFile
- OutputXML: The output data is written to this property if no other destination is specified.
This property is not available at design time.
Data Type
String
OutputXML Property (XMLEncrypt Class)
The output XML after processing.
Syntax
ANSI (Cross Platform) char* GetOutputXML();
int SetOutputXML(const char* lpszOutputXML); Unicode (Windows) LPWSTR GetOutputXML();
INT SetOutputXML(LPCWSTR lpszOutputXML);
char* ipworksencrypt_xmlencrypt_getoutputxml(void* lpObj);
int ipworksencrypt_xmlencrypt_setoutputxml(void* lpObj, const char* lpszOutputXML);
QString GetOutputXML();
int SetOutputXML(QString qsOutputXML);
Default Value
""
Remarks
This property will be populated with the output from the operation if OutputFile is not set.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:- OutputFile
- OutputXML: The output data is written to this property if no other destination is specified.
This property is not available at design time.
Data Type
String
Overwrite Property (XMLEncrypt Class)
Indicates whether or not the class should overwrite files.
Syntax
ANSI (Cross Platform) int GetOverwrite();
int SetOverwrite(int bOverwrite); Unicode (Windows) BOOL GetOverwrite();
INT SetOverwrite(BOOL bOverwrite);
int ipworksencrypt_xmlencrypt_getoverwrite(void* lpObj);
int ipworksencrypt_xmlencrypt_setoverwrite(void* lpObj, int bOverwrite);
bool GetOverwrite();
int SetOverwrite(bool bOverwrite);
Default Value
FALSE
Remarks
This property indicates whether or not the class will overwrite OutputFile. If Overwrite is False, an error will be thrown whenever OutputFile exists before an operation. The default value is False.
Data Type
Boolean
RecipientCert Property (XMLEncrypt Class)
The certificate used for encryption.
Syntax
IPWorksEncryptCertificate* GetRecipientCert(); int SetRecipientCert(IPWorksEncryptCertificate* val);
char* ipworksencrypt_xmlencrypt_getrecipientcerteffectivedate(void* lpObj);
char* ipworksencrypt_xmlencrypt_getrecipientcertexpirationdate(void* lpObj);
char* ipworksencrypt_xmlencrypt_getrecipientcertextendedkeyusage(void* lpObj);
char* ipworksencrypt_xmlencrypt_getrecipientcertfingerprint(void* lpObj);
char* ipworksencrypt_xmlencrypt_getrecipientcertfingerprintsha1(void* lpObj);
char* ipworksencrypt_xmlencrypt_getrecipientcertfingerprintsha256(void* lpObj);
char* ipworksencrypt_xmlencrypt_getrecipientcertissuer(void* lpObj);
char* ipworksencrypt_xmlencrypt_getrecipientcertprivatekey(void* lpObj);
int ipworksencrypt_xmlencrypt_getrecipientcertprivatekeyavailable(void* lpObj);
char* ipworksencrypt_xmlencrypt_getrecipientcertprivatekeycontainer(void* lpObj);
char* ipworksencrypt_xmlencrypt_getrecipientcertpublickey(void* lpObj);
char* ipworksencrypt_xmlencrypt_getrecipientcertpublickeyalgorithm(void* lpObj);
int ipworksencrypt_xmlencrypt_getrecipientcertpublickeylength(void* lpObj);
char* ipworksencrypt_xmlencrypt_getrecipientcertserialnumber(void* lpObj);
char* ipworksencrypt_xmlencrypt_getrecipientcertsignaturealgorithm(void* lpObj);
int ipworksencrypt_xmlencrypt_getrecipientcertstore(void* lpObj, char** lpRecipientCertStore, int* lenRecipientCertStore);
int ipworksencrypt_xmlencrypt_setrecipientcertstore(void* lpObj, const char* lpRecipientCertStore, int lenRecipientCertStore);
char* ipworksencrypt_xmlencrypt_getrecipientcertstorepassword(void* lpObj);
int ipworksencrypt_xmlencrypt_setrecipientcertstorepassword(void* lpObj, const char* lpszRecipientCertStorePassword);
int ipworksencrypt_xmlencrypt_getrecipientcertstoretype(void* lpObj);
