CalDAV Class

Properties   Methods   Events   Config Settings   Errors  

The CalDAV Class implements an easy-to-use interface to the Calendaring Extensions to the Web Distributed Authoring and Versioning protocol (WebDAV). In this manner the CalDAV protocol specifies a standard way of accessing, managing, and sharing calendaring and scheduling information based on the iCalendar format.

Syntax

ipworks.Caldav

Remarks

The CalDAV Class supports both plaintext and SSL/TLS connections. When connecting over SSL/TLS the SSLServerAuthentication event allows you to check the server identity and other security attributes. The SSLStatus event provides information about the SSL handshake. Additional SSL related settings are also supported via the Config method.

The class allows remote management of calendar events and collections of events (the calendar itself), including creation, deletion, listing, copying, and moving. Resource locking is also supported.

The GetCalendarReport method will list the event resources contained in the calendar, and the ReportFilter can be used to limit the results returned. The EventDetails event will be fired for each matching calendar resource. You may also request a report containing a list of times that the owner is free or busy using the GetFreeBusyReport. The FreeBusy event will fire for each entry received, and the data fired in the event will also be stored in the FreeBusy property.

Single events can be added to a calendar (or updated) using the PutCalendarEvent method, and can be retrieved via the GetCalendarEvent method. Events may be copied or moved with the CopyCalendarEvent and MoveCalendarEvent.

Depth is used to determine which resources or properties are retrieved from the server. A depth of ResourceOnly will return only the resource associated with ResourceURI, or its properties. A depth of Infinity will return all resources contained within hierarchy, or their collective properties.

Note: Some servers (such as IIS 7.5) may not support a depth of Infinity by default and may return a HTTP 403 Forbidden response.

The following properties are used when creating a request with PutCalendarEvent or ExportICS, and will be filled after calling GetCalendarEvent or ImportICS. These will also be available from inside the EventDetails event, which is fired for each event received from the CalDAV server in response to a GetCalendarReport.

Each method that acts on the calendar takes a ResourceURI parameter, which points to either an event resource or to the calendar itself. Event resources have a URI that ends with a filename and the ".ics" extension. Calendar resources end in a directory path. The following methods all act on events, and thus their ResourceURI parameters must terminate in a filename with the ".ics" extension:

These methods all act upon the calendar collection resource (the calendar itself): The LockCalendar and UnLockCalendar methods may operate on individual events or on the whole calendar.

There is no standard format for resource URIs. Google for instance, uses "https://www.google.com/calendar/dav/" plus your email address to access the default calendar. So "https://www.google.com/calendar/dav/username@gmail.com/" is the base URI for the default calendar. If you have multiple calendars, replace the email address portion above with the Id of the calendar, plus "@group.calendar.google.com/". For instance: "https://www.google.com/calendar/dav/ev3nkr4ua83jej7q32oumn5eeo@group.calendar.google.com/". For Google, calendar events are stored in the "/events/" path. To retrieve a report on a calendar, you'd add "/events/" to one of the above paths. For example:

Copy
CalDAV.GetCalendarReport("https://www.google.com/calendar/dav/username@gmail.com/events/");
Leaving the "/events/" out of the URI will result in an HTTP protocol error: 405 Method not allowed.

To add or retrieve an event, add the UID of the event you're creating or retrieving plus ".ics" to the path. Note that when putting an event with the PutCalendarEvent method, if the resourceURI and the UID do not match Google will create the event using the UID stored in the UID property. The actual location of will be newly added event will be returned in a "Location" header. This is the resource URI you must use to retrieve the event with GetCalendarEvent. For example:

Copy
CalDAV.UID = "1234567890"; CalDAV.PutCalendarEvent("https://www.google.com/calendar/dav/username@gmail.com/events/1234567890.ics");

Yahoo uses a different format for CalDAV access. Yahoo's ResourceURIs always start with "https://caldav.calendar.yahoo.com/dav/" plus your user name, plus "/Calendar/" plus the name of your calendar. For instance: "https://caldav.calendar.yahoo.com/dav/username/Calendar/Your_Name" for the default calendar. (Yahoo uses your name to create the default calendar). When using the CreateCalendar event to create a new calendar, replace "Your_Name" in the URI with the desired name of your new calendar. Event resources are located directly under the "/Calendar/Calendar_Name/" path. Like Google, the UID and filename portion of the resource URI must match, but Yahoo will actually return an HTTP protocol error if they differ. The examples below show a few possible transactions:

Copy
CalDAVS1.User = "username"; CalDAVS1.Password = "password"; CalDAV.DisplayName = "My Hockey Calendar"; CalDAV.CreateCalendar("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/"); CalDAV.StartDate = "20100401T040000"; CalDAV.EndDate = "20100401T060000"; CalDAV.UID = "qwerty1234567"; CalDAV.Summary = "First Practice"; CalDAV.Location = "Rink on 1st and main"; CalDAV.EventType = vEvent; CalDAV.PutCalendarEvent("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/qwerty1234567.ics"); CalDAV.GetCalendarReport("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/");

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

AlarmsAn alarm related to the event.
AttendeesDefines one or more participants that have been invited to the event.
AuthorizationThis property includes the Authorization string to be sent to the server.
AuthSchemeThe authentication scheme to use when server authentication is required.
CategoriesUsed to specify categories or subtypes of the calendar event.
ClassificationDefines the access classification for a calendar class.
CompletedDate and time that a to-do was actually completed.
ConnectedThis shows whether the class is connected.
CookiesThis property includes a collection of cookies.
CreatedDate and time calendar information created.
CustomPropertiesList of extra properties that may be used to extend the functionality of this class.
DepthThe depth associated with the current operation.
DescriptionProvides a complete description of the calendar event.
DisplayNameProvides the display name of the calendar being created.
DueDateSpecifies the due date for a calendar event.
DurationDuration of the calendar event.
EndDateSpecifies the date and time that a calendar event ends.
ETagIdentifier returned by the CalDAV server which is used to synchronize edits.
EventTypeIndicates the type of calendar object resource.
FirewallA set of properties related to firewall access.
FollowRedirectsThis property determines what happens when the server issues a redirect.
FreeBusySpecifies the times when the calendar owner is free or busy.
IdleThe current status of the class.
LastModifiedThe date and time that the information associated with the calendar event was last revised in the calendar store.
LocalHostThe name of the local host or user-assigned IP interface through which connections are initiated or accepted.
LocationDefines the intended venue for the activity defined by a calendar class.
LockPropertiesFields used when locking and unlocking a calendar resource.
OrganizerDefines the organizer of a calendar event.
OtherHeadersThis property includes other headers as determined by the user (optional).
ParsedHeadersThis property includes a collection of headers returned from the last request.
PasswordThis property includes a password if authentication is to be used.
PriorityDefines the relative priority for a calendar event.
ProxyA set of properties related to proxy access.
RecurrenceDefines the recurrence set for the event.
ReportFilterCriteria used to filter reports.
SequenceDefines the revision sequence number of the event within a sequence of revisions.
SSLAcceptServerCertInstructs the class to unconditionally accept the server certificate that matches the supplied certificate.
SSLCertThe certificate to be used during SSL negotiation.
SSLProviderThis specifies the SSL/TLS implementation to use.
SSLServerCertThe server certificate for the last established connection.
StartDateSpecifies the date and time that an event begins.
StatusDefines the overall status or confirmation for the calendar event.
StatusLineThis property is the first line of the last server response.
SummaryDefines a short summary or subject for the calendar event.
TimeoutA timeout for the class.
TimestampSpecifies the date and time that the instance of the event was created.
TimezoneSpecifies a time zone on a calendar collection.
TransparencyDefines whether or not an event is transparent to busy time searches.
UIDA persistent, globally unique identifier for the calendar event.
URLLocation of the event resource on the CalDAV server.
UserThis property includes a user name if authentication is to be used.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

AddCookieThis method adds a cookie and the corresponding value to the outgoing request headers.
AddCustomPropertyAdds a form variable and the corresponding value.
ConfigSets or retrieves a configuration setting.
CopyCalendarEventCopy events to a new location.
CreateCalendarCreates a new calendar collection resource.
DeleteCalendarEventDelete a resource or collection.
DoEventsProcesses events from the internal message queue.
ExportICSGenerates an event from the properties in the iCal (.ICS) format.
GetCalendarEventRetrieves a single event from the CalDAV server.
GetCalendarOptionsRetrieves options for the ResourceURI to determines whether it supports calendar access.
GetCalendarReportGenerates a report on the indicated calendar collection resource.
GetFreeBusyReportGenerates a report as to when the calendar owner is free and/or busy.
ImportICSImports calendar data (contained in an ICS file) into the class's property list.
InterruptInterrupt the current method.
LockCalendarObtain a lock for a specified calendar resource.
MoveCalendarEventMoves one calendar resource to a new location.
PutCalendarEventAdds a calendar resource at the specified ResourceURI using the CalDAV PUT method.
ResetReset the class.
UnLockCalendarUnlocks a calendar resource.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

ConnectedThis event is fired immediately after a connection completes (or fails).
ConnectionStatusThis event is fired to indicate changes in the connection state.
DisconnectedThis event is fired when a connection is closed.
EndTransferFired when a document finishes transferring.
ErrorFired when information is available about errors during data delivery.
EventDetailsFires for each calendar event received.
FreeBusyFires for each Free/Busy element received in the response.
HeaderThis event is fired every time a header line comes in.
LogThis event fires once for each log message.
RedirectThis event is fired when a redirection is received from the server.
SetCookieThis event is fired for every cookie set by the server.
SSLServerAuthenticationFired after the server presents its certificate to the client.
SSLStatusFired when secure connection progress messages are available.
StartTransferFired when a document starts transferring (after the headers).
StatusThis event is fired when the HTTP status line is received from the server.
TransferThis event is fired while a document transfers (delivers document).

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

AuthSchemeThe authentication scheme to use for server authorization.
BuildEventBuilds the current event for a multi-event calendar entry.
EndCalendarSignifies the end of a multi-event calendar entry.
ExpandRecurringEventsInstructs the class to return all instances of a recurring event within a timeframe.
ListCalendarsInstructs the class list all the calendars for the current user.
ListCalendarsResultCountProvides the number of calendars found when listing.
ListCalendarsResultDisplayName[i]Provides the name of a listed calendar.
ListCalendarsResultURL[i]Provides the URL of a listed calendar.
ProductIdSpecifies the identifier for the product that created the iCalendar object.
RecurrenceExceptionDatesAttrsSpecifies the attributes for the exception dates of a recurring event.
StartCalendarSignifies the beginning of a multi-event calendar entry.
EncodeURLIf set to true the URL will be encoded by the class.
IsDir[i]Whether or not the resource at the specified index is a directory.
MaxResourcesInstructs class to save the amount of resources specified that are returned by the server after a ListDirectory call has been made.
QueryPropertyNamesInstructs class explicitly request certain properties when calling ListDirectory.
AcceptEncodingUsed to tell the server which types of content encodings the client supports.
AllowHTTPCompressionThis property enables HTTP compression for receiving data.
AllowHTTPFallbackWhether HTTP/2 connections are permitted to fallback to HTTP/1.1.
AllowNTLMFallbackWhether to allow fallback from Negotiate to NTLM when authenticating.
AppendWhether to append data to LocalFile.
AuthorizationThe Authorization string to be sent to the server.
BytesTransferredContains the number of bytes transferred in the response data.
ChunkSizeSpecifies the chunk size in bytes when using chunked encoding.
CompressHTTPRequestSet to true to compress the body of a PUT or POST request.
EncodeURLIf set to True the URL will be encoded by the class.
FollowRedirectsDetermines what happens when the server issues a redirect.
GetOn302RedirectIf set to True the class will perform a GET on the new location.
HTTP2HeadersWithoutIndexingHTTP2 headers that should not update the dynamic header table with incremental indexing.
HTTPVersionThe version of HTTP used by the class.
IfModifiedSinceA date determining the maximum age of the desired document.
KeepAliveDetermines whether the HTTP connection is closed after completion of the request.
KerberosSPNThe Service Principal Name for the Kerberos Domain Controller.
LogLevelThe level of detail that is logged.
MaxHeadersInstructs class to save the amount of headers specified that are returned by the server after a Header event has been fired.
MaxHTTPCookiesInstructs class to save the amount of cookies specified that are returned by the server when a SetCookie event is fired.
MaxRedirectAttemptsLimits the number of redirects that are followed in a request.
NegotiatedHTTPVersionThe negotiated HTTP version.
OtherHeadersOther headers as determined by the user (optional).
ProxyAuthorizationThe authorization string to be sent to the proxy server.
ProxyAuthSchemeThe authorization scheme to be used for the proxy.
ProxyPasswordA password if authentication is to be used for the proxy.
ProxyPortPort for the proxy server (default 80).
ProxyServerName or IP address of a proxy server (optional).
ProxyUserA user name if authentication is to be used for the proxy.
SentHeadersThe full set of headers as sent by the client.
StatusCodeThe status code of the last response from the server.
StatusLineThe first line of the last response from the server.
TransferredDataThe contents of the last response from the server.
TransferredDataLimitThe maximum number of incoming bytes to be stored by the class.
TransferredHeadersThe full set of headers as received from the server.
TransferredRequestThe full request as sent by the client.
UseChunkedEncodingEnables or Disables HTTP chunked encoding for transfers.
UseIDNsWhether to encode hostnames to internationalized domain names.
UsePlatformDeflateWhether to use the platform implementation to decompress compressed responses.
UsePlatformHTTPClientWhether or not to use the platform HTTP client.
UseProxyAutoConfigURLWhether to use a Proxy auto-config file when attempting a connection.
UserAgentInformation about the user agent (browser).
CloseStreamAfterTransferIf true, the class will close the upload or download stream after the transfer.
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the class whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallListenerIf true, the class binds to a SOCKS firewall as a server (TCPClient only).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the class binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
UseNTLMv2Whether to use NTLM V2.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertsA newline separated list of CA certificate to use during SSL client authentication.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCheckOCSPWhether to use OCSP to check the status of the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLContextProtocolThe protocol used when getting an SSLContext instance.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLServerCACertsA newline separated list of CA certificate to use during SSL server certificate validation.
SSLTrustManagerFactoryAlgorithmThe algorithm to be used to create a TrustManager through TrustManagerFactory.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
GUIAvailableWhether or not a message loop is available for processing events.
LicenseInfoInformation about the current license.
MaskSensitiveWhether sensitive data is masked in log messages.
UseDaemonThreadsWhether threads created by the class are daemon threads.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

Alarms Property (CalDAV Class)

An alarm related to the event.

Syntax

public CalAlarmList getAlarms();


public void setAlarms(CalAlarmList alarms);

Remarks

This property contains the information for an Alarm calendar component. An Alarm calendar component is a grouping of fields that set up a reminder or alarm for an event or to-do. For example, it may be used to define a reminder for a pending event or an overdue to-do.

Each CalAlarm calendar component MUST include the Action and Trigger fields. The Action field further constrains the CalAlarm in the following ways:

When the Action is aAudio, the alarm can optionally include an Attachment field, containing a base-64 encoded binary audio file to be played when the alarm is triggered.

When the Action is aDisplay, the alarm MUST also include the Message field, which contains the text to be displayed when the alarm is triggered.

When the Action is aEmail, the alarm MUST include the Message field, which contains the text to be used as the message body, the Subject field, which contains the text to be used as the message subject, and the Recipient field, which contains the email address of the person intended to receive the message.

An event may contain multiple alarms.

This property is filled from the response to a GetCalendarEvent, and is also used when creating an event to be added using the PutCalendarEvent method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

Please refer to the CalAlarm type for a complete list of fields.

Attendees Property (CalDAV Class)

Defines one or more participants that have been invited to the event.

Syntax

public String getAttendees();


public void setAttendees(String attendees);

Default Value

""

Remarks

This property may contain a comma-separated list of attendees that have been invited to an event. Each email address should be in the mailto URI format (as defined in RFC2368). For instance:

Copy
CalDAV.Attendees = "mailto:johnsmith@example.com,mailto:janedoe@test.com"

This property is filled from the response to a GetCalendarEvent, and is also used when creating an event to be added using the PutCalendarEvent method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

Authorization Property (CalDAV Class)

This property includes the Authorization string to be sent to the server.

Syntax

public String getAuthorization();


public void setAuthorization(String authorization);

Default Value

""

Remarks

If the Authorization property contains a nonempty string, an Authorization HTTP request header is added to the request. This header conveys Authorization information to the server.

A common use for this property is to specify OAuth authorization string.

This property is provided so that the HTTP class can be extended with other security schemes in addition to the authorization schemes already implemented by the class.

The AuthScheme property defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time User and Password are set, they are Base64 encoded, and the result is put in the Authorization property in the form "Basic [encoded-user-password]".

AuthScheme Property (CalDAV Class)

The authentication scheme to use when server authentication is required.

Syntax

public int getAuthScheme();


public void setAuthScheme(int authScheme);


Enumerated values:
  public final static int authBasic = 0;
  public final static int authDigest = 1;
  public final static int authProprietary = 2;
  public final static int authNone = 3;
  public final static int authNtlm = 4;
  public final static int authNegotiate = 5;
  public final static int authOAuth = 6;

Default Value

0

Remarks

This property will tell the class which type of authorization to perform when the User and Password properties are set.

This property should be set to authNone (3) when no authentication is to be performed.

By default, this property is authBasic (0), and if the User and Password properties are set, the class will attempt HTTP Basic Authentication. If AuthScheme is set to authDigest (1), authNtlm (4), or authNegotiate (5), then Digest, NTLM, or Windows Negotiate (Kerberos) authentication will be attempted instead.

If AuthScheme is set to authProprietary (2), then the authorization token must be supplied through the Authorization property.

If AuthScheme is set to authOAuth (6), then the authorization string must be supplied through the Authorization property.

Note: If you set the Authorization property and AuthScheme is not authProprietary or authOAuth, then the AuthScheme will be set automatically to authProprietary (2) by the class.

For security, changing the value of this property will cause the class to clear the values of User, Password, and Authorization.

Categories Property (CalDAV Class)

Used to specify categories or subtypes of the calendar event.

Syntax

public String getCategories();


public void setCategories(String categories);

Default Value

""

Remarks

This property is used to specify the categories or subtypes contained in a calendar event. The categories are useful in searching for an event of a particular type and/or category. Within the "VEVENT", "VTODO", or "VJOURNAL" calendar components, more than one category can be specified as a COMMA-separated list of categories. For example:

Copy
CalDAV.CalendarEvents[0].Category = "APPOINTMENT,EDUCATION,MEETING";

This property is filled from the response to a GetCalendarEvent, and is also used when creating an event to be added using the PutCalendarEvent method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

Classification Property (CalDAV Class)

Defines the access classification for a calendar class.

Syntax

public String getClassification();


public void setClassification(String classification);

Default Value

""

Remarks

This property provides a method for capturing the access that the owner wishes to allow for the calendar component. Standard values include "PUBLIC", "PRIVATE", and "CONFIDENTIAL", but calendars may support additional values as well as user-defined values. If not specified, the default value is PUBLIC. Applications MUST treat Classification values that they do not recognize the same way as they would the PRIVATE value.

This property is filled from the response to a GetCalendarEvent, and is also used when creating an event to be added using the PutCalendarEvent method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

Completed Property (CalDAV Class)

Date and time that a to-do was actually completed.

Syntax

public String getCompleted();


public void setCompleted(String completed);

Default Value

""

Remarks

This property defines the date and time that a to-do was actually completed. This property is only applicable for the vTodo EventType. The date/time format is "YYYYMMDDThhmmss", where "T" indicates the break between date and time. You may also append a 1-character alpha code for the timezone. For instance, "20100104T123456Z" indicates January 4th, 2010 at 12:34:56 PM UTC.

This property is filled from the response to a GetCalendarEvent, and is also used when creating an event to be added using the PutCalendarEvent method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

Connected Property (CalDAV Class)

This shows whether the class is connected.

Syntax

public boolean isConnected();


public void setConnected(boolean connected);

Default Value

False

Remarks

This property is used to determine whether or not the class is connected to the remote host.

Note: It is recommended to use the Connect or Disconnect method instead of setting this property.

This property is not available at design time.

Cookies Property (CalDAV Class)

This property includes a collection of cookies.

Syntax

public HTTPCookieList getCookies();


public void setCookies(HTTPCookieList cookies);

Remarks

This property contains a collection of cookies. To add cookies to outgoing HTTP requests, add cookies (of type HTTPCookie) to this collection.

To see cookies that are set by the server, use the SetCookie event, which displays the cookies and their properties as set by the server. Those cookies also are added to Cookies.

MaxHTTPCookies can be used to control the maximum number of cookies saved.

This collection is indexed from 0 to size -1.

This property is not available at design time.

Please refer to the HTTPCookie type for a complete list of fields.

Created Property (CalDAV Class)

Date and time calendar information created.

Syntax

public String getCreated();


public void setCreated(String created);

Default Value

""

Remarks

This property specifies the date and time that the calendar information was created by the calendar user agent in the calendar store. The date/time format is "YYYYMMDDThhmmss", where "T" indicates the break between date and time. You may also append a 1-character alpha code for the timezone. For instance, "20100104T123456Z" indicates January 4th, 2010 at 12:34:56 PM UTC.

This property is filled from the response to a GetCalendarEvent, and is also used when creating an event to be added using the PutCalendarEvent method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

CustomProperties Property (CalDAV Class)

List of extra properties that may be used to extend the functionality of this class.

Syntax

public CalCustomPropList getCustomProperties();


public void setCustomProperties(CalCustomPropList customProperties);

Remarks

This property is used to add additional name/value pairs to the request. It is valid only for the PutCalendarEvent and CreateCalendar methods. You may use this property to submit any CalDAV fields that are not directly supported by this class. You may also use it to send custom properties that are specific on the calendar that you are using. Such custom properties normally start with "X-". For instance:

Copy
CalDAV.CustomProperties.Add(new CalCustomProp("X-foo", "bar"));

Or alternatively:

Copy
CalDAV.CustomProperties.Add(new CalCustomProp()); CalDAV.CustomProperties[0].Name = "X-hello"; CalDAV.CustomProperties[0].Value = "world";

The contents of the CustomProperties collection will only be added to the PutCalendarEvent or CreateCalendar requests. They will be ignored for all other methods.

This property is not available at design time.

Please refer to the CalCustomProp type for a complete list of fields.

Depth Property (CalDAV Class)

The depth associated with the current operation.

Syntax

public int getDepth();


public void setDepth(int depth);


Enumerated values:
  public final static int dpUnspecified = 0;
  public final static int dpResourceOnly = 1;
  public final static int dpImmediateChildren = 2;
  public final static int dpInfinity = 3;

Default Value

0

Remarks

This property defines how deep to operate within a collection. When performing certain operations on resource collections, the class will use Depth to instruct the server on how deep to operate within the collection. Depth is an enumerated type with the following possible values:

dpUnspecified (0)The server will use the protocol default depth for the operation (this is normally "infinity").
dpResourceOnly (1)The server will operate only on the collection resource URI, and not on any of its internal member resources.
dpImmediateChildren (2)The server will operate on the collection resource URI and all of its immediate member resources (but on none of their member resources).
dpInfinity (3)The server will recursively operate on the target resource URI and all of its internal member URIs through all levels of the collection hierarchy.

Depth is used when performing the following operations: LockCalendar, MoveCalendarEvent, CopyCalendarEvent, and GetCalendarReport

Description Property (CalDAV Class)

Provides a complete description of the calendar event.

