Telnet Class
Properties Methods Events Config Settings Errors
The Telnet Class is used to communicate with servers implementing the TELNET protocol.
Syntax
ipworks.Telnet
Remarks
The Telnet Class supports both plaintext and SSL/TLS connections. When connecting over SSL/TLS the SSLServerAuthentication event allows you to check the server identity and other security attributes. The SSLStatus event provides information about the SSL handshake. Additional SSL related settings are also supported via the Config method.
The Telnet Class provides a simple interface to Telnet communications as specified by RFC 854. It allows sending of Telnet command codes to remote Telnet servers and it scans the input data for Telnet commands. Appropriate events are fired for received commands.
The connection interface is very similar to that of TCPClient. The same properties and events are used for sending and receiving normal data, and the same property set is used for setting properties of the connection. The Telnet Class adds a number of properties like Command, DoOption, etc. which allow sending of Telnet commands to the other end. The respective events (Command, Do, etc.) are fired when the corresponding Telnet commands are received.
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
AcceptData | This property enables or disables data reception (the DataIn event). |
BytesSent | The number of bytes actually sent after an assignment to DataToSend . |
Command | A single character Telnet command code to be sent to the server. |
Connected | Triggers a connection or disconnection. |
DataToSend | A string of data to be sent to the remote host. |
DontOption | A single character Telnet option code to be sent to the server with the Telnet DONT command. |
DoOption | A single character Telnet option code to be sent to the server with the Telnet DO command. |
DoSubOption | A Telnet SubOption to send to the server with the SubOption command. |
Firewall | A set of properties related to firewall access. |
KeepAlive | When True, KEEPALIVE packets are enabled (for long connections). |
Linger | When set to True, this property ensures that connections are terminated gracefully. |
LocalHost | The name of the local host or user-assigned IP interface through which connections are initiated or accepted. |
LocalPort | The TCP port in the local host where TCPClient binds. |
RemoteHost | This property includes the address of the remote host. Domain names are resolved to IP addresses. |
RemotePort | The secure Telnet port in the remote host (default is 23). |
SSLAcceptServerCert | Instructs the class to unconditionally accept the server certificate that matches the supplied certificate. |
SSLCert | The certificate to be used during SSL negotiation. |
SSLEnabled | Whether TLS/SSL is enabled. |
SSLProvider | This specifies the SSL/TLS implementation to use. |
SSLServerCert | The server certificate for the last established connection. |
SSLStartMode | Determines how the class starts the SSL negotiation. |
Timeout | A timeout for the class. |
Transparent | When True, Telnet command processing is disabled. |
UrgentData | A string of data to be sent urgently (out-of-band) to the remote host. |
WillOption | A single character Telnet option code to be sent to the server with the Telnet WILL command. |
WontOption | A single character Telnet option code to be sent to the server with the Telnet WONT command. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
Connect | Connects to a remote host. |
ConnectTo | Connects to a remote host. |
Disconnect | Disconnect from the remote host. |
DoEvents | Processes events from the internal message queue. |
PauseData | This method pauses data reception. |
ProcessData | This method reenables data reception after a call to PauseData . |
Reset | Reset the class. |
Send | Sends binary data to the remote host. |
SendBytes | Sends binary data to the remote host. |
SendCommand | Sends a single character Telnet command code to the server. |
SendDontOption | This method sends a single character Telnet option code to the server with the Telnet DONT command. |
SendDoOption | This method sends a single character Telnet option code to the server with the Telnet DO command. |
SendDoSubOption | This methods sends a Telnet SubOption to send to the server with the SubOption command. |
SendText | Sends text to the remote host. |
SendUrgentBytes | Urgently sends binary data to the remote host. |
SendUrgentText | Urgently sends text to the remote host. |
SendWillOption | This method sends a single character Telnet option code the server with the Telnet WILL command. |
SendWontOption | This method sends a single character Telnet option code to the server with the Telnet WONT command. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
Command | Fired when a Telnet command comes from the Telnet server. |
Connected | This event is fired immediately after a connection completes (or fails). |
ConnectionStatus | This event is fired to indicate changes in the connection state. |
DataIn | Fired when data is received from the remote host. |
Disconnected | This event is fired when a connection is closed. |
DoDo | Fired when a Telnet DO OPTION command comes from the Telnet server. |
Dont | Fired when a Telnet DONT OPTION command comes from the Telnet server. |
Error | Fired when information is available about errors during data delivery. |
ReadyToSend | Fired when the class is ready to send data. |
SSLServerAuthentication | Fired after the server presents its certificate to the client. |
SSLStatus | Fired when secure connection progress messages are available. |
SubOption | Fired when a Telnet SubOption command comes from the Telnet server. |
Will | Fired when a Telnet WILL OPTION command comes from the Telnet server. |
Wont | Fired when a Telnet WONT OPTION command comes from the Telnet server. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
CloseStreamAfterTransfer | If true, the class will close the upload or download stream after the transfer. |
ConnectionTimeout | Sets a separate timeout value for establishing a connection. |
FirewallAutoDetect | Tells the class whether or not to automatically detect and use firewall system settings, if available. |
FirewallHost | Name or IP address of firewall (optional). |
FirewallListener | If true, the class binds to a SOCKS firewall as a server (TCPClient only). |
FirewallPassword | Password to be used if authentication is to be used when connecting through the firewall. |
FirewallPort | The TCP port for the FirewallHost;. |
FirewallType | Determines the type of firewall to connect through. |
FirewallUser | A user name if authentication is to be used connecting through a firewall. |
KeepAliveInterval | The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received. |
KeepAliveTime | The inactivity time in milliseconds before a TCP keep-alive packet is sent. |
Linger | When set to True, connections are terminated gracefully. |
LingerTime | Time in seconds to have the connection linger. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalPort | The port in the local host where the class binds. |
MaxLineLength | The maximum amount of data to accumulate when no EOL is found. |
MaxTransferRate | The transfer rate limit in bytes per second. |