int ipworksencrypt_xmlencrypt_setrecipientcertstoretype(void* lpObj, int iRecipientCertStoreType);
char* ipworksencrypt_xmlencrypt_getrecipientcertsubjectaltnames(void* lpObj);
char* ipworksencrypt_xmlencrypt_getrecipientcertthumbprintmd5(void* lpObj);
char* ipworksencrypt_xmlencrypt_getrecipientcertthumbprintsha1(void* lpObj);
char* ipworksencrypt_xmlencrypt_getrecipientcertthumbprintsha256(void* lpObj);
char* ipworksencrypt_xmlencrypt_getrecipientcertusage(void* lpObj);
int ipworksencrypt_xmlencrypt_getrecipientcertusageflags(void* lpObj);
char* ipworksencrypt_xmlencrypt_getrecipientcertversion(void* lpObj);
char* ipworksencrypt_xmlencrypt_getrecipientcertsubject(void* lpObj);
int ipworksencrypt_xmlencrypt_setrecipientcertsubject(void* lpObj, const char* lpszRecipientCertSubject);
int ipworksencrypt_xmlencrypt_getrecipientcertencoded(void* lpObj, char** lpRecipientCertEncoded, int* lenRecipientCertEncoded);
int ipworksencrypt_xmlencrypt_setrecipientcertencoded(void* lpObj, const char* lpRecipientCertEncoded, int lenRecipientCertEncoded);
QString GetRecipientCertEffectiveDate(); QString GetRecipientCertExpirationDate(); QString GetRecipientCertExtendedKeyUsage(); QString GetRecipientCertFingerprint(); QString GetRecipientCertFingerprintSHA1(); QString GetRecipientCertFingerprintSHA256(); QString GetRecipientCertIssuer(); QString GetRecipientCertPrivateKey(); bool GetRecipientCertPrivateKeyAvailable(); QString GetRecipientCertPrivateKeyContainer(); QString GetRecipientCertPublicKey(); QString GetRecipientCertPublicKeyAlgorithm(); int GetRecipientCertPublicKeyLength(); QString GetRecipientCertSerialNumber(); QString GetRecipientCertSignatureAlgorithm(); QByteArray GetRecipientCertStore();
int SetRecipientCertStore(QByteArray qbaRecipientCertStore); QString GetRecipientCertStorePassword();
int SetRecipientCertStorePassword(QString qsRecipientCertStorePassword); int GetRecipientCertStoreType();
int SetRecipientCertStoreType(int iRecipientCertStoreType); QString GetRecipientCertSubjectAltNames(); QString GetRecipientCertThumbprintMD5(); QString GetRecipientCertThumbprintSHA1(); QString GetRecipientCertThumbprintSHA256(); QString GetRecipientCertUsage(); int GetRecipientCertUsageFlags(); QString GetRecipientCertVersion(); QString GetRecipientCertSubject();
int SetRecipientCertSubject(QString qsRecipientCertSubject); QByteArray GetRecipientCertEncoded();
int SetRecipientCertEncoded(QByteArray qbaRecipientCertEncoded);
Remarks
This property specifies a certificate for encryption.
If specified, the SymmetricKey will be encrypted and included as an encrypted key in the XML. This is applicable when calling Encrypt.
Data Type
SymmetricKey Property (XMLEncrypt Class)
The symmetric key used to encrypt and decrypt the XML.
Syntax
ANSI (Cross Platform) int GetSymmetricKey(char* &lpSymmetricKey, int &lenSymmetricKey);
int SetSymmetricKey(const char* lpSymmetricKey, int lenSymmetricKey); Unicode (Windows) INT GetSymmetricKey(LPSTR &lpSymmetricKey, INT &lenSymmetricKey);
INT SetSymmetricKey(LPCSTR lpSymmetricKey, INT lenSymmetricKey);
int ipworksencrypt_xmlencrypt_getsymmetrickey(void* lpObj, char** lpSymmetricKey, int* lenSymmetricKey);
int ipworksencrypt_xmlencrypt_setsymmetrickey(void* lpObj, const char* lpSymmetricKey, int lenSymmetricKey);
QByteArray GetSymmetricKey();
int SetSymmetricKey(QByteArray qbaSymmetricKey);
Default Value
""
Remarks
This property specifies the symmetric key used to encrypt and decrypt the XML.
