TCPClient Class
Properties Methods Events Config Settings Errors
The TCPClient Class is a generic Transmission Control Protocol (TCP) stream client based on an asynchronous, event-driven architecture.
Syntax
class ipworks.TCPClient
Remarks
The TCPClient Class supports both plaintext and Secure Sockets Layer/Transport Layer Security (SSL/TLS) connections. When connecting over Secure Sockets Layer/Transport Layer Security (SSL/TLS) the on_ssl_server_authentication event allows you to check the server identity and other security attributes. The on_ssl_status event provides information about the SSL handshake. Additional SSL-related settings are also supported through the config method.
Our main goal in designing TCPClient was ease of use. The class has a minimum number of properties and five events: on_connected, on_data_in, on_disconnected, on_ready_to_send, and on_error. The events are relatively self-explanatory.
The connection is attempted by calling the connect method or setting the connected property to True, and then waiting for the on_connected event. The destination is defined by setting remote_host and remote_port. Data are sent by calling the send method with Text as a parameter.
To disconnect, you just call the disconnect method or set the connected property to False. The linger property controls how the connection is terminated.
The operation of the class is almost completely asynchronous. All of the calls except the ones that deal with domain name resolution operate through asynchronous messages (no blocking calls). The gain in performance is considerable compared with using blocking calls.
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
accept_data | This property indicates whether data reception is currently enabled. |
bytes_sent | This property includes the number of bytes actually sent after a call to the SendBytes method. |
connected | This property indicates whether the class is connected. |
eol | This property is used to break the incoming data stream into chunks separated by EOL . |
firewall_auto_detect | This property tells the class whether or not to automatically detect and use firewall system settings, if available. |
firewall_type | This property determines the type of firewall to connect through. |
firewall_host | This property contains the name or IP address of the firewall (optional). |
firewall_password | This property contains a password if authentication is to be used when connecting through the firewall. |
firewall_port | This property contains the Transmission Control Protocol (TCP) port for the firewall Host . |
firewall_user | This property contains a username if authentication is to be used when connecting through a firewall. |
keep_alive | When True, KEEPALIVE packets are enabled (for long connections). |
linger | When set to True, this property ensures that connections are terminated gracefully. |
local_host | This property includes the name of the local host or user-assigned IP interface through which connections are initiated or accepted. |
local_port | The TCP port in the local host where the class binds. |
ready_to_send | This property indicates whether the class is ready to send data. |
record_length | This property indicates the length of received data records. |
remote_host | This property includes the address of the remote host. Domain names are resolved to IP addresses. |
remote_port | This property includes the Transmission Control Protocol (TCP) port in the remote host. |
single_line_mode | This property includes a special mode for line-oriented protocols. |
ssl_accept_server_cert_effective_date | This is the date on which this certificate becomes valid. |
ssl_accept_server_cert_expiration_date | This is the date the certificate expires. |
ssl_accept_server_cert_extended_key_usage | This is a comma-delimited list of extended key usage identifiers. |
ssl_accept_server_cert_fingerprint | This is the hex-encoded, 16-byte MD5 fingerprint of the certificate. |
ssl_accept_server_cert_fingerprint_sha1 | This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate. |
ssl_accept_server_cert_fingerprint_sha256 | This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate. |
ssl_accept_server_cert_issuer | This is the issuer of the certificate. |
ssl_accept_server_cert_private_key | This is the private key of the certificate (if available). |
ssl_accept_server_cert_private_key_available | This property shows whether a PrivateKey is available for the selected certificate. |
ssl_accept_server_cert_private_key_container | This is the name of the PrivateKey container for the certificate (if available). |
ssl_accept_server_cert_public_key | This is the public key of the certificate. |
ssl_accept_server_cert_public_key_algorithm | This property contains the textual description of the certificate's public key algorithm. |
ssl_accept_server_cert_public_key_length | This is the length of the certificate's public key (in bits). |
ssl_accept_server_cert_serial_number | This is the serial number of the certificate encoded as a string. |
ssl_accept_server_cert_signature_algorithm | The property contains the text description of the certificate's signature algorithm. |
ssl_accept_server_cert_store | This is the name of the certificate store for the client certificate. |
ssl_accept_server_cert_store_password | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
ssl_accept_server_cert_store_type | This is the type of certificate store for this certificate. |
ssl_accept_server_cert_subject_alt_names | This property contains comma-separated lists of alternative subject names for the certificate. |
ssl_accept_server_cert_thumbprint_md5 | This property contains the MD5 hash of the certificate. |
ssl_accept_server_cert_thumbprint_sha1 | This property contains the SHA-1 hash of the certificate. |
ssl_accept_server_cert_thumbprint_sha256 | This property contains the SHA-256 hash of the certificate. |
ssl_accept_server_cert_usage | This property contains the text description of UsageFlags . |
ssl_accept_server_cert_usage_flags | This property contains the flags that show intended use for the certificate. |
ssl_accept_server_cert_version | This property contains the certificate's version number. |
ssl_accept_server_cert_subject | This is the subject of the certificate used for client authentication. |
ssl_accept_server_cert_encoded | This is the certificate (PEM/Base64 encoded). |
ssl_cert_effective_date | This is the date on which this certificate becomes valid. |
ssl_cert_expiration_date | This is the date the certificate expires. |
ssl_cert_extended_key_usage | This is a comma-delimited list of extended key usage identifiers. |
ssl_cert_fingerprint | This is the hex-encoded, 16-byte MD5 fingerprint of the certificate. |
ssl_cert_fingerprint_sha1 | This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate. |
ssl_cert_fingerprint_sha256 | This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate. |
ssl_cert_issuer | This is the issuer of the certificate. |
ssl_cert_private_key | This is the private key of the certificate (if available). |
ssl_cert_private_key_available | This property shows whether a PrivateKey is available for the selected certificate. |
ssl_cert_private_key_container | This is the name of the PrivateKey container for the certificate (if available). |
ssl_cert_public_key | This is the public key of the certificate. |
ssl_cert_public_key_algorithm | This property contains the textual description of the certificate's public key algorithm. |
ssl_cert_public_key_length | This is the length of the certificate's public key (in bits). |
ssl_cert_serial_number | This is the serial number of the certificate encoded as a string. |
ssl_cert_signature_algorithm | The property contains the text description of the certificate's signature algorithm. |
ssl_cert_store | This is the name of the certificate store for the client certificate. |
ssl_cert_store_password | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
ssl_cert_store_type | This is the type of certificate store for this certificate. |
ssl_cert_subject_alt_names | This property contains comma-separated lists of alternative subject names for the certificate. |
ssl_cert_thumbprint_md5 | This property contains the MD5 hash of the certificate. |
ssl_cert_thumbprint_sha1 | This property contains the SHA-1 hash of the certificate. |
ssl_cert_thumbprint_sha256 | This property contains the SHA-256 hash of the certificate. |
ssl_cert_usage | This property contains the text description of UsageFlags . |
ssl_cert_usage_flags | This property contains the flags that show intended use for the certificate. |
ssl_cert_version | This property contains the certificate's version number. |
ssl_cert_subject | This is the subject of the certificate used for client authentication. |
ssl_cert_encoded | This is the certificate (PEM/Base64 encoded). |
ssl_enabled | This property indicates whether Transport Layer Security/Secure Sockets Layer (TLS/SSL) is enabled. |
ssl_provider | This property specifies the Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use. |
ssl_server_cert_effective_date | This is the date on which this certificate becomes valid. |
ssl_server_cert_expiration_date | This is the date the certificate expires. |
ssl_server_cert_extended_key_usage | This is a comma-delimited list of extended key usage identifiers. |
ssl_server_cert_fingerprint | This is the hex-encoded, 16-byte MD5 fingerprint of the certificate. |
ssl_server_cert_fingerprint_sha1 | This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate. |
ssl_server_cert_fingerprint_sha256 | This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate. |
ssl_server_cert_issuer | This is the issuer of the certificate. |
ssl_server_cert_private_key | This is the private key of the certificate (if available). |
ssl_server_cert_private_key_available | This property shows whether a PrivateKey is available for the selected certificate. |
ssl_server_cert_private_key_container | This is the name of the PrivateKey container for the certificate (if available). |
ssl_server_cert_public_key | This is the public key of the certificate. |
ssl_server_cert_public_key_algorithm | This property contains the textual description of the certificate's public key algorithm. |
ssl_server_cert_public_key_length | This is the length of the certificate's public key (in bits). |
ssl_server_cert_serial_number | This is the serial number of the certificate encoded as a string. |
ssl_server_cert_signature_algorithm | The property contains the text description of the certificate's signature algorithm. |
ssl_server_cert_store | This is the name of the certificate store for the client certificate. |
ssl_server_cert_store_password | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
ssl_server_cert_store_type | This is the type of certificate store for this certificate. |
ssl_server_cert_subject_alt_names | This property contains comma-separated lists of alternative subject names for the certificate. |
ssl_server_cert_thumbprint_md5 | This property contains the MD5 hash of the certificate. |
ssl_server_cert_thumbprint_sha1 | This property contains the SHA-1 hash of the certificate. |
ssl_server_cert_thumbprint_sha256 | This property contains the SHA-256 hash of the certificate. |
ssl_server_cert_usage | This property contains the text description of UsageFlags . |
ssl_server_cert_usage_flags | This property contains the flags that show intended use for the certificate. |