ProxyExceptionsList | A semicolon separated list of hosts and IPs to bypass when using a proxy. |
TCPKeepAlive | Determines whether or not the keep alive socket option is enabled. |
TcpNoDelay | Whether or not to delay when sending packets. |
UseIPv6 | Whether to use IPv6. |
UseNTLMv2 | Whether to use NTLM V2. |
LogSSLPackets | Controls whether SSL packets are logged when using the internal security API. |
ReuseSSLSession | Determines if the SSL session is reused. |
SSLCACerts | A newline separated list of CA certificate to use during SSL client authentication. |
SSLCheckCRL | Whether to check the Certificate Revocation List for the server certificate. |
SSLCheckOCSP | Whether to use OCSP to check the status of the server certificate. |
SSLCipherStrength | The minimum cipher strength used for bulk encryption. |
SSLContextProtocol | The protocol used when getting an SSLContext instance. |
SSLEnabledCipherSuites | The cipher suite to be used in an SSL negotiation. |
SSLEnabledProtocols | Used to enable/disable the supported security protocols. |
SSLEnableRenegotiation | Whether the renegotiation_info SSL extension is supported. |
SSLIncludeCertChain | Whether the entire certificate chain is included in the SSLServerAuthentication event. |
SSLKeyLogFile | The location of a file where per-session secrets are written for debugging purposes. |
SSLNegotiatedCipher | Returns the negotiated cipher suite. |
SSLNegotiatedCipherStrength | Returns the negotiated cipher suite strength. |
SSLNegotiatedCipherSuite | Returns the negotiated cipher suite. |
SSLNegotiatedKeyExchange | Returns the negotiated key exchange algorithm. |
SSLNegotiatedKeyExchangeStrength | Returns the negotiated key exchange algorithm strength. |
SSLNegotiatedVersion | Returns the negotiated protocol version. |
SSLServerCACerts | A newline separated list of CA certificate to use during SSL server certificate validation. |
SSLTrustManagerFactoryAlgorithm | The algorithm to be used to create a TrustManager through TrustManagerFactory. |
TLS12SignatureAlgorithms | Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal. |
TLS12SupportedGroups | The supported groups for ECC. |
TLS13KeyShareGroups | The groups for which to pregenerate key shares. |
TLS13SignatureAlgorithms | The allowed certificate signature algorithms. |
TLS13SupportedGroups | The supported groups for (EC)DHE key exchange. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
FirewallData | Used to send extra data to the firewall. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
BuildInfo | Information about the product's build. |
GUIAvailable | Whether or not a message loop is available for processing events. |
LicenseInfo | Information about the current license. |
MaskSensitive | Whether sensitive data is masked in log messages. |
UseDaemonThreads | Whether threads created by the class are daemon threads. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
AcceptData Property (Telnet Class)
This property enables or disables data reception (the DataIn event).
Syntax
public boolean isAcceptData(); public void setAcceptData(boolean acceptData);
Default Value
True
Remarks
This property enables or disables data reception (the DataIn event). Setting this property to False, temporarily disables data reception (and the DataIn event). Setting this property to True, reenables data reception.
Note: It is recommended to use the PauseData or ProcessData method instead of setting this property.
This property is not available at design time.
BytesSent Property (Telnet Class)
The number of bytes actually sent after an assignment to DataToSend .
Syntax
public int getBytesSent();
Default Value
0
Remarks
The BytesSent property shows how many bytes were sent after the last assignment to DataToSend or UrgentData. Please check the DataToSend property for more information.
This property is read-only and not available at design time.
Command Property (Telnet Class)
A single character Telnet command code to be sent to the server.
Syntax
public void setCommand(int command);
Default Value
0
Remarks
Codes for Telnet commands and their meanings are defined in the Telnet RFCs. Here are some examples:
241 (NOP) | No operation. |
242 (Data Mark) | The data stream portion of a Synch. This should always be accompanied by a TCP Urgent notification. |
243 (Break) | NVT character BRK. |
244 (Interrupt Process) | The function IP. |
245 (Abort Output) | The function AO. |
246 (Are You There) | The function AYT. |
247 (Erase Character) | The function EC. |
248 (Erase Line) | The function EL. |
249 (Go Ahead) | The GA signal. |
This property is write-only and not available at design time.
Connected Property (Telnet Class)
Triggers a connection or disconnection.
Syntax
public boolean isConnected(); public void setConnected(boolean connected);
Default Value
False
Remarks
Setting the Connected property to True makes the class attempt to connect to the host identified by the RemoteHost property. If successful, after the connection is achieved, the value of the property changes to True and the Connected event is fired.
Setting Connected to False closes the connection. How and when the connection is closed is controlled by the Linger property.
Note: It is recommended to use the Connect or Disconnect method instead of setting this property.
This property is not available at design time.
DataToSend Property (Telnet Class)
A string of data to be sent to the remote host.
Syntax
public void setDataToSend(byte[] dataToSend);
Default Value
""
Remarks
Assigning a string to the DataToSend property makes the class send the string to the remote host. The Send method provides similar functionality.
If you are sending data to the remote host faster than it can process it, or faster than the network's bandwidth allows, the outgoing queue might fill up. When this happens, the operation fails with exception 10035: "[10035] Operation would block" (WSAEWOULDBLOCK). You can check this error, and then try to send the data again. . The BytesSent property shows how many bytes were sent (if any). If 0 bytes were sent, then you can wait for the ReadyToSend event before attempting to send data again.
Note: The ReadyToSend event is not fired when part of the data is sent successfully.
This property is write-only and not available at design time.
DontOption Property (Telnet Class)
A single character Telnet option code to be sent to the server with the Telnet DONT command.
Syntax
public void setDontOption(int dontOption);
Default Value
0
Remarks
For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
This property is write-only and not available at design time.
DoOption Property (Telnet Class)
A single character Telnet option code to be sent to the server with the Telnet DO command.
Syntax
public void setDoOption(int doOption);
Default Value
0
Remarks
For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
This property is write-only and not available at design time.
DoSubOption Property (Telnet Class)
A Telnet SubOption to send to the server with the SubOption command.
Syntax
public void setDoSubOption(byte[] doSubOption);
Default Value
""
Remarks
For a list of valid Telnet suboptions and their descriptions please look at the Telnet RFCs.