Syntax

public String getDescription();


public void setDescription(String description);

Default Value

""

Remarks

This property provides a more complete description of the event than is provided by the Summary property. It is also used by the CreateCalendar method when creating a new calendar collection.

DisplayName Property (CalDAV Class)

Provides the display name of the calendar being created.

Syntax

public String getDisplayName();


public void setDisplayName(String displayName);

Default Value

""

Remarks

This property provides the name to be displayed for a calendar. This may or may not be defined on any calendar collection. It should be set before creating a new calendar collection via the CreateCalendar method.

DueDate Property (CalDAV Class)

Specifies the due date for a calendar event.

Syntax

public String getDueDate();


public void setDueDate(String dueDate);

Default Value

""

Remarks

This setting can be used to configure or obtain the due date for the selected calendar event.

Note: The format of this property should be the same as EndDate.

Duration Property (CalDAV Class)

Duration of the calendar event.

Syntax

public String getDuration();


public void setDuration(String duration);

Default Value

""

Remarks

This property contains the duration for a calendar event. Durations are represented by the format P<date>T<time>. The date component may contain a number of days or weeks (but not months or years), and the time component may consist of hours, minutes, and seconds. These are represented by an integer value followed by a letter representing the units, as specified by the table below:

P is the duration designator (historically called "period") placed at the start of the duration representation.
W is the week designator that follows the value for the number of weeks.
D is the day designator that follows the value for the number of days.
T is the time designator that precedes the time components of the representation.
H is the hour designator that follows the value for the number of hours.
M is the minute designator that follows the value for the number of minutes.
S is the second designator that follows the value for the number of seconds.
For example, "P4DT12H30M5S" represents a duration of four days, twelve hours, thirty minutes, and five seconds. Unused date/time designators may be left out completely. (A five-minute duration may be represented as simply "PT5M"). Also note that "PT36H" and "P1DT12H" represent the same duration.

This format is based on ISO-8601, but unlike the ISO specification this duration property does not support durations measured in years or months.

This property is filled from the response to a GetCalendarEvent, and is also used when creating an event to be added using the PutCalendarEvent method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

EndDate Property (CalDAV Class)

Specifies the date and time that a calendar event ends.

Syntax

public String getEndDate();


public void setEndDate(String endDate);

Default Value

""

Remarks

This property specifies the date and time that a calendar event will end. The date/time format is "YYYYMMDDThhmmss", where "T" indicates the break between date and time. You may also append a 1-character alpha code for the timezone. For instance, "20100104T123456Z" indicates January 4th, 2010 at 12:34:56 PM UTC.

This property is filled from the response to a GetCalendarEvent, and is also used when creating an event to be added using the PutCalendarEvent method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

ETag Property (CalDAV Class)

Identifier returned by the CalDAV server which is used to synchronize edits.

Syntax

public String getETag();


public void setETag(String ETag);

Default Value

""

Remarks

This property identifies the state of the event in the calendar. An ETag is returned by the CalDAV server after a successful PutCalendarEvent request. Every time an event is updated, the ETag changes. This gives you the ability to determine if another user has changed the event you added.

You can use this ETag value to maintain a cache. If you submit a GetCalendarReport request with the ReturnCalendarData field set to False only the URI and ETags for each event in the calendar will be returned in the report. You can cache the ETag and URI locally, and then inspect the report for any changes and update only the events that have changed ETags.

When updating an event with the PutCalendarEvent method, you may add the ETag to the "If-Match" header (using OtherHeaders) in order to insure that you are not overwriting more recent changes on the server. For instance:

Copy
calDAV.UID = "20110202T000000Z-6414-500-10112-204@nsoftest"; calDAV.StartDate = "20110202T000000Z"; calDAV.EndDate = "20110202T110000Z"; calDAV.TimeStamp = "20100301T000000Z"; calDAV.Summary = "Dinner with friends"; calDAV.Description = "Getting everyone together for some food and fun"; calDAV.Location = "The James Joyce Irish Pub"; calDAV.EventType = CaldavsEventTypes.vEvent; calDAV.OtherHeaders = "If-Match: 1900-1900\r\ n"; calDAV.PutCalendarEvent "https://caldav.calendar.yahoo.com/dav/user_name/Calendar/My_Calendar/20110202T000000Z-6414-500-10112-204@nsoftest.ics"
If the current ETag for the above event is "1900-1900", then the above modification will work perfectly. However, if the event was modified on the Yahoo server, the ETag will not match and the above will fail with an HTTP Protocol error: "409 Conflict". In that case you should retrieve the event with GetCalendarEvent and update the most recent version.

This property is filled from the response to a GetCalendarEvent, and is also used when creating an event to be added using the PutCalendarEvent method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

EventType Property (CalDAV Class)

Indicates the type of calendar object resource.

Syntax

public int getEventType();


public void setEventType(int eventType);


Enumerated values:
  public final static int vEvent = 0;
  public final static int vTodo = 1;
  public final static int vJournal = 2;
  public final static int vFreeBusy = 3;

Default Value

0

Remarks

This property indicates the type of calendar object resource is used.

This property is filled from the response to a GetCalendarEvent, and is also used when creating an event to be added using the PutCalendarEvent method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

Firewall Property (CalDAV Class)

A set of properties related to firewall access.

Syntax

public Firewall getFirewall();


public void setFirewall(Firewall firewall);

Remarks

This is a Firewall-type property, which contains fields describing the firewall through which the class will attempt to connect.

Please refer to the Firewall type for a complete list of fields.

FollowRedirects Property (CalDAV Class)

This property determines what happens when the server issues a redirect.

Syntax

public int getFollowRedirects();


public void setFollowRedirects(int followRedirects);


Enumerated values:
  public final static int frNever = 0;
  public final static int frAlways = 1;
  public final static int frSameScheme = 2;

Default Value

0

Remarks

This property determines what happens when the server issues a redirect. Normally, the class returns an error if the server responds with an "Object Moved" message. If this property is set to frAlways (1), the new URL for the object is retrieved automatically every time.

If this property is set to frSameScheme (2), the new URL is retrieved automatically only if the URLScheme is the same; otherwise, the class throws an exception.

Note: Following the HTTP specification, unless this property is set to frAlways (1), automatic redirects will be performed only for GET or HEAD requests. Other methods potentially could change the conditions of the initial request and create security vulnerabilities.

Furthermore, if either the new URL server or port are different from the existing one, User and Password are also reset to empty. If, however, this property is set to frAlways (1), the same credentials are used to connect to the new server.

A Redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the Redirect event is a good place to set properties related to the new connection (e.g., new authentication parameters).

The default value is frNever (0). In this case, redirects are never followed, and the class throws an exception instead.

FreeBusy Property (CalDAV Class)

Specifies the times when the calendar owner is free or busy.

Syntax

public CalFreeBusyList getFreeBusy();


Remarks

This property may contain free/busy information in response to a GetFreeBusyReport request or after either a GetCalendarReport or a GetCalendarEvent request. In the latter case, this property will only contain data when the EventType is vFreeBusy.

This property is read-only.

Please refer to the CalFreeBusy type for a complete list of fields.

Idle Property (CalDAV Class)

The current status of the class.

Syntax

public boolean isIdle();


Default Value

True

Remarks

Idle will be False if the component is currently busy (communicating and/or waiting for an answer), and True at all other times.

This property is read-only.

LastModified Property (CalDAV Class)

The date and time that the information associated with the calendar event was last revised in the calendar store.

Syntax

public String getLastModified();


public void setLastModified(String lastModified);

Default Value

""

Remarks

This property contains the date and time that the information associated with the calendar event was last revised in the calendar store. This is analogous to the modification date and time for a file in the file system, and must be specified in the UTC time format: <date>T<time>Z, where date is in "YYYYMMDD" format and time is in "hhmmss" format. "T" is the delimiter between date and time, and "Z" is the UTC timezone indicator. For example, "20020119T13:23:56Z" is 1:23:56pm on January 19th, 2002. The date/time format is "YYYYMMDDThhmmss", where "T" indicates the break between date and time. You may also append a 1-character alpha code for the timezone. For instance, "20100104T123456Z" indicates January 4th, 2010 at 12:34:56 PM UTC.

This property is filled from the response to a GetCalendarEvent, and is also used when creating an event to be added using the PutCalendarEvent method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

LocalHost Property (CalDAV Class)

The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

public String getLocalHost();


public void setLocalHost(String localHost);

Default Value

""

Remarks

The LocalHost property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

NOTE: LocalHost is not persistent. You must always set it in code, and never in the property window.

Location Property (CalDAV Class)

Defines the intended venue for the activity defined by a calendar class.

Syntax

public String getLocation();


public void setLocation(String location);

Default Value

""

Remarks

This property may be used to explicitly specify the venue, such as conference or meeting rooms, for the activity defined by a calendar component. An alternate representation may be specified using a URI that points to directory information with more structured specifications of the location. For example, the alternate representation may specify either an LDAP URL [RFC4516] pointing to an LDAP server entry or a CID URL [RFC2392] pointing to a MIME body part containing a Virtual-Information Card (vCard) [RFC2426] for the location.

This property is filled from the response to a GetCalendarEvent, and is also used when creating an event to be added using the PutCalendarEvent method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

LockProperties Property (CalDAV Class)

Fields used when locking and unlocking a calendar resource.

Syntax

public CalLock getLockProperties();


public void setLockProperties(CalLock lockProperties);

Remarks

This property used the LockType, Owner, Scope Timeout, and Tokens fields when locking and unlocking a calendar resource. You may lock the whole calendar, or only a single event within the calendar, depending on the URI you pass to LockCalendar or UnLockCalendar. After a successful LockCalendar operation, the class will the LockType, Owner, Scope Timeout, and Tokens fields to the values returned in the server's response. The lock Tokens are then passed along when you call CopyCalendarEvent or MoveCalendarEvent

Please refer to the CalLock type for a complete list of fields.

Organizer Property (CalDAV Class)

Defines the organizer of a calendar event.

Syntax

public String getOrganizer();


public void setOrganizer(String organizer);

Default Value

""

Remarks

This property is specified within the vEvent, vTodo, and vJournal calendar EventTypes to specify the organizer of a group-scheduled calendar entity. The property is specified within the vFreeBusy EventType to identify the calendar user requesting the free or busy time. When publishing a vFreeBusy EventType, the property is used to specify the calendar that the published busy time came from.

Each email address should be in the mailto URI format (as defined in RFC2368).

For instance:

Copy
CalDAV.Organizer = "mailto:jane_doe@example.com";

This property is filled from the response to a GetCalendarEvent, and is also used when creating an event to be added using the PutCalendarEvent method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

OtherHeaders Property (CalDAV Class)

This property includes other headers as determined by the user (optional).

Syntax

public String getOtherHeaders();


public void setOtherHeaders(String otherHeaders);

Default Value

""

Remarks

This property can be set to a string of headers to be appended to the HTTP request headers created from other properties like ContentType and From.

The headers must follow the format Header: Value as described in the HTTP specifications. Header lines should be separated by CRLF ("\r\n") .

Use this property with caution. If this property contains invalid headers, HTTP requests may fail.

This property is useful for extending the functionality of the class beyond what is provided.

For CalDAV, the "If-Match" header is extremely useful. After adding a an event with PutCalendarEvent or retrieving an event with GetCalendarEvent, the ETag property will contain a value indicating the current state of the event. If you wish to update the event, you may pass this returned ETag in an "If-Match" header. If the event on the server has been modified since you retrieved it (and the ETag on the server has changed), then the PutCalendarEvent will fail with an HTTP Protocol Error: "409 Conflict", which indicates there is a conflict between the version you're trying to update and the current version on the sever. For instance:

Copy
calDAV.OtherHeaders = "If-Match: 1900-1900\r\ n";

This property is not available at design time.

ParsedHeaders Property (CalDAV Class)

This property includes a collection of headers returned from the last request.

Syntax

public HeaderList getParsedHeaders();


Remarks

This property contains a collection of headers returned from the last request. Whenever headers are returned from the server, the headers are parsed into a collection of headers. Each Header in this collection contains information describing that header.

MaxHeaders can be used to control the maximum number of headers saved.

This collection is indexed from 0 to size -1.

This property is read-only and not available at design time.

Please refer to the Header type for a complete list of fields.

Password Property (CalDAV Class)

This property includes a password if authentication is to be used.

Syntax

public String getPassword();


public void setPassword(String password);

Default Value

""

Remarks

This property contains a password if authentication is to be used. If AuthScheme is set to HTTP Basic Authentication, the User and Password are Base64 encoded and the result is put in the Authorization configuration setting in the form "Basic [encoded-user-password]".

If AuthScheme is set to HTTP Digest Authentication, the User and Password properties are used to respond to the HTTP Digest Authentication challenge from the server.

If AuthScheme is set to NTLM, NTLM authentication will be attempted. If AuthScheme is set to NTLM and User and Password are empty, the class will attempt to authenticate using the current user's credentials.

Priority Property (CalDAV Class)

Defines the relative priority for a calendar event.

Syntax

public int getPriority();


public void setPriority(int priority);

Default Value

0

Remarks

This property defines the relative priority of a calendar event. The priority is specified as an integer in the range 0 to 9. A value of 0 specifies an undefined Priority. A value of 1 is the highest Priority. A value of 2 is the second highest Priority. Subsequent numbers specify a decreasing ordinal Priority. A value of 9 is the lowest Priority.

A Calendar User-Agent (CUA) with a three-level Priority scheme of "HIGH", "MEDIUM", and "LOW" is mapped into this property such that a property value in the range of 1 to 4 specifies "HIGH" Priority. A value of 5 is the normal or "MEDIUM" Priority. A value in the range of 6 to 9 is "LOW" Priority.

This property is filled from the response to a GetCalendarEvent, and is also used when creating an event to be added using the PutCalendarEvent method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

Proxy Property (CalDAV Class)

A set of properties related to proxy access.

Syntax

public Proxy getProxy();


public void setProxy(Proxy proxy);

Remarks

This property contains fields describing the proxy through which the class will attempt to connect.

Please refer to the Proxy type for a complete list of fields.

Recurrence Property (CalDAV Class)

Defines the recurrence set for the event.

Syntax

public CalRecurrence getRecurrence();


public void setRecurrence(CalRecurrence recurrence);

Remarks

This property defines the recurrence set for the event. The recurrence set is the complete set of recurrence instances for a calendar component. The recurrence set is generated by considering the initial StartDate property along with the Rule, Dates, ExceptionRule, and ExceptionDates fields contained within the recurring event. The StartDate property defines the first instance in the recurrence set. The starting date SHOULD match the pattern of the recurrence rule, if specified. The recurrence set generated with a start date that doesn't match the pattern of the rule is undefined. The final recurrence set is generated by gathering all of the start DATE-TIME values generated by any of the specified Rule and Dates fields, and then excluding any start DATE-TIME values specified by the ExceptionRule or ExceptionDates fields. This implies that DATE-TIME values specified by the ExceptionRule and ExceptionDates fields take precedence over those specified by inclusion properties (i.e., Dates and Rule). When duplicate instances are generated by the recurrence Rule and Dates fields, only one recurrence is considered. Duplicate instances are ignored.

This property is filled from the response to a GetCalendarEvent, and is also used when creating an event to be added using the PutCalendarEvent method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

Please refer to the CalRecurrence type for a complete list of fields.

ReportFilter Property (CalDAV Class)

Criteria used to filter reports.

Syntax

public CalReportFilter getReportFilter();


public void setReportFilter(CalReportFilter reportFilter);

Remarks

This property may be used to restrict the results of reports to only those that match your search criteria.The GetCalendarReport method will normally return the entire calendar collection at the specified ResourceURI. You can restrict results to only events within a specified time range (using StartDate and EndDate), to only recurring events within a specified time range (using RecurStart and RecurEnd), and to events with an alarm set to go off within a specified time range. (using AlarmStart and AlarmEnd). You can also restrict results to only those events which contain a specific Property (either by property name, or name and a specific value). The EventType property determines what kind of events are returned (events, todo lists, journal entries, or free/busy time).

Please refer to the CalReportFilter type for a complete list of fields.

Sequence Property (CalDAV Class)

Defines the revision sequence number of the event within a sequence of revisions.

Syntax

public int getSequence();


public void setSequence(int sequence);

Default Value

0

Remarks

This property defines the revision sequence number of the event within a sequence of revisions. When a calendar component is created its Sequence number is 0. It is incremented by the Organizer's Calendar User Agent (CUA) each time the Organizer makes a significant revision to the calendar event. Therefore, a Sequence number of 2 means the event has been revised twice.

The Organizer includes this property in a calendar event that it sends to an Attendees to specify the current version of the event. Likewise, the Attendees includes this property in an event that it sends to the Organizer to specify the version of the calendar component to which the Attendees is referring.

Note: Recurrence instances of a recurring event may have different sequence numbers.

This property is filled from the response to a GetCalendarEvent, and is also used when creating an event to be added using the PutCalendarEvent method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

SSLAcceptServerCert Property (CalDAV Class)

Instructs the class to unconditionally accept the server certificate that matches the supplied certificate.

Syntax

public Certificate getSSLAcceptServerCert();


public void setSSLAcceptServerCert(Certificate SSLAcceptServerCert);

Remarks

If it finds any issues with the certificate presented by the server, the class will normally terminate the connection with an error.

You may override this behavior by supplying a value for SSLAcceptServerCert. If the certificate supplied in SSLAcceptServerCert is the same as the certificate presented by the server, then the server certificate is accepted unconditionally, and the connection will continue normally.

Please note that this functionality is provided only for cases where you otherwise know that you are communicating with the right server. If used improperly, this property may create a security breach. Use it at your own risk.

Please refer to the Certificate type for a complete list of fields.

SSLCert Property (CalDAV Class)

The certificate to be used during SSL negotiation.

Syntax

public Certificate getSSLCert();


public void setSSLCert(Certificate SSLCert);

Remarks

The digital certificate that the class will use during SSL negotiation. Set this property to a valid certificate before starting SSL negotiation. To set a certificate, you may set the Encoded field to the encoded certificate. To select a certificate, use the store and subject fields.

Please refer to the Certificate type for a complete list of fields.

SSLProvider Property (CalDAV Class)

This specifies the SSL/TLS implementation to use.

Syntax

public int getSSLProvider();


public void setSSLProvider(int SSLProvider);


Enumerated values:
  public final static int sslpAutomatic = 0;
  public final static int sslpPlatform = 1;
  public final static int sslpInternal = 2;

Default Value

0

Remarks

This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic) the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.

Possible values are:

0 (sslpAutomatic - default)Automatically selects the appropriate implementation.
1 (sslpPlatform) Uses the platform/system implementation.
2 (sslpInternal) Uses the internal implementation.
Additional Notes

In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.

When Automatic is selected the platform implementation is used by default. When TLS 1.3 is enabled via SSLEnabledProtocols the internal implementation is used.

SSLServerCert Property (CalDAV Class)

The server certificate for the last established connection.

Syntax

public Certificate getSSLServerCert();


Remarks

SSLServerCert contains the server certificate for the last established connection.

SSLServerCert is reset every time a new connection is attempted.

This property is read-only.

Please refer to the Certificate type for a complete list of fields.

StartDate Property (CalDAV Class)

Specifies the date and time that an event begins.

Syntax

public String getStartDate();


public void setStartDate(String startDate);

Default Value

""

Remarks

This property specifies the date and time that an event begins. The date/time format is "YYYYMMDDThhmmss", where "T" indicates the break between date and time. You may also append a 1-character alpha code for the timezone. For instance, "20100104T123456Z" indicates January 4th, 2010 at 12:34:56 PM UTC.

This property is filled from the response to a GetCalendarEvent, and is also used when creating an event to be added using the PutCalendarEvent method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

Status Property (CalDAV Class)

Defines the overall status or confirmation for the calendar event.

Syntax

public String getStatus();


public void setStatus(String status);

Default Value

""

Remarks

In a group-scheduled calendar component, the property is used by the Organizer to provide a confirmation of the event to the Attendees. For example in a vEvent EventType the Organizer can indicate that a meeting is tentative, confirmed, or canceled. For a vTodo EventType, the Organizer can indicate that an action item needs action, is completed, is in process or being worked on, or has been canceled. In a vJournal EventType, the Organizer can indicate that a journal entry is draft, final, or has been canceled or removed.

Statuses for a vEvent EventType:

TENTATIVEIndicates event is tentative.
CONFIRMEDIndicates event is definite.
CANCELLEDIndicates event was canceled.
Statuses for a vTodo EventType:
NEEDS-ACTIONIndicates to-do needs action.
COMPLETEDIndicates to-do completed.
IN-PROCESSIndicates to-do in process of.
CANCELLEDIndicates to-do was canceled.
Statuses for a vJournal EventType:
DRAFTIndicates event is draft.
FINALIndicates event is final.
CANCELLEDIndicates event is removed.

This property is filled from the response to a GetCalendarEvent, and is also used when creating an event to be added using the PutCalendarEvent method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

StatusLine Property (CalDAV Class)

This property is the first line of the last server response.

Syntax

public String getStatusLine();


Default Value

""

Remarks

This property contains the first line of the last server response. This value can be used for diagnostic purposes. If an HTTP error is returned when calling a method of the class, the error string is the same as the StatusLine property.

The HTTP protocol specifies the structure of the StatusLine as follows: [HTTP version] [Result Code] [Description].

This property is read-only and not available at design time.

Summary Property (CalDAV Class)

Defines a short summary or subject for the calendar event.

Syntax

public String getSummary();


public void setSummary(String summary);

Default Value

""

Remarks

This property defines a short summary or subject for the calendar event.

This property is filled from the response to a GetCalendarEvent, and is also used when creating an event to be added using the PutCalendarEvent method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

Timeout Property (CalDAV Class)

A timeout for the class.

Syntax

public int getTimeout();


public void setTimeout(int timeout);

Default Value

60

Remarks

If the Timeout property is set to 0, all operations will run uninterrupted until successful completion or an error condition is encountered.

If Timeout is set to a positive value, the class will wait for the operation to complete before returning control.

The class will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not "freeze" and remains responsive.

If Timeout expires, and the operation is not yet complete, the class throws an exception.

Please note that by default, all timeouts are inactivity timeouts, i.e. the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.

The default value for the Timeout property is 60 seconds.

Timestamp Property (CalDAV Class)

Specifies the date and time that the instance of the event was created.

Syntax

public String getTimestamp();


public void setTimestamp(String timestamp);

Default Value

""

Remarks

This property specifies the date and time that the instance of the event was created. The date/time format is "YYYYMMDDThhmmss", where "T" indicates the break between date and time. You may also append a 1-character alpha code for the timezone. For instance, "20100104T123456Z" indicates January 4th, 2010 at 12:34:56 PM UTC.

Note: This property must be specified in UTC time format.

This property is filled from the response to a GetCalendarEvent, and is also used when creating an event to be added using the PutCalendarEvent method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

Timezone Property (CalDAV Class)

Specifies a time zone on a calendar collection.

Syntax

public CalTimezone getTimezone();


public void setTimezone(CalTimezone timezone);

Remarks

This property is used to specify the time zone the server should rely on to resolve "date" values and "date with local time" values (i.e., floating time) to "date with UTC time" values. The server will require this information to determine if a calendar component scheduled with "date" values or "date with local time" values overlap a time range specified in a GetCalendarReport. In the absence of this property, the server may rely on a time zone of its choosing.

