IPWorks Encrypt 2022 macOS Edition
Version 22.0 [Build 8369]

ECC Module

Properties   Methods   Events   Config Settings   Errors  

The ECC (Elliptic Curve Cryptography) module implements ECDSA, EdDSA, ECDH, and ECIES operations.

Syntax

IPWorksEncrypt.Ecc

Remarks

The ECC (Elliptic Curve Cryptography) class implements ECDSA (Elliptic Curve Digital Signature Algorithm), EdDSA (Edwards-curve Digital Signature Algorithm), and ECDH (Elliptic Curve Diffie Hellman), and ECIES (Elliptic Curve Integrated Encryption Scheme) operations. The class supports the following common operations:

  • CreateKey allows key creation for secp256r1, secp384r1, secp521r1, x25519, x448, ed25519, and ed448 keys.
  • ComputeSecret computes a shared secret between two parties using a public and private key (ECDH).
  • Sign and Verify provides a way to digitally sign data and verify signatures (ECDSA and EdDSA).
  • Encrypt and Decrypt encrypt and decrypt data using a public and private key (ECIES).

The class is very flexible and offers many properties and configuration settings to configure the class. The sections below detail the use of the class for each of the major operations listed above.

Key Creation and Management

CreateKey creates a new public and private key.

When this method is called Key is populated with the generated key. The KeyPublicKey and KeyPrivateKey property hold the PEM formatted public and private key for ease of use. This is helpful for storing or transporting keys more easily.

The KeyAlgorithm parameter specifies the algorithm for which the key is intended to be used. Possible values are:

KeyAlgorithmSupported Operations
secp256r1ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature)
secp384r1ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature)
secp521r1ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature)
x25519ECDH (ComputeSecret)
x448ECDH (ComputeSecret)
ed25519EdDSA (Sign and VerifySignature)
ed448EdDSA (Sign and VerifySignature)
eaSecp160k1ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature)
eaSecp192k1ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature)
eaSecp224k1ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature)
eaSecp256k1ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature)

NIST Curve Notes

Keys for use with the secp256r1, secp384r1, and secp521r1 curves are made up of a number of individual parameters.

The public key consists of the following parameters:

  • KeyRx
  • KeyRy

The private key consists of one value:

  • KeyK

Curve25519 and Curve448 Notes

Keys for use with Curve25519 or Curve448 are made up of a private key and public key field.

KeyXPk holds the public key.

KeyXSk holds the private key.

Create Key Example (secp256r1 - PEM)

//Create a key using secp256r1 Ecc ecc = new Ecc(); ecc.CreateKey("secp256r1"); Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1" string privKey = ecc.Key.PrivateKey; //PEM formatted key string pubKey = ecc.Key.PublicKey; //PEM formatted key //Load the saved key ecc.Reset(); ecc.Key.PublicKey = pubKey; ecc.Key.PrivateKey = privKey; Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"

Create Key Example (secp256r1 - Raw Key Params)

//Create a key using secp256r1 and store/load the key using the individual params Ecc ecc = new Ecc(); ecc.CreateKey("secp256r1"); Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1" byte[] K = ecc.Key.KB; //Private key param byte[] Rx = ecc.Key.RxB; //Public key param byte[] Ry = ecc.Key.RyB; //Public key param //Load the saved key ecc.Reset(); ecc.Key.Algorithm = ECAlgorithms.eaSecp256r1; //This MUST be set manually when using key params directly ecc.Key.KB = K; ecc.Key.RxB = Rx; ecc.Key.RyB = Ry; Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"

Create Key Example (ed25519 - PEM)

//Create a key using ed25519 Ecc ecc = new Ecc(); ecc.CreateKey("ed25519"); Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519" string privKey = ecc.Key.PrivateKey; //PEM formatted key string pubKey = ecc.Key.PublicKey; //PEM formatted key //Load the saved key ecc.Reset(); ecc.Key.PublicKey = pubKey; ecc.Key.PrivateKey = privKey; Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"

Create Key Example (ed25519 - Raw Key Params)

//Create a key using ed25519 and store/load the key using the individual params Ecc ecc = new Ecc(); ecc.CreateKey("ed25519"); Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519" byte[] XPk = ecc.Key.XPkB; //Public key data byte[] XSk = ecc.Key.XSkB; //Secret key data //Load the saved key ecc.Reset(); ecc.Key.Algorithm = ECAlgorithms.eaEd25519; //This MUST be set manually when using key params directly ecc.Key.XPkB = XPk; ecc.Key.XSkB = XSk; Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"

Compute Secret (ECDH)

This method computes a shared secret using Elliptic Curve Diffie Hellman (ECDH).

When this method is called the class will use the public key specified by RecipientKeyPublicKey and the private key specified by Key to compute a shared secret, or secret agreement. The ComputeSecretKDF property specifies the Hash or HMAC algorithm that is applied to the raw secret. The resulting value is held by SharedSecret. The following properties are applicable when calling this method:

See ComputeSecretKDF for details on advanced settings that may be applicable for the chosen algorithm.

Keys created with the ed25519 and ed448 algorithms are not supported when calling this method.

Compute Secret Example

//Create a key for Party 1 Ecc ecc1 = new Ecc(); ecc1.CreateKey("x25519"); string ecc1_priv = ecc1.Key.PrivateKey; string ecc1_pub = ecc1.Key.PublicKey; //Create a key for Party 2 Ecc ecc2 = new Ecc(); ecc2.CreateKey("x25519"); string ecc2_priv = ecc2.Key.PrivateKey; string ecc2_pub = ecc2.Key.PublicKey; //Note: the public keys must be exchanged between parties by some mechanism //Create the shared secret on Party 1 ecc1.Reset(); ecc1.Key.PrivateKey = ecc1_priv; //Private key of this party ecc1.RecipientKey.PublicKey = ecc2_pub; //Public key of other party ecc1.UseHex = true; //Hex encodes the shared secret bytes for easier display/storage ecc1.ComputeSecret(); Console.WriteLine(ecc1.SharedSecret); //Create the shared secret on Party 2 ecc2.Reset(); ecc2.Key.PrivateKey = ecc2_priv; //Private key of this party ecc2.RecipientKey.PublicKey = ecc1_pub; //Public key of other party ecc2.UseHex = true; //Hex encodes the shared secret bytes for easier display/storage ecc2.ComputeSecret(); Console.WriteLine(ecc2.SharedSecret); //This will match the shared secret created by ecc1.

Signing (ECDSA and EdDSA)

Sign will create a hash signature using ECDSA or EdDSA. The class will use the key specified by Key to has the input data and sign the resulting hash.

Key must contain a private key created with a valid ECDSA or EdDSA algorithm. KeyAlgorithm is used to determine the eligibility of the key for this operation. Supported algorithms for signing are:

  • secp256r1
  • secp384r1
  • secp521r1
  • ed25519
  • ed448

See CreateKey for details about key creation and algorithms.

When this method is called data will be read from the InputFile or InputMessage.

The hash to be signed will be computed using the specified HashAlgorithm. The computed hash is stored in the HashValue property. The signed hash is stored in the HashSignature property.

To sign as hash without first computing it set HashValue to a previously computed hash for the input data. Note: HashValue is not applicable when signing with a PureEdDSA algorithm such as "ed25519" or "ed448".

The Progress event will fire with updates for the hash computation progress only. The hash signature creation process is quick and does not require progress updates.

After calling Sign the public key must be sent to the recipient along with HashSignature and original input data so the other party may perform signature verification.

The following properties are applicable when calling this method:

The following properties are populated after calling this method:

EdDSA Notes

When the KeyAlgorithm is ed25519 or ed448 the following additional parameters are applicable:

EdDSA keys can be used with a PureEdDSA algorithm (ed25519/ed448) or as HashEdDSA (ed25519ph, ed448ph) algorithm. This is controlled by the HashEdDSA property. By default the class uses the PureEdDSA algorithm.

The PureEdDSA algorithm requires two passes over the input data but provides collision resilience. The collision resilience of PureEdDSA means even if it is feasible to compute collisions for the hash function, the algorithm is still secure. When using PureEdDSA HashValue is not applicable.

When using a HashEdDSA algorithm the input is pre-hashed and supports a single pass over the data during the signing operation. To enable HashEdDSA set HashEdDSA to True.

To specify context data when using ed25519 or ed448 set EdDSAContext.

Sign And Verify Example (ECDSA)

//Create an ECDSA key on Party 1 Ecc ecc1 = new Ecc(); ecc1.CreateKey("secp256r1"); string ecc1_priv = ecc1.Key.PrivateKey; string ecc1_pub = ecc1.Key.PublicKey; //Sign the data on Party 1 string originalData = "hello ecc"; ecc1.Reset(); ecc1.Key.PrivateKey = ecc1_priv; ecc1.InputMessage = originalData; ecc1.UseHex = true; //Hex encode the hash signature for ease of use. ecc1.Sign(); string hashSignature = ecc1.HashSignature; //Transmit the hash signature, public key, and original data to part 2 //Verify the data on Party 2 Ecc ecc2 = new Ecc(); ecc2.SignerKey.PublicKey = ecc1_pub; ecc2.InputMessage = originalData; ecc2.HashSignature = hashSignature; ecc2.UseHex = true; //Decode the hex encoded hash signature bool isVerified = ecc2.VerifySignature();

Sign And Verify Example (EdDSA - PureEdDSA)

//Create an EdDSA key on Party 1 Ecc ecc1 = new Ecc(); ecc1.CreateKey("ed25519"); string ecc1_priv = ecc1.Key.PrivateKey; string ecc1_pub = ecc1.Key.PublicKey; //Sign the data on Party 1 string originalData = "hello ecc"; ecc1.Reset(); ecc1.Key.PrivateKey = ecc1_priv; ecc1.InputMessage = originalData; ecc1.UseHex = true; //Hex encode the hash signature for ease of use. ecc1.Sign(); string hashSignature = ecc1.HashSignature; //Transmit the hash signature, public key, and original data to part 2 //Verify the data on Party 2 Ecc ecc2 = new Ecc(); ecc2.SignerKey.PublicKey = ecc1_pub; ecc2.InputMessage = originalData; ecc2.HashSignature = hashSignature; ecc2.UseHex = true; //Decode the hex encoded hash signature bool isVerified = ecc2.VerifySignature();

Sign And Verify Example (EdDSA - HashEdDSA)

//Create an EdDSA key on Party 1 Ecc ecc1 = new Ecc(); ecc1.CreateKey("ed25519"); string ecc1_priv = ecc1.Key.PrivateKey; string ecc1_pub = ecc1.Key.PublicKey; //Sign the data on Party 1 string originalData = "hello ecc"; ecc1.Reset(); ecc1.Key.PrivateKey = ecc1_priv; ecc1.InputMessage = originalData; ecc1.UseHex = true; //Hex encode the hash signature for ease of use. ecc1.HashEdDSA = true; //Use "ed25519ph" ecc1.Sign(); string hashSignature = ecc1.HashSignature; //Transmit the hash signature, public key, and original data to part 2 //Verify the data on Party 2 Ecc ecc2 = new Ecc(); ecc2.SignerKey.PublicKey = ecc1_pub; ecc2.InputMessage = originalData; ecc2.HashSignature = hashSignature; ecc2.HashEdDSA = true; ecc2.UseHex = true; //Decode the hex encoded hash signature bool isVerified = ecc2.VerifySignature();

Verifying (ECDSA and EdDSA)

VerifySignature will verify a hash signature and return True if successful or False otherwise.

Before calling this method specify the input file by setting InputFile or InputMessage.