You don't need to specify the suboption start and suboption end codes. Those are appended automatically by the class. For example, to send a terminal type suboption to request setting the terminal type to 'vt100', you must send ASCII 24, followed by ASCII 0, followed by "vt100" (without the quotes).
This property is write-only and not available at design time.
Firewall Property (Telnet Class)
A set of properties related to firewall access.
Syntax
public Firewall getFirewall(); public void setFirewall(Firewall firewall);
Remarks
This is a Firewall-type property, which contains fields describing the firewall through which the class will attempt to connect.
Please refer to the Firewall type for a complete list of fields.KeepAlive Property (Telnet Class)
When True, KEEPALIVE packets are enabled (for long connections).
Syntax
public boolean isKeepAlive(); public void setKeepAlive(boolean keepAlive);
Default Value
False
Remarks
The KeepAlive enables the SO_KEEPALIVE option on the socket. This option prevents long connections from timing out in case of inactivity.
Note: System Transmission Control Protocol (TCP)/IP stack implementations are not required to support SO_KEEPALIVE.
Linger Property (Telnet Class)
When set to True, this property ensures that connections are terminated gracefully.
Syntax
public boolean isLinger(); public void setLinger(boolean linger);
Default Value
True
Remarks
This property controls how a connection is closed. The default is True.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
LocalHost Property (Telnet Class)
The name of the local host or user-assigned IP interface through which connections are initiated or accepted.
Syntax
public String getLocalHost(); public void setLocalHost(String localHost);
Default Value
""
Remarks
The LocalHost property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.
In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.
If the class is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
NOTE: LocalHost is not persistent. You must always set it in code, and never in the property window.
LocalPort Property (Telnet Class)
The TCP port in the local host where TCPClient binds.
Syntax
public int getLocalPort(); public void setLocalPort(int localPort);
Default Value
0
Remarks
The LocalPort property must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.
Setting it to 0 (default) enables the TCP/IP stack to choose a port at random. The chosen port will be shown by the LocalPort property after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set the LocalPort property when a connection is active will generate an error.
The LocalPort property is useful when trying to connect to services that require a trusted port in the client side.
RemoteHost Property (Telnet Class)
This property includes the address of the remote host. Domain names are resolved to IP addresses.
Syntax
public String getRemoteHost(); public void setRemoteHost(String remoteHost);
Default Value
""
Remarks
This property specifies the IP address (IP number in dotted internet format) or the domain name of the remote host. It is set before a connection is attempted and cannot be changed once a connection is established.
If this property is set to a domain name, a DNS request is initiated, and upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, an error is returned.
If the class is configured to use a SOCKS firewall, the value assigned to this property may be preceded with an "*". If this is the case, the host name is passed to the firewall unresolved and the firewall performs the DNS resolution.
Example. Connecting:
TCPClientControl.RemoteHost = "MyHostNameOrIP"
TCPClientControl.RemotePort = 777
TCPClientControl.Connected = true
RemotePort Property (Telnet Class)
The secure Telnet port in the remote host (default is 23).
Syntax
public int getRemotePort(); public void setRemotePort(int remotePort);
Default Value
23
Remarks
For implicit SSL, use port 992 (please refer to the SSLStartMode property for more information).
A valid port number (a value between 1 and 65535) is required for the connection to take place. The property must be set before a connection is attempted and cannot be changed once a connection is established. Any attempt to change this property while connected will fail with an error.
This property is not available at design time.
SSLAcceptServerCert Property (Telnet Class)
Instructs the class to unconditionally accept the server certificate that matches the supplied certificate.
Syntax
public Certificate getSSLAcceptServerCert(); public void setSSLAcceptServerCert(Certificate SSLAcceptServerCert);
Remarks
If it finds any issues with the certificate presented by the server, the class will normally terminate the connection with an error.
You may override this behavior by supplying a value for SSLAcceptServerCert. If the certificate supplied in SSLAcceptServerCert is the same as the certificate presented by the server, then the server certificate is accepted unconditionally, and the connection will continue normally.
Please note that this functionality is provided only for cases where you otherwise know that you are communicating with the right server. If used improperly, this property may create a security breach. Use it at your own risk.
Please refer to the Certificate type for a complete list of fields.SSLCert Property (Telnet Class)
The certificate to be used during SSL negotiation.
Syntax
public Certificate getSSLCert(); public void setSSLCert(Certificate SSLCert);
Remarks
The digital certificate that the class will use during SSL negotiation. Set this property to a valid certificate before starting SSL negotiation. To set a certificate, you may set the Encoded field to the encoded certificate. To select a certificate, use the store and subject fields.
Please refer to the Certificate type for a complete list of fields.SSLEnabled Property (Telnet Class)
Whether TLS/SSL is enabled.
Syntax
public boolean isSSLEnabled(); public void setSSLEnabled(boolean SSLEnabled);
Default Value
False
Remarks
This setting specifies whether TLS/SSL is enabled in the class. When False (default) the class operates in plaintext mode. When True TLS/SSL is enabled.
TLS/SSL may also be enabled by setting SSLStartMode. Setting SSLStartMode will automatically update this property value.
This property is not available at design time.
SSLProvider Property (Telnet Class)
This specifies the SSL/TLS implementation to use.
Syntax
public int getSSLProvider(); public void setSSLProvider(int SSLProvider); Enumerated values: public final static int sslpAutomatic = 0; public final static int sslpPlatform = 1; public final static int sslpInternal = 2;
Default Value
0
Remarks
This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic) the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.
Possible values are:
0 (sslpAutomatic - default) | Automatically selects the appropriate implementation. |
1 (sslpPlatform) | Uses the platform/system implementation. |
2 (sslpInternal) | Uses the internal implementation. |
In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.
When Automatic is selected the platform implementation is used by default. When TLS 1.3 is enabled via SSLEnabledProtocols the internal implementation is used.
SSLServerCert Property (Telnet Class)
The server certificate for the last established connection.
Syntax
public Certificate getSSLServerCert();
Remarks
SSLServerCert contains the server certificate for the last established connection.
SSLServerCert is reset every time a new connection is attempted.
This property is read-only.
