IPWorks Encrypt 2022 macOS Edition
Version 22.0 [Build 8369]

CMS Module

Properties   Methods   Events   Config Settings   Errors  

The CMS module is used to digitally sign, encrypt, verify, and decrypt data.

Syntax

IPWorksEncrypt.Cms

Remarks

The CMS class implements the Cryptographic Message Syntax and allow for various cryptographic operations to be performed on data including:

The class can generate and consume message in a variety of formats including PEM, DER (Binary), and SMIME. The EncryptionAlgorithm and SignatureHashAlgorithm are fully configurable and support a variety of industry standard encryption and hash algorithms.

The class supports additional functionality such as Compression, OAEP, and PSS. The GetRecipientInfo and GetSignerCertInfo methods as well as the RecipientInfo and SignerCertInfo events allow for a dynamic and flexible approach to message processing. Certificate may be loaded ahead of time or as-needed from the events.

Signing Notes

Sign digitally signs the input data with the the specified certificate(s). Certificates are specified by calling AddCertificate or setting the Certificates property.

OutputFormat specifies the encoding of the output message. Valid values are PEM, DER, and SMIME. IncludeCertificates specifies whether the public certificate is included in the signed message. Additional settings allow further configuration. The following properties are applicable when calling this method:

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

Sign and Verify a message Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - DER Output Format Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.OutputFormat = "DER"; cms.Sign(); byte[] signedMessage = cms.OutputMessageB; //Binary output cms = new Cms(); cms.InputMessageB = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - Detached Signature Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.DetachedSignature = true; cms.Sign(); string signature = cms.OutputMessage; cms = new Cms(); cms.InputMessage = "My Data"; cms.DetachedSignatureData = signature; cms.DetachedSignature = true; cms.VerifySignature(); Sign and Verify a message - Multiple Signatures Cms cms = new Cms(); cms.InputMessage = "My Data"; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test2.pfx", "password2", "*")); cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - No Included Certificate Cms cms = new Cms(); cms.InputMessage = "My Data"; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.IncludeCertificates = CmsIncludeCertificates.icsNone; cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.OnSignerCertInfo += (s, e) => { Console.WriteLine(e.Issuer); Console.WriteLine(e.SerialNumber); if (e.Issuer == "CN=100") //Identify the certificate to load based on event params { //Load the correct signer certificate. cms.SignerCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); } }; cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage;

Encryption Notes

Encrypt encrypts the input data with the the specified certificate(s). Certificates are specified by calling AddRecipientCert or setting the RecipientCerts property.

OutputFormat specifies the encoding of the output message. Valid values are PEM, DER, and SMIME. Additional settings allow further configuration. The following properties are applicable when calling this method:

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

Encrypt and Decrypt a message Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt a message - DER Output Format Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.OutputFormat = "DER"; cms.Encrypt(); byte[] encryptedMessage = cms.OutputMessageB; //Binary output cms = new Cms(); cms.InputMessageB = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt - Multiple Recipients Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test2.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt - Get Recipient Info Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; //If the recipient certificate is not known ahead of time the GetRecipientInfo method may be called //to find information about the certificate. cms = new Cms(); cms.InputMessage = encryptedMessage; cms.OnRecipientInfo += (s, e) => { Console.WriteLine(e.SerialNumber); Console.WriteLine(e.Issuer); if (e.Issuer == "CN=100") //Identify the certificate to load based on event params { cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); } }; cms.GetRecipientInfo(); cms.Decrypt(); string plaintextMessage = cms.OutputMessage;

Signature Verification Notes

VerifySignature verifies the signature of the input message.

In order to perform signature verification the public signer's certificate must be present or explicitly specified. In many cases the certificate itself is included in the input message and a certificate does not need to explicitly be set. If a certificate does need to be set for signature verification the certificate may be specified by calling AddRecipientCert or setting RecipientCerts.

When this method is called the SignerCertInfo event fires once for each signature on the message. This event provides details about the signer certificate, as well as the signer certificate itself (if present). The information provided via SignerCertInfo may be used to load an appropriate certificate for verification from within the event. If the CertEncoded parameter of SignerCertInfo is populated the certificate required for verification is already present in the message.

The following property are applicable when calling this method:

If the input message is a detached signature, the original data that was signed must be specified in DetachedSignatureData. In addition the DetachedSignature property must be set to True to instruct the class to treat the input message as a detached signature.

If the input message is compressed EnableCompression must be set to True before calling this method.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

Sign and Verify a message Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - DER Output Format Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.OutputFormat = "DER"; cms.Sign(); byte[] signedMessage = cms.OutputMessageB; //Binary output cms = new Cms(); cms.InputMessageB = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - Detached Signature Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.DetachedSignature = true; cms.Sign(); string signature = cms.OutputMessage; cms = new Cms(); cms.InputMessage = "My Data"; cms.DetachedSignatureData = signature; cms.DetachedSignature = true; cms.VerifySignature(); Sign and Verify a message - Multiple Signatures Cms cms = new Cms(); cms.InputMessage = "My Data"; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test2.pfx", "password2", "*")); cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - No Included Certificate Cms cms = new Cms(); cms.InputMessage = "My Data"; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.IncludeCertificates = CmsIncludeCertificates.icsNone; cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.OnSignerCertInfo += (s, e) => { Console.WriteLine(e.Issuer); Console.WriteLine(e.SerialNumber); if (e.Issuer == "CN=100") //Identify the certificate to load based on event params { //Load the correct signer certificate. cms.SignerCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); } }; cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage;

Decryption Notes

Decrypt decrypts the input data with the specified certificate. Certificates are specified by calling AddCertificate or setting the Certificates property.

If the certificate used to encrypt the message is not known ahead of time GetRecipientInfo may be called prior to calling Decrypt to obtain information about the recipient (the entity the for which the message was encrypted). If GetRecipientInfo is called, the RecipientInfo event is fired with information about the recipient which may be used to load an appropriate decryption certificate.

The following properties are applicable when calling this method:

  • Certificates (Required)
Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

Encrypt and Decrypt a message Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt a message - DER Output Format Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.OutputFormat = "DER"; cms.Encrypt(); byte[] encryptedMessage = cms.OutputMessageB; //Binary output cms = new Cms(); cms.InputMessageB = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt - Multiple Recipients Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test2.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt - Get Recipient Info Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; //If the recipient certificate is not known ahead of time the GetRecipientInfo method may be called //to find information about the certificate. cms = new Cms(); cms.InputMessage = encryptedMessage; cms.OnRecipientInfo += (s, e) => { Console.WriteLine(e.SerialNumber); Console.WriteLine(e.Issuer); if (e.Issuer == "CN=100") //Identify the certificate to load based on event params { cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); } }; cms.GetRecipientInfo(); cms.Decrypt(); string plaintextMessage = cms.OutputMessage;

Property List


The following is the full list of the properties of the module with short descriptions. Click on the links for further details.

CertCountThe number of records in the Cert arrays.
CertEncodedThis is the certificate (PEM/base64 encoded).
CertStoreThis is the name of the certificate store for the client certificate.
CertStorePasswordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
CertStoreTypeThis is the type of certificate store for this certificate.
CertSubjectThis is the subject of the certificate used for client authentication.
DetachedSignatureSpecifies whether to include a detached signature when signing a message.
DetachedSignatureDataThe detached signature.
EnableCompressionSpecifies whether to compress the message.
EncryptionAlgorithmThe algorithm used for encryption.
IncludeCertificatesSpecifies whether to include the signer's certificate with the signed message.
InputFileThe file to process.
InputMessageThe message to process.
OutputFileThe output file.
OutputFormatSpecifies the output format.
OutputMessageThe output message after processing.
RecipientCertCountThe number of records in the RecipientCert arrays.
RecipientCertEncodedThis is the certificate (PEM/base64 encoded).
RecipientCertStoreThis is the name of the certificate store for the client certificate.
RecipientCertStorePasswordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
RecipientCertStoreTypeThis is the type of certificate store for this certificate.
RecipientCertSubjectThis is the subject of the certificate used for client authentication.
SignatureHashAlgorithmThe signature hash algorithm used during signing.
SignerCertCountThe number of records in the SignerCert arrays.
SignerCertEncodedThis is the certificate (PEM/base64 encoded).
SignerCertStoreThis is the name of the certificate store for the client certificate.
SignerCertStorePasswordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
SignerCertStoreTypeThis is the type of certificate store for this certificate.
SignerCertSubjectThis is the subject of the certificate used for client authentication.
UseOAEPWhether to use Optimal Asymmetric Encryption Padding (OAEP).
UsePSSWhether to use RSA-PSS during signing and verification.