This may be specified when adding or modifying an event with the PutCalendarEvent method, and can also specify the default timezone for the calendar when creating a new calendar collection via the CreateCalendar method.

This property may be filled from the response to a GetCalendarEvent, and can also be used when creating an event to be added using the PutCalendarEvent method. It is also optional when calling the CreateCalendar method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

Please refer to the CalTimezone type for a complete list of fields.

Transparency Property (CalDAV Class)

Defines whether or not an event is transparent to busy time searches.

Syntax

public String getTransparency();


public void setTransparency(String transparency);

Default Value

""

Remarks

This property defines whether or not an event is transparent to busy time searches. Time Transparency is the characteristic of an event that determines whether it appears to consume time on a calendar. Events that consume actual time for the individual or resource associated with the calendar SHOULD be recorded as "OPAQUE", allowing them to be detected by free/busy time searches. Other events, which do not take up the individual's (or resource's) time SHOULD be recorded as "TRANSPARENT", making them invisible to free/ busy time searches.

Custom transparency values may or may not be supported by your calendar implementation, but all implementations will support the "OPAQUE" and "TRANSPARENT" values.

This property is filled from the response to a GetCalendarEvent, and is also used when creating an event to be added using the PutCalendarEvent method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

UID Property (CalDAV Class)

A persistent, globally unique identifier for the calendar event.

Syntax

public String getUID();


public void setUID(String UID);

Default Value

""

Remarks

This property contains a persistent, globally unique identifier. The generator of the identifier MUST guarantee that the identifier is unique. There are several algorithms that can be used to accomplish this. A good method to assure uniqueness is to put the domain name or a domain literal IP address of the host on which the identifier was created on the right-hand side of an "@", and on the left-hand side, put a combination of the current calendar date and time of day (i.e., formatted in as a date/time value) along with some other currently unique (perhaps sequential) identifier available on the system (for example, a process id number). Using a date/time value on the left-hand side and a domain name or domain literal on the right-hand side makes it possible to guarantee uniqueness since no two hosts should be using the same domain name or IP address at the same time. Though other algorithms will work, it is recommended that the right-hand side contain some domain identifier (either of the host itself or otherwise) such that the generator of the message identifier can guarantee the uniqueness of the left-hand side within the scope of that domain.

NOTE: Some CalDAV servers (Yahoo for example) require that the UID and the filename portion of the Resource URI match. For example, if the UID is "hello_world" then the ResourceURI parameter of the PutCalendarEvent should be "https://caldav.calendar.yahoo.com/dav/user_name/Calendar/My_Calendar/hello_world.ics". If the UID and filename portion of the URI do not match, the Yahoo CalDAV server will return a "302 Found" response indicating that the requested resource resides under a different URI. (Meaning the event was not added to the calendar)

This property is filled from the response to a GetCalendarEvent, and is also used when creating an event to be added using the PutCalendarEvent method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

URL Property (CalDAV Class)

Location of the event resource on the CalDAV server.

Syntax

public String getURL();


Default Value

""

Remarks

This property is read-only, and will be filled with the location of the event resource for each event returned. This will only be returned in response to a GetCalendarReport transaction.

This property is filled from the response to a GetCalendarEvent, and is also used when creating an event to be added using the PutCalendarEvent method. However, when requesting a report using the GetCalendarReport method, the contents of this property will only be valid inside the EventDetails event.

This property is read-only.

User Property (CalDAV Class)

This property includes a user name if authentication is to be used.

Syntax

public String getUser();


public void setUser(String user);

Default Value

""

Remarks

This property contains a user name if authentication is to be used. If AuthScheme is set to HTTP Basic Authentication, The User and Password are Base64 encoded, and the result is put in the Authorization property in the form "Basic [encoded-user-password]".

If AuthScheme is set to HTTP Digest Authentication, the User and Password properties are used to respond to the HTTP Digest Authentication challenge from the server.

If AuthScheme is set to NTLM, NTLM authentication will be attempted. If AuthScheme is set to NTLM, and User and Password are empty, the class will attempt to authenticate using the current user's credentials.

AddCookie Method (Caldav Class)

This method adds a cookie and the corresponding value to the outgoing request headers.

Syntax

public void addCookie(String cookieName, String cookieValue);

Remarks

This property adds a cookie and the corresponding value to the outgoing request headers. Please refer to the Cookies property for more information on cookies and how they are managed.

AddCustomProperty Method (Caldav Class)

Adds a form variable and the corresponding value.

Syntax

public void addCustomProperty(String varName, String varValue);

Remarks

This property adds a form variable and the corresponding value. For information on form variables and how they are managed, please refer to the CustomProperties collection.

Example using the AddCustomProperty method:

Copy
CalDAVControl.Reset() CalDAVControl.AddCustomProperty("propname1", "propvalue1") CalDAVControl.AddCustomProperty("propname2", "propvalue2")
Example using the CustomProperties collection:
Copy
CalDAVControl.Reset() CalDAVControl.CustomProperties.Add(new CalCustomProp("propname1", "propvalue1")) CalDAVControl.CustomProperties.Add(new CalCustomProp("propname2", "propvalue2"))

Config Method (Caldav Class)

Sets or retrieves a configuration setting.

Syntax

public String config(String configurationString);

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

CopyCalendarEvent Method (Caldav Class)

Copy events to a new location.

Syntax

public void copyCalendarEvent(String sourceResourceURI, String destinationResourceURI);

Remarks

The CopyCalendarEvent method will copy the resource indicated by SourceResourceURI to a new location under the resource indicated by DestinationResourceURI.

This method is associated with the Depth property. If Depth is set to "0", the class will copy only SourceResourceURI. If Depth is set to "infinity", the class will copy SourceResourceURI and its entire subtree to the relative locations.

If the user has acquired a LockCalendar of infinite depth on either DestinationResourceURI or any collection it is under, SourceResourceURI will be added to that lock.

Note that neither Yahoo nor Google CalDAV servers support locking, copying, or moving calendar resources.

There is no standard format for resource URIs. Google for instance, uses "https://www.google.com/calendar/dav/" plus your email address to access the default calendar. So "https://www.google.com/calendar/dav/username@gmail.com/" is the base URI for the default calendar. If you have multiple calendars, replace the email address portion above with the Id of the calendar, plus "@group.calendar.google.com/". For instance: "https://www.google.com/calendar/dav/ev3nkr4ua83jej7q32oumn5eeo@group.calendar.google.com/". For Google, calendar events are stored in the "/events/" path. To retrieve a report on a calendar, you'd add "/events/" to one of the above paths. For example:

Copy
CalDAV.GetCalendarReport("https://www.google.com/calendar/dav/username@gmail.com/events/");
Leaving the "/events/" out of the URI will result in an HTTP protocol error: 405 Method not allowed.

To add or retrieve an event, add the UID of the event you're creating or retrieving plus ".ics" to the path. Note that when putting an event with the PutCalendarEvent method, if the resourceURI and the UID do not match Google will create the event using the UID stored in the UID property. The actual location of will be newly added event will be returned in a "Location" header. This is the resource URI you must use to retrieve the event with GetCalendarEvent. For example:

Copy
CalDAV.UID = "1234567890"; CalDAV.PutCalendarEvent("https://www.google.com/calendar/dav/username@gmail.com/events/1234567890.ics");

Yahoo uses a different format for CalDAV access. Yahoo's ResourceURIs always start with "https://caldav.calendar.yahoo.com/dav/" plus your user name, plus "/Calendar/" plus the name of your calendar. For instance: "https://caldav.calendar.yahoo.com/dav/username/Calendar/Your_Name" for the default calendar. (Yahoo uses your name to create the default calendar). When using the CreateCalendar event to create a new calendar, replace "Your_Name" in the URI with the desired name of your new calendar. Event resources are located directly under the "/Calendar/Calendar_Name/" path. Like Google, the UID and filename portion of the resource URI must match, but Yahoo will actually return an HTTP protocol error if they differ. The examples below show a few possible transactions:

Copy
CalDAVS1.User = "username"; CalDAVS1.Password = "password"; CalDAV.DisplayName = "My Hockey Calendar"; CalDAV.CreateCalendar("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/"); CalDAV.StartDate = "20100401T040000"; CalDAV.EndDate = "20100401T060000"; CalDAV.UID = "qwerty1234567"; CalDAV.Summary = "First Practice"; CalDAV.Location = "Rink on 1st and main"; CalDAV.EventType = vEvent; CalDAV.PutCalendarEvent("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/qwerty1234567.ics"); CalDAV.GetCalendarReport("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/");

CreateCalendar Method (Caldav Class)

Creates a new calendar collection resource.

Syntax

public void createCalendar(String resourceURI);

Remarks

The CreateCalendar method creates a new calendar collection resource. A server MAY restrict calendar collection creation to particular collections. Creating calendar collections is not supported by all CalDAV servers. Some calendar stores only support one calendar per user (or principal), and those are typically pre-created for each account.

The following properties are used to create a new calendar collection resource:

To successfully create a calendar, the ResourceURI cannot already exist, and must point to a valid location where a new calendar can be created. The DAV:bind privilege MUST be granted to the current user on the parent collection of the specified ResourceURI.

The following example shows how to create a simple new calendar collection resource with Yahoo Calendar.

Copy
CalDAVS1.DisplayName = "Testing Create Calendar method"; CalDAVS1.Description = "Test Calendar"; CalDAVS1.CreateCalendar("https://caldav.calendar.yahoo.com/dav/userid/Calendar/TestCal1");

Note that Google does not support creating a new calendar through CalDAV. It must be created through the Google calendar web interface.

There is no standard format for resource URIs. Google for instance, uses "https://www.google.com/calendar/dav/" plus your email address to access the default calendar. So "https://www.google.com/calendar/dav/username@gmail.com/" is the base URI for the default calendar. If you have multiple calendars, replace the email address portion above with the Id of the calendar, plus "@group.calendar.google.com/". For instance: "https://www.google.com/calendar/dav/ev3nkr4ua83jej7q32oumn5eeo@group.calendar.google.com/". For Google, calendar events are stored in the "/events/" path. To retrieve a report on a calendar, you'd add "/events/" to one of the above paths. For example:

Copy
CalDAV.GetCalendarReport("https://www.google.com/calendar/dav/username@gmail.com/events/");
Leaving the "/events/" out of the URI will result in an HTTP protocol error: 405 Method not allowed.

To add or retrieve an event, add the UID of the event you're creating or retrieving plus ".ics" to the path. Note that when putting an event with the PutCalendarEvent method, if the resourceURI and the UID do not match Google will create the event using the UID stored in the UID property. The actual location of will be newly added event will be returned in a "Location" header. This is the resource URI you must use to retrieve the event with GetCalendarEvent. For example:

Copy
CalDAV.UID = "1234567890"; CalDAV.PutCalendarEvent("https://www.google.com/calendar/dav/username@gmail.com/events/1234567890.ics");

Yahoo uses a different format for CalDAV access. Yahoo's ResourceURIs always start with "https://caldav.calendar.yahoo.com/dav/" plus your user name, plus "/Calendar/" plus the name of your calendar. For instance: "https://caldav.calendar.yahoo.com/dav/username/Calendar/Your_Name" for the default calendar. (Yahoo uses your name to create the default calendar). When using the CreateCalendar event to create a new calendar, replace "Your_Name" in the URI with the desired name of your new calendar. Event resources are located directly under the "/Calendar/Calendar_Name/" path. Like Google, the UID and filename portion of the resource URI must match, but Yahoo will actually return an HTTP protocol error if they differ. The examples below show a few possible transactions:

Copy
CalDAVS1.User = "username"; CalDAVS1.Password = "password"; CalDAV.DisplayName = "My Hockey Calendar"; CalDAV.CreateCalendar("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/"); CalDAV.StartDate = "20100401T040000"; CalDAV.EndDate = "20100401T060000"; CalDAV.UID = "qwerty1234567"; CalDAV.Summary = "First Practice"; CalDAV.Location = "Rink on 1st and main"; CalDAV.EventType = vEvent; CalDAV.PutCalendarEvent("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/qwerty1234567.ics"); CalDAV.GetCalendarReport("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/");

DeleteCalendarEvent Method (Caldav Class)

Delete a resource or collection.

Syntax

public void deleteCalendarEvent(String resourceURI);

Remarks

This method behaves independently of the Depth property. It is used to delete the resource or collection specified by ResourceURI. If ResourceURI denotes a non-collection resource, it is first removed from any collection in which it is contained, it is then removed from the server. If ResourceURI denotes a collection, the server behaves as if the command were issued with an infinite depth (i.e., all internal member URIs denoting single resources or collections are deleted).

There is no standard format for resource URIs. Google for instance, uses "https://www.google.com/calendar/dav/" plus your email address to access the default calendar. So "https://www.google.com/calendar/dav/username@gmail.com/" is the base URI for the default calendar. If you have multiple calendars, replace the email address portion above with the Id of the calendar, plus "@group.calendar.google.com/". For instance: "https://www.google.com/calendar/dav/ev3nkr4ua83jej7q32oumn5eeo@group.calendar.google.com/". For Google, calendar events are stored in the "/events/" path. To retrieve a report on a calendar, you'd add "/events/" to one of the above paths. For example:

Copy
CalDAV.GetCalendarReport("https://www.google.com/calendar/dav/username@gmail.com/events/");
Leaving the "/events/" out of the URI will result in an HTTP protocol error: 405 Method not allowed.

To add or retrieve an event, add the UID of the event you're creating or retrieving plus ".ics" to the path. Note that when putting an event with the PutCalendarEvent method, if the resourceURI and the UID do not match Google will create the event using the UID stored in the UID property. The actual location of will be newly added event will be returned in a "Location" header. This is the resource URI you must use to retrieve the event with GetCalendarEvent. For example:

Copy
CalDAV.UID = "1234567890"; CalDAV.PutCalendarEvent("https://www.google.com/calendar/dav/username@gmail.com/events/1234567890.ics");

Yahoo uses a different format for CalDAV access. Yahoo's ResourceURIs always start with "https://caldav.calendar.yahoo.com/dav/" plus your user name, plus "/Calendar/" plus the name of your calendar. For instance: "https://caldav.calendar.yahoo.com/dav/username/Calendar/Your_Name" for the default calendar. (Yahoo uses your name to create the default calendar). When using the CreateCalendar event to create a new calendar, replace "Your_Name" in the URI with the desired name of your new calendar. Event resources are located directly under the "/Calendar/Calendar_Name/" path. Like Google, the UID and filename portion of the resource URI must match, but Yahoo will actually return an HTTP protocol error if they differ. The examples below show a few possible transactions:

Copy
CalDAVS1.User = "username"; CalDAVS1.Password = "password"; CalDAV.DisplayName = "My Hockey Calendar"; CalDAV.CreateCalendar("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/"); CalDAV.StartDate = "20100401T040000"; CalDAV.EndDate = "20100401T060000"; CalDAV.UID = "qwerty1234567"; CalDAV.Summary = "First Practice"; CalDAV.Location = "Rink on 1st and main"; CalDAV.EventType = vEvent; CalDAV.PutCalendarEvent("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/qwerty1234567.ics"); CalDAV.GetCalendarReport("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/");

DoEvents Method (Caldav Class)

Processes events from the internal message queue.

Syntax

public void doEvents();

Remarks

When DoEvents is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.

ExportICS Method (Caldav Class)

Generates an event from the properties in the iCal (.ICS) format.

Syntax

public String exportICS();

Remarks

The ExportICS method is used to create a calendar object and export it in the iCal/ICS format, which can then be saved to disk and imported using any calendar software, even those that do not support CalDAV. The ExportICS method will create the exact same data as the PutCalendarEvent method sends when adding or updating an event to a calendar.

Note that if ExportICS is called immediately after a successful GetCalendarEvent, the unmodified calendar returned from the CalDAV server will be returned. However if any properties are changed between the GetCalendarEvent and ExportICS calls, the class will generate and return a brand new event.

The following properties are used when creating a request with PutCalendarEvent or ExportICS, and will be filled after calling GetCalendarEvent or ImportICS. These will also be available from inside the EventDetails event, which is fired for each event received from the CalDAV server in response to a GetCalendarReport.

GetCalendarEvent Method (Caldav Class)

Retrieves a single event from the CalDAV server.

Syntax

public void getCalendarEvent(String resourceURI);

Remarks

This method retrieves a single event from a CalDAV server. The ResourceURI points to the exact location of the iCal (*.ics) file you wish to retrieve. (If you do not know the URL of the event you need, you can use the GetCalendarReport method along with the ReportFilter property to find it.)

The event will be fetched using the WebDAV GET method. The full response is delivered through the Transfer event and the HTTP response headers through the Header event. After an event is retrieved with this method, the class parses the calendar data into properties. You may then edit these properties and use PutCalendarEvent to update the calendar event resource.

The following properties are used when creating a request with PutCalendarEvent or ExportICS, and will be filled after calling GetCalendarEvent or ImportICS. These will also be available from inside the EventDetails event, which is fired for each event received from the CalDAV server in response to a GetCalendarReport.

There is no standard format for resource URIs. Google for instance, uses "https://www.google.com/calendar/dav/" plus your email address to access the default calendar. So "https://www.google.com/calendar/dav/username@gmail.com/" is the base URI for the default calendar. If you have multiple calendars, replace the email address portion above with the Id of the calendar, plus "@group.calendar.google.com/". For instance: "https://www.google.com/calendar/dav/ev3nkr4ua83jej7q32oumn5eeo@group.calendar.google.com/". For Google, calendar events are stored in the "/events/" path. To retrieve a report on a calendar, you'd add "/events/" to one of the above paths. For example:

Copy
CalDAV.GetCalendarReport("https://www.google.com/calendar/dav/username@gmail.com/events/");
Leaving the "/events/" out of the URI will result in an HTTP protocol error: 405 Method not allowed.

To add or retrieve an event, add the UID of the event you're creating or retrieving plus ".ics" to the path. Note that when putting an event with the PutCalendarEvent method, if the resourceURI and the UID do not match Google will create the event using the UID stored in the UID property. The actual location of will be newly added event will be returned in a "Location" header. This is the resource URI you must use to retrieve the event with GetCalendarEvent. For example:

Copy
CalDAV.UID = "1234567890"; CalDAV.PutCalendarEvent("https://www.google.com/calendar/dav/username@gmail.com/events/1234567890.ics");

Yahoo uses a different format for CalDAV access. Yahoo's ResourceURIs always start with "https://caldav.calendar.yahoo.com/dav/" plus your user name, plus "/Calendar/" plus the name of your calendar. For instance: "https://caldav.calendar.yahoo.com/dav/username/Calendar/Your_Name" for the default calendar. (Yahoo uses your name to create the default calendar). When using the CreateCalendar event to create a new calendar, replace "Your_Name" in the URI with the desired name of your new calendar. Event resources are located directly under the "/Calendar/Calendar_Name/" path. Like Google, the UID and filename portion of the resource URI must match, but Yahoo will actually return an HTTP protocol error if they differ. The examples below show a few possible transactions:

Copy
CalDAVS1.User = "username"; CalDAVS1.Password = "password"; CalDAV.DisplayName = "My Hockey Calendar"; CalDAV.CreateCalendar("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/"); CalDAV.StartDate = "20100401T040000"; CalDAV.EndDate = "20100401T060000"; CalDAV.UID = "qwerty1234567"; CalDAV.Summary = "First Practice"; CalDAV.Location = "Rink on 1st and main"; CalDAV.EventType = vEvent; CalDAV.PutCalendarEvent("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/qwerty1234567.ics"); CalDAV.GetCalendarReport("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/");

GetCalendarOptions Method (Caldav Class)

Retrieves options for the ResourceURI to determines whether it supports calendar access.

Syntax

public void getCalendarOptions(String resourceURI);

Remarks

This method sends an OPTIONS HTTP request to the indicated ResourceURI. The server will respond with an 200 OK HTTP message, and the supported options will fire one-by-one in the Header event. If a server supports CalDAV calendar access, the "DAV" header will contain the string "calendar-access". The allowable CalDAV and WebDAV methods may also be returned in the "Allow" header.

For instance, the following headers may be returned from a call to the GetCalendarOptions method:

FieldValue
Allow OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE
Allow PROPFIND, PROPPATCH, LOCK, UNLOCK, REPORT, ACL
DAV 1, 2, access-control, calendar-access
Date Sat, 11 Nov 2006 09:32:12 GMT
Content-Length0
Since the "DAV" header contains "calendar-access", CalDAV is supported on this ResourceURI.

There is no standard format for resource URIs. Google for instance, uses "https://www.google.com/calendar/dav/" plus your email address to access the default calendar. So "https://www.google.com/calendar/dav/username@gmail.com/" is the base URI for the default calendar. If you have multiple calendars, replace the email address portion above with the Id of the calendar, plus "@group.calendar.google.com/". For instance: "https://www.google.com/calendar/dav/ev3nkr4ua83jej7q32oumn5eeo@group.calendar.google.com/". For Google, calendar events are stored in the "/events/" path. To retrieve a report on a calendar, you'd add "/events/" to one of the above paths. For example:

Copy
CalDAV.GetCalendarReport("https://www.google.com/calendar/dav/username@gmail.com/events/");
Leaving the "/events/" out of the URI will result in an HTTP protocol error: 405 Method not allowed.

To add or retrieve an event, add the UID of the event you're creating or retrieving plus ".ics" to the path. Note that when putting an event with the PutCalendarEvent method, if the resourceURI and the UID do not match Google will create the event using the UID stored in the UID property. The actual location of will be newly added event will be returned in a "Location" header. This is the resource URI you must use to retrieve the event with GetCalendarEvent. For example:

Copy
CalDAV.UID = "1234567890"; CalDAV.PutCalendarEvent("https://www.google.com/calendar/dav/username@gmail.com/events/1234567890.ics");

Yahoo uses a different format for CalDAV access. Yahoo's ResourceURIs always start with "https://caldav.calendar.yahoo.com/dav/" plus your user name, plus "/Calendar/" plus the name of your calendar. For instance: "https://caldav.calendar.yahoo.com/dav/username/Calendar/Your_Name" for the default calendar. (Yahoo uses your name to create the default calendar). When using the CreateCalendar event to create a new calendar, replace "Your_Name" in the URI with the desired name of your new calendar. Event resources are located directly under the "/Calendar/Calendar_Name/" path. Like Google, the UID and filename portion of the resource URI must match, but Yahoo will actually return an HTTP protocol error if they differ. The examples below show a few possible transactions:

Copy
CalDAVS1.User = "username"; CalDAVS1.Password = "password"; CalDAV.DisplayName = "My Hockey Calendar"; CalDAV.CreateCalendar("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/"); CalDAV.StartDate = "20100401T040000"; CalDAV.EndDate = "20100401T060000"; CalDAV.UID = "qwerty1234567"; CalDAV.Summary = "First Practice"; CalDAV.Location = "Rink on 1st and main"; CalDAV.EventType = vEvent; CalDAV.PutCalendarEvent("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/qwerty1234567.ics"); CalDAV.GetCalendarReport("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/");

GetCalendarReport Method (Caldav Class)

Generates a report on the indicated calendar collection resource.

Syntax

public void getCalendarReport(String resourceURI);

Remarks

This method is used to send a calendar-query request to the calendar located at the specified ResourceURI. The ReportFilter can be used to filter out and return only the calendar events you wish to receive. The response to a calendar-query report will be parsed by the class, and information about the individual events contained within shall be fired in the EventDetails event.