ssl_server_cert_version | This property contains the certificate's version number. |
ssl_server_cert_subject | This is the subject of the certificate used for client authentication. |
ssl_server_cert_encoded | This is the certificate (PEM/Base64 encoded). |
ssl_start_mode | This property determines how the class starts the Secure Sockets Layer (SSL) negotiation. |
timeout | This property includes the timeout for the class. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
change_record_length | This method changes the length of received data records. |
config | Sets or retrieves a configuration setting. |
connect | This method connects to a remote host. |
connect_to | This method connects to a remote host. |
disconnect | This method disconnects from the remote host. |
do_events | This method processes events from the internal message queue. |
get_line | This method gets a line of text from the server. |
interrupt | This method interrupts the current action. |
pause_data | This method pauses data reception. |
process_data | This method reenables data reception after a call to PauseData . |
reset | This method will reset the class. |
send | This method sends binary data to the remote host. |
send_bytes | This method sends binary data to the remote host. |
send_file | This method sends a file to the remote host. |
send_line | This method sends a string followed by a newline. |
send_text | This method sends text to the remote host. |
start_ssl | This method starts Secure Sockets Layer (SSL) negotiation on a plaintext connection. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
on_connected | This event is fired immediately after a connection completes (or fails). |
on_connection_status | This event is fired to indicate changes in the connection state. |
on_data_in | This event is fired when data (complete lines) come in. |
on_disconnected | This event is fired when a connection is closed. |
on_error | Fired when information is available about errors during data delivery. |
on_ready_to_send | This event is fired when the class is ready to send data. |
on_ssl_server_authentication | Fired after the server presents its certificate to the client. |
on_ssl_status | Fired when secure connection progress messages are available. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
ConnectionTimeout | Sets a separate timeout value for establishing a connection. |
FirewallAutoDetect | Tells the class whether or not to automatically detect and use firewall system settings, if available. |
FirewallHost | Name or IP address of firewall (optional). |
FirewallPassword | Password to be used if authentication is to be used when connecting through the firewall. |
FirewallPort | The TCP port for the FirewallHost;. |
FirewallType | Determines the type of firewall to connect through. |
FirewallUser | A user name if authentication is to be used connecting through a firewall. |
KeepAliveInterval | The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received. |
KeepAliveTime | The inactivity time in milliseconds before a TCP keep-alive packet is sent. |
Linger | When set to True, connections are terminated gracefully. |
LingerTime | Time in seconds to have the connection linger. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalPort | The port in the local host where the class binds. |
MaxLineLength | The maximum amount of data to accumulate when no EOL is found. |
MaxTransferRate | The transfer rate limit in bytes per second. |
ProxyExceptionsList | A semicolon separated list of hosts and IPs to bypass when using a proxy. |
TCPKeepAlive | Determines whether or not the keep alive socket option is enabled. |
TcpNoDelay | Whether or not to delay when sending packets. |
UseIPv6 | Whether to use IPv6. |
LogSSLPackets | Controls whether SSL packets are logged when using the internal security API. |
OpenSSLCADir | The path to a directory containing CA certificates. |
OpenSSLCAFile | Name of the file containing the list of CA's trusted by your application. |
OpenSSLCipherList | A string that controls the ciphers to be used by SSL. |
OpenSSLPrngSeedData | The data to seed the pseudo random number generator (PRNG). |
ReuseSSLSession | Determines if the SSL session is reused. |
SSLCACertFilePaths | The paths to CA certificate files on Unix/Linux. |
SSLCACerts | A newline separated list of CA certificate to be included when performing an SSL handshake. |
SSLCheckCRL | Whether to check the Certificate Revocation List for the server certificate. |
SSLCheckOCSP | Whether to use OCSP to check the status of the server certificate. |
SSLCipherStrength | The minimum cipher strength used for bulk encryption. |
SSLClientCACerts | A newline separated list of CA certificates to use during SSL client certificate validation. |
SSLEnabledCipherSuites | The cipher suite to be used in an SSL negotiation. |
SSLEnabledProtocols | Used to enable/disable the supported security protocols. |
SSLEnableRenegotiation | Whether the renegotiation_info SSL extension is supported. |
SSLIncludeCertChain | Whether the entire certificate chain is included in the SSLServerAuthentication event. |
SSLKeyLogFile | The location of a file where per-session secrets are written for debugging purposes. |
SSLNegotiatedCipher | Returns the negotiated cipher suite. |
SSLNegotiatedCipherStrength | Returns the negotiated cipher suite strength. |
SSLNegotiatedCipherSuite | Returns the negotiated cipher suite. |
SSLNegotiatedKeyExchange | Returns the negotiated key exchange algorithm. |
SSLNegotiatedKeyExchangeStrength | Returns the negotiated key exchange algorithm strength. |
SSLNegotiatedVersion | Returns the negotiated protocol version. |
SSLSecurityFlags | Flags that control certificate verification. |
SSLServerCACerts | A newline separated list of CA certificates to use during SSL server certificate validation. |
TLS12SignatureAlgorithms | Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal. |
TLS12SupportedGroups | The supported groups for ECC. |
TLS13KeyShareGroups | The groups for which to pregenerate key shares. |
TLS13SignatureAlgorithms | The allowed certificate signature algorithms. |
TLS13SupportedGroups | The supported groups for (EC)DHE key exchange. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
FirewallData | Used to send extra data to the firewall. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitiveData | Whether sensitive data is masked in log messages. |
ProcessIdleEvents | Whether the class uses its internal event loop to process events when the main thread is idle. |
SelectWaitMillis | The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
accept_data Property
This property indicates whether data reception is currently enabled.
Syntax
def get_accept_data() -> bool: ...
accept_data = property(get_accept_data, None)
Default Value
TRUE
Remarks
This property indicates whether data reception is currently enabled. When False, data reception is disabled and the on_data_in event will not fire. Use the pause_data and process_data methods to pause and resume data reception.
This property is read-only.
bytes_sent Property
This property includes the number of bytes actually sent after a call to the SendBytes method.
Syntax
def get_bytes_sent() -> int: ...
bytes_sent = property(get_bytes_sent, None)
Default Value
0
Remarks
This property indicates how many bytes were sent after the last call to send_bytes. Please check the send_bytes method for more information.
Note: that bytes_sent will always return 0 when the class is operating in synchronous mode (i.e., the timeout property is set to a positive value.)
This property is read-only.
connected Property
This property indicates whether the class is connected.
Syntax
def get_connected() -> bool: ...
connected = property(get_connected, None)
Default Value
FALSE
Remarks
This property indicates whether the class is connected to the remote host. Use the connect and disconnect methods to manage the connection.
This property is read-only.
eol Property
This property is used to break the incoming data stream into chunks separated by EOL .
Syntax
def get_eol() -> bytes: ... def set_eol(value: bytes) -> None: ...
eol = property(get_eol, set_eol)
Default Value
""
Remarks
This property is used to define boundaries in the input stream using the value of the property.
This property is especially useful with ASCII files. Setting it to CRLF ("\r\n") enables the incoming ASCII text stream to split into defined lines. In this case, one event is fired for each line received (as well as in packet boundaries). The CRLF ("\r\n") bytes are discarded.
This property is a binary string. Notably, this means that it can be more than one byte long, and it can contain NULL bytes.
firewall_auto_detect Property
This property tells the class whether or not to automatically detect and use firewall system settings, if available.
Syntax
def get_firewall_auto_detect() -> bool: ... def set_firewall_auto_detect(value: bool) -> None: ...
firewall_auto_detect = property(get_firewall_auto_detect, set_firewall_auto_detect)
Default Value
FALSE
Remarks
This property tells the class whether or not to automatically detect and use firewall system settings, if available.
firewall_type Property
This property determines the type of firewall to connect through.
Syntax
def get_firewall_type() -> int: ... def set_firewall_type(value: int) -> None: ...
firewall_type = property(get_firewall_type, set_firewall_type)
Default Value
0
Remarks
This property determines the type of firewall to connect through. The applicable values are as follows:
fwNone (0) | No firewall (default setting). |
fwTunnel (1) | Connect through a tunneling proxy. firewall_port is set to 80. |
fwSOCKS4 (2) | Connect through a SOCKS4 Proxy. firewall_port is set to 1080. |
fwSOCKS5 (3) | Connect through a SOCKS5 Proxy. firewall_port is set to 1080. |
fwSOCKS4A (10) | Connect through a SOCKS4A Proxy. firewall_port is set to 1080. |
firewall_host Property
This property contains the name or IP address of the firewall (optional).
Syntax
def get_firewall_host() -> str: ... def set_firewall_host(value: str) -> None: ...
firewall_host = property(get_firewall_host, set_firewall_host)
Default Value
""
Remarks
This property contains the name or IP address of the firewall (optional). If a firewall_host is given, the requested connections will be authenticated through the specified firewall when connecting.
If this property is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, the class fails with an error.
firewall_password Property
This property contains a password if authentication is to be used when connecting through the firewall.
Syntax
def get_firewall_password() -> str: ... def set_firewall_password(value: str) -> None: ...
firewall_password = property(get_firewall_password, set_firewall_password)
Default Value
""
Remarks
This property contains a password if authentication is to be used when connecting through the firewall. If firewall_host is specified, the firewall_user and firewall_password properties are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.
firewall_port Property
This property contains the Transmission Control Protocol (TCP) port for the firewall Host .
Syntax
def get_firewall_port() -> int: ... def set_firewall_port(value: int) -> None: ...
firewall_port = property(get_firewall_port, set_firewall_port)
Default Value
0
Remarks
This property contains the Transmission Control Protocol (TCP) port for the firewall firewall_host. See the description of the firewall_host property for details.