A public key and the hash signature are required to perform the signature verification. Specify the public key in SignerKey. Specify the hash signature in HashSignature.

When this method is called the class will compute the hash for the specified file and populate HashValue. It will verify the signature using the specified SignerKey and HashSignature.

To verify the hash signature without first computing the hash simply specify HashValue before calling this method. Note: HashValue is not applicable when the message was signed with a PureEdDSA algorithm such as ed25519 or ed448.

The Progress event will fire with updates for the hash computation progress only. The hash signature verification process is quick and does not require progress updates.

The following properties are applicable when calling this method:

Sign And Verify Example (ECDSA)

//Create an ECDSA key on Party 1 Ecc ecc1 = new Ecc(); ecc1.CreateKey("secp256r1"); string ecc1_priv = ecc1.Key.PrivateKey; string ecc1_pub = ecc1.Key.PublicKey; //Sign the data on Party 1 string originalData = "hello ecc"; ecc1.Reset(); ecc1.Key.PrivateKey = ecc1_priv; ecc1.InputMessage = originalData; ecc1.UseHex = true; //Hex encode the hash signature for ease of use. ecc1.Sign(); string hashSignature = ecc1.HashSignature; //Transmit the hash signature, public key, and original data to part 2 //Verify the data on Party 2 Ecc ecc2 = new Ecc(); ecc2.SignerKey.PublicKey = ecc1_pub; ecc2.InputMessage = originalData; ecc2.HashSignature = hashSignature; ecc2.UseHex = true; //Decode the hex encoded hash signature bool isVerified = ecc2.VerifySignature();

Sign And Verify Example (EdDSA - PureEdDSA)

//Create an EdDSA key on Party 1 Ecc ecc1 = new Ecc(); ecc1.CreateKey("ed25519"); string ecc1_priv = ecc1.Key.PrivateKey; string ecc1_pub = ecc1.Key.PublicKey; //Sign the data on Party 1 string originalData = "hello ecc"; ecc1.Reset(); ecc1.Key.PrivateKey = ecc1_priv; ecc1.InputMessage = originalData; ecc1.UseHex = true; //Hex encode the hash signature for ease of use. ecc1.Sign(); string hashSignature = ecc1.HashSignature; //Transmit the hash signature, public key, and original data to part 2 //Verify the data on Party 2 Ecc ecc2 = new Ecc(); ecc2.SignerKey.PublicKey = ecc1_pub; ecc2.InputMessage = originalData; ecc2.HashSignature = hashSignature; ecc2.UseHex = true; //Decode the hex encoded hash signature bool isVerified = ecc2.VerifySignature();

Sign And Verify Example (EdDSA - HashEdDSA)

//Create an EdDSA key on Party 1 Ecc ecc1 = new Ecc(); ecc1.CreateKey("ed25519"); string ecc1_priv = ecc1.Key.PrivateKey; string ecc1_pub = ecc1.Key.PublicKey; //Sign the data on Party 1 string originalData = "hello ecc"; ecc1.Reset(); ecc1.Key.PrivateKey = ecc1_priv; ecc1.InputMessage = originalData; ecc1.UseHex = true; //Hex encode the hash signature for ease of use. ecc1.HashEdDSA = true; //Use "ed25519ph" ecc1.Sign(); string hashSignature = ecc1.HashSignature; //Transmit the hash signature, public key, and original data to part 2 //Verify the data on Party 2 Ecc ecc2 = new Ecc(); ecc2.SignerKey.PublicKey = ecc1_pub; ecc2.InputMessage = originalData; ecc2.HashSignature = hashSignature; ecc2.HashEdDSA = true; ecc2.UseHex = true; //Decode the hex encoded hash signature bool isVerified = ecc2.VerifySignature();

Encrypting (ECIES)

Encrypt encrypts the specified data with the ECDSA public key specified in RecipientKey.

Encryption is performed using ECIES which requires an ECDSA key. RecipientKey must contain an ECDSA key. Algorithm is used to determine the eligibility of the key for this operation. Supported algorithms for encryption are:

  • secp256r1
  • secp384r2
  • secp521r1

See CreateKey for details about key creation and algorithms.

When this method is called the class will encrypt the specified data using ECIES and the encrypted data will be output. To hex encode the output set UseHex to True.

The following properties are applicable when calling this method:

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

Encrypt and Decrypt Example

//Create an ECDSA key on Party 2 Ecc ecc2 = new Ecc(); ecc2.CreateKey("secp256r1"); string ecc2_priv = ecc2.Key.PrivateKey; string ecc2_pub = ecc2.Key.PublicKey; //Transmit public key to Party 1 //Encrypt the message on Party 1 using public key from Party 2 Ecc ecc1 = new Ecc(); ecc1.InputMessage = "hello ecc"; ecc1.RecipientKey.PublicKey = ecc2_pub; ecc1.UseHex = true; ecc1.Encrypt(); string encryptedMessage = ecc1.OutputMessage; //Transmit the encrypted message to Party 2 //Decrypt the message using the private key for Party 2 ecc2.Key.PrivateKey = ecc2_priv; ecc2.InputMessage = encryptedMessage; ecc2.UseHex = true; ecc2.Decrypt(); Console.WriteLine(ecc2.OutputMessage);

Encrypt and Decrypt Example (AES with IV)

//Create an ECDSA key on Party 2 Ecc ecc2 = new Ecc(); ecc2.CreateKey("secp256r1"); string ecc2_priv = ecc2.Key.PrivateKey; string ecc2_pub = ecc2.Key.PublicKey; //Transmit public key to Party 1 //Encrypt the message on Party 1 using public key from Party 2 Ecc ecc1 = new Ecc(); //Use an IV (16 bytes for AES) - In a real environment this should be random byte[] IV = new byte[] { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F }; ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES; ecc1.IVB = IV; ecc1.InputMessage = "hello ecc"; ecc1.RecipientKey.PublicKey = ecc2_pub; ecc1.UseHex = true; ecc1.Encrypt(); string encryptedMessage = ecc1.OutputMessage; //Transmit the encrypted message and the IV to Party 2 //Decrypt the message using the private key for Party 2 and the IV ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES; ecc2.IVB = IV; ecc2.Key.PrivateKey = ecc2_priv; ecc2.InputMessage = encryptedMessage; ecc2.UseHex = true; ecc2.Decrypt(); Console.WriteLine(ecc2.OutputMessage);

Encrypt and Decrypt Example (XOR Encryption Algorithm)

//Create an ECDSA key on Party 2 Ecc ecc2 = new Ecc(); ecc2.CreateKey("secp256r1"); string ecc2_priv = ecc2.Key.PrivateKey; string ecc2_pub = ecc2.Key.PublicKey; //Transmit public key to Party 1 //Encrypt the message on Party 1 using public key from Party 2 Ecc ecc1 = new Ecc(); ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR; ecc1.InputMessage = "hello ecc"; ecc1.RecipientKey.PublicKey = ecc2_pub; ecc1.UseHex = true; ecc1.Encrypt(); string encryptedMessage = ecc1.OutputMessage; //Transmit the encrypted message to Party 2 //Decrypt the message using the private key for Party 2 ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR; ecc2.Key.PrivateKey = ecc2_priv; ecc2.InputMessage = encryptedMessage; ecc2.UseHex = true; ecc2.Decrypt(); Console.WriteLine(ecc2.OutputMessage);

Encrypt and Decrypt Example (KDF Options)

//Create an ECDSA key on Party 2 Ecc ecc2 = new Ecc(); ecc2.CreateKey("secp256r1"); string ecc2_priv = ecc2.Key.PrivateKey; string ecc2_pub = ecc2.Key.PublicKey; //Transmit public key to Party 1 //Encrypt the message on Party 1 using public key from Party 2 Ecc ecc1 = new Ecc(); ecc1.KDF = "KDF1"; //Use KDF1 ecc1.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1; ecc1.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f"); //Hex encoded string ecc1.InputMessage = "hello ecc"; ecc1.RecipientKey.PublicKey = ecc2_pub; ecc1.UseHex = true; ecc1.Encrypt(); string encryptedMessage = ecc1.OutputMessage; //Transmit the encrypted message to Party 2 //Decrypt the message using the private key for Party 2 ecc2.KDF = "KDF1"; ecc2.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1; ecc2.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f"); ecc2.Key.PrivateKey = ecc2_priv; ecc2.InputMessage = encryptedMessage; ecc2.UseHex = true; ecc2.Decrypt(); Console.WriteLine(ecc2.OutputMessage);

Decrypting (ECIES)

Decrypt decrypts the specified data with the ECDSA private key specified in Key.

Decryption is performed using ECIES which requires an ECDSA key. Key must contain an ECDSA key. KeyAlgorithm is used to determine the eligibility of the key for this operation. Supported algorithms for encryption are:

  • secp256r1
  • secp384r2
  • secp521r1

See CreateKey for details about key creation and algorithms.

When this method is called the class will decrypt the specified data using ECIES and the decrypted data will be output. If the input data was originally hex encoded, set UseHex to True.

The following properties are applicable when calling this method:

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

Encrypt and Decrypt Example

//Create an ECDSA key on Party 2 Ecc ecc2 = new Ecc(); ecc2.CreateKey("secp256r1"); string ecc2_priv = ecc2.Key.PrivateKey; string ecc2_pub = ecc2.Key.PublicKey; //Transmit public key to Party 1 //Encrypt the message on Party 1 using public key from Party 2 Ecc ecc1 = new Ecc(); ecc1.InputMessage = "hello ecc"; ecc1.RecipientKey.PublicKey = ecc2_pub; ecc1.UseHex = true; ecc1.Encrypt(); string encryptedMessage = ecc1.OutputMessage; //Transmit the encrypted message to Party 2 //Decrypt the message using the private key for Party 2 ecc2.Key.PrivateKey = ecc2_priv; ecc2.InputMessage = encryptedMessage; ecc2.UseHex = true; ecc2.Decrypt(); Console.WriteLine(ecc2.OutputMessage);

Encrypt and Decrypt Example (AES with IV)

//Create an ECDSA key on Party 2 Ecc ecc2 = new Ecc(); ecc2.CreateKey("secp256r1"); string ecc2_priv = ecc2.Key.PrivateKey; string ecc2_pub = ecc2.Key.PublicKey; //Transmit public key to Party 1 //Encrypt the message on Party 1 using public key from Party 2 Ecc ecc1 = new Ecc(); //Use an IV (16 bytes for AES) - In a real environment this should be random byte[] IV = new byte[] { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F }; ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES; ecc1.IVB = IV; ecc1.InputMessage = "hello ecc"; ecc1.RecipientKey.PublicKey = ecc2_pub; ecc1.UseHex = true; ecc1.Encrypt(); string encryptedMessage = ecc1.OutputMessage; //Transmit the encrypted message and the IV to Party 2 //Decrypt the message using the private key for Party 2 and the IV ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES; ecc2.IVB = IV; ecc2.Key.PrivateKey = ecc2_priv; ecc2.InputMessage = encryptedMessage; ecc2.UseHex = true; ecc2.Decrypt(); Console.WriteLine(ecc2.OutputMessage);

Encrypt and Decrypt Example (XOR Encryption Algorithm)

//Create an ECDSA key on Party 2 Ecc ecc2 = new Ecc(); ecc2.CreateKey("secp256r1"); string ecc2_priv = ecc2.Key.PrivateKey; string ecc2_pub = ecc2.Key.PublicKey; //Transmit public key to Party 1 //Encrypt the message on Party 1 using public key from Party 2 Ecc ecc1 = new Ecc(); ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR; ecc1.InputMessage = "hello ecc"; ecc1.RecipientKey.PublicKey = ecc2_pub; ecc1.UseHex = true; ecc1.Encrypt(); string encryptedMessage = ecc1.OutputMessage; //Transmit the encrypted message to Party 2 //Decrypt the message using the private key for Party 2 ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR; ecc2.Key.PrivateKey = ecc2_priv; ecc2.InputMessage = encryptedMessage; ecc2.UseHex = true; ecc2.Decrypt(); Console.WriteLine(ecc2.OutputMessage);

Encrypt and Decrypt Example (KDF Options)

//Create an ECDSA key on Party 2 Ecc ecc2 = new Ecc(); ecc2.CreateKey("secp256r1"); string ecc2_priv = ecc2.Key.PrivateKey; string ecc2_pub = ecc2.Key.PublicKey; //Transmit public key to Party 1 //Encrypt the message on Party 1 using public key from Party 2 Ecc ecc1 = new Ecc(); ecc1.KDF = "KDF1"; //Use KDF1 ecc1.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1; ecc1.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f"); //Hex encoded string ecc1.InputMessage = "hello ecc"; ecc1.RecipientKey.PublicKey = ecc2_pub; ecc1.UseHex = true; ecc1.Encrypt(); string encryptedMessage = ecc1.OutputMessage; //Transmit the encrypted message to Party 2 //Decrypt the message using the private key for Party 2 ecc2.KDF = "KDF1"; ecc2.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1; ecc2.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f"); ecc2.Key.PrivateKey = ecc2_priv; ecc2.InputMessage = encryptedMessage; ecc2.UseHex = true; ecc2.Decrypt(); Console.WriteLine(ecc2.OutputMessage);

Property List


The following is the full list of the properties of the module with short descriptions. Click on the links for further details.

