XMLDecryptor Component

Properties   Methods   Events   Config Settings   Errors  

The XMLDecryptor component decrypts XML documents.

Syntax

TsbxXMLDecryptor

Remarks

XMlDecryptor decrypts XML documents encrypted with certificates or generic keys.

Property List


The following is the full list of the properties of the component with short descriptions. Click on the links for further details.

DecryptionKeyThe symmetric (session) key used to encrypt the data.
EncodingSpecifies XML encoding.
EncryptedDataTypeDefines the type of data being encrypted.
EncryptionMethodThe encryption method used to encrypt the document.
EncryptKeySpecifies if the encryption key is encrypted.
ExternalCryptoProvides access to external signing and DC parameters.
ExternalDataThe data that should be encrypted.
FIPSModeReserved.
InputBytesUse this property to pass the input to component in byte array form.
InputFileThe XML file to be decrypted.
KeyDecryptionCertificateThe certificate used to decrypt a session key.
KeyDecryptionKeyThe symmetric key used to decrypt a session key.
KeyEncryptionTypeDefines how the session key is encrypted.
KeyInfoA collection of KeyInfo items found in the KeyInfo element.
KeyInfoCertificatesA collection of certificates found in the KeyInfo element.
KeyTransportMethodDefines how the session key is encrypted.
KeyWrapMethodThe key wrap method used to encrypt the session key.
OutputBytesUse this property to read the output the component object has produced.
OutputFileDefines where to save the decrypted XML document.
UseGCMIndicates if GCM mode was enabled.
XMLElementDefines the XML element to decrypt.

Method List


The following is the full list of the methods of the component with short descriptions. Click on the links for further details.

AddKnownNamespaceAdds known prefix and correspondent namespace URI.
ConfigSets or retrieves a configuration setting.
DecryptDecrypts an XML document.
DoActionPerforms an additional action.
ResetResets the component settings.

Event List


The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.

DecryptionInfoNeededRequests decryption information from the application.
ErrorInformation about errors during signing.
ExternalDecryptHandles remote or external decryption.
NotificationThis event notifies the application about an underlying control flow event.
SaveExternalDataRequest to save decrypted external data.

Config Settings


The following is a list of config settings for the component with short descriptions. Click on the links for further details.

EncryptedKeyXMLElementSpecifies the XML element where the encrypted key element is located.
KeyNameContains information about the key used for encryption.
MimeTypeContains the mime type of the encrypted data.
TempPathPath for storing temporary files.
WriteBOMSpecifies whether byte-order mark should be written when saving the document.
ASN1UseGlobalTagCacheControls whether ASN.1 module should use a global object cache.
AssignSystemSmartCardPinsSpecifies whether CSP-level PINs should be assigned to CNG keys.
CheckKeyIntegrityBeforeUseEnables or disable private key integrity check before use.
CookieCachingSpecifies whether a cookie cache should be used for HTTP(S) transports.
CookiesGets or sets local cookies for the component.
DefDeriveKeyIterationsSpecifies the default key derivation algorithm iteration count.
DNSLocalSuffixThe suffix to assign for TLD names.
EnableClientSideSSLFFDHEEnables or disables finite field DHE key exchange support in TLS clients.
GlobalCookiesGets or sets global cookies for all the HTTP transports.
HardwareCryptoUsePolicyThe hardware crypto usage policy.
HttpUserAgentSpecifies the user agent name to be used by all HTTP clients.
HttpVersionThe HTTP version to use in any inner HTTP client components created.
IgnoreExpiredMSCTLSigningCertWhether to tolerate the expired Windows Update signing certificate.
ListDelimiterThe delimiter character for multi-element lists.
LogDestinationSpecifies the debug log destination.
LogDetailsSpecifies the debug log details to dump.
LogFileSpecifies the debug log filename.
LogFiltersSpecifies the debug log filters.
LogFlushModeSpecifies the log flush mode.
LogLevelSpecifies the debug log level.
LogMaxEventCountSpecifies the maximum number of events to cache before further action is taken.
LogRotationModeSpecifies the log rotation mode.
MaxASN1BufferLengthSpecifies the maximal allowed length for ASN.1 primitive tag data.
MaxASN1TreeDepthSpecifies the maximal depth for processed ASN.1 trees.
OCSPHashAlgorithmSpecifies the hash algorithm to be used to identify certificates in OCSP requests.
OldClientSideRSAFallbackSpecifies whether the SSH client should use a SHA1 fallback.
ProductVersionReturns the version of the SecureBlackbox library.
ServerSSLDHKeyLengthSets the size of the TLS DHE key exchange group.
StaticDNSSpecifies whether static DNS rules should be used.
StaticIPAddress[domain]Gets or sets an IP address for the specified domain name.
StaticIPAddressesGets or sets all the static DNS rules.
TagAllows to store any custom data.
TLSSessionGroupSpecifies the group name of TLS sessions to be used for session resumption.
TLSSessionLifetimeSpecifies lifetime in seconds of the cached TLS session.
TLSSessionPurgeIntervalSpecifies how often the session cache should remove the expired TLS sessions.
UseInternalRandomSwitches between SecureBlackbox-own and platform PRNGs.
UseLegacyAdESValidationEnables legacy AdES validation mode.
UseOwnDNSResolverSpecifies whether the client components should use own DNS resolver.
UseSharedSystemStoragesSpecifies whether the validation engine should use a global per-process copy of the system certificate stores.
UseSystemNativeSizeCalculationAn internal CryptoAPI access tweak.
UseSystemOAEPAndPSSEnforces or disables the use of system-driven RSA OAEP and PSS computations.
UseSystemRandomEnables or disables the use of the OS PRNG.