Please refer to the Certificate type for a complete list of fields.SSLStartMode Property (Telnet Class)
Determines how the class starts the SSL negotiation.
Syntax
public int getSSLStartMode(); public void setSSLStartMode(int SSLStartMode); Enumerated values: public final static int sslAutomatic = 0; public final static int sslImplicit = 1; public final static int sslExplicit = 2; public final static int sslNone = 3;
Default Value
3
Remarks
The SSLStartMode property may have one of the following values:
0 (sslAutomatic) | If the remote port is set to the standard plaintext port of the protocol (where applicable), the class will behave the same as if SSLStartMode is set to sslExplicit. In all other cases, SSL negotiation will be implicit (sslImplicit). |
1 (sslImplicit) | The SSL negotiation will start immediately after the connection is established. |
2 (sslExplicit) | The class will first connect in plaintext, and then explicitly start SSL negotiation through a protocol command such as STARTTLS. |
3 (sslNone - default) | No SSL negotiation, no SSL security. All communication will be in plaintext mode. |
Timeout Property (Telnet Class)
A timeout for the class.
Syntax
public int getTimeout(); public void setTimeout(int timeout);
Default Value
0
Remarks
If the Timeout property is set to 0, all operations return immediately, potentially failing with an 'WOULDBLOCK' error if data can't be sent or received immediately.
If Timeout is set to a positive value, the class will automatically retry each operation that would otherwise result in a 'WOULDBLOCK' error for a maximum of Timeout seconds.
The class will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not "freeze" and remains responsive.
If Timeout expires, and the operation is not yet complete, the class throws an exception.
Please note that by default, all timeouts are inactivity timeouts, i.e. the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.
The default value for the Timeout property is 0 (asynchronous operation).
Transparent Property (Telnet Class)
When True, Telnet command processing is disabled.
Syntax
public boolean isTransparent(); public void setTransparent(boolean transparent);
Default Value
False
Remarks
The Transparent property allows you to enable or disable Telnet command processing. When command processing is disabled, any data received is provided with no modifications.
UrgentData Property (Telnet Class)
A string of data to be sent urgently (out-of-band) to the remote host.
Syntax
public void setUrgentData(byte[] urgentData);
Default Value
""
Remarks
The UrgentData property behaves exactly like the DataToSend property except that the data is sent Out Of Band (urgent). This means that the data assigned to UrgentData will bypass the normal TCP queuing mechanism. Use this property with caution.
This property is write-only and not available at design time.
WillOption Property (Telnet Class)
A single character Telnet option code to be sent to the server with the Telnet WILL command.
Syntax
public void setWillOption(int willOption);
Default Value
0
Remarks
For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
This property is write-only and not available at design time.
WontOption Property (Telnet Class)
A single character Telnet option code to be sent to the server with the Telnet WONT command.
Syntax
public void setWontOption(int wontOption);
Default Value
0
Remarks
For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
This property is write-only and not available at design time.
Config Method (Telnet Class)
Sets or retrieves a configuration setting.
Syntax
public String config(String configurationString);
Remarks
Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Connect Method (Telnet Class)
Connects to a remote host.
Syntax
public void connect();
Remarks
This method connects to the remote host specified by RemoteHost. For instance:
component.RemoteHost = "MyHostNameOrIP";
component.Connect();
To specify a non-standard port number set RemotePort before calling this method.
ConnectTo Method (Telnet Class)
Connects to a remote host.
Syntax
public void connectTo(String host);
Remarks
This method connects to the remote host specified by the Host. For instance:
component.Connect("MyTelnetServer");
To specify a non-standard port number set RemotePort before calling this method.
Disconnect Method (Telnet Class)
Disconnect from the remote host.
Syntax
public void disconnect();
Remarks
Calling this method is equivalent to setting the Connected property to False.
DoEvents Method (Telnet Class)
Processes events from the internal message queue.
Syntax
public void doEvents();
Remarks
When DoEvents is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.
PauseData Method (Telnet Class)
This method pauses data reception.
Syntax
public void pauseData();
Remarks
This method pauses data reception when called. While data reception is paused, the DataIn event will not fire. Call ProcessData to reenable data reception.
ProcessData Method (Telnet Class)
This method reenables data reception after a call to PauseData .
Syntax
public void processData();
Remarks
This method reenables data reception after a previous call to PauseData. When PauseData is called, the DataIn event will not fire. To reenable data reception and allow DataIn to fire, call this method.
Note: This method is used only after previously calling PauseData. It does not need to be called to process incoming data by default.
Reset Method (Telnet Class)
Reset the class.
Syntax
public void reset();
Remarks
This method will reset the class's properties to their default values.
Send Method (Telnet Class)
Sends binary data to the remote host.
Syntax
public void send(byte[] text);
Remarks
This method sends the specified binary data to the remote host. To send text use the SendText method instead.
SendBytes Method (Telnet Class)
Sends binary data to the remote host.
Syntax
public void sendBytes(byte[] data);
Remarks
This method sends the specified binary data to the remote host. To send text use the SendText method instead.
SendCommand Method (Telnet Class)
Sends a single character Telnet command code to the server.
Syntax
public void sendCommand(int command);
Remarks
This method sends the single character command code specified by Command to the server. Codes for Telnet commands and their meanings are defined in the Telnet RFCs. Some common commands are:
241 (NOP) | No operation. |
242 (Data Mark) | The data stream portion of a Synch. This should always be accompanied by a TCP Urgent notification. |
243 (Break) | NVT character BRK. |
244 (Interrupt Process) | The function IP. |
245 (Abort Output) | The function AO. |
246 (Are You There) | The function AYT. |
247 (Erase Character) | The function EC. |
248 (Erase Line) | The function EL. |
249 (Go Ahead) | The GA signal. |
SendDontOption Method (Telnet Class)
This method sends a single character Telnet option code to the server with the Telnet DONT command.
Syntax
public void sendDontOption(int dontOption);
Remarks
For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
SendDoOption Method (Telnet Class)
This method sends a single character Telnet option code to the server with the Telnet DO command.