ComputeSecretKDFThe key derivation function.
EncryptionAlgorithmThe encryption algorithm to use.
HashAlgorithmThe hash algorithm used for hash computation.
HashEdDSAWhether to use HashEdDSA when signing with an ed25519 or ed448 key.
HashSignatureThe hash signature.
HashValueThe hash value of the data.
HMACAlgorithmThe HMAC algorithm to use during encryption.
InputFileThe file to process.
InputMessageThe message to process.
IVThe initialization vector (IV) used when encrypting.
KDFThe key derivation function used during encryption and decryption.
KDFHashAlgorithmThe KDF hash algorithm to use when encrypting and decrypting.
KeyThe ECC key.
OutputFileThe output file when encrypting or decrypting.
OutputMessageThe output message when encrypting or decrypting.
OverwriteIndicates whether or not the module should overwrite files.
RecipientKeyThe public key used to compute the shared secret.
SharedSecretThe computed shared secret.
SignerKeyThe public key used to verify the signature.
UseHexWhether binary values are hex encoded.

Method List


The following is the full list of the methods of the module with short descriptions. Click on the links for further details.

ComputeSecretComputes a shared secret.
ConfigSets or retrieves a configuration setting.
CreateKeyCreates a new key.
DecryptDecrypted the specified data.
EncryptEncrypts the specified data.
ResetResets the module.
SignCreates a hash signature using ECDSA or EdDSA.
VerifySignatureVerifies the signature for the specified data.

Event List


The following is the full list of the events fired by the module with short descriptions. Click on the links for further details.

ErrorInformation about errors during data delivery.
ProgressFired as progress is made.

Config Settings


The following is a list of config settings for the module with short descriptions. Click on the links for further details.

AppendSecretAn optional string to append to the secret agreement.
CNGECDHKeyThe CNG ECDH key.
CNGECDSAKeyThe CNG ECDSA key.
ConcatAlgorithmIdSpecifies the AlgorithmId subfield of the OtherInfo field.
ConcatHashAlgorithmThe hash algorithm to use when ComputeSecretKDF is Concat.
ConcatPartyUInfoSpecifies the PartyUInfo subfield of the OtherInfo field.
ConcatPartyVInfoSpecifies the PartyVInfo subfield of the OtherInfo field.
ConcatSuppPrivInfoSpecifies the SuppPrivInfo subfield of the OtherInfo field.
ConcatSuppPubInfoSpecifies the SuppPubInfo subfield of the OtherInfo field.
ECDSASignatureFormatThe format of the HashSignature when using ECDSA keys.
EdDSAContextA hex encoded string holding the bytes of the context when signing or verifying with ed25519ctx.
EncryptionKeySizeThe encryption key size.
HMACKeyA key to use when generating a Hash-based Message Authentication Code (HMAC).
HMACKeySizeSpecifies the HMAC key size to be used during encryption.
HMACOptionalInfoOptional data to be used during encryption and decryption during the HMAC step.
KDFOptionalInfoOptional data to be used during encryption and decryption during the key derivation step.
PrependSecretAn optional string to prepend to the secret agreement.
StrictKeyValidationWhether to validate provided public keys based on private keys.
TLSLabelThe TLS PRF label.
TLSSeedThe TLS PRF Seed.
BuildInfoInformation about the product's build.
CodePageThe system code page used for Unicode to Multibyte translations.
LicenseInfoInformation about the current license.
UseInternalSecurityAPITells the module whether or not to use the system security libraries or an internal implementation.

ComputeSecretKDF Property (ECC Module)

The key derivation function.

Syntax

public var computeSecretKDF: EccComputeSecretKDFs {
  get {...}
  set {...}
}

public enum EccComputeSecretKDFs: Int32 { case ekdSHA1 = 0 case ekdSHA256 = 1 case ekdSHA384 = 2 case ekdSHA512 = 3 case ekdMD2 = 4 case ekdMD4 = 5 case ekdMD5 = 6 case ekdHMACSHA1 = 7 case ekdHMACSHA256 = 8 case ekdHMACSHA384 = 9 case ekdHMACSHA512 = 10 case ekdHMACMD5 = 11 case ekdTLS = 12 case ekdConcat = 13 }

@property (nonatomic,readwrite,assign,getter=computeSecretKDF,setter=setComputeSecretKDF:) int computeSecretKDF;

- (int)computeSecretKDF;
- (void)setComputeSecretKDF :(int)newComputeSecretKDF;

Default Value

1

Remarks

This property specifies the key derivation function (KDF) and algorithm to use when calling ComputeSecret.

Possible values are:

0 (ekdSHA1) SHA-1
1 (ekdSHA256 - default) SHA-256
2 (ekdSHA384) SHA-384
3 (ekdSHA512) SHA-512
4 (ekdMD2) MD2
5 (ekdMD4) MD4
6 (ekdMD5) MD5
7 (ekdHMACSHA1) HMAC-SHA1
8 (ekdHMACSHA256) HMAC-SHA256
9 (ekdHMACSHA384) HMAC-SHA384
10 (ekdHMACSHA512) HMAC-SHA512
11 (ekdHMACMD5) HMAC-MD5
12 (ekdTLS) TLS
13 (ekdConcat) Concat

HMAC Notes

If an HMAC algorithm is selected HMACKey may optionally be set to specify the key.

TLS Notes

When set to TLS, TLSSeed and TLSLabel are required. In addition PrependSecret and AppendSecret are not applicable.

Concat Notes

If Concat is selected the following configuration settings are applicable:

EncryptionAlgorithm Property (ECC Module)

The encryption algorithm to use.

Syntax

public var encryptionAlgorithm: EccEncryptionAlgorithms {
  get {...}
  set {...}
}

public enum EccEncryptionAlgorithms: Int32 { case iesAES = 0 case iesTripleDES = 1 case iesXOR = 2 }

@property (nonatomic,readwrite,assign,getter=encryptionAlgorithm,setter=setEncryptionAlgorithm:) int encryptionAlgorithm;

- (int)encryptionAlgorithm;
- (void)setEncryptionAlgorithm :(int)newEncryptionAlgorithm;

Default Value

0

Remarks

This setting specifies the encryption algorithm to use when Encrypt is called. This must also be set before calling Decrypt to match the algorithm used during the initial encryption.

Possible values are:

  • 0 (iesAES - default)
  • 1 (iesTripleDES)
  • 2 (iesXOR)

AES Notes

When EncryptionAlgorithm is set to iesAES AES CBC with a default key size of 256 bits is used. To specify a different key size set EncryptionKeySize.

HashAlgorithm Property (ECC Module)

The hash algorithm used for hash computation.

Syntax

public var hashAlgorithm: EccHashAlgorithms {
  get {...}
  set {...}
}

public enum EccHashAlgorithms: Int32 { case ehaSHA1 = 0 case ehaSHA224 = 1 case ehaSHA256 = 2 case ehaSHA384 = 3 case ehaSHA512 = 4 case ehaMD2 = 5 case ehaMD4 = 6 case ehaMD5 = 7 case ehaMD5SHA1 = 8 case ehaRIPEMD160 = 9 }

@property (nonatomic,readwrite,assign,getter=hashAlgorithm,setter=setHashAlgorithm:) int hashAlgorithm;

- (int)hashAlgorithm;
- (void)setHashAlgorithm :(int)newHashAlgorithm;

Default Value

2

Remarks

This property specifies the hash algorithm used for hash computation. This is only applicable when calling Sign or VerifySignature and KeyAlgorithm specifies a ECDSA key (secp256r1, secp384r1, or secp521r1. Possible values are:

0 (ehaSHA1) SHA-1
1 (ehaSHA224) SHA-224
2 (ehaSHA256 - default) SHA-256
3 (ehaSHA384) SHA-384
4 (ehaSHA512) SHA-512
5 (ehaMD2) MD2
6 (ehaMD4) MD4
7 (ehaMD5) MD5
8 (ehaMD5SHA1) MD5SHA-1
9 (ehaRIPEMD160) RIPEMD-160

When KeyAlgorithm specified an EdDSA key this setting is not applicable as the hash algorithm is defined by the specification as SHA-512 for ed25519 and SHAKE-256 for ed448.

HashEdDSA Property (ECC Module)

Whether to use HashEdDSA when signing with an ed25519 or ed448 key.

Syntax

public var hashEdDSA: Bool {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=hashEdDSA,setter=setHashEdDSA:) BOOL hashEdDSA;

- (BOOL)hashEdDSA;
- (void)setHashEdDSA :(BOOL)newHashEdDSA;

Default Value

False

Remarks

This setting specifies whether to use the HashEdDSA algorithm when signing and verifying with ed25519 or ed448 keys.

If set to True the class will use the HashEdDSA algorithm (ed25519ph or ed448ph) when signing and verifying. When using a HashEdDSA algorithm the input is pre-hashed and supports a single pass over the data during the signing operation.

If set to False (Default) the class will use the PureEdDSA algorithm (ed25519 or ed448) when signing. The PureEdDSA requires two passes over the input data but provides collision resilience. The collision resilience of PureEdDSA means even if it is feasible to compute collisions for the hash function, the algorithm is still secure.

This property is only applicable when calling Sign and KeyAlgorithm is set to ed25519 or ed448.

If this property is set before calling Sign it must be set before calling VerifySignature.

HashSignature Property (ECC Module)

The hash signature.

Syntax

public var hashSignature: String {
  get {...}
  set {...}
}

public var hashSignatureB: Data { get {...} set {...} }

@property (nonatomic,readwrite,assign,getter=hashSignature,setter=setHashSignature:) NSString* hashSignature;

- (NSString*)hashSignature;
- (void)setHashSignature :(NSString*)newHashSignature;

@property (nonatomic,readwrite,assign,getter=hashSignatureB,setter=setHashSignatureB:) NSData* hashSignatureB;

- (NSData*)hashSignatureB;
- (void)setHashSignatureB :(NSData*)newHashSignature;

Default Value

""

Remarks

This property holds the computed hash signature. This is populated after calling Sign. This must be set before calling VerifySignature.

