REST Class

Properties   Methods   Events   Config Settings   Errors  

The REST Class can be used to retrieve XML documents from the World Wide Web.

Syntax

class ipworks.REST

Remarks

The REST Class supports both plaintext and Secure Sockets Layer/Transport Layer Security (SSL/TLS) connections. When connecting over Secure Sockets Layer/Transport Layer Security (SSL/TLS) the on_ssl_server_authentication event allows you to check the server identity and other security attributes. The on_ssl_status event provides information about the SSL handshake. Additional SSL-related settings are also supported through the config method.

The REST Class implements a standard REST client with the added option of SSL security.

The class contains a number of properties that map directly to HTTP request headers. All XML data received are parsed by the component and are provided to the user through properties, such as xpath, xelement, and xtext, which allow for traversal of the document structure. The on_header event will provide the HTTP headers as returned by the server.

To receive a document, call the get method with the URL to retrieve the specified resource in the URL parameter. The class will automatically parse the XML data, depending on the content type that is returned. Call the delete method to delete a resource specified by the URL parameter.

The post and put methods are used to create and update resources. post is commonly used to both create and update resources; however, each service may have its own requirements. To send data to the server, set post_data and call the post or put method.

To add authorization credentials to an outgoing request, you should specify the user and password properties. The REST Class supports basic, digest, and NTLM authentication through the auth_scheme property.

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

acceptThis property includes a list of acceptable MIME types for the request.
authorizationThis property includes the Authorization string to be sent to the server.
auth_schemeThis property specifies the authentication scheme to use when server authentication is required.
build_domWhen set to True, this property creates an internal object model of the XML document.
connectedThis property shows whether the class is connected.
content_typeThis property includes the content type for posts and puts.
cookie_countThe number of records in the Cookie arrays.
cookie_domainThis is the domain of a received cookie.
cookie_expirationThis property contains an expiration time for the cookie (if provided by the server).
cookie_nameThis property, contains the name of the cookie.
cookie_pathThis property contains a path name to limit the cookie to (if provided by the server).
cookie_secureThis property contains the security flag of the received cookie.
cookie_valueThis property contains the value of the cookie.
firewall_auto_detectThis property tells the class whether or not to automatically detect and use firewall system settings, if available.
firewall_typeThis property determines the type of firewall to connect through.
firewall_hostThis property contains the name or IP address of the firewall (optional).
firewall_passwordThis property contains a password if authentication is to be used when connecting through the firewall.
firewall_portThis property contains the Transmission Control Protocol (TCP) port for the firewall Host .
firewall_userThis property contains a username if authentication is to be used when connecting through a firewall.
follow_redirectsThis property determines what happens when the server issues a redirect.
from_This property includes the email address of the HTTP agent (optional).
http_methodThis property includes the HTTP method used for the request.
idleThis property specifies the current status of the class.
if_modified_sinceThis property includes a date determining the maximum age of the desired document.
local_fileThis property includes the path to a local file for downloading. If the file exists, it is overwritten.
local_hostThis property includes the name of the local host or user-assigned IP interface through which connections are initiated or accepted.
namespace_countThe number of records in the Namespace arrays.
namespace_prefixThis property contains the Prefix for the Namespace .
namespace_uriThis property contains the namespace URI associated with the corresponding Prefix .
other_headersThis property includes other headers as determined by the user (optional).
parsed_header_countThe number of records in the ParsedHeader arrays.
parsed_header_fieldThis property contains the name of the HTTP header (this is the same case as it is delivered).
parsed_header_valueThis property contains the header contents.
passwordThis property includes a password if authentication is to be used.
post_dataThis property includes the data to post with the URL if the POST method is used.
proxy_auth_schemeThis property is used to tell the class which type of authorization to perform when connecting to the proxy.
proxy_auto_detectThis property tells the class whether or not to automatically detect and use proxy system settings, if available.
proxy_passwordThis property contains a password if authentication is to be used for the proxy.
proxy_portThis property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80).
proxy_serverIf a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.
proxy_sslThis property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy.
proxy_userThis property contains a username if authentication is to be used for the proxy.
refererThis property includes the referer URL/document (optional).
ssl_accept_server_cert_effective_dateThis is the date on which this certificate becomes valid.
ssl_accept_server_cert_expiration_dateThis is the date the certificate expires.
ssl_accept_server_cert_extended_key_usageThis is a comma-delimited list of extended key usage identifiers.
ssl_accept_server_cert_fingerprintThis is the hex-encoded, 16-byte MD5 fingerprint of the certificate.
ssl_accept_server_cert_fingerprint_sha1This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
ssl_accept_server_cert_fingerprint_sha256This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
ssl_accept_server_cert_issuerThis is the issuer of the certificate.
ssl_accept_server_cert_private_keyThis is the private key of the certificate (if available).
ssl_accept_server_cert_private_key_availableThis property shows whether a PrivateKey is available for the selected certificate.
ssl_accept_server_cert_private_key_containerThis is the name of the PrivateKey container for the certificate (if available).
ssl_accept_server_cert_public_keyThis is the public key of the certificate.
ssl_accept_server_cert_public_key_algorithmThis property contains the textual description of the certificate's public key algorithm.
ssl_accept_server_cert_public_key_lengthThis is the length of the certificate's public key (in bits).
ssl_accept_server_cert_serial_numberThis is the serial number of the certificate encoded as a string.
ssl_accept_server_cert_signature_algorithmThe property contains the text description of the certificate's signature algorithm.
ssl_accept_server_cert_storeThis is the name of the certificate store for the client certificate.
ssl_accept_server_cert_store_passwordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
ssl_accept_server_cert_store_typeThis is the type of certificate store for this certificate.
ssl_accept_server_cert_subject_alt_namesThis property contains comma-separated lists of alternative subject names for the certificate.
ssl_accept_server_cert_thumbprint_md5This property contains the MD5 hash of the certificate.
ssl_accept_server_cert_thumbprint_sha1This property contains the SHA-1 hash of the certificate.
ssl_accept_server_cert_thumbprint_sha256This property contains the SHA-256 hash of the certificate.
ssl_accept_server_cert_usageThis property contains the text description of UsageFlags .
ssl_accept_server_cert_usage_flagsThis property contains the flags that show intended use for the certificate.
ssl_accept_server_cert_versionThis property contains the certificate's version number.
ssl_accept_server_cert_subjectThis is the subject of the certificate used for client authentication.
ssl_accept_server_cert_encodedThis is the certificate (PEM/Base64 encoded).
ssl_cert_effective_dateThis is the date on which this certificate becomes valid.
ssl_cert_expiration_dateThis is the date the certificate expires.
ssl_cert_extended_key_usageThis is a comma-delimited list of extended key usage identifiers.
ssl_cert_fingerprintThis is the hex-encoded, 16-byte MD5 fingerprint of the certificate.
ssl_cert_fingerprint_sha1This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
ssl_cert_fingerprint_sha256This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
ssl_cert_issuerThis is the issuer of the certificate.
ssl_cert_private_keyThis is the private key of the certificate (if available).
ssl_cert_private_key_availableThis property shows whether a PrivateKey is available for the selected certificate.
ssl_cert_private_key_containerThis is the name of the PrivateKey container for the certificate (if available).
ssl_cert_public_keyThis is the public key of the certificate.
ssl_cert_public_key_algorithmThis property contains the textual description of the certificate's public key algorithm.
ssl_cert_public_key_lengthThis is the length of the certificate's public key (in bits).
ssl_cert_serial_numberThis is the serial number of the certificate encoded as a string.
ssl_cert_signature_algorithmThe property contains the text description of the certificate's signature algorithm.
ssl_cert_storeThis is the name of the certificate store for the client certificate.
ssl_cert_store_passwordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
ssl_cert_store_typeThis is the type of certificate store for this certificate.
ssl_cert_subject_alt_namesThis property contains comma-separated lists of alternative subject names for the certificate.
ssl_cert_thumbprint_md5This property contains the MD5 hash of the certificate.
ssl_cert_thumbprint_sha1This property contains the SHA-1 hash of the certificate.
ssl_cert_thumbprint_sha256This property contains the SHA-256 hash of the certificate.
ssl_cert_usageThis property contains the text description of UsageFlags .
ssl_cert_usage_flagsThis property contains the flags that show intended use for the certificate.
ssl_cert_versionThis property contains the certificate's version number.
ssl_cert_subjectThis is the subject of the certificate used for client authentication.
ssl_cert_encodedThis is the certificate (PEM/Base64 encoded).
ssl_providerThis property specifies the Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.
ssl_server_cert_effective_dateThis is the date on which this certificate becomes valid.
ssl_server_cert_expiration_dateThis is the date the certificate expires.
ssl_server_cert_extended_key_usageThis is a comma-delimited list of extended key usage identifiers.
ssl_server_cert_fingerprintThis is the hex-encoded, 16-byte MD5 fingerprint of the certificate.
ssl_server_cert_fingerprint_sha1This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
ssl_server_cert_fingerprint_sha256This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
ssl_server_cert_issuerThis is the issuer of the certificate.
ssl_server_cert_private_keyThis is the private key of the certificate (if available).
ssl_server_cert_private_key_availableThis property shows whether a PrivateKey is available for the selected certificate.
ssl_server_cert_private_key_containerThis is the name of the PrivateKey container for the certificate (if available).
ssl_server_cert_public_keyThis is the public key of the certificate.
ssl_server_cert_public_key_algorithmThis property contains the textual description of the certificate's public key algorithm.
ssl_server_cert_public_key_lengthThis is the length of the certificate's public key (in bits).
ssl_server_cert_serial_numberThis is the serial number of the certificate encoded as a string.
ssl_server_cert_signature_algorithmThe property contains the text description of the certificate's signature algorithm.
ssl_server_cert_storeThis is the name of the certificate store for the client certificate.
ssl_server_cert_store_passwordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
ssl_server_cert_store_typeThis is the type of certificate store for this certificate.
ssl_server_cert_subject_alt_namesThis property contains comma-separated lists of alternative subject names for the certificate.
ssl_server_cert_thumbprint_md5This property contains the MD5 hash of the certificate.
ssl_server_cert_thumbprint_sha1This property contains the SHA-1 hash of the certificate.
ssl_server_cert_thumbprint_sha256This property contains the SHA-256 hash of the certificate.
ssl_server_cert_usageThis property contains the text description of UsageFlags .
ssl_server_cert_usage_flagsThis property contains the flags that show intended use for the certificate.
ssl_server_cert_versionThis property contains the certificate's version number.
ssl_server_cert_subjectThis is the subject of the certificate used for client authentication.
ssl_server_cert_encodedThis is the certificate (PEM/Base64 encoded).
status_lineThis property is the first line of the last server response.
timeoutThis property includes the timeout for the class.
transferred_dataThis property includes the content of the last response from the server.
transferred_data_limitThis property includes the maximum number of bytes of data to be transferred.
transferred_headersThis property includes the full set of headers as received from the server.
urlThis property includes the URL to which the information is posted.
userThis property includes a user name if authentication is to be used.
validateThis property controls whether documents are validated during parsing.
attr_countThe number of records in the Attr arrays.
attr_nameThe Name provides the local name (without prefix) of the attribute.
attr_namespaceThis property contains the attribute namespace.
attr_prefixThis property contains the attribute prefix (if any).
attr_valueThis property contains the attribute value.
xchild_countThe number of records in the XChild arrays.
xchild_nameThe Name property provides the local name (without a prefix) of the element.
xchild_namespaceThis property contains the namespace of the element.
xchild_prefixThis property contains the prefix of the element (if any).
xchild_x_textThis property contains the inner text of the element.
xelementThis property includes the name of the current element.
xerror_pathThis property includes the XPath to check the server response for errors.
xnamespaceThis property includes the namespace of the current element.
xparentThis property includes the parent of the current element.
xpathThis property provides a way to point to a specific element in the response.
xprefixThis property includes the prefix of the current element.
xsub_treeThis property includes a snapshot of the current element in the document.
xtextThis property includes the text of the current element.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

add_cookieThis method adds a cookie and the corresponding value to the outgoing request headers.
attrThis method returns the value of the specified attribute.
configSets or retrieves a configuration setting.
deleteThis method deletes an object on the server.
do_eventsThis method processes events from the internal message queue.
getThis method retrieves the document using the HTTP GET method.
has_xpathThis method determines whether a specific element exists in the document.
interruptThis method interrupts the current method.
postThis method posts data to the HTTP server using the HTTP POST method.
putThis method sends data to the HTTP server using the HTTP PUT method.
resetThis method resets the class.
try_xpathThis method navigates to the specified XPath if it exists.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

on_charactersThis event is fired for plaintext segments of the input stream.
on_commentThis event is fired when a comment section is encountered.
on_connectedThis event is fired immediately after a connection completes (or fails).
on_connection_statusThis event is fired to indicate changes in the connection state.
on_disconnectedThis event is fired when a connection is closed.
on_end_elementThis event is fired when an end-element tag is encountered.
on_end_prefix_mappingThis event is fired when leaving the scope of a namespace declaration.
on_end_transferThis event is fired when a document finishes transferring.
on_errorFired when information is available about errors during data delivery.
on_eval_entityThis event is fired every time an entity needs to be evaluated.
on_headerThis event is fired every time a header line comes in.
on_ignorable_whitespaceThis event is fired when a section of ignorable whitespace is encountered.
on_logThis event fires once for each log message.
on_metaThis event fires when a meta section is encountered.
on_piThis event is fired when a processing instruction section is encountered.
on_redirectThis event is fired when a redirection is received from the server.
on_set_cookieThis event is fired for every cookie set by the server.
on_special_sectionThis event is fired when a special section is encountered.
on_ssl_server_authenticationFired after the server presents its certificate to the client.
on_ssl_statusFired when secure connection progress messages are available.
on_start_elementThis event is fired when a begin-element tag is encountered in the document.
on_start_prefix_mappingThis event is fired when entering the scope of a namespace declaration.
on_start_transferThis event is fired when a document starts transferring (after the headers).
on_statusThis event is fired when the HTTP status line is received from the server.
on_transferThis event is fired while a document transfers (delivers document).