The following properties are used when creating a request with PutCalendarEvent or ExportICS, and will be filled after calling GetCalendarEvent or ImportICS. These will also be available from inside the EventDetails event, which is fired for each event received from the CalDAV server in response to a GetCalendarReport.

For example:

Copy
CalDAV.User = "myusername"; CalDAV.Password = "mypassword"; CalDAV.ReportFilter.StartDate = "20090101T000000Z"; CalDAV.ReportFilter.EndDate = "20091231T230000Z"; CalDAV.GetCalendarReport("https://caldav.calendar.yahoo.com/dav/username/Calendar/default_calendar/");
The following code inside the EventDetails event will print the start and end time as well as the summary for each event:
Copy
void CalDAV_OnEventDetails(object sender, CaldavsEventDetailsEventArgs e) { Console.WriteLine(CalDAV.Summary + ": " + CalDAV.StartDate + " to " + CalDAV.EndDate); }
The output from the above code will look something like this:

	Carolina Hurricanes vs. Colorado Avalanche: 20090222T150000 to 20090222T180000
	Lone Rider Brewery Tour: 20091107T124500 to 20091107T134500
	Salsa Dancing: 20090927T154500 to 20090927T181500
	Superbowl Party: 20090201T170000 to 20090202T000000
	Kathy's Birthday: 20090608T010000 to 20090608T020000
	Dinner at Shannon's: 20091001T183000 to 20091001T203000
	Carolina Rollergirls match: 20090411T170000 to 20090411T180000

There is no standard format for resource URIs. Google for instance, uses "https://www.google.com/calendar/dav/" plus your email address to access the default calendar. So "https://www.google.com/calendar/dav/username@gmail.com/" is the base URI for the default calendar. If you have multiple calendars, replace the email address portion above with the Id of the calendar, plus "@group.calendar.google.com/". For instance: "https://www.google.com/calendar/dav/ev3nkr4ua83jej7q32oumn5eeo@group.calendar.google.com/". For Google, calendar events are stored in the "/events/" path. To retrieve a report on a calendar, you'd add "/events/" to one of the above paths. For example:

Copy
CalDAV.GetCalendarReport("https://www.google.com/calendar/dav/username@gmail.com/events/");
Leaving the "/events/" out of the URI will result in an HTTP protocol error: 405 Method not allowed.

To add or retrieve an event, add the UID of the event you're creating or retrieving plus ".ics" to the path. Note that when putting an event with the PutCalendarEvent method, if the resourceURI and the UID do not match Google will create the event using the UID stored in the UID property. The actual location of will be newly added event will be returned in a "Location" header. This is the resource URI you must use to retrieve the event with GetCalendarEvent. For example:

Copy
CalDAV.UID = "1234567890"; CalDAV.PutCalendarEvent("https://www.google.com/calendar/dav/username@gmail.com/events/1234567890.ics");

Yahoo uses a different format for CalDAV access. Yahoo's ResourceURIs always start with "https://caldav.calendar.yahoo.com/dav/" plus your user name, plus "/Calendar/" plus the name of your calendar. For instance: "https://caldav.calendar.yahoo.com/dav/username/Calendar/Your_Name" for the default calendar. (Yahoo uses your name to create the default calendar). When using the CreateCalendar event to create a new calendar, replace "Your_Name" in the URI with the desired name of your new calendar. Event resources are located directly under the "/Calendar/Calendar_Name/" path. Like Google, the UID and filename portion of the resource URI must match, but Yahoo will actually return an HTTP protocol error if they differ. The examples below show a few possible transactions:

Copy
CalDAVS1.User = "username"; CalDAVS1.Password = "password"; CalDAV.DisplayName = "My Hockey Calendar"; CalDAV.CreateCalendar("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/"); CalDAV.StartDate = "20100401T040000"; CalDAV.EndDate = "20100401T060000"; CalDAV.UID = "qwerty1234567"; CalDAV.Summary = "First Practice"; CalDAV.Location = "Rink on 1st and main"; CalDAV.EventType = vEvent; CalDAV.PutCalendarEvent("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/qwerty1234567.ics"); CalDAV.GetCalendarReport("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/");

GetFreeBusyReport Method (Caldav Class)

Generates a report as to when the calendar owner is free and/or busy.

Syntax

public void getFreeBusyReport(String resourceURI);

Remarks

This method sends a free-busy-query request to the calendar at the specified ResourceURI. . The CalDAV server will return a list of FREEBUSY elements, which will be fired in the FreeBusy event and also stored in the FreeBusy collection. Each FREEBUSY element contains a type (BUSY, FREE, BUSY-TENTATIVE, etc.) and a date range.

Note that the StartDate field is required for a Free/Busy report. The EndDate field is optional. These are the only two ReportFilters used by the GetFreeBusyReport request, all other filters will be ignored.

Note that Google Calendar does not currently support Free/Busy reporting.

There is no standard format for resource URIs. Google for instance, uses "https://www.google.com/calendar/dav/" plus your email address to access the default calendar. So "https://www.google.com/calendar/dav/username@gmail.com/" is the base URI for the default calendar. If you have multiple calendars, replace the email address portion above with the Id of the calendar, plus "@group.calendar.google.com/". For instance: "https://www.google.com/calendar/dav/ev3nkr4ua83jej7q32oumn5eeo@group.calendar.google.com/". For Google, calendar events are stored in the "/events/" path. To retrieve a report on a calendar, you'd add "/events/" to one of the above paths. For example:

Copy
CalDAV.GetCalendarReport("https://www.google.com/calendar/dav/username@gmail.com/events/");
Leaving the "/events/" out of the URI will result in an HTTP protocol error: 405 Method not allowed.

To add or retrieve an event, add the UID of the event you're creating or retrieving plus ".ics" to the path. Note that when putting an event with the PutCalendarEvent method, if the resourceURI and the UID do not match Google will create the event using the UID stored in the UID property. The actual location of will be newly added event will be returned in a "Location" header. This is the resource URI you must use to retrieve the event with GetCalendarEvent. For example:

Copy
CalDAV.UID = "1234567890"; CalDAV.PutCalendarEvent("https://www.google.com/calendar/dav/username@gmail.com/events/1234567890.ics");

Yahoo uses a different format for CalDAV access. Yahoo's ResourceURIs always start with "https://caldav.calendar.yahoo.com/dav/" plus your user name, plus "/Calendar/" plus the name of your calendar. For instance: "https://caldav.calendar.yahoo.com/dav/username/Calendar/Your_Name" for the default calendar. (Yahoo uses your name to create the default calendar). When using the CreateCalendar event to create a new calendar, replace "Your_Name" in the URI with the desired name of your new calendar. Event resources are located directly under the "/Calendar/Calendar_Name/" path. Like Google, the UID and filename portion of the resource URI must match, but Yahoo will actually return an HTTP protocol error if they differ. The examples below show a few possible transactions:

Copy
CalDAVS1.User = "username"; CalDAVS1.Password = "password"; CalDAV.DisplayName = "My Hockey Calendar"; CalDAV.CreateCalendar("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/"); CalDAV.StartDate = "20100401T040000"; CalDAV.EndDate = "20100401T060000"; CalDAV.UID = "qwerty1234567"; CalDAV.Summary = "First Practice"; CalDAV.Location = "Rink on 1st and main"; CalDAV.EventType = vEvent; CalDAV.PutCalendarEvent("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/qwerty1234567.ics"); CalDAV.GetCalendarReport("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/");

ImportICS Method (Caldav Class)

Imports calendar data (contained in an ICS file) into the class's property list.

Syntax

public void importICS(String calendarData);

Remarks

This method is used to load calendar data from an external source into the class. You may then submit this data with a call to PutCalendarEvent. If you edit any of the class properties between importing and calling PutCalendarEvent, the class will re-generate the PUT request itself. If no properties are changed, the imported data will be submitted unaltered when calling PutCalendarEvent.

As the calendar data is imported, the class will scan CalendarData for any calendar events. Each time a calendar event is discovered, the EventDetails event will fire, and the calendar event properties will be updated.

After ImportICS completes, the calendar event properties will be set to the most recent calendar event found in CalendarData.

Interrupt Method (Caldav Class)

Interrupt the current method.

Syntax

public void interrupt();

Remarks

If there is no method in progress, Interrupt simply returns, doing nothing.

LockCalendar Method (Caldav Class)

Obtain a lock for a specified calendar resource.

Syntax

public void lockCalendar(String resourceURI);

Remarks

This method will request a new lock to be placed on ResourceURI in the user's name so that only the user can operate on it. The method is linked to a number of properties that it uses to generate the lock request:

OwnerThe principle that will own the lock.
ScopeThe scope of the lock. The class only currently supports locks of scope "exclusive" and "shared".
TimeoutThe amount of time that the lock is allowed to exist before ResourceURI is automatically unlocked by the server.
TokensThe lock itself. If the user sets this before making the request, the timeout on the existing lock will be refreshed (reset to 0). Otherwise, a new set of lock tokens will be returned.
LockTypeThe type of lock. The class only currently supports of type "write".
After a successful call to the LockCalendar method the class will receive the new lock values, which it will parse and store in the lock properties.

This method is associated with the Depth property. If Depth is set to "0", the class will lock only ResourceURI and its properties. If Depth is set to "infinity", the class will lock ResourceURI and its entire subtree.

If MoveCalendarEvent or CopyCalendarEvent are used to place a resource or collection in a location under a resource locked with "infinity", the new resource or collection will be added to the lock. Any lock on a collection will prevent non-lock owners from adding resources to that collection.

Note that while the Yahoo CalDAV server does accept LockCalendar and UnLockCalendar requests, the server does not respect resource locks (either on events or on the entire calendar). The Google CalDAV sever does not support either of these requests, and will respond with an HTTP protocol error: 405 Method Not Allowed. Also, neither Yahoo nor Google CalDAV servers support copying or moving calendar resources.

MoveCalendarEvent Method (Caldav Class)

Moves one calendar resource to a new location.

Syntax

public void moveCalendarEvent(String sourceResourceURI, String destinationResourceURI);

Remarks

This method will move the resource indicated by SourceResourceURI to a new location under the resource indicated by DestinationResourceURI.

This method is associated with the Depth property. If Depth is set to "0", the class will move only SourceResourceURI. If Depth is set to "infinity", the class will move SourceResourceURI and its entire subtree to locations relative to it.

If the user has acquired a lock of infinite depth (via LockCalendar) on either DestinationResourceURI or any collection it is under, SourceResourceURI will be added to that lock.

Note that neither Yahoo nor Google CalDAV servers support locking, copying, or moving calendar resources.

There is no standard format for resource URIs. Google for instance, uses "https://www.google.com/calendar/dav/" plus your email address to access the default calendar. So "https://www.google.com/calendar/dav/username@gmail.com/" is the base URI for the default calendar. If you have multiple calendars, replace the email address portion above with the Id of the calendar, plus "@group.calendar.google.com/". For instance: "https://www.google.com/calendar/dav/ev3nkr4ua83jej7q32oumn5eeo@group.calendar.google.com/". For Google, calendar events are stored in the "/events/" path. To retrieve a report on a calendar, you'd add "/events/" to one of the above paths. For example:

Copy
CalDAV.GetCalendarReport("https://www.google.com/calendar/dav/username@gmail.com/events/");
Leaving the "/events/" out of the URI will result in an HTTP protocol error: 405 Method not allowed.

To add or retrieve an event, add the UID of the event you're creating or retrieving plus ".ics" to the path. Note that when putting an event with the PutCalendarEvent method, if the resourceURI and the UID do not match Google will create the event using the UID stored in the UID property. The actual location of will be newly added event will be returned in a "Location" header. This is the resource URI you must use to retrieve the event with GetCalendarEvent. For example:

Copy
CalDAV.UID = "1234567890"; CalDAV.PutCalendarEvent("https://www.google.com/calendar/dav/username@gmail.com/events/1234567890.ics");

Yahoo uses a different format for CalDAV access. Yahoo's ResourceURIs always start with "https://caldav.calendar.yahoo.com/dav/" plus your user name, plus "/Calendar/" plus the name of your calendar. For instance: "https://caldav.calendar.yahoo.com/dav/username/Calendar/Your_Name" for the default calendar. (Yahoo uses your name to create the default calendar). When using the CreateCalendar event to create a new calendar, replace "Your_Name" in the URI with the desired name of your new calendar. Event resources are located directly under the "/Calendar/Calendar_Name/" path. Like Google, the UID and filename portion of the resource URI must match, but Yahoo will actually return an HTTP protocol error if they differ. The examples below show a few possible transactions:

Copy
CalDAVS1.User = "username"; CalDAVS1.Password = "password"; CalDAV.DisplayName = "My Hockey Calendar"; CalDAV.CreateCalendar("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/"); CalDAV.StartDate = "20100401T040000"; CalDAV.EndDate = "20100401T060000"; CalDAV.UID = "qwerty1234567"; CalDAV.Summary = "First Practice"; CalDAV.Location = "Rink on 1st and main"; CalDAV.EventType = vEvent; CalDAV.PutCalendarEvent("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/qwerty1234567.ics"); CalDAV.GetCalendarReport("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/");

PutCalendarEvent Method (Caldav Class)

Adds a calendar resource at the specified ResourceURI using the CalDAV PUT method.

Syntax

public void putCalendarEvent(String resourceURI);

Remarks

This method adds a new event to the calendar collection at the specified ResourceURI. The ResourceURI must be a fully qualified URL to the location on the CalDAV server to which this event will be saved. If the ResourceURI already exists, the event at that URI will be overwritten.

NOTE: Some CalDAV servers (Yahoo for example) require that the UID and the filename portion of the URI match. For example, if the UID is "hello_world" then the ResourceURI parameter of the PutCalendarEvent should be "https://caldav.calendar.yahoo.com/dav/user_name/Calendar/My_Calendar/hello_world.ics". If the UID and filename portion of the URI do not match, the Yahoo CalDAV server will return a "302 Found" response indicating that the requested resource resides under a different URI. (Meaning the event was not added to the calendar)

The following properties are used when creating a request with PutCalendarEvent or ExportICS, and will be filled after calling GetCalendarEvent or ImportICS. These will also be available from inside the EventDetails event, which is fired for each event received from the CalDAV server in response to a GetCalendarReport.

There is no standard format for resource URIs. Google for instance, uses "https://www.google.com/calendar/dav/" plus your email address to access the default calendar. So "https://www.google.com/calendar/dav/username@gmail.com/" is the base URI for the default calendar. If you have multiple calendars, replace the email address portion above with the Id of the calendar, plus "@group.calendar.google.com/". For instance: "https://www.google.com/calendar/dav/ev3nkr4ua83jej7q32oumn5eeo@group.calendar.google.com/". For Google, calendar events are stored in the "/events/" path. To retrieve a report on a calendar, you'd add "/events/" to one of the above paths. For example:

Copy
CalDAV.GetCalendarReport("https://www.google.com/calendar/dav/username@gmail.com/events/");
Leaving the "/events/" out of the URI will result in an HTTP protocol error: 405 Method not allowed.

To add or retrieve an event, add the UID of the event you're creating or retrieving plus ".ics" to the path. Note that when putting an event with the PutCalendarEvent method, if the resourceURI and the UID do not match Google will create the event using the UID stored in the UID property. The actual location of will be newly added event will be returned in a "Location" header. This is the resource URI you must use to retrieve the event with GetCalendarEvent. For example:

Copy
CalDAV.UID = "1234567890"; CalDAV.PutCalendarEvent("https://www.google.com/calendar/dav/username@gmail.com/events/1234567890.ics");

Yahoo uses a different format for CalDAV access. Yahoo's ResourceURIs always start with "https://caldav.calendar.yahoo.com/dav/" plus your user name, plus "/Calendar/" plus the name of your calendar. For instance: "https://caldav.calendar.yahoo.com/dav/username/Calendar/Your_Name" for the default calendar. (Yahoo uses your name to create the default calendar). When using the CreateCalendar event to create a new calendar, replace "Your_Name" in the URI with the desired name of your new calendar. Event resources are located directly under the "/Calendar/Calendar_Name/" path. Like Google, the UID and filename portion of the resource URI must match, but Yahoo will actually return an HTTP protocol error if they differ. The examples below show a few possible transactions:

Copy
CalDAVS1.User = "username"; CalDAVS1.Password = "password"; CalDAV.DisplayName = "My Hockey Calendar"; CalDAV.CreateCalendar("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/"); CalDAV.StartDate = "20100401T040000"; CalDAV.EndDate = "20100401T060000"; CalDAV.UID = "qwerty1234567"; CalDAV.Summary = "First Practice"; CalDAV.Location = "Rink on 1st and main"; CalDAV.EventType = vEvent; CalDAV.PutCalendarEvent("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/qwerty1234567.ics"); CalDAV.GetCalendarReport("https://caldav.calendar.yahoo.com/dav/username/Calendar/Hockey_Calendar/");

Reset Method (Caldav Class)

Reset the class.

Syntax

public void reset();

Remarks

This method will reset the class's properties to their default values.

UnLockCalendar Method (Caldav Class)

Unlocks a calendar resource.

Syntax

public void unLockCalendar(String resourceURI);

Remarks

This method unlocks a calendar resource. Before calling UnLockCalendar on a particular calendar resource, the Tokens property must be set to the lock tokens for ResourceURI. The method will remove the lock, allowing other users or non-privileged users to access and operate on the file.

Connected Event (Caldav Class)

This event is fired immediately after a connection completes (or fails).

Syntax

public class DefaultCaldavEventListener implements CaldavEventListener {
  ...
  public void connected(CaldavConnectedEvent e) {}
  ...
}

public class CaldavConnectedEvent {
  public int statusCode;
  public String description;
}

Remarks

If the connection is made normally, StatusCode is 0 and Description is "OK".

If the connection fails, StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

Please refer to the Error Codes section for more information.

ConnectionStatus Event (Caldav Class)

This event is fired to indicate changes in the connection state.

Syntax

public class DefaultCaldavEventListener implements CaldavEventListener {
  ...
  public void connectionStatus(CaldavConnectionStatusEvent e) {}
  ...
}

public class CaldavConnectionStatusEvent {
  public String connectionEvent;
  public int statusCode;
  public String description;
}

Remarks

The ConnectionStatus event is fired when the connection state changes: for example, completion of a firewall or proxy connection or completion of a security handshake.

The ConnectionEvent parameter indicates the type of connection event. Values may include the following:

Firewall connection complete.
Secure Sockets Layer (SSL) or S/Shell handshake complete (where applicable).
Remote host connection complete.
Remote host disconnected.
SSL or S/Shell connection broken.
Firewall host disconnected.
StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

Disconnected Event (Caldav Class)

This event is fired when a connection is closed.

Syntax

public class DefaultCaldavEventListener implements CaldavEventListener {
  ...
  public void disconnected(CaldavDisconnectedEvent e) {}
  ...
}

public class CaldavDisconnectedEvent {
  public int statusCode;
  public String description;
}

Remarks

If the connection is broken normally, StatusCode is 0 and Description is "OK".

If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.

Please refer to the Error Codes section for more information.

EndTransfer Event (Caldav Class)

Fired when a document finishes transferring.

Syntax

public class DefaultCaldavEventListener implements CaldavEventListener {
  ...
  public void endTransfer(CaldavEndTransferEvent e) {}
  ...
}

public class CaldavEndTransferEvent {
  public int direction;
}

Remarks

The EndTransfer event is fired when the document text finishes transferring from the server to the local host.

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

Error Event (Caldav Class)

Fired when information is available about errors during data delivery.

Syntax

public class DefaultCaldavEventListener implements CaldavEventListener {
  ...
  public void error(CaldavErrorEvent e) {}
  ...
}

public class CaldavErrorEvent {
  public int errorCode;
  public String description;
}

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the class throws an exception.

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

EventDetails Event (Caldav Class)

Fires for each calendar event received.

Syntax

public class DefaultCaldavEventListener implements CaldavEventListener {
  ...
  public void eventDetails(CaldavEventDetailsEvent e) {}
  ...
}

public class CaldavEventDetailsEvent {
  public String resourceURI;
  public String responseStatus;
  public String ETag;
  public String calendarData;
}

Remarks

This event fires for each VEVENT, VTODO, VJOURNAL, or VFREEBUSY event received in response to a GetCalendarReport request. The ResourceURI parameter indicates the location of this particular event on the CalDAV server, and the ETag parameter is used to indicate the current state of the calendar event. If the ETag is different from the value you have cached for the current ResourceURI, it means the event has changed on the server since the last time you updated your cache. ResponseStatus indicates the HTTP status of CalDAV server received when attempting to retrieve this particular ResourceURI when it was building the report. The CalendarData parameter contains the raw calendar entry as returned by the CalDAV server. This data is also parsed into the following properties, and are valid for the current ResourceURI only inside this event.

Note that for a large calendar you may not wish to return the full contents of each calendar event, as this could be a substantially large amount of data. In this case, set the ReturnCalendarData field to false, and only the ResourceURI, ResponseStatus, and ETag parameters will be returned by the CalDAV server for each calendar event. The contents of the event will not be returned, and the CalendarData parameter will be empty.

*The ResourceURI and the URL property are not the same. The URL property is an iCal field, and the ResourceURI is the actual location of the resource on the CalDAV server. Some CalDAV servers may force the URL to match the ResourceURI, but the URL should be treated as a separate user-defined entity by the user, and it should not be expected to match the ResourceURI. Likewise, ResponseStatus and Status are not the same. Status is the status of the event (TENTATIVE, CONFIRMED, CANCELLED, etc). ResponseStatus is the HTTP status received when the CalDAV server attempted to retrieve the current event when constructing a report.

FreeBusy Event (Caldav Class)

Fires for each Free/Busy element received in the response.

Syntax

public class DefaultCaldavEventListener implements CaldavEventListener {
  ...
  public void freeBusy(CaldavFreeBusyEvent e) {}
  ...
}

public class CaldavFreeBusyEvent {
  public String busyType;
  public String busyRange;
}

Remarks

This event fires for each FREEBUSY element received in response to a GetFreeBusyReport request. The FBTYPE will be contained in the BusyType parameter, and the FREEBUSY value itself will be contained in the BusyRange parameter. The Free/Busy information will also be stored in the FreeBusy collection.

Header Event (Caldav Class)

This event is fired every time a header line comes in.

Syntax

public class DefaultCaldavEventListener implements CaldavEventListener {
  ...
  public void header(CaldavHeaderEvent e) {}
  ...
}

public class CaldavHeaderEvent {
  public String field;
  public String value;
}

Remarks

The Field parameter contains the name of the HTTP header (which is the same as it is delivered). The Value parameter contains the header contents.

If the header line being retrieved is a continuation header line, then the Field parameter contains "" (empty string).

Log Event (Caldav Class)

This event fires once for each log message.

Syntax

public class DefaultCaldavEventListener implements CaldavEventListener {
  ...
  public void log(CaldavLogEvent e) {}
  ...
}

public class CaldavLogEvent {
  public int logLevel;
  public String message;
  public String logType;
}

Remarks

This event fires once for each log message generated by the class. The verbosity is controlled by the LogLevel setting.

LogLevel indicates the level of message. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.

The value 2 (Verbose) logs additional information about the request and response.

The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).

Message is the log entry.

LogType identifies the type of log entry. Possible values are as follows:

  • "Info"
  • "RequestHeaders"
  • "ResponseHeaders"
  • "RequestBody"
  • "ResponseBody"
  • "ProxyRequest"
  • "ProxyResponse"
  • "FirewallRequest"
  • "FirewallResponse"

Redirect Event (Caldav Class)

This event is fired when a redirection is received from the server.