Syntax
public void sendDoOption(int doOption);
Remarks
For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
SendDoSubOption Method (Telnet Class)
This methods sends a Telnet SubOption to send to the server with the SubOption command.
Syntax
public void sendDoSubOption(byte[] doSubOption);
Remarks
Valid suboptions and their descriptions are defined in the Telnet RFCs.
For example, to send a terminal type suboption to request setting the terminal type to 'vt100', send ASCII 24, followed by ASCII 0, followed by vt100.
Suboption start and end codes are automatically added by the class.
SendText Method (Telnet Class)
Sends text to the remote host.
Syntax
public void sendText(String text);
Remarks
This method sends the specified text to the remote host. To send binary data use the SendBytes method instead.
SendUrgentBytes Method (Telnet Class)
Urgently sends binary data to the remote host.
Syntax
public void sendUrgentBytes(byte[] urgentBytes);
Remarks
This method sends the bytes specified by UrgentBytes as urgent data (out-of-band) to the remote host. To send text urgently use the SendUrgentText method instead.
Data sent using this method will bypass the normal TCP queuing mechanism. Use this method with caution.
SendUrgentText Method (Telnet Class)
Urgently sends text to the remote host.
Syntax
public void sendUrgentText(String urgentText);
Remarks
This method sends the text specified by UrgentText as urgent data (out-of-band) to the remote host. To send binary data urgently use the SendUrgentBytes method instead.
Data sent using this method will bypass the normal TCP queuing mechanism. Use this method with caution.
SendWillOption Method (Telnet Class)
This method sends a single character Telnet option code the server with the Telnet WILL command.
Syntax
public void sendWillOption(int willOption);
Remarks
For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
SendWontOption Method (Telnet Class)
This method sends a single character Telnet option code to the server with the Telnet WONT command.
Syntax
public void sendWontOption(int wontOption);
Remarks
For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
Command Event (Telnet Class)
Fired when a Telnet command comes from the Telnet server.
Syntax
public class DefaultTelnetEventListener implements TelnetEventListener { ... public void command(TelnetCommandEvent e) {} ... } public class TelnetCommandEvent { public int commandCode; }
Remarks
Codes for Telnet commands and their meanings are defined in the Telnet RFCs. Here are some examples:
241 (NOP) | No operation. |
242 (Data Mark) | The data stream portion of a Synch. This should always be accompanied by a TCP Urgent notification. |
243 (Break) | NVT character BRK. |
244 (Interrupt Process) | The function IP. |
245 (Abort Output) | The function AO. |
246 (Are You There) | The function AYT. |
247 (Erase Character) | The function EC. |
248 (Erase Line) | The function EL. |
249 (Go Ahead) | The GA signal. |
Connected Event (Telnet Class)
This event is fired immediately after a connection completes (or fails).
Syntax
public class DefaultTelnetEventListener implements TelnetEventListener { ... public void connected(TelnetConnectedEvent e) {} ... } public class TelnetConnectedEvent { public int statusCode; public String description; }
Remarks
If the connection is made normally, StatusCode is 0 and Description is "OK".
If the connection fails, StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.
Please refer to the Error Codes section for more information.
ConnectionStatus Event (Telnet Class)
This event is fired to indicate changes in the connection state.
Syntax
public class DefaultTelnetEventListener implements TelnetEventListener { ... public void connectionStatus(TelnetConnectionStatusEvent e) {} ... } public class TelnetConnectionStatusEvent { public String connectionEvent; public int statusCode; public String description; }
Remarks
The ConnectionStatus event is fired when the connection state changes: for example, completion of a firewall or proxy connection or completion of a security handshake.
The ConnectionEvent parameter indicates the type of connection event. Values may include the following:
Firewall connection complete. | |
Secure Sockets Layer (SSL) or S/Shell handshake complete (where applicable). | |
Remote host connection complete. | |
Remote host disconnected. | |
SSL or S/Shell connection broken. | |
Firewall host disconnected. |
DataIn Event (Telnet Class)
Fired when data is received from the remote host.
Syntax
public class DefaultTelnetEventListener implements TelnetEventListener { ... public void dataIn(TelnetDataInEvent e) {} ... } public class TelnetDataInEvent { public byte[] text; }
Remarks
Trapping the DataIn event is your only chance to get the data coming from the other end of the connection. The incoming data is provided through the Text parameter.
Note: Events are not re-entrant. Performing time-consuming operations within this event will prevent it from firing again in a timely manner and may affect overall performance.
Disconnected Event (Telnet Class)
This event is fired when a connection is closed.
Syntax
public class DefaultTelnetEventListener implements TelnetEventListener { ... public void disconnected(TelnetDisconnectedEvent e) {} ... } public class TelnetDisconnectedEvent { public int statusCode; public String description; }
Remarks
If the connection is broken normally, StatusCode is 0 and Description is "OK".
If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.
Please refer to the Error Codes section for more information.
DoDo Event (Telnet Class)
Fired when a Telnet DO OPTION command comes from the Telnet server.
Syntax
public class DefaultTelnetEventListener implements TelnetEventListener { ... public void doDo(TelnetDoDoEvent e) {} ... } public class TelnetDoDoEvent { public int optionCode; }
Remarks
The OptionCode parameter identifies the option code. For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
Dont Event (Telnet Class)
Fired when a Telnet DONT OPTION command comes from the Telnet server.
Syntax
public class DefaultTelnetEventListener implements TelnetEventListener { ... public void dont(TelnetDontEvent e) {} ... } public class TelnetDontEvent { public int optionCode; }
Remarks
The OptionCode parameter identifies the option code. For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
Error Event (Telnet Class)
Fired when information is available about errors during data delivery.
Syntax
public class DefaultTelnetEventListener implements TelnetEventListener { ... public void error(TelnetErrorEvent e) {} ... } public class TelnetErrorEvent { public int errorCode; public String description; }
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the class throws an exception.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
ReadyToSend Event (Telnet Class)
Fired when the class is ready to send data.
Syntax
public class DefaultTelnetEventListener implements TelnetEventListener { ... public void readyToSend(TelnetReadyToSendEvent e) {} ... } public class TelnetReadyToSendEvent { }
Remarks
The ReadyToSend event indicates that the underlying TCP/IP subsystem is ready to accept data after a failed DataToSend. The event is also fired immediately after a connection to the remote host is established.