Note: This property is set automatically when firewall_type is set to a valid value. See the description of the firewall_type property for details.
firewall_user Property
This property contains a username if authentication is to be used when connecting through a firewall.
Syntax
def get_firewall_user() -> str: ... def set_firewall_user(value: str) -> None: ...
firewall_user = property(get_firewall_user, set_firewall_user)
Default Value
""
Remarks
This property contains a username if authentication is to be used when connecting through a firewall. If firewall_host is specified, this property and the firewall_password property are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.
keep_alive Property
When True, KEEPALIVE packets are enabled (for long connections).
Syntax
def get_keep_alive() -> bool: ... def set_keep_alive(value: bool) -> None: ...
keep_alive = property(get_keep_alive, set_keep_alive)
Default Value
FALSE
Remarks
The keep_alive enables the SO_KEEPALIVE option on the socket. This option prevents long connections from timing out in case of inactivity.
Note: System Transmission Control Protocol (TCP)/IP stack implementations are not required to support SO_KEEPALIVE.
linger Property
When set to True, this property ensures that connections are terminated gracefully.
Syntax
def get_linger() -> bool: ... def set_linger(value: bool) -> None: ...
linger = property(get_linger, set_linger)
Default Value
TRUE
Remarks
This property controls how a connection is closed. The default is True.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
local_host Property
This property includes the name of the local host or user-assigned IP interface through which connections are initiated or accepted.
Syntax
def get_local_host() -> str: ... def set_local_host(value: str) -> None: ...
local_host = property(get_local_host, set_local_host)
Default Value
""
Remarks
The local_host property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.
In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.
If the class is connected, the local_host property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).
Note: local_host is not persistent. You must always set it in code, and never in the property window.
local_port Property
The TCP port in the local host where the class binds.
Syntax
def get_local_port() -> int: ... def set_local_port(value: int) -> None: ...
local_port = property(get_local_port, set_local_port)
Default Value
0
Remarks
This property must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.
Setting this property to 0 (default) enables the system to choose an open port at random. The chosen port will be returned by the local_port property after the connection is established.
local_port cannot be changed once a connection is made. Any attempt to set this property when a connection is active will generate an error.
This property is useful when trying to connect to services that require a trusted port on the client side.
ready_to_send Property
This property indicates whether the class is ready to send data.
Syntax
def get_ready_to_send() -> bool: ...
ready_to_send = property(get_ready_to_send, None)
Default Value
FALSE
Remarks
This property indicates that the underlying Transmission Control Protocol (TCP)/IP subsystem is ready to accept data. This is True after connecting to the remote host and will become False after a failed send_bytes.
After a failed send_bytes, the on_ready_to_send event will fire and this property will be True when data can be sent again.
This property is read-only.
record_length Property
This property indicates the length of received data records.
Syntax
def get_record_length() -> int: ...
record_length = property(get_record_length, None)
Default Value
0
Remarks
This property holds the current record length set by change_record_length. When this value is a positive number, the class will accumulate data until record_length is reached and only then will fire the on_data_in event with the data of length record_length. This allows data to be received as records of known length. This value can be changed at any time by calling change_record_length, including within the on_data_in event.
A value of 0 (default) means this setting is not used.
This property is read-only.
remote_host Property
This property includes the address of the remote host. Domain names are resolved to IP addresses.
Syntax
def get_remote_host() -> str: ... def set_remote_host(value: str) -> None: ...
remote_host = property(get_remote_host, set_remote_host)
Default Value
""
Remarks
This property specifies the IP address (IP number in dotted internet format) or the domain name of the remote host. It is set before a connection is attempted and cannot be changed once a connection is established.
If this property is set to a domain name, a DNS request is initiated, and upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, an error is returned.
If the class is configured to use a SOCKS firewall, the value assigned to this property may be preceded with an "*". If this is the case, the host name is passed to the firewall unresolved and the firewall performs the DNS resolution.
Example. Connecting:
TCPClientControl.RemoteHost = "MyHostNameOrIP"
TCPClientControl.RemotePort = 777
TCPClientControl.Connected = true
remote_port Property
This property includes the Transmission Control Protocol (TCP) port in the remote host.
Syntax
def get_remote_port() -> int: ... def set_remote_port(value: int) -> None: ...
remote_port = property(get_remote_port, set_remote_port)
Default Value
0
Remarks
This property specifies a service port on the remote host to connect to.
A valid port number (a value between 1 and 65535) is required for the connection to take place. The property must be set before a connection is attempted and cannot be changed once a connection is established. Any attempt to change this property while connected will fail with an error.
single_line_mode Property
This property includes a special mode for line-oriented protocols.
Syntax
def get_single_line_mode() -> bool: ... def set_single_line_mode(value: bool) -> None: ...
single_line_mode = property(get_single_line_mode, set_single_line_mode)
Default Value
FALSE
Remarks
When this property is set to True, the class treats the incoming data stream as lines separated by carriage return line feed (CRLF), CR, or LF. The eol property is ignored.
When this property is set to True, accept_data automatically will be set to False. Please refer to the get_line method for more information.
ssl_accept_server_cert_effective_date Property
This is the date on which this certificate becomes valid.
Syntax
def get_ssl_accept_server_cert_effective_date() -> str: ...
ssl_accept_server_cert_effective_date = property(get_ssl_accept_server_cert_effective_date, None)
Default Value
""
Remarks
This is the date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
This property is read-only.
ssl_accept_server_cert_expiration_date Property
This is the date the certificate expires.
Syntax
def get_ssl_accept_server_cert_expiration_date() -> str: ...
ssl_accept_server_cert_expiration_date = property(get_ssl_accept_server_cert_expiration_date, None)
Default Value
""
Remarks
This is the date the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
This property is read-only.
ssl_accept_server_cert_extended_key_usage Property
This is a comma-delimited list of extended key usage identifiers.
Syntax
def get_ssl_accept_server_cert_extended_key_usage() -> str: ...
ssl_accept_server_cert_extended_key_usage = property(get_ssl_accept_server_cert_extended_key_usage, None)
Default Value
""
Remarks
This is a comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
This property is read-only.
ssl_accept_server_cert_fingerprint Property
This is the hex-encoded, 16-byte MD5 fingerprint of the certificate.
Syntax
def get_ssl_accept_server_cert_fingerprint() -> str: ...
ssl_accept_server_cert_fingerprint = property(get_ssl_accept_server_cert_fingerprint, None)
Default Value
""
Remarks
This is the hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
This property is read-only.
ssl_accept_server_cert_fingerprint_sha1 Property
This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
Syntax
def get_ssl_accept_server_cert_fingerprint_sha1() -> str: ...
ssl_accept_server_cert_fingerprint_sha1 = property(get_ssl_accept_server_cert_fingerprint_sha1, None)
Default Value
""
Remarks
This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
This property is read-only.
ssl_accept_server_cert_fingerprint_sha256 Property
This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
Syntax
def get_ssl_accept_server_cert_fingerprint_sha256() -> str: ...
ssl_accept_server_cert_fingerprint_sha256 = property(get_ssl_accept_server_cert_fingerprint_sha256, None)
Default Value
""
Remarks
This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
This property is read-only.
ssl_accept_server_cert_issuer Property
This is the issuer of the certificate.
Syntax
def get_ssl_accept_server_cert_issuer() -> str: ...
ssl_accept_server_cert_issuer = property(get_ssl_accept_server_cert_issuer, None)
Default Value
""
Remarks
This is the issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.
This property is read-only.
ssl_accept_server_cert_private_key Property
This is the private key of the certificate (if available).
Syntax
def get_ssl_accept_server_cert_private_key() -> str: ...
ssl_accept_server_cert_private_key = property(get_ssl_accept_server_cert_private_key, None)
Default Value
""
Remarks
This is the private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The ssl_accept_server_cert_private_key may be available but not exportable. In this case, ssl_accept_server_cert_private_key returns an empty string.
This property is read-only.
ssl_accept_server_cert_private_key_available Property
This property shows whether a PrivateKey is available for the selected certificate.
Syntax
def get_ssl_accept_server_cert_private_key_available() -> bool: ...
ssl_accept_server_cert_private_key_available = property(get_ssl_accept_server_cert_private_key_available, None)
Default Value
FALSE
Remarks
This property shows whether a ssl_accept_server_cert_private_key is available for the selected certificate. If ssl_accept_server_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).
This property is read-only.
ssl_accept_server_cert_private_key_container Property
This is the name of the PrivateKey container for the certificate (if available).
Syntax
def get_ssl_accept_server_cert_private_key_container() -> str: ...
ssl_accept_server_cert_private_key_container = property(get_ssl_accept_server_cert_private_key_container, None)
Default Value
""
Remarks
This is the name of the ssl_accept_server_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.
This property is read-only.
ssl_accept_server_cert_public_key Property
This is the public key of the certificate.
Syntax
def get_ssl_accept_server_cert_public_key() -> str: ...
ssl_accept_server_cert_public_key = property(get_ssl_accept_server_cert_public_key, None)
Default Value
""
Remarks
This is the public key of the certificate. The key is provided as PEM/Base64-encoded data.
This property is read-only.
ssl_accept_server_cert_public_key_algorithm Property
This property contains the textual description of the certificate's public key algorithm.
Syntax
def get_ssl_accept_server_cert_public_key_algorithm() -> str: ...
ssl_accept_server_cert_public_key_algorithm = property(get_ssl_accept_server_cert_public_key_algorithm, None)
Default Value
""
Remarks
This property contains the textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
This property is read-only.
ssl_accept_server_cert_public_key_length Property
This is the length of the certificate's public key (in bits).