DecryptionKey Property (XMLDecryptor Component)

The symmetric (session) key used to encrypt the data.

Syntax

property DecryptionKey: TBytes read get_DecryptionKey write set_DecryptionKey;

Remarks

Use this property to provide the encryption symmetric (session) key that will be used to encrypt a data.

It is required when the EncryptKey property is disabled. If the EncryptKey property is enabled, and no value is set, the component will generate a random session key (recommended).

This property is not available at design time.

Encoding Property (XMLDecryptor Component)

Specifies XML encoding.

Syntax

property Encoding: String read get_Encoding write set_Encoding;

Default Value

''

Remarks

Use this property to specify the encoding to apply to the XML documents.

EncryptedDataType Property (XMLDecryptor Component)

Defines the type of data being encrypted.

Syntax

property EncryptedDataType: TsbxXMLEncryptedDataTypes read get_EncryptedDataType;
TsbxXMLEncryptedDataTypes = ( cxedtElement, cxedtContent, cxedtExternal );

Default Value

cxedtElement

Remarks

This property defines what data type is about to be encrypted.

Supported values:

cxedtElement0The XML element is encrypted.

XMLNode property specifies the XML element that should be encrypted.

cxedtContent1Element content is encrypted.

XMLNode property specifies the XML element which content should be encrypted.

cxedtExternal2External data is encrypted. Use ExternalData property to set the data that should be encrypted.

XMLNode property specifies the location where xenc:EncryptedData element should be placed.

If the XMLNode property is set to the empty string, and the InputStream and InputFile properties are not provided, then a new XML document will be created with the xenc:EncryptedData element as a document element.

This property is read-only and not available at design time.

EncryptionMethod Property (XMLDecryptor Component)

The encryption method used to encrypt the document.

Syntax

property EncryptionMethod: String read get_EncryptionMethod;

Default Value

'AES256'

Remarks

This property contains the encryption algorithm used to encrypt the XML document.