Encrypt Notes
When calling Encrypt if the RecipientCert property is set, then the SymmetricKey will be encrypted and included in the XML as an encrypted key. Using asymmetric encryption to encrypt the SymmetricKey allows for secure transmission of the key. This is also referred to as using a session key, as no prior knowledge of the SymmetricKey is required by the recipient.
If the RecipientCert property is set and SymmetricKey is left empty, then a SymmetricKey value will automatically be generated by the class when Encrypt is called.
When calling Encrypt if the RecipientCert property is are not set, then the SymmetricKey value must be known by the recipient before the message can be decrypted.
Decrypt Notes
When calling Decrypt if the data contains an encrypted key the class will attempt to use the certificate specified by the Certificate property to decrypt the encrypted key and this property is ignored.
When calling Decrypt if the data does not contain an encrypted key then SymmetricKey must be set either before calling Decrypt, or within the EncryptedDataInfo event.
Legal Key and Block Sizes (in bits)
AES | DES | 3DES | |
Minimum Key Size | 128 | 64 | 128 |
Maximum Key Size | 256 | 64 | 192 |
Key Size Step | 64 | 0 | 64 |
Block Size | 128 | 64 | 64 |
This property is not available at design time.
Data Type
Binary String
UseOAEP Property (XMLEncrypt Class)
Whether to use Optimal Asymmetric Encryption Padding (OAEP).
Syntax
ANSI (Cross Platform) int GetUseOAEP();
int SetUseOAEP(int bUseOAEP); Unicode (Windows) BOOL GetUseOAEP();
INT SetUseOAEP(BOOL bUseOAEP);
int ipworksencrypt_xmlencrypt_getuseoaep(void* lpObj);
int ipworksencrypt_xmlencrypt_setuseoaep(void* lpObj, int bUseOAEP);
bool GetUseOAEP();
int SetUseOAEP(bool bUseOAEP);
Default Value
FALSE
Remarks
This setting specifies whether to use Optimal Asymmetric Encryption Padding (OAEP) when encrypting the SymmetricKey with the certificate specified by RecipientCert. It is only applicable when calling Encrypt and RecipientCert is specified.
By default this value is False and the class will use PKCS1.
Data Type
Boolean
Config Method (XMLEncrypt Class)
Sets or retrieves a configuration setting.
Syntax
ANSI (Cross Platform) char* Config(const char* lpszConfigurationString); Unicode (Windows) LPWSTR Config(LPCWSTR lpszConfigurationString);
char* ipworksencrypt_xmlencrypt_config(void* lpObj, const char* lpszConfigurationString);
QString Config(const QString& qsConfigurationString);
Remarks
Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
Decrypt Method (XMLEncrypt Class)
Decrypts the XML.
Syntax
ANSI (Cross Platform) int Decrypt(); Unicode (Windows) INT Decrypt();
int ipworksencrypt_xmlencrypt_decrypt(void* lpObj);
int Decrypt();
Remarks
This method decrypts the specified XML.
To begin first specify a XML document by setting InputFile, or InputXML.
The SymmetricKey property specifies the key used to decrypt the data. This may be set before calling Decrypt or inside the EncryptedDataInfo event. The EncryptedDataInfo event fires once for each encrypted element when Decrypt is called.
If the data was encrypted using an session key, set the Certificate property to the certificate with private key before calling Decrypt. The certificate will be used to decrypt the encrypted session key. In this case the SymmetricKey property is ignored.
The following properties are applicable when calling this method:
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:- OutputFile
- OutputXML: The output data is written to this property if no other destination is specified.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
DoEvents Method (XMLEncrypt Class)
This method processes events from the internal message queue.
Syntax
ANSI (Cross Platform) int DoEvents(); Unicode (Windows) INT DoEvents();
int ipworksencrypt_xmlencrypt_doevents(void* lpObj);
int DoEvents();
Remarks
When DoEvents is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Encrypt Method (XMLEncrypt Class)
Encrypts the XML.