HashValue Property (ECC Module)

The hash value of the data.

Syntax

public var hashData: String {
  get {...}
  set {...}
}

public var hashDataB: Data { get {...} set {...} }

@property (nonatomic,readwrite,assign,getter=hashValue,setter=setHashValue:) NSString* hashValue;

- (NSString*)hashValue;
- (void)setHashValue :(NSString*)newHashValue;

@property (nonatomic,readwrite,assign,getter=hashValueB,setter=setHashValueB:) NSData* hashValueB;

- (NSData*)hashValueB;
- (void)setHashValueB :(NSData*)newHashValue;

Default Value

""

Remarks

This property holds the computed hash value for the specified data. This is populated when calling Sign or VerifySignature when an input file is specified by setting InputFile or InputMessage.

Pre-existing hash values may be set to this property before calling Sign or VerifySignature. If you know the hash value prior to using the class you may specify the pre-computed hash value here.

This setting is not applicable to PureEdDSA algorithms. If KeyAlgorithm is ed25519 or ed448 and HashEdDSA is False (default) the PureEdDSA algorithm is use and HashValue is not applicable.

Hash Notes

The class will determine whether or not to recompute the hash based on the properties that are set. If a file is specified by InputFile or InputMessage the hash will be recomputed when calling Sign or VerifySignature. If the HashValue property is set the class will only sign the hash or verify the hash signature. Setting InputFile or InputMessage clears the HashValue property. Setting the HashValue property clears the input file selection.

HMACAlgorithm Property (ECC Module)

The HMAC algorithm to use during encryption.

Syntax

public var hmacAlgorithm: EccHMACAlgorithms {
  get {...}
  set {...}
}

public enum EccHMACAlgorithms: Int32 { case iesHMACSHA1 = 0 case iesHMACSHA224 = 1 case iesHMACSHA256 = 2 case iesHMACSHA384 = 3 case iesHMACSHA512 = 4 case iesHMACRIPEMD160 = 5 }

@property (nonatomic,readwrite,assign,getter=HMACAlgorithm,setter=setHMACAlgorithm:) int HMACAlgorithm;

- (int)HMACAlgorithm;
- (void)setHMACAlgorithm :(int)newHMACAlgorithm;

Default Value

2

Remarks

This property specifies the HMAC algorithm to use when encrypting. The HMAC algorithm is used when Encrypt and Decrypt are called to protect and verify data. Possible values are:

  • 0 (iesHMACSHA1)
  • 1 (iesHMACSHA224)
  • 2 (iesHMACSHA256 - Default)
  • 3 (iesHMACSHA384)
  • 4 (iesHMACSHA512)
  • 5 (iesHMACRIPEMD160)

This property is only applicable when calling Encrypt or Decrypt.

InputFile Property (ECC Module)

The file to process.

Syntax

public var inputFile: String {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=inputFile,setter=setInputFile:) NSString* inputFile;

- (NSString*)inputFile;
- (void)setInputFile :(NSString*)newInputFile;

Default Value

""

Remarks

This property specifies the file to be processed. Set this property to the full or relative path to the file which will be processed.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

InputMessage Property (ECC Module)

The message to process.

Syntax

public var inputMessage: String {
  get {...}
  set {...}
}

public var inputMessageB: Data { get {...} set {...} }

@property (nonatomic,readwrite,assign,getter=inputMessage,setter=setInputMessage:) NSString* inputMessage;

- (NSString*)inputMessage;
- (void)setInputMessage :(NSString*)newInputMessage;

@property (nonatomic,readwrite,assign,getter=inputMessageB,setter=setInputMessageB:) NSData* inputMessageB;

- (NSData*)inputMessageB;
- (void)setInputMessageB :(NSData*)newInputMessage;

Default Value

""

Remarks

This property specifies the message to be processed.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

IV Property (ECC Module)

The initialization vector (IV) used when encrypting.

Syntax

public var iv: String {
  get {...}
  set {...}
}

public var ivB: Data { get {...} set {...} }

@property (nonatomic,readwrite,assign,getter=IV,setter=setIV:) NSString* IV;

- (NSString*)IV;
- (void)setIV :(NSString*)newIV;

@property (nonatomic,readwrite,assign,getter=IVB,setter=setIVB:) NSData* IVB;

- (NSData*)IVB;
- (void)setIVB :(NSData*)newIV;

Default Value

""

Remarks

This property optionally specifies an IV to be used when calling Encrypt or Decrypt. If specified the IV is used by EncryptionAlgorithm during encryption.

If not specified the class will create an IV filled with null bytes (zeros). Since the encryption key is only used once the use of null bytes in the IV is considered acceptable and is a standard practice.

The length of the IV should be as follows:

EncryptionAlgorithmIV Length (in bytes)
AES16
3DES8

This setting is not applicable when EncryptionAlgorithm is set to XOR.

KDF Property (ECC Module)

The key derivation function used during encryption and decryption.

Syntax

public var kdf: String {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=KDF,setter=setKDF:) NSString* KDF;

- (NSString*)KDF;
- (void)setKDF :(NSString*)newKDF;

Default Value

"KDF2"

Remarks

This property specifies the key derivation function (KDF) to use when encrypting and decrypting. Possible values are:

  • "KDF1"
  • "KDF2" (Default)
The KDFHashAlgorithm specifies the hash algorithm used in conjunction with the specified KDF.

This property is only applicable when calling Encrypt or Decrypt.

KDFHashAlgorithm Property (ECC Module)

The KDF hash algorithm to use when encrypting and decrypting.

Syntax

public var kdfHashAlgorithm: EccKDFHashAlgorithms {
  get {...}
  set {...}
}

public enum EccKDFHashAlgorithms: Int32 { case iesSHA1 = 0 case iesSHA224 = 1 case iesSHA256 = 2 case iesSHA384 = 3 case iesSHA512 = 4 }

@property (nonatomic,readwrite,assign,getter=KDFHashAlgorithm,setter=setKDFHashAlgorithm:) int KDFHashAlgorithm;

- (int)KDFHashAlgorithm;
- (void)setKDFHashAlgorithm :(int)newKDFHashAlgorithm;

Default Value

2

Remarks

This property specifies the hash algorithm to use in when deriving a key using the specified KDF. Possible values are:

  • 0 (iesSHA1)
  • 1 (iesSHA224)
  • 2 (iesSHA256)
  • 3 (iesSHA384)
  • 4 (iesSHA512)

This property is only applicable when calling Encrypt or Decrypt.

Key Property (ECC Module)

The ECC key.

Syntax

public var key: ECCKey {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=keyAlgorithm,setter=setKeyAlgorithm:) int keyAlgorithm;

- (int)keyAlgorithm;
- (void)setKeyAlgorithm :(int)newKeyAlgorithm;

@property (nonatomic,readwrite,assign,getter=keyK,setter=setKeyK:) NSString* keyK;

- (NSString*)keyK;
- (void)setKeyK :(NSString*)newKeyK;

@property (nonatomic,readwrite,assign,getter=keyKB,setter=setKeyKB:) NSData* keyKB;

- (NSData*)keyKB;
- (void)setKeyKB :(NSData*)newKeyK;
@property (nonatomic,readwrite,assign,getter=keyPrivateKey,setter=setKeyPrivateKey:) NSString* keyPrivateKey;

- (NSString*)keyPrivateKey;
- (void)setKeyPrivateKey :(NSString*)newKeyPrivateKey;

@property (nonatomic,readwrite,assign,getter=keyPublicKey,setter=setKeyPublicKey:) NSString* keyPublicKey;

- (NSString*)keyPublicKey;
- (void)setKeyPublicKey :(NSString*)newKeyPublicKey;

@property (nonatomic,readwrite,assign,getter=keyRx,setter=setKeyRx:) NSString* keyRx;

- (NSString*)keyRx;
- (void)setKeyRx :(NSString*)newKeyRx;

@property (nonatomic,readwrite,assign,getter=keyRxB,setter=setKeyRxB:) NSData* keyRxB;

- (NSData*)keyRxB;
- (void)setKeyRxB :(NSData*)newKeyRx;
@property (nonatomic,readwrite,assign,getter=keyRy,setter=setKeyRy:) NSString* keyRy;

- (NSString*)keyRy;
- (void)setKeyRy :(NSString*)newKeyRy;

@property (nonatomic,readwrite,assign,getter=keyRyB,setter=setKeyRyB:) NSData* keyRyB;

- (NSData*)keyRyB;
- (void)setKeyRyB :(NSData*)newKeyRy;
@property (nonatomic,readwrite,assign,getter=keyXPk,setter=setKeyXPk:) NSString* keyXPk;

- (NSString*)keyXPk;
- (void)setKeyXPk :(NSString*)newKeyXPk;

@property (nonatomic,readwrite,assign,getter=keyXPkB,setter=setKeyXPkB:) NSData* keyXPkB;

- (NSData*)keyXPkB;
- (void)setKeyXPkB :(NSData*)newKeyXPk;
@property (nonatomic,readwrite,assign,getter=keyXSk,setter=setKeyXSk:) NSString* keyXSk;

- (NSString*)keyXSk;
- (void)setKeyXSk :(NSString*)newKeyXSk;

@property (nonatomic,readwrite,assign,getter=keyXSkB,setter=setKeyXSkB:) NSData* keyXSkB;

- (NSData*)keyXSkB;
- (void)setKeyXSkB :(NSData*)newKeyXSk;
 

Default Value

False

Remarks

This setting specifies whether various calculated values are hex encoded. If set to False (Default) all data is provided as-is with no encoding.

If set to True certain properties are hex encoded when populated for ease of display, transport, and storage.

Compute Secret Notes

This property specifies whether SharedSecret is hex encoded when ComputeSecret is called.

Sign and Verify Notes

This property specifies whether HashValue and HashSignature are hex encoded.

If set to True, when Sign is called the class will compute the hash for the specified file and populate HashValue with the hex encoded hash value. It will then create the hash signature and populate HashSignature with the hex encoded hash signature value. If HashValue is specified directly it must be a hex encoded value.

If set to True, when VerifySignature is called the class will compute the hash value for the specified file and populate HashValue with the hex encoded hash value. It will then hex decode HashSignature and verify the signature. HashSignature must hold a hex encoded value. If HashValue is specified directly it must be a hex encoded value.

Encrypt and Decrypt Notes

If set to True, when Encrypt is called the class will perform the encryption as normal and then hex encode the output. OutputMessage or OutputFile will hold hex encoded data.

If set to True, when Decrypt is called the class will expect InputMessage or InputFile to hold hex encoded data. The class will then hex decode the data and perform decryption as normal.

OutputFile Property (ECC Module)

The output file when encrypting or decrypting.

Syntax

public var outputFile: String {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=outputFile,setter=setOutputFile:) NSString* outputFile;

- (NSString*)outputFile;
- (void)setOutputFile :(NSString*)newOutputFile;

Default Value

""

Remarks

This property specifies the file to which the output will be written when Encrypt or Decrypt is called. This may be set to an absolute or relative path.

This property is only applicable to Encrypt and Decrypt.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

  • OutputFile
  • OutputMessage: The output data is written to this property if no other destination is specified.

OutputMessage Property (ECC Module)

The output message when encrypting or decrypting.

Syntax

public var outputMessage: String {
  get {...}
}

public var outputMessageB: Data { get {...} }

@property (nonatomic,readonly,assign,getter=outputMessage) NSString* outputMessage;

- (NSString*)outputMessage;

@property (nonatomic,readonly,assign,getter=outputMessageB) NSData* outputMessageB;

- (NSData*)outputMessageB;

Default Value

""

Remarks

This property will be populated with the output after calling Encrypt or Decrypt if OutputFile is not set.