Supported values:

SB_XML_ENCRYPTION_ALGORITHM_RC4RC4
SB_XML_ENCRYPTION_ALGORITHM_DESDES
SB_XML_ENCRYPTION_ALGORITHM_3DES3DEST
SB_XML_ENCRYPTION_ALGORITHM_AES128AES128
SB_XML_ENCRYPTION_ALGORITHM_AES192AES192
SB_XML_ENCRYPTION_ALGORITHM_AES256AES256
SB_XML_ENCRYPTION_ALGORITHM_CAMELLIA128Camellia128
SB_XML_ENCRYPTION_ALGORITHM_CAMELLIA192Camellia192
SB_XML_ENCRYPTION_ALGORITHM_CAMELLIA256Camellia256
SB_XML_ENCRYPTION_ALGORITHM_SEEDSEED

If UseGCM property is enabled, then supported values are:

SB_XML_ENCRYPTION_ALGORITHM_AES128AES128
SB_XML_ENCRYPTION_ALGORITHM_AES192AES192
SB_XML_ENCRYPTION_ALGORITHM_AES256AES256

This property is read-only and not available at design time.

EncryptKey Property (XMLDecryptor Component)

Specifies if the encryption key is encrypted.

Syntax

property EncryptKey: Boolean read get_EncryptKey;

Default Value

true

Remarks

Use this property to specify if encryption (session) key should be encrypted and also added to the encrypted data.

This property is read-only and not available at design time.

ExternalCrypto Property (XMLDecryptor Component)

Provides access to external signing and DC parameters.

Syntax

property ExternalCrypto: TsbxExternalCrypto read get_ExternalCrypto;

Remarks

Use this property to tune-up remote cryptography settings. SecureBlackbox supports two independent types of external cryptography: synchronous (based on the ExternalSign event) and asynchronous (based on the DC protocol and the DCAuth signing component).

This property is read-only.

Please refer to the ExternalCrypto type for a complete list of fields.

ExternalData Property (XMLDecryptor Component)

The data that should be encrypted.

Syntax

property ExternalData: TBytes read get_ExternalData write set_ExternalData;

Remarks

Use this property to provide the data that should be encrypted if EncryptedDataType property is set to cxedtExternal value.

This property is not available at design time.

FIPSMode Property (XMLDecryptor Component)

Reserved.

Syntax

property FIPSMode: Boolean read get_FIPSMode write set_FIPSMode;

Default Value

false

Remarks

This property is reserved for future use.

InputBytes Property (XMLDecryptor Component)

Use this property to pass the input to component in byte array form.

Syntax

property InputBytes: TBytes read get_InputBytes write set_InputBytes;

Remarks

Assign a byte array containing the data to be processed to this property.

This property is not available at design time.

InputFile Property (XMLDecryptor Component)

The XML file to be decrypted.

Syntax

property InputFile: String read get_InputFile write set_InputFile;

Default Value

''

Remarks

Provide the path to the XML document to be decrypted.

KeyDecryptionCertificate Property (XMLDecryptor Component)

The certificate used to decrypt a session key.

Syntax

property KeyDecryptionCertificate: TsbxCertificate read get_KeyDecryptionCertificate write set_KeyDecryptionCertificate;

Remarks

Use this property to provide the decryption certificate that will be used to decrypt a session key. It is required when EncryptKey property is enabled and KeyEncryptionType set to cxetKeyTransport value.

This property is not available at design time.

Please refer to the Certificate type for a complete list of fields.

KeyDecryptionKey Property (XMLDecryptor Component)

The symmetric key used to decrypt a session key.

Syntax

property KeyDecryptionKey: TBytes read get_KeyDecryptionKey write set_KeyDecryptionKey;

Remarks

Use this property to provide the decryption symmetric key that will be used to decrypt a session key. It is required when EncryptKey property is enabled and KeyEncryptionType set to cxetKeyWrap value.

This property is not available at design time.

KeyEncryptionType Property (XMLDecryptor Component)

Defines how the session key is encrypted.

Syntax

property KeyEncryptionType: TsbxXMLKeyEncryptionTypes read get_KeyEncryptionType;
TsbxXMLKeyEncryptionTypes = ( cxetKeyTransport, cxetKeyWrap );

Default Value

cxetKeyTransport

Remarks

This property defines how the session key is encrypted.

