Docs

IPWorks 2022 C++ Builder Edition

Version 22.0 [Build 8171]

Rshell Component

Properties   Methods   Events   Configuration Settings   Errors  

The Rshell component is used to execute commands on a remote Unix machine using the rshell mechanism.

Syntax

TipwRshell

Remarks

The Rshell component allows remote execution of commands on UNIX hosts, or any other system with the rshell interface. Using the component is very simple. The destination is specified by the RemoteHost property, the login information is given by the LocalUser and RemoteUser properties. Then call the Execute method with the Command to execute as a parameter. You can also set the Command property to the command that you would like to execute for identical results. Further input can be supplied to the command by assigning data to the Text parameter of the Send method, or via the Stdin property.

The output of the command is returned through the Stdout event. If an error happens on the protocol level, the error message can be found in the ErrorMessage property. Errors during command execution (the stderr stream) are given by the Stderr event.

To be able to successfully use the component, the remote host must be set up to allow execution of commands via rshell from the machine the component runs on.

Property List


The following is the full list of the properties of the component with short descriptions. Click on the links for further details.

BytesSentThe number of bytes actually sent after an assignment to Stdin.
ConnectedShows whether the component is connected.
EoFIf True, the connection has closed, and there is no buffered data available.
EOLUsed to break the stdout data stream into chunks separated by its value.
ErrEOLUsed to break the stderr data stream into chunks separated by its value.
ErrorMessageThe error message returned when any of the steps prior to command execution fail.
FirewallAutoDetectThis property tells the component whether or not to automatically detect and use firewall system settings, if available.
FirewallTypeThis property determines the type of firewall to connect through.
FirewallHostThis property contains the name or IP address of firewall (optional).
FirewallPasswordThis property contains a password if authentication is to be used when connecting through the firewall.
FirewallPortThis property contains the TCP port for the firewall Host .
FirewallUserThis property contains a user name if authentication is to be used connecting through a firewall.
LocalHostThe name of the local host or user-assigned IP interface through which connections are initiated or accepted.
LocalPortThe TCP port in the local host where the component binds.
LocalUserThe identifier of the user on the local machine.
RemoteHostThe address of the remote host. Domain names are resolved to IP addresses.
RemotePortThe remote shell service port (default is 514).
RemoteUserThe id of the user on the remote host.
StderrReturns the standard error output (stderr) from the remote application.
StdoutProvides the standard output (stdout) from the remote application.
TimeoutA timeout for the component.

Method List


The following is the full list of the methods of the component with short descriptions. Click on the links for further details.

ConfigSets or retrieves a configuration setting.
ConnectConnets to the remote host without performing any action.
DisconnectDisconnects from the RemoteHost .
DoEventsProcesses events from the internal message queue.
ExecuteExecutes a Command on the remote host.
InterruptInterrupt the current method.
ResetReset the component.
SendSends standard input to the program executing on the remote host.
SendCommandSends the specified command to the server.
SendStdinBytesSends binary data to the remote host.
SendStdinTextSends text to the remote host.

Event List


The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.

ConnectedFired immediately after a connection completes (or fails).
ConnectionStatusFired to indicate changes in connection state.
DisconnectedFired when a connection is closed.
ErrorInformation about errors during data delivery.
StderrFired when data (complete lines) come in through stderr.
StdoutFired when data (complete lines) come in through stdout.

Configuration Settings


The following is a list of configuration settings for the component with short descriptions. Click on the links for further details.

EnableStderrEnables or disables secondary (stderr) stream.
MaxStderrMaximum storage available for the stderr buffer.
MaxStdoutMaximum storage available for the stdout buffer.
StderrPortThe local port from which the remote system sends the stderr stream.
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the component whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the component binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
OpenSSLCADirThe path to a directory containing CA certificates.
OpenSSLCAFileName of the file containing the list of CA's trusted by your application.
OpenSSLCipherListA string that controls the ciphers to be used by SSL.
OpenSSLPrngSeedDataThe data to seed the pseudo random number generator (PRNG).
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertsA newline separated list of CA certificate to use during SSL client authentication.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated ciphersuite.
SSLNegotiatedCipherStrengthReturns the negotiated ciphersuite strength.
SSLNegotiatedCipherSuiteReturns the negotiated ciphersuite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedProtocolReturns the negotiated protocol version.
SSLProviderThe name of the security provider to use.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificate to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when UseInternalSecurityAPI is True.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13ProviderThe TLS 1.3 implementation to be used.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
CodePageThe system code page used for Unicode to Multibyte translations.
LicenseInfoInformation about the current license.
UseInternalSecurityAPITells the component whether or not to use the system security libraries or an internal implementation.