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

CacheContentIf true, the original XML is saved in a buffer.
FromAllows the specification of the email address of the HTTP agent.
StringProcessingOptionsDefines options to use when processing string values.
AcceptEncodingUsed to tell the server which types of content encodings the client supports.
AllowHTTPCompressionThis property enables HTTP compression for receiving data.
AllowHTTPFallbackWhether HTTP/2 connections are permitted to fallback to HTTP/1.1.
AppendWhether to append data to LocalFile.
AuthorizationThe Authorization string to be sent to the server.
BytesTransferredContains the number of bytes transferred in the response data.
ChunkSizeSpecifies the chunk size in bytes when using chunked encoding.
CompressHTTPRequestSet to true to compress the body of a PUT or POST request.
EncodeURLIf set to True the URL will be encoded by the class.
FollowRedirectsDetermines what happens when the server issues a redirect.
GetOn302RedirectIf set to True the class will perform a GET on the new location.
HTTP2HeadersWithoutIndexingHTTP2 headers that should not update the dynamic header table with incremental indexing.
HTTPVersionThe version of HTTP used by the class.
IfModifiedSinceA date determining the maximum age of the desired document.
KeepAliveDetermines whether the HTTP connection is closed after completion of the request.
KerberosSPNThe Service Principal Name for the Kerberos Domain Controller.
LogLevelThe level of detail that is logged.
MaxRedirectAttemptsLimits the number of redirects that are followed in a request.
NegotiatedHTTPVersionThe negotiated HTTP version.
OtherHeadersOther headers as determined by the user (optional).
ProxyAuthorizationThe authorization string to be sent to the proxy server.
ProxyAuthSchemeThe authorization scheme to be used for the proxy.
ProxyPasswordA password if authentication is to be used for the proxy.
ProxyPortPort for the proxy server (default 80).
ProxyServerName or IP address of a proxy server (optional).
ProxyUserA user name if authentication is to be used for the proxy.
SentHeadersThe full set of headers as sent by the client.
StatusCodeThe status code of the last response from the server.
StatusLineThe first line of the last response from the server.
TransferredDataThe contents of the last response from the server.
TransferredDataLimitThe maximum number of incoming bytes to be stored by the class.
TransferredHeadersThe full set of headers as received from the server.
TransferredRequestThe full request as sent by the client.
UseChunkedEncodingEnables or Disables HTTP chunked encoding for transfers.
UseIDNsWhether to encode hostnames to internationalized domain names.
UsePlatformHTTPClientWhether or not to use the platform HTTP client.
UseProxyAutoConfigURLWhether to use a Proxy auto-config file when attempting a connection.
UserAgentInformation about the user agent (browser).
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the class whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the class binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
OpenSSLCADirThe path to a directory containing CA certificates.
OpenSSLCAFileName of the file containing the list of CA's trusted by your application.
OpenSSLCipherListA string that controls the ciphers to be used by SSL.
OpenSSLPrngSeedDataThe data to seed the pseudo random number generator (PRNG).
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertFilePathsThe paths to CA certificate files on Unix/Linux.
SSLCACertsA newline separated list of CA certificate to be included when performing an SSL handshake.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCheckOCSPWhether to use OCSP to check the status of the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLClientCACertsA newline separated list of CA certificates to use during SSL client certificate validation.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificates to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
CodePageThe system code page used for Unicode to Multibyte translations.
LicenseInfoInformation about the current license.
MaskSensitiveDataWhether sensitive data is masked in log messages.
ProcessIdleEventsWhether the class uses its internal event loop to process events when the main thread is idle.
SelectWaitMillisThe length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

accept Property

This property includes a list of acceptable MIME types for the request.

Syntax

def get_accept() -> str: ...
def set_accept(value: str) -> None: ...

accept = property(get_accept, set_accept)

Default Value

""

Remarks

If this property contains a nonempty string, an HTTP Accept header is added to the request.

The Accept header is used for content negotiation. It provides the server with a comma-separated list of MIME types that are acceptable for its response.

authorization Property

This property includes the Authorization string to be sent to the server.

Syntax

def get_authorization() -> str: ...
def set_authorization(value: str) -> None: ...

authorization = property(get_authorization, set_authorization)

Default Value

""

Remarks

If the authorization property contains a nonempty string, an Authorization HTTP request header is added to the request. This header conveys Authorization information to the server.

A common use for this property is to specify OAuth authorization string.

This property is provided so that the HTTP class can be extended with other security schemes in addition to the authorization schemes already implemented by the class.

The auth_scheme property defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time user and password are set, they are Base64 encoded, and the result is put in the authorization property in the form "Basic [encoded-user-password]".

auth_scheme Property

This property specifies the authentication scheme to use when server authentication is required.

Syntax

def get_auth_scheme() -> int: ...
def set_auth_scheme(value: int) -> None: ...

auth_scheme = property(get_auth_scheme, set_auth_scheme)

Default Value

0

Remarks

This property will tell the class which type of authorization to perform when the user and password properties are set.

This property should be set to authNone (3) when no authentication is to be performed.

By default, this property is authBasic (0), and if the user and password properties are set, the class will attempt HTTP Basic Authentication. If auth_scheme is set to authDigest (1), authNtlm (4), or authNegotiate (5), then Digest, NTLM, or Windows Negotiate (Kerberos) authentication will be attempted instead.

If auth_scheme is set to authProprietary (2), then the authorization token must be supplied through the authorization property.

If auth_scheme is set to authOAuth (6), then the authorization string must be supplied through the authorization property.

Note: If you set the authorization property and auth_scheme is not authProprietary or authOAuth, then the auth_scheme will be set automatically to authProprietary (2) by the class.

For security, changing the value of this property will cause the class to clear the values of user, password, and Authorization.

build_dom Property

When set to True, this property creates an internal object model of the XML document.

Syntax

def get_build_dom() -> bool: ...
def set_build_dom(value: bool) -> None: ...

build_dom = property(get_build_dom, set_build_dom)

Default Value

TRUE

Remarks

Set build_dom to True when you need to browse the current document through xpath.

validate is automatically set to True when build_dom is set to True.

connected Property

This property shows whether the class is connected.

Syntax

def get_connected() -> bool: ...

connected = property(get_connected, None)

Default Value

FALSE

Remarks

This property is used to determine whether or not the class is connected to the remote host. Use the connect and disconnect methods to manage the connection.

This property is read-only.

content_type Property

This property includes the content type for posts and puts.

Syntax

def get_content_type() -> str: ...
def set_content_type(value: str) -> None: ...

content_type = property(get_content_type, set_content_type)

Default Value

""

Remarks

If this property contains a nonempty string, a Content-Type HTTP request header is added to the request. The purpose of the header is to show the contents of the data during a post or put to the server.

The most common example is posting of HTML form input data. In that case, this property must be set to "application/x-www-form-urlencoded".

cookie_count Property

The number of records in the Cookie arrays.

Syntax

def get_cookie_count() -> int: ...
def set_cookie_count(value: int) -> None: ...

cookie_count = property(get_cookie_count, set_cookie_count)

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at cookie_count - 1.

cookie_domain Property

This is the domain of a received cookie.

Syntax

def get_cookie_domain(cookie_index: int) -> str: ...

Default Value

""

Remarks

This is the domain of a received cookie. This property contains a domain name to limit the cookie to (if provided by the server). If the server does not provide a domain name, this property will contain an empty string. The convention in this case is to use the server name specified by url_server as the cookie domain.

The cookie_index parameter specifies the index of the item in the array. The size of the array is controlled by the cookie_count property.

This property is read-only.

cookie_expiration Property

This property contains an expiration time for the cookie (if provided by the server).

Syntax

def get_cookie_expiration(cookie_index: int) -> str: ...

Default Value

""

Remarks

This property contains an expiration time for the cookie (if provided by the server). The time format used is "Weekday, DD-Mon-YY HH:MM:SS GMT". If the server does not provide an expiration time, this property will contain an empty string. The convention is to drop the cookie at the end of the session.

The cookie_index parameter specifies the index of the item in the array. The size of the array is controlled by the cookie_count property.

This property is read-only.

cookie_name Property

This property, contains the name of the cookie.

Syntax

def get_cookie_name(cookie_index: int) -> str: ...
def set_cookie_name(cookie_index: int, value: str) -> None: ...

Default Value

""

Remarks

This property, contains the name of the cookie.

This property, along with cookie_value, stores the cookie that is to be sent to the server. The on_set_cookie event displays the cookies sent by the server and their properties.

The cookie_index parameter specifies the index of the item in the array. The size of the array is controlled by the cookie_count property.

cookie_path Property

This property contains a path name to limit the cookie to (if provided by the server).

Syntax

def get_cookie_path(cookie_index: int) -> str: ...

Default Value

""

Remarks

This property contains a path name to limit the cookie to (if provided by the server). If the server does not provide a cookie path, the path property will be an empty string. The convention in this case is to use the path specified by url_path as the cookie path.

The cookie_index parameter specifies the index of the item in the array. The size of the array is controlled by the cookie_count property.

This property is read-only.

cookie_secure Property

This property contains the security flag of the received cookie.

Syntax

def get_cookie_secure(cookie_index: int) -> bool: ...

Default Value

FALSE

Remarks

This property contains the security flag of the received cookie. This property specifies whether the cookie is secure. If the value of this property is True, the cookie value must be submitted only through a secure (HTTPS) connection.

The cookie_index parameter specifies the index of the item in the array. The size of the array is controlled by the cookie_count property.

This property is read-only.

cookie_value Property

This property contains the value of the cookie.

Syntax

def get_cookie_value(cookie_index: int) -> str: ...
def set_cookie_value(cookie_index: int, value: str) -> None: ...

Default Value

""

Remarks

This property contains the value of the cookie. A corresponding value is associated with the cookie specified by cookie_name. This property holds that value.

The on_set_cookie event provides the cookies set by the server.

The cookie_index parameter specifies the index of the item in the array. The size of the array is controlled by the cookie_count property.

firewall_auto_detect Property

This property tells the class whether or not to automatically detect and use firewall system settings, if available.

Syntax

def get_firewall_auto_detect() -> bool: ...
def set_firewall_auto_detect(value: bool) -> None: ...

firewall_auto_detect = property(get_firewall_auto_detect, set_firewall_auto_detect)

Default Value

FALSE

Remarks

This property tells the class whether or not to automatically detect and use firewall system settings, if available.

firewall_type Property

This property determines the type of firewall to connect through.

Syntax

def get_firewall_type() -> int: ...
def set_firewall_type(value: int) -> None: ...

firewall_type = property(get_firewall_type, set_firewall_type)

Default Value

0

Remarks

This property determines the type of firewall to connect through. The applicable values are as follows:

fwNone (0)No firewall (default setting).
fwTunnel (1)Connect through a tunneling proxy. firewall_port is set to 80.
fwSOCKS4 (2)Connect through a SOCKS4 Proxy. firewall_port is set to 1080.
fwSOCKS5 (3)Connect through a SOCKS5 Proxy. firewall_port is set to 1080.
fwSOCKS4A (10)Connect through a SOCKS4A Proxy. firewall_port is set to 1080.

firewall_host Property

This property contains the name or IP address of the firewall (optional).

Syntax

def get_firewall_host() -> str: ...
def set_firewall_host(value: str) -> None: ...

firewall_host = property(get_firewall_host, set_firewall_host)

Default Value

""

Remarks

This property contains the name or IP address of the firewall (optional). If a firewall_host is given, the requested connections will be authenticated through the specified firewall when connecting.

If this property is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, the class fails with an error.

firewall_password Property

This property contains a password if authentication is to be used when connecting through the firewall.

Syntax

def get_firewall_password() -> str: ...
def set_firewall_password(value: str) -> None: ...

firewall_password = property(get_firewall_password, set_firewall_password)

Default Value

""

Remarks

This property contains a password if authentication is to be used when connecting through the firewall. If firewall_host is specified, the firewall_user and firewall_password properties are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

firewall_port Property

This property contains the Transmission Control Protocol (TCP) port for the firewall Host .

Syntax

def get_firewall_port() -> int: ...
def set_firewall_port(value: int) -> None: ...

firewall_port = property(get_firewall_port, set_firewall_port)

Default Value

0

Remarks

This property contains the Transmission Control Protocol (TCP) port for the firewall firewall_host. See the description of the firewall_host property for details.

Note: This property is set automatically when firewall_type is set to a valid value. See the description of the firewall_type property for details.

firewall_user Property

This property contains a username if authentication is to be used when connecting through a firewall.

Syntax

def get_firewall_user() -> str: ...
def set_firewall_user(value: str) -> None: ...

firewall_user = property(get_firewall_user, set_firewall_user)

Default Value

""

Remarks

This property contains a username if authentication is to be used when connecting through a firewall. If firewall_host is specified, this property and the firewall_password property are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

follow_redirects Property

This property determines what happens when the server issues a redirect.

Syntax

def get_follow_redirects() -> int: ...
def set_follow_redirects(value: int) -> None: ...

follow_redirects = property(get_follow_redirects, set_follow_redirects)

Default Value

0

Remarks

This property determines what happens when the server issues a redirect. Normally, the class returns an error if the server responds with an "Object Moved" message. If this property is set to frAlways (1), the new url for the object is retrieved automatically every time.

If this property is set to frSameScheme (2), the new url is retrieved automatically only if the url_scheme is the same; otherwise, the class fails with an error.

Note: Following the HTTP specification, unless this property is set to frAlways (1), automatic redirects will be performed only for GET or HEAD requests. Other methods potentially could change the conditions of the initial request and create security vulnerabilities.

Furthermore, if either the new URL server or port are different from the existing one, user and password are also reset to empty. If, however, this property is set to frAlways (1), the same credentials are used to connect to the new server.

A on_redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the on_redirect event is a good place to set properties related to the new connection (e.g., new authentication parameters).

The default value is frNever (0). In this case, redirects are never followed, and the class fails with an error instead.

from_ Property

This property includes the email address of the HTTP agent (optional).

Syntax

def get_from() -> str: ...
def set_from(value: str) -> None: ...

from_ = property(get_from, set_from)

Default Value

""

Remarks

This property contains the email address of the HTTP agent (optional). If it contains a nonempty string, an HTTP From: header is added to the request. This header generally gives the email address of the requester of the document.

http_method Property

This property includes the HTTP method used for the request.

Syntax

def get_http_method() -> str: ...
def set_http_method(value: str) -> None: ...

http_method = property(get_http_method, set_http_method)

Default Value

""

Remarks

This property contains the HTTP method used for the request. If an empty string is provided, the http_method is determined automatically by the method being called. You may change it to a custom value if you require an HTTP method other than what is provided by the class. When providing a custom value, make the request by calling the post method.

idle Property

This property specifies the current status of the class.

Syntax

def get_idle() -> bool: ...

idle = property(get_idle, None)

Default Value

TRUE

Remarks

idle will be False if the component is currently busy (communicating or waiting for an answer), and True at all other times.

This property is read-only.

if_modified_since Property

This property includes a date determining the maximum age of the desired document.

Syntax

def get_if_modified_since() -> str: ...
def set_if_modified_since(value: str) -> None: ...

if_modified_since = property(get_if_modified_since, set_if_modified_since)

Default Value

""

Remarks

If this property contains a nonempty string, an If-Modified-Since HTTP header is added to the request. The value of this header is used to make the HTTP request conditional: If the requested documented has not been modified since the time specified in the field, a copy of the document will not be returned from the server; instead, a 304 (not modified) response will be returned by the server and the class fails with an error

The format of the date value for if_modified_since is detailed in the HTTP specs. An example is Sat, 29 Oct 1994 19:43:31 GMT.

local_file Property

This property includes the path to a local file for downloading. If the file exists, it is overwritten.

Syntax

def get_local_file() -> str: ...
def set_local_file(value: str) -> None: ...

local_file = property(get_local_file, set_local_file)

Default Value

""

Remarks

This property is used when getting a document.

If this property is empty, then the received data are provided through transferred_data and the on_transfer event.

local_host Property

This property includes the name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

def get_local_host() -> str: ...
def set_local_host(value: str) -> None: ...

local_host = property(get_local_host, set_local_host)

Default Value

""

Remarks

The local_host property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.

If the class is connected, the local_host property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

Note: local_host is not persistent. You must always set it in code, and never in the property window.

namespace_count Property

The number of records in the Namespace arrays.