Method List


The following is the full list of the methods of the module with short descriptions. Click on the links for further details.

AddCertificateUsed to add certificates for signing.
AddRecipientCertUsed to add recipient certificates used to encrypt messages.
ConfigSets or retrieves a configuration setting.
DecryptDecrypts the current message.
DecryptAndVerifySignatureDecrypts and verifies the signature of the current message.
EncryptEncrypts the current message.
GetRecipientInfoGets the recipient certificate information for an encrypted message.
GetSignerCertInfoThis method gets the signature information for an signed message.
ResetResets the module properties.
SignSigns the current message.
SignAndEncryptSigns and encrypts the current message.
VerifySignatureVerifies the signature of the current message.

Event List


The following is the full list of the events fired by the module with short descriptions. Click on the links for further details.

ErrorInformation about errors during data delivery.
LogFires with log information during processing.
RecipientInfoFired for each recipient certificate of the encrypted message.
SignerCertInfoFired during verification of the signed message.

Config Settings


The following is a list of config settings for the module with short descriptions. Click on the links for further details.

CompressBeforeSignSpecifies whether to compress before signing.
ContentTypeOIDSpecifies the oid for content type.
CSPThe Cryptographic Service Provider.
GenerateSignatureTimestampWhether to generate timestamps in signatures.
IncludeHeadersTells the module whether to include the headers when encoding the message.
IncludeInternalHeadersTells the module whether or not to include the internal headers when encoding the message.
InputContentTransferEncodingSets the Content-Transfer-Encoding for the signed message.
InputContentTypeSets the Content-Type for the signed message.
InputMessageHeadersMessage headers.
LogDirectoryThe directory on disk where debug logs are written.
LogFilenameThe base filename to use with LogDirectory.
LogLevelThe level of detail for log messages.
OAEPMGF1HashAlgorithmThe MGF1 hash algorithm used with OAEP.
OAEPParamsThe hex encoded OAEP parameters.
OAEPRSAHashAlgorithmThe RSA hash algorithm used with OAEP.
OutputMessageHeadersThe SMIME headers of the output message.
RecipientInfoTypeThe type of signer information to include in the signed message.
SignatureTimestampThe signature timestamp in the signed message.
SignerInfoTypeThe type of signer information to include in the signed message.
UseAlgorithmOIDsWhether OIDs are used when providing information about the algorithms.
BuildInfoInformation about the product's build.
CodePageThe system code page used for Unicode to Multibyte translations.
LicenseInfoInformation about the current license.
UseInternalSecurityAPITells the module whether or not to use the system security libraries or an internal implementation.

CertCount Property (CMS Module)

The number of records in the Cert arrays.

Syntax

public var certCount: Int32 {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=certCount,setter=setCertCount:) int certCount;

- (int)certCount;
- (void)setCertCount :(int)newCertCount;

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at CertCount - 1.

CertEncoded Property (CMS Module)

This is the certificate (PEM/base64 encoded).

Syntax

public var certEncoded: String {
  get {...}
  set {...}
}

public var certEncodedB: Data { get {...} set {...} }

- (NSString*)certEncoded:(int)certIndex;
- (void)setCertEncoded:(int)certIndex :(NSString*)newCertEncoded;

- (NSData*)certEncodedB:(int)certIndex;
- (void)setCertEncodedB:(int)certIndex :(NSData*)newCertEncoded;

Default Value

""

Remarks

This is the certificate (PEM/base64 encoded). This property is used to assign a specific certificate. The CertStore and CertSubject properties also may be used to specify a certificate.

When CertEncoded is set, a search is initiated in the current CertStore for the private key of the certificate. If the key is found, CertSubject is updated to reflect the full subject of the selected certificate; otherwise, CertSubject is set to an empty string.

If an error occurs when setting this property an error will not be thrown. This property has a related method which will throw an error:

public func setCertEncodedB(certEncoded: Data) throws
public func setCertEncoded(certEncoded: String) throws

CertStore Property (CMS Module)

This is the name of the certificate store for the client certificate.

Syntax

public var certStore: String {
  get {...}
  set {...}
}

public var certStoreB: Data { get {...} set {...} }

- (NSString*)certStore:(int)certIndex;
- (void)setCertStore:(int)certIndex :(NSString*)newCertStore;

- (NSData*)certStoreB:(int)certIndex;
- (void)setCertStoreB:(int)certIndex :(NSData*)newCertStore;

Default Value

"MY"

Remarks

This is the name of the certificate store for the client certificate.

The CertStoreType property denotes the type of the certificate store specified by CertStore. If the store is password protected, specify the password in CertStorePassword.

CertStore is used in conjunction with the CertSubject property to specify client certificates. If CertStore has a value, and CertSubject or CertEncoded is set, a search for a certificate is initiated. Please see the CertSubject property for details.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e. PKCS12 certificate store).

CertStorePassword Property (CMS Module)

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

public var certStorePassword: String {
  get {...}
  set {...}
}

- (NSString*)certStorePassword:(int)certIndex;
- (void)setCertStorePassword:(int)certIndex :(NSString*)newCertStorePassword;

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

CertStoreType Property (CMS Module)

This is the type of certificate store for this certificate.

Syntax

public var certStoreType: CmsCertStoreTypes {
  get {...}
  set {...}
}

public enum CmsCertStoreTypes: Int32 { case cstUser = 0 case cstMachine = 1 case cstPFXFile = 2 case cstPFXBlob = 3 case cstJKSFile = 4 case cstJKSBlob = 5 case cstPEMKeyFile = 6 case cstPEMKeyBlob = 7 case cstPublicKeyFile = 8 case cstPublicKeyBlob = 9 case cstSSHPublicKeyBlob = 10 case cstP7BFile = 11 case cstP7BBlob = 12 case cstSSHPublicKeyFile = 13 case cstPPKFile = 14 case cstPPKBlob = 15 case cstXMLFile = 16 case cstXMLBlob = 17 case cstJWKFile = 18 case cstJWKBlob = 19 case cstSecurityKey = 20 case cstBCFKSFile = 21 case cstBCFKSBlob = 22 case cstAuto = 99 }

- (int)certStoreType:(int)certIndex;
- (void)setCertStoreType:(int)certIndex :(int)newCertStoreType;

Default Value

0

Remarks

This is the type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user. Note: this store type is not available in Java.
1 (cstMachine)For Windows, this specifies that the certificate store is a machine store. Note: this store type is not available in Java.
2 (cstPFXFile)The certificate store is the name of a PFX (PKCS12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in PFX (PKCS12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates. Note: this store type is only available in Java.
5 (cstJKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in Java Key Store (JKS) format. Note: this store type is only available in Java.
6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
20 (cstSecurityKey)The certificate is present on a physical security key accessible via a PKCS11 interface.

To use a security key the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstSecurityKey, CertStorePassword to the PIN, and CertStore to the full path of the PKCS11 dll. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the CertStore and set CertStorePassword to the PIN.

Code Example: SSH Authentication with Security Key certmgr.CertStoreType = CertStoreTypes.cstSecurityKey; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstSecurityKey, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store). Note: this store type is only available in Java and .NET.
22 (cstBCFKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format. Note: this store type is only available in Java and .NET.
99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

CertSubject Property (CMS Module)

This is the subject of the certificate used for client authentication.