Syntax

public class DefaultCaldavEventListener implements CaldavEventListener {
  ...
  public void redirect(CaldavRedirectEvent e) {}
  ...
}

public class CaldavRedirectEvent {
  public String location;
  public boolean accept;
}

Remarks

This event is fired in cases in which the client can decide whether or not to continue with the redirection process. The Accept parameter is always True by default, but if you do not want to follow the redirection, Accept may be set to False, in which case the class throws an exception. Location is the location to which the client is being redirected. Further control over redirection is provided in the FollowRedirects property.

SetCookie Event (Caldav Class)

This event is fired for every cookie set by the server.

Syntax

public class DefaultCaldavEventListener implements CaldavEventListener {
  ...
  public void setCookie(CaldavSetCookieEvent e) {}
  ...
}

public class CaldavSetCookieEvent {
  public String name;
  public String value;
  public String expires;
  public String domain;
  public String path;
  public boolean secure;
}

Remarks

The SetCookie event is fired for every Set-Cookie: header received from the HTTP server.

The Name parameter contains the name of the cookie, with the corresponding value supplied in the Value parameter.

The Expires parameter contains an expiration time for the cookie (if provided by the server). The time format used is "Weekday, DD-Mon-YY HH:MM:SS GMT". If the server does not provide an expiration time, the Expires parameter will be an empty string. In this case, the convention is to drop the cookie at the end of the session.

The Domain parameter contains a domain name to limit the cookie to (if provided by the server). If the server does not provide a domain name, the Domain parameter will be an empty string. The convention in this case is to use the server specified in the URL (URLServer) as the cookie domain.

The Path parameter contains a path name to limit the cookie to (if provided by the server). If the server does not provide a cookie path, the Path parameter will be an empty string. The convention in this case is to use the path specified in the URL (URLPath) as the cookie path.

The Secure parameter specifies whether the cookie is secure. If the value of this parameter is True, the cookie value must be submitted only through a secure (HTTPS) connection.

SSLServerAuthentication Event (Caldav Class)

Fired after the server presents its certificate to the client.

Syntax

public class DefaultCaldavEventListener implements CaldavEventListener {
  ...
  public void SSLServerAuthentication(CaldavSSLServerAuthenticationEvent e) {}
  ...
}

public class CaldavSSLServerAuthenticationEvent {
  public byte[] certEncoded;
  public String certSubject;
  public String certIssuer;
  public String status;
  public boolean accept;
}

Remarks

During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

SSLStatus Event (Caldav Class)

Fired when secure connection progress messages are available.

Syntax

public class DefaultCaldavEventListener implements CaldavEventListener {
  ...
  public void SSLStatus(CaldavSSLStatusEvent e) {}
  ...
}

public class CaldavSSLStatusEvent {
  public String message;
}

Remarks

The event is fired for informational and logging purposes only. This event tracks the progress of the connection.

StartTransfer Event (Caldav Class)

Fired when a document starts transferring (after the headers).

Syntax

public class DefaultCaldavEventListener implements CaldavEventListener {
  ...
  public void startTransfer(CaldavStartTransferEvent e) {}
  ...
}

public class CaldavStartTransferEvent {
  public int direction;
}

Remarks

The StartTransfer event is fired when the document text starts transferring from the server to the local host.

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

Status Event (Caldav Class)

This event is fired when the HTTP status line is received from the server.

Syntax

public class DefaultCaldavEventListener implements CaldavEventListener {
  ...
  public void status(CaldavStatusEvent e) {}
  ...
}

public class CaldavStatusEvent {
  public String HTTPVersion;
  public int statusCode;
  public String description;
}

Remarks

HTTPVersion is a string containing the HTTP version string as returned from the server (e.g., "1.1").

StatusCode contains the HTTP status code (e.g., 200), and Description the associated message returned by the server (e.g., "OK").

Transfer Event (Caldav Class)

This event is fired while a document transfers (delivers document).

Syntax

public class DefaultCaldavEventListener implements CaldavEventListener {
  ...
  public void transfer(CaldavTransferEvent e) {}
  ...
}

public class CaldavTransferEvent {
  public int direction;
  public long bytesTransferred;
  public int percentDone;
  public byte[] text;
}

Remarks

The Text parameter contains the portion of the document text being received. It is empty if data are being posted to the server.

The BytesTransferred parameter contains the number of bytes transferred in this Direction since the beginning of the document text (excluding HTTP response headers).

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

The PercentDone parameter shows the progress of the transfer in the corresponding direction. If PercentDone can not be calculated the value will be -1.

Note: Events are not re-entrant. Performing time-consuming operations within this event will prevent it from firing again in a timely manner and may affect overall performance.

CalAlarm Type

An alarm related to a calendar event.

Remarks

An Alarm calendar component is a grouping of fields that set up a reminder or an alarm for an event or to-do. For example, it may be used to define a reminder for a pending event or an overdue to-do.

The CalAlarm calendar component MUST include the Action and Trigger fields. The Action field further constrains the CalAlarm in the following ways:

When the Action is aAudio, the alarm can optionally include an Attachment field, containing a base-64 encoded binary audio file to be played when the alarm is triggered.

When the Action is aDisplay, the alarm MUST also include the Message field, which contains the text to be displayed when the alarm is triggered.

When the Action is aEmail, the alarm MUST include the Message field, which contains the text to be used as the message body, the Subject field, which contains the text to be used as the message subject, and the Recipient field, which contains the email address of the person intended to receive the message.

Fields

Action
int
Default Value: 0

This field determines what the CalDAV server will do when the alarm Trigger is reached. The following table explains the possible alarm actions:

aAudio (0)Specifies an alarm that causes a sound to be played to alert the user. You may attach a custom sound file using the Attachment field.
aDisplay (1)Specifies an alarm that causes a visual alert to be displayed to the user. If Action is set to this value, you must also set the Message field with the message to be displayed.
aEmail (2) Instructs the CalDAV sever to email a specified Recipient. In this case, the Message field will contain the message body of the email and the Subject field should contain the subject line.

Attachment
String
Default Value: ""

This field contains a sound file attached to the alarm. If the Action is set to aAudio, this field may optionally contain a base-64 encoded binary sound file to be played. The AttachmentType field indicates the data type of the attached file.

AttachmentType
String
Default Value: ""

This field contains the MIME-Type of the attachment. If the Action is set to aAudio or aEmail the Attachment property may optionally contain a base-64 binary encoded attachment. The AttachmentType field is used to tell the CalDAV server what type of binary file it is receiving. This field is a standard MIME content type, in the format "type/sub-type". The most common audio types are shown in the table below:

AttachmentType File Extension Description
audio/basic au, snd basic audio, 8-bit u-law PCM.
audio/mid mid, rmi MIDI music data
audio/mpeg mp2, mp3 MPEG-1 Audio Layer II and III.
audio/x-aiff aiff, aif, aifcMacintosh audio format
audio/x-mp4a-latm m4a MPEG-4 Audio
audio/x-pn-realaudio ra, ram Realaudio
audio/x-wav wav Microsoft waveform audio
audio/x-ms-wma wma Windows Media Audio (Microsoft)

You may use standard MIME content-types for any other file type you wish to submit in the Attachment field. If Attachment is specified but AttachmentType is left blank, no format type will be submitted with the Attachment and the CalDAV server may (or may not) attempt to determine the data type itself.

Duration
String
Default Value: ""

This field contains the interval between repeating alarms. This field is only used when an alarm is set to Repeat multiple times. It is specified in the form of a Duration data type. Durations are represented by the format P<date>T<time>. The date component may contain a number of days or weeks (but not months or years), and the time component may consist of hours, minutes, and seconds. These are represented by an integer value followed by a letter representing the units, as specified by the table below:

P is the duration designator (historically called "period") placed at the start of the duration representation.
W is the week designator that follows the value for the number of weeks.
D is the day designator that follows the value for the number of days.
T is the time designator that precedes the time components of the representation.
H is the hour designator that follows the value for the number of hours.
M is the minute designator that follows the value for the number of minutes.
S is the second designator that follows the value for the number of seconds.
For example, "P4DT12H30M5S" represents a duration of four days, twelve hours, thirty minutes, and five seconds. Unused date/time designators may be left out completely. (A five-minute duration may be represented as simply "PT5M"). Also note that "PT36H" and "P1DT12H" represent the same duration.

This format is based on ISO-8601, but unlike the ISO specification this duration property does not support durations measured in years or months.

The following is an example of an alarm that repeats 4 additional times after the initial Trigger, with a 5-minute delay between each alarm:

Copy
CalDav.Trigger = "-PT10M"; CalDAV.Alarm.Repeat = 4; CalDAV.Duration = "PT5M" CalDAV.Action = aDisplay;

If Duration is specified, Repeat MUST also be specified.

Message
String
Default Value: ""

This field contains a message used to alert the user when this alarm is triggered. If the Action is set to aDisplay, this field must contain the message that is to be displayed to the user. If Action is set to aEmail this field will contain the message body of the email that is sent to the Recipient. For instance:

Copy
CalDAV.Alarm.Action = aEmail; CalDAV.Alarm.Recipient = "mailto:john_doe@example.com"; CalDAV.Alarm.Message = "A draft agenda needs to be sent out to the attendees to the weekly managers meeting (MGR-LIST)."; CalDAV.Alarm.Subject = "REMINDER: Send agenda for weekly staff meeting.";
or
Copy
CalDAV.Alarm.Action = aDisplay; CalDAV.Alarm.Message = "REMINDER: Send agenda for weekly staff meeting.";
Message is not used for the aAudio alarm Action.

Recipient
String
Default Value: ""

This field contains the email address of the person to be alerted when this alarm is triggered. If Action is set to aEmail this field must contain one or more comma-separated email addresses to which the email alarm is to be sent. For instance:

Copy
CalDAV.Alarm.Action = aEmail; CalDAV.Alarm.Recipient = "mailto:john_doe@example.com"; CalDAV.Alarm.Message = "A draft agenda needs to be sent out to the attendees to the weekly managers meeting (MGR-LIST)."; CalDAV.Alarm.Subject = "REMINDER: Send agenda for weekly staff meeting.";
Recipient is not used for the aAudio or aDisplay alarm Actions.

Repeat
int
Default Value: 0

This field contains the number of times the alarm is to be repeated after the initial trigger.

This field defines the number of times an alarm should be repeated after its initial Trigger. If the alarm triggers more than once, then this property MUST be specified along with the Duration field.

Subject
String
Default Value: ""

This field contains the subject of the message used to alert the user when this alarm is triggered. If Action is set to aEmail this field will contain the subject the email that is sent to the Recipient. For instance:

Copy
CalDAV.Alarm.Action = aEmail; CalDAV.Alarm.Recipient = "mailto:john_doe@example.com"; CalDAV.Alarm.Message = "A draft agenda needs to be sent out to the attendees to the weekly managers meeting (MGR-LIST)."; CalDAV.Alarm.Subject = "REMINDER: Send agenda for weekly staff meeting.";
Subject is not used for the aAudio or aDisplay alarm Actions.

Trigger
String
Default Value: ""

This field contains the time when the alarm is triggered.

The Trigger is represented as a duration relative to the start of an event. The format is (+/-)P<date>T<time>. The date component may contain a number of days or weeks (but not months or years), and the time component may consist of hours, minutes, and seconds. These are represented by an integer value followed by a letter representing the units, as specified by the table below:

P is the duration designator (historically called "period") placed at the start of the duration representation.
W is the week designator that follows the value for the number of weeks.
D is the day designator that follows the value for the number of days.
T is the time designator that precedes the time components of the representation.
H is the hour designator that follows the value for the number of hours.
M is the minute designator that follows the value for the number of minutes.
S is the second designator that follows the value for the number of seconds.
Either a positive or negative duration may be specified for the Trigger field. An alarm with a positive duration is triggered after the associated start of the event (or to-do). An alarm with a negative duration is triggered before the start of the event. For instance, the following code instructs an alarm to fire 10 minutes before the event starts:
Copy
CalDAV.Alarm.Trigger = "-PT10M"

Constructors

public CalAlarm();



public CalAlarm( trigger,  action);



CalCustomProp Type

Name/Value pair of custom properties to add to the request.

Remarks

This type describes a form variable that is to be posted to the Resource URI when Putting an event or creating a new calendar. The type contains fields which describe this variable's name, value, and attribute.

Fields

Attribute
String
Default Value: ""

This field contains an optional attribute of the custom property.

Name
String
Default Value: ""

This field contains the textual name of the custom property.

Value
String
Default Value: ""

This field contains the value of the custom property.

Constructors

public CalCustomProp();



public CalCustomProp( name,  value);



public CalCustomProp( name,  value,  attribute);



CalFreeBusy Type

Describes a single free/busy element in the calendar event.

Remarks

This type describes a FREEBUSY element contained in the calendar data. Each FREEBUSY element will contain a BusyType (BUSY, FREE, BUSY-TENTATIVE, etc.) and a BusyRange, which describes the date and time range for the FREEBUSY element.

Fields

BusyRange
String (read-only)
Default Value: ""

Contains the date/time range when the calendar owner is busy. The format for this field is either "DATETIME/DATETIME" or "DATETIME/DURATION"

The date/time format is "YYYYMMDDThhmmss", where "T" indicates the break between date and time. You may also append a 1-character alpha code for the timezone. For instance, "20100104T123456Z" indicates January 4th, 2010 at 12:34:56 PM UTC.

Durations are represented by the format P<date>T<time>. The date component may contain a number of days or weeks (but not months or years), and the time component may consist of hours, minutes, and seconds. These are represented by an integer value followed by a letter representing the units, as specified by the table below:

P is the duration designator (historically called "period") placed at the start of the duration representation.
W is the week designator that follows the value for the number of weeks.
D is the day designator that follows the value for the number of days.
T is the time designator that precedes the time components of the representation.
H is the hour designator that follows the value for the number of hours.
M is the minute designator that follows the value for the number of minutes.
S is the second designator that follows the value for the number of seconds.
For example, "P4DT12H30M5S" represents a duration of four days, twelve hours, thirty minutes, and five seconds. Unused date/time designators may be left out completely. (A five-minute duration may be represented as simply "PT5M"). Also note that "PT36H" and "P1DT12H" represent the same duration.

This format is based on ISO-8601, but unlike the ISO specification this duration property does not support durations measured in years or months.

BusyType
String (read-only)
Default Value: ""

Indicates the busy status of the corresponding BusyRange. A calendar may use custom values for the BusyType, but the standard values include:

  • BUSY
  • FREE
  • BUSY-TENTATIVE
  • BUSY-UNAVAILABLE

Constructors

public CalFreeBusy();



CalLock Type

Group of fields used when locking and unlocking a calendar resource.

Remarks

LockType, Owner, Scope Timeout, and Tokens are used when locking and unlocking a calendar resource. You may lock the whole calendar, or only a single event within the calendar, depending on the URI you use when locking. After a successful LockCalendar operation, the class will set all of these fields to the values returned in the server's response. The lock Tokens are then passed along when copying or moving a calendar event.

Fields

LockType
String
Default Value: "write"

The type of the current resource lock.

Before the calendar resource can be locked, the LockType may be set to the type of lock being requested. Currently, the class only supports requesting locks of type "write", although the protocol defines an optional "read" lock. After a successful LockCalendar operation, the class will set the LockType field to the correct value returned in the server's response.

Owner
String
Default Value: ""

The principle that owns the current resource lock.

Before the calendar resource can be locked, the Lock Owner may be set to the name of a principle or group of principles that will own the lock. If no owner is specified, the server will automatically associate the lock with the requesting principle. After a successful LockCalendar operation, the class will set the Owner field to the correct value returned in the server's response.

Scope
String
Default Value: ""

The scope of the current resource lock.

Before the calendar resource can be locked, the Lock Scope may be set to the type of scope needed for the lock. Currently the class will only allow two types of scopes to be requested:

"exclusive"The lock belongs exclusively to the requesting principle. No other principle may modify the locked resource URI.
"shared"The locked resource may not be modified by non-trusted principles. Users who have access rights, however, may request a shared lock which they can then use to modify or operate on the resource.

If no scope is specified, the protocol default scope, "exclusive", will be requested. After a successful LockCalendar operation, the class will set the Scope field to the correct value returned in the server's response.

Timeout
int
Default Value: 0

The time to live for the current resource lock.

Before the calendar resource can be locked, the Lock Timeout may be set to a specific amount of time needed for the locked operation to take place. The timeout is used to determine how long the lock may exist before the server automatically unlocks the resource URI. If Timeout of 0 is specified, the server will use a default timeout. After a successful LockCalendar operation, the class will set the Lock Timeout field to the correct value returned in the server's response.

Tokens
String
Default Value: ""

The lock string to be used when submitting operations on a locked resource.

Before the calendar resource can be locked, the Lock Tokens may be set to the tokens returned by a previous lock operation. This is useful when renewing a timeout. The server will respond with a new timeout value, which will be stored in Timeout. If the lock request is not a lock refresh, Tokens must be empty, and will be parsed out of the server response after a successful LockCalendar operation.

Constructors

public CalLock();



CalRecurrence Type

Defines the recurrence set for an event.

Remarks

The recurrence set is the complete set of recurrence instances for a calendar component. The recurrence set is generated by considering the initial StartDate property along with the Rule, Dates, ExceptionRule, and ExceptionDates fields contained within the recurring event. The StartDate property defines the first instance in the recurrence set. The starting date SHOULD match the pattern of the recurrence rule, if specified. The recurrence set generated with a start date that doesn't match the pattern of the rule is undefined. The final recurrence set is generated by gathering all of the start DATE-TIME values generated by any of the specified Rule and Dates fields, and then excluding any start DATE-TIME values specified by the ExceptionRule or ExceptionDates fields. This implies that DATE-TIME values specified by the ExceptionRule and ExceptionDates fields take precedence over those specified by inclusion properties (i.e., Dates and Rule). When duplicate instances are generated by the recurrence Rule and Dates fields, only one recurrence is considered. Duplicate instances are ignored.

Fields

Dates
String
Default Value: ""

Individual dates on which the event will recur.

This field is used if you wish to denote specific, individual dates on which the event recurs. If you have an event that occurs monthly or weekly or on some other time interval, use the Rule field instead.

This field is filled after retrieving a calendar event, and is also used to create an event to put on the server. However, when requesting a report the contents of this field will only be valid inside the CalDAV EventDetails event.

ExceptionDates
String
Default Value: ""

Defines the list of DATE-TIME exceptions to the recurrence set.

If the ExceptionDates and ExceptionRule are specified, they are used in computing the recurrence set. The recurrence set is the complete set of recurrence instances for a calendar component. The recurrence set is generated by considering the initial StartDate property along with the Rule, Dates, ExceptionRule, and ExceptionDates fields contained within the recurring event. The StartDate property defines the first instance in the recurrence set. The starting date SHOULD match the pattern of the recurrence rule, if specified. The recurrence set generated with a start date that doesn't match the pattern of the rule is undefined. The final recurrence set is generated by gathering all of the start DATE-TIME values generated by any of the specified Rule and Dates fields, and then excluding any start DATE-TIME values specified by the ExceptionRule or ExceptionDates fields. This implies that DATE-TIME values specified by the ExceptionRule and ExceptionDates fields take precedence over those specified by inclusion properties (i.e., Dates and Rule). When duplicate instances are generated by the recurrence Rule and Dates fields, only one recurrence is considered. Duplicate instances are ignored.

The date/time format is "YYYYMMDDThhmmss", where "T" indicates the break between date and time. You may also append a 1-character alpha code for the timezone. For instance, "20100104T123456Z" indicates January 4th, 2010 at 12:34:56 PM UTC.

This field is filled after retrieving a calendar event, and is also used to create an event to put on the server. However, when requesting a report the contents of this field will only be valid inside the CalDAV EventDetails event.

ExceptionRule
String
Default Value: ""

Defines a rule or repeating pattern for an exception to the recurrence set.

If the ExceptionDates and ExceptionRule are specified, they are used in computing the recurrence set. The recurrence set is the complete set of recurrence instances for a calendar component. The recurrence set is generated by considering the initial StartDate property along with the Rule, Dates, ExceptionRule, and ExceptionDates fields contained within the recurring event. The StartDate property defines the first instance in the recurrence set. The starting date SHOULD match the pattern of the recurrence rule, if specified. The recurrence set generated with a start date that doesn't match the pattern of the rule is undefined. The final recurrence set is generated by gathering all of the start DATE-TIME values generated by any of the specified Rule and Dates fields, and then excluding any start DATE-TIME values specified by the ExceptionRule or ExceptionDates fields. This implies that DATE-TIME values specified by the ExceptionRule and ExceptionDates fields take precedence over those specified by inclusion properties (i.e., Dates and Rule). When duplicate instances are generated by the recurrence Rule and Dates fields, only one recurrence is considered. Duplicate instances are ignored.

This value type is a structured value consisting of a list of one or more recurrence grammar parts. Each rule part is defined by a NAME=VALUE pair. The rule parts are separated from each other by the SEMICOLON character. The rule parts are not ordered in any particular sequence. Individual rule parts MUST only be specified once.

The table below shows the supported rules and their usage.