SSLServerAuthentication Event (Telnet Class)
Fired after the server presents its certificate to the client.
Syntax
public class DefaultTelnetEventListener implements TelnetEventListener { ... public void SSLServerAuthentication(TelnetSSLServerAuthenticationEvent e) {} ... } public class TelnetSSLServerAuthenticationEvent { public byte[] certEncoded; public String certSubject; public String certIssuer; public String status; public boolean accept; }
Remarks
During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.
When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.
SSLStatus Event (Telnet Class)
Fired when secure connection progress messages are available.
Syntax
public class DefaultTelnetEventListener implements TelnetEventListener { ... public void SSLStatus(TelnetSSLStatusEvent e) {} ... } public class TelnetSSLStatusEvent { public String message; }
Remarks
The event is fired for informational and logging purposes only. This event tracks the progress of the connection.
SubOption Event (Telnet Class)
Fired when a Telnet SubOption command comes from the Telnet server.
Syntax
public class DefaultTelnetEventListener implements TelnetEventListener { ... public void subOption(TelnetSubOptionEvent e) {} ... } public class TelnetSubOptionEvent { public byte[] subOption; }
Remarks
The SubOption parameter contains the suboption data as sent by the other end. The enclosing suboption command codes are stripped away.
For a list of valid Telnet suboptions and their descriptions please look at the Telnet RFCs.
Will Event (Telnet Class)
Fired when a Telnet WILL OPTION command comes from the Telnet server.
Syntax
public class DefaultTelnetEventListener implements TelnetEventListener { ... public void will(TelnetWillEvent e) {} ... } public class TelnetWillEvent { public int optionCode; }
Remarks
For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
Wont Event (Telnet Class)
Fired when a Telnet WONT OPTION command comes from the Telnet server.
Syntax
public class DefaultTelnetEventListener implements TelnetEventListener { ... public void wont(TelnetWontEvent e) {} ... } public class TelnetWontEvent { public int optionCode; }
Remarks
The OptionCode parameter identifies the option code. For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
Certificate Type
This is the digital certificate being used.
Remarks
This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.
Fields
EffectiveDate
String (read-only)
Default Value: ""
This is the date on which this certificate becomes valid. Before this date, it is not valid. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
Encoded
String
Default Value: ""
This is the certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.
When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.
EncodedB
byte[]
Default Value: ""
This is the certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.
When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.
ExpirationDate
String (read-only)
Default Value: ""
This is the date the certificate expires. After this date, the certificate will no longer be valid. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
ExtendedKeyUsage
String
Default Value: ""
This is a comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
Fingerprint
String (read-only)
Default Value: ""
This is the hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
FingerprintSHA1
String (read-only)
Default Value: ""
This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
FingerprintSHA256
String (read-only)
Default Value: ""
This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
Issuer
String (read-only)
Default Value: ""
This is the issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.
KeyPassword
String
Default Value: ""
This is the password for the certificate's private key (if any).
Some certificate stores may individually protect certificates' private keys, separate from the standard protection offered by the StorePassword. KeyPassword. This field can be used to read such password-protected private keys.
Note: this property defaults to the value of StorePassword. To clear it, you must set the property to the empty string (""). It can be set at any time, but when the private key's password is different from the store's password, then it must be set before calling PrivateKey.
PrivateKey
String (read-only)
Default Value: ""
This is the private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.
PrivateKeyAvailable
boolean (read-only)
Default Value: False
This field shows whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).
PrivateKeyContainer
String (read-only)
Default Value: ""
This is the name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.
PublicKey
String (read-only)
Default Value: ""
This is the public key of the certificate. The key is provided as PEM/Base64-encoded data.
PublicKeyAlgorithm
String
Default Value: ""
This field contains the textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
PublicKeyLength
int (read-only)
Default Value: 0
This is the length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
SerialNumber
String (read-only)
Default Value: ""
This is the serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
SignatureAlgorithm
String (read-only)
Default Value: ""
The field contains the text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
Store
String
Default Value: "MY"
This is the name of the certificate store for the client certificate.
The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.
Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
In Java, the certificate store normally is a file containing certificates and optional private keys.
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
StoreB
byte[]
Default Value: "MY"
This is the name of the certificate store for the client certificate.
The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.
Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
In Java, the certificate store normally is a file containing certificates and optional private keys.
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
StorePassword
String
Default Value: ""
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
StoreType
int
Default Value: 0
This is the type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This field can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: this store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
Subject
String
Default Value: ""
This is the subject of the certificate used for client authentication.
This field will be populated with the full subject of the loaded certificate. When loading a certificate the subject is used to locate the certificate in the store.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
SubjectAltNames
String (read-only)
Default Value: ""
This field contains comma-separated lists of alternative subject names for the certificate.
ThumbprintMD5
String (read-only)
Default Value: ""
This field contains the MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA1
String (read-only)
Default Value: ""
This field contains the SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA256
String (read-only)
Default Value: ""
This field contains the SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
Usage
String
Default Value: ""
This field contains the text description of UsageFlags.
This value will be of one or more of the following strings and will be separated by commas:
- Digital Signatures
- Key Authentication
- Key Encryption
- Data Encryption
- Key Agreement
- Certificate Signing
- Key Signing
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
UsageFlags
int
Default Value: 0
This field contains the flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:
0x80 | Digital Signatures |
0x40 | Key Authentication (Non-Repudiation) |
0x20 | Key Encryption |
0x10 | Data Encryption |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | Key Signing |
Please see the Usage field for a text representation of UsageFlags.
This functionality currently is not available when the provider is OpenSSL.
Version
String (read-only)
Default Value: ""
This field contains the certificate's version number. The possible values are the strings "V1", "V2", and "V3".