BytesSent Property (Rshell Component)

The number of bytes actually sent after an assignment to Stdin.

Syntax

__property int BytesSent = { read=FBytesSent };

Default Value

0

Remarks

The BytesSent property shows how many bytes were sent after the last assignment to Stdin. Please check the Stdin property for more information.

This property is read-only and not available at design time.

Data Type

Integer

Connected Property (Rshell Component)

Shows whether the component is connected.

Syntax

__property bool Connected = { read=FConnected, write=FSetConnected };

Default Value

False

Remarks

This property is used to determine whether or not the component is connected to the remote host.

Note: It is recommended to use the Connect or Disconnect method instead of setting this property.

This property is not available at design time.

Data Type

Boolean

EoF Property (Rshell Component)

If True, the connection has closed, and there is no buffered data available.

Syntax

__property bool EoF = { read=FEoF };

Default Value

True

Remarks

EOF is an acronym for "End Of File".

This property is read-only.

Data Type

Boolean

EOL Property (Rshell Component)

Used to break the stdout data stream into chunks separated by its value.

Syntax

__property String EOL = { read=FEOL, write=FSetEOL };
__property DynamicArray<Byte> EOLB = { read=FEOLB, write=FSetEOLB };

Default Value

"ASCII code 10 (newline)"

Remarks

The EOL property is used to define boundaries in the Stdout stream using the value of the property.

This property is not available at design time.

Data Type

Byte Array

ErrEOL Property (Rshell Component)

Used to break the stderr data stream into chunks separated by its value.

Syntax

__property String ErrEOL = { read=FErrEOL, write=FSetErrEOL };
__property DynamicArray<Byte> ErrEOLB = { read=FErrEOLB, write=FSetErrEOLB };

Default Value

"ASCII code 10 (newline)"

Remarks

The ErrEOL property is used to define boundaries in the Stderr stream using the value of the property.

This property is not available at design time.

Data Type

Byte Array

ErrorMessage Property (Rshell Component)

The error message returned when any of the steps prior to command execution fail.

Syntax

__property String ErrorMessage = { read=FErrorMessage };

Default Value

""

Remarks

This error message is returned on a separate connection associated with error messages.

This property is read-only.

Data Type

String

FirewallAutoDetect Property (Rshell Component)

This property tells the component whether or not to automatically detect and use firewall system settings, if available.

Syntax

__property bool FirewallAutoDetect = { read=FFirewallAutoDetect, write=FSetFirewallAutoDetect };

Default Value

False

Remarks

This property tells the component whether or not to automatically detect and use firewall system settings, if available.

Data Type

Boolean

FirewallType Property (Rshell Component)

This property determines the type of firewall to connect through.

Syntax

__property TipwRshellFirewallTypes FirewallType = { read=FFirewallType, write=FSetFirewallType };
enum TipwRshellFirewallTypes { fwNone=0, fwTunnel=1, fwSOCKS4=2, fwSOCKS5=3, fwSOCKS4A=10 };

Default Value

fwNone

Remarks

This property determines the type of firewall to connect through. The applicable values are the following:

fwNone (0)No firewall (default setting).
fwTunnel (1)Connect through a tunneling proxy. FirewallPort is set to 80.
fwSOCKS4 (2)Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
fwSOCKS5 (3)Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
fwSOCKS4A (10)Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Data Type

Integer

FirewallHost Property (Rshell Component)

This property contains the name or IP address of firewall (optional).

Syntax

__property String FirewallHost = { read=FFirewallHost, write=FSetFirewallHost };

Default Value

""

Remarks

This property contains the name or IP address of firewall (optional). If a FirewallHost is given, the requested connections will be authenticated through the specified firewall when connecting.

If this property is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, the component raises an exception.

Data Type

String

FirewallPassword Property (Rshell Component)

This property contains a password if authentication is to be used when connecting through the firewall.