FREQ The FREQ rule part identifies the type of recurrence rule. This rule part MUST be specified in the recurrence rule. Valid values include SECONDLY, to specify repeating events based on an interval of a second or more; MINUTELY, to specify repeating events based on an interval of a minute or more; HOURLY, to specify repeating events based on an interval of an hour or more; DAILY, to specify repeating events based on an interval of a day or more; WEEKLY, to specify repeating events based on an interval of a week or more; MONTHLY, to specify repeating events based on an interval of a month or more; and YEARLY, to specify repeating events based on an interval of a year or more.
UNTIL The UNTIL rule part defines a DATE (YYYYMMDD) or DATE-TIME (YYYYMMDDThhmmss) value that bounds the recurrence rule in an inclusive manner. If the value specified by UNTIL is synchronized with the specified recurrence, this DATE or DATE-TIME becomes the last instance of the recurrence. The value of the UNTIL rule part MUST have the same value type as the StartDate property. Furthermore, if the StartDate is specified as a date with local time, then the UNTIL rule part MUST also be specified as a date with local time. If the StartDate property is specified as a date with UTC time or a date with local time and time zone reference, then the UNTIL rule part MUST be specified as a date with UTC time. If not present, and the COUNT rule part is also not present, the "Rule" is considered to repeat forever.
COUNT The COUNT rule part defines the number of occurrences at which to range-bound the recurrence. The StartDate property value always counts as the first occurrence.
INTERVAL Positive integer representing at which intervals the recurrence rule repeats. The default value is "1", meaning every second for a SECONDLY rule, every minute for a MINUTELY rule, every hour for an HOURLY rule, etc. For example, within a DAILY rule, a value of "8" means every eight days.
BYSECOND The BYSECOND rule part specifies a COMMA-separated list of seconds within a minute. Valid values are 0 to 60.
BYMINUTE The BYMINUTE rule part specifies a COMMA-separated list of minutes within an hour. Valid values are 0 to 59.
BYHOUR The BYHOUR rule part specifies a COMMA-separated list of hours of the day. Valid values are 0 to 23.
BYDAY The BYDAY rule part specifies a COMMA-separated list of days of the week; SU indicates Sunday; MO indicates Monday; TU indicates Tuesday; WE indicates Wednesday; TH indicates Thursday; FR indicates Friday; and SA indicates Saturday. Each BYDAY value can also be preceded by a positive (+n) or negative (-n) integer. If present, this indicates the nth occurrence of a specific day within the MONTHLY or YEARLY Rule.
BYMONTHDAY The BYMONTHDAY rule part specifies a COMMA-separated list of days of the month. Valid values are 1 to 31 or -31 to -1. For example, -10 represents the tenth to the last day of the month. The BYMONTHDAY rule part MUST NOT be specified when the FREQ rule part is set to WEEKLY.
BYYEARDAY The BYYEARDAY rule part specifies a COMMA-separated list of days of the year. Valid values are 1 to 366 or -366 to -1. For example, -1 represents the last day of the year (December 31st) and -306 represents the 306th to the last day of the year (March 1st). The BYYEARDAY rule part MUST NOT be specified when the FREQ rule part is set to DAILY, WEEKLY, or MONTHLY.
BYWEEKNO The BYWEEKNO rule part specifies a COMMA-separated list of ordinals specifying weeks of the year. Valid values are 1 to 53 or -53 to -1. This corresponds to weeks according to week numbering as defined in ISO.8601.2004. A week is defined as a seven day period, starting on the day of the week defined to be the week start (see WKST). Week number one of the calendar year is the first week that contains at least four (4) days in that calendar year. This rule part MUST NOT be used when the FREQ rule part is set to anything other than YEARLY. For example, 3 represents the third week of the year.
BYMONTH The BYMONTH rule part specifies a COMMA-separated list of months of the year. Valid values are 1 to 12.
WKST Specifies the day on which the workweek starts. Valid values are MO, TU, WE, TH, FR, SA, and SU. This is significant when a WEEKLY Rule has an interval greater than 1, and a BYDAY rule part is specified. This is also significant when in a YEARLY Rule when a BYWEEKNO rule part is specified. The default value is MO.
BYSETPOSThe BYSETPOS rule part specifies a COMMA-separated list of values that corresponds to the nth occurrence within the set of recurrence instances specified by the rule. BYSETPOS operates on a set of recurrence instances in one interval of the recurrence rule. For example, in a WEEKLY rule, the interval would be one week A set of recurrence instances starts at the beginning of the interval defined by the FREQ rule part. Valid values are 1 to 366 or -366 to -1. It MUST only be used in conjunction with another BYxxx rule part. For example "the last work day of the month" could be represented as: FREQ=MONTHLY;BYDAY=MO,TU,WE,TH,FR;BYSETPOS=-1. Each BYSETPOS value can include a positive (+n) or negative (-n) integer. If present, this indicates the nth occurrence of the specific occurrence within the set of occurrences specified by the rule.
Note: The BYSECOND, BYMINUTE and BYHOUR rule parts MUST NOT be specified when the associated StartDate property is specified.

Information not contained in the Rule necessary to determine the various recurrence instance start time and dates are derived from the StartDate property. For example, "FREQ=YEARLY;BYMONTH=1" doesn't specify a specific day within the month or a time. This information would be the same as what is specified for the StartDate property.

BYxxx rule parts modify the recurrence in some manner. BYxxx rule parts for a period of time that is the same or greater than the frequency generally reduce or limit the number of occurrences of the recurrence generated. For example, "FREQ=DAILY;BYMONTH=1" reduces the number of recurrence instances from all days (if BYMONTH rule part is not present) to all days in January. BYxxx rule parts for a period of time less than the frequency generally increase or expand the number of occurrences of the recurrence. For example, "FREQ=YEARLY;BYMONTH=1,2" increases the number of days within the yearly recurrence set from 1 (if BYMONTH rule part is not present) to 2.

If multiple BYxxx rule parts are specified, then after evaluating the specified FREQ and INTERVAL rule parts, the BYxxx rule parts are applied to the current set of evaluated occurrences in the following order: BYMONTH, BYWEEKNO, BYYEARDAY, BYMONTHDAY, BYDAY, BYHOUR, BYMINUTE, BYSECOND and BYSETPOS; then COUNT and UNTIL are evaluated.

This field is filled after retrieving a calendar event, and is also used to create an event to put on the server. However, when requesting a report the contents of this field will only be valid inside the CalDAV EventDetails event.

RecurrenceId
String
Default Value: ""

Identifies a recurring event.

This field is used in conjunction with the CalDAV UID and Sequence properties to identify a specific instance of a recurring event, todo, or journal. The value of this field is the value of the CalDAV StartDate property of the original recurrence instance.

This field is filled after retrieving a calendar event, and is also used to create an event to put on the server. However, when requesting a report the contents of this field will only be valid inside the CalDAV EventDetails event.

Rule
String
Default Value: ""

This field defines the recurrence rule for the event.

This value type is a structured value consisting of a list of one or more recurrence grammar parts. Each rule part is defined by a NAME=VALUE pair. The rule parts are separated from each other by the SEMICOLON character. The rule parts are not ordered in any particular sequence. Individual rule parts MUST only be specified once.

The table below shows the supported rules and their usage.

FREQ The FREQ rule part identifies the type of recurrence rule. This rule part MUST be specified in the recurrence rule. Valid values include SECONDLY, to specify repeating events based on an interval of a second or more; MINUTELY, to specify repeating events based on an interval of a minute or more; HOURLY, to specify repeating events based on an interval of an hour or more; DAILY, to specify repeating events based on an interval of a day or more; WEEKLY, to specify repeating events based on an interval of a week or more; MONTHLY, to specify repeating events based on an interval of a month or more; and YEARLY, to specify repeating events based on an interval of a year or more.
UNTIL The UNTIL rule part defines a DATE (YYYYMMDD) or DATE-TIME (YYYYMMDDThhmmss) value that bounds the recurrence rule in an inclusive manner. If the value specified by UNTIL is synchronized with the specified recurrence, this DATE or DATE-TIME becomes the last instance of the recurrence. The value of the UNTIL rule part MUST have the same value type as the StartDate property. Furthermore, if the StartDate is specified as a date with local time, then the UNTIL rule part MUST also be specified as a date with local time. If the StartDate property is specified as a date with UTC time or a date with local time and time zone reference, then the UNTIL rule part MUST be specified as a date with UTC time. If not present, and the COUNT rule part is also not present, the "Rule" is considered to repeat forever.
COUNT The COUNT rule part defines the number of occurrences at which to range-bound the recurrence. The StartDate property value always counts as the first occurrence.
INTERVAL Positive integer representing at which intervals the recurrence rule repeats. The default value is "1", meaning every second for a SECONDLY rule, every minute for a MINUTELY rule, every hour for an HOURLY rule, etc. For example, within a DAILY rule, a value of "8" means every eight days.
BYSECOND The BYSECOND rule part specifies a COMMA-separated list of seconds within a minute. Valid values are 0 to 60.
BYMINUTE The BYMINUTE rule part specifies a COMMA-separated list of minutes within an hour. Valid values are 0 to 59.
BYHOUR The BYHOUR rule part specifies a COMMA-separated list of hours of the day. Valid values are 0 to 23.
BYDAY The BYDAY rule part specifies a COMMA-separated list of days of the week; SU indicates Sunday; MO indicates Monday; TU indicates Tuesday; WE indicates Wednesday; TH indicates Thursday; FR indicates Friday; and SA indicates Saturday. Each BYDAY value can also be preceded by a positive (+n) or negative (-n) integer. If present, this indicates the nth occurrence of a specific day within the MONTHLY or YEARLY Rule.
BYMONTHDAY The BYMONTHDAY rule part specifies a COMMA-separated list of days of the month. Valid values are 1 to 31 or -31 to -1. For example, -10 represents the tenth to the last day of the month. The BYMONTHDAY rule part MUST NOT be specified when the FREQ rule part is set to WEEKLY.
BYYEARDAY The BYYEARDAY rule part specifies a COMMA-separated list of days of the year. Valid values are 1 to 366 or -366 to -1. For example, -1 represents the last day of the year (December 31st) and -306 represents the 306th to the last day of the year (March 1st). The BYYEARDAY rule part MUST NOT be specified when the FREQ rule part is set to DAILY, WEEKLY, or MONTHLY.
BYWEEKNO The BYWEEKNO rule part specifies a COMMA-separated list of ordinals specifying weeks of the year. Valid values are 1 to 53 or -53 to -1. This corresponds to weeks according to week numbering as defined in ISO.8601.2004. A week is defined as a seven day period, starting on the day of the week defined to be the week start (see WKST). Week number one of the calendar year is the first week that contains at least four (4) days in that calendar year. This rule part MUST NOT be used when the FREQ rule part is set to anything other than YEARLY. For example, 3 represents the third week of the year.
BYMONTH The BYMONTH rule part specifies a COMMA-separated list of months of the year. Valid values are 1 to 12.
WKST Specifies the day on which the workweek starts. Valid values are MO, TU, WE, TH, FR, SA, and SU. This is significant when a WEEKLY Rule has an interval greater than 1, and a BYDAY rule part is specified. This is also significant when in a YEARLY Rule when a BYWEEKNO rule part is specified. The default value is MO.
BYSETPOSThe BYSETPOS rule part specifies a COMMA-separated list of values that corresponds to the nth occurrence within the set of recurrence instances specified by the rule. BYSETPOS operates on a set of recurrence instances in one interval of the recurrence rule. For example, in a WEEKLY rule, the interval would be one week A set of recurrence instances starts at the beginning of the interval defined by the FREQ rule part. Valid values are 1 to 366 or -366 to -1. It MUST only be used in conjunction with another BYxxx rule part. For example "the last work day of the month" could be represented as: FREQ=MONTHLY;BYDAY=MO,TU,WE,TH,FR;BYSETPOS=-1. Each BYSETPOS value can include a positive (+n) or negative (-n) integer. If present, this indicates the nth occurrence of the specific occurrence within the set of occurrences specified by the rule.
Note: The BYSECOND, BYMINUTE and BYHOUR rule parts MUST NOT be specified when the associated StartDate property is specified.

Information not contained in the Rule necessary to determine the various recurrence instance start time and dates are derived from the StartDate property. For example, "FREQ=YEARLY;BYMONTH=1" doesn't specify a specific day within the month or a time. This information would be the same as what is specified for the StartDate property.

BYxxx rule parts modify the recurrence in some manner. BYxxx rule parts for a period of time that is the same or greater than the frequency generally reduce or limit the number of occurrences of the recurrence generated. For example, "FREQ=DAILY;BYMONTH=1" reduces the number of recurrence instances from all days (if BYMONTH rule part is not present) to all days in January. BYxxx rule parts for a period of time less than the frequency generally increase or expand the number of occurrences of the recurrence. For example, "FREQ=YEARLY;BYMONTH=1,2" increases the number of days within the yearly recurrence set from 1 (if BYMONTH rule part is not present) to 2.

If multiple BYxxx rule parts are specified, then after evaluating the specified FREQ and INTERVAL rule parts, the BYxxx rule parts are applied to the current set of evaluated occurrences in the following order: BYMONTH, BYWEEKNO, BYYEARDAY, BYMONTHDAY, BYDAY, BYHOUR, BYMINUTE, BYSECOND and BYSETPOS; then COUNT and UNTIL are evaluated.

This field is filled after retrieving a calendar event, and is also used to create an event to put on the server. However, when requesting a report the contents of this field will only be valid inside the CalDAV EventDetails event.

Constructors

public CalRecurrence();



CalReportFilter Type

Used to restrict the results of a Report returned from the CalDAV server.

Remarks

You can restrict results to only events within a specified time range (using StartDate and EndDate), to only recurring events within a specified time range (using RecurStart and RecurEnd), and to events with an alarm set to go off within a specified time range. (using AlarmStart and AlarmEnd). You can also restrict results to only those events which contain a specific Property (either by property name, or name and a specific value). The EventType field determines what kind of events are returned (events, todo lists, journal entries, or free/busy time).

Fields

AlarmEnd
String
Default Value: ""

Limits the events returned in the report to only those with an alarm set in the range specified by AlarmStart and AlarmEnd. The date/time format is "YYYYMMDDThhmmss", where "T" indicates the break between date and time. You may also append a 1-character alpha code for the timezone. For instance, "20100104T123456Z" indicates January 4th, 2010 at 12:34:56 PM UTC.

AlarmStart
String
Default Value: ""

Limits the events returned in the report to only those with an alarm set in the range specified by AlarmStart and AlarmEnd. The date/time format is "YYYYMMDDThhmmss", where "T" indicates the break between date and time. You may also append a 1-character alpha code for the timezone. For instance, "20100104T123456Z" indicates January 4th, 2010 at 12:34:56 PM UTC.

CustomFilter
String
Default Value: ""

Allows the user to specify his own filter XML. This property must be properly-formed XML, and must be a supported CalDAV filter or the class throws an exception.

EndDate
String
Default Value: ""

Limits the events returned in the report to only those which occur in the time range specified by StartDate and EndDate. The date/time format is "YYYYMMDDThhmmss", where "T" indicates the break between date and time. You may also append a 1-character alpha code for the timezone. For instance, "20100104T123456Z" indicates January 4th, 2010 at 12:34:56 PM UTC.

EventType
int
Default Value: 0

Indicates the type of calendar object resources to return in a Report. Some calendar servers (Google in particular) do not support vtAll, so you must submit a report for each type of event you wish to retrieve a report on.

Property
String
Default Value: ""

Limits the events returned in a Report to only those which contain a matching property name and value. For instance, setting the Property filter to "ORGANIZER" will return only events that have an organizer specified. Setting the Property filter to "ORGANIZER=mailto:JohnSmith@example.com" will return only resources where "mailto:JohnSmith@example.com" is the specified organizer. Likewise, you can retrieve a report on a single event by setting the Property filter with the UID of the needed resource. For example: Property = "UID=DC6C50A017428C5216A2F1CD@example.com";.

You may add multiple properties to the filter by separating them with commas. For example: "ORGANIZER=mailto:JohnSmith@example.com, STATUS=CANCELLED".

For more advanced filtering, you may specify your own CustomFilter.

RecurEnd
String
Default Value: ""

Limits the recurring events returned in the report.

Use of the CalDAV limit-recurrence-set element causes the server to only return overridden recurrence components that overlap the time range specified by RecurStart and RecurEnd or that affect other instances that overlap the time range specified by StartDate and EndDate. The date/time format is "YYYYMMDDThhmmss", where "T" indicates the break between date and time. You may also append a 1-character alpha code for the timezone. For instance, "20100104T123456Z" indicates January 4th, 2010 at 12:34:56 PM UTC.

Note that the RecurEnd field cannot be used when ReturnCalendarData is False.

RecurStart
String
Default Value: ""

Limits the recurring events returned in the report.

Use of the CalDAV limit-recurrence-set element causes the server to only return overridden recurrence components that overlap the time range specified by RecurStart and RecurEnd or that affect other instances that overlap the time range specified by StartDate and EndDate. The date/time format is "YYYYMMDDThhmmss", where "T" indicates the break between date and time. You may also append a 1-character alpha code for the timezone. For instance, "20100104T123456Z" indicates January 4th, 2010 at 12:34:56 PM UTC.

Note that the RecurStart field cannot be used when ReturnCalendarData is False.

ReturnCalendarData
boolean
Default Value: True

Controls whether the contents of each calendar event is returned in the report.

If ReturnCalendarData is True (default), a report will contain the full contents of each event in the calendar. This can be a substantially large amount of data. However if ReturnCalendarData is False, the report returned will contain only URIs and ETags of each calendar event. You may compare the URIs against a cached list and retrieve any new URIs individually via the CalDAV.GetCalendarEvent method. If the ETag for a cached URI has changed, it means that the calendar event has changed, and needs to be retrieved.

Note that this filter is not compatible with the RecurStart and RecurEnd fields.

StartDate
String
Default Value: ""

Limits the events returned in the report to only those which occur in the time range specified by StartDate and EndDate. The date/time format is "YYYYMMDDThhmmss", where "T" indicates the break between date and time. You may also append a 1-character alpha code for the timezone. For instance, "20100104T123456Z" indicates January 4th, 2010 at 12:34:56 PM UTC.

UID
String
Default Value: ""

Limits the recurring events returned in the report to only those with the specified UID.

Constructors

public CalReportFilter();



CalTimezone Type

Specifies a time zone on a calendar collection.

Remarks

The CalDAV CalTimezone type is used to specify the time zone the server should rely on to resolve "date" values and "date with local time" values (i.e., floating time) to "date with UTC time" values. The server will require this information to determine if a calendar component scheduled with "date" values or "date with local time" values overlaps a time range specified in a GetCalendarReport. In the absence of this property, the server may rely on a time zone of its choosing.

Fields

DSTName
String
Default Value: ""

The customary name for the daylight-savings time zone. This could be used for displaying dates, and there is no restriction to the format. For instance, Eastern Daylight Time may be represented as "EDT", "Eastern Daylight Time (US & Canada)", or any other arbitrary representation.

The following example shows the CalTimezone set to Eastern time.

Copy
CalDAV.Timezone.TimezoneId = "US-Eastern"; CalDAV.Timezone.URL = "http://zones.example.com/tz/America-New_York.ics" CalDAV.Timezone.StdName = "Eastern Standard Time (US & Canada)"; CalDAV.Timezone.StdStart = "20071104T020000"; CalDAV.Timezone.StdOffsetFrom = "-400"; CalDAV.Timezone.StdOffsetTo = "-500"; CalDAV.Timezone.StdRule = "FREQ=YEARLY;BYDAY=1SU;BYMONTH=11"; CalDAV.TimeZone.DSTName = "Eastern Daylight Time (US & Canada)"; CalDAV.TimeZone.DSTStart = "20070311T020000"; CalDAV.TimeZone.DSTOffsetFrom = "-500"; CalDAV.TimeZone.DSTOffsetTo = "-400"; CalDAV.TimeZone.DSTRule = "FREQ=YEARLY;BYDAY=2SU;BYMONTH=3";

DSTOffsetFrom
String
Default Value: ""

The UTC offset that is in use when the onset of this time zone observance begins. DSTOffsetFrom is combined with DSTStart to define the effective onset for the daylight-time time zone definition.

DSTStart, DSTOffsetFrom, and DSTOffsetTo are all required to specify the daylight-savings time zone.

The following example shows the CalTimezone set to Eastern time.

Copy
CalDAV.Timezone.TimezoneId = "US-Eastern"; CalDAV.Timezone.URL = "http://zones.example.com/tz/America-New_York.ics" CalDAV.Timezone.StdName = "Eastern Standard Time (US & Canada)"; CalDAV.Timezone.StdStart = "20071104T020000"; CalDAV.Timezone.StdOffsetFrom = "-400"; CalDAV.Timezone.StdOffsetTo = "-500"; CalDAV.Timezone.StdRule = "FREQ=YEARLY;BYDAY=1SU;BYMONTH=11"; CalDAV.TimeZone.DSTName = "Eastern Daylight Time (US & Canada)"; CalDAV.TimeZone.DSTStart = "20070311T020000"; CalDAV.TimeZone.DSTOffsetFrom = "-500"; CalDAV.TimeZone.DSTOffsetTo = "-400"; CalDAV.TimeZone.DSTRule = "FREQ=YEARLY;BYDAY=2SU;BYMONTH=3";

DSTOffsetTo
String
Default Value: ""

The UTC offset for daylight savings time, when this observance is in use.

DSTStart, DSTOffsetFrom, and DSTOffsetTo are all required to specify the daylight-savings time zone.

The following example shows the CalTimezone set to Eastern time.

Copy
CalDAV.Timezone.TimezoneId = "US-Eastern"; CalDAV.Timezone.URL = "http://zones.example.com/tz/America-New_York.ics" CalDAV.Timezone.StdName = "Eastern Standard Time (US & Canada)"; CalDAV.Timezone.StdStart = "20071104T020000"; CalDAV.Timezone.StdOffsetFrom = "-400"; CalDAV.Timezone.StdOffsetTo = "-500"; CalDAV.Timezone.StdRule = "FREQ=YEARLY;BYDAY=1SU;BYMONTH=11"; CalDAV.TimeZone.DSTName = "Eastern Daylight Time (US & Canada)"; CalDAV.TimeZone.DSTStart = "20070311T020000"; CalDAV.TimeZone.DSTOffsetFrom = "-500"; CalDAV.TimeZone.DSTOffsetTo = "-400"; CalDAV.TimeZone.DSTRule = "FREQ=YEARLY;BYDAY=2SU;BYMONTH=3";

DSTRule
String
Default Value: ""

This field defines the recurrence rule for the onset of this daylight savings time observance. Some specific requirements for the usage of DSTRule for this purpose include:

FREQFrequency of the time zone onset. (Almost always "YEARLY")
BYMONTHThe month of the time zone onset.
BYDAYThe day of the time zone onset. Formatted as a number and a two-character day. "BYDAY=3SU" means the 3rd Sunday of the month. "BYDAY=-1SU" is the last Sunday of the month.
UNTILIf the observance is known to have an effective end date, the "UNTIL" recurrence rule parameter MUST be used to specify the last valid onset of this observance (i.e., the UNTIL DATE-TIME will be equal to the last instance generated by the recurrence pattern). It MUST be specified in UTC time.
Note that the DSTStart and DSTOffsetFrom fields must be used when generating the onset DATE-TIME values (instances) from the DSTRule

For instance, in the USA Eastern Daylight time before 2007 started on the first Sunday of April. In 2007 Daylight time was changed to begin on the 2nd Sunday in March. Therefore, the UNTIL option should indicate the LAST time this rule will be observed. (2am on April 2nd, 2006). Such a time zone declaration would look like this:

Copy
CalDAV.time zone.DSTName = "EDT" CalDAV.time zone.DSTStart = "19870405T020000" CalDAV.time zone.DSTOffsetFrom = "-500" CalDAV.time zone.DSTOffsetTo = "-400" CalDAV.time zone.DSTRule = "FREQ=YEARLY;BYMONTH=4;BYDAY=1SU;UNTIL=20060402T070000Z"

DSTStart
String
Default Value: ""

The effective onset date and local time for the daylight-time time zone definition. The date and time MUST be specified as a date with a local time value in the format "YYYYMMDDThhmmss", where "T" indicates the break between date and time.

DSTStart, DSTOffsetFrom, and DSTOffsetTo are all required to specify the daylight-savings time zone.

The following example shows the CalTimezone set to Eastern time.

Copy
CalDAV.Timezone.TimezoneId = "US-Eastern"; CalDAV.Timezone.URL = "http://zones.example.com/tz/America-New_York.ics" CalDAV.Timezone.StdName = "Eastern Standard Time (US & Canada)"; CalDAV.Timezone.StdStart = "20071104T020000"; CalDAV.Timezone.StdOffsetFrom = "-400"; CalDAV.Timezone.StdOffsetTo = "-500"; CalDAV.Timezone.StdRule = "FREQ=YEARLY;BYDAY=1SU;BYMONTH=11"; CalDAV.TimeZone.DSTName = "Eastern Daylight Time (US & Canada)"; CalDAV.TimeZone.DSTStart = "20070311T020000"; CalDAV.TimeZone.DSTOffsetFrom = "-500"; CalDAV.TimeZone.DSTOffsetTo = "-400"; CalDAV.TimeZone.DSTRule = "FREQ=YEARLY;BYDAY=2SU;BYMONTH=3";

LastModified
String
Default Value: ""

This optional field is a UTC value that specifies the date and time that this time zone definition was last updated.

StdName
String
Default Value: ""

The customary name for the standard time zone. This could be used for displaying dates, and there is no restriction to the format. For instance, Eastern Standard Time may be represented as "EST", "Eastern Standard Time (US & Canada)", or any other arbitrary representation.