Syntax

public var certSubject: String {
  get {...}
  set {...}
}

- (NSString*)certSubject:(int)certIndex;
- (void)setCertSubject:(int)certIndex :(NSString*)newCertSubject;

Default Value

""

Remarks

This is the subject of the certificate used for client authentication.

This property must be set after all other certificate properites are set. When this property is set, a search is performed in the current certificate store certificate with matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma separated list of distinguished name fields and values. For instance "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are displayed below.

FieldMeaning
CNCommon Name. This is commonly a host name like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma it must be quoted.

If an error occurs when setting this property an error will not be thrown. This property has a related method which will throw an error:

public func setCertSubject(certSubject: String) throws

DetachedSignature Property (CMS Module)

Specifies whether to include a detached signature when signing a message.

Syntax

public var detachedSignature: Bool {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=detachedSignature,setter=setDetachedSignature:) BOOL detachedSignature;

- (BOOL)detachedSignature;
- (void)setDetachedSignature :(BOOL)newDetachedSignature;

Default Value

False

Remarks

This property specifies whether the Sign operation products a message that includes both a signature and the message data, or just a signature.

When set to False default the output message holds the data and signature in one CMS message. This may be passed in its entirety to the receiving party for signature verification.

When set to True the output message holds only a signature in the CMS message. Both the original input data and the signature in the output message produced by the Sign operation must be passed to the receiving party for signature verification.

DetachedSignatureData Property (CMS Module)

The detached signature.

Syntax

public var detachedSignatureData: String {
  get {...}
  set {...}
}

public var detachedSignatureDataB: Data { get {...} set {...} }

@property (nonatomic,readwrite,assign,getter=detachedSignatureData,setter=setDetachedSignatureData:) NSString* detachedSignatureData;

- (NSString*)detachedSignatureData;
- (void)setDetachedSignatureData :(NSString*)newDetachedSignatureData;

@property (nonatomic,readwrite,assign,getter=detachedSignatureDataB,setter=setDetachedSignatureDataB:) NSData* detachedSignatureDataB;

- (NSData*)detachedSignatureDataB;
- (void)setDetachedSignatureDataB :(NSData*)newDetachedSignatureData;

Default Value

""

Remarks

This setting is used to specify the detached signature before calling VerifySignature. The message data should be specified normally and this property should be set to the detached signature data. This may be set to the PEM, DER, or SMIME encoded signature message.

EnableCompression Property (CMS Module)

Specifies whether to compress the message.

Syntax

public var enableCompression: Bool {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=enableCompression,setter=setEnableCompression:) BOOL enableCompression;

- (BOOL)enableCompression;
- (void)setEnableCompression :(BOOL)newEnableCompression;

Default Value

False

Remarks

This property specifies whether the input data will be compressed during the signing process.

If set to True the data will be compressed. If set to False (default) the data will not be compressed.

When compression is enabled the input will first be signed, and then compressed. To compress the data before signing set CompressBeforeSign.

EncryptionAlgorithm Property (CMS Module)

The algorithm used for encryption.

Syntax

public var encryptionAlgorithm: String {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=encryptionAlgorithm,setter=setEncryptionAlgorithm:) NSString* encryptionAlgorithm;

- (NSString*)encryptionAlgorithm;
- (void)setEncryptionAlgorithm :(NSString*)newEncryptionAlgorithm;

Default Value

"3DES"

Remarks

This property specifies the encryption algorithm used when Encrypt is called.

This may be the name of the algorithm, or the corresponding OID of the algorithm. The default value is 3DES. Possible values are:

  • "3DES"
  • "DES"
  • "RC2CBC40"
  • "RC2CBC64"
  • "RC2CBC128" or "RC2"
  • "AESCBC128" or "AES"
  • "AESCBC192"
  • "AESCBC256"
  • "AESGCM128" or "AESGCM"
  • "AESGCM192"
  • "AESGCM256"

IncludeCertificates Property (CMS Module)

Specifies whether to include the signer's certificate with the signed message.

Syntax

public var includeCertificates: CmsIncludeCertificates {
  get {...}
  set {...}
}

public enum CmsIncludeCertificates: Int32 { case icsNone = 0 case icsSignerCerts = 1 case icsSignerCertsAndChain = 2 }

@property (nonatomic,readwrite,assign,getter=includeCertificates,setter=setIncludeCertificates:) int includeCertificates;

- (int)includeCertificates;
- (void)setIncludeCertificates :(int)newIncludeCertificates;

Default Value

1

Remarks

This setting specifies which certificates (if any) are included in the signed message. By default the public certificate of the certificate used to sign the message is included. This allows the receiving party to verify the signature without any additional knowledge. If this is set to icsNone the recipient must obtain and specify the public certificate to be used for signature verification. Possible values are:

Value Description
0 (icsNone) No signer certificates are included.
1 (icsSignerCerts - default) The certificates specified in Certificates are included.
2 (icsSignerCertsAndChain) The certificates specified in Certificates and the full chain of each certificate are included.

InputFile Property (CMS Module)

The file to process.

Syntax

public var inputFile: String {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=inputFile,setter=setInputFile:) NSString* inputFile;

- (NSString*)inputFile;
- (void)setInputFile :(NSString*)newInputFile;

Default Value

""

Remarks

This property specifies the file to be processed. Set this property to the full or relative path to the file which will be processed.

Encrypt and/or Sign

When encrypting or signing this may be set to a file containing content that will be encrypted and/or signed.

Decrypt and/or Verify

When decrypting or verifying a signature this may be set to a file containing the PEM, DER, or SMIME encoded message.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

InputMessage Property (CMS Module)

The message to process.

Syntax

public var inputMessage: String {
  get {...}
  set {...}
}

public var inputMessageB: Data { get {...} set {...} }

@property (nonatomic,readwrite,assign,getter=inputMessage,setter=setInputMessage:) NSString* inputMessage;

- (NSString*)inputMessage;
- (void)setInputMessage :(NSString*)newInputMessage;

@property (nonatomic,readwrite,assign,getter=inputMessageB,setter=setInputMessageB:) NSData* inputMessageB;

- (NSData*)inputMessageB;
- (void)setInputMessageB :(NSData*)newInputMessage;

Default Value

""

Remarks

This property specifies the message to be processed.

Encrypt and/or Sign

When encrypting or signing this may be set to the content that will be encrypted and/or signed.

Decrypt and/or Verify

When decrypting or verifying a signature this may be set to the PEM, DER, or SMIME encoded message.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

OutputFile Property (CMS Module)

The output file.

Syntax

public var outputFile: String {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=outputFile,setter=setOutputFile:) NSString* outputFile;

- (NSString*)outputFile;
- (void)setOutputFile :(NSString*)newOutputFile;

Default Value

""

Remarks

This property specifies the file to which the output will be written. This may be set to an absolute or relative path.

Encrypt and/or Sign

When encrypting or signing this specifies a file where the message will be written.

Decrypt and/or Verify

When decrypting or verifying a signature this specifies a file where the decrypted/verified content will be written.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

  • OutputFile
  • OutputMessage: The output data is written to this property if no other destination is specified.

OutputFormat Property (CMS Module)

Specifies the output format.

Syntax

public var outputFormat: String {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=outputFormat,setter=setOutputFormat:) NSString* outputFormat;

- (NSString*)outputFormat;
- (void)setOutputFormat :(NSString*)newOutputFormat;

Default Value

"PEM"

Remarks

This property specifies the format of the output message created when calling Sign, Encrypt, or SignAndEncrypt.

The various formats allow for easier transport of the signed or encrypted message, as well as interoperability with other utilities.

