TEA Module
Properties Methods Events Config Settings Errors
Encrypt and decrypt data with the TEA (Tiny Encryption Algorithm) block cipher.
Syntax
IPWorksEncrypt.Tea
Remarks
The TEA component is used to encrypt and decrypt data with the TEA (Tiny Encryption Algorithm) block cipher.
To begin simply specify the data you wish to encrypt or decrypt.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
Before encrypting you must have a valid Key and IV. There are a few options available to you in regards to key management. The easiest option is to simply set KeyPassword. When KeyPassword is set the component will automatically create a Key and IV using the PKCS5 password digest algorithm. This means there is only one value you need to keep track of.
If you wish to have more control over the Key and IV values you may specify the properties yourself. If IV is left empty, one will be created for you when you call Encrypt or Decrypt.
A simple example:
Component.InputFile = "C:\MyFile.txt";
Component.OutputFile = "C:\Encrypted.txt";
Component.KeyPassword = "password";
Component.Encrypt();
BlockSize Notes
When the BlockSize is larger than 2048, PaddingMode must be set to either 1 (pmZeros) or 2 (pmNone). Other padding modes are not supported when BlockSize is larger than 2048.
Property List
The following is the full list of the properties of the module with short descriptions. Click on the links for further details.
Algorithm | The TEA algorithm. |
CipherMode | The cipher mode of operation. |
InputFile | The file to process. |
InputMessage | The message to process. |
IV | The initialization vector (IV). |
Key | The secret key for the symmetric algorithm. |
KeyPassword | A password to generate the Key and IV . |
OutputFile | The output file when encrypting or decrypting. |
OutputMessage | The output message after processing. |
Overwrite | Indicates whether or not the module should overwrite files. |
PaddingMode | The padding mode. |
UseHex | Whether input or output is hex encoded. |
Method List
The following is the full list of the methods of the module with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
Decrypt | Decrypts the data. |
DecryptBlock | Decrypts a block and returns the decrypted data. |
Encrypt | Encrypts the data. |
EncryptBlock | Encrypts data and returns the encrypted block. |
Reset | Resets the module. |
Event List
The following is the full list of the events fired by the module with short descriptions. Click on the links for further details.
Error | Fired when information is available about errors during data delivery. |
Progress | Fired as progress is made. |
Config Settings
The following is a list of config settings for the module with short descriptions. Click on the links for further details.
BlockSize | The block size, in bits, of the cryptographic operation. |
EncryptedDataEncoding | The encoding of the encrypted input or output data. |
IncludeIV | Whether to prepend the IV to the output data and read the IV from the input data. |
KeyPasswordAlgorithm | The hash algorithm used to derive the Key and IV from the KeyPassword property. |
KeyPasswordIterations | The number of iterations performed when using KeyPassword to derive the Key and IV. |
KeyPasswordSalt | The salt value used in conjunction with the KeyPassword to derive the Key and IV. |
KeySize | The size, in bits, of secret key for the symmetric algorithm. |
TEARounds | The number of rounds for TEA and XTEA. |
XTEAAlgorithm | The XTEA algorithm. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitive | Whether sensitive data is masked in log messages. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
Algorithm Property (TEA Module)
The TEA algorithm.
Syntax
public var algorithm: TeaAlgorithms { get {...} set {...} }
public enum TeaAlgorithms: Int32 { case taXXTEA = 0 case taXTEA = 1 case taTEA = 2 }
@property (nonatomic,readwrite,assign,getter=algorithm,setter=setAlgorithm:) int algorithm; - (int)algorithm; - (void)setAlgorithm :(int)newAlgorithm;
Default Value
0
Remarks
This property specifies the TEA algorithm to use. It is recommended to use the XXTEA (Corrected Block TEA) algorithm for security reasons. Possible values are:
0 (taXXTEA - default) | Correct Block TEA |
1 (taXTEA) | eXtended TEA |
2 (taTEA) | TEA (Tiny Encryption Algorithm) |
CipherMode Property (TEA Module)
The cipher mode of operation.
Syntax
public var cipherMode: TeaCipherModes { get {...} set {...} }
public enum TeaCipherModes: Int32 { case cmCBC = 0 case cmECB = 1 case cmOFB = 2 case cmCFB = 3 case cmCTS = 4 case cm8OFB = 5 case cm8CFB = 7 }
@property (nonatomic,readwrite,assign,getter=cipherMode,setter=setCipherMode:) int cipherMode; - (int)cipherMode; - (void)setCipherMode :(int)newCipherMode;
Default Value
0
Remarks
The cipher mode of operation.