Syntax
ANSI (Cross Platform) int Encrypt(); Unicode (Windows) INT Encrypt();
int ipworksencrypt_xmlencrypt_encrypt(void* lpObj);
int Encrypt();
Remarks
This method encrypts the specified XML.
To begin first specify a XML document by setting InputFile, or InputXML.
The EncryptedDataDetails property specify the XML element to encrypt. By default the entire XML document is encrypted.
The SymmetricKey property specifies the key which will be used to encrypt the data.
If the RecipientCert property is set, then the SymmetricKey will be encrypted and included in the encrypted data. This allows for the recipient to decrypt the key, with their certificate. Encrypting the symmetric key is also referred to as using a session key. The benefit of using certificate to encrypt and decrypt a session key (SymmetricKey) is that knowledge of the key value is not needed ahead of time to process the encrypted data. Note that if specified, RecipientCert MUST have a RSA key, not a DSA key.
If the RecipientCert property is not set, then the recipient must know the value of SymmetricKey before decrypting the XML. The KeyName setting may be set to provide a key identifier to the recipient.
Optionally set EncryptingAlgorithm, and then call Encrypt to encrypt the XML.
The following properties are applicable when calling this method:
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:- OutputFile
- OutputXML: The output data is written to this property if no other destination is specified.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Reset Method (XMLEncrypt Class)
Resets the class.
Syntax
ANSI (Cross Platform) int Reset(); Unicode (Windows) INT Reset();
int ipworksencrypt_xmlencrypt_reset(void* lpObj);
int Reset();
Remarks
When called, the component will reset all of its properties to their default values.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SetInputStream Method (XMLEncrypt Class)
Sets the stream from which the class will read data to encrypt or decrypt.
Syntax
ANSI (Cross Platform) int SetInputStream(IPWorksEncryptStream* sInputStream); Unicode (Windows) INT SetInputStream(IPWorksEncryptStream* sInputStream);
int ipworksencrypt_xmlencrypt_setinputstream(void* lpObj, IPWorksEncryptStream* sInputStream);
int SetInputStream(IPWorksEncryptStream* sInputStream);
Remarks
This method sets the stream from which the class will read data to encrypt or decrypt. If an input stream is set before calling Encrypt or Decrypt, the data is read from the input stream instead of from the InputFile or InputXML properties.
The content of the stream will be read from the current position all the way to the end and no bytes will be skipped.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:- OutputFile
- OutputXML: The output data is written to this property if no other destination is specified.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SetOutputStream Method (XMLEncrypt Class)
The stream to which the class will write the encrypted or decrypted XML.
Syntax
ANSI (Cross Platform) int SetOutputStream(IPWorksEncryptStream* sOutputStream); Unicode (Windows) INT SetOutputStream(IPWorksEncryptStream* sOutputStream);
int ipworksencrypt_xmlencrypt_setoutputstream(void* lpObj, IPWorksEncryptStream* sOutputStream);
int SetOutputStream(IPWorksEncryptStream* sOutputStream);
Remarks
This method sets the stream to which the class will write the encrypted or decrypted XML. If an output stream is set before calling Encrypt or Decrypt, the class will write the data to the output stream instead of populating OutputXML or writing to OutputFile.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:- OutputFile
- OutputXML: The output data is written to this property if no other destination is specified.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
EncryptedDataInfo Event (XMLEncrypt Class)
Fired once for each encrypted element when Decrypt is called.
Syntax
ANSI (Cross Platform) virtual int FireEncryptedDataInfo(XMLEncryptEncryptedDataInfoEventParams *e);
typedef struct {
const char *EncryptedDataId;
int Scope;
const char *MIMEType; int reserved; } XMLEncryptEncryptedDataInfoEventParams;
Unicode (Windows) virtual INT FireEncryptedDataInfo(XMLEncryptEncryptedDataInfoEventParams *e);
typedef struct {
LPCWSTR EncryptedDataId;
INT Scope;
LPCWSTR MIMEType; INT reserved; } XMLEncryptEncryptedDataInfoEventParams;
#define EID_XMLENCRYPT_ENCRYPTEDDATAINFO 1 virtual INT IPWORKSENCRYPT_CALL FireEncryptedDataInfo(LPSTR &lpszEncryptedDataId, INT &iScope, LPSTR &lpszMIMEType);
class XMLEncryptEncryptedDataInfoEventParams { public: const QString &EncryptedDataId(); int Scope(); const QString &MIMEType(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void EncryptedDataInfo(XMLEncryptEncryptedDataInfoEventParams *e);
// Or, subclass XMLEncrypt and override this emitter function. virtual int FireEncryptedDataInfo(XMLEncryptEncryptedDataInfoEventParams *e) {...}
Remarks
This event fires once for each encrypted element in the XML document when Decrypt is called. The parameters of this event provide information about the encrypted data. Additionally, the KeyName setting may be queried to identify the encryption key. SymmetricKey may be set from within this event.