Possible values are:

Value Description
PEM (default) A PEM formatted message. For instance:
-----BEGIN CMS-----
MIAGCSqGSIb3DQEHAqCAMIACAQExDzANBglghkgBZQMEAgEFADCABgkqhkiG9w0BBwGggCSABGFD
b250ZW50LVR5cGU6IHRleHQvcGxhaW47IGNoYXJzZXQ9Imlzby04ODU5LTEiDQpDb250ZW50LVRy
...
mlJLPoCw5pf3Cjae56oXs29IZMcDXKersNjFGYSaG0o9k3lAcj9llLFh54Xr1ljx7K0VpVvlrmgu
kNHAf7cUvvilW/KrDa+T2n+sOFAAAAAAAAA=
-----END CMS-----
DER The message is binary (raw bytes).
SMIME The message is S/MIME encoded. For instance:
Mime-Version: 1.0
Content-Type: application/pkcs7-mime; smime-type=signed-data; name="smime.p7m"
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename="smime.p7m"

MIAGCSqGSIb3DQEHAqCAMIACAQExDzANBglghkgBZQMEAgEFADCABgkqhkiG9w0BBwGggCSABGFD
b250ZW50LVR5cGU6IHRleHQvcGxhaW47IGNoYXJzZXQ9Imlzby04ODU5LTEiDQpDb250ZW50LVRy
...
Mpc/PtPNeHA3CCFGRFnHju/yb9CsQWpgf8TTWytjP7O1hFUecW0yiuGSDeeNlQ4ZcX0TOm6haRMT
lqYIrHUNMn4tYaREevNBL9CQB8MAAAAAAAA=

OutputMessage Property (CMS Module)

The output message after processing.

Syntax

public var outputMessage: String {
  get {...}
}

public var outputMessageB: Data { get {...} }

@property (nonatomic,readonly,assign,getter=outputMessage) NSString* outputMessage;

- (NSString*)outputMessage;

@property (nonatomic,readonly,assign,getter=outputMessageB) NSData* outputMessageB;

- (NSData*)outputMessageB;

Default Value

""

Remarks

This property will be populated with the output of the operation if OutputFile is not set.

Encrypt and/or Sign

When encrypting or signing this will hold the fully encoded message.

Decrypt and/or Verify

When decrypting or verifying a signature this will hold the decrypted/verified content.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

  • OutputFile
  • OutputMessage: The output data is written to this property if no other destination is specified.

This property is read-only.

RecipientCertCount Property (CMS Module)

The number of records in the RecipientCert arrays.

Syntax

public var recipientCertCount: Int32 {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=recipientCertCount,setter=setRecipientCertCount:) int recipientCertCount;

- (int)recipientCertCount;
- (void)setRecipientCertCount :(int)newRecipientCertCount;

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at RecipientCertCount - 1.

RecipientCertEncoded Property (CMS Module)

This is the certificate (PEM/base64 encoded).

Syntax

public var recipientCertEncoded: String {
  get {...}
  set {...}
}

public var recipientCertEncodedB: Data { get {...} set {...} }

- (NSString*)recipientCertEncoded:(int)recipientCertIndex;
- (void)setRecipientCertEncoded:(int)recipientCertIndex :(NSString*)newRecipientCertEncoded;

- (NSData*)recipientCertEncodedB:(int)recipientCertIndex;
- (void)setRecipientCertEncodedB:(int)recipientCertIndex :(NSData*)newRecipientCertEncoded;

Default Value

""

Remarks

This is the certificate (PEM/base64 encoded). This property is used to assign a specific certificate. The RecipientCertStore and RecipientCertSubject properties also may be used to specify a certificate.

When RecipientCertEncoded is set, a search is initiated in the current RecipientCertStore for the private key of the certificate. If the key is found, RecipientCertSubject is updated to reflect the full subject of the selected certificate; otherwise, RecipientCertSubject is set to an empty string.

If an error occurs when setting this property an error will not be thrown. This property has a related method which will throw an error:

public func setRecipientCertEncodedB(recipientCertEncoded: Data) throws
public func setRecipientCertEncoded(recipientCertEncoded: String) throws

RecipientCertStore Property (CMS Module)

This is the name of the certificate store for the client certificate.

Syntax

public var recipientCertStore: String {
  get {...}
  set {...}
}

public var recipientCertStoreB: Data { get {...} set {...} }

- (NSString*)recipientCertStore:(int)recipientCertIndex;
- (void)setRecipientCertStore:(int)recipientCertIndex :(NSString*)newRecipientCertStore;

- (NSData*)recipientCertStoreB:(int)recipientCertIndex;
- (void)setRecipientCertStoreB:(int)recipientCertIndex :(NSData*)newRecipientCertStore;

Default Value

"MY"

Remarks

This is the name of the certificate store for the client certificate.

The RecipientCertStoreType property denotes the type of the certificate store specified by RecipientCertStore. If the store is password protected, specify the password in RecipientCertStorePassword.

RecipientCertStore is used in conjunction with the RecipientCertSubject property to specify client certificates. If RecipientCertStore has a value, and RecipientCertSubject or RecipientCertEncoded is set, a search for a certificate is initiated. Please see the RecipientCertSubject property for details.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e. PKCS12 certificate store).

RecipientCertStorePassword Property (CMS Module)

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

public var recipientCertStorePassword: String {
  get {...}
  set {...}
}

- (NSString*)recipientCertStorePassword:(int)recipientCertIndex;
- (void)setRecipientCertStorePassword:(int)recipientCertIndex :(NSString*)newRecipientCertStorePassword;

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

RecipientCertStoreType Property (CMS Module)

This is the type of certificate store for this certificate.

Syntax

public var recipientCertStoreType: CmsRecipientCertStoreTypes {
  get {...}
  set {...}
}

public enum CmsRecipientCertStoreTypes: Int32 { case cstUser = 0 case cstMachine = 1 case cstPFXFile = 2 case cstPFXBlob = 3 case cstJKSFile = 4 case cstJKSBlob = 5 case cstPEMKeyFile = 6 case cstPEMKeyBlob = 7 case cstPublicKeyFile = 8 case cstPublicKeyBlob = 9 case cstSSHPublicKeyBlob = 10 case cstP7BFile = 11 case cstP7BBlob = 12 case cstSSHPublicKeyFile = 13 case cstPPKFile = 14 case cstPPKBlob = 15 case cstXMLFile = 16 case cstXMLBlob = 17 case cstJWKFile = 18 case cstJWKBlob = 19 case cstSecurityKey = 20 case cstBCFKSFile = 21 case cstBCFKSBlob = 22 case cstAuto = 99 }

- (int)recipientCertStoreType:(int)recipientCertIndex;
- (void)setRecipientCertStoreType:(int)recipientCertIndex :(int)newRecipientCertStoreType;

Default Value

0

Remarks

This is the type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user. Note: this store type is not available in Java.
1 (cstMachine)For Windows, this specifies that the certificate store is a machine store. Note: this store type is not available in Java.
2 (cstPFXFile)The certificate store is the name of a PFX (PKCS12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in PFX (PKCS12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates. Note: this store type is only available in Java.
5 (cstJKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in Java Key Store (JKS) format. Note: this store type is only available in Java.
6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
20 (cstSecurityKey)The certificate is present on a physical security key accessible via a PKCS11 interface.

To use a security key the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstSecurityKey, CertStorePassword to the PIN, and CertStore to the full path of the PKCS11 dll. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the RecipientCertStore and set RecipientCertStorePassword to the PIN.

Code Example: SSH Authentication with Security Key certmgr.CertStoreType = CertStoreTypes.cstSecurityKey; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstSecurityKey, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store). Note: this store type is only available in Java and .NET.
22 (cstBCFKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format. Note: this store type is only available in Java and .NET.
99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

RecipientCertSubject Property (CMS Module)

This is the subject of the certificate used for client authentication.

Syntax

public var recipientCertSubject: String {
  get {...}
  set {...}
}

- (NSString*)recipientCertSubject:(int)recipientCertIndex;
- (void)setRecipientCertSubject:(int)recipientCertIndex :(NSString*)newRecipientCertSubject;

Default Value

""

Remarks

This is the subject of the certificate used for client authentication.

This property must be set after all other certificate properites are set. When this property is set, a search is performed in the current certificate store certificate with matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma separated list of distinguished name fields and values. For instance "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are displayed below.