Syntax

__property String FirewallPassword = { read=FFirewallPassword, write=FSetFirewallPassword };

Default Value

""

Remarks

This property contains a password if authentication is to be used when connecting through the firewall. If FirewallHost is specified, the FirewallUser and FirewallPassword properties are used to connect and authenticate to the given firewall. If the authentication fails, the component raises an exception.

Data Type

String

FirewallPort Property (Rshell Component)

This property contains the TCP port for the firewall Host .

Syntax

__property int FirewallPort = { read=FFirewallPort, write=FSetFirewallPort };

Default Value

0

Remarks

This property contains the TCP port for the firewall FirewallHost. See the description of the FirewallHost property for details.

Note that this property is set automatically when FirewallType is set to a valid value. See the description of the FirewallType property for details.

Data Type

Integer

FirewallUser Property (Rshell Component)

This property contains a user name if authentication is to be used connecting through a firewall.

Syntax

__property String FirewallUser = { read=FFirewallUser, write=FSetFirewallUser };

Default Value

""

Remarks

This property contains a user name if authentication is to be used connecting through a firewall. If the FirewallHost is specified, this property and FirewallPassword properties are used to connect and authenticate to the given Firewall. If the authentication fails, the component raises an exception.

Data Type

String

LocalHost Property (Rshell Component)

The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

__property String LocalHost = { read=FLocalHost, write=FSetLocalHost };

Default Value

""

Remarks

The LocalHost property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.

If the component is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

NOTE: LocalHost is not persistent. You must always set it in code, and never in the property window.

Data Type

String

LocalPort Property (Rshell Component)

The TCP port in the local host where the component binds.

Syntax

__property int LocalPort = { read=FLocalPort, write=FSetLocalPort };

Default Value

0

Remarks

The LocalPort property must be set before a connection is attempted. It instructs the component to bind to a specific port (or communication endpoint) in the local machine.

Setting it to 0 (default) enables the component to choose a port at random. The chosen port will be shown by the LocalPort property after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set the LocalPort property when a connection is active will generate an error.

Use this property with caution. If you supply a value, it must be an available port on the system, or an error will be returned. Furthermore, the component always attempts to bind to a secure (sub 1000) port when the value of LocalPort is the default (0). If you supply your own value, make sure the remote system is configured to allow that particular value.

This property is not available at design time.

Data Type

Integer

LocalUser Property (Rshell Component)

The identifier of the user on the local machine.

Syntax

__property String LocalUser = { read=FLocalUser, write=FSetLocalUser };

Default Value

""

Remarks

This property contains the identifier of the user on the local machine. This must be the identifier of a user in the local host for whom remote execution of commands is permitted in the remote host.

Data Type

String

RemoteHost Property (Rshell Component)

The address of the remote host. Domain names are resolved to IP addresses.

Syntax

__property String RemoteHost = { read=FRemoteHost, write=FSetRemoteHost };

Default Value

""

Remarks

This property specifies the IP address (IP number in dotted internet format) or Domain Name of the remote host. It is set before a connection is attempted and cannot be changed once a connection is established.

If this property is set to a Domain Name, a DNS request is initiated, and upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, an error is returned.

If the component is configured to use a SOCKS firewall, the value assigned to this property may be preceded with an "*". If this is the case, the host name is passed to the firewall unresolved and the firewall performs the DNS resolution.

Example (Connecting)

IPPortControl.RemoteHost = "MyHostNameOrIP" IPPortControl.RemotePort = 777 IPPortControl.Connected = true

Data Type

String

RemotePort Property (Rshell Component)

The remote shell service port (default is 514).

Syntax

__property int RemotePort = { read=FRemotePort, write=FSetRemotePort };

Default Value

514

Remarks

This property specifies the rshell service port on the remote host.

A valid port number (a value between 1 and 65535) is required for the connection to take place. This property must be set before command execution is attempted.

This property is not available at design time.

Data Type

Integer

RemoteUser Property (Rshell Component)

The id of the user on the remote host.

Syntax

__property String RemoteUser = { read=FRemoteUser, write=FSetRemoteUser };

Default Value

""

Remarks

This must be the id of a user in the remote host for whom remote execution of commands is permitted.

Data Type

String

Stderr Property (Rshell Component)

Returns the standard error output (stderr) from the remote application.