Syntax
def get_ssl_accept_server_cert_public_key_length() -> int: ...
ssl_accept_server_cert_public_key_length = property(get_ssl_accept_server_cert_public_key_length, None)
Default Value
0
Remarks
This is the length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
This property is read-only.
ssl_accept_server_cert_serial_number Property
This is the serial number of the certificate encoded as a string.
Syntax
def get_ssl_accept_server_cert_serial_number() -> str: ...
ssl_accept_server_cert_serial_number = property(get_ssl_accept_server_cert_serial_number, None)
Default Value
""
Remarks
This is the serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
This property is read-only.
ssl_accept_server_cert_signature_algorithm Property
The property contains the text description of the certificate's signature algorithm.
Syntax
def get_ssl_accept_server_cert_signature_algorithm() -> str: ...
ssl_accept_server_cert_signature_algorithm = property(get_ssl_accept_server_cert_signature_algorithm, None)
Default Value
""
Remarks
The property contains the text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
This property is read-only.
ssl_accept_server_cert_store Property
This is the name of the certificate store for the client certificate.
Syntax
def get_ssl_accept_server_cert_store() -> bytes: ... def set_ssl_accept_server_cert_store(value: bytes) -> None: ...
ssl_accept_server_cert_store = property(get_ssl_accept_server_cert_store, set_ssl_accept_server_cert_store)
Default Value
"MY"
Remarks
This is the name of the certificate store for the client certificate.
The ssl_accept_server_cert_store_type property denotes the type of the certificate store specified by ssl_accept_server_cert_store. If the store is password protected, specify the password in ssl_accept_server_cert_store_password.
ssl_accept_server_cert_store is used in conjunction with the ssl_accept_server_cert_subject property to specify client certificates. If ssl_accept_server_cert_store has a value, and ssl_accept_server_cert_subject or ssl_accept_server_cert_encoded is set, a search for a certificate is initiated. Please see the ssl_accept_server_cert_subject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
ssl_accept_server_cert_store_password Property
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
def get_ssl_accept_server_cert_store_password() -> str: ... def set_ssl_accept_server_cert_store_password(value: str) -> None: ...
ssl_accept_server_cert_store_password = property(get_ssl_accept_server_cert_store_password, set_ssl_accept_server_cert_store_password)
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
ssl_accept_server_cert_store_type Property
This is the type of certificate store for this certificate.
Syntax
def get_ssl_accept_server_cert_store_type() -> int: ... def set_ssl_accept_server_cert_store_type(value: int) -> None: ...
ssl_accept_server_cert_store_type = property(get_ssl_accept_server_cert_store_type, set_ssl_accept_server_cert_store_type)
Default Value
0
Remarks
This is the type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: this store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the ssl_accept_server_cert_store and set ssl_accept_server_cert_store_password to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
ssl_accept_server_cert_subject_alt_names Property
This property contains comma-separated lists of alternative subject names for the certificate.
Syntax
def get_ssl_accept_server_cert_subject_alt_names() -> str: ...
ssl_accept_server_cert_subject_alt_names = property(get_ssl_accept_server_cert_subject_alt_names, None)
Default Value
""
Remarks
This property contains comma-separated lists of alternative subject names for the certificate.
This property is read-only.
ssl_accept_server_cert_thumbprint_md5 Property
This property contains the MD5 hash of the certificate.
Syntax
def get_ssl_accept_server_cert_thumbprint_md5() -> str: ...
ssl_accept_server_cert_thumbprint_md5 = property(get_ssl_accept_server_cert_thumbprint_md5, None)
Default Value
""
Remarks
This property contains the MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
ssl_accept_server_cert_thumbprint_sha1 Property
This property contains the SHA-1 hash of the certificate.
Syntax
def get_ssl_accept_server_cert_thumbprint_sha1() -> str: ...
ssl_accept_server_cert_thumbprint_sha1 = property(get_ssl_accept_server_cert_thumbprint_sha1, None)
Default Value
""
Remarks
This property contains the SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
ssl_accept_server_cert_thumbprint_sha256 Property
This property contains the SHA-256 hash of the certificate.
Syntax
def get_ssl_accept_server_cert_thumbprint_sha256() -> str: ...
ssl_accept_server_cert_thumbprint_sha256 = property(get_ssl_accept_server_cert_thumbprint_sha256, None)
Default Value
""
Remarks
This property contains the SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
ssl_accept_server_cert_usage Property
This property contains the text description of UsageFlags .
Syntax
def get_ssl_accept_server_cert_usage() -> str: ...
ssl_accept_server_cert_usage = property(get_ssl_accept_server_cert_usage, None)
Default Value
""
Remarks
This property contains the text description of ssl_accept_server_cert_usage_flags.
This value will be of one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
This property is read-only.
ssl_accept_server_cert_usage_flags Property
This property contains the flags that show intended use for the certificate.
Syntax
def get_ssl_accept_server_cert_usage_flags() -> int: ...
ssl_accept_server_cert_usage_flags = property(get_ssl_accept_server_cert_usage_flags, None)
Default Value
0
Remarks
This property contains the flags that show intended use for the certificate. The value of ssl_accept_server_cert_usage_flags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the ssl_accept_server_cert_usage property for a text representation of ssl_accept_server_cert_usage_flags.
This functionality currently is not available when the provider is OpenSSL.
This property is read-only.
ssl_accept_server_cert_version Property
This property contains the certificate's version number.
Syntax
def get_ssl_accept_server_cert_version() -> str: ...
ssl_accept_server_cert_version = property(get_ssl_accept_server_cert_version, None)
Default Value
""
Remarks
This property contains the certificate's version number. The possible values are the strings "V1", "V2", and "V3".
This property is read-only.
ssl_accept_server_cert_subject Property
This is the subject of the certificate used for client authentication.
Syntax
def get_ssl_accept_server_cert_subject() -> str: ... def set_ssl_accept_server_cert_subject(value: str) -> None: ...
ssl_accept_server_cert_subject = property(get_ssl_accept_server_cert_subject, set_ssl_accept_server_cert_subject)
Default Value
""
Remarks
This is the subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
ssl_accept_server_cert_encoded Property
This is the certificate (PEM/Base64 encoded).
Syntax
def get_ssl_accept_server_cert_encoded() -> bytes: ... def set_ssl_accept_server_cert_encoded(value: bytes) -> None: ...
ssl_accept_server_cert_encoded = property(get_ssl_accept_server_cert_encoded, set_ssl_accept_server_cert_encoded)
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The ssl_accept_server_cert_store and ssl_accept_server_cert_subject properties also may be used to specify a certificate.
When ssl_accept_server_cert_encoded is set, a search is initiated in the current ssl_accept_server_cert_store for the private key of the certificate. If the key is found, ssl_accept_server_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_accept_server_cert_subject is set to an empty string.
ssl_cert_effective_date Property
This is the date on which this certificate becomes valid.
Syntax
def get_ssl_cert_effective_date() -> str: ...
ssl_cert_effective_date = property(get_ssl_cert_effective_date, None)
Default Value
""
Remarks
This is the date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
This property is read-only.
ssl_cert_expiration_date Property
This is the date the certificate expires.
Syntax
def get_ssl_cert_expiration_date() -> str: ...
ssl_cert_expiration_date = property(get_ssl_cert_expiration_date, None)
Default Value
""
Remarks
This is the date the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
This property is read-only.
ssl_cert_extended_key_usage Property
This is a comma-delimited list of extended key usage identifiers.
Syntax
def get_ssl_cert_extended_key_usage() -> str: ...
ssl_cert_extended_key_usage = property(get_ssl_cert_extended_key_usage, None)
Default Value
""
Remarks
This is a comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
This property is read-only.
ssl_cert_fingerprint Property
This is the hex-encoded, 16-byte MD5 fingerprint of the certificate.
Syntax
def get_ssl_cert_fingerprint() -> str: ...
ssl_cert_fingerprint = property(get_ssl_cert_fingerprint, None)
Default Value
""
Remarks
This is the hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
This property is read-only.
ssl_cert_fingerprint_sha1 Property
This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
Syntax
def get_ssl_cert_fingerprint_sha1() -> str: ...
ssl_cert_fingerprint_sha1 = property(get_ssl_cert_fingerprint_sha1, None)
Default Value
""
Remarks
This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
This property is read-only.
ssl_cert_fingerprint_sha256 Property
This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
Syntax
def get_ssl_cert_fingerprint_sha256() -> str: ...
ssl_cert_fingerprint_sha256 = property(get_ssl_cert_fingerprint_sha256, None)
Default Value
""
Remarks
This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
This property is read-only.
ssl_cert_issuer Property
This is the issuer of the certificate.
Syntax
def get_ssl_cert_issuer() -> str: ...
ssl_cert_issuer = property(get_ssl_cert_issuer, None)
Default Value
""
Remarks
This is the issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.
This property is read-only.
ssl_cert_private_key Property
This is the private key of the certificate (if available).
Syntax
def get_ssl_cert_private_key() -> str: ...
ssl_cert_private_key = property(get_ssl_cert_private_key, None)
Default Value
""
Remarks
This is the private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The ssl_cert_private_key may be available but not exportable. In this case, ssl_cert_private_key returns an empty string.
This property is read-only.
ssl_cert_private_key_available Property
This property shows whether a PrivateKey is available for the selected certificate.