Constructors
public Certificate();
Creates a Certificate instance whose properties can be set. This is useful for use with CERTMGR when generating new certificates.
public Certificate( certificateFile);
Opens CertificateFile and reads out the contents as an X.509 public key.
public Certificate( certificateData);
Parses CertificateData as an X.509 public key.
public Certificate( certStoreType, store, storePassword, subject);
CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).
public Certificate( certStoreType, store, storePassword, subject, configurationString);
CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. ConfigurationString is a newline separated list of name-value pairs that may be used to modify the default behavior. Possible values include "PersistPFXKey", which shows whether or not the PFX key is persisted after performing operations with the private key. This correlates to the PKCS12_NO_PERSIST_KEY CryptoAPI option. The default value is True (the key is persisted). "Thumbprint" - an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load. When specified, this value is used to select the certificate in the store. This is applicable to cstUser, cstMachine, cstPublicKeyFile, and cstPFXFile store types. "UseInternalSecurityAPI" shows whether the platform (default) or the internal security API is used when performing certificate-related operations. After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).
public Certificate( certStoreType, store, storePassword, encoded);
CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the class will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.
public Certificate( certStoreType, storeBlob, storePassword, subject);
CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. StoreBlob is a string (binary- or Base64-encoded) containing the certificate data. StorePassword is the password used to protect the store. After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).
public Certificate( certStoreType, storeBlob, storePassword, subject, configurationString);
CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. StoreBlob is a string (binary- or Base64-encoded) containing the certificate data. StorePassword is the password used to protect the store. After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).
public Certificate( certStoreType, storeBlob, storePassword, encoded);
CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a string (binary- or Base64-encoded) containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the class will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.
Firewall Type
The firewall the class will connect through.
Remarks
When connecting through a firewall, this type is used to specify different properties of the firewall, such as the firewall Host and the FirewallType.
Fields
AutoDetect
boolean
Default Value: False
This field tells the class whether or not to automatically detect and use firewall system settings, if available.
Connection information will first be obtained from Java system properties, such as http.proxyHost and https.proxyHost. Java properties may be set in a variety of ways; please consult the Java documentation for information about how firewall and proxy values can be specified.
If no Java system properties define connection information, the class will inspect the Windows registry for connection information that may be present on the system (applicable only on Windows systems).
FirewallType
int
Default Value: 0
This field determines the type of firewall to connect through. The applicable values are as follows:
fwNone (0) | No firewall (default setting). |
fwTunnel (1) | Connect through a tunneling proxy. Port is set to 80. |
fwSOCKS4 (2) | Connect through a SOCKS4 Proxy. Port is set to 1080. |
fwSOCKS5 (3) | Connect through a SOCKS5 Proxy. Port is set to 1080. |
fwSOCKS4A (10) | Connect through a SOCKS4A Proxy. Port is set to 1080. |
Host
String
Default Value: ""
This field contains the name or IP address of firewall (optional). If a Host is given, the requested connections will be authenticated through the specified firewall when connecting.
If this field is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this field is set to the corresponding address. If the search is not successful, the class throws an exception.
Password
String
Default Value: ""
This field contains a password if authentication is to be used when connecting through the firewall. If Host is specified, the User and Password fields are used to connect and authenticate to the given firewall. If the authentication fails, the class throws an exception.
Port
int
Default Value: 0
This field contains the transmission control protocol (TCP) port for the firewall Host. See the description of the Host field for details.
Note: This field is set automatically when FirewallType is set to a valid value. See the description of the FirewallType field for details.
User
String
Default Value: ""
This field contains a user name if authentication is to be used connecting through a firewall. If the Host is specified, this field and Password fields are used to connect and authenticate to the given Firewall. If the authentication fails, the class throws an exception.
Constructors
public Firewall();
Config Settings (Telnet Class)
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.TCPClient Config Settings
If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
If this entry is set, the class acts as a server. RemoteHost and RemotePort are used to tell the SOCKS firewall in which address and port to listen to. The firewall rules may ignore RemoteHost, and it is recommended that RemoteHost be set to empty string in this case.
RemotePort is the port in which the firewall will listen to. If set to 0, the firewall will select a random port. The binding (address and port) is provided through the ConnectionStatus event.
The connection to the firewall is made by calling the Connect method.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.
0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This value is not applicable in macOS.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.
If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.
If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
www.google.com;www.nsoftware.com
Note: This value is not applicable in Java.
By default, this config is set to false.
0 | IPv4 Only |
1 | IPv6 Only |
2 | IPv6 with IPv4 fallback |
SSL Config Settings
When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this setting has no effect if SSLProvider is set to Platform.
If set to true, the class will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the class is the same.
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When set to 0 (default) the CRL check will not be performed by the class. When set to 1, it will attempt to perform the CRL check, but will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.
This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.
When set to 0 (default) the class will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.
This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.
Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Note: This value must be set after SSLProvider is set.
Example values:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=SSL_RSA_WITH_RC4_128_SHA");
obj.config("SSLEnabledCipherSuites=SSL_RSA_WITH_RC4_128_SHA; SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA");
Possible values when SSLProvider is set to latform include:
- SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
- SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- SSL_RSA_WITH_RC4_128_SHA
- SSL_RSA_WITH_DES_CBC_SHA
- SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
- SSL_DH_anon_WITH_DES_CBC_SHA
- SSL_RSA_EXPORT_WITH_RC4_40_MD5
- SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
- SSL_DH_anon_EXPORT_WITH_RC4_40_MD5
- SSL_DHE_DSS_WITH_DES_CBC_SHA
- SSL_RSA_WITH_NULL_MD5
- SSL_DH_anon_WITH_3DES_EDE_CBC_SHA
- SSL_DHE_RSA_WITH_DES_CBC_SHA
- SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA
- SSL_RSA_WITH_NULL_SHA
- SSL_DH_anon_WITH_RC4_128_MD5
- SSL_RSA_WITH_RC4_128_MD5
- SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- SSL_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_NULL_SHA
- TLS_DH_anon_WITH_AES_128_CBC_SHA256 (Not Recommended)
- TLS_ECDH_anon_WITH_RC4_128_SHA
- TLS_DH_anon_WITH_AES_128_CBC_SHA (Not Recommended)
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_KRB5_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_KRB5_EXPORT_WITH_RC4_40_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_RC4_128_SHA
- TLS_ECDH_ECDSA_WITH_RC4_128_SHA
- TLS_ECDH_anon_WITH_NULL_SHA
- TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_RSA_WITH_NULL_SHA256
- TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA
- TLS_KRB5_WITH_RC4_128_MD5
- TLS_ECDHE_ECDSA_WITH_NULL_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_RC4_128_SHA
- TLS_EMPTY_RENEGOTIATION_INFO_SCSV
- TLS_KRB5_WITH_3DES_EDE_CBC_MD5
- TLS_KRB5_WITH_RC4_128_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_NULL_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_KRB5_WITH_DES_CBC_MD5
- TLS_KRB5_EXPORT_WITH_RC4_40_MD5
- TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5
- TLS_ECDH_anon_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_KRB5_WITH_DES_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_NULL_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
Possible values when SSLProvider is set to Internal include:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default) |
TLS1.1 | 768 (Hex 300) (Default) |
TLS1 | 192 (Hex C0) (Default) |
SSL3 | 48 (Hex 30) [Platform Only] |
SSL2 | 12 (Hex 0C) [Platform Only] |
SSLEnabledProtocols - TLS 1.3 Notes
By default when TLS 1.3 is enabled the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider) please be aware of the following notes:
- The platform provider is only available on Windows 11 / Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the class when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
This setting is only applicable when SSLProvider is set to Internal.