Syntax

__property String Stderr = { read=FStderr };
__property DynamicArray<Byte> StderrB = { read=FStderrB };

Default Value

""

Remarks

The property is set to an empty string before each new request.

This property is read-only and not available at design time.

Data Type

Byte Array

Stdout Property (Rshell Component)

Provides the standard output (stdout) from the remote application.

Syntax

__property String Stdout = { read=FStdout };
__property DynamicArray<Byte> StdoutB = { read=FStdoutB };

Default Value

""

Remarks

The property is set to an empty string before each new request.

This property is read-only and not available at design time.

Data Type

Byte Array

Timeout Property (Rshell Component)

A timeout for the component.

Syntax

__property int Timeout = { read=FTimeout, write=FSetTimeout };

Default Value

60

Remarks

If the Timeout property is set to 0, all operations return immediately, potentially failing with a WOULDBLOCK error if data cannot be sent immediately.

If Timeout is set to a positive value, data is sent in a blocking manner and the component will wait for the operation to complete before returning control. The component will handle any potential WOULDBLOCK errors internally and automatically retry the operation for a maximum of Timeout seconds.

The component will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not "freeze" and remains responsive.

If Timeout expires, and the operation is not yet complete, the component raises an exception.

Please note that by default, all timeouts are inactivity timeouts, i.e. the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.

The default value for the Timeout property is 60 seconds.

Data Type

Integer

Config Method (Rshell Component)

Sets or retrieves a configuration setting.

Syntax

String __fastcall Config(String ConfigurationString);

Remarks

Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Connect Method (Rshell Component)

Connets to the remote host without performing any action.

Syntax

void __fastcall Connect();

Remarks

This method establishes a connection with the remote host specified by URL but does not send a request. In most cases it is recommended to use the appropriate method such as Get or Post which will both establish a connection and send a request.

This method may be useful in cases where it is desirable to establish a connection without performing any operatin, for instance testing connectivity.

Disconnect Method (Rshell Component)

Disconnects from the RemoteHost .

Syntax

void __fastcall Disconnect();

Remarks

This method disconnects from the RemoteHost. Calling this method is normally unnecessary, unless you wish to interrupt the remote program, or the remote program is waiting for standard input to end before terminating.

DoEvents Method (Rshell Component)

Processes events from the internal message queue.

Syntax

void __fastcall DoEvents();

Remarks

When DoEvents is called, the component processes any available events. If no events are available, it waits for a preset period of time, and then returns.

Execute Method (Rshell Component)

Executes a Command on the remote host.

Syntax

void __fastcall Execute(String Command);

Remarks

This method executes a Command on the remote host. Calling this method is equivalent to setting the Command property to Command.

Example (Execute a Command)

RshellControl.Execute("cd /home/username/; ls -al; cd/; ls")

Interrupt Method (Rshell Component)

Interrupt the current method.

Syntax

void __fastcall Interrupt();

Remarks

If there is no method in progress, Interrupt simply returns, doing nothing.

Reset Method (Rshell Component)

Reset the component.

Syntax

void __fastcall Reset();

Remarks

This method will reset the component's properties to their default values.

Send Method (Rshell Component)

Sends standard input to the program executing on the remote host.

Syntax

void __fastcall Send(DynamicArray<Byte> Text);

Remarks

This method sends standard input to the program executing on the remote host. Calling this method is equivalent to setting the Stdin property to Text.

SendCommand Method (Rshell Component)

Sends the specified command to the server.

Syntax

void __fastcall SendCommand(String Command);

Remarks

This method sends the Command to the RemoteHost. There is no need to append an end-of-line character to the command.

SendStdinBytes Method (Rshell Component)

Sends binary data to the remote host.

Syntax

void __fastcall SendStdinBytes(DynamicArray<Byte> Data);

Remarks

This method sends the specified binary data to the remote host. The data provided is used as input for the process on the remote host. To send text use the SendStdinText method instead.

If you are sending data to the remote host faster than it can process it, or faster than the network bandwidth allows, the outgoing queue might fill up. When this happens the component raises the exception with errorcode 10035 and message "[10035] Operation would block" (WSAEWOULDBLOCK). You can handle this exception, and then try to send the data again.

SendStdinText Method (Rshell Component)

Sends text to the remote host.