Syntax
def get_ssl_cert_private_key_available() -> bool: ...
ssl_cert_private_key_available = property(get_ssl_cert_private_key_available, None)
Default Value
FALSE
Remarks
This property shows whether a ssl_cert_private_key is available for the selected certificate. If ssl_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).
This property is read-only.
ssl_cert_private_key_container Property
This is the name of the PrivateKey container for the certificate (if available).
Syntax
def get_ssl_cert_private_key_container() -> str: ...
ssl_cert_private_key_container = property(get_ssl_cert_private_key_container, None)
Default Value
""
Remarks
This is the name of the ssl_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.
This property is read-only.
ssl_cert_public_key Property
This is the public key of the certificate.
Syntax
def get_ssl_cert_public_key() -> str: ...
ssl_cert_public_key = property(get_ssl_cert_public_key, None)
Default Value
""
Remarks
This is the public key of the certificate. The key is provided as PEM/Base64-encoded data.
This property is read-only.
ssl_cert_public_key_algorithm Property
This property contains the textual description of the certificate's public key algorithm.
Syntax
def get_ssl_cert_public_key_algorithm() -> str: ...
ssl_cert_public_key_algorithm = property(get_ssl_cert_public_key_algorithm, None)
Default Value
""
Remarks
This property contains the textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
This property is read-only.
ssl_cert_public_key_length Property
This is the length of the certificate's public key (in bits).
Syntax
def get_ssl_cert_public_key_length() -> int: ...
ssl_cert_public_key_length = property(get_ssl_cert_public_key_length, None)
Default Value
0
Remarks
This is the length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
This property is read-only.
ssl_cert_serial_number Property
This is the serial number of the certificate encoded as a string.
Syntax
def get_ssl_cert_serial_number() -> str: ...
ssl_cert_serial_number = property(get_ssl_cert_serial_number, None)
Default Value
""
Remarks
This is the serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
This property is read-only.
ssl_cert_signature_algorithm Property
The property contains the text description of the certificate's signature algorithm.
Syntax
def get_ssl_cert_signature_algorithm() -> str: ...
ssl_cert_signature_algorithm = property(get_ssl_cert_signature_algorithm, None)
Default Value
""
Remarks
The property contains the text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
This property is read-only.
ssl_cert_store Property
This is the name of the certificate store for the client certificate.
Syntax
def get_ssl_cert_store() -> bytes: ... def set_ssl_cert_store(value: bytes) -> None: ...
ssl_cert_store = property(get_ssl_cert_store, set_ssl_cert_store)
Default Value
"MY"
Remarks
This is the name of the certificate store for the client certificate.
The ssl_cert_store_type property denotes the type of the certificate store specified by ssl_cert_store. If the store is password protected, specify the password in ssl_cert_store_password.
ssl_cert_store is used in conjunction with the ssl_cert_subject property to specify client certificates. If ssl_cert_store has a value, and ssl_cert_subject or ssl_cert_encoded is set, a search for a certificate is initiated. Please see the ssl_cert_subject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
ssl_cert_store_password Property
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
def get_ssl_cert_store_password() -> str: ... def set_ssl_cert_store_password(value: str) -> None: ...
ssl_cert_store_password = property(get_ssl_cert_store_password, set_ssl_cert_store_password)
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
ssl_cert_store_type Property
This is the type of certificate store for this certificate.
Syntax
def get_ssl_cert_store_type() -> int: ... def set_ssl_cert_store_type(value: int) -> None: ...
ssl_cert_store_type = property(get_ssl_cert_store_type, set_ssl_cert_store_type)
Default Value
0
Remarks
This is the type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: this store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the ssl_cert_store and set ssl_cert_store_password to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
ssl_cert_subject_alt_names Property
This property contains comma-separated lists of alternative subject names for the certificate.
Syntax
def get_ssl_cert_subject_alt_names() -> str: ...
ssl_cert_subject_alt_names = property(get_ssl_cert_subject_alt_names, None)
Default Value
""
Remarks
This property contains comma-separated lists of alternative subject names for the certificate.
This property is read-only.
ssl_cert_thumbprint_md5 Property
This property contains the MD5 hash of the certificate.
Syntax
def get_ssl_cert_thumbprint_md5() -> str: ...
ssl_cert_thumbprint_md5 = property(get_ssl_cert_thumbprint_md5, None)
Default Value
""
Remarks
This property contains the MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
ssl_cert_thumbprint_sha1 Property
This property contains the SHA-1 hash of the certificate.
Syntax
def get_ssl_cert_thumbprint_sha1() -> str: ...
ssl_cert_thumbprint_sha1 = property(get_ssl_cert_thumbprint_sha1, None)
Default Value
""
Remarks
This property contains the SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
ssl_cert_thumbprint_sha256 Property
This property contains the SHA-256 hash of the certificate.
Syntax
def get_ssl_cert_thumbprint_sha256() -> str: ...
ssl_cert_thumbprint_sha256 = property(get_ssl_cert_thumbprint_sha256, None)
Default Value
""
Remarks
This property contains the SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
ssl_cert_usage Property
This property contains the text description of UsageFlags .
Syntax
def get_ssl_cert_usage() -> str: ...
ssl_cert_usage = property(get_ssl_cert_usage, None)
Default Value
""
Remarks
This property contains the text description of ssl_cert_usage_flags.
This value will be of one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
This property is read-only.
ssl_cert_usage_flags Property
This property contains the flags that show intended use for the certificate.
Syntax
def get_ssl_cert_usage_flags() -> int: ...
ssl_cert_usage_flags = property(get_ssl_cert_usage_flags, None)
Default Value
0
Remarks
This property contains the flags that show intended use for the certificate. The value of ssl_cert_usage_flags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the ssl_cert_usage property for a text representation of ssl_cert_usage_flags.
This functionality currently is not available when the provider is OpenSSL.
This property is read-only.
ssl_cert_version Property
This property contains the certificate's version number.
Syntax
def get_ssl_cert_version() -> str: ...
ssl_cert_version = property(get_ssl_cert_version, None)
Default Value
""
Remarks
This property contains the certificate's version number. The possible values are the strings "V1", "V2", and "V3".
This property is read-only.
ssl_cert_subject Property
This is the subject of the certificate used for client authentication.
Syntax
def get_ssl_cert_subject() -> str: ... def set_ssl_cert_subject(value: str) -> None: ...
ssl_cert_subject = property(get_ssl_cert_subject, set_ssl_cert_subject)
Default Value
""
Remarks
This is the subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
ssl_cert_encoded Property
This is the certificate (PEM/Base64 encoded).
Syntax
def get_ssl_cert_encoded() -> bytes: ... def set_ssl_cert_encoded(value: bytes) -> None: ...
ssl_cert_encoded = property(get_ssl_cert_encoded, set_ssl_cert_encoded)
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The ssl_cert_store and ssl_cert_subject properties also may be used to specify a certificate.
When ssl_cert_encoded is set, a search is initiated in the current ssl_cert_store for the private key of the certificate. If the key is found, ssl_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_cert_subject is set to an empty string.
ssl_enabled Property
This property indicates whether Transport Layer Security/Secure Sockets Layer (TLS/SSL) is enabled.
Syntax
def get_ssl_enabled() -> bool: ... def set_ssl_enabled(value: bool) -> None: ...
ssl_enabled = property(get_ssl_enabled, set_ssl_enabled)
Default Value
FALSE
Remarks
This property specifies whether TLS/SSL is enabled in the class. When False (default), the class operates in plaintext mode. When True, TLS/SSL is enabled.
TLS/SSL may also be enabled by setting ssl_start_mode. Setting ssl_start_mode will automatically update this property value.
ssl_provider Property
This property specifies the Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.
Syntax
def get_ssl_provider() -> int: ... def set_ssl_provider(value: int) -> None: ...
ssl_provider = property(get_ssl_provider, set_ssl_provider)
Default Value
0
Remarks
This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic), the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.
Possible values are as follows:
0 (sslpAutomatic - default) | Automatically selects the appropriate implementation. |
1 (sslpPlatform) | Uses the platform/system implementation. |
2 (sslpInternal) | Uses the internal implementation. |
In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.
When Automatic is selected, on Windows, the class will use the platform implementation. On Linux/macOS, the class will use the internal implementation. When TLS 1.3 is enabled via SSLEnabledProtocols, the internal implementation is used on all platforms.
ssl_server_cert_effective_date Property
This is the date on which this certificate becomes valid.
Syntax
def get_ssl_server_cert_effective_date() -> str: ...
ssl_server_cert_effective_date = property(get_ssl_server_cert_effective_date, None)
Default Value
""
Remarks
This is the date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
This property is read-only.
ssl_server_cert_expiration_date Property
This is the date the certificate expires.
Syntax
def get_ssl_server_cert_expiration_date() -> str: ...
ssl_server_cert_expiration_date = property(get_ssl_server_cert_expiration_date, None)
Default Value
""
Remarks
This is the date the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
This property is read-only.
ssl_server_cert_extended_key_usage Property
This is a comma-delimited list of extended key usage identifiers.
Syntax
def get_ssl_server_cert_extended_key_usage() -> str: ...
ssl_server_cert_extended_key_usage = property(get_ssl_server_cert_extended_key_usage, None)
Default Value
""
Remarks
This is a comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
This property is read-only.
ssl_server_cert_fingerprint Property
This is the hex-encoded, 16-byte MD5 fingerprint of the certificate.