EncryptedDataId is the Id of the encrypted data (if any).
Scope indicates the scope of the encrypted data. This defines whether the entire XML element was encrypted, or only the content. Possible values are:
0 | Element |
1 | Content |
MIMEType holds the MIME type of the encrypted data (if any). For example: "image/png".
Error Event (XMLEncrypt Class)
Fired when information is available about errors during data delivery.
Syntax
ANSI (Cross Platform) virtual int FireError(XMLEncryptErrorEventParams *e);
typedef struct {
int ErrorCode;
const char *Description; int reserved; } XMLEncryptErrorEventParams;
Unicode (Windows) virtual INT FireError(XMLEncryptErrorEventParams *e);
typedef struct {
INT ErrorCode;
LPCWSTR Description; INT reserved; } XMLEncryptErrorEventParams;
#define EID_XMLENCRYPT_ERROR 2 virtual INT IPWORKSENCRYPT_CALL FireError(INT &iErrorCode, LPSTR &lpszDescription);
class XMLEncryptErrorEventParams { public: int ErrorCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Error(XMLEncryptErrorEventParams *e);
// Or, subclass XMLEncrypt and override this emitter function. virtual int FireError(XMLEncryptErrorEventParams *e) {...}
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
Progress Event (XMLEncrypt Class)
Fired as progress is made.
Syntax
ANSI (Cross Platform) virtual int FireProgress(XMLEncryptProgressEventParams *e);
typedef struct {
int64 BytesProcessed;
int PercentProcessed;
int Operation;
int IsEOF; int reserved; } XMLEncryptProgressEventParams;
Unicode (Windows) virtual INT FireProgress(XMLEncryptProgressEventParams *e);
typedef struct {
LONG64 BytesProcessed;
INT PercentProcessed;
INT Operation;
BOOL IsEOF; INT reserved; } XMLEncryptProgressEventParams;
#define EID_XMLENCRYPT_PROGRESS 3 virtual INT IPWORKSENCRYPT_CALL FireProgress(LONG64 &lBytesProcessed, INT &iPercentProcessed, INT &iOperation, BOOL &bIsEOF);
class XMLEncryptProgressEventParams { public: qint64 BytesProcessed(); int PercentProcessed(); int Operation(); bool IsEOF(); void SetIsEOF(bool bIsEOF); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Progress(XMLEncryptProgressEventParams *e);
// Or, subclass XMLEncrypt and override this emitter function. virtual int FireProgress(XMLEncryptProgressEventParams *e) {...}
Remarks
This event is fired automatically as data is processed by the class.
The PercentProcessed parameter indicates the current status of the operation.
The BytesProcessed parameter holds the total number of bytes processed so far.
The Operation parameter is only applicable when either ReadFromProgressEvent or WriteToProgressEvent is set to True. This parameter defines whether a Read or Write operation is required. If the configuration settings are not set this parameter will always return 0. Possible values are:
0 | None |
1 | Read |
2 | Write |
The IsEOF parameter is only applicable when either ReadFromProgressEvent or WriteToProgressEvent is set to True. This parameter defines whether the Read or Write operation is complete. When the Operation is Read (1) this parameter must be set to indicate that all data has been supplied to the class. When the Operation is Write (2) this value may be queried to determine when all data has been processed.
Status Event (XMLEncrypt Class)
Provides information about the current operation.