This property is only applicable to Encrypt and Decrypt.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

  • OutputFile
  • OutputMessage: The output data is written to this property if no other destination is specified.

This property is read-only.

Overwrite Property (ECC Module)

Indicates whether or not the module should overwrite files.

Syntax

public var overwrite: Bool {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=overwrite,setter=setOverwrite:) BOOL overwrite;

- (BOOL)overwrite;
- (void)setOverwrite :(BOOL)newOverwrite;

Default Value

False

Remarks

This property indicates whether or not the class will overwrite OutputFile. If Overwrite is False, an error will be thrown whenever OutputFile exists before an operation. The default value is False.

RecipientKey Property (ECC Module)

The public key used to compute the shared secret.

Syntax

public var recipientKey: ECCKey {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=recipientKeyAlgorithm,setter=setRecipientKeyAlgorithm:) int recipientKeyAlgorithm;

- (int)recipientKeyAlgorithm;
- (void)setRecipientKeyAlgorithm :(int)newRecipientKeyAlgorithm;

@property (nonatomic,readwrite,assign,getter=recipientKeyPublicKey,setter=setRecipientKeyPublicKey:) NSString* recipientKeyPublicKey;

- (NSString*)recipientKeyPublicKey;
- (void)setRecipientKeyPublicKey :(NSString*)newRecipientKeyPublicKey;

@property (nonatomic,readwrite,assign,getter=recipientKeyRx,setter=setRecipientKeyRx:) NSString* recipientKeyRx;

- (NSString*)recipientKeyRx;
- (void)setRecipientKeyRx :(NSString*)newRecipientKeyRx;

@property (nonatomic,readwrite,assign,getter=recipientKeyRxB,setter=setRecipientKeyRxB:) NSData* recipientKeyRxB;

- (NSData*)recipientKeyRxB;
- (void)setRecipientKeyRxB :(NSData*)newRecipientKeyRx;
@property (nonatomic,readwrite,assign,getter=recipientKeyRy,setter=setRecipientKeyRy:) NSString* recipientKeyRy;

- (NSString*)recipientKeyRy;
- (void)setRecipientKeyRy :(NSString*)newRecipientKeyRy;

@property (nonatomic,readwrite,assign,getter=recipientKeyRyB,setter=setRecipientKeyRyB:) NSData* recipientKeyRyB;

- (NSData*)recipientKeyRyB;
- (void)setRecipientKeyRyB :(NSData*)newRecipientKeyRy;
@property (nonatomic,readwrite,assign,getter=recipientKeyXPk,setter=setRecipientKeyXPk:) NSString* recipientKeyXPk;

- (NSString*)recipientKeyXPk;
- (void)setRecipientKeyXPk :(NSString*)newRecipientKeyXPk;

@property (nonatomic,readwrite,assign,getter=recipientKeyXPkB,setter=setRecipientKeyXPkB:) NSData* recipientKeyXPkB;

- (NSData*)recipientKeyXPkB;
- (void)setRecipientKeyXPkB :(NSData*)newRecipientKeyXPk;
 

Default Value

False

Remarks

This setting specifies whether various calculated values are hex encoded. If set to False (Default) all data is provided as-is with no encoding.

If set to True certain properties are hex encoded when populated for ease of display, transport, and storage.

Compute Secret Notes

This property specifies whether SharedSecret is hex encoded when ComputeSecret is called.

Sign and Verify Notes

This property specifies whether HashValue and HashSignature are hex encoded.

If set to True, when Sign is called the class will compute the hash for the specified file and populate HashValue with the hex encoded hash value. It will then create the hash signature and populate HashSignature with the hex encoded hash signature value. If HashValue is specified directly it must be a hex encoded value.

If set to True, when VerifySignature is called the class will compute the hash value for the specified file and populate HashValue with the hex encoded hash value. It will then hex decode HashSignature and verify the signature. HashSignature must hold a hex encoded value. If HashValue is specified directly it must be a hex encoded value.

Encrypt and Decrypt Notes

If set to True, when Encrypt is called the class will perform the encryption as normal and then hex encode the output. OutputMessage or OutputFile will hold hex encoded data.

If set to True, when Decrypt is called the class will expect InputMessage or InputFile to hold hex encoded data. The class will then hex decode the data and perform decryption as normal.

SharedSecret Property (ECC Module)

The computed shared secret.

Syntax

public var sharedSecret: String {
  get {...}
}

public var sharedSecretB: Data { get {...} }

@property (nonatomic,readonly,assign,getter=sharedSecret) NSString* sharedSecret;

- (NSString*)sharedSecret;

@property (nonatomic,readonly,assign,getter=sharedSecretB) NSData* sharedSecretB;

- (NSData*)sharedSecretB;

Default Value

""

Remarks

This property holds the shared secret computed by ComputeSecret.

This property is read-only.

SignerKey Property (ECC Module)

The public key used to verify the signature.

Syntax

public var signerKey: ECCKey {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=signerKeyAlgorithm,setter=setSignerKeyAlgorithm:) int signerKeyAlgorithm;

- (int)signerKeyAlgorithm;
- (void)setSignerKeyAlgorithm :(int)newSignerKeyAlgorithm;

@property (nonatomic,readwrite,assign,getter=signerKeyPublicKey,setter=setSignerKeyPublicKey:) NSString* signerKeyPublicKey;

- (NSString*)signerKeyPublicKey;
- (void)setSignerKeyPublicKey :(NSString*)newSignerKeyPublicKey;

@property (nonatomic,readwrite,assign,getter=signerKeyRx,setter=setSignerKeyRx:) NSString* signerKeyRx;

- (NSString*)signerKeyRx;
- (void)setSignerKeyRx :(NSString*)newSignerKeyRx;

@property (nonatomic,readwrite,assign,getter=signerKeyRxB,setter=setSignerKeyRxB:) NSData* signerKeyRxB;

- (NSData*)signerKeyRxB;
- (void)setSignerKeyRxB :(NSData*)newSignerKeyRx;
@property (nonatomic,readwrite,assign,getter=signerKeyRy,setter=setSignerKeyRy:) NSString* signerKeyRy;

- (NSString*)signerKeyRy;
- (void)setSignerKeyRy :(NSString*)newSignerKeyRy;

@property (nonatomic,readwrite,assign,getter=signerKeyRyB,setter=setSignerKeyRyB:) NSData* signerKeyRyB;

- (NSData*)signerKeyRyB;
- (void)setSignerKeyRyB :(NSData*)newSignerKeyRy;
@property (nonatomic,readwrite,assign,getter=signerKeyXPk,setter=setSignerKeyXPk:) NSString* signerKeyXPk;

- (NSString*)signerKeyXPk;
- (void)setSignerKeyXPk :(NSString*)newSignerKeyXPk;

@property (nonatomic,readwrite,assign,getter=signerKeyXPkB,setter=setSignerKeyXPkB:) NSData* signerKeyXPkB;

- (NSData*)signerKeyXPkB;
- (void)setSignerKeyXPkB :(NSData*)newSignerKeyXPk;
 

Default Value

False

Remarks

This setting specifies whether various calculated values are hex encoded. If set to False (Default) all data is provided as-is with no encoding.

If set to True certain properties are hex encoded when populated for ease of display, transport, and storage.

Compute Secret Notes

This property specifies whether SharedSecret is hex encoded when ComputeSecret is called.

Sign and Verify Notes

This property specifies whether HashValue and HashSignature are hex encoded.

If set to True, when Sign is called the class will compute the hash for the specified file and populate HashValue with the hex encoded hash value. It will then create the hash signature and populate HashSignature with the hex encoded hash signature value. If HashValue is specified directly it must be a hex encoded value.

If set to True, when VerifySignature is called the class will compute the hash value for the specified file and populate HashValue with the hex encoded hash value. It will then hex decode HashSignature and verify the signature. HashSignature must hold a hex encoded value. If HashValue is specified directly it must be a hex encoded value.

Encrypt and Decrypt Notes

If set to True, when Encrypt is called the class will perform the encryption as normal and then hex encode the output. OutputMessage or OutputFile will hold hex encoded data.

If set to True, when Decrypt is called the class will expect InputMessage or InputFile to hold hex encoded data. The class will then hex decode the data and perform decryption as normal.

UseHex Property (ECC Module)

Whether binary values are hex encoded.

Syntax

public var useHex: Bool {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=useHex,setter=setUseHex:) BOOL useHex;

- (BOOL)useHex;
- (void)setUseHex :(BOOL)newUseHex;

Default Value

False

Remarks

This setting specifies whether various calculated values are hex encoded. If set to False (Default) all data is provided as-is with no encoding.

If set to True certain properties are hex encoded when populated for ease of display, transport, and storage.

Compute Secret Notes

This property specifies whether SharedSecret is hex encoded when ComputeSecret is called.

Sign and Verify Notes

This property specifies whether HashValue and HashSignature are hex encoded.

If set to True, when Sign is called the class will compute the hash for the specified file and populate HashValue with the hex encoded hash value. It will then create the hash signature and populate HashSignature with the hex encoded hash signature value. If HashValue is specified directly it must be a hex encoded value.

If set to True, when VerifySignature is called the class will compute the hash value for the specified file and populate HashValue with the hex encoded hash value. It will then hex decode HashSignature and verify the signature. HashSignature must hold a hex encoded value. If HashValue is specified directly it must be a hex encoded value.

Encrypt and Decrypt Notes

If set to True, when Encrypt is called the class will perform the encryption as normal and then hex encode the output. OutputMessage or OutputFile will hold hex encoded data.

If set to True, when Decrypt is called the class will expect InputMessage or InputFile to hold hex encoded data. The class will then hex decode the data and perform decryption as normal.

ComputeSecret Method (ECC Module)

Computes a shared secret.

Syntax

public func computeSecret() throws -> Void
- (void)computeSecret;

Remarks

This method computes a shared secret using Elliptic Curve Diffie Hellman (ECDH).

When this method is called the class will use the public key specified by RecipientKeyPublicKey and the private key specified by Key to compute a shared secret, or secret agreement. The ComputeSecretKDF property specifies the Hash or HMAC algorithm that is applied to the raw secret. The resulting value is held by SharedSecret. The following properties are applicable when calling this method:

See ComputeSecretKDF for details on advanced settings that may be applicable for the chosen algorithm.

Keys created with the ed25519 and ed448 algorithms are not supported when calling this method.

Compute Secret Example

//Create a key for Party 1 Ecc ecc1 = new Ecc(); ecc1.CreateKey("x25519"); string ecc1_priv = ecc1.Key.PrivateKey; string ecc1_pub = ecc1.Key.PublicKey; //Create a key for Party 2 Ecc ecc2 = new Ecc(); ecc2.CreateKey("x25519"); string ecc2_priv = ecc2.Key.PrivateKey; string ecc2_pub = ecc2.Key.PublicKey; //Note: the public keys must be exchanged between parties by some mechanism //Create the shared secret on Party 1 ecc1.Reset(); ecc1.Key.PrivateKey = ecc1_priv; //Private key of this party ecc1.RecipientKey.PublicKey = ecc2_pub; //Public key of other party ecc1.UseHex = true; //Hex encodes the shared secret bytes for easier display/storage ecc1.ComputeSecret(); Console.WriteLine(ecc1.SharedSecret); //Create the shared secret on Party 2 ecc2.Reset(); ecc2.Key.PrivateKey = ecc2_priv; //Private key of this party ecc2.RecipientKey.PublicKey = ecc1_pub; //Public key of other party ecc2.UseHex = true; //Hex encodes the shared secret bytes for easier display/storage ecc2.ComputeSecret(); Console.WriteLine(ecc2.SharedSecret); //This will match the shared secret created by ecc1.