Possible values are:
0 (cmCBC - default) | The Cipher Block Chaining (CBC) is a mode of operation for a block cipher, one in which a sequence of bits is encrypted as a single unit or block with a cipher key applied to the entire block. |
1 (cmECB) | The Electronic Codebook (ECB) mode encrypts each block separately. Important: It is not recommend to use this model when encrypting more than one block because it may introduce security risks. |
2 (cmOFB) | The Output Feedback (n-bit, NOFB) mode makes a block cipher into a synchronous stream cipher. It has some similarities to CFB mode in that it permits encryption of differing block sizes, but has the key difference that the output of the encryption block function is the feedback (instead of the ciphertext). |
3 (cmCFB) | The Cipher Feedback (CFB) mode processes a small amount of incremental text into ciphertext, rather than processing a whole block at one time. |
4 (cmCTS) | The Cipher Text Stealing (CTS) mode handles any length of plain text and produces cipher text whose length matches the plain text length. This mode behaves like the CBC mode for all but the last two blocks of the plain text. |
5 (cm8OFB) | 8-bit Output Feedback (OFB) cipher mode. |
7 (cm8CFB) | 8-bit Cipher Feedback (CFB) cipher mode. |
InputFile Property (TEA Module)
The file to process.
Syntax
public var inputFile: String { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=inputFile,setter=setInputFile:) NSString* inputFile; - (NSString*)inputFile; - (void)setInputFile :(NSString*)newInputFile;
Default Value
""
Remarks
This property specifies the file to be processed. Set this property to the full or relative path to the file which will be processed.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- InputFile
- InputMessage
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
InputMessage Property (TEA Module)
The message to process.
Syntax
public var inputMessage: String { get {...} set {...} }
public var inputMessageB: Data { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=inputMessage,setter=setInputMessage:) NSString* inputMessage; - (NSString*)inputMessage; - (void)setInputMessage :(NSString*)newInputMessage; @property (nonatomic,readwrite,assign,getter=inputMessageB,setter=setInputMessageB:) NSData* inputMessageB; - (NSData*)inputMessageB; - (void)setInputMessageB :(NSData*)newInputMessage;
Default Value
""
Remarks
This property specifies the message to be processed.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- InputFile
- InputMessage
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
IV Property (TEA Module)
The initialization vector (IV).
Syntax
@property (nonatomic,readwrite,assign,getter=IV,setter=setIV:) NSString* IV; - (NSString*)IV; - (void)setIV :(NSString*)newIV; @property (nonatomic,readwrite,assign,getter=IVB,setter=setIVB:) NSData* IVB; - (NSData*)IVB; - (void)setIVB :(NSData*)newIV;
Default Value
""
Remarks
This property specifies the initialization vector (IV). By default this property is empty and the class will automatically generate a new IV value if KeyPassword or Key is set before Encrypt or EncryptBlock is called. The size of the IV property must be equal to the BlockSize divided by 8.
Key Property (TEA Module)
The secret key for the symmetric algorithm.
Syntax
@property (nonatomic,readwrite,assign,getter=key,setter=setKey:) NSString* key; - (NSString*)key; - (void)setKey :(NSString*)newKey; @property (nonatomic,readwrite,assign,getter=keyB,setter=setKeyB:) NSData* keyB; - (NSData*)keyB; - (void)setKeyB :(NSData*)newKey;
Default Value
""
Remarks
This secret key is used both for encryption and decryption. The secret key should be known only to the sender and the receiver. The legal key size varies depending on the algorithm.
If this property is left empty and KeyPassword is specified, a Key value will be generated by the class as necessary.
Legal Key and Block Sizes (in bits)
AES | Rijndael | CAST | DES | IDEA | RC2 | RC4 | TripleDES | Blowfish | Twofish | TEA | |
Minimum Key Size | 128 | 128 | 112 | 64 | 128 | 112 | 112 | 128 | 112 | 128 | 128 |
Maximum Key Size | 256 | 256 | 128 | 64 | 128 | 128 | 2048 | 192 | 448 | 256 | 128 |
Key Size Step | 64 | 64 | 8 | 0 | 0 | 8 | 8 | 64 | 1 | 8 | 0 |
Block Size | 128 | 128/192/256 | 64 | 64 | 64 | 64 | N/A | 64 | 64 | 128 | 64* |
Note: When using TEA if Algorithm is set to XXTEA valid block sizes are 64 + n * 32. Where n is any positive integer.