Syntax
ANSI (Cross Platform) virtual int FireStatus(XMLEncryptStatusEventParams *e);
typedef struct {
const char *Message; int reserved; } XMLEncryptStatusEventParams;
Unicode (Windows) virtual INT FireStatus(XMLEncryptStatusEventParams *e);
typedef struct {
LPCWSTR Message; INT reserved; } XMLEncryptStatusEventParams;
#define EID_XMLENCRYPT_STATUS 4 virtual INT IPWORKSENCRYPT_CALL FireStatus(LPSTR &lpszMessage);
class XMLEncryptStatusEventParams { public: const QString &Message(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Status(XMLEncryptStatusEventParams *e);
// Or, subclass XMLEncrypt and override this emitter function. virtual int FireStatus(XMLEncryptStatusEventParams *e) {...}
Remarks
The event is fired for informational and logging purposes only. It may be used to track the progress of an operation.
The level of detail is controlled by the LogLevel setting.
Certificate Type
This is the digital certificate being used.
Syntax
IPWorksEncryptCertificate (declared in ipworksencrypt.h)
Remarks
This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.
Fields
EffectiveDate
char* (read-only)
Default Value: ""
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
ExpirationDate
char* (read-only)
Default Value: ""
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
ExtendedKeyUsage
char* (read-only)
Default Value: ""
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
Fingerprint
char* (read-only)
Default Value: ""
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
FingerprintSHA1
char* (read-only)
Default Value: ""
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
FingerprintSHA256
char* (read-only)
Default Value: ""
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
Issuer
char* (read-only)
Default Value: ""
The issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.
PrivateKey
char* (read-only)
Default Value: ""
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.
PrivateKeyAvailable
int (read-only)
Default Value: FALSE
Whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).
PrivateKeyContainer
char* (read-only)
Default Value: ""
The name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.
PublicKey
char* (read-only)
Default Value: ""
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
PublicKeyAlgorithm
char* (read-only)
Default Value: ""
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
PublicKeyLength
int (read-only)
Default Value: 0
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
SerialNumber
char* (read-only)
Default Value: ""
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
SignatureAlgorithm
char* (read-only)
Default Value: ""
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
Store
char*
Default Value: "MY"
The name of the certificate store for the client certificate.
The StoreType field denotes the type of the certificate store specified by Store. If the store is password-protected, specify the password in StorePassword.
Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
StorePassword
char*
Default Value: ""
If the type of certificate store requires a password, this field is used to specify the password needed to open the certificate store.
StoreType
int
Default Value: 0
The type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This field can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
SubjectAltNames
char* (read-only)
Default Value: ""
Comma-separated lists of alternative subject names for the certificate.
ThumbprintMD5
char* (read-only)
Default Value: ""
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA1
char* (read-only)
Default Value: ""
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA256
char* (read-only)
Default Value: ""
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
Usage
char* (read-only)
Default Value: ""
The text description of UsageFlags.
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
UsageFlags
int (read-only)
Default Value: 0
The flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the Usage field for a text representation of UsageFlags.
This functionality currently is not available when the provider is OpenSSL.
Version
char* (read-only)
Default Value: ""
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
Subject
char*
Default Value: ""
The subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the field is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Encoded
char*
Default Value: ""
The certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.
When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.
Constructors
Certificate()
Creates a instance whose properties can be set. This is useful for use with when generating new certificates.
Certificate(const char* lpEncoded, int lenEncoded)
Parses Encoded as an X.509 public key.
Certificate(int iStoreType, const char* lpStore, int lenStore, const char* lpszStorePassword, const char* lpszSubject)
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.
After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.
XMLEncryptedDataDetail Type
This type defines details about the data to be encrypted.
Syntax
IPWorksEncryptXMLEncryptedDataDetail (declared in ipworksencrypt.h)
Remarks
This type defines details about the data to be encrypted. The element to encrypt is defined by XMLElement.
Fields
Id
char*
Default Value: ""
This field is an optional identifier for the encrypted data.
MIMEType
char*
Default Value: ""
This field specifies the MIME type of the encrypted data. For example: "image/png". This field is optional.