Supported values:

cxetKeyTransport0The key is encrypted using public-key based algorithm
cxetKeyWrap1The key is encrypted using symmetric algorithm with pre-shared secret key

This property is read-only and not available at design time.

KeyInfo Property (XMLDecryptor Component)

A collection of KeyInfo items found in the KeyInfo element.

Syntax

property KeyInfo: TsbxXMLKeyInfoItemList read get_KeyInfo;

Remarks

A collection of KeyInfo items that contains information about the public key that is used to perform encryption.

This property is read-only and not available at design time.

Please refer to the XMLKeyInfoItem type for a complete list of fields.

KeyInfoCertificates Property (XMLDecryptor Component)

A collection of certificates found in the KeyInfo element.

Syntax

property KeyInfoCertificates: TsbxCertificateList read get_KeyInfoCertificates;

Remarks

A collection of certificates that contains information about the public key that is used to perform encryption.

This property is read-only and not available at design time.

Please refer to the Certificate type for a complete list of fields.

KeyTransportMethod Property (XMLDecryptor Component)

Defines how the session key is encrypted.

Syntax

property KeyTransportMethod: TsbxXMLKeyTransportMethods read get_KeyTransportMethod;
TsbxXMLKeyTransportMethods = ( cxktRSA15, cxktRSAOAEP );

Default Value

cxktRSA15

Remarks

This property defines how the session key is encrypted.

Supported values:

cxktRSA150RSA 1.5 (RSAES-PKCS1-v1_5) encryption is used
cxktRSAOAEP1RSA-OAEP (RSAES-OAEP-ENCRYPT) encryption is used

This property is read-only and not available at design time.

KeyWrapMethod Property (XMLDecryptor Component)

The key wrap method used to encrypt the session key.

Syntax

property KeyWrapMethod: String read get_KeyWrapMethod;

Default Value

'Cammelia256'

Remarks

This property specifies the key wrap algorithm used to encrypt the session key.

Supported values:

SB_XML_ENCRYPTION_ALGORITHM_3DES3DEST
SB_XML_ENCRYPTION_ALGORITHM_AES128AES128
SB_XML_ENCRYPTION_ALGORITHM_AES192AES192
SB_XML_ENCRYPTION_ALGORITHM_AES256AES256
SB_XML_ENCRYPTION_ALGORITHM_CAMELLIA128Camellia128
SB_XML_ENCRYPTION_ALGORITHM_CAMELLIA192Camellia192
SB_XML_ENCRYPTION_ALGORITHM_CAMELLIA256Camellia256
SB_XML_ENCRYPTION_ALGORITHM_SEEDSEED

This property is read-only and not available at design time.

OutputBytes Property (XMLDecryptor Component)

Use this property to read the output the component object has produced.

Syntax

property OutputBytes: TBytes read get_OutputBytes;

Remarks

Read the contents of this property after the operation has completed to read the produced output. This property will only be set if the OutputFile and OutputStream properties had not been assigned.

This property is read-only and not available at design time.

OutputFile Property (XMLDecryptor Component)

Defines where to save the decrypted XML document.

Syntax

property OutputFile: String read get_OutputFile write set_OutputFile;

Default Value

''

Remarks

A path where the decrypted XML document should be saved.

UseGCM Property (XMLDecryptor Component)

Indicates if GCM mode was enabled.

Syntax

property UseGCM: Boolean read get_UseGCM;

Default Value

true

Remarks

Use this property to check if GCM encryption mode was enabled.

This property is read-only and not available at design time.

XMLElement Property (XMLDecryptor Component)

Defines the XML element to decrypt.

Syntax

property XMLElement: String read get_XMLElement write set_XMLElement;

Default Value

''

Remarks

Defines the XML element to decrypt.

Supported values are:

""an empty string indicates that all xenc:EncryptedData elements will be decrypted.
"#id"indicates an XML element with specified Id.
XPointer expressionindicates an XML element selected using XPointer expression. Use AddKnownNamespace method to specify Prefixes and NamespaceURIs

For example:

"/root/data[1]" - indicates the second "data" element under the document element with a name "root"

"//ns1:data" - indicates a data element. "ns1" prefix should be defined via AddKnownNamespace method.