FieldMeaning
CNCommon Name. This is commonly a host name like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma it must be quoted.

If an error occurs when setting this property an error will not be thrown. This property has a related method which will throw an error:

public func setRecipientCertSubject(recipientCertSubject: String) throws

SignatureHashAlgorithm Property (CMS Module)

The signature hash algorithm used during signing.

Syntax

public var signatureHashAlgorithm: String {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=signatureHashAlgorithm,setter=setSignatureHashAlgorithm:) NSString* signatureHashAlgorithm;

- (NSString*)signatureHashAlgorithm;
- (void)setSignatureHashAlgorithm :(NSString*)newSignatureHashAlgorithm;

Default Value

"SHA256"

Remarks

This property specifies the signature hash algorithm used when Sign is called.

When Sign is called the input data is first hashed with the algorithm specified by this property to produce a message digest. The computed digest is then digitally signed with the certificates specified in Certificates.

The value specified here may be the name of the algorithm or the corresponding OID. Possible values are:

  • "SHA-256" (default)
  • "SHA-384"
  • "SHA-512"
  • "SHA-224"
  • "SHA1"
  • "MD5"

SignerCertCount Property (CMS Module)

The number of records in the SignerCert arrays.

Syntax

public var signerCertCount: Int32 {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=signerCertCount,setter=setSignerCertCount:) int signerCertCount;

- (int)signerCertCount;
- (void)setSignerCertCount :(int)newSignerCertCount;

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at SignerCertCount - 1.

SignerCertEncoded Property (CMS Module)

This is the certificate (PEM/base64 encoded).

Syntax

public var signerCertEncoded: String {
  get {...}
  set {...}
}

public var signerCertEncodedB: Data { get {...} set {...} }

- (NSString*)signerCertEncoded:(int)signerCertIndex;
- (void)setSignerCertEncoded:(int)signerCertIndex :(NSString*)newSignerCertEncoded;

- (NSData*)signerCertEncodedB:(int)signerCertIndex;
- (void)setSignerCertEncodedB:(int)signerCertIndex :(NSData*)newSignerCertEncoded;

Default Value

""

Remarks

This is the certificate (PEM/base64 encoded). This property is used to assign a specific certificate. The SignerCertStore and SignerCertSubject properties also may be used to specify a certificate.

When SignerCertEncoded is set, a search is initiated in the current SignerCertStore for the private key of the certificate. If the key is found, SignerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SignerCertSubject is set to an empty string.

If an error occurs when setting this property an error will not be thrown. This property has a related method which will throw an error:

public func setSignerCertEncodedB(signerCertEncoded: Data) throws
public func setSignerCertEncoded(signerCertEncoded: String) throws

SignerCertStore Property (CMS Module)

This is the name of the certificate store for the client certificate.

Syntax

public var signerCertStore: String {
  get {...}
  set {...}
}

public var signerCertStoreB: Data { get {...} set {...} }

- (NSString*)signerCertStore:(int)signerCertIndex;
- (void)setSignerCertStore:(int)signerCertIndex :(NSString*)newSignerCertStore;

- (NSData*)signerCertStoreB:(int)signerCertIndex;
- (void)setSignerCertStoreB:(int)signerCertIndex :(NSData*)newSignerCertStore;

Default Value

"MY"

Remarks

This is the name of the certificate store for the client certificate.

The SignerCertStoreType property denotes the type of the certificate store specified by SignerCertStore. If the store is password protected, specify the password in SignerCertStorePassword.

SignerCertStore is used in conjunction with the SignerCertSubject property to specify client certificates. If SignerCertStore has a value, and SignerCertSubject or SignerCertEncoded is set, a search for a certificate is initiated. Please see the SignerCertSubject property for details.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e. PKCS12 certificate store).

SignerCertStorePassword Property (CMS Module)

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

public var signerCertStorePassword: String {
  get {...}
  set {...}
}

- (NSString*)signerCertStorePassword:(int)signerCertIndex;
- (void)setSignerCertStorePassword:(int)signerCertIndex :(NSString*)newSignerCertStorePassword;

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

SignerCertStoreType Property (CMS Module)

This is the type of certificate store for this certificate.

Syntax

public var signerCertStoreType: CmsSignerCertStoreTypes {
  get {...}
  set {...}
}

public enum CmsSignerCertStoreTypes: Int32 { case cstUser = 0 case cstMachine = 1 case cstPFXFile = 2 case cstPFXBlob = 3 case cstJKSFile = 4 case cstJKSBlob = 5 case cstPEMKeyFile = 6 case cstPEMKeyBlob = 7 case cstPublicKeyFile = 8 case cstPublicKeyBlob = 9 case cstSSHPublicKeyBlob = 10 case cstP7BFile = 11 case cstP7BBlob = 12 case cstSSHPublicKeyFile = 13 case cstPPKFile = 14 case cstPPKBlob = 15 case cstXMLFile = 16 case cstXMLBlob = 17 case cstJWKFile = 18 case cstJWKBlob = 19 case cstSecurityKey = 20 case cstBCFKSFile = 21 case cstBCFKSBlob = 22 case cstAuto = 99 }

- (int)signerCertStoreType:(int)signerCertIndex;
- (void)setSignerCertStoreType:(int)signerCertIndex :(int)newSignerCertStoreType;

Default Value

0

Remarks

This is the type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user. Note: this store type is not available in Java.
1 (cstMachine)For Windows, this specifies that the certificate store is a machine store. Note: this store type is not available in Java.
2 (cstPFXFile)The certificate store is the name of a PFX (PKCS12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in PFX (PKCS12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates. Note: this store type is only available in Java.
5 (cstJKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in Java Key Store (JKS) format. Note: this store type is only available in Java.
6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
20 (cstSecurityKey)The certificate is present on a physical security key accessible via a PKCS11 interface.

To use a security key the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstSecurityKey, CertStorePassword to the PIN, and CertStore to the full path of the PKCS11 dll. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the SignerCertStore and set SignerCertStorePassword to the PIN.

Code Example: SSH Authentication with Security Key certmgr.CertStoreType = CertStoreTypes.cstSecurityKey; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstSecurityKey, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store). Note: this store type is only available in Java and .NET.
22 (cstBCFKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format. Note: this store type is only available in Java and .NET.
99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

SignerCertSubject Property (CMS Module)

This is the subject of the certificate used for client authentication.

Syntax

public var signerCertSubject: String {
  get {...}
  set {...}
}

- (NSString*)signerCertSubject:(int)signerCertIndex;
- (void)setSignerCertSubject:(int)signerCertIndex :(NSString*)newSignerCertSubject;

Default Value

""

Remarks

This is the subject of the certificate used for client authentication.

This property must be set after all other certificate properites are set. When this property is set, a search is performed in the current certificate store certificate with matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma separated list of distinguished name fields and values. For instance "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are displayed below.

FieldMeaning
CNCommon Name. This is commonly a host name like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma it must be quoted.

If an error occurs when setting this property an error will not be thrown. This property has a related method which will throw an error:

public func setSignerCertSubject(signerCertSubject: String) throws

UseOAEP Property (CMS Module)

Whether to use Optimal Asymmetric Encryption Padding (OAEP).

Syntax

public var useOAEP: Bool {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=useOAEP,setter=setUseOAEP:) BOOL useOAEP;

- (BOOL)useOAEP;
- (void)setUseOAEP :(BOOL)newUseOAEP;

Default Value

False

Remarks

Whether to use Optimal Asymmetric Encryption Padding (OAEP). By default this value is False and the class will use PKCS1.

To specify non-default OAEP options please see OAEPRSAHashAlgorithm, OAEPMGF1HashAlgorithm, and OAEPParams

UsePSS Property (CMS Module)

Whether to use RSA-PSS during signing and verification.

Syntax

public var usePSS: Bool {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=usePSS,setter=setUsePSS:) BOOL usePSS;

- (BOOL)usePSS;
- (void)setUsePSS :(BOOL)newUsePSS;

Default Value

False

Remarks

This property specifies whether RSA-PSS will be used when signing and verifying messages. The default value is False.