Syntax

def get_namespace_count() -> int: ...

namespace_count = property(get_namespace_count, None)

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at namespace_count - 1.

This property is read-only.

namespace_prefix Property

This property contains the Prefix for the Namespace .

Syntax

def get_namespace_prefix(namespace_index: int) -> str: ...

Default Value

""

Remarks

This property contains the namespace_prefix for the namespace.

The namespace_index parameter specifies the index of the item in the array. The size of the array is controlled by the namespace_count property.

This property is read-only.

namespace_uri Property

This property contains the namespace URI associated with the corresponding Prefix .

Syntax

def get_namespace_uri(namespace_index: int) -> str: ...

Default Value

""

Remarks

This property contains the namespace URI associated with the corresponding namespace_prefix. This URL is usually pointing to the XML schema for the namespace.

The namespace_index parameter specifies the index of the item in the array. The size of the array is controlled by the namespace_count property.

This property is read-only.

other_headers Property

This property includes other headers as determined by the user (optional).

Syntax

def get_other_headers() -> str: ...
def set_other_headers(value: str) -> None: ...

other_headers = property(get_other_headers, set_other_headers)

Default Value

""

Remarks

This property can be set to a string of headers to be appended to the HTTP request headers created from other properties like content_type and from_.

The headers must follow the format Header: Value as described in the HTTP specifications. Header lines should be separated by CRLF ("\r\n") .

Use this property with caution. If this property contains invalid headers, HTTP requests may fail.

This property is useful for extending the functionality of the class beyond what is provided.

parsed_header_count Property

The number of records in the ParsedHeader arrays.

Syntax

def get_parsed_header_count() -> int: ...

parsed_header_count = property(get_parsed_header_count, None)

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at parsed_header_count - 1.

This property is read-only.

parsed_header_field Property

This property contains the name of the HTTP header (this is the same case as it is delivered).

Syntax

def get_parsed_header_field(parsed_header_index: int) -> str: ...

Default Value

""

Remarks

This property contains the name of the HTTP Header (this is the same case as it is delivered).

The parsed_header_index parameter specifies the index of the item in the array. The size of the array is controlled by the parsed_header_count property.

This property is read-only.

parsed_header_value Property

This property contains the header contents.

Syntax

def get_parsed_header_value(parsed_header_index: int) -> str: ...

Default Value

""

Remarks

This property contains the Header contents.

The parsed_header_index parameter specifies the index of the item in the array. The size of the array is controlled by the parsed_header_count property.

This property is read-only.

password Property

This property includes a password if authentication is to be used.

Syntax

def get_password() -> str: ...
def set_password(value: str) -> None: ...

password = property(get_password, set_password)

Default Value

""

Remarks

This property contains a password if authentication is to be used. If auth_scheme is set to HTTP Basic Authentication, the user and password are Base64 encoded and the result is put in the Authorization configuration setting in the form "Basic [encoded-user-password]".

If auth_scheme is set to HTTP Digest Authentication, the user and password properties are used to respond to the HTTP Digest Authentication challenge from the server.

If auth_scheme is set to NTLM, NTLM authentication will be attempted. If auth_scheme is set to NTLM and user and password are empty, the class will attempt to authenticate using the current user's credentials.

post_data Property

This property includes the data to post with the URL if the POST method is used.

Syntax

def get_post_data() -> bytes: ...
def set_post_data(value: bytes) -> None: ...

post_data = property(get_post_data, set_post_data)

Default Value

""

Remarks

This property contains the data to post with the URL if the POST method is used. If this property contains a nonempty string, then if the HTTP POST method is used (post method), the contents of this property are appended to the HTTP request after the HTTP headers.

An HTTP Content-Length header is also added to the request. Its value is the length of the string in post_data.

The most common example is posting of HTML form input data. In that case, the content_type property must be set to application/x-www-form-urlencoded.

Example. Performing a Post:

HTTPControl.ContentType = "application/x-www-form-urlencoded" HTTPControl.PostData = "firstname=Tom&lastname=Thompson&country=US" HTTPControl.Post(myurl)

proxy_auth_scheme Property

This property is used to tell the class which type of authorization to perform when connecting to the proxy.

Syntax

def get_proxy_auth_scheme() -> int: ...
def set_proxy_auth_scheme(value: int) -> None: ...

proxy_auth_scheme = property(get_proxy_auth_scheme, set_proxy_auth_scheme)

Default Value

0

Remarks

This property is used to tell the class which type of authorization to perform when connecting to the proxy. This is used only when the proxy_user and proxy_password properties are set.

proxy_auth_scheme should be set to authNone (3) when no authentication is expected.

By default, proxy_auth_scheme is authBasic (0), and if the proxy_user and proxy_password properties are set, the component will attempt basic authentication.

If proxy_auth_scheme is set to authDigest (1), digest authentication will be attempted instead.

If proxy_auth_scheme is set to authProprietary (2), then the authorization token will not be generated by the class. Look at the configuration file for the class being used to find more information about manually setting this token.

If proxy_auth_scheme is set to authNtlm (4), NTLM authentication will be used.

For security reasons, setting this property will clear the values of proxy_user and proxy_password.

proxy_auto_detect Property

This property tells the class whether or not to automatically detect and use proxy system settings, if available.

Syntax

def get_proxy_auto_detect() -> bool: ...
def set_proxy_auto_detect(value: bool) -> None: ...

proxy_auto_detect = property(get_proxy_auto_detect, set_proxy_auto_detect)

Default Value

FALSE

Remarks

This property tells the class whether or not to automatically detect and use proxy system settings, if available. The default value is False.

proxy_password Property

This property contains a password if authentication is to be used for the proxy.

Syntax

def get_proxy_password() -> str: ...
def set_proxy_password(value: str) -> None: ...

proxy_password = property(get_proxy_password, set_proxy_password)

Default Value

""

Remarks

This property contains a password if authentication is to be used for the proxy.

If proxy_auth_scheme is set to Basic Authentication, the proxy_user and proxy_password properties are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If proxy_auth_scheme is set to Digest Authentication, the proxy_user and proxy_password properties are used to respond to the Digest Authentication challenge from the server.

If proxy_auth_scheme is set to NTLM Authentication, the proxy_user and proxy_password properties are used to authenticate through NTLM negotiation.

proxy_port Property

This property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80).

Syntax

def get_proxy_port() -> int: ...
def set_proxy_port(value: int) -> None: ...

proxy_port = property(get_proxy_port, set_proxy_port)

Default Value

80

Remarks

This property contains the Transmission Control Protocol (TCP) port for the proxy proxy_server (default 80). See the description of the proxy_server property for details.

proxy_server Property

If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.

Syntax

def get_proxy_server() -> str: ...
def set_proxy_server(value: str) -> None: ...

proxy_server = property(get_proxy_server, set_proxy_server)

Default Value

""

Remarks

If a proxy proxy_server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.

If the proxy_server property is set to a domain name, a DNS request is initiated. Upon successful termination of the request, the proxy_server property is set to the corresponding address. If the search is not successful, an error is returned.

proxy_ssl Property

This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy.

Syntax

def get_proxy_ssl() -> int: ...
def set_proxy_ssl(value: int) -> None: ...

proxy_ssl = property(get_proxy_ssl, set_proxy_ssl)

Default Value

0

Remarks

This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy. The applicable values are as follows:

psAutomatic (0)Default setting. If the url is an https URL, the class will use the psTunnel option. If the url is an http URL, the class will use the psNever option.
psAlways (1)The connection is always SSL-enabled.
psNever (2)The connection is not SSL-enabled.
psTunnel (3)The connection is made through a tunneling (HTTP) proxy.

proxy_user Property

This property contains a username if authentication is to be used for the proxy.

Syntax

def get_proxy_user() -> str: ...
def set_proxy_user(value: str) -> None: ...

proxy_user = property(get_proxy_user, set_proxy_user)

Default Value

""

Remarks

This property contains a username if authentication is to be used for the proxy.

If proxy_auth_scheme is set to Basic Authentication, the proxy_user and proxy_password properties are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If proxy_auth_scheme is set to Digest Authentication, the proxy_user and proxy_password properties are used to respond to the Digest Authentication challenge from the server.

If proxy_auth_scheme is set to NTLM Authentication, the proxy_user and proxy_password properties are used to authenticate through NTLM negotiation.

referer Property

This property includes the referer URL/document (optional).

Syntax

def get_referer() -> str: ...
def set_referer(value: str) -> None: ...

referer = property(get_referer, set_referer)

Default Value

""

Remarks

If this property contains a nonempty string, a Referer HTTP request header is added to the request. The purpose of the header is to show the document referring the requested URL.

ssl_accept_server_cert_effective_date Property

This is the date on which this certificate becomes valid.

Syntax

def get_ssl_accept_server_cert_effective_date() -> str: ...

ssl_accept_server_cert_effective_date = property(get_ssl_accept_server_cert_effective_date, None)

Default Value

""

Remarks

This is the date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

This property is read-only.

ssl_accept_server_cert_expiration_date Property

This is the date the certificate expires.

Syntax

def get_ssl_accept_server_cert_expiration_date() -> str: ...

ssl_accept_server_cert_expiration_date = property(get_ssl_accept_server_cert_expiration_date, None)

Default Value

""

Remarks

This is the date the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

This property is read-only.

ssl_accept_server_cert_extended_key_usage Property

This is a comma-delimited list of extended key usage identifiers.

Syntax

def get_ssl_accept_server_cert_extended_key_usage() -> str: ...

ssl_accept_server_cert_extended_key_usage = property(get_ssl_accept_server_cert_extended_key_usage, None)

Default Value

""

Remarks

This is a comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

This property is read-only.

ssl_accept_server_cert_fingerprint Property

This is the hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

def get_ssl_accept_server_cert_fingerprint() -> str: ...

ssl_accept_server_cert_fingerprint = property(get_ssl_accept_server_cert_fingerprint, None)

Default Value

""

Remarks

This is the hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

This property is read-only.

ssl_accept_server_cert_fingerprint_sha1 Property

This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

def get_ssl_accept_server_cert_fingerprint_sha1() -> str: ...

ssl_accept_server_cert_fingerprint_sha1 = property(get_ssl_accept_server_cert_fingerprint_sha1, None)

Default Value

""

Remarks

This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

This property is read-only.

ssl_accept_server_cert_fingerprint_sha256 Property

This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

def get_ssl_accept_server_cert_fingerprint_sha256() -> str: ...

ssl_accept_server_cert_fingerprint_sha256 = property(get_ssl_accept_server_cert_fingerprint_sha256, None)

Default Value

""

Remarks

This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

This property is read-only.

ssl_accept_server_cert_issuer Property

This is the issuer of the certificate.

Syntax

def get_ssl_accept_server_cert_issuer() -> str: ...

ssl_accept_server_cert_issuer = property(get_ssl_accept_server_cert_issuer, None)

Default Value

""

Remarks

This is the issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

This property is read-only.

ssl_accept_server_cert_private_key Property

This is the private key of the certificate (if available).

Syntax

def get_ssl_accept_server_cert_private_key() -> str: ...

ssl_accept_server_cert_private_key = property(get_ssl_accept_server_cert_private_key, None)

Default Value

""

Remarks

This is the private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The ssl_accept_server_cert_private_key may be available but not exportable. In this case, ssl_accept_server_cert_private_key returns an empty string.

This property is read-only.

ssl_accept_server_cert_private_key_available Property

This property shows whether a PrivateKey is available for the selected certificate.

Syntax

def get_ssl_accept_server_cert_private_key_available() -> bool: ...

ssl_accept_server_cert_private_key_available = property(get_ssl_accept_server_cert_private_key_available, None)

Default Value

FALSE

Remarks

This property shows whether a ssl_accept_server_cert_private_key is available for the selected certificate. If ssl_accept_server_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).

This property is read-only.

ssl_accept_server_cert_private_key_container Property

This is the name of the PrivateKey container for the certificate (if available).

Syntax

def get_ssl_accept_server_cert_private_key_container() -> str: ...

ssl_accept_server_cert_private_key_container = property(get_ssl_accept_server_cert_private_key_container, None)

Default Value

""

Remarks

This is the name of the ssl_accept_server_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.

This property is read-only.

ssl_accept_server_cert_public_key Property

This is the public key of the certificate.

Syntax

def get_ssl_accept_server_cert_public_key() -> str: ...

ssl_accept_server_cert_public_key = property(get_ssl_accept_server_cert_public_key, None)

Default Value

""

Remarks

This is the public key of the certificate. The key is provided as PEM/Base64-encoded data.

This property is read-only.

ssl_accept_server_cert_public_key_algorithm Property

This property contains the textual description of the certificate's public key algorithm.

Syntax

def get_ssl_accept_server_cert_public_key_algorithm() -> str: ...

ssl_accept_server_cert_public_key_algorithm = property(get_ssl_accept_server_cert_public_key_algorithm, None)

Default Value

""

Remarks

This property contains the textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_accept_server_cert_public_key_length Property

This is the length of the certificate's public key (in bits).

Syntax

def get_ssl_accept_server_cert_public_key_length() -> int: ...

ssl_accept_server_cert_public_key_length = property(get_ssl_accept_server_cert_public_key_length, None)

Default Value

0

Remarks

This is the length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

This property is read-only.

ssl_accept_server_cert_serial_number Property

This is the serial number of the certificate encoded as a string.

Syntax

def get_ssl_accept_server_cert_serial_number() -> str: ...

ssl_accept_server_cert_serial_number = property(get_ssl_accept_server_cert_serial_number, None)

Default Value

""

Remarks

This is the serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

This property is read-only.

ssl_accept_server_cert_signature_algorithm Property

The property contains the text description of the certificate's signature algorithm.

Syntax

def get_ssl_accept_server_cert_signature_algorithm() -> str: ...

ssl_accept_server_cert_signature_algorithm = property(get_ssl_accept_server_cert_signature_algorithm, None)

Default Value

""

Remarks

The property contains the text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_accept_server_cert_store Property

This is the name of the certificate store for the client certificate.

Syntax

def get_ssl_accept_server_cert_store() -> bytes: ...
def set_ssl_accept_server_cert_store(value: bytes) -> None: ...

ssl_accept_server_cert_store = property(get_ssl_accept_server_cert_store, set_ssl_accept_server_cert_store)

Default Value

"MY"

Remarks

This is the name of the certificate store for the client certificate.

The ssl_accept_server_cert_store_type property denotes the type of the certificate store specified by ssl_accept_server_cert_store. If the store is password protected, specify the password in ssl_accept_server_cert_store_password.

ssl_accept_server_cert_store is used in conjunction with the ssl_accept_server_cert_subject property to specify client certificates. If ssl_accept_server_cert_store has a value, and ssl_accept_server_cert_subject or ssl_accept_server_cert_encoded is set, a search for a certificate is initiated. Please see the ssl_accept_server_cert_subject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

ssl_accept_server_cert_store_password Property

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

def get_ssl_accept_server_cert_store_password() -> str: ...
def set_ssl_accept_server_cert_store_password(value: str) -> None: ...

ssl_accept_server_cert_store_password = property(get_ssl_accept_server_cert_store_password, set_ssl_accept_server_cert_store_password)

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

ssl_accept_server_cert_store_type Property

This is the type of certificate store for this certificate.