Node nameindicates an XML element selected using its NodeName.

For example: "data" - indicates an XML element with node name "data".

AddKnownNamespace Method (XMLDecryptor Component)

Adds known prefix and correspondent namespace URI.

Syntax

procedure AddKnownNamespace(Prefix: String; URI: String);

Remarks

Use this method to add a known prefix and namespace URI that are used in XPath expression within XMLElement/XMLNode property, and within TargetXMLElement and XPathPrefixList properties of the references.

Config Method (XMLDecryptor Component)

Sets or retrieves a configuration setting.

Syntax

function Config(ConfigurationString: String): String;

Remarks

Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Decrypt Method (XMLDecryptor Component)

Decrypts an XML document.

Syntax

procedure Decrypt();

Remarks

Call this method to decrypt an XML document.

DoAction Method (XMLDecryptor Component)

Performs an additional action.

Syntax

function DoAction(ActionID: String; ActionParams: String): String;

Remarks

DoAction is a generic method available in every component. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.

The unique identifier (case insensitive) of the action is provided in the ActionID parameter.

ActionParams contains the value of a single parameter, or a list of multiple parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....

Reset Method (XMLDecryptor Component)

Resets the component settings.

Syntax

procedure Reset();

Remarks

Reset is a generic method available in every component.

DecryptionInfoNeeded Event (XMLDecryptor Component)

Requests decryption information from the application.

Syntax

type TDecryptionInfoNeededEvent = procedure (
  Sender: TObject;
  var CancelDecryption: Boolean
) of Object;

property OnDecryptionInfoNeeded: TDecryptionInfoNeededEvent read FOnDecryptionInfoNeeded write FOnDecryptionInfoNeeded;

Remarks

This event is fired when the component needs decryption information (the private key) from the user.

Use EncryptKey, Config["KeyName"] and KeyEncryptionType properties to identify the encryption type and then set DecryptionKey or KeyDecryptionKey or KeyDecryptionCertificate properties accordingly.

if CancelDecryption property is set to true value (default value) then decryption would fail if provided key/certificate is invalid. Otherwise this event would be fired again.

Error Event (XMLDecryptor Component)

Information about errors during signing.

Syntax

type TErrorEvent = procedure (
  Sender: TObject;
  ErrorCode: Integer;
  const Description: String
) of Object;

property OnError: TErrorEvent read FOnError write FOnError;

Remarks

The event is fired in case of exceptional conditions during signing.

ErrorCode contains an error code and Description contains a textual description of the error.

ExternalDecrypt Event (XMLDecryptor Component)

Handles remote or external decryption.

Syntax

type TExternalDecryptEvent = procedure (
  Sender: TObject;
  const OperationId: String;
  const Algorithm: String;
  const Pars: String;
  const EncryptedData: String;
  var Data: String
) of Object;

property OnExternalDecrypt: TExternalDecryptEvent read FOnExternalDecrypt write FOnExternalDecrypt;

Remarks

Assign a handler to this event if you need to delegate a low-level decryption operation to an external, remote, or custom decryption engine. The handler receives an encrypted value in the EncryptedData parameter, and is expected to decrypt it and place the decrypted value into the Data parameter.

OperationId provides a comment about the operation and its origin. It depends on the exact component being used, and may be empty. Algorithm specifies the encryption algorithm being used, and Pars contains algorithm-dependent parameters.

The component uses base16 (hex) encoding for the EncryptedData, Data, and Pars parameters. If your decryption engine uses a different input and output encoding, you may need to decode and/or encode the data before and/or after the decryption.

Sample data encoded in base16: a0dee2a0382afbb09120ffa7ccd8a152 - lower case base16 A0DEE2A0382AFBB09120FFA7CCD8A152 - upper case base16

Notification Event (XMLDecryptor Component)

This event notifies the application about an underlying control flow event.