The default KeySize is the Maximum Key Size.
KeyPassword Property (TEA Module)
A password to generate the Key and IV .
Syntax
public var keyPassword: String { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=keyPassword,setter=setKeyPassword:) NSString* keyPassword; - (NSString*)keyPassword; - (void)setKeyPassword :(NSString*)newKeyPassword;
Default Value
""
Remarks
When this property is set the class will calculate values for Key and IV using the PKCS5 password digest algorithm. This provides a simpler alternative to creating and managing Key and IV values directly.
The size of the Key generated is dependent on the value of KeySize.
OutputFile Property (TEA Module)
The output file when encrypting or decrypting.
Syntax
public var outputFile: String { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=outputFile,setter=setOutputFile:) NSString* outputFile; - (NSString*)outputFile; - (void)setOutputFile :(NSString*)newOutputFile;
Default Value
""
Remarks
This property specifies the file to which the output will be written when Encrypt or Decrypt is called. This may be set to an absolute or relative path.
This property is only applicable to Encrypt and Decrypt.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
OutputMessage Property (TEA Module)
The output message after processing.
Syntax
@property (nonatomic,readonly,assign,getter=outputMessage) NSString* outputMessage; - (NSString*)outputMessage; @property (nonatomic,readonly,assign,getter=outputMessageB) NSData* outputMessageB; - (NSData*)outputMessageB;
Default Value
""
Remarks
This property will be populated with the output from the operation if OutputFile is not set.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
This property is read-only.
Overwrite Property (TEA Module)
Indicates whether or not the module should overwrite files.
Syntax
public var overwrite: Bool { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=overwrite,setter=setOverwrite:) BOOL overwrite; - (BOOL)overwrite; - (void)setOverwrite :(BOOL)newOverwrite;
Default Value
False
Remarks
This property indicates whether or not the class will overwrite OutputFile. If Overwrite is False, an error will be thrown whenever OutputFile exists before an operation. The default value is False.
PaddingMode Property (TEA Module)
The padding mode.
Syntax
public var paddingMode: TeaPaddingModes { get {...} set {...} }
public enum TeaPaddingModes: Int32 { case pmPKCS7 = 0 case pmZeros = 1 case pmNone = 2 case pmANSIX923 = 3 case pmISO10126 = 4 }
@property (nonatomic,readwrite,assign,getter=paddingMode,setter=setPaddingMode:) int paddingMode; - (int)paddingMode; - (void)setPaddingMode :(int)newPaddingMode;
Default Value
0
Remarks
PaddingMode is used to pad the final input block to guarantee that it is the correct size required for the selected CipherMode. If the input size is a multiple of the cipher's BlockSize, an extra block of padding will be appended to the input. This enables the decrypting agent to know with certainty how many bytes of padding are included. Each mode pads the data differently. Possible values are:
0 (pmPKCS7 - default) | The data is padded with a series of bytes that are each equal to the number of bytes used.
For instance, in the example below the data must be padded with 3 additional bytes, so each byte value will be 3.
Raw Data: AA AA AA AA AA PKCS7 Padded Data: AA AA AA AA AA 03 03 03 |
1 (pmZeros) | The data is padded with null bytes. |
2 (pmNone) | No padding will be performed. |
3 (pmANSIX923) | The ANSIX923 padding string consists of a sequence of bytes filled with zeros before the length.
For instance, in the example below the data must be padded with 3 additional bytes, so last byte value will be 3.
Raw Data: AA AA AA AA AA ANSIX923 padding Data: AA AA AA AA AA 00 00 03 |
4 (pmISO10126) | The ISO10126 padding string consists of random data before the length.
For instance, in the example below the data must be padded with 3 additional bytes, so last byte value will be 3.
Raw Data: AA AA AA AA AA ISO10126 padding Data: AA AA AA AA AA F8 EF 03 |
When calling Decrypt the PaddingMode must match the value used when the data was encrypted.
Note: When using a value of 2 (pmNone), unless the length of input is an exact multiple of the cipher's input BlockSize, the final block of plaintext may be lost.
UseHex Property (TEA Module)
Whether input or output is hex encoded.
Syntax
public var useHex: Bool { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=useHex,setter=setUseHex:) BOOL useHex; - (BOOL)useHex; - (void)setUseHex :(BOOL)newUseHex;
Default Value
False
Remarks
This property specifies whether the encrypted data is hex encoded.