Syntax

def get_ssl_accept_server_cert_store_type() -> int: ...
def set_ssl_accept_server_cert_store_type(value: int) -> None: ...

ssl_accept_server_cert_store_type = property(get_ssl_accept_server_cert_store_type, set_ssl_accept_server_cert_store_type)

Default Value

0

Remarks

This is the type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: this store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the ssl_accept_server_cert_store and set ssl_accept_server_cert_store_password to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

ssl_accept_server_cert_subject_alt_names Property

This property contains comma-separated lists of alternative subject names for the certificate.

Syntax

def get_ssl_accept_server_cert_subject_alt_names() -> str: ...

ssl_accept_server_cert_subject_alt_names = property(get_ssl_accept_server_cert_subject_alt_names, None)

Default Value

""

Remarks

This property contains comma-separated lists of alternative subject names for the certificate.

This property is read-only.

ssl_accept_server_cert_thumbprint_md5 Property

This property contains the MD5 hash of the certificate.

Syntax

def get_ssl_accept_server_cert_thumbprint_md5() -> str: ...

ssl_accept_server_cert_thumbprint_md5 = property(get_ssl_accept_server_cert_thumbprint_md5, None)

Default Value

""

Remarks

This property contains the MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_accept_server_cert_thumbprint_sha1 Property

This property contains the SHA-1 hash of the certificate.

Syntax

def get_ssl_accept_server_cert_thumbprint_sha1() -> str: ...

ssl_accept_server_cert_thumbprint_sha1 = property(get_ssl_accept_server_cert_thumbprint_sha1, None)

Default Value

""

Remarks

This property contains the SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_accept_server_cert_thumbprint_sha256 Property

This property contains the SHA-256 hash of the certificate.

Syntax

def get_ssl_accept_server_cert_thumbprint_sha256() -> str: ...

ssl_accept_server_cert_thumbprint_sha256 = property(get_ssl_accept_server_cert_thumbprint_sha256, None)

Default Value

""

Remarks

This property contains the SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_accept_server_cert_usage Property

This property contains the text description of UsageFlags .

Syntax

def get_ssl_accept_server_cert_usage() -> str: ...

ssl_accept_server_cert_usage = property(get_ssl_accept_server_cert_usage, None)

Default Value

""

Remarks

This property contains the text description of ssl_accept_server_cert_usage_flags.

This value will be of one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

This property is read-only.

ssl_accept_server_cert_usage_flags Property

This property contains the flags that show intended use for the certificate.

Syntax

def get_ssl_accept_server_cert_usage_flags() -> int: ...

ssl_accept_server_cert_usage_flags = property(get_ssl_accept_server_cert_usage_flags, None)

Default Value

0

Remarks

This property contains the flags that show intended use for the certificate. The value of ssl_accept_server_cert_usage_flags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the ssl_accept_server_cert_usage property for a text representation of ssl_accept_server_cert_usage_flags.

This functionality currently is not available when the provider is OpenSSL.

This property is read-only.

ssl_accept_server_cert_version Property

This property contains the certificate's version number.

Syntax

def get_ssl_accept_server_cert_version() -> str: ...

ssl_accept_server_cert_version = property(get_ssl_accept_server_cert_version, None)

Default Value

""

Remarks

This property contains the certificate's version number. The possible values are the strings "V1", "V2", and "V3".

This property is read-only.

ssl_accept_server_cert_subject Property

This is the subject of the certificate used for client authentication.

Syntax

def get_ssl_accept_server_cert_subject() -> str: ...
def set_ssl_accept_server_cert_subject(value: str) -> None: ...

ssl_accept_server_cert_subject = property(get_ssl_accept_server_cert_subject, set_ssl_accept_server_cert_subject)

Default Value

""

Remarks

This is the subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

ssl_accept_server_cert_encoded Property

This is the certificate (PEM/Base64 encoded).

Syntax

def get_ssl_accept_server_cert_encoded() -> bytes: ...
def set_ssl_accept_server_cert_encoded(value: bytes) -> None: ...

ssl_accept_server_cert_encoded = property(get_ssl_accept_server_cert_encoded, set_ssl_accept_server_cert_encoded)

Default Value

""

Remarks

This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The ssl_accept_server_cert_store and ssl_accept_server_cert_subject properties also may be used to specify a certificate.

When ssl_accept_server_cert_encoded is set, a search is initiated in the current ssl_accept_server_cert_store for the private key of the certificate. If the key is found, ssl_accept_server_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_accept_server_cert_subject is set to an empty string.

ssl_cert_effective_date Property

This is the date on which this certificate becomes valid.

Syntax

def get_ssl_cert_effective_date() -> str: ...

ssl_cert_effective_date = property(get_ssl_cert_effective_date, None)

Default Value

""

Remarks

This is the date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

This property is read-only.

ssl_cert_expiration_date Property

This is the date the certificate expires.

Syntax

def get_ssl_cert_expiration_date() -> str: ...

ssl_cert_expiration_date = property(get_ssl_cert_expiration_date, None)

Default Value

""

Remarks

This is the date the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

This property is read-only.

ssl_cert_extended_key_usage Property

This is a comma-delimited list of extended key usage identifiers.

Syntax

def get_ssl_cert_extended_key_usage() -> str: ...

ssl_cert_extended_key_usage = property(get_ssl_cert_extended_key_usage, None)

Default Value

""

Remarks

This is a comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

This property is read-only.

ssl_cert_fingerprint Property

This is the hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

def get_ssl_cert_fingerprint() -> str: ...

ssl_cert_fingerprint = property(get_ssl_cert_fingerprint, None)

Default Value

""

Remarks

This is the hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

This property is read-only.

ssl_cert_fingerprint_sha1 Property

This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

def get_ssl_cert_fingerprint_sha1() -> str: ...

ssl_cert_fingerprint_sha1 = property(get_ssl_cert_fingerprint_sha1, None)

Default Value

""

Remarks

This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

This property is read-only.

ssl_cert_fingerprint_sha256 Property

This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

def get_ssl_cert_fingerprint_sha256() -> str: ...

ssl_cert_fingerprint_sha256 = property(get_ssl_cert_fingerprint_sha256, None)

Default Value

""

Remarks

This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

This property is read-only.

ssl_cert_issuer Property

This is the issuer of the certificate.

Syntax

def get_ssl_cert_issuer() -> str: ...

ssl_cert_issuer = property(get_ssl_cert_issuer, None)

Default Value

""

Remarks

This is the issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

This property is read-only.

ssl_cert_private_key Property

This is the private key of the certificate (if available).

Syntax

def get_ssl_cert_private_key() -> str: ...

ssl_cert_private_key = property(get_ssl_cert_private_key, None)

Default Value

""

Remarks

This is the private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The ssl_cert_private_key may be available but not exportable. In this case, ssl_cert_private_key returns an empty string.

This property is read-only.

ssl_cert_private_key_available Property

This property shows whether a PrivateKey is available for the selected certificate.

Syntax

def get_ssl_cert_private_key_available() -> bool: ...

ssl_cert_private_key_available = property(get_ssl_cert_private_key_available, None)

Default Value

FALSE

Remarks

This property shows whether a ssl_cert_private_key is available for the selected certificate. If ssl_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).

This property is read-only.

ssl_cert_private_key_container Property

This is the name of the PrivateKey container for the certificate (if available).

Syntax

def get_ssl_cert_private_key_container() -> str: ...

ssl_cert_private_key_container = property(get_ssl_cert_private_key_container, None)

Default Value

""

Remarks

This is the name of the ssl_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.

This property is read-only.

ssl_cert_public_key Property

This is the public key of the certificate.

Syntax

def get_ssl_cert_public_key() -> str: ...

ssl_cert_public_key = property(get_ssl_cert_public_key, None)

Default Value

""

Remarks

This is the public key of the certificate. The key is provided as PEM/Base64-encoded data.

This property is read-only.

ssl_cert_public_key_algorithm Property

This property contains the textual description of the certificate's public key algorithm.

Syntax

def get_ssl_cert_public_key_algorithm() -> str: ...

ssl_cert_public_key_algorithm = property(get_ssl_cert_public_key_algorithm, None)

Default Value

""

Remarks

This property contains the textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_cert_public_key_length Property

This is the length of the certificate's public key (in bits).

Syntax

def get_ssl_cert_public_key_length() -> int: ...

ssl_cert_public_key_length = property(get_ssl_cert_public_key_length, None)

Default Value

0

Remarks

This is the length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

This property is read-only.

ssl_cert_serial_number Property

This is the serial number of the certificate encoded as a string.

Syntax

def get_ssl_cert_serial_number() -> str: ...

ssl_cert_serial_number = property(get_ssl_cert_serial_number, None)

Default Value

""

Remarks

This is the serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

This property is read-only.

ssl_cert_signature_algorithm Property

The property contains the text description of the certificate's signature algorithm.

Syntax

def get_ssl_cert_signature_algorithm() -> str: ...

ssl_cert_signature_algorithm = property(get_ssl_cert_signature_algorithm, None)

Default Value

""

Remarks

The property contains the text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_cert_store Property

This is the name of the certificate store for the client certificate.

Syntax

def get_ssl_cert_store() -> bytes: ...
def set_ssl_cert_store(value: bytes) -> None: ...

ssl_cert_store = property(get_ssl_cert_store, set_ssl_cert_store)

Default Value

"MY"

Remarks

This is the name of the certificate store for the client certificate.

The ssl_cert_store_type property denotes the type of the certificate store specified by ssl_cert_store. If the store is password protected, specify the password in ssl_cert_store_password.

ssl_cert_store is used in conjunction with the ssl_cert_subject property to specify client certificates. If ssl_cert_store has a value, and ssl_cert_subject or ssl_cert_encoded is set, a search for a certificate is initiated. Please see the ssl_cert_subject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

ssl_cert_store_password Property

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

def get_ssl_cert_store_password() -> str: ...
def set_ssl_cert_store_password(value: str) -> None: ...

ssl_cert_store_password = property(get_ssl_cert_store_password, set_ssl_cert_store_password)

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

ssl_cert_store_type Property

This is the type of certificate store for this certificate.

Syntax

def get_ssl_cert_store_type() -> int: ...
def set_ssl_cert_store_type(value: int) -> None: ...

ssl_cert_store_type = property(get_ssl_cert_store_type, set_ssl_cert_store_type)

Default Value

0

Remarks

This is the type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: this store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the ssl_cert_store and set ssl_cert_store_password to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

ssl_cert_subject_alt_names Property

This property contains comma-separated lists of alternative subject names for the certificate.

Syntax

def get_ssl_cert_subject_alt_names() -> str: ...

ssl_cert_subject_alt_names = property(get_ssl_cert_subject_alt_names, None)

Default Value

""

Remarks

This property contains comma-separated lists of alternative subject names for the certificate.

This property is read-only.

ssl_cert_thumbprint_md5 Property

This property contains the MD5 hash of the certificate.

Syntax

def get_ssl_cert_thumbprint_md5() -> str: ...

ssl_cert_thumbprint_md5 = property(get_ssl_cert_thumbprint_md5, None)

Default Value

""

Remarks

This property contains the MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_cert_thumbprint_sha1 Property

This property contains the SHA-1 hash of the certificate.

Syntax

def get_ssl_cert_thumbprint_sha1() -> str: ...

ssl_cert_thumbprint_sha1 = property(get_ssl_cert_thumbprint_sha1, None)

Default Value

""

Remarks

This property contains the SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_cert_thumbprint_sha256 Property

This property contains the SHA-256 hash of the certificate.

Syntax

def get_ssl_cert_thumbprint_sha256() -> str: ...

ssl_cert_thumbprint_sha256 = property(get_ssl_cert_thumbprint_sha256, None)

Default Value

""

Remarks

This property contains the SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_cert_usage Property

This property contains the text description of UsageFlags .

Syntax

def get_ssl_cert_usage() -> str: ...

ssl_cert_usage = property(get_ssl_cert_usage, None)

Default Value

""

Remarks

This property contains the text description of ssl_cert_usage_flags.

This value will be of one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

This property is read-only.

ssl_cert_usage_flags Property

This property contains the flags that show intended use for the certificate.

Syntax

def get_ssl_cert_usage_flags() -> int: ...

ssl_cert_usage_flags = property(get_ssl_cert_usage_flags, None)

Default Value

0

Remarks

This property contains the flags that show intended use for the certificate. The value of ssl_cert_usage_flags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the ssl_cert_usage property for a text representation of ssl_cert_usage_flags.

This functionality currently is not available when the provider is OpenSSL.

This property is read-only.

ssl_cert_version Property

This property contains the certificate's version number.

Syntax

def get_ssl_cert_version() -> str: ...

ssl_cert_version = property(get_ssl_cert_version, None)

Default Value

""

Remarks

This property contains the certificate's version number. The possible values are the strings "V1", "V2", and "V3".

This property is read-only.

ssl_cert_subject Property

This is the subject of the certificate used for client authentication.

Syntax

def get_ssl_cert_subject() -> str: ...
def set_ssl_cert_subject(value: str) -> None: ...

ssl_cert_subject = property(get_ssl_cert_subject, set_ssl_cert_subject)

Default Value

""

Remarks

This is the subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

ssl_cert_encoded Property

This is the certificate (PEM/Base64 encoded).

Syntax

def get_ssl_cert_encoded() -> bytes: ...
def set_ssl_cert_encoded(value: bytes) -> None: ...

ssl_cert_encoded = property(get_ssl_cert_encoded, set_ssl_cert_encoded)

Default Value

""

Remarks

This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The ssl_cert_store and ssl_cert_subject properties also may be used to specify a certificate.

When ssl_cert_encoded is set, a search is initiated in the current ssl_cert_store for the private key of the certificate. If the key is found, ssl_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_cert_subject is set to an empty string.

ssl_provider Property

This property specifies the Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.

Syntax

def get_ssl_provider() -> int: ...
def set_ssl_provider(value: int) -> None: ...

ssl_provider = property(get_ssl_provider, set_ssl_provider)

Default Value

0

Remarks

This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic), the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.

Possible values are as follows:

0 (sslpAutomatic - default)Automatically selects the appropriate implementation.
1 (sslpPlatform) Uses the platform/system implementation.
2 (sslpInternal) Uses the internal implementation.
Additional Notes

In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.

When Automatic is selected, on Windows, the class will use the platform implementation. On Linux/macOS, the class will use the internal implementation. When TLS 1.3 is enabled via SSLEnabledProtocols, the internal implementation is used on all platforms.

ssl_server_cert_effective_date Property

This is the date on which this certificate becomes valid.

Syntax

def get_ssl_server_cert_effective_date() -> str: ...

ssl_server_cert_effective_date = property(get_ssl_server_cert_effective_date, None)

Default Value

""

Remarks

This is the date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

This property is read-only.

ssl_server_cert_expiration_date Property

This is the date the certificate expires.

Syntax

def get_ssl_server_cert_expiration_date() -> str: ...

ssl_server_cert_expiration_date = property(get_ssl_server_cert_expiration_date, None)

Default Value

""

Remarks

This is the date the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

This property is read-only.

ssl_server_cert_extended_key_usage Property

This is a comma-delimited list of extended key usage identifiers.