Syntax

void __fastcall SendStdinText(String Text);

Remarks

This method sends the specified text to the remote host. The text provided is used as input for the process on the remote host. To send binary data use the SendStdinBytes method instead.

If you are sending data to the remote host faster than it can process it, or faster than the network bandwidth allows, the outgoing queue might fill up. When this happens the component raises the exception with errorcode 10035 and message "[10035] Operation would block" (WSAEWOULDBLOCK). You can handle this exception, and then try to send the data again.

Connected Event (Rshell Component)

Fired immediately after a connection completes (or fails).

Syntax

typedef struct {
  int StatusCode;

  String Description;

} TipwRshellConnectedEventParams;

typedef void __fastcall (__closure *TipwRshellConnectedEvent)(System::TObject* Sender, TipwRshellConnectedEventParams *e);

__property TipwRshellConnectedEvent OnConnected = { read=FOnConnected, write=FOnConnected };

Remarks

If the connection is made normally, StatusCode is 0 and Description is "OK".

If the connection fails, StatusCode has the error code returned by the TCP/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

Please refer to the Error Codes section for more information.

ConnectionStatus Event (Rshell Component)

Fired to indicate changes in connection state.

Syntax

typedef struct {
  String ConnectionEvent;

  int StatusCode;

  String Description;

} TipwRshellConnectionStatusEventParams;

typedef void __fastcall (__closure *TipwRshellConnectionStatusEvent)(System::TObject* Sender, TipwRshellConnectionStatusEventParams *e);

__property TipwRshellConnectionStatusEvent OnConnectionStatus = { read=FOnConnectionStatus, write=FOnConnectionStatus };

Remarks

The ConnectionStatus event is fired when the connection state changes: completion of a firewall or proxy connection, completion of a security handshake, etc.

The ConnectionEvent parameter indicates the type of connection event. Values may include:

Firewall connection complete.
SSL or S/Shell handshake complete (where applicable).
Remote host connection complete.
Remote host disconnected.
SSL or S/Shell connection broken.
Firewall host disconnected.

StatusCode has the error code returned by the TCP/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

Disconnected Event (Rshell Component)

Fired when a connection is closed.

Syntax

typedef struct {
  int StatusCode;

  String Description;

} TipwRshellDisconnectedEventParams;

typedef void __fastcall (__closure *TipwRshellDisconnectedEvent)(System::TObject* Sender, TipwRshellDisconnectedEventParams *e);

__property TipwRshellDisconnectedEvent OnDisconnected = { read=FOnDisconnected, write=FOnDisconnected };

Remarks

If the connection is broken normally, StatusCode is 0 and Description is "OK".

If the connection is broken for any other reason, StatusCode has the error code returned by the TCP/IP subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.

Please refer to the Error Codes section for more information.

Error Event (Rshell Component)

Information about errors during data delivery.

Syntax

typedef struct {
  int ErrorCode;

  String Description;

} TipwRshellErrorEventParams;

typedef void __fastcall (__closure *TipwRshellErrorEvent)(System::TObject* Sender, TipwRshellErrorEventParams *e);

__property TipwRshellErrorEvent OnError = { read=FOnError, write=FOnError };

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the component raises an exception.

ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

Stderr Event (Rshell Component)

Fired when data (complete lines) come in through stderr.

Syntax

typedef struct {
  String Text;
  DynamicArray<Byte> TextB;

  bool EOL;

} TipwRshellStderrEventParams;

typedef void __fastcall (__closure *TipwRshellStderrEvent)(System::TObject* Sender, TipwRshellStderrEventParams *e);

__property TipwRshellStderrEvent OnStderr = { read=FOnStderr, write=FOnStderr };

Remarks

The Stderr event is fired every time the process on the remote host outputs a line in its error output. The incoming data is provided through the Text parameter.

EOL indicates whether the ErrEOL string was found on the end of Text or not. If the ErrEOL string was found then EOL is True, otherwise it is False.

When the error stream is closed by the server, a string containing only one NULL character is delivered through this event.

Stdout Event (Rshell Component)

Fired when data (complete lines) come in through stdout.