Syntax

type TNotificationEvent = procedure (
  Sender: TObject;
  const EventID: String;
  const EventParam: String
) of Object;

property OnNotification: TNotificationEvent read FOnNotification write FOnNotification;

Remarks

The component fires this event to let the application know about some event, occurrence, or milestone in the component. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.

The unique identifier of the event is provided in the EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the component, the exact action it is performing, or the document being processed, one or both may be omitted.

SaveExternalData Event (XMLDecryptor Component)

Request to save decrypted external data.

Syntax

type TSaveExternalDataEvent = procedure (
  Sender: TObject;
  const ExternalData: TBytes
) of Object;

property OnSaveExternalData: TSaveExternalDataEvent read FOnSaveExternalData write FOnSaveExternalData;

Remarks

This event is fired when the component successfully decrypted an external data and needs to save it. The same data could be read using ExternalData property.

It makes sense to use this event when the XML document contains several xenc:EncryptedData elements and the component decrypts them all.

Certificate Type

Encapsulates an individual X.509 certificate.

Remarks

This type keeps and provides access to X.509 certificate details.

The following fields are available:

Fields

Bytes
TBytes (read-only)

Default Value: ""

Returns the raw certificate data in DER format.

CA
Boolean

Default Value: False

Indicates whether the certificate has a CA capability. For the certificate to be considered a CA, it must have its Basic Constraints extension set with the CA indicator enabled.

Set this property when generating a new certificate to have its Basic Constraints extension generated automatically.

CAKeyID
TBytes (read-only)

Default Value: ""

A unique identifier (fingerprint) of the CA certificate's cryptographic key.

Authority Key Identifier is a certificate extension which allows identification of certificates belonging to the same issuer, but with different public keys. It is a de-facto standard to include this extension in all certificates to facilitate chain building.

This setting cannot be set when generating a certificate as it always derives from another certificate property. CertificateManager generates this setting automatically if enough information is available to it: for self-signed certificates, this value is copied from the SubjectKeyID setting, and for lower-level certificates, from the parent certificate's subject key ID extension.

CertType
TsbxCertTypes (read-only)

Default Value: 0

Returns the type of the entity contained in the Certificate object.

A Certificate object can contain two types of cryptographic objects: a ready-to-use X.509 certificate, or a certificate request ("an unsigned certificate"). Certificate requests can be upgraded to full certificates by signing them with a CA certificate.

Use the CertificateManager component to load or create new certificate and certificate requests objects.

CRLDistributionPoints
String

Default Value: ""

Contains a list of locations of CRL distribution points used to check this certificate's validity. The list is taken from the respective certificate extension.

Use this property when generating a certificate to provide a list of CRL endpoints that should be made part of the new certificate.

The endpoints are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.

Curve
String

Default Value: ""

Specifies the elliptic curve associated with the certificate's public key. This setting only applies to certificates containing EC keys.