If set to True, when Encrypt is called the class will perform the encryption as normal and then hex encode the output. OutputMessage or OutputFile will hold hex encoded data.
If set to True, when Decrypt is called the class will expect InputMessage or InputFile to hold hex encoded data. The class will then hex decode the data and perform decryption as normal.
Config Method (TEA Module)
Sets or retrieves a configuration setting.
Syntax
- (NSString*)config:(NSString*)configurationString;
Remarks
Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Decrypt Method (TEA Module)
Decrypts the data.
Syntax
public func decrypt() throws -> Void
- (void)decrypt;
Remarks
This method will decrypt the specified data. The following properties are applicable:
- IV (required)
- Key (required)
- CipherMode
- PaddingMode
Note that CipherMode must be set to the same value used during encryption or the results may be unexpected. If the CipherMode value does not match the value used during encryption the operation may succeed but the decrypted data may not be correct.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
DecryptBlock Method (TEA Module)
Decrypts a block and returns the decrypted data.
Syntax
- (NSData*)decryptBlock:(NSData*)inputBuffer :(BOOL)lastBlock;
Remarks
This method will decrypt the specified block and return the decrypted data.
InputBuffer specifies the encrypted block to decrypt.
LastBlock indicates whether the block is the last block.
Encrypt Method (TEA Module)
Encrypts the data.
Syntax
public func encrypt() throws -> Void
- (void)encrypt;
Remarks
This method will encrypt the specified data. The following properties are applicable:
- IV (required)
- Key (required)
- PaddingMode
- CipherMode
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
EncryptBlock Method (TEA Module)
Encrypts data and returns the encrypted block.
Syntax
- (NSData*)encryptBlock:(NSData*)inputBuffer :(BOOL)lastBlock;
Remarks
This method will encrypt the input data and return the encrypted block.
InputBuffer specifies the input data to encrypt.
LastBlock specifies whether the block is the last block.
Reset Method (TEA Module)
Resets the component.
Syntax
public func reset() throws -> Void
- (void)reset;
Remarks
When called, the class will reset all of its properties to their default values.
Error Event (TEA Module)
Fired when information is available about errors during data delivery.
Syntax
- (void)onError:(int)errorCode :(NSString*)description;
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the class .
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
Progress Event (TEA Module)
Fired as progress is made.
Syntax
- (void)onProgress:(long long)bytesProcessed :(int)percentProcessed;
Remarks
This event is fired automatically as data is processed by the class.
The PercentProcessed parameter indicates the current status of the operation.
The BytesProcessed parameter holds the total number of bytes processed so far.
Config Settings (TEA Module)
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.TEA Config Settings
The following algorithms have a fixed block size: AES, CAST, DES, IDEA, RC2, TripleDES, Blowfish, and Twofish.
When Encrypt is called the class will perform the encryption as normal and then encode the output as specified here. OutputMessage or OutputFile will hold the encoded data.
When Decrypt is called the class will expect InputMessage or InputFile to hold the encoded data as specified here. The class will then decode the data and perform decryption as normal.
Possible values are:
- 0 (none - default)
- 1 (Base64)
- 2 (Hex)
- 3 (Base64URL)
- "SHA1"
- "MD2"
- "MD5" (default)
- "HMAC-SHA1"
- "HMAC-SHA224"
- "HMAC-SHA256"
- "HMAC-SHA384"
- "HMAC-SHA512"
- "HMAC-MD5"
- "HMAC-RIPEMD160"
When using any HMAC algorithm the PBKDF#2 method from RFC 2898 is used. Any other algorithm uses PBKDF#1 from the same RFC.
This setting is only applicable when KeyPassword is specified.
Note that when using the EzCrypt class, KeySize should be set after setting the Algorithm property.
0 (default) | Standard implementation |
1 | Alternative implementation |
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
Setting this configuration setting to tells the class to use the internal implementation instead of using the system security libraries.
This setting is set to by default on all platforms.
Trappable Errors (TEA Module)
TEA Errors
101 Unsupported algorithm. | |
102 No Key specified. | |
103 No IV specified. | |
104 Cannot read or write file. | |
107 Block size is not valid for this algorithm. | |
108 Key size is not valid for this algorithm. | |
111 OutputFile already exists and Overwrite is False. | |
121 The specified key is invalid. | |
123 IV size is not valid for this algorithm. | |
304 Cannot write file. | |
305 Cannot read file. | |
306 Cannot create file. | |
2004 Invalid padding. This may be an indication that the key is incorrect. | |
119 Invalid PaddingMode. |