Syntax
def get_ssl_server_cert_fingerprint() -> str: ...
ssl_server_cert_fingerprint = property(get_ssl_server_cert_fingerprint, None)
Default Value
""
Remarks
This is the hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
This property is read-only.
ssl_server_cert_fingerprint_sha1 Property
This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
Syntax
def get_ssl_server_cert_fingerprint_sha1() -> str: ...
ssl_server_cert_fingerprint_sha1 = property(get_ssl_server_cert_fingerprint_sha1, None)
Default Value
""
Remarks
This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
This property is read-only.
ssl_server_cert_fingerprint_sha256 Property
This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
Syntax
def get_ssl_server_cert_fingerprint_sha256() -> str: ...
ssl_server_cert_fingerprint_sha256 = property(get_ssl_server_cert_fingerprint_sha256, None)
Default Value
""
Remarks
This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
This property is read-only.
ssl_server_cert_issuer Property
This is the issuer of the certificate.
Syntax
def get_ssl_server_cert_issuer() -> str: ...
ssl_server_cert_issuer = property(get_ssl_server_cert_issuer, None)
Default Value
""
Remarks
This is the issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.
This property is read-only.
ssl_server_cert_private_key Property
This is the private key of the certificate (if available).
Syntax
def get_ssl_server_cert_private_key() -> str: ...
ssl_server_cert_private_key = property(get_ssl_server_cert_private_key, None)
Default Value
""
Remarks
This is the private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The ssl_server_cert_private_key may be available but not exportable. In this case, ssl_server_cert_private_key returns an empty string.
This property is read-only.
ssl_server_cert_private_key_available Property
This property shows whether a PrivateKey is available for the selected certificate.
Syntax
def get_ssl_server_cert_private_key_available() -> bool: ...
ssl_server_cert_private_key_available = property(get_ssl_server_cert_private_key_available, None)
Default Value
FALSE
Remarks
This property shows whether a ssl_server_cert_private_key is available for the selected certificate. If ssl_server_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).
This property is read-only.
ssl_server_cert_private_key_container Property
This is the name of the PrivateKey container for the certificate (if available).
Syntax
def get_ssl_server_cert_private_key_container() -> str: ...
ssl_server_cert_private_key_container = property(get_ssl_server_cert_private_key_container, None)
Default Value
""
Remarks
This is the name of the ssl_server_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.
This property is read-only.
ssl_server_cert_public_key Property
This is the public key of the certificate.
Syntax
def get_ssl_server_cert_public_key() -> str: ...
ssl_server_cert_public_key = property(get_ssl_server_cert_public_key, None)
Default Value
""
Remarks
This is the public key of the certificate. The key is provided as PEM/Base64-encoded data.
This property is read-only.
ssl_server_cert_public_key_algorithm Property
This property contains the textual description of the certificate's public key algorithm.
Syntax
def get_ssl_server_cert_public_key_algorithm() -> str: ...
ssl_server_cert_public_key_algorithm = property(get_ssl_server_cert_public_key_algorithm, None)
Default Value
""
Remarks
This property contains the textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
This property is read-only.
ssl_server_cert_public_key_length Property
This is the length of the certificate's public key (in bits).
Syntax
def get_ssl_server_cert_public_key_length() -> int: ...
ssl_server_cert_public_key_length = property(get_ssl_server_cert_public_key_length, None)
Default Value
0
Remarks
This is the length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
This property is read-only.
ssl_server_cert_serial_number Property
This is the serial number of the certificate encoded as a string.
Syntax
def get_ssl_server_cert_serial_number() -> str: ...
ssl_server_cert_serial_number = property(get_ssl_server_cert_serial_number, None)
Default Value
""
Remarks
This is the serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
This property is read-only.
ssl_server_cert_signature_algorithm Property
The property contains the text description of the certificate's signature algorithm.
Syntax
def get_ssl_server_cert_signature_algorithm() -> str: ...
ssl_server_cert_signature_algorithm = property(get_ssl_server_cert_signature_algorithm, None)
Default Value
""
Remarks
The property contains the text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
This property is read-only.
ssl_server_cert_store Property
This is the name of the certificate store for the client certificate.
Syntax
def get_ssl_server_cert_store() -> bytes: ...
ssl_server_cert_store = property(get_ssl_server_cert_store, None)
Default Value
"MY"
Remarks
This is the name of the certificate store for the client certificate.
The ssl_server_cert_store_type property denotes the type of the certificate store specified by ssl_server_cert_store. If the store is password protected, specify the password in ssl_server_cert_store_password.
ssl_server_cert_store is used in conjunction with the ssl_server_cert_subject property to specify client certificates. If ssl_server_cert_store has a value, and ssl_server_cert_subject or ssl_server_cert_encoded is set, a search for a certificate is initiated. Please see the ssl_server_cert_subject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
This property is read-only.
ssl_server_cert_store_password Property
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
def get_ssl_server_cert_store_password() -> str: ...
ssl_server_cert_store_password = property(get_ssl_server_cert_store_password, None)
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
This property is read-only.
ssl_server_cert_store_type Property
This is the type of certificate store for this certificate.
Syntax
def get_ssl_server_cert_store_type() -> int: ...
ssl_server_cert_store_type = property(get_ssl_server_cert_store_type, None)
Default Value
0
Remarks
This is the type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: this store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the ssl_server_cert_store and set ssl_server_cert_store_password to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
This property is read-only.
ssl_server_cert_subject_alt_names Property
This property contains comma-separated lists of alternative subject names for the certificate.
Syntax
def get_ssl_server_cert_subject_alt_names() -> str: ...
ssl_server_cert_subject_alt_names = property(get_ssl_server_cert_subject_alt_names, None)
Default Value
""
Remarks
This property contains comma-separated lists of alternative subject names for the certificate.
This property is read-only.
ssl_server_cert_thumbprint_md5 Property
This property contains the MD5 hash of the certificate.
Syntax
def get_ssl_server_cert_thumbprint_md5() -> str: ...
ssl_server_cert_thumbprint_md5 = property(get_ssl_server_cert_thumbprint_md5, None)
Default Value
""
Remarks
This property contains the MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
ssl_server_cert_thumbprint_sha1 Property
This property contains the SHA-1 hash of the certificate.
Syntax
def get_ssl_server_cert_thumbprint_sha1() -> str: ...
ssl_server_cert_thumbprint_sha1 = property(get_ssl_server_cert_thumbprint_sha1, None)
Default Value
""
Remarks
This property contains the SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
ssl_server_cert_thumbprint_sha256 Property
This property contains the SHA-256 hash of the certificate.
Syntax
def get_ssl_server_cert_thumbprint_sha256() -> str: ...
ssl_server_cert_thumbprint_sha256 = property(get_ssl_server_cert_thumbprint_sha256, None)
Default Value
""
Remarks
This property contains the SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
ssl_server_cert_usage Property
This property contains the text description of UsageFlags .
Syntax
def get_ssl_server_cert_usage() -> str: ...
ssl_server_cert_usage = property(get_ssl_server_cert_usage, None)
Default Value
""
Remarks
This property contains the text description of ssl_server_cert_usage_flags.
This value will be of one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
This property is read-only.
ssl_server_cert_usage_flags Property
This property contains the flags that show intended use for the certificate.
Syntax
def get_ssl_server_cert_usage_flags() -> int: ...
ssl_server_cert_usage_flags = property(get_ssl_server_cert_usage_flags, None)
Default Value
0
Remarks
This property contains the flags that show intended use for the certificate. The value of ssl_server_cert_usage_flags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the ssl_server_cert_usage property for a text representation of ssl_server_cert_usage_flags.
This functionality currently is not available when the provider is OpenSSL.
This property is read-only.
ssl_server_cert_version Property
This property contains the certificate's version number.
Syntax
def get_ssl_server_cert_version() -> str: ...
ssl_server_cert_version = property(get_ssl_server_cert_version, None)
Default Value
""
Remarks
This property contains the certificate's version number. The possible values are the strings "V1", "V2", and "V3".
This property is read-only.
ssl_server_cert_subject Property
This is the subject of the certificate used for client authentication.
Syntax
def get_ssl_server_cert_subject() -> str: ...
ssl_server_cert_subject = property(get_ssl_server_cert_subject, None)
Default Value
""
Remarks
This is the subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
This property is read-only.
ssl_server_cert_encoded Property
This is the certificate (PEM/Base64 encoded).
Syntax
def get_ssl_server_cert_encoded() -> bytes: ...
ssl_server_cert_encoded = property(get_ssl_server_cert_encoded, None)
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The ssl_server_cert_store and ssl_server_cert_subject properties also may be used to specify a certificate.
When ssl_server_cert_encoded is set, a search is initiated in the current ssl_server_cert_store for the private key of the certificate. If the key is found, ssl_server_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_server_cert_subject is set to an empty string.
This property is read-only.
ssl_start_mode Property
This property determines how the class starts the Secure Sockets Layer (SSL) negotiation.
Syntax
def get_ssl_start_mode() -> int: ... def set_ssl_start_mode(value: int) -> None: ...
ssl_start_mode = property(get_ssl_start_mode, set_ssl_start_mode)
Default Value
3
Remarks
The ssl_start_mode property may have one of the following values:
0 (sslAutomatic) | If the remote port is set to the standard plaintext port of the protocol (where applicable), the class will behave the same as if ssl_start_mode is set to sslExplicit. In all other cases, SSL negotiation will be implicit (sslImplicit). |
1 (sslImplicit) | The SSL negotiation will start immediately after the connection is established. |
2 (sslExplicit) | The class will first connect in plaintext, and then will explicitly start SSL negotiation through a protocol command such as STARTTLS. |
3 (sslNone - default) | No SSL negotiation; no SSL security. All communication will be in plaintext mode. |
timeout Property
This property includes the timeout for the class.