The following example shows the CalTimezone set to Eastern time.

Copy
CalDAV.Timezone.TimezoneId = "US-Eastern"; CalDAV.Timezone.URL = "http://zones.example.com/tz/America-New_York.ics" CalDAV.Timezone.StdName = "Eastern Standard Time (US & Canada)"; CalDAV.Timezone.StdStart = "20071104T020000"; CalDAV.Timezone.StdOffsetFrom = "-400"; CalDAV.Timezone.StdOffsetTo = "-500"; CalDAV.Timezone.StdRule = "FREQ=YEARLY;BYDAY=1SU;BYMONTH=11"; CalDAV.TimeZone.DSTName = "Eastern Daylight Time (US & Canada)"; CalDAV.TimeZone.DSTStart = "20070311T020000"; CalDAV.TimeZone.DSTOffsetFrom = "-500"; CalDAV.TimeZone.DSTOffsetTo = "-400"; CalDAV.TimeZone.DSTRule = "FREQ=YEARLY;BYDAY=2SU;BYMONTH=3";

StdOffsetFrom
String
Default Value: ""

The UTC offset that is in use when the onset of this time zone observance begins. StdOffsetFrom is combined with StdStart to define the effective onset for the standard-time time zone definition.

StdStart, StdOffsetFrom, and StdOffsetTo are all required to specify the standard-time time zone.

The following example shows the CalTimezone set to Eastern time.

Copy
CalDAV.Timezone.TimezoneId = "US-Eastern"; CalDAV.Timezone.URL = "http://zones.example.com/tz/America-New_York.ics" CalDAV.Timezone.StdName = "Eastern Standard Time (US & Canada)"; CalDAV.Timezone.StdStart = "20071104T020000"; CalDAV.Timezone.StdOffsetFrom = "-400"; CalDAV.Timezone.StdOffsetTo = "-500"; CalDAV.Timezone.StdRule = "FREQ=YEARLY;BYDAY=1SU;BYMONTH=11"; CalDAV.TimeZone.DSTName = "Eastern Daylight Time (US & Canada)"; CalDAV.TimeZone.DSTStart = "20070311T020000"; CalDAV.TimeZone.DSTOffsetFrom = "-500"; CalDAV.TimeZone.DSTOffsetTo = "-400"; CalDAV.TimeZone.DSTRule = "FREQ=YEARLY;BYDAY=2SU;BYMONTH=3";

StdOffsetTo
String
Default Value: ""

The UTC offset for standard time, when this observance is in use.

StdStart, StdOffsetFrom, and StdOffsetTo are all required to specify the standard-time time zone.

The following example shows the CalTimezone set to Eastern time.

Copy
CalDAV.Timezone.TimezoneId = "US-Eastern"; CalDAV.Timezone.URL = "http://zones.example.com/tz/America-New_York.ics" CalDAV.Timezone.StdName = "Eastern Standard Time (US & Canada)"; CalDAV.Timezone.StdStart = "20071104T020000"; CalDAV.Timezone.StdOffsetFrom = "-400"; CalDAV.Timezone.StdOffsetTo = "-500"; CalDAV.Timezone.StdRule = "FREQ=YEARLY;BYDAY=1SU;BYMONTH=11"; CalDAV.TimeZone.DSTName = "Eastern Daylight Time (US & Canada)"; CalDAV.TimeZone.DSTStart = "20070311T020000"; CalDAV.TimeZone.DSTOffsetFrom = "-500"; CalDAV.TimeZone.DSTOffsetTo = "-400"; CalDAV.TimeZone.DSTRule = "FREQ=YEARLY;BYDAY=2SU;BYMONTH=3";

StdRule
String
Default Value: ""

This field defines the recurrence rule for the onset of this standard time observance. Some specific requirements for the usage of DSTRule for this purpose include:

FREQFrequency of the time zone onset. (Almost always "YEARLY")
BYMONTHThe month of the time zone onset.
BYDAYThe day of the time zone onset. Formatted as a number and a two-character day. "BYDAY=3SU" means the 3rd Sunday of the month. "BYDAY=-1SU" is the last Sunday of the month.
UNTILIf the observance is known to have an effective end date, the "UNTIL" recurrence rule parameter MUST be used to specify the last valid onset of this observance (i.e., the UNTIL DATE-TIME will be equal to the last instance generated by the recurrence pattern). It MUST be specified in UTC time.
Note that the StdStart and StdOffsetFrom fields must be used when generating the onset DATE-TIME values (instances) from the StdRule

For instance, in the USA Eastern Standard time before 2007 started on the last Sunday of October. In 2007 Standard time was changed to begin on the 1st Sunday in November. Therefore, the UNTIL option should indicate the LAST time this rule will be observed. (2am on October 29th, 2006). Such a time zone declaration would look like this:

Copy
CalDAV.time zone.StdName = "EST" CalDAV.time zone.StdStart = "19671029T020000" CalDAV.time zone.StdOffsetFrom = "-400" CalDAV.time zone.StdOffsetTo = "-500" CalDAV.time zone.StdRule = "FREQ=YEARLY;BYMONTH=10;BYDAY=-1SU;UNTIL=20061029T060000Z"

StdStart
String
Default Value: ""

The effective onset date and local time for the standard-time time zone definition. The date and time MUST be specified as a date with a local time value. in the format "YYYYMMDDThhmmss", where "T" indicates the break between date and time.

StdStart, StdOffsetFrom, and StdOffsetTo are all required to specify the standard-time time zone.

The following example shows the CalTimezone set to Eastern time.

Copy
CalDAV.Timezone.TimezoneId = "US-Eastern"; CalDAV.Timezone.URL = "http://zones.example.com/tz/America-New_York.ics" CalDAV.Timezone.StdName = "Eastern Standard Time (US & Canada)"; CalDAV.Timezone.StdStart = "20071104T020000"; CalDAV.Timezone.StdOffsetFrom = "-400"; CalDAV.Timezone.StdOffsetTo = "-500"; CalDAV.Timezone.StdRule = "FREQ=YEARLY;BYDAY=1SU;BYMONTH=11"; CalDAV.TimeZone.DSTName = "Eastern Daylight Time (US & Canada)"; CalDAV.TimeZone.DSTStart = "20070311T020000"; CalDAV.TimeZone.DSTOffsetFrom = "-500"; CalDAV.TimeZone.DSTOffsetTo = "-400"; CalDAV.TimeZone.DSTRule = "FREQ=YEARLY;BYDAY=2SU;BYMONTH=3";

TimezoneId
String
Default Value: ""

This field specifies a text value that uniquely identifies this CalTimezone calendar component.

Note: This document does not define a naming convention for time zone identifiers. Implementers may want to use the naming conventions defined in existing time zone specifications such as the public-domain TZ database [TZDB].

This field is required. If it is not present, no time zone information will be generated inside the MakeCalendar request.

URL
String
Default Value: ""

Optionally points to a published time zone definition. If set, this field should refer to a resource that is accessible by anyone who might need to interpret the object. This should not normally be a "file" URL or other URL that is not widely accessible.

Constructors

public CalTimezone();



Certificate Type

This is the digital certificate being used.

Remarks

This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.

Fields

EffectiveDate
String (read-only)
Default Value: ""

This is the date on which this certificate becomes valid. Before this date, it is not valid. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

Encoded
String
Default Value: ""

This is the certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

EncodedB
byte[]
Default Value: ""

This is the certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

ExpirationDate
String (read-only)
Default Value: ""

This is the date the certificate expires. After this date, the certificate will no longer be valid. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

ExtendedKeyUsage
String
Default Value: ""

This is a comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

Fingerprint
String (read-only)
Default Value: ""

This is the hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

FingerprintSHA1
String (read-only)
Default Value: ""

This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

FingerprintSHA256
String (read-only)
Default Value: ""

This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

Issuer
String (read-only)
Default Value: ""

This is the issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.

KeyPassword
String
Default Value: ""

This is the password for the certificate's private key (if any).

Some certificate stores may individually protect certificates' private keys, separate from the standard protection offered by the StorePassword. KeyPassword. This field can be used to read such password-protected private keys.

Note: this property defaults to the value of StorePassword. To clear it, you must set the property to the empty string (""). It can be set at any time, but when the private key's password is different from the store's password, then it must be set before calling PrivateKey.

PrivateKey
String (read-only)
Default Value: ""

This is the private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.

PrivateKeyAvailable
boolean (read-only)
Default Value: False

This field shows whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).

PrivateKeyContainer
String (read-only)
Default Value: ""

This is the name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.

PublicKey
String (read-only)
Default Value: ""

This is the public key of the certificate. The key is provided as PEM/Base64-encoded data.

PublicKeyAlgorithm
String
Default Value: ""

This field contains the textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

PublicKeyLength
int (read-only)
Default Value: 0

This is the length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

SerialNumber
String (read-only)
Default Value: ""

This is the serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

SignatureAlgorithm
String (read-only)
Default Value: ""

The field contains the text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

Store
String
Default Value: "MY"

This is the name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

In Java, the certificate store normally is a file containing certificates and optional private keys.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StoreB
byte[]
Default Value: "MY"

This is the name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

In Java, the certificate store normally is a file containing certificates and optional private keys.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StorePassword
String
Default Value: ""

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

StoreType
int
Default Value: 0

This is the type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This field can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: this store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example. SSH Authentication with Security Key:

Copy
certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

Subject
String
Default Value: ""

This is the subject of the certificate used for client authentication.

This field will be populated with the full subject of the loaded certificate. When loading a certificate the subject is used to locate the certificate in the store.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

SubjectAltNames
String (read-only)
Default Value: ""

This field contains comma-separated lists of alternative subject names for the certificate.

ThumbprintMD5
String (read-only)
Default Value: ""

This field contains the MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA1
String (read-only)
Default Value: ""

This field contains the SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA256
String (read-only)
Default Value: ""

This field contains the SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

Usage
String
Default Value: ""

This field contains the text description of UsageFlags.

This value will be of one or more of the following strings and will be separated by commas:

  • Digital Signatures
  • Key Authentication
  • Key Encryption
  • Data Encryption
  • Key Agreement
  • Certificate Signing
  • Key Signing

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

UsageFlags
int
Default Value: 0

This field contains the flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:

0x80Digital Signatures
0x40Key Authentication (Non-Repudiation)
0x20Key Encryption
0x10Data Encryption
0x08Key Agreement
0x04Certificate Signing
0x02Key Signing

Please see the Usage field for a text representation of UsageFlags.

This functionality currently is not available when the provider is OpenSSL.

Version
String (read-only)
Default Value: ""

This field contains the certificate's version number. The possible values are the strings "V1", "V2", and "V3".

Constructors

public Certificate();

Creates a Certificate instance whose properties can be set. This is useful for use with CERTMGR when generating new certificates.

public Certificate( certificateFile);

Opens CertificateFile and reads out the contents as an X.509 public key.

public Certificate( certificateData);

Parses CertificateData as an X.509 public key.

public Certificate( certStoreType,  store,  storePassword,  subject);

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).

public Certificate( certStoreType,  store,  storePassword,  subject,  configurationString);

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. ConfigurationString is a newline separated list of name-value pairs that may be used to modify the default behavior. Possible values include "PersistPFXKey", which shows whether or not the PFX key is persisted after performing operations with the private key. This correlates to the PKCS12_NO_PERSIST_KEY CryptoAPI option. The default value is True (the key is persisted). "Thumbprint" - an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load. When specified, this value is used to select the certificate in the store. This is applicable to cstUser, cstMachine, cstPublicKeyFile, and cstPFXFile store types. "UseInternalSecurityAPI" shows whether the platform (default) or the internal security API is used when performing certificate-related operations. After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).

public Certificate( certStoreType,  store,  storePassword,  encoded);

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the class will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.

public Certificate( certStoreType,  storeBlob,  storePassword,  subject);

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. StoreBlob is a string (binary- or Base64-encoded) containing the certificate data. StorePassword is the password used to protect the store. After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).

public Certificate( certStoreType,  storeBlob,  storePassword,  subject,  configurationString);

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. StoreBlob is a string (binary- or Base64-encoded) containing the certificate data. StorePassword is the password used to protect the store. After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).

public Certificate( certStoreType,  storeBlob,  storePassword,  encoded);

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a string (binary- or Base64-encoded) containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the class will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.

Firewall Type

The firewall the class will connect through.

Remarks

When connecting through a firewall, this type is used to specify different properties of the firewall, such as the firewall Host and the FirewallType.

Fields

AutoDetect
boolean
Default Value: False

This field tells the class whether or not to automatically detect and use firewall system settings, if available.

Connection information will first be obtained from Java system properties, such as http.proxyHost and https.proxyHost. Java properties may be set in a variety of ways; please consult the Java documentation for information about how firewall and proxy values can be specified.

If no Java system properties define connection information, the class will inspect the Windows registry for connection information that may be present on the system (applicable only on Windows systems).

FirewallType
int
Default Value: 0

This field determines the type of firewall to connect through. The applicable values are as follows:

fwNone (0)No firewall (default setting).
fwTunnel (1)Connect through a tunneling proxy. Port is set to 80.
fwSOCKS4 (2)Connect through a SOCKS4 Proxy. Port is set to 1080.
fwSOCKS5 (3)Connect through a SOCKS5 Proxy. Port is set to 1080.
fwSOCKS4A (10)Connect through a SOCKS4A Proxy. Port is set to 1080.

Host
String
Default Value: ""

This field contains the name or IP address of firewall (optional). If a Host is given, the requested connections will be authenticated through the specified firewall when connecting.

If this field is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this field is set to the corresponding address. If the search is not successful, the class throws an exception.

Password
String
Default Value: ""

This field contains a password if authentication is to be used when connecting through the firewall. If Host is specified, the User and Password fields are used to connect and authenticate to the given firewall. If the authentication fails, the class throws an exception.

Port
int
Default Value: 0

This field contains the transmission control protocol (TCP) port for the firewall Host. See the description of the Host field for details.

Note: This field is set automatically when FirewallType is set to a valid value. See the description of the FirewallType field for details.

User
String
Default Value: ""

This field contains a user name if authentication is to be used connecting through a firewall. If the Host is specified, this field and Password fields are used to connect and authenticate to the given Firewall. If the authentication fails, the class throws an exception.

Constructors

public Firewall();



Header Type

This is an HTTP header as it is received from the server.

Remarks

When a header is received through a Header event, it is parsed into a Header type. This type contains a Field, and its corresponding Value.

Fields

Field
String
Default Value: ""

This field contains the name of the HTTP Header (this is the same case as it is delivered).

Value
String
Default Value: ""

This field contains the Header contents.

Constructors

public Header();



public Header( field,  value);



HTTPCookie Type

An HTTP cookie can be either sent to or received from the server.

Remarks

An HTTP cookie can store the cookies that are to be sent to the server. It also may store the cookies sent by the server.

Cookies that are to be sent to the server must have the Name and Value fields supplied before submitting the URL. When the SetCookie event is fired, however, all of the fields of an HTTPCookie are filled out accordingly.

Fields

Domain
String (read-only)
Default Value: ""

This is the domain of a received cookie. This field contains a domain name to limit the cookie to (if provided by the server). If the server does not provide a domain name, this field will contain an empty string. The convention in this case is to use the server name specified by URLServer as the cookie domain.

Expiration
String (read-only)
Default Value: ""

This field contains an expiration time for the cookie (if provided by the server). The time format used is "Weekday, DD-Mon-YY HH:MM:SS GMT". If the server does not provide an expiration time, this field will contain an empty string. The convention is to drop the cookie at the end of the session.

Name
String
Default Value: ""

This field, contains the name of the cookie.

This field, along with Value, stores the cookie that is to be sent to the server. The SetCookie event displays the cookies sent by the server and their properties.

Path
String (read-only)
Default Value: ""

This field contains a path name to limit the cookie to (if provided by the server). If the server does not provide a cookie path, the path field will be an empty string. The convention in this case is to use the path specified by URLPath as the cookie path.

Secure
boolean (read-only)
Default Value: False

This field contains the security flag of the received cookie. This field specifies whether the cookie is secure. If the value of this field is True, the cookie value must be submitted only through a secure (HTTPS) connection.

Value
String
Default Value: ""

This field contains the value of the cookie. A corresponding value is associated with the cookie specified by Name. This property holds that value.

The SetCookie event provides the cookies set by the server.

Constructors

public HTTPCookie();



public HTTPCookie( name,  value);



Proxy Type

The proxy the class will connect to.

Remarks

When connecting through a proxy, this type is used to specify different properties of the proxy, such as the Server and the AuthScheme.

Fields

AuthScheme
int
Default Value: 0

This field is used to tell the class which type of authorization to perform when connecting to the proxy. This is used only when the User and Password fields are set.

AuthScheme should be set to authNone (3) when no authentication is expected.

By default, AuthScheme is authBasic (0), and if the User and Password fields are set, the component will attempt basic authentication.

If AuthScheme is set to authDigest (1), digest authentication will be attempted instead.

If AuthScheme is set to authProprietary (2), then the authorization token will not be generated by the class. Look at the configuration file for the class being used to find more information about manually setting this token.

If AuthScheme is set to authNtlm (4), NTLM authentication will be used.

For security reasons, setting this field will clear the values of User and Password.

AutoDetect
boolean
Default Value: False

This field tells the class whether or not to automatically detect and use proxy system settings, if available. The default value is false.

Note: This setting is applicable only in Windows.

Password
String
Default Value: ""

This field contains a password if authentication is to be used for the proxy.

If AuthScheme is set to Basic Authentication, the User and Password are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If AuthScheme is set to Digest Authentication, the User and Password fields are used to respond to the Digest Authentication challenge from the server.

If AuthScheme is set to NTLM Authentication, the User and Password fields are used to authenticate through NTLM negotiation.

Port
int
Default Value: 80

This field contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80). See the description of the Server field for details.

Server
String
Default Value: ""

If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.

If the Server field is set to a domain name, a DNS request is initiated. Upon successful termination of the request, the Server field is set to the corresponding address. If the search is not successful, an error is returned.

SSL
int
Default Value: 0

This field determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy. The applicable values are as follows:

psAutomatic (0)Default setting. If the URL is an https URL, the class will use the psTunnel option. If the URL is an http URL, the class will use the psNever option.
psAlways (1)The connection is always SSL enabled.
psNever (2)The connection is not SSL enabled.
psTunnel (3)The connection is made through a tunneling (HTTP) proxy.

User
String
Default Value: ""

This field contains a username if authentication is to be used for the proxy.

If AuthScheme is set to Basic Authentication, the User and Password fields are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If AuthScheme is set to Digest Authentication, the User and Password fields are used to respond to the Digest Authentication challenge from the server.

If AuthScheme is set to NTLM Authentication, the User and Password fields are used to authenticate through NTLM negotiation.

Constructors

public Proxy();



public Proxy( server,  port);



public Proxy( server,  port,  user,  password);



Config Settings (Caldav Class)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

CalDAV Config Settings

AuthScheme:   The authentication scheme to use for server authorization.

This setting is used to support non-standard CalDAV server authentication. The following values are supported:

0Basic
1Digest
2Proprietary
3None
4NTLM
Use the AuthScheme setting to tell the class which type of authorization to perform when the User and Password properties are set. By default, CalDav servers use Basic authentication, and if the User and Password properties are set, the class will attempt basic authentication. Digest, NTLM, and Negotiate authentication are also available to support custom CalDAV server implementations.

Note that if the AuthScheme is set to Proprietary (2) then the authorization token must be supplied through Authorization setting.

For security purposes, changing the value of this property will cause the class to clear the values of User, Password and Authorization.

BuildEvent:   Builds the current event for a multi-event calendar entry.

Calling this setting signals the component to build the current event for a multi-event calendar entry (typically a recurring event with one or more 'exception' events).

Note: this setting is used in conjunction with StartCalendar and EndCalendar.

EndCalendar:   Signifies the end of a multi-event calendar entry.

This setting signifies the end of a multi-event calendar entry (typically a recurring event with one or more 'exception' events). Calling this setting returns the data for the calendar, which can then be imported using the ImportICS method.

Note: this setting is used in conjunction with BuildEvent and StartCalendar.

ExpandRecurringEvents:   Instructs the component to return all instances of a recurring event within a timeframe.

When false (default), the CalDAV server will return only a single response for each recurring event along with the recurrence rules. If this configuration option is set to true the CalDAV server will return a response for each instance of a recurring event during a given time interval. The ReportFilter.RecurStart and ReportFilter.RecurEnd fields must also be set to use this functionality. Please see the example code below:

Copy
calDAV.ReportFilter.StartDate = "20120130T000000Z"; calDAV.ReportFilter.EndDate = "20120203T235959Z"; calDAV.ReportFilter.RecurStart = calDAV.ReportFilter.StartDate; calDAV.ReportFilter.RecurEnd = calDAV.ReportFilter.EndDate; calDAV.Config("ExpandRecurringEvents=true"); calDAV.ReportFilter.ReturnCalendarData = true; calDAV.ReportFilter.EventType = VEventTypes.vtAll; calDAV.GetCalendarReport("http://www.some-url.com/caldav.php/events");

ListCalendars:   Instructs the component list all the calendars for the current user.

To initiate the listing of the calendars, the configuration setting needs to be set to the calendar URI for the server. Then using the calDAV URI, the component will first initiate a PROPFIND to get the current-user-principle. Once the current user has been found, it will then use that information to initiate a second PROPFIND to get calendar-home-set for thte user. This calendar-home-set can then be used by the component to make a final PROPFIND to get the full list of calendars for the user. Once the response has been parsed, the component will set the ListCalendarsResultCount, ListCalendarsResultURL[i] and, ListCalendarsResultDisplayName[i] configuration settings.

Copy
calDAV.Config("ListCalendars=https://apidata.googleusercontent.com/caldav/v2"); string count = calDAV.Config("ListCalendarsResultCount"); for (int i = 0; i < int.Parse(count); i++) { string url = calDAV.Config("ListCalendarsResultURL[" + i + "]"); string displayName = calDAV.Config("ListCalendarsResultDisplayName[" + i + "]"); ... // TODO: }

ListCalendarsResultCount:   Provides the number of calendars found when listing.

The number of calendars found when ListCalendars is used to get a list of calendars for the current user.

ListCalendarsResultDisplayName[i]:   Provides the name of a listed calendar.

This setting can be queried to get the name of a specific calendar. See ListCalendars for more information.

ListCalendarsResultURL[i]:   Provides the URL of a listed calendar.

This setting can be queried to get the URL of a specific calendar. See ListCalendars for more information.

ProductId:   Specifies the identifier for the product that created the iCalendar object.

The vendor of the implementation should assure that this is a globally unique identifier.

This setting should not be used to alter the interpretation of a calendar resource. For example, it is not to be used to further the understanding of non-standard properties.

This setting is required to have a value when creating a new calendar collection resource via the CreateCalendar method. For all others it is optional.

RecurrenceExceptionDatesAttrs:   Specifies the attributes for the exception dates of a recurring event.

This setting specifies the attributes for the exception dates of a recurring event. The setting should be populated with a COMMA-separated list of one or more attributes, where each attribute is applied to the corresponding date listed in the ExceptionDates field of the Recurrence property.

The table below shows some examples of supported values.

VALUE=DATE,VALUE=DATE Attributes for the FIRST and SECOND exception dates.
VALUE=DATE,Attribute for the FIRST exception date.
,VALUE=DATEAttribute for the SECOND exception date.

StartCalendar:   Signifies the beginning of a multi-event calendar entry.