AddCertificate Method (CMS Module)

Used to add certificates for signing.

Syntax

public func addCertificate(certStoreType: Int32, certStore: String, certStorePassword: String, certSubject: String) throws -> Void
- (void)addCertificate:(int)certStoreType :(NSString*)certStore :(NSString*)certStorePassword :(NSString*)certSubject;

Remarks

This method adds a signing certificate. Signing certificates may be added using this method or by adding a certificate directly to Certificates.

The added certificate(s) will be used to sign the message when Sign is called.

CertStoreType specifies the type of certificate store. The class supports both public and private keys in a variety of formats. When the cstAuto value is used the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user. Note: this store type is not available in Java.
1 (cstMachine)For Windows, this specifies that the certificate store is a machine store. Note: this store type is not available in Java.
2 (cstPFXFile)The certificate store is the name of a PFX (PKCS12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in PFX (PKCS12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates. Note: this store type is only available in Java.
5 (cstJKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in Java Key Store (JKS) format. Note: this store type is only available in Java.
6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
20 (cstSecurityKey)The certificate is present on a physical security key accessible via a PKCS11 interface.

To use a security key the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstSecurityKey, CertStorePassword to the PIN, and CertStore to the full path of the PKCS11 dll. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the and set to the PIN.

Code Example: SSH Authentication with Security Key certmgr.CertStoreType = CertStoreTypes.cstSecurityKey; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstSecurityKey, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store). Note: this store type is only available in Java and .NET.
22 (cstBCFKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format. Note: this store type is only available in Java and .NET.
99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

CertStore specifies the path to the certificate file. If the CertStoreType is a blob, this specifies the certificate content. See Certificates for details.

CertStorePassword is the password for the certificate (if any).

CertSubject specified the subject of the certificate to load. The certificate subject is a comma separated list of distinguished name fields and values. For instance "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are displayed below.

FieldMeaning
CNCommon Name. This is commonly a host name like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma it must be quoted.

AddRecipientCert Method (CMS Module)

Used to add recipient certificates used to encrypt messages.

Syntax

public func addRecipientCert(certEncoded: Data) throws -> Void
- (void)addRecipientCert:(NSData*)certEncoded;

Remarks

This method adds a public certificate used when Encrypt is called. Public certificates of recipients may be added using this method or by adding a certificate directly to the RecipientCerts property.

CertEncoded must contain the PEM or Base64 encoded public certificate.

Config Method (CMS Module)

Sets or retrieves a configuration setting.

Syntax

public func config(configurationString: String) throws -> String
- (NSString*)config:(NSString*)configurationString;

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Decrypt Method (CMS Module)

Decrypts the current message.

Syntax

public func decrypt() throws -> Void
- (void)decrypt;

Remarks

Decrypt decrypts the input data with the specified certificate. Certificates are specified by calling AddCertificate or setting the Certificates property.

If the certificate used to encrypt the message is not known ahead of time GetRecipientInfo may be called prior to calling Decrypt to obtain information about the recipient (the entity the for which the message was encrypted). If GetRecipientInfo is called, the RecipientInfo event is fired with information about the recipient which may be used to load an appropriate decryption certificate.

The following properties are applicable when calling this method:

  • Certificates (Required)
Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

Encrypt and Decrypt a message Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt a message - DER Output Format Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.OutputFormat = "DER"; cms.Encrypt(); byte[] encryptedMessage = cms.OutputMessageB; //Binary output cms = new Cms(); cms.InputMessageB = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt - Multiple Recipients Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test2.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt - Get Recipient Info Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; //If the recipient certificate is not known ahead of time the GetRecipientInfo method may be called //to find information about the certificate. cms = new Cms(); cms.InputMessage = encryptedMessage; cms.OnRecipientInfo += (s, e) => { Console.WriteLine(e.SerialNumber); Console.WriteLine(e.Issuer); if (e.Issuer == "CN=100") //Identify the certificate to load based on event params { cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); } }; cms.GetRecipientInfo(); cms.Decrypt(); string plaintextMessage = cms.OutputMessage;

DecryptAndVerifySignature Method (CMS Module)

Decrypts and verifies the signature of the current message.

Syntax

public func decryptAndVerifySignature() throws -> Void
- (void)decryptAndVerifySignature;

Remarks

This method decrypts the input data and verifies the signature. Decryption certificates are specified by calling AddCertificate or setting the Certificates property. Certificates used to verify the signature will be taken from the message itself if included, or from the SignerCerts property.

If the certificate used to encrypt the message is not known ahead of time GetRecipientInfo may be called prior to calling Decrypt to obtain information about the recipient (the entity the for which the message was encrypted). If GetRecipientInfo is called, the RecipientInfo event is fired with information about the recipient which may be used to load an appropriate decryption certificate.

In order to perform signature verification the public signer's certificate must be present or explicitly specified. In many cases the certificate itself is included in the input message and a certificate does not need to explicitly be set. If a certificate does need to be set for signature verification the certificate may be specified by calling AddRecipientCert or setting RecipientCerts.

When this method is called the SignerCertInfo event fires once for each signature on the message. This event provides details about the signer certificate, as well as the signer certificate itself (if present). The information provided via SignerCertInfo may be used to load an appropriate certificate for verification from within the event. If the CertEncoded parameter of SignerCertInfo is populated the certificate required for verification is already present in the message.

The following properties are applicable when calling this method:

If the input message is a detached signature, the original data that was signed must be specified in DetachedSignatureData. In addition the DetachedSignature property must be set to True to instruct the class to treat the input message as a detached signature.

If the input message is compressed EnableCompression must be set to True before calling this method.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

Encrypt Method (CMS Module)

Encrypts the current message.

Syntax

public func encrypt() throws -> Void
- (void)encrypt;

Remarks

Encrypt encrypts the input data with the the specified certificate(s). Certificates are specified by calling AddRecipientCert or setting the RecipientCerts property.

OutputFormat specifies the encoding of the output message. Valid values are PEM, DER, and SMIME. Additional settings allow further configuration. The following properties are applicable when calling this method:

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

Encrypt and Decrypt a message Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt a message - DER Output Format Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.OutputFormat = "DER"; cms.Encrypt(); byte[] encryptedMessage = cms.OutputMessageB; //Binary output cms = new Cms(); cms.InputMessageB = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt - Multiple Recipients Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test2.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt - Get Recipient Info Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; //If the recipient certificate is not known ahead of time the GetRecipientInfo method may be called //to find information about the certificate. cms = new Cms(); cms.InputMessage = encryptedMessage; cms.OnRecipientInfo += (s, e) => { Console.WriteLine(e.SerialNumber); Console.WriteLine(e.Issuer); if (e.Issuer == "CN=100") //Identify the certificate to load based on event params { cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); } }; cms.GetRecipientInfo(); cms.Decrypt(); string plaintextMessage = cms.OutputMessage;

GetRecipientInfo Method (CMS Module)

Gets the recipient certificate information for an encrypted message.

Syntax

public func getRecipientInfo() throws -> Void
- (void)getRecipientInfo;

Remarks

This method retrieves information about the recipient(s) of the encrypted message. This may be called prior to calling Decrypt to determine which certificate should be loaded for decryption.

When this method is called the RecipientInfo event fires once for each recipient found within the message. Use the parameters of the RecipientInfo to determine which certificate to specify via AddCertificate or Certificates before calling Decrypt.

GetSignerCertInfo Method (CMS Module)

This method gets the signature information for an signed message.

Syntax

public func getSignerCertInfo() throws -> Void
- (void)getSignerCertInfo;

Remarks

This method retrieves information about the certificate used to sign the message. This may be called before calling VerifySignature to determine which certificate should be loaded for verification.

When this method is called, the SignerCertInfo event fires once for each signer of the message. Use the parameters of the SignerCertInfo to determine which certificate to specify before calling VerifySignature.