Syntax
def get_timeout() -> int: ... def set_timeout(value: int) -> None: ...
timeout = property(get_timeout, set_timeout)
Default Value
60
Remarks
If the timeout property is set to 0, all operations return immediately, potentially failing with a WOULDBLOCK error if data cannot be sent immediately.
If timeout is set to a positive value, data is sent in a blocking manner and the class will wait for the operation to complete before returning control. The class will handle any potential WOULDBLOCK errors internally and automatically retry the operation for a maximum of timeout seconds.
The class will use do_events to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not freeze and remains responsive.
If timeout expires, and the operation is not yet complete, the class fails with an error.
Note: By default, all timeouts are inactivity timeouts, that is, the timeout period is extended by timeout seconds when any amount of data is successfully sent or received.
The default value for the timeout property is 60 seconds.
change_record_length Method
This method changes the length of received data records.
Syntax
def change_record_length(record_length: int) -> None: ...
Remarks
This method defines the length of data records to be received (in bytes).
If RecordLength is set to a positive value, the class will accumulate data until RecordLength bytes of data are received and only then will it fire the on_data_in event with data of length RecordLength. This allows data to be received as records of known length. This method can be called at any time to change the record length, including within the on_data_in event.
A value of 0 (default) means this functionality is not used.
config Method
Sets or retrieves a configuration setting.
Syntax
def config(configuration_string: str) -> str: ...
Remarks
config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
connect Method
This method connects to a remote host.
Syntax
def connect() -> None: ...
Remarks
This method connects to the remote host specified by remote_host and remote_port.
For instance:
component.RemoteHost = "MyHostNameOrIP";
component.RemotePort = 7777;
component.Connect();
connect_to Method
This method connects to a remote host.
Syntax
def connect_to(host: str, port: int) -> None: ...
Remarks
This method connects to the remote host specified by the Host and Port parameters. For instance:
component.ConnectTo("MyHostNameOrIP", 777)
disconnect Method
This method disconnects from the remote host.
Syntax
def disconnect() -> None: ...
Remarks
This method disconnects from the remote host. Calling this method is equivalent to setting the connected property to False.
do_events Method
This method processes events from the internal message queue.
Syntax
def do_events() -> None: ...
Remarks
When do_events is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.
get_line Method
This method gets a line of text from the server.
Syntax
def get_line() -> str: ...
Remarks
This method gets a line of text from the server. This method is an alternative method of receiving data for line-oriented protocols. The class will block if necessary and then will return the received line. accept_data will be set automatically to True when the method is called, and then will be set to False after a line is received.
Please refer to the single_line_mode property for more information.
interrupt Method
This method interrupts the current action.
Syntax
def interrupt() -> None: ...
Remarks
This method interrupts the current action. If you use send_file to upload a file, the class will run synchronously until the upload is completed. This method will allow you to stop the file from uploading without disconnecting from the host.
pause_data Method
This method pauses data reception.
Syntax
def pause_data() -> None: ...
Remarks
This method pauses data reception when called. While data reception is paused, the on_data_in event will not fire. Call process_data to reenable data reception.
process_data Method
This method reenables data reception after a call to PauseData .
Syntax
def process_data() -> None: ...
Remarks
This method reenables data reception after a previous call to pause_data. When pause_data is called, the on_data_in event will not fire. To reenable data reception and allow on_data_in to fire, call this method.
Note: This method is used only after previously calling pause_data. It does not need to be called to process incoming data by default.
reset Method
This method will reset the class.
Syntax
def reset() -> None: ...
Remarks
This method will reset the class's properties to their default values.
send Method
This method sends binary data to the remote host.
Syntax
def send(text: bytes) -> None: ...
Remarks
This method sends the specified binary data to the remote host. To send text, use the send_text method instead.
When timeout is set to 0, the class will behave asynchronously. If you are sending data to the remote host faster than it can process it, or faster than the network's bandwidth allows, the outgoing queue might fill up. When this happens, the operation fails with error 10035: "[10035] Operation would block" (WSAEWOULDBLOCK). You can check this error, and then try to send the data again. . The bytes_sent property shows how many bytes were sent (if any). If 0 bytes were sent, then you can wait for the on_ready_to_send event before attempting to send data again.
Note: The on_ready_to_send event is not fired when part of the data is sent successfully.
send_bytes Method
This method sends binary data to the remote host.
Syntax
def send_bytes(data: bytes) -> None: ...
Remarks
This method sends the specified binary data to the remote host. To send text, use the send_text method instead.
When timeout is set to 0, the class will behave asynchronously. If you are sending data to the remote host faster than it can process it, or faster than the network's bandwidth allows, the outgoing queue might fill up. When this happens, the operation fails with error 10035: "[10035] Operation would block" (WSAEWOULDBLOCK). You can check this error, and then try to send the data again. . The bytes_sent property shows how many bytes were sent (if any). If 0 bytes were sent, then you can wait for the on_ready_to_send event before attempting to send data again.
Note: The on_ready_to_send event is not fired when part of the data is sent successfully.
send_file Method
This method sends a file to the remote host.
Syntax
def send_file(file_name: str) -> None: ...
Remarks
This method sends the specified file to the remote host.
This method requires timeout be set to a positive value. This allows the class to ensure that the file is transferred completely without a WOULDBLOCK error. See timeout for details.
send_line Method
This method sends a string followed by a newline.
Syntax
def send_line(text: str) -> None: ...
Remarks
This method sends a string followed by a newline. This method is used to send data with line-oriented protocols. The line is followed by CRLF ("\r\n") .
Please refer to the get_line method and single_line_mode property for more information.
send_text Method
This method sends text to the remote host.
Syntax
def send_text(text: str) -> None: ...
Remarks
This method sends the specified text to the remote host. To send binary data, use the send_bytes method instead.
When timeout is set to 0, the class will behave asynchronously. If you are sending data to the remote host faster than it can process it, or faster than the network's bandwidth allows, the outgoing queue might fill up. When this happens, the operation fails with error 10035: "[10035] Operation would block" (WSAEWOULDBLOCK). You can check this error, and then try to send the data again. . The bytes_sent property shows how many bytes were sent (if any). If 0 bytes were sent, then you can wait for the on_ready_to_send event before attempting to send data again.
Note: The on_ready_to_send event is not fired when part of the data is sent successfully.
start_ssl Method
This method starts Secure Sockets Layer (SSL) negotiation on a plaintext connection.
Syntax
def start_ssl() -> None: ...
Remarks
This method is used to start SSL negotiation on a plaintext connection. Please refer to the ssl_start_mode property for more information.
Note: The on_connected event will fire again after SSL negotiation is complete.
on_connected Event
This event is fired immediately after a connection completes (or fails).
Syntax
class TCPClientConnectedEventParams(object): @property def status_code() -> int: ... @property def description() -> str: ... # In class TCPClient: @property def on_connected() -> Callable[[TCPClientConnectedEventParams], None]: ... @on_connected.setter def on_connected(event_hook: Callable[[TCPClientConnectedEventParams], None]) -> None: ...
Remarks
If the connection is made normally, StatusCode is 0 and Description is "OK".
If the connection fails, StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.
Please refer to the Error Codes section for more information.
on_connection_status Event
This event is fired to indicate changes in the connection state.
Syntax
class TCPClientConnectionStatusEventParams(object): @property def connection_event() -> str: ... @property def status_code() -> int: ... @property def description() -> str: ... # In class TCPClient: @property def on_connection_status() -> Callable[[TCPClientConnectionStatusEventParams], None]: ... @on_connection_status.setter def on_connection_status(event_hook: Callable[[TCPClientConnectionStatusEventParams], None]) -> None: ...
Remarks
The on_connection_status event is fired when the connection state changes: for example, completion of a firewall or proxy connection or completion of a security handshake.
The ConnectionEvent parameter indicates the type of connection event. Values may include the following:
Firewall connection complete. | |
Secure Sockets Layer (SSL) or S/Shell handshake complete (where applicable). | |
Remote host connection complete. | |
Remote host disconnected. | |
SSL or S/Shell connection broken. | |
Firewall host disconnected. |
on_data_in Event
This event is fired when data (complete lines) come in.
Syntax
class TCPClientDataInEventParams(object): @property def text() -> bytes: ... @property def eol() -> bool: ... # In class TCPClient: @property def on_data_in() -> Callable[[TCPClientDataInEventParams], None]: ... @on_data_in.setter def on_data_in(event_hook: Callable[[TCPClientDataInEventParams], None]) -> None: ...
Remarks
Trapping the on_data_in event is your only chance to get the data coming from the other end of the connection. The incoming data are provided through the Text parameter.
EOL indicates whether or not the eol string was found at the end of Text. If the eol string was found, then EOL is True.
If Text is part of a data portion of length larger than MaxLineLength with no eol strings in it, then EOL is False. Note: This means that one or more on_data_in events with EOL set to False can be received during a connection.
If the eol property is "" (empty string), then EOL can be disregarded (it is always True).
Note: Events are not re-entrant. Performing time-consuming operations within this event will prevent it from firing again in a timely manner and may affect overall performance.
on_disconnected Event
This event is fired when a connection is closed.
Syntax
class TCPClientDisconnectedEventParams(object): @property def status_code() -> int: ... @property def description() -> str: ... # In class TCPClient: @property def on_disconnected() -> Callable[[TCPClientDisconnectedEventParams], None]: ... @on_disconnected.setter def on_disconnected(event_hook: Callable[[TCPClientDisconnectedEventParams], None]) -> None: ...