Config Method (ECC Module)

Sets or retrieves a configuration setting.

Syntax

public func config(configurationString: String) throws -> String
- (NSString*)config:(NSString*)configurationString;

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

CreateKey Method (ECC Module)

Creates a new key.

Syntax

public func createKey(keyAlgorithm: String) throws -> Void
- (void)createKey:(NSString*)keyAlgorithm;

Remarks

CreateKey creates a new public and private key.

When this method is called Key is populated with the generated key. The KeyPublicKey and KeyPrivateKey property hold the PEM formatted public and private key for ease of use. This is helpful for storing or transporting keys more easily.

The KeyAlgorithm parameter specifies the algorithm for which the key is intended to be used. Possible values are:

KeyAlgorithmSupported Operations
secp256r1ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature)
secp384r1ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature)
secp521r1ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature)
x25519ECDH (ComputeSecret)
x448ECDH (ComputeSecret)
ed25519EdDSA (Sign and VerifySignature)
ed448EdDSA (Sign and VerifySignature)
eaSecp160k1ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature)
eaSecp192k1ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature)
eaSecp224k1ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature)
eaSecp256k1ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature)

NIST Curve Notes

Keys for use with the secp256r1, secp384r1, and secp521r1 curves are made up of a number of individual parameters.

The public key consists of the following parameters:

  • KeyRx
  • KeyRy

The private key consists of one value:

  • KeyK

Curve25519 and Curve448 Notes

Keys for use with Curve25519 or Curve448 are made up of a private key and public key field.

KeyXPk holds the public key.

KeyXSk holds the private key.

Create Key Example (secp256r1 - PEM)

//Create a key using secp256r1 Ecc ecc = new Ecc(); ecc.CreateKey("secp256r1"); Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1" string privKey = ecc.Key.PrivateKey; //PEM formatted key string pubKey = ecc.Key.PublicKey; //PEM formatted key //Load the saved key ecc.Reset(); ecc.Key.PublicKey = pubKey; ecc.Key.PrivateKey = privKey; Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"

Create Key Example (secp256r1 - Raw Key Params)

//Create a key using secp256r1 and store/load the key using the individual params Ecc ecc = new Ecc(); ecc.CreateKey("secp256r1"); Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1" byte[] K = ecc.Key.KB; //Private key param byte[] Rx = ecc.Key.RxB; //Public key param byte[] Ry = ecc.Key.RyB; //Public key param //Load the saved key ecc.Reset(); ecc.Key.Algorithm = ECAlgorithms.eaSecp256r1; //This MUST be set manually when using key params directly ecc.Key.KB = K; ecc.Key.RxB = Rx; ecc.Key.RyB = Ry; Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"

Create Key Example (ed25519 - PEM)

//Create a key using ed25519 Ecc ecc = new Ecc(); ecc.CreateKey("ed25519"); Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519" string privKey = ecc.Key.PrivateKey; //PEM formatted key string pubKey = ecc.Key.PublicKey; //PEM formatted key //Load the saved key ecc.Reset(); ecc.Key.PublicKey = pubKey; ecc.Key.PrivateKey = privKey; Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"

Create Key Example (ed25519 - Raw Key Params)

//Create a key using ed25519 and store/load the key using the individual params Ecc ecc = new Ecc(); ecc.CreateKey("ed25519"); Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519" byte[] XPk = ecc.Key.XPkB; //Public key data byte[] XSk = ecc.Key.XSkB; //Secret key data //Load the saved key ecc.Reset(); ecc.Key.Algorithm = ECAlgorithms.eaEd25519; //This MUST be set manually when using key params directly ecc.Key.XPkB = XPk; ecc.Key.XSkB = XSk; Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"

Decrypt Method (ECC Module)

Decrypted the specified data.

Syntax

public func decrypt() throws -> Void
- (void)decrypt;

Remarks

Decrypt decrypts the specified data with the ECDSA private key specified in Key.

Decryption is performed using ECIES which requires an ECDSA key. Key must contain an ECDSA key. KeyAlgorithm is used to determine the eligibility of the key for this operation. Supported algorithms for encryption are:

  • secp256r1
  • secp384r2
  • secp521r1

See CreateKey for details about key creation and algorithms.

When this method is called the class will decrypt the specified data using ECIES and the decrypted data will be output. If the input data was originally hex encoded, set UseHex to True.

The following properties are applicable when calling this method:

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

Encrypt and Decrypt Example

//Create an ECDSA key on Party 2 Ecc ecc2 = new Ecc(); ecc2.CreateKey("secp256r1"); string ecc2_priv = ecc2.Key.PrivateKey; string ecc2_pub = ecc2.Key.PublicKey; //Transmit public key to Party 1 //Encrypt the message on Party 1 using public key from Party 2 Ecc ecc1 = new Ecc(); ecc1.InputMessage = "hello ecc"; ecc1.RecipientKey.PublicKey = ecc2_pub; ecc1.UseHex = true; ecc1.Encrypt(); string encryptedMessage = ecc1.OutputMessage; //Transmit the encrypted message to Party 2 //Decrypt the message using the private key for Party 2 ecc2.Key.PrivateKey = ecc2_priv; ecc2.InputMessage = encryptedMessage; ecc2.UseHex = true; ecc2.Decrypt(); Console.WriteLine(ecc2.OutputMessage);

Encrypt and Decrypt Example (AES with IV)

//Create an ECDSA key on Party 2 Ecc ecc2 = new Ecc(); ecc2.CreateKey("secp256r1"); string ecc2_priv = ecc2.Key.PrivateKey; string ecc2_pub = ecc2.Key.PublicKey; //Transmit public key to Party 1 //Encrypt the message on Party 1 using public key from Party 2 Ecc ecc1 = new Ecc(); //Use an IV (16 bytes for AES) - In a real environment this should be random byte[] IV = new byte[] { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F }; ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES; ecc1.IVB = IV; ecc1.InputMessage = "hello ecc"; ecc1.RecipientKey.PublicKey = ecc2_pub; ecc1.UseHex = true; ecc1.Encrypt(); string encryptedMessage = ecc1.OutputMessage; //Transmit the encrypted message and the IV to Party 2 //Decrypt the message using the private key for Party 2 and the IV ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES; ecc2.IVB = IV; ecc2.Key.PrivateKey = ecc2_priv; ecc2.InputMessage = encryptedMessage; ecc2.UseHex = true; ecc2.Decrypt(); Console.WriteLine(ecc2.OutputMessage);

Encrypt and Decrypt Example (XOR Encryption Algorithm)

//Create an ECDSA key on Party 2 Ecc ecc2 = new Ecc(); ecc2.CreateKey("secp256r1"); string ecc2_priv = ecc2.Key.PrivateKey; string ecc2_pub = ecc2.Key.PublicKey; //Transmit public key to Party 1 //Encrypt the message on Party 1 using public key from Party 2 Ecc ecc1 = new Ecc(); ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR; ecc1.InputMessage = "hello ecc"; ecc1.RecipientKey.PublicKey = ecc2_pub; ecc1.UseHex = true; ecc1.Encrypt(); string encryptedMessage = ecc1.OutputMessage; //Transmit the encrypted message to Party 2 //Decrypt the message using the private key for Party 2 ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR; ecc2.Key.PrivateKey = ecc2_priv; ecc2.InputMessage = encryptedMessage; ecc2.UseHex = true; ecc2.Decrypt(); Console.WriteLine(ecc2.OutputMessage);

Encrypt and Decrypt Example (KDF Options)

//Create an ECDSA key on Party 2 Ecc ecc2 = new Ecc(); ecc2.CreateKey("secp256r1"); string ecc2_priv = ecc2.Key.PrivateKey; string ecc2_pub = ecc2.Key.PublicKey; //Transmit public key to Party 1 //Encrypt the message on Party 1 using public key from Party 2 Ecc ecc1 = new Ecc(); ecc1.KDF = "KDF1"; //Use KDF1 ecc1.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1; ecc1.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f"); //Hex encoded string ecc1.InputMessage = "hello ecc"; ecc1.RecipientKey.PublicKey = ecc2_pub; ecc1.UseHex = true; ecc1.Encrypt(); string encryptedMessage = ecc1.OutputMessage; //Transmit the encrypted message to Party 2 //Decrypt the message using the private key for Party 2 ecc2.KDF = "KDF1"; ecc2.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1; ecc2.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f"); ecc2.Key.PrivateKey = ecc2_priv; ecc2.InputMessage = encryptedMessage; ecc2.UseHex = true; ecc2.Decrypt(); Console.WriteLine(ecc2.OutputMessage);

Encrypt Method (ECC Module)

Encrypts the specified data.

Syntax

public func encrypt() throws -> Void
- (void)encrypt;

Remarks

Encrypt encrypts the specified data with the ECDSA public key specified in RecipientKey.

Encryption is performed using ECIES which requires an ECDSA key. RecipientKey must contain an ECDSA key. Algorithm is used to determine the eligibility of the key for this operation. Supported algorithms for encryption are:

  • secp256r1
  • secp384r2
  • secp521r1

See CreateKey for details about key creation and algorithms.

When this method is called the class will encrypt the specified data using ECIES and the encrypted data will be output. To hex encode the output set UseHex to True.

The following properties are applicable when calling this method:

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

Encrypt and Decrypt Example

//Create an ECDSA key on Party 2 Ecc ecc2 = new Ecc(); ecc2.CreateKey("secp256r1"); string ecc2_priv = ecc2.Key.PrivateKey; string ecc2_pub = ecc2.Key.PublicKey; //Transmit public key to Party 1 //Encrypt the message on Party 1 using public key from Party 2 Ecc ecc1 = new Ecc(); ecc1.InputMessage = "hello ecc"; ecc1.RecipientKey.PublicKey = ecc2_pub; ecc1.UseHex = true; ecc1.Encrypt(); string encryptedMessage = ecc1.OutputMessage; //Transmit the encrypted message to Party 2 //Decrypt the message using the private key for Party 2 ecc2.Key.PrivateKey = ecc2_priv; ecc2.InputMessage = encryptedMessage; ecc2.UseHex = true; ecc2.Decrypt(); Console.WriteLine(ecc2.OutputMessage);

Encrypt and Decrypt Example (AES with IV)

//Create an ECDSA key on Party 2 Ecc ecc2 = new Ecc(); ecc2.CreateKey("secp256r1"); string ecc2_priv = ecc2.Key.PrivateKey; string ecc2_pub = ecc2.Key.PublicKey; //Transmit public key to Party 1 //Encrypt the message on Party 1 using public key from Party 2 Ecc ecc1 = new Ecc(); //Use an IV (16 bytes for AES) - In a real environment this should be random byte[] IV = new byte[] { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F }; ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES; ecc1.IVB = IV; ecc1.InputMessage = "hello ecc"; ecc1.RecipientKey.PublicKey = ecc2_pub; ecc1.UseHex = true; ecc1.Encrypt(); string encryptedMessage = ecc1.OutputMessage; //Transmit the encrypted message and the IV to Party 2 //Decrypt the message using the private key for Party 2 and the IV ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES; ecc2.IVB = IV; ecc2.Key.PrivateKey = ecc2_priv; ecc2.InputMessage = encryptedMessage; ecc2.UseHex = true; ecc2.Decrypt(); Console.WriteLine(ecc2.OutputMessage);