Syntax

def get_ssl_server_cert_extended_key_usage() -> str: ...

ssl_server_cert_extended_key_usage = property(get_ssl_server_cert_extended_key_usage, None)

Default Value

""

Remarks

This is a comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

This property is read-only.

ssl_server_cert_fingerprint Property

This is the hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

def get_ssl_server_cert_fingerprint() -> str: ...

ssl_server_cert_fingerprint = property(get_ssl_server_cert_fingerprint, None)

Default Value

""

Remarks

This is the hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

This property is read-only.

ssl_server_cert_fingerprint_sha1 Property

This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

def get_ssl_server_cert_fingerprint_sha1() -> str: ...

ssl_server_cert_fingerprint_sha1 = property(get_ssl_server_cert_fingerprint_sha1, None)

Default Value

""

Remarks

This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

This property is read-only.

ssl_server_cert_fingerprint_sha256 Property

This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

def get_ssl_server_cert_fingerprint_sha256() -> str: ...

ssl_server_cert_fingerprint_sha256 = property(get_ssl_server_cert_fingerprint_sha256, None)

Default Value

""

Remarks

This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

This property is read-only.

ssl_server_cert_issuer Property

This is the issuer of the certificate.

Syntax

def get_ssl_server_cert_issuer() -> str: ...

ssl_server_cert_issuer = property(get_ssl_server_cert_issuer, None)

Default Value

""

Remarks

This is the issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

This property is read-only.

ssl_server_cert_private_key Property

This is the private key of the certificate (if available).

Syntax

def get_ssl_server_cert_private_key() -> str: ...

ssl_server_cert_private_key = property(get_ssl_server_cert_private_key, None)

Default Value

""

Remarks

This is the private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The ssl_server_cert_private_key may be available but not exportable. In this case, ssl_server_cert_private_key returns an empty string.

This property is read-only.

ssl_server_cert_private_key_available Property

This property shows whether a PrivateKey is available for the selected certificate.

Syntax

def get_ssl_server_cert_private_key_available() -> bool: ...

ssl_server_cert_private_key_available = property(get_ssl_server_cert_private_key_available, None)

Default Value

FALSE

Remarks

This property shows whether a ssl_server_cert_private_key is available for the selected certificate. If ssl_server_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).

This property is read-only.

ssl_server_cert_private_key_container Property

This is the name of the PrivateKey container for the certificate (if available).

Syntax

def get_ssl_server_cert_private_key_container() -> str: ...

ssl_server_cert_private_key_container = property(get_ssl_server_cert_private_key_container, None)

Default Value

""

Remarks

This is the name of the ssl_server_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.

This property is read-only.

ssl_server_cert_public_key Property

This is the public key of the certificate.

Syntax

def get_ssl_server_cert_public_key() -> str: ...

ssl_server_cert_public_key = property(get_ssl_server_cert_public_key, None)

Default Value

""

Remarks

This is the public key of the certificate. The key is provided as PEM/Base64-encoded data.

This property is read-only.

ssl_server_cert_public_key_algorithm Property

This property contains the textual description of the certificate's public key algorithm.

Syntax

def get_ssl_server_cert_public_key_algorithm() -> str: ...

ssl_server_cert_public_key_algorithm = property(get_ssl_server_cert_public_key_algorithm, None)

Default Value

""

Remarks

This property contains the textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_server_cert_public_key_length Property

This is the length of the certificate's public key (in bits).

Syntax

def get_ssl_server_cert_public_key_length() -> int: ...

ssl_server_cert_public_key_length = property(get_ssl_server_cert_public_key_length, None)

Default Value

0

Remarks

This is the length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

This property is read-only.

ssl_server_cert_serial_number Property

This is the serial number of the certificate encoded as a string.

Syntax

def get_ssl_server_cert_serial_number() -> str: ...

ssl_server_cert_serial_number = property(get_ssl_server_cert_serial_number, None)

Default Value

""

Remarks

This is the serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

This property is read-only.

ssl_server_cert_signature_algorithm Property

The property contains the text description of the certificate's signature algorithm.

Syntax

def get_ssl_server_cert_signature_algorithm() -> str: ...

ssl_server_cert_signature_algorithm = property(get_ssl_server_cert_signature_algorithm, None)

Default Value

""

Remarks

The property contains the text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_server_cert_store Property

This is the name of the certificate store for the client certificate.

Syntax

def get_ssl_server_cert_store() -> bytes: ...

ssl_server_cert_store = property(get_ssl_server_cert_store, None)

Default Value

"MY"

Remarks

This is the name of the certificate store for the client certificate.

The ssl_server_cert_store_type property denotes the type of the certificate store specified by ssl_server_cert_store. If the store is password protected, specify the password in ssl_server_cert_store_password.

ssl_server_cert_store is used in conjunction with the ssl_server_cert_subject property to specify client certificates. If ssl_server_cert_store has a value, and ssl_server_cert_subject or ssl_server_cert_encoded is set, a search for a certificate is initiated. Please see the ssl_server_cert_subject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

This property is read-only.

ssl_server_cert_store_password Property

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

def get_ssl_server_cert_store_password() -> str: ...

ssl_server_cert_store_password = property(get_ssl_server_cert_store_password, None)

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

This property is read-only.

ssl_server_cert_store_type Property

This is the type of certificate store for this certificate.

Syntax

def get_ssl_server_cert_store_type() -> int: ...

ssl_server_cert_store_type = property(get_ssl_server_cert_store_type, None)

Default Value

0

Remarks

This is the type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: this store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the ssl_server_cert_store and set ssl_server_cert_store_password to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

This property is read-only.

ssl_server_cert_subject_alt_names Property

This property contains comma-separated lists of alternative subject names for the certificate.

Syntax

def get_ssl_server_cert_subject_alt_names() -> str: ...

ssl_server_cert_subject_alt_names = property(get_ssl_server_cert_subject_alt_names, None)

Default Value

""

Remarks

This property contains comma-separated lists of alternative subject names for the certificate.

This property is read-only.

ssl_server_cert_thumbprint_md5 Property

This property contains the MD5 hash of the certificate.

Syntax

def get_ssl_server_cert_thumbprint_md5() -> str: ...

ssl_server_cert_thumbprint_md5 = property(get_ssl_server_cert_thumbprint_md5, None)

Default Value

""

Remarks

This property contains the MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_server_cert_thumbprint_sha1 Property

This property contains the SHA-1 hash of the certificate.

Syntax

def get_ssl_server_cert_thumbprint_sha1() -> str: ...

ssl_server_cert_thumbprint_sha1 = property(get_ssl_server_cert_thumbprint_sha1, None)

Default Value

""

Remarks

This property contains the SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_server_cert_thumbprint_sha256 Property

This property contains the SHA-256 hash of the certificate.

Syntax

def get_ssl_server_cert_thumbprint_sha256() -> str: ...

ssl_server_cert_thumbprint_sha256 = property(get_ssl_server_cert_thumbprint_sha256, None)

Default Value

""

Remarks

This property contains the SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_server_cert_usage Property

This property contains the text description of UsageFlags .

Syntax

def get_ssl_server_cert_usage() -> str: ...

ssl_server_cert_usage = property(get_ssl_server_cert_usage, None)

Default Value

""

Remarks

This property contains the text description of ssl_server_cert_usage_flags.

This value will be of one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

This property is read-only.

ssl_server_cert_usage_flags Property

This property contains the flags that show intended use for the certificate.

Syntax

def get_ssl_server_cert_usage_flags() -> int: ...

ssl_server_cert_usage_flags = property(get_ssl_server_cert_usage_flags, None)

Default Value

0

Remarks

This property contains the flags that show intended use for the certificate. The value of ssl_server_cert_usage_flags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the ssl_server_cert_usage property for a text representation of ssl_server_cert_usage_flags.

This functionality currently is not available when the provider is OpenSSL.

This property is read-only.

ssl_server_cert_version Property

This property contains the certificate's version number.

Syntax

def get_ssl_server_cert_version() -> str: ...

ssl_server_cert_version = property(get_ssl_server_cert_version, None)

Default Value

""

Remarks

This property contains the certificate's version number. The possible values are the strings "V1", "V2", and "V3".

This property is read-only.

ssl_server_cert_subject Property

This is the subject of the certificate used for client authentication.

Syntax

def get_ssl_server_cert_subject() -> str: ...

ssl_server_cert_subject = property(get_ssl_server_cert_subject, None)

Default Value

""

Remarks

This is the subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

This property is read-only.

ssl_server_cert_encoded Property

This is the certificate (PEM/Base64 encoded).

Syntax

def get_ssl_server_cert_encoded() -> bytes: ...

ssl_server_cert_encoded = property(get_ssl_server_cert_encoded, None)

Default Value

""

Remarks

This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The ssl_server_cert_store and ssl_server_cert_subject properties also may be used to specify a certificate.

When ssl_server_cert_encoded is set, a search is initiated in the current ssl_server_cert_store for the private key of the certificate. If the key is found, ssl_server_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_server_cert_subject is set to an empty string.

This property is read-only.

status_line Property

This property is the first line of the last server response.

Syntax

def get_status_line() -> str: ...

status_line = property(get_status_line, None)

Default Value

""

Remarks

This property contains the first line of the last server response. This value can be used for diagnostic purposes. If an HTTP error is returned when calling a method of the class, the error string is the same as the status_line property.

The HTTP protocol specifies the structure of the status_line as follows: [HTTP version] [Result Code] [Description].

This property is read-only.

timeout Property

This property includes the timeout for the class.

Syntax

def get_timeout() -> int: ...
def set_timeout(value: int) -> None: ...

timeout = property(get_timeout, set_timeout)

Default Value

60

Remarks

If the timeout property is set to 0, all operations will run uninterrupted until successful completion or an error condition is encountered.

If timeout is set to a positive value, the class will wait for the operation to complete before returning control.

The class will use do_events to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not freeze and remains responsive.

If timeout expires, and the operation is not yet complete, the class fails with an error.

Note: By default, all timeouts are inactivity timeouts, that is, the timeout period is extended by timeout seconds when any amount of data is successfully sent or received.

The default value for the timeout property is 60 seconds.

transferred_data Property

This property includes the content of the last response from the server.

Syntax

def get_transferred_data() -> bytes: ...

transferred_data = property(get_transferred_data, None)

Default Value

""

Remarks

This property contains the content of the last response from the server. If the local_file is empty, data are accumulated in transferred_data, and also can be received in the on_transfer event. Otherwise, this property returns an empty string.

transferred_data_limit controls the maximum amount of data accumulated in this property (by default, there is no limit).

This property is read-only.

transferred_data_limit Property

This property includes the maximum number of bytes of data to be transferred.

Syntax

def get_transferred_data_limit() -> int: ...
def set_transferred_data_limit(value: int) -> None: ...

transferred_data_limit = property(get_transferred_data_limit, set_transferred_data_limit)

Default Value

0

Remarks

This property defines the maximum number of bytes of data to be transferred. The default value is zero, which means there is no limit to the amount of data the class will accumulate and parse. If this value is set to a number n that is greater than zero, the class will receive only the first n bytes of data from the server.

transferred_headers Property

This property includes the full set of headers as received from the server.

Syntax

def get_transferred_headers() -> str: ...

transferred_headers = property(get_transferred_headers, None)

Default Value

""

Remarks

This property returns the complete set of raw headers as received from the server.

The on_header event shows the individual headers as parsed by the class.

This property is read-only.

url Property

This property includes the URL to which the information is posted.

Syntax

def get_url() -> str: ...
def set_url(value: str) -> None: ...

url = property(get_url, set_url)

Default Value

""

Remarks

This property specifies the web page to which to post the form data. It is the same as the value specified by <FORM ACTION=...> in HTML forms.

user Property

This property includes a user name if authentication is to be used.

Syntax

def get_user() -> str: ...
def set_user(value: str) -> None: ...

user = property(get_user, set_user)

Default Value

""

Remarks

This property contains a user name if authentication is to be used. If auth_scheme is set to HTTP Basic Authentication, The user and password are Base64 encoded, and the result is put in the Authorization property in the form "Basic [encoded-user-password]".

If auth_scheme is set to HTTP Digest Authentication, the user and password properties are used to respond to the HTTP Digest Authentication challenge from the server.

If auth_scheme is set to NTLM, NTLM authentication will be attempted. If auth_scheme is set to NTLM, and user and password are empty, the class will attempt to authenticate using the current user's credentials.

validate Property

This property controls whether documents are validated during parsing.

Syntax

def get_validate() -> bool: ...
def set_validate(value: bool) -> None: ...

validate = property(get_validate, set_validate)

Default Value

TRUE

Remarks

When True (default), the document will be validated during parsing. To disable validation set validate to False. Disabling validation may be useful in cases in which data can still be parsed even if the document is not well formed.

attr_count Property

The number of records in the Attr arrays.

Syntax

def get_attr_count() -> int: ...

attr_count = property(get_attr_count, None)

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at attr_count - 1.

This property is read-only.

attr_name Property

The Name provides the local name (without prefix) of the attribute.

Syntax

def get_attr_name(attr_index: int) -> str: ...

Default Value

""

Remarks

The attr_name provides the local name (without prefix) of the attribute.

The attr_index parameter specifies the index of the item in the array. The size of the array is controlled by the attr_count property.

This property is read-only.

attr_namespace Property

This property contains the attribute namespace.

Syntax

def get_attr_namespace(attr_index: int) -> str: ...

Default Value

""

Remarks

This property contains the attribute namespace.

The attr_index parameter specifies the index of the item in the array. The size of the array is controlled by the attr_count property.

This property is read-only.

attr_prefix Property

This property contains the attribute prefix (if any).

Syntax

def get_attr_prefix(attr_index: int) -> str: ...

Default Value

""

Remarks

This property contains the attribute prefix (if any). If the attribute does not have a prefix, this property is empty.

The attr_index parameter specifies the index of the item in the array. The size of the array is controlled by the attr_count property.

This property is read-only.

attr_value Property

This property contains the attribute value.

Syntax

def get_attr_value(attr_index: int) -> str: ...

Default Value

""

Remarks

This property contains the attribute value.

The attr_index parameter specifies the index of the item in the array. The size of the array is controlled by the attr_count property.

This property is read-only.

xchild_count Property

The number of records in the XChild arrays.

Syntax

def get_xchild_count() -> int: ...

xchild_count = property(get_xchild_count, None)

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at xchild_count - 1.

This property is read-only.

xchild_name Property

The Name property provides the local name (without a prefix) of the element.

Syntax

def get_xchild_name(xchild_index: int) -> str: ...

Default Value

""

Remarks

The xchild_name property provides the local name (without a prefix) of the element.

The xchild_index parameter specifies the index of the item in the array. The size of the array is controlled by the xchild_count property.

This property is read-only.

xchild_namespace Property

This property contains the namespace of the element.

Syntax

def get_xchild_namespace(xchild_index: int) -> str: ...

Default Value

""

Remarks

This property contains the namespace of the element.

The xchild_index parameter specifies the index of the item in the array. The size of the array is controlled by the xchild_count property.

This property is read-only.

xchild_prefix Property

This property contains the prefix of the element (if any).

Syntax

def get_xchild_prefix(xchild_index: int) -> str: ...