Note: Use of this method is optional. If no certificate is specified before calling VerifySignature, the class will fire the SignerCertInfo and a certificate may be loaded from within the event at that time (if necessary).

Reset Method (CMS Module)

Resets the component properties.

Syntax

public func reset() throws -> Void
- (void)reset;

Remarks

This method resets the values of all message and certificate properties. It is an easy way to reset the class properties before starting to populate with new values.

Sign Method (CMS Module)

Signs the current message.

Syntax

public func sign() throws -> Void
- (void)sign;

Remarks

Sign digitally signs the input data with the the specified certificate(s). Certificates are specified by calling AddCertificate or setting the Certificates property.

OutputFormat specifies the encoding of the output message. Valid values are PEM, DER, and SMIME. IncludeCertificates specifies whether the public certificate is included in the signed message. Additional settings allow further configuration. The following properties are applicable when calling this method:

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

Sign and Verify a message Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - DER Output Format Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.OutputFormat = "DER"; cms.Sign(); byte[] signedMessage = cms.OutputMessageB; //Binary output cms = new Cms(); cms.InputMessageB = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - Detached Signature Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.DetachedSignature = true; cms.Sign(); string signature = cms.OutputMessage; cms = new Cms(); cms.InputMessage = "My Data"; cms.DetachedSignatureData = signature; cms.DetachedSignature = true; cms.VerifySignature(); Sign and Verify a message - Multiple Signatures Cms cms = new Cms(); cms.InputMessage = "My Data"; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test2.pfx", "password2", "*")); cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - No Included Certificate Cms cms = new Cms(); cms.InputMessage = "My Data"; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.IncludeCertificates = CmsIncludeCertificates.icsNone; cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.OnSignerCertInfo += (s, e) => { Console.WriteLine(e.Issuer); Console.WriteLine(e.SerialNumber); if (e.Issuer == "CN=100") //Identify the certificate to load based on event params { //Load the correct signer certificate. cms.SignerCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); } }; cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage;

SignAndEncrypt Method (CMS Module)

Signs and encrypts the current message.

Syntax

public func signAndEncrypt() throws -> Void
- (void)signAndEncrypt;

Remarks

This method signs encrypts the input data with the the specified certificate(s). Encryption certificates are specified by calling AddRecipientCert or setting the RecipientCerts property. Signing certificates are set via the Certificates property.

OutputFormat specifies the encoding of the output message. Valid values are PEM, DER, and SMIME. Additional settings allow further configuration. IncludeCertificates specifies whether the public certificate is included in the signed message. The following properties are applicable when calling this method:

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

VerifySignature Method (CMS Module)

Verifies the signature of the current message.

Syntax

public func verifySignature() throws -> Void
- (void)verifySignature;

Remarks

VerifySignature verifies the signature of the input message.

In order to perform signature verification the public signer's certificate must be present or explicitly specified. In many cases the certificate itself is included in the input message and a certificate does not need to explicitly be set. If a certificate does need to be set for signature verification the certificate may be specified by calling AddRecipientCert or setting RecipientCerts.

When this method is called the SignerCertInfo event fires once for each signature on the message. This event provides details about the signer certificate, as well as the signer certificate itself (if present). The information provided via SignerCertInfo may be used to load an appropriate certificate for verification from within the event. If the CertEncoded parameter of SignerCertInfo is populated the certificate required for verification is already present in the message.

The following property are applicable when calling this method:

If the input message is a detached signature, the original data that was signed must be specified in DetachedSignatureData. In addition the DetachedSignature property must be set to True to instruct the class to treat the input message as a detached signature.

If the input message is compressed EnableCompression must be set to True before calling this method.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

Sign and Verify a message Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - DER Output Format Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.OutputFormat = "DER"; cms.Sign(); byte[] signedMessage = cms.OutputMessageB; //Binary output cms = new Cms(); cms.InputMessageB = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - Detached Signature Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.DetachedSignature = true; cms.Sign(); string signature = cms.OutputMessage; cms = new Cms(); cms.InputMessage = "My Data"; cms.DetachedSignatureData = signature; cms.DetachedSignature = true; cms.VerifySignature(); Sign and Verify a message - Multiple Signatures Cms cms = new Cms(); cms.InputMessage = "My Data"; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test2.pfx", "password2", "*")); cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - No Included Certificate Cms cms = new Cms(); cms.InputMessage = "My Data"; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.IncludeCertificates = CmsIncludeCertificates.icsNone; cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.OnSignerCertInfo += (s, e) => { Console.WriteLine(e.Issuer); Console.WriteLine(e.SerialNumber); if (e.Issuer == "CN=100") //Identify the certificate to load based on event params { //Load the correct signer certificate. cms.SignerCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); } }; cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage;

Error Event (CMS Module)

Information about errors during data delivery.

Syntax

func onError(errorCode: Int32, description: String)
- (void)onError:(int)errorCode :(NSString*)description;

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the class .

ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

Log Event (CMS Module)

Fires with log information during processing.

Syntax

func onLog(logLevel: Int32, message: String, logType: String)
- (void)onLog:(int)logLevel :(NSString*)message :(NSString*)logType;

Remarks

This event fires during processing with log information. The level of detail that is logged is controlled via the LogLevel.

LogLevel indicates the level of message. Possible values are:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data is logged.
3 (Debug) Debug data is logged.

LogMessage is the log entry.

LogType indicates the type of log. Possible values are:

  • "INFO"
  • "ENCRYPT"
  • "COMPRESS"
  • "SIGN"
  • "DECRYPT"
  • "DECOMPRESS"
  • "VERIFY"
  • "DEBUG"

RecipientInfo Event (CMS Module)

Fired for each recipient certificate of the encrypted message.

Syntax

func onRecipientInfo(issuer: String, serialNumber: String, subjectKeyIdentifier: String, encryptionAlgorithm: String)
- (void)onRecipientInfo:(NSString*)issuer :(NSString*)serialNumber :(NSString*)subjectKeyIdentifier :(NSString*)encryptionAlgorithm;

Remarks

When GetRecipientInfo is called on a valid encrypted message, this event will fire once for each recipient certificate that the message has been encrypted for. This may be used to identify the certificate to load.

Issuer is the subject of the issuer certificate.

SerialNumber is the serial number of the encryption certificate.

SubjectKeyIdentifier is the X.509 subjectKeyIdentifier extension value of the certificate used to sign the message encoded as a hex string.

EncryptionAlgorithm is the encryption algorithm used to encrypt the message. Possible values are:

  • "3DES"
  • "DES"
  • "RC2CBC40"
  • "RC2CBC64"
  • "RC2CBC128" or "RC2"
  • "AESCBC128" or "AES"
  • "AESCBC192"
  • "AESCBC256"
  • "AESGCM128" or "AESGCM"
  • "AESGCM192"
  • "AESGCM256"

SignerCertInfo Event (CMS Module)

Fired during verification of the signed message.

Syntax

func onSignerCertInfo(issuer: String, serialNumber: String, subjectKeyIdentifier: String, certEncoded: Data)
- (void)onSignerCertInfo:(NSString*)issuer :(NSString*)serialNumber :(NSString*)subjectKeyIdentifier :(NSData*)certEncoded;

Remarks

During verification, this event will be raised while parsing the signer's certificate information. The parameters which are populated depends on the options used when the message was originally signed. This information may be used to select the correct certificate for SignerCerts in order to verify the signature. The following parameters may be populated.

Issuer specifies the subject of the issuer of the certificate used to sign the message.

SerialNumber is the serial number of the certificate used to sign the message.

SubjectKeyIdentifier is the X.509 subjectKeyIdentifier extension value of the certificate used to sign the message encoded as a hex string.

CertEncoded is the PEM (base64 encoded) public certificate needed to verify the signature. Note: when this value is present the class will automatically use this value to perform signature verification.

The SignerCerts property may be set from within this event. In this manner the decision of which signer certificate to load may be delayed until the parameters of this event are inspected and the correct certificate can be located and loaded.