Scope
int
Default Value: 0
This field specifies the scope of the encryption. When calling Encrypt the entire XML element specified by XMLElement may be encrypted, or only the content may be encrypted. This setting controls the scope of the encryption. Possible values are:
0 (sElement - default) | The entire XML element is encrypted. |
1 (sContent) | Only the content of the XML element is encrypted. |
XMLElement
char*
Default Value: "/"
This field specifies the XPath to the element which will be encrypted. For instance:
/root/myElement | XPath syntax |
/root/[1] | XPath syntax using an index |
/root/ns:myElement | XPath syntax where the element has a namespace |
myElement | Just the element name |
@id=myid | Attribute selector: This will select an element with an attribute "id" whose value is "myid". |
/root/myElement[1]/ns:name2[@attr=attrValue] | XPath syntax using an index and attribute selector |
Constructors
XMLEncryptedDataDetail()
XMLEncryptedDataDetail(const char* lpszId, const char* lpszXMLElement, int iScope, const char* lpszMIMEType)
IPWorksEncryptList Type
Syntax
IPWorksEncryptList<T> (declared in ipworksencrypt.h)
Remarks
IPWorksEncryptList is a generic class that is used to hold a collection of objects of type T, where T is one of the custom types supported by the XMLEncrypt class.
Methods | |
GetCount |
This method returns the current size of the collection.
int GetCount() {}
|
SetCount |
This method sets the size of the collection. This method returns 0 if setting the size was successful; or -1 if the collection is ReadOnly. When adding additional objects to a collection call this method to specify the new size. Increasing the size of the collection preserves existing objects in the collection.
int SetCount(int count) {}
|
Get |
This method gets the item at the specified position. The index parameter specifies the index of the item in the collection. This method returns NULL if an invalid index is specified.
T* Get(int index) {}
|
Set |
This method sets the item at the specified position. The index parameter specifies the index of the item in the collection that is being set. This method returns -1 if an invalid index is specified. Note: Objects created using the new operator must be freed using the delete operator; they will not be automatically freed by the class.
T* Set(int index, T* value) {}
|
IPWorksEncryptStream Type
Syntax
IPWorksEncryptStream (declared in ipworksencrypt.h)
Remarks
The XMLEncrypt class includes one or more API members that take a stream object as a parameter. To use such API members, create a concrete class that implements the IPWorksEncryptStream interface and pass the XMLEncrypt class an instance of that concrete class.
When implementing the IPWorksEncryptStream interface's properties and methods, they must behave as described below. If the concrete class's implementation does not behave as expected, undefined behavior may occur.
Properties | |
CanRead |
Whether the stream supports reading.
bool CanRead() { return true; } |
CanSeek |
Whether the stream supports seeking.
bool CanSeek() { return true; } |
CanWrite |
Whether the stream supports writing.
bool CanWrite() { return true; } |
Length |
Gets the length of the stream, in bytes.
int64 GetLength() = 0; |
Methods | |
Close |
Closes the stream, releasing all resources currently allocated for it.
void Close() {} This method is called automatically when an IPWorksEncryptStream object is deleted. |
Flush |
Forces all data held by the stream's buffers to be written out to storage.
int Flush() { return 0; } Must return 0 if flushing is successful; or -1 if an error occurs or the stream is closed. If the stream does not support writing, this method must do nothing and return 0. |
Read |
Reads a sequence of bytes from the stream and advances the current position within the stream by the number of bytes read.
int Read(void* buffer, int count) = 0; Buffer specifies the buffer to populate with data from the stream. Count specifies the number of bytes that should be read from the stream. Must return the total number of bytes read into Buffer; this may be less than Count if that many bytes are not currently available, or 0 if the end of the stream has been reached. Must return -1 if an error occurs, if reading is not supported, or if the stream is closed. |
Seek |
Sets the current position within the stream based on a particular point of origin.
int64 Seek(int64 offset, int seekOrigin) = 0; Offset specifies the offset in the stream to seek to, relative to SeekOrigin. Valid values for SeekOrigin are:
Must return the new position within the stream; or -1 if an error occurs, if seeking is not supported, or if the stream is closed (however, see note below). If -1 is returned, the current position within the stream must remain unchanged. Note: If the stream is not closed, it must always be possible to call this method with an Offset of 0 and a SeekOrigin of 1 to obtain the current position within the stream, even if seeking is not otherwise supported. |
Write |
Writes a sequence of bytes to the stream and advances the current position within the stream by the number of bytes written.