Remarks
If the connection is broken normally, StatusCode is 0 and Description is "OK".
If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.
Please refer to the Error Codes section for more information.
on_error Event
Fired when information is available about errors during data delivery.
Syntax
class TCPClientErrorEventParams(object): @property def error_code() -> int: ... @property def description() -> str: ... # In class TCPClient: @property def on_error() -> Callable[[TCPClientErrorEventParams], None]: ... @on_error.setter def on_error(event_hook: Callable[[TCPClientErrorEventParams], None]) -> None: ...
Remarks
The on_error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
on_ready_to_send Event
This event is fired when the class is ready to send data.
Syntax
class TCPClientReadyToSendEventParams(object): # In class TCPClient: @property def on_ready_to_send() -> Callable[[TCPClientReadyToSendEventParams], None]: ... @on_ready_to_send.setter def on_ready_to_send(event_hook: Callable[[TCPClientReadyToSendEventParams], None]) -> None: ...
Remarks
The on_ready_to_send event indicates that the underlying Transmission Control Protocol (TCP)/IP subsystem is ready to accept data after a failed send_bytes. This event also is fired immediately after a connection to the remote host is established.
on_ssl_server_authentication Event
Fired after the server presents its certificate to the client.
Syntax
class TCPClientSSLServerAuthenticationEventParams(object): @property def cert_encoded() -> bytes: ... @property def cert_subject() -> str: ... @property def cert_issuer() -> str: ... @property def status() -> str: ... @property def accept() -> bool: ... @accept.setter def accept(value) -> None: ... # In class TCPClient: @property def on_ssl_server_authentication() -> Callable[[TCPClientSSLServerAuthenticationEventParams], None]: ... @on_ssl_server_authentication.setter def on_ssl_server_authentication(event_hook: Callable[[TCPClientSSLServerAuthenticationEventParams], None]) -> None: ...
Remarks
During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.
When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.
on_ssl_status Event
Fired when secure connection progress messages are available.
Syntax
class TCPClientSSLStatusEventParams(object): @property def message() -> str: ... # In class TCPClient: @property def on_ssl_status() -> Callable[[TCPClientSSLStatusEventParams], None]: ... @on_ssl_status.setter def on_ssl_status(event_hook: Callable[[TCPClientSSLStatusEventParams], None]) -> None: ...
Remarks
The event is fired for informational and logging purposes only. This event tracks the progress of the connection.
TCPClient Config Settings
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.TCPClient Config Settings
If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.
0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This value is not applicable in macOS.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.
If the class is connected, the local_host setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by local_port after the connection is established.
local_port cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.
If an eol string is found in the input stream before MaxLineLength bytes are received, the on_data_in event is fired with the EOL parameter set to True, and the buffer is reset.
If no eol is found, and MaxLineLength bytes are accumulated in the buffer, the on_data_in event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
www.google.com;www.nsoftware.com
Note: This value is not applicable in Java.
By default, this configuration setting is set to False.
0 | IPv4 only |
1 | IPv6 only |
2 | IPv6 with IPv4 fallback |
SSL Config Settings
When enabled, SSL packet logs are output using the on_ssl_status event, which will fire each time an SSL packet is sent or received.
Enabling this configuration setting has no effect if ssl_provider is set to Platform.
The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g., 9d66eef0.0, 9d66eef0.1). OpenSSL recommends the use of the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by the following sequences:
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
Before, between, and after the certificate text is allowed, which can be used, for example, for descriptions of the certificates. Refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
By default, OpenSSL uses the device file "/dev/urandom" to seed the PRNG, and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
If set to True, the class will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the class is the same.
The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found, the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.
The default value is as follows:
/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermedaite Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When set to 0 (default), the CRL check will not be performed by the class. When set to 1, it will attempt to perform the CRL check, but it will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.
This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.
When set to 0 (default), the class will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but it will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.
This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.
Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the on_ssl_status event.
Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when ssl_provider is set to Platform include the following:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when ssl_provider is set to Platform include the following:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_ECDH_RSA_WITH_AES_128_CBC_SHA");
Possible values when ssl_provider is set to Internal include the following:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default - Client and Server) |
TLS1.1 | 768 (Hex 300) (Default - Client) |
TLS1 | 192 (Hex C0) (Default - Client) |
SSL3 | 48 (Hex 30) |
SSL2 | 12 (Hex 0C) |
Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.
SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:
By default when TLS 1.3 is enabled, the class will use the internal TLS implementation when the ssl_provider is set to Automatic for all editions.
In editions that are designed to run on Windows, ssl_provider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider), please be aware of the following notes:
- The platform provider is available only on Windows 11/Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the class when the ssl_provider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and ssl_provider needs to be set to platform.
This configuration setting is applicable only when ssl_provider is set to Internal.
If set to True, all certificates returned by the server will be present in the Encoded parameter of the on_ssl_server_authentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the class will only append, it will not overwrite previous values.
Note: This configuration setting is applicable only when ssl_provider is set to Internal.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown certificate authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown certificate authority revocation status. |
0x00000800 | Ignore unknown root revocation status. |
0x00008000 | Allow test root certificate. |
0x00004000 | Trust test root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN non-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When specified the class will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the class fails with an error.
The format of this value is a comma-separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and ssl_provider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.
In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
Socket Config Settings
Note: This option is not valid for User Datagram Protocol (UDP) ports.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
Setting this configuration setting to True tells the class to use the internal implementation instead of using the system security libraries.
On Windows, this setting is set to False by default. On Linux/macOS, this setting is set to True by default.
To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.
TCPClient Errors
TCPClient Errors
100 | You cannot change the remote_port at this time. A connection is in progress. |
101 | You cannot change the remote_host (Server) at this time. A connection is in progress. |
102 | The remote_host address is invalid (0.0.0.0). |
104 | Already connected. If you want to reconnect, close the current connection first. |
106 | You cannot change the local_port at this time. A connection is in progress. |
107 | You cannot change the local_host at this time. A connection is in progress. |
112 | You cannot change MaxLineLength at this time. A connection is in progress. |
116 | remote_port cannot be zero. Please specify a valid service port number. |
117 | You cannot change the UseConnection option while the class is active. |
135 | Operation would block. |
201 | Timeout. |
211 | Action impossible in control's present state. |
212 | Action impossible while not connected. |
213 | Action impossible while listening. |
301 | Timeout. |
302 | Could not open file. |
434 | Unable to convert string to selected CodePage. |
1105 | Already connecting. If you want to reconnect, close the current connection first. |
1117 | You need to connect first. |
1119 | You cannot change the LocalHost at this time. A connection is in progress. |
1120 | Connection dropped by remote host. |
SSL Errors
270 | Cannot load specified security library. |
271 | Cannot open certificate store. |
272 | Cannot find specified certificate. |
273 | Cannot acquire security credentials. |
274 | Cannot find certificate chain. |
275 | Cannot verify certificate chain. |
276 | Error during handshake. |
280 | Error verifying certificate. |
281 | Could not find client certificate. |
282 | Could not find server certificate. |
283 | Error encrypting data. |
284 | Error decrypting data. |
TCP/IP Errors
10004 | [10004] Interrupted system call. |
10009 | [10009] Bad file number. |
10013 | [10013] Access denied. |
10014 | [10014] Bad address. |
10022 | [10022] Invalid argument. |
10024 | [10024] Too many open files. |
10035 | [10035] Operation would block. |
10036 | [10036] Operation now in progress. |
10037 | [10037] Operation already in progress. |
10038 | [10038] Socket operation on nonsocket. |
10039 | [10039] Destination address required. |
10040 | [10040] Message is too long. |
10041 | [10041] Protocol wrong type for socket. |
10042 | [10042] Bad protocol option. |
10043 | [10043] Protocol is not supported. |
10044 | [10044] Socket type is not supported. |
10045 | [10045] Operation is not supported on socket. |
10046 | [10046] Protocol family is not supported. |
10047 | [10047] Address family is not supported by protocol family. |
10048 | [10048] Address already in use. |
10049 | [10049] Cannot assign requested address. |
10050 | [10050] Network is down. |
10051 | [10051] Network is unreachable. |
10052 | [10052] Net dropped connection or reset. |
10053 | [10053] Software caused connection abort. |
10054 | [10054] Connection reset by peer. |
10055 | [10055] No buffer space available. |
10056 | [10056] Socket is already connected. |
10057 | [10057] Socket is not connected. |
10058 | [10058] Cannot send after socket shutdown. |
10059 | [10059] Too many references, cannot splice. |
10060 | [10060] Connection timed out. |
10061 | [10061] Connection refused. |
10062 | [10062] Too many levels of symbolic links. |
10063 | [10063] File name is too long. |
10064 | [10064] Host is down. |
10065 | [10065] No route to host. |
10066 | [10066] Directory is not empty |
10067 | [10067] Too many processes. |
10068 | [10068] Too many users. |
10069 | [10069] Disc Quota Exceeded. |
10070 | [10070] Stale NFS file handle. |
10071 | [10071] Too many levels of remote in path. |
10091 | [10091] Network subsystem is unavailable. |
10092 | [10092] WINSOCK DLL Version out of range. |
10093 | [10093] Winsock is not loaded yet. |
11001 | [11001] Host not found. |
11002 | [11002] Nonauthoritative 'Host not found' (try again or check DNS setup). |
11003 | [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP. |
11004 | [11004] Valid name, no data record (check DNS setup). |