Config Settings (CMS Module)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

CMS Config Settings

CompressBeforeSign:   Specifies whether to compress before signing.

When EnableCompression is set to True this property controls whether compression happens before or after signing. If set to True the input data will be compressed before signing. If set to False (default) the input data will be signed and then compressed.

ContentTypeOID:   Specifies the oid for content type.

This setting optionally specifies an OID defining the data content type for the data being processed. This may be set before calling Encrypt, Sign, or SignAndEncrypt.

The default value is 1.2.840.113549.1.7.1 which is the OID for id-data.

CSP:   The Cryptographic Service Provider.

For the Win32 editions, the name of the Cryptographic Service Provider used to provide access to encryption/decryption and signature operations.

NOTE: This config may only be used when the UseCryptoAPI is true.

GenerateSignatureTimestamp:   Whether to generate timestamps in signatures.

If GenerateSignatureTimestamp is True, a timestamp will be generated and added to all signatures created by the class.

The default value is True.

IncludeHeaders:   Tells the class whether to include the headers when encoding the message.

If True (default), the class will include MIME headers when Sign, Encrypt, or SignAndEncrypt are called. If False, only the message will be encoded.

The default value for IncludeHeaders is true.

Note: This setting is only applicable to when OutputFormat is set to SMIME.

IncludeInternalHeaders:   Tells the class whether or not to include the internal headers when encoding the message.

If True, the class will generate and include MIME part headers when Sign, Encrypt, or SignAndEncrypt are called. When VerifySignature, Decrypt, or DecryptAndVerifySignature are called the MIME part headers will be stripped.

When set to False, only the message will be processed, MIME part headers will not be generated or stripped.

The default value for IncludeInternalHeaders is False.

Note: This setting is only applicable to when OutputFormat is set to SMIME.

InputContentTransferEncoding:   Sets the Content-Transfer-Encoding for the signed message.

This setting specifies the Content-Transfer-Encoding header value in signed messages. By default the class will automatically determine the Content-Transfer-Encoding based on the file extension set in InputFile, however this setting may be set to override the determined value or to specify a value if data is read from InputMessage.

If no value is specified and a value cannot be automatically determined the default value 7bit will be used.

Note: This setting is only applicable when OutputFormat is set to SMIME and when calling Sign or SignAndEncrypt and DetachedSignature is True.

InputContentType:   Sets the Content-Type for the signed message.

This setting specifies the Content-Type header value in signed messages. By default the class will automatically determine the Content-Type based on the file extension set in InputFile, however this setting may be set to override the determined value or to specify a value if data is read from InputMessage.

If no value is specified and a value cannot be automatically determined the default value text/plain; charset="iso-8859-1" will be used.

Note: This setting is only applicable when OutputFormat is set to SMIME and when calling Sign or SignAndEncrypt and DetachedSignature is True.

InputMessageHeaders:   Message headers.

This setting specifies the headers of the SMIME message if they are not already present in the input message. In most cases the input message itself will contain the necessary headers, however if the headers are and body of the SMIME message are separate, the headers may be specified in this setting before calling Decrypt, DecryptAndVerifySignature, or VerifySignature.

LogDirectory:   The directory on disk where debug logs are written.

This setting specifies a directory on disk to which debug logs will be written during operation. This should only be set for debugging purposes. Files with various extensions will be written to disk at the location specified with debug data for the operation being performed. If LogFilename is not specified the filenames will be in the format yyyy-MM-dd-HH-mm-ss-fff.

LogFilename:   The base filename to use with LogDirectory.

This setting specifies the base filename to use when LogDirectory is set. If specified the name should be a filename without extension. Various files will be logged with different extensions during operation. This setting defines only the base filename. If unspecified the files will be named with a timestamp in the format yyyy-MM-dd-HH-mm-ss-fff.

LogLevel:   The level of detail for log messages.

This setting specifies the level of detail that is logged via the Log event. Possible values are:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data is logged.
3 (Debug) Debug data is logged.

OAEPMGF1HashAlgorithm:   The MGF1 hash algorithm used with OAEP.

This configuration setting specifies the MGF1 hash algorithm used when UseOAEP is set to True. The default value is SHA256. Possible values are as follows:

  • "SHA1"
  • "SHA224"
  • "SHA256" (default)
  • "SHA384"
  • "SHA512"
  • "RIPEMD160"
  • "MD2"
  • "MD5"
  • "MD5SHA1"
OAEPParams:   The hex encoded OAEP parameters.

This configuration setting optionally specifies OAEP parameters to be used when UseOAEP is set to True. The specified value should be hex encoded.

OAEPRSAHashAlgorithm:   The RSA hash algorithm used with OAEP.

This configuration setting specifies that RSA hash algorithm used when UseOAEP is set to True. The default value is SHA256. Possible values are as follows:

  • "SHA1"
  • "SHA224"
  • "SHA256" (default)
  • "SHA384"
  • "SHA512"
  • "RIPEMD160"
  • "MD2"
  • "MD5"
  • "MD5SHA1"
OutputMessageHeaders:   The SMIME headers of the output message.

When IncludeHeaders is set to False the SMIME headers are not included in the output message itself when Sign, Encrypt, or SignAndEncrypt are called. This setting may be used to obtain the SMIME headers separately. This setting is only applicable when OutputFormat is set to SMIME.

RecipientInfoType:   The type of signer information to include in the signed message.

This configuration setting specifies which type of information about the recipient's encryption certificate is included in the encrypted message. Possible values are as follows:

  • 0 (issuerAndSerialNumber - default)
  • 1 (subjectKeyIdentifier)

Note: When subjectKeyIdentifier is selected, the recipient's encryption certificate must contain the subjectKeyIdentifier extension.

SignatureTimestamp:   The signature timestamp in the signed message.

This setting holds the timestamp of the signature. After calling VerifySignature this setting will hold the timestamp identifying when the signature was created. The timestamp is in UTC time with the format yyyyMMddHHmmss. For instance 20181130223821.

SignerInfoType:   The type of signer information to include in the signed message.

This configuration setting specifies which type of information about the signer certificate is included in the signed message. Possible values are as follows:

  • 0 (issuerAndSerialNumber - default)
  • 1 (subjectKeyIdentifier)

Note: When subjectKeyIdentifier is selected, the signing certificate must contain the subjectKeyIdentifier extension.

UseAlgorithmOIDs:   Whether OIDs are used when providing information about the algorithms.

This configuration setting controls whether the EncryptionAlgorithm parameter of the RecipientInfo event is populated with the name of the algorithm, such as 3DES or the corresponding OID such as 1.2.840.113549.3.7.

The default value is False, and the name of the algorithm is used. Set this to True to use the object identifiers instead.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8

The following is a list of valid code page identifiers for Mac OS only:

IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
UseInternalSecurityAPI:   Tells the class whether or not to use the system security libraries or an internal implementation.

By default the class will use the system security libraries to perform cryptographic functions where applicable. Setting this to tells the class to use the internal implementation instead of using the system's security API.

Trappable Errors (CMS Module)

CMS Errors

10191   Invalid index (RecipientIndex).
10192   Message decoding error (code).
10193   Unexpected message type.
10194   Unsupported hashing/signing algorithm.
10195   The message doesn't have any signers.
10196   The message signature could not be verified.
10197   Could not locate a suitable decryption certificate.
10198   The signer certificate could not be found.
10199   No signing certificate was supplied for signing the message.
10201   The specified certificate was not the one required.
10202   The specified certificate could not be found.
10221   Could not acquire CSP.
10222   Type validation error.
10223   Unsupported key size.
10224   Unrecognized Content-Type object identifier.
10225   Unrecognized public key format.
10226   No choices specified.
10228   Must specify output stream.
10280   Invalid Part Index.
10281   Unknown MIME type.
10283   No MIME-boundary found.
10280   Error decoding certificate.

Copyright (c) 2022 /n software inc. - All rights reserved.
IPWorks Encrypt 2022 macOS Edition - Version 22.0 [Build 8369]