int Write(const void* buffer, int count) = 0; Buffer specifies the buffer with data to write to the stream. Count specifies the number of bytes that should be written to the stream. Must return the total number of bytes written to the stream; this may be less than Count if that many bytes could not be written. Must return -1 if an error occurs, if writing is not supported, or if the stream is closed. |
Config Settings (XMLEncrypt Class)
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.XMLEnc Config Settings
Note: This functionality is only available on Windows.
Note that this value is only informative, it does not affect processing.
0 (None) | No events are logged. |
1 (Info - default) | Informational events are logged. |
2 (Verbose) | Detailed data is logged. |
3 (Debug) | Debug data is logged. |
- "SHA1"
- "SHA224"
- "SHA256" (default)
- "SHA384"
- "SHA512"
- "RIPEMD160"
- "MD2"
- "MD5"
- "MD5SHA1"
Note: This setting is not applicable when UseFIPSCompliantAPI is set to true or when the private key of the signing certificate is not exportable since the underlying system implementation does not support separate OAEPRSAHashAlgorithm and OAEPMGF1HashAlgorithm values. In this case the OAEPRSAHashAlgorithm is also used for MGF1.
- "SHA1"
- "SHA224"
- "SHA256" (default)
- "SHA384"
- "SHA512"
- "RIPEMD160"
- "MD2"
- "MD5"
- "MD5SHA1"
- "SHA1" (default)
- "SHA224"
- "SHA256"
- "SHA384"
- "SHA512"
- "SHA1"
- "SHA224"
- "SHA256" (default)
- "SHA384"
- "SHA512"
- "RIPEMD160"
- "MD2"
- "MD5"
- "MD5SHA1"
- "SHA1" (default)
- "SHA224"
- "SHA256"
- "SHA384"
- "SHA512"
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
On Linux, the C++ edition requires installation of the FIPS-enabled OpenSSL library. The OpenSSL FIPS provider version must be at least 3.0.0. For additional information and instructions regarding the installation and activation of the FIPS-enabled OpenSSL library, please refer to the following link: https://github.com/openssl/openssl/blob/master/README-FIPS.md
To ensure the class utilizes the FIPS-enabled OpenSSL library, the obfuscated source code should first be compiled with OpenSSL enabled, as described in the Supported Platforms section. Additionally, the FIPS module should be enabled and active. If the obfuscated source code is not compiled as mentioned, or the FIPS module is inactive, the class will throw an appropriate error assuming FIPS mode is enabled.
FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting that applies to all instances of all classes of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.
For more details, please see the FIPS 140-2 Compliance article.
Note: This setting is applicable only on Windows.
Note: Enabling FIPS compliance requires a special license; please contact sales@nsoftware.com for details.
Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.
On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.
To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.
Trappable Errors (XMLEncrypt Class)
Error Handling (C++)
Call the GetLastErrorCode() method to obtain the last called method's result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. Known error codes are listed below. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
XMLEnc Errors
607 | Failed to write output. |
609 | Could not find encrypted data. |
610 | Invalid encrypted data. |
611 | Failed parsing certificate data. |
612 | SymmetricKey or RecipientCert must be set. |
XML Errors
101 | Invalid attribute index. |
102 | No attributes available. |
103 | Invalid namespace index. |
104 | No namespaces available. |
105 | Invalid element index. |
106 | No elements available. |
107 | Attribute does not exist. |
201 | Unbalanced element tag. |
202 | Unknown element prefix (cannot find namespace). |
203 | Unknown attribute prefix (cannot find namespace). |
204 | Invalid XML markup. |
205 | Invalid end state for parser. |
206 | Document contains unbalanced elements. |
207 | Invalid XPath. |
208 | No such child. |
209 | Top element does not match start of path. |
210 | DOM tree unavailable (set BuildDOM to True and reparse). |
302 | Cannot open file. |
401 | Invalid XML would be generated. |
402 | An invalid XML name has been specified. |