If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
Note: When SSLProvider is set to Internal this value is automatically set to true. This is needed for proper validation when using the internal provider.
When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the class will only append, it will not overwrite previous values.
Note: This setting is only applicable when SSLProvider is set to Internal.
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
The value of this setting is a newline (CrLf) separated list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When specified the class will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the class throws an exception.
The format of this value is a comma separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.
In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
Socket Config Settings
Note: This option is not valid for UDP ports.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Base Config Settings
In some non-GUI applications, an invalid message loop may be discovered that will result in errant behavior. In these cases, setting GUIAvailable to false will ensure that the class does not attempt to process external events.
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.
This setting is set to false by default on all platforms.
Trappable Errors (Telnet Class)
Telnet Errors
118 Firewall Error. Error message contains detailed description. | |
191 SubOption string too long. Truncated. | |
4001 Telnet protocol error (Invalid server response). |
TCPClient Errors
100 You cannot change the RemotePort at this time. A connection is in progress. | |
101 You cannot change the RemoteHost (Server) at this time. A connection is in progress. | |
102 The RemoteHost address is invalid (0.0.0.0). | |
104 Already connected. If you want to reconnect, close the current connection first. | |
106 You cannot change the LocalPort at this time. A connection is in progress. | |
107 You cannot change the LocalHost at this time. A connection is in progress. | |
112 You cannot change MaxLineLength at this time. A connection is in progress. | |
116 RemotePort cannot be zero. Please specify a valid service port number. | |
117 You cannot change the UseConnection option while the class is active. | |
135 Operation would block. | |
201 Timeout. | |
211 Action impossible in control's present state. | |
212 Action impossible while not connected. | |
213 Action impossible while listening. | |
301 Timeout. | |
303 Could not open file. | |
434 Unable to convert string to selected CodePage. | |
1105 Already connecting. If you want to reconnect, close the current connection first. | |
1117 You need to connect first. | |
1119 You cannot change the LocalHost at this time. A connection is in progress. | |
1120 Connection dropped by remote host. |
SSL Errors
270 Cannot load specified security library. | |
271 Cannot open certificate store. | |
272 Cannot find specified certificate. | |
273 Cannot acquire security credentials. | |
274 Cannot find certificate chain. | |
275 Cannot verify certificate chain. | |
276 Error during handshake. | |
280 Error verifying certificate. | |
281 Could not find client certificate. | |
282 Could not find server certificate. | |
283 Error encrypting data. | |
284 Error decrypting data. |
TCP/IP Errors
10004 [10004] Interrupted system call. | |
10009 [10009] Bad file number. | |
10013 [10013] Access denied. | |
10014 [10014] Bad address. | |
10022 [10022] Invalid argument. | |
10024 [10024] Too many open files. | |
10035 [10035] Operation would block. | |
10036 [10036] Operation now in progress. | |
10037 [10037] Operation already in progress. | |
10038 [10038] Socket operation on non-socket. | |
10039 [10039] Destination address required. | |
10040 [10040] Message too long. | |
10041 [10041] Protocol wrong type for socket. | |
10042 [10042] Bad protocol option. | |
10043 [10043] Protocol not supported. | |
10044 [10044] Socket type not supported. | |
10045 [10045] Operation not supported on socket. | |
10046 [10046] Protocol family not supported. | |
10047 [10047] Address family not supported by protocol family. | |
10048 [10048] Address already in use. | |
10049 [10049] Can't assign requested address. | |
10050 [10050] Network is down. | |
10051 [10051] Network is unreachable. | |
10052 [10052] Net dropped connection or reset. | |
10053 [10053] Software caused connection abort. | |
10054 [10054] Connection reset by peer. | |
10055 [10055] No buffer space available. | |
10056 [10056] Socket is already connected. | |
10057 [10057] Socket is not connected. | |
10058 [10058] Can't send after socket shutdown. | |
10059 [10059] Too many references, can't splice. | |
10060 [10060] Connection timed out. | |
10061 [10061] Connection refused. | |
10062 [10062] Too many levels of symbolic links. | |
10063 [10063] File name too long. | |
10064 [10064] Host is down. | |
10065 [10065] No route to host. | |
10066 [10066] Directory not empty | |
10067 [10067] Too many processes. | |
10068 [10068] Too many users. | |
10069 [10069] Disc Quota Exceeded. | |
10070 [10070] Stale NFS file handle. | |
10071 [10071] Too many levels of remote in path. | |
10091 [10091] Network subsystem is unavailable. | |
10092 [10092] WINSOCK DLL Version out of range. | |
10093 [10093] Winsock not loaded yet. | |
11001 [11001] Host not found. | |
11002 [11002] Non-authoritative 'Host not found' (try again or check DNS setup). | |
11003 [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP. | |
11004 [11004] Valid name, no data record (check DNS setup). |