Default Value

""

Remarks

This property contains the prefix of the element (if any). If the element does not have a prefix, this property is empty.

The xchild_index parameter specifies the index of the item in the array. The size of the array is controlled by the xchild_count property.

This property is read-only.

xchild_x_text Property

This property contains the inner text of the element.

Syntax

def get_xchild_x_text(xchild_index: int) -> str: ...

Default Value

""

Remarks

This property contains the inner text of the element.

The xchild_index parameter specifies the index of the item in the array. The size of the array is controlled by the xchild_count property.

This property is read-only.

xelement Property

This property includes the name of the current element.

Syntax

def get_xelement() -> str: ...

xelement = property(get_xelement, None)

Default Value

""

Remarks

The current element is specified in the xpath property.

This property is read-only.

xerror_path Property

This property includes the XPath to check the server response for errors.

Syntax

def get_xerror_path() -> str: ...
def set_xerror_path(value: str) -> None: ...

xerror_path = property(get_xerror_path, set_xerror_path)

Default Value

""

Remarks

This property contains an XPath to check the server response for errors. If the XPath exists, an exception will be thrown containing the value of the element at the path.

xnamespace Property

This property includes the namespace of the current element.

Syntax

def get_xnamespace() -> str: ...

xnamespace = property(get_xnamespace, None)

Default Value

""

Remarks

The current element is specified in the xpath property.

This property is read-only.

xparent Property

This property includes the parent of the current element.

Syntax

def get_xparent() -> str: ...

xparent = property(get_xparent, None)

Default Value

""

Remarks

The current element is specified through the xpath property.

This property is read-only.

xpath Property

This property provides a way to point to a specific element in the response.

Syntax

def get_xpath() -> str: ...
def set_xpath(value: str) -> None: ...

xpath = property(get_xpath, set_xpath)

Default Value

""

Remarks

This property provides a way to point to a specific element in the response. This property implements a subset of the XML XPath specification, which allows you to point to specific elements in the XML documents.

The path is a series of one or more element accessors separated by "/". The path can be absolute (starting with "/") or relative to the current xpath location.

Following are the possible values for an element accessor:

'name'A particular element name.
[i]The i-th subelement of the current element.
..the parent of the current element.
When xpath is set to a valid path, xelement points to the name of the element, with xparent, xnamespace, xprefix, xchildren, and xtext providing other properties of the element. The attributes of the current element will be contained in the attributes properties.

build_dom must be set to True before parsing the document for the xpath functionality to be available.

Example 1. Setting XPath:

Document rootRestControl.XPath = "/"
Specific ElementRestControl.XPath = "/root/SubElement1/SubElement2/"
i-th ChildRestControl.XPath = "/root/[i]"

xprefix Property

This property includes the prefix of the current element.

Syntax

def get_xprefix() -> str: ...

xprefix = property(get_xprefix, None)

Default Value

""

Remarks

The current element is specified in the xpath property.

This property is read-only.

xsub_tree Property

This property includes a snapshot of the current element in the document.

Syntax

def get_xsub_tree() -> str: ...

xsub_tree = property(get_xsub_tree, None)

Default Value

""

Remarks

The current element is specified through the xpath property. For this property to work, you must set the CacheContent to True.

This property is read-only.

xtext Property

This property includes the text of the current element.

Syntax

def get_xtext() -> str: ...

xtext = property(get_xtext, None)

Default Value

""

Remarks

The current element is specified in the xpath property.

This property is read-only.

add_cookie Method

This method adds a cookie and the corresponding value to the outgoing request headers.

Syntax

def add_cookie(cookie_name: str, cookie_value: str) -> None: ...

Remarks

This property adds a cookie and the corresponding value to the outgoing request headers. Please refer to the cookies property for more information on cookies and how they are managed.

attr Method

This method returns the value of the specified attribute.

Syntax

def attr(attr_name: str) -> str: ...

Remarks

If the attribute does not exist, an empty string is returned if ErrorOnEmptyAttr is set to False; otherwise, an exception is thrown.

Please refer to the xattributes properties for more information.

config Method

Sets or retrieves a configuration setting.

Syntax

def config(configuration_string: str) -> str: ...

Remarks

config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

delete Method

This method deletes an object on the server.

Syntax

def delete(url: str) -> None: ...

Remarks

This method is used to delete an object at the URL specified by using the HTTP DELETE method. The server response text is received through the on_transfer event, and the HTTP response headers through the on_header event. If local_file is not empty, the data (not the headers) are written there as well. Normally, the user should have assigned correct values to user and password or Authorization.

do_events Method

This method processes events from the internal message queue.

Syntax

def do_events() -> None: ...

Remarks

When do_events is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.

get Method

This method retrieves the document using the HTTP GET method.

Syntax

def get(url: str) -> None: ...

Remarks

This method retrieves the document using the HTTP GET method. The document contents are delivered to the component and parsed. The xpath, xelement, and xtext or the transferred_data property then can be used to traverse the data. The HTTP response headers are returned through the on_header event. If local_file is not empty, the data (not the headers) are written there as well.

has_xpath Method

This method determines whether a specific element exists in the document.

Syntax

def has_xpath(xpath: str) -> bool: ...

Remarks

This method determines whether a particular XPath exists within the document. This may be used to check if a path exists before setting it through xpath.

This method returns True if the xpath exists, and False if not.

See xpath for details on the XPath syntax.

interrupt Method

This method interrupts the current method.

Syntax

def interrupt() -> None: ...

Remarks

If there is no method in progress, interrupt simply returns, doing nothing.

post Method

This method posts data to the HTTP server using the HTTP POST method.

Syntax

def post(url: str) -> None: ...

Remarks

This method posts data to the HTTP server using the HTTP POST method. The data to post are taken from the post_data property.

The server response text is parsed by the class, and may be accessed through properties like xpath, xelement, and xtext or the transferred_data property. The HTTP response headers are received through the on_header event. If local_file is not empty, the data (not the headers) are written there as well.

put Method

This method sends data to the HTTP server using the HTTP PUT method.

Syntax

def put(url: str) -> None: ...

Remarks

This method sends data to the HTTP server using the HTTP PUT method. The data are taken from the post_data property.

The server response text is parsed by the component, and may be accessed using properties like xpath, xelement, and xtext or the transferred_data property. The HTTP response headers are received through the on_header event. If local_file is not empty, the data (not the headers) are written there as well.

The user normally should have assigned correct values to user and password or Authorization.

reset Method

This method resets the class.

Syntax

def reset() -> None: ...

Remarks

This method resets all HTTP headers to default values and resets the XML parser.

try_xpath Method

This method navigates to the specified XPath if it exists.

Syntax

def try_xpath(xpath: str) -> bool: ...

Remarks

This method will attempt to navigate to the specified XPath parameter if it exists within the document.

If the XPath exists, the xpath property will be updated and this method returns True.

If the XPath does not exist, the xpath property is not updated and this method returns False.

on_characters Event

This event is fired for plaintext segments of the input stream.

Syntax

class RESTCharactersEventParams(object):
  @property
  def text() -> str: ...

# In class REST:
@property
def on_characters() -> Callable[[RESTCharactersEventParams], None]: ...
@on_characters.setter
def on_characters(event_hook: Callable[[RESTCharactersEventParams], None]) -> None: ...

Remarks

The on_characters event provides the plaintext content of the XML document (i.e., the text inside the tags). The text is provided through the Text parameter.

The text includes white space as well as end-of-line characters, except for ignorable whitespace, which is fired through the on_ignorable_whitespace event.

on_comment Event

This event is fired when a comment section is encountered.

Syntax

class RESTCommentEventParams(object):
  @property
  def text() -> str: ...

# In class REST:
@property
def on_comment() -> Callable[[RESTCommentEventParams], None]: ...
@on_comment.setter
def on_comment(event_hook: Callable[[RESTCommentEventParams], None]) -> None: ...

Remarks

The on_comment event is fired whenever a comment section (<!-- ..text... -->) is found in the document.

The full text of the comment is provided by the Text parameter.

on_connected Event

This event is fired immediately after a connection completes (or fails).

Syntax

class RESTConnectedEventParams(object):
  @property
  def status_code() -> int: ...

  @property
  def description() -> str: ...

# In class REST:
@property
def on_connected() -> Callable[[RESTConnectedEventParams], None]: ...
@on_connected.setter
def on_connected(event_hook: Callable[[RESTConnectedEventParams], None]) -> None: ...

Remarks

If the connection is made normally, StatusCode is 0 and Description is "OK".

If the connection fails, StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

Please refer to the Error Codes section for more information.

on_connection_status Event

This event is fired to indicate changes in the connection state.

Syntax

class RESTConnectionStatusEventParams(object):
  @property
  def connection_event() -> str: ...

  @property
  def status_code() -> int: ...

  @property
  def description() -> str: ...

# In class REST:
@property
def on_connection_status() -> Callable[[RESTConnectionStatusEventParams], None]: ...
@on_connection_status.setter
def on_connection_status(event_hook: Callable[[RESTConnectionStatusEventParams], None]) -> None: ...

Remarks

The on_connection_status event is fired when the connection state changes: for example, completion of a firewall or proxy connection or completion of a security handshake.

The ConnectionEvent parameter indicates the type of connection event. Values may include the following:

Firewall connection complete.
Secure Sockets Layer (SSL) or S/Shell handshake complete (where applicable).
Remote host connection complete.
Remote host disconnected.
SSL or S/Shell connection broken.
Firewall host disconnected.
StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

on_disconnected Event

This event is fired when a connection is closed.

Syntax

class RESTDisconnectedEventParams(object):
  @property
  def status_code() -> int: ...

  @property
  def description() -> str: ...

# In class REST:
@property
def on_disconnected() -> Callable[[RESTDisconnectedEventParams], None]: ...
@on_disconnected.setter
def on_disconnected(event_hook: Callable[[RESTDisconnectedEventParams], None]) -> None: ...

Remarks

If the connection is broken normally, StatusCode is 0 and Description is "OK".

If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.

Please refer to the Error Codes section for more information.

on_end_element Event

This event is fired when an end-element tag is encountered.

Syntax

class RESTEndElementEventParams(object):
  @property
  def namespace() -> str: ...

  @property
  def element() -> str: ...

  @property
  def q_name() -> str: ...

  @property
  def is_empty() -> bool: ...

# In class REST:
@property
def on_end_element() -> Callable[[RESTEndElementEventParams], None]: ...
@on_end_element.setter
def on_end_element(event_hook: Callable[[RESTEndElementEventParams], None]) -> None: ...

Remarks

The on_end_element event is fired when an end-element tag is found in the document.

The element name is provided by the Element parameter.

The IsEmpty parameter is true when the event corresponds to an empty element declaration.

on_end_prefix_mapping Event

This event is fired when leaving the scope of a namespace declaration.

Syntax

class RESTEndPrefixMappingEventParams(object):
  @property
  def prefix() -> str: ...

# In class REST:
@property
def on_end_prefix_mapping() -> Callable[[RESTEndPrefixMappingEventParams], None]: ...
@on_end_prefix_mapping.setter
def on_end_prefix_mapping(event_hook: Callable[[RESTEndPrefixMappingEventParams], None]) -> None: ...

Remarks

The on_start_prefix_mapping event is fired when entering the scope of a namespace declaration.

on_end_transfer Event

This event is fired when a document finishes transferring.

Syntax

class RESTEndTransferEventParams(object):
  @property
  def direction() -> int: ...

# In class REST:
@property
def on_end_transfer() -> Callable[[RESTEndTransferEventParams], None]: ...
@on_end_transfer.setter
def on_end_transfer(event_hook: Callable[[RESTEndTransferEventParams], None]) -> None: ...

Remarks

The on_end_transfer event is fired first when the client finishes sending data to the server (in a POST or PUT request) and then when the document text finishes transferring from the server to the local host.

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

on_error Event

Fired when information is available about errors during data delivery.

Syntax

class RESTErrorEventParams(object):
  @property
  def error_code() -> int: ...

  @property
  def description() -> str: ...

# In class REST:
@property
def on_error() -> Callable[[RESTErrorEventParams], None]: ...
@on_error.setter
def on_error(event_hook: Callable[[RESTErrorEventParams], None]) -> None: ...

Remarks

The on_error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

on_eval_entity Event

This event is fired every time an entity needs to be evaluated.

Syntax

class RESTEvalEntityEventParams(object):
  @property
  def entity() -> str: ...

  @property
  def value() -> str: ...
  @value.setter
  def value(value) -> None: ...

# In class REST:
@property
def on_eval_entity() -> Callable[[RESTEvalEntityEventParams], None]: ...
@on_eval_entity.setter
def on_eval_entity(event_hook: Callable[[RESTEvalEntityEventParams], None]) -> None: ...

Remarks

The Value parameter contains a suggested value for the entity (normally the entity name itself). You may set Value to a value of your choice, which will be later passed into the text stream.

on_header Event

This event is fired every time a header line comes in.

Syntax

class RESTHeaderEventParams(object):
  @property
  def field() -> str: ...

  @property
  def value() -> str: ...

# In class REST:
@property
def on_header() -> Callable[[RESTHeaderEventParams], None]: ...
@on_header.setter
def on_header(event_hook: Callable[[RESTHeaderEventParams], None]) -> None: ...

Remarks

The Field parameter contains the name of the HTTP header (which is the same as it is delivered). The Value parameter contains the header contents.

If the header line being retrieved is a continuation header line, then the Field parameter contains "" (empty string).

on_ignorable_whitespace Event

This event is fired when a section of ignorable whitespace is encountered.

Syntax

class RESTIgnorableWhitespaceEventParams(object):
  @property
  def text() -> str: ...

# In class REST:
@property
def on_ignorable_whitespace() -> Callable[[RESTIgnorableWhitespaceEventParams], None]: ...
@on_ignorable_whitespace.setter
def on_ignorable_whitespace(event_hook: Callable[[RESTIgnorableWhitespaceEventParams], None]) -> None: ...

Remarks

The ignorable whitespace section is provided by the Text parameter.

on_log Event

This event fires once for each log message.

Syntax

class RESTLogEventParams(object):
  @property
  def log_level() -> int: ...

  @property
  def message() -> str: ...

  @property
  def log_type() -> str: ...

# In class REST:
@property
def on_log() -> Callable[[RESTLogEventParams], None]: ...
@on_log.setter
def on_log(event_hook: Callable[[RESTLogEventParams], None]) -> None: ...

Remarks

This event fires once for each log message generated by the class. The verbosity is controlled by the LogLevel setting.

LogLevel indicates the level of message. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.

The value 2 (Verbose) logs additional information about the request and response.

The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).

Message is the log entry.

LogType identifies the type of log entry. Possible values are as follows:

  • "Info"
  • "RequestHeaders"
  • "ResponseHeaders"
  • "RequestBody"
  • "ResponseBody"
  • "ProxyRequest"
  • "ProxyResponse"
  • "FirewallRequest"
  • "FirewallResponse"

on_meta Event

This event fires when a meta section is encountered.

Syntax

class RESTMetaEventParams(object):
  @property
  def text() -> str: ...

# In class REST:
@property
def on_meta() -> Callable[[RESTMetaEventParams], None]: ...
@on_meta.setter
def on_meta(event_hook: Callable[[RESTMetaEventParams], None]) -> None: ...