Syntax

typedef struct {
  String Text;
  DynamicArray<Byte> TextB;

  bool EOL;

} TipwRshellStdoutEventParams;

typedef void __fastcall (__closure *TipwRshellStdoutEvent)(System::TObject* Sender, TipwRshellStdoutEventParams *e);

__property TipwRshellStdoutEvent OnStdout = { read=FOnStdout, write=FOnStdout };

Remarks

The Stdout event is fired every time the process on the remote host outputs a line in its standard output. The incoming data is provided through the Text parameter.

EOL indicates whether the EOL string was found on the end of Text or not. If the EOL string was found then EOL is True, otherwise it is False.

Configuration Settings (Rshell Component)

The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

Rexec/Rshell Configuration Settings

EnableStderr:   Enables or disables secondary (stderr) stream.

Some systems (most notably certain versions of Linux) do not support the secondary stderr stream of rexec/rshell. For these systems you must turn stderr off. Any stderr output will then be provided through stdout.

The default value for this setting is True.

MaxStderr:   Maximum storage available for the stderr buffer.

This indicates the maximum amount of characters that the component will store in the Stderr property. The default value is -1, which indicates there is no maximum. A value of zero (0) will disable accumulation of stderr in the Stderr property, although the Stderr event will still continue to fire.

MaxStdout:   Maximum storage available for the stdout buffer.

This indicates the maximum amount of characters that the component will store in the Stdout property. The default value is -1, which indicates there is no maximum. A value of zero (0) will disable accumulation of stdout in the Stdout property, although the Stdout event will still continue to fire.

StderrPort:   The local port from which the remote system sends the stderr stream.

The default value is 0, which instructs the component to use a random port. Use this property with caution. If you supply a value, it must be an available port on the system or an error will be returned.

Some systems do not support secondary stderr streams. Please refer to the EnableStderr configuration setting for more information.

IPPort Configuration Settings

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the component will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the component whether or not to automatically detect and use firewall system settings, if available.

This setting is provided for use by components that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

NOTE: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the component raises an exception.

NOTE: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

Note that the FirewallPort is set automatically when FirewallType is set to a valid value.

NOTE: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

NOTE: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the component raises an exception.

NOTE: This setting is provided for use by components that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to true. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgement is received from the remote host the keep-alive packet will be re-sent. This setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to true. By default the operating system will determine the time a connection is idle before a TCP keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), there are two scenarios for determining how long the connection will linger. The first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP protocol timeout expires.

In the second scenario, LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the component returns control immediately, the system could hold system resources until all pending data is sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (by a client acknowledgment, for example), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, to leave the socket connection linger. This value is 0 by default, which means it will use the default IP protocol timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.

If the component is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the component binds.

This must be set before a connection is attempted. It instructs the component to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This setting optionally specifies a semicolon separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to true, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this config is set to false.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the component will use IPv4 exclusively. When set to 1, the component will use IPv6 exclusively. To instruct the component to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are:

0 IPv4 Only
1 IPv6 Only
2 IPv6 with IPv4 fallback

SSL Configuration Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When the UseInternalSecurityAPI configuration setting is True, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this setting has no effect if UseInternalSecurityAPI is False.

OpenSSLCADir:   The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCAFile:   Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCipherList:   A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

OpenSSLPrngSeedData:   The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to true, the component will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the component is the same.

SSLCACerts:   A newline separated list of CA certificate to use during SSL client authentication.

This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This setting specifies whether the component will check the Certificate Revocation List specified by the server certificate. If set to true the component will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The component will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the component raises an exception.

When set to false (default) the CRL check will not be performed by the component.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

The enabled cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the component will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when UseInternalSecurityAPI is False (default): obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when UseInternalSecurityAPI is False (default) include:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when UseInternalSecurityAPI is True: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA"); Possible values when UseInternalSecurityAPI is True include:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_DH_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_DSS_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

Used to enable/disable the supported security protocols.

Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default)
TLS1.1768 (Hex 300) (Default)
TLS1 192 (Hex C0) (Default)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList setting.

Note: TLS 1.1 and TLS1.2 support are only available starting with Windows 7.

Note: Enabling TLS 1.3 will automatically set UseInternalSecurityAPI to True.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is true by default, but can be set to false to disable the extension.

This setting is only applicable when UseInternalSecurityAPI is set to true.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the component will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the component will only append, it will not overwrite previous values.

Note: This setting is only applicable when UseInternalSecurityAPI is set to True.