Encrypt and Decrypt Example (XOR Encryption Algorithm)

//Create an ECDSA key on Party 2 Ecc ecc2 = new Ecc(); ecc2.CreateKey("secp256r1"); string ecc2_priv = ecc2.Key.PrivateKey; string ecc2_pub = ecc2.Key.PublicKey; //Transmit public key to Party 1 //Encrypt the message on Party 1 using public key from Party 2 Ecc ecc1 = new Ecc(); ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR; ecc1.InputMessage = "hello ecc"; ecc1.RecipientKey.PublicKey = ecc2_pub; ecc1.UseHex = true; ecc1.Encrypt(); string encryptedMessage = ecc1.OutputMessage; //Transmit the encrypted message to Party 2 //Decrypt the message using the private key for Party 2 ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR; ecc2.Key.PrivateKey = ecc2_priv; ecc2.InputMessage = encryptedMessage; ecc2.UseHex = true; ecc2.Decrypt(); Console.WriteLine(ecc2.OutputMessage);

Encrypt and Decrypt Example (KDF Options)

//Create an ECDSA key on Party 2 Ecc ecc2 = new Ecc(); ecc2.CreateKey("secp256r1"); string ecc2_priv = ecc2.Key.PrivateKey; string ecc2_pub = ecc2.Key.PublicKey; //Transmit public key to Party 1 //Encrypt the message on Party 1 using public key from Party 2 Ecc ecc1 = new Ecc(); ecc1.KDF = "KDF1"; //Use KDF1 ecc1.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1; ecc1.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f"); //Hex encoded string ecc1.InputMessage = "hello ecc"; ecc1.RecipientKey.PublicKey = ecc2_pub; ecc1.UseHex = true; ecc1.Encrypt(); string encryptedMessage = ecc1.OutputMessage; //Transmit the encrypted message to Party 2 //Decrypt the message using the private key for Party 2 ecc2.KDF = "KDF1"; ecc2.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1; ecc2.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f"); ecc2.Key.PrivateKey = ecc2_priv; ecc2.InputMessage = encryptedMessage; ecc2.UseHex = true; ecc2.Decrypt(); Console.WriteLine(ecc2.OutputMessage);

Reset Method (ECC Module)

Resets the component.

Syntax

public func reset() throws -> Void
- (void)reset;

Remarks

When called, the class will reset all of its properties to their default values.

Sign Method (ECC Module)

Creates a hash signature using ECDSA or EdDSA.

Syntax

public func sign() throws -> Void
- (void)sign;

Remarks

Sign will create a hash signature using ECDSA or EdDSA. The class will use the key specified by Key to has the input data and sign the resulting hash.

Key must contain a private key created with a valid ECDSA or EdDSA algorithm. KeyAlgorithm is used to determine the eligibility of the key for this operation. Supported algorithms for signing are:

  • secp256r1
  • secp384r1
  • secp521r1
  • ed25519
  • ed448

See CreateKey for details about key creation and algorithms.

When this method is called data will be read from the InputFile or InputMessage.

The hash to be signed will be computed using the specified HashAlgorithm. The computed hash is stored in the HashValue property. The signed hash is stored in the HashSignature property.

To sign as hash without first computing it set HashValue to a previously computed hash for the input data. Note: HashValue is not applicable when signing with a PureEdDSA algorithm such as "ed25519" or "ed448".

The Progress event will fire with updates for the hash computation progress only. The hash signature creation process is quick and does not require progress updates.

After calling Sign the public key must be sent to the recipient along with HashSignature and original input data so the other party may perform signature verification.

The following properties are applicable when calling this method:

The following properties are populated after calling this method:

EdDSA Notes

When the KeyAlgorithm is ed25519 or ed448 the following additional parameters are applicable:

EdDSA keys can be used with a PureEdDSA algorithm (ed25519/ed448) or as HashEdDSA (ed25519ph, ed448ph) algorithm. This is controlled by the HashEdDSA property. By default the class uses the PureEdDSA algorithm.

The PureEdDSA algorithm requires two passes over the input data but provides collision resilience. The collision resilience of PureEdDSA means even if it is feasible to compute collisions for the hash function, the algorithm is still secure. When using PureEdDSA HashValue is not applicable.

When using a HashEdDSA algorithm the input is pre-hashed and supports a single pass over the data during the signing operation. To enable HashEdDSA set HashEdDSA to True.

To specify context data when using ed25519 or ed448 set EdDSAContext.

Sign And Verify Example (ECDSA)

//Create an ECDSA key on Party 1 Ecc ecc1 = new Ecc(); ecc1.CreateKey("secp256r1"); string ecc1_priv = ecc1.Key.PrivateKey; string ecc1_pub = ecc1.Key.PublicKey; //Sign the data on Party 1 string originalData = "hello ecc"; ecc1.Reset(); ecc1.Key.PrivateKey = ecc1_priv; ecc1.InputMessage = originalData; ecc1.UseHex = true; //Hex encode the hash signature for ease of use. ecc1.Sign(); string hashSignature = ecc1.HashSignature; //Transmit the hash signature, public key, and original data to part 2 //Verify the data on Party 2 Ecc ecc2 = new Ecc(); ecc2.SignerKey.PublicKey = ecc1_pub; ecc2.InputMessage = originalData; ecc2.HashSignature = hashSignature; ecc2.UseHex = true; //Decode the hex encoded hash signature bool isVerified = ecc2.VerifySignature();

Sign And Verify Example (EdDSA - PureEdDSA)

//Create an EdDSA key on Party 1 Ecc ecc1 = new Ecc(); ecc1.CreateKey("ed25519"); string ecc1_priv = ecc1.Key.PrivateKey; string ecc1_pub = ecc1.Key.PublicKey; //Sign the data on Party 1 string originalData = "hello ecc"; ecc1.Reset(); ecc1.Key.PrivateKey = ecc1_priv; ecc1.InputMessage = originalData; ecc1.UseHex = true; //Hex encode the hash signature for ease of use. ecc1.Sign(); string hashSignature = ecc1.HashSignature; //Transmit the hash signature, public key, and original data to part 2 //Verify the data on Party 2 Ecc ecc2 = new Ecc(); ecc2.SignerKey.PublicKey = ecc1_pub; ecc2.InputMessage = originalData; ecc2.HashSignature = hashSignature; ecc2.UseHex = true; //Decode the hex encoded hash signature bool isVerified = ecc2.VerifySignature();

Sign And Verify Example (EdDSA - HashEdDSA)

//Create an EdDSA key on Party 1 Ecc ecc1 = new Ecc(); ecc1.CreateKey("ed25519"); string ecc1_priv = ecc1.Key.PrivateKey; string ecc1_pub = ecc1.Key.PublicKey; //Sign the data on Party 1 string originalData = "hello ecc"; ecc1.Reset(); ecc1.Key.PrivateKey = ecc1_priv; ecc1.InputMessage = originalData; ecc1.UseHex = true; //Hex encode the hash signature for ease of use. ecc1.HashEdDSA = true; //Use "ed25519ph" ecc1.Sign(); string hashSignature = ecc1.HashSignature; //Transmit the hash signature, public key, and original data to part 2 //Verify the data on Party 2 Ecc ecc2 = new Ecc(); ecc2.SignerKey.PublicKey = ecc1_pub; ecc2.InputMessage = originalData; ecc2.HashSignature = hashSignature; ecc2.HashEdDSA = true; ecc2.UseHex = true; //Decode the hex encoded hash signature bool isVerified = ecc2.VerifySignature();

VerifySignature Method (ECC Module)

Verifies the signature for the specified data.

Syntax

public func verifySignature() throws -> Bool
- (BOOL)verifySignature;

Remarks

VerifySignature will verify a hash signature and return True if successful or False otherwise.

Before calling this method specify the input file by setting InputFile or InputMessage.

A public key and the hash signature are required to perform the signature verification. Specify the public key in SignerKey. Specify the hash signature in HashSignature.

When this method is called the class will compute the hash for the specified file and populate HashValue. It will verify the signature using the specified SignerKey and HashSignature.

To verify the hash signature without first computing the hash simply specify HashValue before calling this method. Note: HashValue is not applicable when the message was signed with a PureEdDSA algorithm such as ed25519 or ed448.

The Progress event will fire with updates for the hash computation progress only. The hash signature verification process is quick and does not require progress updates.

The following properties are applicable when calling this method:

Sign And Verify Example (ECDSA)

//Create an ECDSA key on Party 1 Ecc ecc1 = new Ecc(); ecc1.CreateKey("secp256r1"); string ecc1_priv = ecc1.Key.PrivateKey; string ecc1_pub = ecc1.Key.PublicKey; //Sign the data on Party 1 string originalData = "hello ecc"; ecc1.Reset(); ecc1.Key.PrivateKey = ecc1_priv; ecc1.InputMessage = originalData; ecc1.UseHex = true; //Hex encode the hash signature for ease of use. ecc1.Sign(); string hashSignature = ecc1.HashSignature; //Transmit the hash signature, public key, and original data to part 2 //Verify the data on Party 2 Ecc ecc2 = new Ecc(); ecc2.SignerKey.PublicKey = ecc1_pub; ecc2.InputMessage = originalData; ecc2.HashSignature = hashSignature; ecc2.UseHex = true; //Decode the hex encoded hash signature bool isVerified = ecc2.VerifySignature();

Sign And Verify Example (EdDSA - PureEdDSA)

//Create an EdDSA key on Party 1 Ecc ecc1 = new Ecc(); ecc1.CreateKey("ed25519"); string ecc1_priv = ecc1.Key.PrivateKey; string ecc1_pub = ecc1.Key.PublicKey; //Sign the data on Party 1 string originalData = "hello ecc"; ecc1.Reset(); ecc1.Key.PrivateKey = ecc1_priv; ecc1.InputMessage = originalData; ecc1.UseHex = true; //Hex encode the hash signature for ease of use. ecc1.Sign(); string hashSignature = ecc1.HashSignature; //Transmit the hash signature, public key, and original data to part 2 //Verify the data on Party 2 Ecc ecc2 = new Ecc(); ecc2.SignerKey.PublicKey = ecc1_pub; ecc2.InputMessage = originalData; ecc2.HashSignature = hashSignature; ecc2.UseHex = true; //Decode the hex encoded hash signature bool isVerified = ecc2.VerifySignature();

Sign And Verify Example (EdDSA - HashEdDSA)

//Create an EdDSA key on Party 1 Ecc ecc1 = new Ecc(); ecc1.CreateKey("ed25519"); string ecc1_priv = ecc1.Key.PrivateKey; string ecc1_pub = ecc1.Key.PublicKey; //Sign the data on Party 1 string originalData = "hello ecc"; ecc1.Reset(); ecc1.Key.PrivateKey = ecc1_priv; ecc1.InputMessage = originalData; ecc1.UseHex = true; //Hex encode the hash signature for ease of use. ecc1.HashEdDSA = true; //Use "ed25519ph" ecc1.Sign(); string hashSignature = ecc1.HashSignature; //Transmit the hash signature, public key, and original data to part 2 //Verify the data on Party 2 Ecc ecc2 = new Ecc(); ecc2.SignerKey.PublicKey = ecc1_pub; ecc2.InputMessage = originalData; ecc2.HashSignature = hashSignature; ecc2.HashEdDSA = true; ecc2.UseHex = true; //Decode the hex encoded hash signature bool isVerified = ecc2.VerifySignature();

Error Event (ECC Module)

Information about errors during data delivery.

Syntax

func onError(errorCode: Int32, description: String)
- (void)onError:(int)errorCode :(NSString*)description;

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the class .

ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

Progress Event (ECC Module)

Fired as progress is made.

Syntax

func onProgress(bytesProcessed: Int64, percentProcessed: Int32)
- (void)onProgress:(long long)bytesProcessed :(int)percentProcessed;

Remarks

This event is fired automatically as data is processed by the class.

The PercentProcessed parameter indicates the current status of the operation.

The BytesProcessed parameter holds the total number of bytes processed so far.

ECCKey Type

Contains the parameters for the ECC algorithm.

Remarks

This type is made up of fields that represent the private and public key parameters used by the ECC operations. The and parameters hold a PEM formatted value for easy transport and storage of keys.

NIST Curve Notes

Keys for use with the secp256r1, secp384r1, and secp521r1 curves are made up of a number of individual parameters.

The public key consists of the following parameters:

  • KeyRx
  • KeyRy

The private key consists of one value:

  • KeyK

Curve25519 and Curve448 Notes

Keys for use with Curve25519 or Curve448 are made up of a private key and public key field.

KeyXPk holds the public key.

KeyXSk holds the private key.

Fields

algorithm
ECAlgorithms

This property holds the algorithm associated with the key. Possible values are:

  • 0 (eaSecp256r1)
  • 1 (eaSecp384r1)
  • 2 (eaSecp521r1)
  • 3 (eaEd25519)
  • 4 (eaEd448)
  • 5 (eaX25519)
  • 6 (eaX448)
  • 7 (eaSecp160k1)
  • 8 (eaSecp192k1)
  • 9 (eaSecp224k1)
  • 10 (eaSecp256k1)

When assigning a key using the PEM formatted and the property will be automatically updated with the key algorithm.

When assigning a key using the raw key parameters (, , and for NIST or , and for Curve25519/Curve448) the property must be set manually to the key algorithm.

The following table summarizes the supported operations for keys created with each algorithm:

KeyAlgorithmSupported Operations
secp256r1ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature)
secp384r1ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature)
secp521r1ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature)
x25519ECDH (ComputeSecret)
x448ECDH (ComputeSecret)
ed25519EdDSA (Sign and VerifySignature)
ed448EdDSA (Sign and VerifySignature)
eaSecp160k1ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature)
eaSecp192k1ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature)
eaSecp224k1ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature)
eaSecp256k1ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature)

kB
Data

Represent the private key (K) parameter.

Note: This value is only applicable when using a NIST curve.

k
String

Represent the private key (K) parameter.

Note: This value is only applicable when using a NIST curve.

privateKey
String

This property is a PEM formatted private key. The purpose of this property is to allow easier management of the private key parameters by using only a single value.

publicKey
String

This property is a PEM formatted public key. The purpose of this property is to allow easier management of the public key parameters by using only a single value.

rxB
Data

Represents the public key's Rx parameter.

Note: This value is only applicable when using a NIST curve.

rx
String

Represents the public key's Rx parameter.

Note: This value is only applicable when using a NIST curve.

ryB
Data

Represents the public key's Ry parameter.

Note: This value is only applicable when using a NIST curve.

ry
String

Represents the public key's Ry parameter.

Note: This value is only applicable when using a NIST curve.

xPkB
Data

Holds the public key data.

Note: This value is only applicable when using Curve25519 or Curve448.

xPk
String

Holds the public key data.

Note: This value is only applicable when using Curve25519 or Curve448.

xSkB
Data

Holds the private key data.

Note: This value is only applicable when using Curve25519 or Curve448.

xSk
String

Holds the private key data.

Note: This value is only applicable when using Curve25519 or Curve448.

Constructors

public init()

The default constructor creates a new ECCKey instance but does not assign a public or private key.

Config Settings (ECC Module)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

ECC Config Settings

AppendSecret:   An optional string to append to the secret agreement.

This setting specifies an optional string to append to the secret agreement before hashing it. This is applicable when calling ComputeSecret.

Note: This is not applicable when ComputeSecretKDF is set to 12 (ekdTLS).

CNGECDHKey:   The CNG ECDH key.

This setting may be set to specify the key exported from Microsoft's CNG before calling ComputeSecret. If key data was obtained from Microsoft's CNG API it can be hex encoded and supplied here. The class will use this key when ComputeSecret is called.

CNGECDSAKey:   The CNG ECDSA key.

This setting may be set to specify the key exported from Microsoft's CNG before calling VerifySignature. If key data was obtained from Microsoft's CNG API it can be hex encoded and supplied here. The class will use this key when VerifySignature is called.

ConcatAlgorithmId:   Specifies the AlgorithmId subfield of the OtherInfo field.

This setting specifies the AlgorithmId subfield of the OtherInfo field as described in the publication "NIST SP 800-56A" section 5.8.1. The value supplied to this setting must be a hex encoded string of the subfield data.

This setting is required when ComputeSecretKDF is set to ekdConcat. This setting is only applicable when calling ComputeSecret.

ConcatHashAlgorithm:   The hash algorithm to use when ComputeSecretKDF is Concat.

This optionally specifies the hash algorithm to use when ComputeSecretKDF is set to ekdConcat. Possible values are:

  • SHA1
  • SHA224
  • SHA256 (default)
  • SHA384
  • SHA512
  • RIPEMD160
ConcatPartyUInfo:   Specifies the PartyUInfo subfield of the OtherInfo field.

This setting specifies the PatyUInfo subfield of the OtherInfo field as described in the publication "NIST SP 800-56A" section 5.8.1. The value supplied to this setting must be a hex encoded string of the subfield data.

This setting is required when ComputeSecretKDF is set to ekdConcat. This setting is only applicable when calling ComputeSecret.

ConcatPartyVInfo:   Specifies the PartyVInfo subfield of the OtherInfo field.

This setting specifies the PartyVInfo subfield of the OtherInfo field as described in the publication "NIST SP 800-56A" section 5.8.1. The value supplied to this setting must be a hex encoded string of the subfield data.

This setting is required when ComputeSecretKDF is set to ekdConcat. This setting is only applicable when calling ComputeSecret.

ConcatSuppPrivInfo:   Specifies the SuppPrivInfo subfield of the OtherInfo field.

This setting specifies the SuppPrivInfo subfield of the OtherInfo field as described in the publication "NIST SP 800-56A" section 5.8.1. The value supplied to this setting must be a hex encoded string of the subfield data.

This setting is optional when ComputeSecretKDF is set to ekdConcat. This setting is only applicable when calling ComputeSecret.

ConcatSuppPubInfo:   Specifies the SuppPubInfo subfield of the OtherInfo field.

This setting specifies the SuppPubInfo subfield of the OtherInfo field as described in the publication "NIST SP 800-56A" section 5.8.1. The value supplied to this setting must be a hex encoded string of the subfield data.

This setting is optional when ComputeSecretKDF is set to ekdConcat. This setting is only applicable when calling ComputeSecret.

ECDSASignatureFormat:   The format of the HashSignature when using ECDSA keys.

This setting specifies the format of HashSignature when signing with ECDSA keys. The way the HashSignature parameters are represented can be changed to be interoperable with other implementations. Possible values are:

  • 0 (Concatenated - default)
  • 1 (ASN)

Note: This setting is only applicable when KeyAlgorithm is set to secp256r1, secp384r1, or secp521r1.

EdDSAContext:   A hex encoded string holding the bytes of the context when signing or verifying with ed25519ctx.

This setting specifies up to 255 bytes of context data as a hex encoded string for during signing and verifying.

This setting is only applicable when KeyAlgorithm is set to ed25519 or ed448. When this setting is specified and the KeyAlgorithm is ed25519 and HashEdDSA is False the class will automatically use ed25519ctx.

If this value is specified before calling Sign, it must also be set prior to calling VerifySignature.

EncryptionKeySize:   The encryption key size.

This setting specifies the AES encryption key size in bits when EncryptionAlgorithm is set to AES. Possible values are:

  • 128
  • 192
  • 256 (default)
This setting is only applicable when calling Encrypt.
HMACKey:   A key to use when generating a Hash-based Message Authentication Code (HMAC).

This key is incorporated into the hashing process to add entropy to the resulting hash code, making the plaintext harder to guess and increasing the message security. The value supplied here must be hex encoded.

This is only applicable when calling ComputeSecret.

HMACKeySize:   Specifies the HMAC key size to be used during encryption.

This setting optionally specifies the HMAC key size to be used during encryption and decryption. If set to 0 (default) the class will automatically select the key size based on the algorithm specified in HMACAlgorithm.

This setting is only applicable when calling Encrypt or Decrypt.

HMACOptionalInfo:   Optional data to be used during encryption and decryption during the HMAC step.

This setting optionally specifies data to be used with the specified HMACAlgorithm as part of the encryption and decryption process. This is additional data known to both parties that is included while performing the HMAC operation.

The value specified in this setting must a hex string.

If specified this must be set before calling both Encrypt and Decrypt.

KDFOptionalInfo:   Optional data to be used during encryption and decryption during the key derivation step.

This setting optionally specifies data to be used with the specified KDF as part of the encryption and decryption process. This is additional data known to both parties that is included while performing key derivation.

The value specified in this setting must a hex string.

If specified this must be set before calling both Encrypt and Decrypt.

PrependSecret:   An optional string to prepend to the secret agreement.

This setting specifies an optional string to prepend to the secret agreement before hashing it. This is applicable when calling ComputeSecret.

Note: This is not applicable when ComputeSecretKDF is set to 12 (ekdTLS).

StrictKeyValidation:   Whether to validate provided public keys based on private keys.

This setting performs additional checks prior to using specified keys to validate the public key corresponds to the provided private key.

When using keys with the algorithm ed25519, ed448, X25519, or X448 the class will calculate the public key based on the provided private key and compare it to the provided public key to ensure they match.

When using keys with the algorithm secp256r1, secp384r1, or secp521r1 the class will perform calculations to verify the public key is a point on the curve. The class will also calculate the public key based on the provided private key and compare it to the provided public key to ensure they match.

The default value is False and the class will use the public and private keys as provided without any additional checks.

TLSLabel:   The TLS PRF label.

This setting specifies a string representing the PRF label. This setting is required when ComputeSecretKDF set to 12 (ekdTLS). It is only applicable when calling ComputeSecret.

TLSSeed:   The TLS PRF Seed.

This setting specifies the hex encoded TLS PRF Seed. The seed value must be 64 bytes in length before hex encoding. This setting is required when ComputeSecretKDF set to 12 (ekdTLS). It is only applicable when calling ComputeSecret.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8

The following is a list of valid code page identifiers for Mac OS only:

IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
UseInternalSecurityAPI:   Tells the class whether or not to use the system security libraries or an internal implementation.

By default the class will use the system security libraries to perform cryptographic functions where applicable. Setting this to tells the class to use the internal implementation instead of using the system's security API.

Trappable Errors (ECC Module)

ECC Errors

102   No Key specified.
104   Cannot read or write file.
111   OutputFile already exists and Overwrite is False.
120   Invalid curve.
124   HashSignature must be specified.
304   Cannot write file.
305   Cannot read file.
306   Cannot create file.
1401   Specified ECC parameters are invalid.
1402   Missing hash value.
1403   Public key must be specified.
1404   Key must be specified.
1405   HashSignature must be specified.
1406   Invalid key size.
1407   Invalid TLS seed. TLSSeed must be 64 bytes long.
1408   Invalid TLS label.
1409   Unsupported key format.
1410   Unsupported curve.

Copyright (c) 2022 /n software inc. - All rights reserved.
IPWorks Encrypt 2022 macOS Edition - Version 22.0 [Build 8369]