Remarks

The on_meta event is fired whenever a meta information section (<! ..text... >) is found in the document.

The full text of the meta section is provided by the Text parameter.

on_pi Event

This event is fired when a processing instruction section is encountered.

Syntax

class RESTPIEventParams(object):
  @property
  def text() -> str: ...

# In class REST:
@property
def on_pi() -> Callable[[RESTPIEventParams], None]: ...
@on_pi.setter
def on_pi(event_hook: Callable[[RESTPIEventParams], None]) -> None: ...

Remarks

The on_pi event is fired whenever a processing instruction section (<? ..text... ?>) is found in the document.

The full text of the processing instruction is provided by the Text parameter.

on_redirect Event

This event is fired when a redirection is received from the server.

Syntax

class RESTRedirectEventParams(object):
  @property
  def location() -> str: ...

  @property
  def accept() -> bool: ...
  @accept.setter
  def accept(value) -> None: ...

# In class REST:
@property
def on_redirect() -> Callable[[RESTRedirectEventParams], None]: ...
@on_redirect.setter
def on_redirect(event_hook: Callable[[RESTRedirectEventParams], None]) -> None: ...

Remarks

This event is fired in cases in which the client can decide whether or not to continue with the redirection process. The Accept parameter is always True by default, but if you do not want to follow the redirection, Accept may be set to False, in which case the class fails with an error. Location is the location to which the client is being redirected. Further control over redirection is provided in the follow_redirects property.

on_set_cookie Event

This event is fired for every cookie set by the server.

Syntax

class RESTSetCookieEventParams(object):
  @property
  def name() -> str: ...

  @property
  def value() -> str: ...

  @property
  def expires() -> str: ...

  @property
  def domain() -> str: ...

  @property
  def path() -> str: ...

  @property
  def secure() -> bool: ...

# In class REST:
@property
def on_set_cookie() -> Callable[[RESTSetCookieEventParams], None]: ...
@on_set_cookie.setter
def on_set_cookie(event_hook: Callable[[RESTSetCookieEventParams], None]) -> None: ...

Remarks

The on_set_cookie event is fired for every Set-Cookie: header received from the HTTP server.

The Name parameter contains the name of the cookie, with the corresponding value supplied in the Value parameter.

The Expires parameter contains an expiration time for the cookie (if provided by the server). The time format used is "Weekday, DD-Mon-YY HH:MM:SS GMT". If the server does not provide an expiration time, the Expires parameter will be an empty string. In this case, the convention is to drop the cookie at the end of the session.

The Domain parameter contains a domain name to limit the cookie to (if provided by the server). If the server does not provide a domain name, the Domain parameter will be an empty string. The convention in this case is to use the server specified in the URL (url_server) as the cookie domain.

The Path parameter contains a path name to limit the cookie to (if provided by the server). If the server does not provide a cookie path, the Path parameter will be an empty string. The convention in this case is to use the path specified in the URL (url_path) as the cookie path.

The Secure parameter specifies whether the cookie is secure. If the value of this parameter is True, the cookie value must be submitted only through a secure (HTTPS) connection.

on_special_section Event

This event is fired when a special section is encountered.

Syntax

class RESTSpecialSectionEventParams(object):
  @property
  def section_id() -> str: ...

  @property
  def text() -> str: ...

# In class REST:
@property
def on_special_section() -> Callable[[RESTSpecialSectionEventParams], None]: ...
@on_special_section.setter
def on_special_section(event_hook: Callable[[RESTSpecialSectionEventParams], None]) -> None: ...

Remarks

The on_special_section event is fired whenever a special section (such as <![ CDATA [ ..text... ]]>) is found in the document.

The full text of the special section is provided by the Text parameter, and the SectionId parameter provides the section identifier (e.g., CDATA).

on_ssl_server_authentication Event

Fired after the server presents its certificate to the client.

Syntax

class RESTSSLServerAuthenticationEventParams(object):
  @property
  def cert_encoded() -> bytes: ...

  @property
  def cert_subject() -> str: ...

  @property
  def cert_issuer() -> str: ...

  @property
  def status() -> str: ...

  @property
  def accept() -> bool: ...
  @accept.setter
  def accept(value) -> None: ...

# In class REST:
@property
def on_ssl_server_authentication() -> Callable[[RESTSSLServerAuthenticationEventParams], None]: ...
@on_ssl_server_authentication.setter
def on_ssl_server_authentication(event_hook: Callable[[RESTSSLServerAuthenticationEventParams], None]) -> None: ...

Remarks

During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

on_ssl_status Event

Fired when secure connection progress messages are available.

Syntax

class RESTSSLStatusEventParams(object):
  @property
  def message() -> str: ...

# In class REST:
@property
def on_ssl_status() -> Callable[[RESTSSLStatusEventParams], None]: ...
@on_ssl_status.setter
def on_ssl_status(event_hook: Callable[[RESTSSLStatusEventParams], None]) -> None: ...

Remarks

The event is fired for informational and logging purposes only. This event tracks the progress of the connection.

on_start_element Event

This event is fired when a begin-element tag is encountered in the document.

Syntax

class RESTStartElementEventParams(object):
  @property
  def namespace() -> str: ...

  @property
  def element() -> str: ...

  @property
  def q_name() -> str: ...

  @property
  def is_empty() -> bool: ...

# In class REST:
@property
def on_start_element() -> Callable[[RESTStartElementEventParams], None]: ...
@on_start_element.setter
def on_start_element(event_hook: Callable[[RESTStartElementEventParams], None]) -> None: ...

Remarks

The on_start_element event is fired when a begin-element tag is found in the document.

The element name is provided through the Element parameter. The attribute names and values (if any) are provided through the attr_name, attr_namespace, attr_prefix, and attr_value properties.

The IsEmpty parameter is True when the event corresponds to an empty element declaration.

on_start_prefix_mapping Event

This event is fired when entering the scope of a namespace declaration.

Syntax

class RESTStartPrefixMappingEventParams(object):
  @property
  def prefix() -> str: ...

  @property
  def uri() -> str: ...

# In class REST:
@property
def on_start_prefix_mapping() -> Callable[[RESTStartPrefixMappingEventParams], None]: ...
@on_start_prefix_mapping.setter
def on_start_prefix_mapping(event_hook: Callable[[RESTStartPrefixMappingEventParams], None]) -> None: ...

Remarks

The on_end_prefix_mapping event is fired when leaving the scope of a namespace declaration.

on_start_transfer Event

This event is fired when a document starts transferring (after the headers).

Syntax

class RESTStartTransferEventParams(object):
  @property
  def direction() -> int: ...

# In class REST:
@property
def on_start_transfer() -> Callable[[RESTStartTransferEventParams], None]: ...
@on_start_transfer.setter
def on_start_transfer(event_hook: Callable[[RESTStartTransferEventParams], None]) -> None: ...

Remarks

The on_start_transfer event is fired first when the client starts sending data to the server (in a POST or PUT request) and then when the document text starts transferring from the server to the local host.

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

on_status Event

This event is fired when the HTTP status line is received from the server.

Syntax

class RESTStatusEventParams(object):
  @property
  def http_version() -> str: ...

  @property
  def status_code() -> int: ...

  @property
  def description() -> str: ...

# In class REST:
@property
def on_status() -> Callable[[RESTStatusEventParams], None]: ...
@on_status.setter
def on_status(event_hook: Callable[[RESTStatusEventParams], None]) -> None: ...

Remarks

HTTPVersion is a string containing the HTTP version string as returned from the server (e.g., "1.1").

StatusCode contains the HTTP status code (e.g., 200), and Description the associated message returned by the server (e.g., "OK").

on_transfer Event

This event is fired while a document transfers (delivers document).

Syntax

class RESTTransferEventParams(object):
  @property
  def direction() -> int: ...

  @property
  def bytes_transferred() -> int: ...

  @property
  def percent_done() -> int: ...

  @property
  def text() -> bytes: ...

# In class REST:
@property
def on_transfer() -> Callable[[RESTTransferEventParams], None]: ...
@on_transfer.setter
def on_transfer(event_hook: Callable[[RESTTransferEventParams], None]) -> None: ...

Remarks

The Text parameter contains the portion of the document text being received. It is empty if data are being posted to the server.

The BytesTransferred parameter contains the number of bytes transferred in this Direction since the beginning of the document text (excluding HTTP response headers).

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

The PercentDone parameter shows the progress of the transfer in the corresponding direction. If PercentDone can not be calculated the value will be -1.

Note: Events are not re-entrant. Performing time-consuming operations within this event will prevent it from firing again in a timely manner and may affect overall performance.

REST Config Settings

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.

REST Config Settings

CacheContent:   If true, the original XML is saved in a buffer.

This configuration setting controls whether or not the component retains the entire original XML in a buffer. This is used to retain the original XML as opposed to returning generated XML after parsing. The default value is True.

From:   Allows the specification of the email address of the HTTP agent.

When this configuration setting is set, an HTTP From: header is added to the request. This header generally gives the email address of the requester of the document.

Note: This functionality is available only in Java and .NET.

StringProcessingOptions:   Defines options to use when processing string values.

This configuration setting determines what additional processing is performed on string values during parsing. By default, no additional processing is performed and the string is returned as is from the document. Possible values are as follows:

0 (none - default) No additional processing is performed.
1 (unquote) Strings are unquoted (JSON only; this is the same as 0 for XML).
2 (unescape) Any escaped sequences are unescaped.
3 (unquote and unescape) Values are both unquoted and unescaped (this is the same as 2 for XML).
For instance, given the JSON element "example": "value\ntest" or the XML element <flavor>cookies &amp; cream</flavor>, the following table shows the resulting xtext value based on the current setting:
StringProcessingOptionJSON Output XML Output
0 (none)
"value\ntest"
cookies &amp; cream
1 (unquote)
value\ntest
cookies &amp; cream
2 (unescape)
"value
test"
cookies & cream
3 (unquote and unescape)
value
test
cookies & cream

Note: If build_dom is True, XML content will always be unescaped, regardless of this setting.

HTTP Config Settings

AcceptEncoding:   Used to tell the server which types of content encodings the client supports.

When AllowHTTPCompression is True, the class adds an Accept-Encoding header to the request being sent to the server. By default, this header's value is "gzip, deflate". This configuration setting allows you to change the value of the Accept-Encoding header. Note: The class only supports gzip and deflate decompression algorithms.

AllowHTTPCompression:   This property enables HTTP compression for receiving data.

This configuration setting enables HTTP compression for receiving data. When set to True (default), the class will accept compressed data. It then will uncompress the data it has received. The class will handle data compressed by both gzip and deflate compression algorithms.

When True, the class adds an Accept-Encoding header to the outgoing request. The value for this header can be controlled by the AcceptEncoding configuration setting. The default value for this header is "gzip, deflate".

The default value is True.

AllowHTTPFallback:   Whether HTTP/2 connections are permitted to fallback to HTTP/1.1.

This configuration setting controls whether HTTP/2 connections are permitted to fall back to HTTP/1.1 when the server does not support HTTP/2. This setting is applicable only when http_version is set to "2.0".

If set to True (default), the class will automatically use HTTP/1.1 if the server does not support HTTP/2. If set to False, the class fails with an error if the server does not support HTTP/2.

The default value is True.

Append:   Whether to append data to LocalFile.

This configuration setting determines whether data will be appended when writing to local_file. When set to True, downloaded data will be appended to local_file. This may be used in conjunction with range to resume a failed download. This is applicable only when local_file is set. The default value is False.

Authorization:   The Authorization string to be sent to the server.

If the Authorization property contains a nonempty string, an Authorization HTTP request header is added to the request. This header conveys Authorization information to the server.

This property is provided so that the HTTP class can be extended with other security schemes in addition to the authorization schemes already implemented by the class.

The auth_scheme property defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time user and password are set, they are Base64 encoded, and the result is put in the authorization property in the form "Basic [encoded-user-password]".

BytesTransferred:   Contains the number of bytes transferred in the response data.

This configuration setting returns the raw number of bytes from the HTTP response data, before the component processes the data, whether it is chunked or compressed. This returns the same value as the on_transfer event, by BytesTransferred.

ChunkSize:   Specifies the chunk size in bytes when using chunked encoding.

This is applicable only when UseChunkedEncoding is True. This setting specifies the chunk size in bytes to be used when posting data. The default value is 16384.

CompressHTTPRequest:   Set to true to compress the body of a PUT or POST request.

If set to True, the body of a PUT or POST request will be compressed into gzip format before sending the request. The "Content-Encoding" header is also added to the outgoing request.

The default value is False.

EncodeURL:   If set to True the URL will be encoded by the class.

If set to True, the URL passed to the class will be URL encoded. The default value is False.

FollowRedirects:   Determines what happens when the server issues a redirect.

This option determines what happens when the server issues a redirect. Normally, the class returns an error if the server responds with an "Object Moved" message. If this property is set to 1 (always), the new url for the object is retrieved automatically every time.

If this property is set to 2 (Same Scheme), the new url is retrieved automatically only if the URL Scheme is the same; otherwise, the class fails with an error.

Note: Following the HTTP specification, unless this option is set to 1 (Always), automatic redirects will be performed only for GET or HEAD requests. Other methods potentially could change the conditions of the initial request and create security vulnerabilities.

Furthermore, if either the new URL server or port are different from the existing one, user and password are also reset to empty, unless this property is set to 1 (Always), in which case the same credentials are used to connect to the new server.

A on_redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the on_redirect event is a good place to set properties related to the new connection (e.g., new authentication parameters).

The default value is 0 (Never). In this case, redirects are never followed, and the class fails with an error instead.

Following are the valid options:

  • 0 - Never
  • 1 - Always
  • 2 - Same Scheme

GetOn302Redirect:   If set to True the class will perform a GET on the new location.

The default value is False. If set to True, the class will perform a GET on the new location. Otherwise, it will use the same HTTP method again.

HTTP2HeadersWithoutIndexing:   HTTP2 headers that should not update the dynamic header table with incremental indexing.

HTTP/2 servers maintain a dynamic table of headers and values seen over the course of a connection. Typically, these headers are inserted into the table through incremental indexing (also known as HPACK, defined in RFC 7541). To tell the component not to use incremental indexing for certain headers, and thus not update the dynamic table, set this configuration option to a comma-delimited list of the header names.

HTTPVersion:   The version of HTTP used by the class.

This property specifies the HTTP version used by the class. Possible values are as follows:

  • "1.0"
  • "1.1" (default)
  • "2.0"
  • "3.0"

When using HTTP/2 ("2.0"), additional restrictions apply. Please see the following notes for details.

HTTP/2 Notes

When using HTTP/2, a secure Secure Sockets Layer/Transport Layer Security (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/2 will result in an error.

If the server does not support HTTP/2, the class will automatically use HTTP/1.1 instead. This is done to provide compatibility without the need for any additional settings. To see which version was used, check NegotiatedHTTPVersion after calling a method. The AllowHTTPFallback setting controls whether this behavior is allowed (default) or disallowed.

HTTP/3 Notes

HTTP/3 is supported only in .NET and Java.

When using HTTP/3, a secure (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/3 will result in an error.

IfModifiedSince:   A date determining the maximum age of the desired document.