SSLNegotiatedCipher:   Returns the negotiated ciphersuite.

Returns the ciphersuite negotiated during the SSL handshake.

Note: For server components (e.g. IPDaemon) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated ciphersuite strength.

Returns the strength of the ciphersuite negotiated during the SSL handshake.

Note: For server components (e.g. IPDaemon) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated ciphersuite.

Returns the ciphersuite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g. IPDaemon) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

Returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. IPDaemon) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

Returns the strenghth of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. IPDaemon) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedProtocol:   Returns the negotiated protocol version.

Returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g. IPDaemon) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedProtocol[connId]");

SSLProvider:   The name of the security provider to use.

Change this setting to use security providers other than the system default.

Use this setting with caution. Disabling SSL security or pointing to the wrong provider could potentially cause serious security vulnerabilities in your application.

The special value "*" (default) picks the default SSL provider defined in the system.

Note: On Windows systems, the default SSL Provider is "Microsoft Unified Security Protocol Provider" and cannot be changed .

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown Certificate Authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown Certificate Authority revocation status.
0x00000800Ignore unknown Root revocation status.
0x00008000Allow test Root certificate.
0x00004000Trust test Root certificate.
0x80000000Ignore non-matching CN (certificate CN not-matching server name).

This functionality is currently not available when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificate to use during SSL server certificate validation.

This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when UseInternalSecurityAPI is True.

This setting specifies the allowed server certificate signature algorithms when UseInternalSecurityAPI is True and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the component will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the component raises an exception.

The format of this value is a comma separated list of hash-signature combinations. For instance: IPPort.Config("UseInternalSecurityAPI=true"); IPPort.Config("SSLEnabledProtocols=3072"); //TLS 1.2 IPPort.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This setting specifies a comma separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and UseInternalSecurityAPI is set to True, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional round trip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.

In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13Provider:   The TLS 1.3 implementation to be used.

This setting specifies the TLS 1.3 implementation which will be used when TLS 1.3 is enabled via SSLEnabledProtocols. Possible values are:

  • 0 (Internal - Default)
  • 1 (Platform)

The platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider) please be aware of the following notes:

  • The platform provider is only available on Windows 11 / Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This setting holds a comma separated list of allowed signature algorithms. Possible values are:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This setting is only applicable when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. This setting should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Configuration Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for UDP ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g. headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Configuration Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8

The following is a list of valid code page identifiers for Mac OS only:

IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a component is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
UseInternalSecurityAPI:   Tells the component whether or not to use the system security libraries or an internal implementation.

By default the component will use the system security libraries to perform cryptographic functions. Setting this to True tells the component to use the internal implementation instead of using the system's security API.

Trappable Errors (Rshell Component)

RShell Errors

118   Firewall Error. Error message contains detailed description.

The component may also return one of the following error codes, which are inherited from other components.

IPPort Errors

100   You cannot change the RemotePort at this time. A connection is in progress.
101   You cannot change the RemoteHost (Server) at this time. A connection is in progress.
102   The RemoteHost address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the LocalPort at this time. A connection is in progress.
107   You cannot change the LocalHost at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   RemotePort cannot be zero. Please specify a valid service port number.
117   Cannot change UseConnection option while the component is Active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
302   Could not open file.
434   Unable to convert string to selected CodePage
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

SSL Errors

270   Cannot load specified security library.
271   Cannot open certificate store.
272   Cannot find specified certificate.
273   Cannot acquire security credentials.
274   Cannot find certificate chain.
275   Cannot verify certificate chain.
276   Error during handshake.
280   Error verifying certificate.
281   Could not find client certificate.
282   Could not find server certificate.
283   Error encrypting data.
284   Error decrypting data.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on non-socket.
10039   [10039] Destination address required.
10040   [10040] Message too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol not supported.
10044   [10044] Socket type not supported.
10045   [10045] Operation not supported on socket.
10046   [10046] Protocol family not supported.
10047   [10047] Address family not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Can't assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Can't send after socket shutdown.
10059   [10059] Too many references, can't splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock not loaded yet.
11001   [11001] Host not found.
11002   [11002] Non-authoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).

Copyright (c) 2022 /n software inc. - All rights reserved.
IPWorks 2022 C++ Builder Edition - Version 22.0 [Build 8171]