This setting signifies the beginning of a multi-event calendar entry (typically a recurring event with one or more 'exception' events).

Note: this setting is used in conjunction with BuildEvent and EndCalendar.

WebDAV Config Settings

EncodeURL:   If set to true the URL will be encoded by the class.

The default value is false. If set to true the URL passed to the class will be URL encoded.

IsDir[i]:   Whether or not the resource at the specified index is a directory.

After calling ListDirectory, this config can be queried to determine whether or not the resource at index i is a directory (collection):

Copy
webdav.ListDirectory("https://localhost/DAV/"); bool isDir = Convert.ToBoolean(webdav.Config("IsDir[0]"));

An exception will be thrown if an invalid index is specified.

MaxResources:   Instructs class to save the amount of resources specified that are returned by the server after a ListDirectory call has been made.

This config should be set when the Resources collection will be populated after a call to ListDirectory. This value represents the number of resources that are to be saved in the collection.

To save all items to the collection, set this configuration setting to -1. If no items are wanted, set this to 0, which will not save any items to the collection. The default for this configuration setting is -1, so all items will be included in the collection.

QueryPropertyNames:   Instructs class explicitly request certain properties when calling ListDirectory.

Set this to a comma-delimited list of property names that should come back from the server when calling ListDirectory. Any returned properties will be available in Properties.

Normally servers will return all properties for a resource, but in some cases it is costly to get certain properties. It is perfectly valid in the RFC to not return certain properties the server deems are too costly to return. In these situations specific properties can be explicitly requested from the server using this configuration setting.

Copy
dav.OnDirList += (obj, ev) => Debug.WriteLine("The creationdate for " + ev.DisplayName + " is " + dav.GetProperty("creationdate")); dav.Config("QueryPropertyNames=creationdate"); dav.ListDirectory("http://webdav-server.com/DAV/");

HTTP Config Settings

AcceptEncoding:   Used to tell the server which types of content encodings the client supports.

When AllowHTTPCompression is True, the class adds an Accept-Encoding header to the request being sent to the server. By default, this header's value is "gzip, deflate". This configuration setting allows you to change the value of the Accept-Encoding header. Note: The class only supports gzip and deflate decompression algorithms.

AllowHTTPCompression:   This property enables HTTP compression for receiving data.

This configuration setting enables HTTP compression for receiving data. When set to True (default), the class will accept compressed data. It then will uncompress the data it has received. The class will handle data compressed by both gzip and deflate compression algorithms.

When True, the class adds an Accept-Encoding header to the outgoing request. The value for this header can be controlled by the AcceptEncoding configuration setting. The default value for this header is "gzip, deflate".

The default value is True.

AllowHTTPFallback:   Whether HTTP/2 connections are permitted to fallback to HTTP/1.1.

This configuration setting controls whether HTTP/2 connections are permitted to fall back to HTTP/1.1 when the server does not support HTTP/2. This setting is applicable only when HTTPVersion is set to "2.0".

If set to True (default), the class will automatically use HTTP/1.1 if the server does not support HTTP/2. If set to False, the class throws an exception if the server does not support HTTP/2.

The default value is True.

AllowNTLMFallback:   Whether to allow fallback from Negotiate to NTLM when authenticating.

This configuration setting applies only when AuthScheme is set to Negotiate. If set to True, the class will automatically use New Technology LAN Manager (NTLM) if the server does not support Negotiate authentication. Note: The server must indicate that it supports NTLM authentication through the WWW-Authenticate header for the fallback from Negotiate to NTLM to take place. The default value is False.

Append:   Whether to append data to LocalFile.

This configuration setting determines whether data will be appended when writing to LocalFile. When set to True, downloaded data will be appended to LocalFile. This may be used in conjunction with Range to resume a failed download. This is applicable only when LocalFile is set. The default value is False.

Authorization:   The Authorization string to be sent to the server.

If the Authorization property contains a nonempty string, an Authorization HTTP request header is added to the request. This header conveys Authorization information to the server.

This property is provided so that the HTTP class can be extended with other security schemes in addition to the authorization schemes already implemented by the class.

The AuthScheme property defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time User and Password are set, they are Base64 encoded, and the result is put in the Authorization property in the form "Basic [encoded-user-password]".

BytesTransferred:   Contains the number of bytes transferred in the response data.

This configuration setting returns the raw number of bytes from the HTTP response data, before the component processes the data, whether it is chunked or compressed. This returns the same value as the Transfer event, by BytesTransferred.

ChunkSize:   Specifies the chunk size in bytes when using chunked encoding.

This is applicable only when UseChunkedEncoding is True. This setting specifies the chunk size in bytes to be used when posting data. The default value is 16384.

CompressHTTPRequest:   Set to true to compress the body of a PUT or POST request.

If set to True, the body of a PUT or POST request will be compressed into gzip format before sending the request. The "Content-Encoding" header is also added to the outgoing request.

The default value is False.

EncodeURL:   If set to True the URL will be encoded by the class.

If set to True, the URL passed to the class will be URL encoded. The default value is False.

FollowRedirects:   Determines what happens when the server issues a redirect.

This option determines what happens when the server issues a redirect. Normally, the class returns an error if the server responds with an "Object Moved" message. If this property is set to 1 (always), the new URL for the object is retrieved automatically every time.

If this property is set to 2 (Same Scheme), the new URL is retrieved automatically only if the URL Scheme is the same; otherwise, the class throws an exception.

Note: Following the HTTP specification, unless this option is set to 1 (Always), automatic redirects will be performed only for GET or HEAD requests. Other methods potentially could change the conditions of the initial request and create security vulnerabilities.

Furthermore, if either the new URL server or port are different from the existing one, User and Password are also reset to empty, unless this property is set to 1 (Always), in which case the same credentials are used to connect to the new server.

A Redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the Redirect event is a good place to set properties related to the new connection (e.g., new authentication parameters).

The default value is 0 (Never). In this case, redirects are never followed, and the class throws an exception instead.

Following are the valid options:

  • 0 - Never
  • 1 - Always
  • 2 - Same Scheme

GetOn302Redirect:   If set to True the class will perform a GET on the new location.

The default value is False. If set to True, the class will perform a GET on the new location. Otherwise, it will use the same HTTP method again.

HTTP2HeadersWithoutIndexing:   HTTP2 headers that should not update the dynamic header table with incremental indexing.

HTTP/2 servers maintain a dynamic table of headers and values seen over the course of a connection. Typically, these headers are inserted into the table through incremental indexing (also known as HPACK, defined in RFC 7541). To tell the component not to use incremental indexing for certain headers, and thus not update the dynamic table, set this configuration option to a comma-delimited list of the header names.

HTTPVersion:   The version of HTTP used by the class.

This property specifies the HTTP version used by the class. Possible values are as follows:

  • "1.0"
  • "1.1" (default)
  • "2.0"
  • "3.0"

When using HTTP/2 ("2.0"), additional restrictions apply. Please see the following notes for details.

HTTP/2 Notes

When using HTTP/2, a secure Secure Sockets Layer/Transport Layer Security (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/2 will result in an error.

If the server does not support HTTP/2, the class will automatically use HTTP/1.1 instead. This is done to provide compatibility without the need for any additional settings. To see which version was used, check NegotiatedHTTPVersion after calling a method. The AllowHTTPFallback setting controls whether this behavior is allowed (default) or disallowed.

HTTP/2 is supported on all platforms. The class will use the internal security implementation in all cases when connecting.

HTTP/3 Notes

HTTP/3 is supported only in .NET and Java.

When using HTTP/3, a secure (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/3 will result in an error.

IfModifiedSince:   A date determining the maximum age of the desired document.

If this setting contains a nonempty string, an If-Modified-Since HTTP header is added to the request. The value of this header is used to make the HTTP request conditional: if the requested documented has not been modified since the time specified in the field, a copy of the document will not be returned from the server; instead, a 304 (not modified) response will be returned by the server and the component throws an exception

The format of the date value for IfModifiedSince is detailed in the HTTP specs. For example:

Copy
Sat, 29 Oct 2017 19:43:31 GMT.

KeepAlive:   Determines whether the HTTP connection is closed after completion of the request.

If true, the component will not send the Connection: Close header. The absence of the Connection header indicates to the server that HTTP persistent connections should be used if supported. Note: Not all servers support persistent connections. If false, the connection will be closed immediately after the server response is received.

The default value for KeepAlive is false.

KerberosSPN:   The Service Principal Name for the Kerberos Domain Controller.

If the Service Principal Name on the Kerberos Domain Controller is not the same as the URL that you are authenticating to, the Service Principal Name should be set here.

LogLevel:   The level of detail that is logged.

This configuration setting controls the level of detail that is logged through the Log event. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.

The value 2 (Verbose) logs additional information about the request and response.

The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).

MaxHeaders:   Instructs class to save the amount of headers specified that are returned by the server after a Header event has been fired.

This configuration setting should be set when the TransferredHeaders collection is to be populated when a Header event has been fired. This value represents the number of headers that are to be saved in the collection.

To save all items to the collection, set this configuration setting to -1. If no items are wanted, set this to 0, which will not save any items to the collection. The default for this configuration setting is -1, so all items will be included in the collection.

MaxHTTPCookies:   Instructs class to save the amount of cookies specified that are returned by the server when a SetCookie event is fired.

This configuration setting should be set when populating the Cookies collection as a result of an HTTP request. This value represents the number of cookies that are to be saved in the collection.

To save all items to the collection, set this configuration setting to -1. If no items are wanted, set this to 0, which will not save any items to the collection. The default for this configuration setting is -1, so all items will be included in the collection.

MaxRedirectAttempts:   Limits the number of redirects that are followed in a request.

When FollowRedirects is set to any value other than frNever, the class will follow redirects until this maximum number of redirect attempts are made. The default value is 20.

NegotiatedHTTPVersion:   The negotiated HTTP version.

This configuration setting may be queried after the request is complete to indicate the HTTP version used. When HTTPVersion is set to "2.0" (if the server does not support "2.0"), then the class will fall back to using "1.1" automatically. This setting will indicate which version was used.

OtherHeaders:   Other headers as determined by the user (optional).

This configuration setting can be set to a string of headers to be appended to the HTTP request headers.

The headers must follow the format "header: value" as described in the HTTP specifications. Header lines should be separated by CRLF ("\r\n") .

Use this configuration setting with caution. If this configuration setting contains invalid headers, HTTP requests may fail.

This configuration setting is useful for extending the functionality of the class beyond what is provided.

ProxyAuthorization:   The authorization string to be sent to the proxy server.

This is similar to the Authorization configuration setting, but is used for proxy authorization. If this configuration setting contains a nonempty string, a Proxy-Authorization HTTP request header is added to the request. This header conveys proxy Authorization information to the server. If User and Password are specified, this value is calculated using the algorithm specified by AuthScheme.

ProxyAuthScheme:   The authorization scheme to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyPassword:   A password if authentication is to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyPort:   Port for the proxy server (default 80).

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyServer:   Name or IP address of a proxy server (optional).

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyUser:   A user name if authentication is to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

SentHeaders:   The full set of headers as sent by the client.

This configuration setting returns the complete set of raw headers as sent by the client.

StatusCode:   The status code of the last response from the server.

This configuration setting contains the result code of the last response from the server.

StatusLine:   The first line of the last response from the server.

This setting contains the first line of the last response from the server. The format of the line will be [HTTP version] [Result Code] [Description].

TransferredData:   The contents of the last response from the server.

This configuration setting contains the contents of the last response from the server.

TransferredDataLimit:   The maximum number of incoming bytes to be stored by the class.

If TransferredDataLimit is set to 0 (default), no limits are imposed. Otherwise, this reflects the maximum number of incoming bytes that can be stored by the class.

TransferredHeaders:   The full set of headers as received from the server.

This configuration setting returns the complete set of raw headers as received from the server.

TransferredRequest:   The full request as sent by the client.

This configuration setting returns the full request as sent by the client. For performance reasons, the request is not normally saved. Set this configuration setting to ON before making a request to enable it. Following are examples of this request:

.NET

Copy
Http http = new Http(); http.Config("TransferredRequest=on"); http.PostData = "body"; http.Post("http://someserver.com"); Console.WriteLine(http.Config("TransferredRequest"));
C++
Copy
HTTP http; http.Config("TransferredRequest=on"); http.SetPostData("body", 5); http.Post("http://someserver.com"); printf("%s\r\n", http.Config("TransferredRequest"));

UseChunkedEncoding:   Enables or Disables HTTP chunked encoding for transfers.

If UseChunkedEncoding is set to True, the class will use HTTP-chunked encoding when posting, if possible. HTTP-chunked encoding allows large files to be sent in chunks instead of all at once. If set to False, the class will not use HTTP-chunked encoding. The default value is False.

Note: Some servers (such as the ASP.NET Development Server) may not support chunked encoding.

UseIDNs:   Whether to encode hostnames to internationalized domain names.

This configuration setting specifies whether hostnames containing non-ASCII characters are encoded to internationalized domain names. When set to True, if a hostname contains non-ASCII characters, it is encoded using Punycode to an IDN (internationalized domain name).

The default value is False and the hostname will always be used exactly as specified.

UsePlatformDeflate:   Whether to use the platform implementation to decompress compressed responses.

This configuration setting specifies whether the platform's deflate-algorithm implementation is used to decompress responses that use compression. If set to True (default), the platform implementation is used. If set to False, an internal implementation is used.

UsePlatformHTTPClient:   Whether or not to use the platform HTTP client.

When using this configuration setting, if True, the component will use the default HTTP client for the platform (URLConnection in Java, WebRequest in .NET, or CFHTTPMessage in Mac/iOS) instead of the internal HTTP implementation. This is important for environments in which direct access to sockets is limited or not allowed (e.g., in the Google AppEngine).

UseProxyAutoConfigURL:   Whether to use a Proxy auto-config file when attempting a connection.

This configuration specifies whether the class will attempt to use the Proxy auto-config URL when establishing a connection and AutoDetect is set to True.

When True (default), the class will check for the existence of a Proxy auto-config URL, and if found, will determine the appropriate proxy to use.

UserAgent:   Information about the user agent (browser).

This is the value supplied in the HTTP User-Agent header. The default setting is "IPWorks HTTP Component - www.nsoftware.com".

Override the default with the name and version of your software.

TCPClient Config Settings

CloseStreamAfterTransfer:   If true, the component will close the upload or download stream after the transfer.

This setting determines whether the input or output stream is closed after the transfer completes. When set to True (default), all streams will be closed after a transfer is completed. In order to keep streams open after the transfer of data, set this to False. the default value is True.

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the class will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the class whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallListener:   If true, the component binds to a SOCKS firewall as a server (TCPClient only).

This entry is for TCPClient only and does not work for other components that descend from TCPClient.

If this entry is set, the class acts as a server. RemoteHost and RemotePort are used to tell the SOCKS firewall in which address and port to listen to. The firewall rules may ignore RemoteHost, and it is recommended that RemoteHost be set to empty string in this case.

RemotePort is the port in which the firewall will listen to. If set to 0, the firewall will select a random port. The binding (address and port) is provided through the ConnectionStatus event.

The connection to the firewall is made by calling the Connect method.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the class throws an exception.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the class throws an exception.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the class binds.

This must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this config is set to false.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the class will use IPv4 exclusively. When set to 1, the class will use IPv6 exclusively. To instruct the class to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are:

0 IPv4 Only
1 IPv6 Only
2 IPv6 with IPv4 fallback
UseNTLMv2:   Whether to use NTLM V2.

When authenticating with NTLM, this setting specifies whether NTLM V2 is used. By default this value is False and NTLM V1 will be used. Set this to True to use NTLM V2.

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this setting has no effect if SSLProvider is set to Platform.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to true, the class will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the class is the same.

SSLCACerts:   A newline separated list of CA certificate to use during SSL client authentication.

This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This setting specifies whether the class will check the Certificate Revocation List specified by the server certificate. If set to 1 or 2, the class will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The class will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the class throws an exception.

When set to 0 (default) the CRL check will not be performed by the class. When set to 1, it will attempt to perform the CRL check, but will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

SSLCheckOCSP:   Whether to use OCSP to check the status of the server certificate.

This setting specifies whether the class will use OCSP to check the validity of the server certificate. If set to 1 or 2, the class will first obtain the OCSP URL from the server certificate's OCSP extension. The class will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the class throws an exception.

When set to 0 (default) the class will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.

SSLContextProtocol:   The protocol used when getting an SSLContext instance.

Possible values are SSL, SSLv2, SSLv3, TLS and TLSv1. Use it only in case your security provider does not support TLS. This is the parameter "protocol" inside the SSLContext.getInstance(protocol) call.

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

The enabled cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Note: This value must be set after SSLProvider is set.

Example values:

Copy
obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=SSL_RSA_WITH_RC4_128_SHA"); obj.config("SSLEnabledCipherSuites=SSL_RSA_WITH_RC4_128_SHA; SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA");
Possible values when SSLProvider is set to latform include:

  • SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
  • SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • SSL_RSA_WITH_RC4_128_SHA
  • SSL_RSA_WITH_DES_CBC_SHA
  • SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
  • SSL_DH_anon_WITH_DES_CBC_SHA
  • SSL_RSA_EXPORT_WITH_RC4_40_MD5
  • SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
  • SSL_DH_anon_EXPORT_WITH_RC4_40_MD5
  • SSL_DHE_DSS_WITH_DES_CBC_SHA
  • SSL_RSA_WITH_NULL_MD5
  • SSL_DH_anon_WITH_3DES_EDE_CBC_SHA
  • SSL_DHE_RSA_WITH_DES_CBC_SHA
  • SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA
  • SSL_RSA_WITH_NULL_SHA
  • SSL_DH_anon_WITH_RC4_128_MD5
  • SSL_RSA_WITH_RC4_128_MD5
  • SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • SSL_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_NULL_SHA
  • TLS_DH_anon_WITH_AES_128_CBC_SHA256 (Not Recommended)
  • TLS_ECDH_anon_WITH_RC4_128_SHA
  • TLS_DH_anon_WITH_AES_128_CBC_SHA (Not Recommended)
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_KRB5_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_KRB5_EXPORT_WITH_RC4_40_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_RC4_128_SHA
  • TLS_ECDH_ECDSA_WITH_RC4_128_SHA
  • TLS_ECDH_anon_WITH_NULL_SHA
  • TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_RSA_WITH_NULL_SHA256
  • TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA
  • TLS_KRB5_WITH_RC4_128_MD5
  • TLS_ECDHE_ECDSA_WITH_NULL_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_RC4_128_SHA
  • TLS_EMPTY_RENEGOTIATION_INFO_SCSV
  • TLS_KRB5_WITH_3DES_EDE_CBC_MD5
  • TLS_KRB5_WITH_RC4_128_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_NULL_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_KRB5_WITH_DES_CBC_MD5
  • TLS_KRB5_EXPORT_WITH_RC4_40_MD5
  • TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5
  • TLS_ECDH_anon_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_KRB5_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_NULL_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA

Possible values when SSLProvider is set to Internal include:

  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

Used to enable/disable the supported security protocols.

Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default)
TLS1.1768 (Hex 300) (Default)
TLS1 192 (Hex C0) (Default)
SSL3 48 (Hex 30) [Platform Only]
SSL2 12 (Hex 0C) [Platform Only]

SSLEnabledProtocols - TLS 1.3 Notes

By default when TLS 1.3 is enabled the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider) please be aware of the following notes:

  • The platform provider is only available on Windows 11 / Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the class when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is true by default, but can be set to false to disable the extension.

This setting is only applicable when SSLProvider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

Note: When SSLProvider is set to Internal this value is automatically set to true. This is needed for proper validation when using the internal provider.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the class will only append, it will not overwrite previous values.

Note: This setting is only applicable when SSLProvider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:

Copy
server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

Returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:

Copy
server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:

Copy
server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

Returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:

Copy
server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

Returns the strenghth of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:

Copy
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

Returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:

Copy
server.Config("SSLNegotiatedVersion[connId]");

SSLServerCACerts:   A newline separated list of CA certificate to use during SSL server certificate validation.

This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLTrustManagerFactoryAlgorithm:   The algorithm to be used to create a TrustManager through TrustManagerFactory.

Possible values include SunX509. This is the parameter "algorithm" inside the TrustManagerFactory.getInstance(algorithm) call.

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the class will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the class throws an exception.

The format of this value is a comma separated list of hash-signature combinations. For instance:

Copy
component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This setting specifies a comma separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional round trip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.

In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This setting holds a comma separated list of allowed signature algorithms. Possible values are:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This setting is only applicable when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. This setting should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for UDP ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g. headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

GUIAvailable:   Whether or not a message loop is available for processing events.

In a GUI-based application, long-running blocking operations may cause the application to stop responding to input until the operation returns. The class will attempt to discover whether or not the application has a message loop and, if one is discovered, it will process events in that message loop during any such blocking operation.

In some non-GUI applications, an invalid message loop may be discovered that will result in errant behavior. In these cases, setting GUIAvailable to false will ensure that the class does not attempt to process external events.

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitive:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.

This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

UseDaemonThreads:   Whether threads created by the class are daemon threads.

If set to True (default), when the class creates a thread, the thread's Daemon property will be explicitly set to True. When set to False, the class will not set the Daemon property on the created thread. The default value is True.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to false, the class will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.

This setting is set to false by default on all platforms.

Trappable Errors (Caldav Class)

CalDAV Errors

222   Property set with an improper enumeration value.
234   Missing required field.
432   Invalid array property index.
471   Server error. Description contains detailed information.
476   No lock tokens.
700   Bad response received from CalDAV server. Unable to parse.
701   The CalDAV server returned and empty calendar.
702   When creating an event containing alarms, each alarm in the event requires a Trigger.
703   Both Alarm Duration and Repeat must be specified, or neither should be specified.
704   The class was unable to complete the requested action because a required property has not been set.

HTTP Errors

118   Firewall Error. Error description contains detailed message.
143   Busy executing current method.
151   HTTP protocol error. The error message has the server response.
152   No server specified in URL
153   Specified URLScheme is invalid.
155   Range operation is not supported by server.
156   Invalid cookie index (out of range).
301   Interrupted.
302   Can't open AttachedFile.

TCPClient Errors

100   You cannot change the RemotePort at this time. A connection is in progress.
101   You cannot change the RemoteHost (Server) at this time. A connection is in progress.
102   The RemoteHost address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the LocalPort at this time. A connection is in progress.
107   You cannot change the LocalHost at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   RemotePort cannot be zero. Please specify a valid service port number.
117   You cannot change the UseConnection option while the class is active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
303   Could not open file.
434   Unable to convert string to selected CodePage.
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

SSL Errors

270   Cannot load specified security library.
271   Cannot open certificate store.
272   Cannot find specified certificate.
273   Cannot acquire security credentials.
274   Cannot find certificate chain.
275   Cannot verify certificate chain.
276   Error during handshake.
280   Error verifying certificate.
281   Could not find client certificate.
282   Could not find server certificate.
283   Error encrypting data.
284   Error decrypting data.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on non-socket.
10039   [10039] Destination address required.
10040   [10040] Message too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol not supported.
10044   [10044] Socket type not supported.
10045   [10045] Operation not supported on socket.
10046   [10046] Protocol family not supported.
10047   [10047] Address family not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Can't assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Can't send after socket shutdown.
10059   [10059] Too many references, can't splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock not loaded yet.
11001   [11001] Host not found.
11002   [11002] Non-authoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).