If this setting contains a nonempty string, an If-Modified-Since HTTP header is added to the request. The value of this header is used to make the HTTP request conditional: if the requested documented has not been modified since the time specified in the field, a copy of the document will not be returned from the server; instead, a 304 (not modified) response will be returned by the server and the component throws an exception

The format of the date value for IfModifiedSince is detailed in the HTTP specs. For example: Sat, 29 Oct 2017 19:43:31 GMT.

KeepAlive:   Determines whether the HTTP connection is closed after completion of the request.

If True, the component will not send the Connection: Close header. The absence of the Connection header indicates to the server that HTTP persistent connections should be used if supported. Note: Not all servers support persistent connections. If False, the connection will be closed immediately after the server response is received.

The default value for KeepAlive is False.

KerberosSPN:   The Service Principal Name for the Kerberos Domain Controller.

If the Service Principal Name on the Kerberos Domain Controller is not the same as the URL that you are authenticating to, the Service Principal Name should be set here.

LogLevel:   The level of detail that is logged.

This configuration setting controls the level of detail that is logged through the on_log event. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.

The value 2 (Verbose) logs additional information about the request and response.

The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).

MaxRedirectAttempts:   Limits the number of redirects that are followed in a request.

When follow_redirects is set to any value other than frNever, the class will follow redirects until this maximum number of redirect attempts are made. The default value is 20.

NegotiatedHTTPVersion:   The negotiated HTTP version.

This configuration setting may be queried after the request is complete to indicate the HTTP version used. When http_version is set to "2.0" (if the server does not support "2.0"), then the class will fall back to using "1.1" automatically. This setting will indicate which version was used.

OtherHeaders:   Other headers as determined by the user (optional).

This configuration setting can be set to a string of headers to be appended to the HTTP request headers.

The headers must follow the format "header: value" as described in the HTTP specifications. Header lines should be separated by CRLF ("\r\n") .

Use this configuration setting with caution. If this configuration setting contains invalid headers, HTTP requests may fail.

This configuration setting is useful for extending the functionality of the class beyond what is provided.

ProxyAuthorization:   The authorization string to be sent to the proxy server.

This is similar to the Authorization configuration setting, but is used for proxy authorization. If this configuration setting contains a nonempty string, a Proxy-Authorization HTTP request header is added to the request. This header conveys proxy Authorization information to the server. If proxy_user and proxy_password are specified, this value is calculated using the algorithm specified by proxy_auth_scheme.

ProxyAuthScheme:   The authorization scheme to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyPassword:   A password if authentication is to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyPort:   Port for the proxy server (default 80).

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyServer:   Name or IP address of a proxy server (optional).

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyUser:   A user name if authentication is to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

SentHeaders:   The full set of headers as sent by the client.

This configuration setting returns the complete set of raw headers as sent by the client.

StatusCode:   The status code of the last response from the server.

This configuration setting contains the result code of the last response from the server.

StatusLine:   The first line of the last response from the server.

This setting contains the first line of the last response from the server. The format of the line will be [HTTP version] [Result Code] [Description].

TransferredData:   The contents of the last response from the server.

This configuration setting contains the contents of the last response from the server.

TransferredDataLimit:   The maximum number of incoming bytes to be stored by the class.

If TransferredDataLimit is set to 0 (default), no limits are imposed. Otherwise, this reflects the maximum number of incoming bytes that can be stored by the class.

TransferredHeaders:   The full set of headers as received from the server.

This configuration setting returns the complete set of raw headers as received from the server.

TransferredRequest:   The full request as sent by the client.

This configuration setting returns the full request as sent by the client. For performance reasons, the request is not normally saved. Set this configuration setting to ON before making a request to enable it. Following are examples of this request:

.NET Http http = new Http(); http.Config("TransferredRequest=on"); http.PostData = "body"; http.Post("http://someserver.com"); Console.WriteLine(http.Config("TransferredRequest")); C++ HTTP http; http.Config("TransferredRequest=on"); http.SetPostData("body", 5); http.Post("http://someserver.com"); printf("%s\r\n", http.Config("TransferredRequest"));

UseChunkedEncoding:   Enables or Disables HTTP chunked encoding for transfers.

If UseChunkedEncoding is set to True, the class will use HTTP-chunked encoding when posting, if possible. HTTP-chunked encoding allows large files to be sent in chunks instead of all at once. If set to False, the class will not use HTTP-chunked encoding. The default value is False.

Note: Some servers (such as the ASP.NET Development Server) may not support chunked encoding.

UseIDNs:   Whether to encode hostnames to internationalized domain names.

This configuration setting specifies whether hostnames containing non-ASCII characters are encoded to internationalized domain names. When set to True, if a hostname contains non-ASCII characters, it is encoded using Punycode to an IDN (internationalized domain name).

The default value is False and the hostname will always be used exactly as specified. Note: The CodePage setting must be set to a value capable of interpreting the specified host name. For instance, to specify UTF-8, set CodePage to 65001. In the C++ Edition for Windows, the *W version of the class must be used. For instance, DNSW or HTTPW.

UsePlatformHTTPClient:   Whether or not to use the platform HTTP client.

When using this configuration setting, if True, the component will use the default HTTP client for the platform (URLConnection in Java, WebRequest in .NET, or CFHTTPMessage in Mac/iOS) instead of the internal HTTP implementation. This is important for environments in which direct access to sockets is limited or not allowed (e.g., in the Google AppEngine).

Note: This setting is applicable only to Mac/iOS editions.

UseProxyAutoConfigURL:   Whether to use a Proxy auto-config file when attempting a connection.

This configuration specifies whether the class will attempt to use the Proxy auto-config URL when establishing a connection and proxy_auto_detect is set to True.

When True (default), the class will check for the existence of a Proxy auto-config URL, and if found, will determine the appropriate proxy to use.

UserAgent:   Information about the user agent (browser).

This is the value supplied in the HTTP User-Agent header. The default setting is "IPWorks HTTP Component - www.nsoftware.com".

Override the default with the name and version of your software.

TCPClient Config Settings

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the class will use timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the class whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the class fails with an error.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The local_host setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the local_host setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the class binds.

This configuration setting must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by local_port after the connection is established.

local_port cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an eol string.

If an eol string is found in the input stream before MaxLineLength bytes are received, the on_data_in event is fired with the EOL parameter set to True, and the buffer is reset.

If no eol is found, and MaxLineLength bytes are accumulated in the buffer, the on_data_in event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When set to True, the socket will send all data that are ready to send at once. When set to False, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this configuration setting is set to False.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the class will use IPv4 exclusively. When set to 1, the class will use IPv6 exclusively. To instruct the class to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are as follows:

0 IPv4 only
1 IPv6 only
2 IPv6 with IPv4 fallback

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When ssl_provider is set to Internal, this configuration setting controls whether Secure Sockets Layer (SSL) packets should be logged. By default, this configuration setting is False, as it is useful only for debugging purposes.

When enabled, SSL packet logs are output using the on_ssl_status event, which will fire each time an SSL packet is sent or received.

Enabling this configuration setting has no effect if ssl_provider is set to Platform.

OpenSSLCADir:   The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g., 9d66eef0.0, 9d66eef0.1). OpenSSL recommends the use of the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCAFile:   Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by the following sequences:

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

Before, between, and after the certificate text is allowed, which can be used, for example, for descriptions of the certificates. Refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCipherList:   A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

OpenSSLPrngSeedData:   The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default, OpenSSL uses the device file "/dev/urandom" to seed the PRNG, and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to True, the class will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the class is the same.

SSLCACertFilePaths:   The paths to CA certificate files on Unix/Linux.

This configuration setting specifies the paths on disk to CA certificate files on Unix/Linux.

The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found, the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.

The default value is as follows:

/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem

SSLCACerts:   A newline separated list of CA certificate to be included when performing an SSL handshake.

When ssl_provider is set to Internal, this configuration setting specifies one or more CA certificates to be included with the ssl_cert property. Some servers or clients require the entire chain, including CA certificates, to be presented when performing SSL authentication. The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermedaite Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This configuration setting specifies whether the class will check the Certificate Revocation List (CRL) specified by the server certificate. If set to 1 or 2, the class will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The class will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the class fails with an error.

When set to 0 (default), the CRL check will not be performed by the class. When set to 1, it will attempt to perform the CRL check, but it will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.

SSLCheckOCSP:   Whether to use OCSP to check the status of the server certificate.

This configuration setting specifies whether the class will use OCSP to check the validity of the server certificate. If set to 1 or 2, the class will first obtain the Online Certificate Status Protocol (OCSP) URL from the server certificate's OCSP extension. The class will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation, the class fails with an error.

When set to 0 (default), the class will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but it will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength is largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the on_ssl_status event.

Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.

SSLClientCACerts:   A newline separated list of CA certificates to use during SSL client certificate validation.

This configuration setting is only applicable to server components (e.g., TCPServer) see SSLServerCACerts for client components (e.g., TCPClient). This setting can be used to optionally specify one or more CA certificates to be used when verifying the client certificate that is presented by the client during the SSL handshake when ssl_authenticate_clients is enabled. When verifying the client's certificate, the certificates trusted by the system will be used as part of the verification process. If the client's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the client's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

This configuration setting enables the cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when ssl_provider is set to Platform include the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when ssl_provider is set to Platform include the following:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when ssl_provider is set to Internalinclude the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_ECDH_RSA_WITH_AES_128_CBC_SHA"); Possible values when ssl_provider is set to Internal include the following:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

This configuration setting is used to enable or disable the supported security protocols.

Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default - Client and Server)
TLS1.1768 (Hex 300) (Default - Client)
TLS1 192 (Hex C0) (Default - Client)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.

SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:

By default when TLS 1.3 is enabled, the class will use the internal TLS implementation when the ssl_provider is set to Automatic for all editions.

In editions that are designed to run on Windows, ssl_provider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider), please be aware of the following notes:

  • The platform provider is available only on Windows 11/Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the class when the ssl_provider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and ssl_provider needs to be set to platform.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This configuration setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This configuration setting is False by default, but it can be set to True to enable the extension.

This configuration setting is applicable only when ssl_provider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This configuration setting specifies whether the Encoded parameter of the on_ssl_server_authentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the on_ssl_server_authentication event.

If set to True, all certificates returned by the server will be present in the Encoded parameter of the on_ssl_server_authentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This configuration setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the class will only append, it will not overwrite previous values.

Note: This configuration setting is applicable only when ssl_provider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

This configuration setting returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

This configuration setting returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

This configuration setting returns the strength of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

This configuration setting returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be ORed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown certificate authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown certificate authority revocation status.
0x00000800Ignore unknown root revocation status.
0x00008000Allow test root certificate.
0x00004000Trust test root certificate.
0x80000000Ignore non-matching CN (certificate CN non-matching server name).

This functionality is currently not available when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificates to use during SSL server certificate validation.

This configuration setting is only used by client components (e.g., TCPClient) see SSLClientCACerts for server components (e.g., TCPServer). This configuration setting can be used to optionally specify one or more CA certificates to be used when connecting to the server and verifying the server certificate. When verifying the server's certificate, the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This configuration setting specifies the allowed server certificate signature algorithms when ssl_provider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the class will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the class fails with an error.

The format of this value is a comma-separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and ssl_provider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional roundtrip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.

In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This configuration setting holds a comma-separated list of allowed signature algorithms. Possible values include the following:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This configuration setting is applicable only when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. This configuration setting should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method that does not complete within timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for User Datagram Protocol (UDP) ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g., headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the Transmission Control Protocol (TCP)/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. In some cases, increasing the value of the InBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. In some cases, increasing the value of the OutBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8
The following is a list of valid code page identifiers for Mac OS only:
IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitiveData:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to True to mask sensitive data. The default is True.

This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

ProcessIdleEvents:   Whether the class uses its internal event loop to process events when the main thread is idle.

If set to False, the class will not fire internal idle events. Set this to False to use the class in a background thread on Mac OS. By default, this setting is True.

SelectWaitMillis:   The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.

If there are no events to process when do_events is called, the class will wait for the amount of time specified here before returning. The default value is 20.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to False, the class will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this configuration setting to True tells the class to use the internal implementation instead of using the system security libraries.

On Windows, this setting is set to False by default. On Linux/macOS, this setting is set to True by default.

To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.

REST Errors

WebForm Errors

159   Invalid form variable index (out of range).

The class may also return one of the following error codes, which are inherited from other classes.

MIME Errors

3   Can't create the file for write (illegal name or disk is write-protected).
4   Can't open the file for read (doesn't exist?).
5   Can't read from file.
6   Can't write to file (disk full?).
280   Invalid Part Index.
281   Unknown MIME type.
282   No MIME-boundary found.
283   No file given.
284   The class is busy.
285   Can't create a temporary file to decode the data.
286   Can't read message file.
287   No header separator found.
289   No separator found.
290   Input stream must have seeking enabled.

HTTP Errors

118   Firewall Error. Error description contains detailed message.
143   Busy executing current method.
151   HTTP protocol error. The error message has the server response.
152   No server specified in url
153   Specified url_scheme is invalid.
155   Range operation is not supported by server.
156   Invalid cookie index (out of range).
301   Interrupted.
302   Can't open attached_file.

The class may also return one of the following error codes, which are inherited from other classes.

TCPClient Errors

100   You cannot change the remote_port at this time. A connection is in progress.
101   You cannot change the remote_host (Server) at this time. A connection is in progress.
102   The remote_host address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the local_port at this time. A connection is in progress.
107   You cannot change the local_host at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   remote_port cannot be zero. Please specify a valid service port number.
117   You cannot change the UseConnection option while the class is active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
302   Could not open file.
434   Unable to convert string to selected CodePage.
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

SSL Errors

270   Cannot load specified security library.
271   Cannot open certificate store.
272   Cannot find specified certificate.
273   Cannot acquire security credentials.
274   Cannot find certificate chain.
275   Cannot verify certificate chain.
276   Error during handshake.
280   Error verifying certificate.
281   Could not find client certificate.
282   Could not find server certificate.
283   Error encrypting data.
284   Error decrypting data.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on nonsocket.
10039   [10039] Destination address required.
10040   [10040] Message is too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol is not supported.
10044   [10044] Socket type is not supported.
10045   [10045] Operation is not supported on socket.
10046   [10046] Protocol family is not supported.
10047   [10047] Address family is not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Cannot assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Cannot send after socket shutdown.
10059   [10059] Too many references, cannot splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name is too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory is not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock is not loaded yet.
11001   [11001] Host not found.
11002   [11002] Nonauthoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).

XML Errors

101   Invalid attribute index.
102   No attributes available.
103   Invalid namespace index.
104   No namespaces available.
105   Invalid element index.
106   No elements available.
107   Attribute does not exist.
201   Unbalanced element tag.
202   Unknown element prefix (cannot find namespace).
203   Unknown attribute prefix (cannot find namespace).
204   Invalid XML markup.
205   Invalid end state for parser.
206   Document contains unbalanced elements.
207   Invalid xpath.
208   No such child.
209   Top element does not match start of path.
210   DOM tree unavailable (set build_dom to True and reparse).
302   Cannot open file.
401   Invalid XML would be generated.
402   An invalid XML name has been specified.