SB_EC_SECP112R1SECP112R1
SB_EC_SECP112R2SECP112R2
SB_EC_SECP128R1SECP128R1
SB_EC_SECP128R2SECP128R2
SB_EC_SECP160K1SECP160K1
SB_EC_SECP160R1SECP160R1
SB_EC_SECP160R2SECP160R2
SB_EC_SECP192K1SECP192K1
SB_EC_SECP192R1SECP192R1
SB_EC_SECP224K1SECP224K1
SB_EC_SECP224R1SECP224R1
SB_EC_SECP256K1SECP256K1
SB_EC_SECP256R1SECP256R1
SB_EC_SECP384R1SECP384R1
SB_EC_SECP521R1SECP521R1
SB_EC_SECT113R1SECT113R1
SB_EC_SECT113R2SECT113R2
SB_EC_SECT131R1SECT131R1
SB_EC_SECT131R2SECT131R2
SB_EC_SECT163K1SECT163K1
SB_EC_SECT163R1SECT163R1
SB_EC_SECT163R2SECT163R2
SB_EC_SECT193R1SECT193R1
SB_EC_SECT193R2SECT193R2
SB_EC_SECT233K1SECT233K1
SB_EC_SECT233R1SECT233R1
SB_EC_SECT239K1SECT239K1
SB_EC_SECT283K1SECT283K1
SB_EC_SECT283R1SECT283R1
SB_EC_SECT409K1SECT409K1
SB_EC_SECT409R1SECT409R1
SB_EC_SECT571K1SECT571K1
SB_EC_SECT571R1SECT571R1
SB_EC_PRIME192V1PRIME192V1
SB_EC_PRIME192V2PRIME192V2
SB_EC_PRIME192V3PRIME192V3
SB_EC_PRIME239V1PRIME239V1
SB_EC_PRIME239V2PRIME239V2
SB_EC_PRIME239V3PRIME239V3
SB_EC_PRIME256V1PRIME256V1
SB_EC_C2PNB163V1C2PNB163V1
SB_EC_C2PNB163V2C2PNB163V2
SB_EC_C2PNB163V3C2PNB163V3
SB_EC_C2PNB176W1C2PNB176W1
SB_EC_C2TNB191V1C2TNB191V1
SB_EC_C2TNB191V2C2TNB191V2
SB_EC_C2TNB191V3C2TNB191V3
SB_EC_C2ONB191V4C2ONB191V4
SB_EC_C2ONB191V5C2ONB191V5
SB_EC_C2PNB208W1C2PNB208W1
SB_EC_C2TNB239V1C2TNB239V1
SB_EC_C2TNB239V2C2TNB239V2
SB_EC_C2TNB239V3C2TNB239V3
SB_EC_C2ONB239V4C2ONB239V4
SB_EC_C2ONB239V5C2ONB239V5
SB_EC_C2PNB272W1C2PNB272W1
SB_EC_C2PNB304W1C2PNB304W1
SB_EC_C2TNB359V1C2TNB359V1
SB_EC_C2PNB368W1C2PNB368W1
SB_EC_C2TNB431R1C2TNB431R1
SB_EC_NISTP192NISTP192
SB_EC_NISTP224NISTP224
SB_EC_NISTP256NISTP256
SB_EC_NISTP384NISTP384
SB_EC_NISTP521NISTP521
SB_EC_NISTB163NISTB163
SB_EC_NISTB233NISTB233
SB_EC_NISTB283NISTB283
SB_EC_NISTB409NISTB409
SB_EC_NISTB571NISTB571
SB_EC_NISTK163NISTK163
SB_EC_NISTK233NISTK233
SB_EC_NISTK283NISTK283
SB_EC_NISTK409NISTK409
SB_EC_NISTK571NISTK571
SB_EC_GOSTCPTESTGOSTCPTEST
SB_EC_GOSTCPAGOSTCPA
SB_EC_GOSTCPBGOSTCPB
SB_EC_GOSTCPCGOSTCPC
SB_EC_GOSTCPXCHAGOSTCPXCHA
SB_EC_GOSTCPXCHBGOSTCPXCHB
SB_EC_BRAINPOOLP160R1BRAINPOOLP160R1
SB_EC_BRAINPOOLP160T1BRAINPOOLP160T1
SB_EC_BRAINPOOLP192R1BRAINPOOLP192R1
SB_EC_BRAINPOOLP192T1BRAINPOOLP192T1
SB_EC_BRAINPOOLP224R1BRAINPOOLP224R1
SB_EC_BRAINPOOLP224T1BRAINPOOLP224T1
SB_EC_BRAINPOOLP256R1BRAINPOOLP256R1
SB_EC_BRAINPOOLP256T1BRAINPOOLP256T1
SB_EC_BRAINPOOLP320R1BRAINPOOLP320R1
SB_EC_BRAINPOOLP320T1BRAINPOOLP320T1
SB_EC_BRAINPOOLP384R1BRAINPOOLP384R1
SB_EC_BRAINPOOLP384T1BRAINPOOLP384T1
SB_EC_BRAINPOOLP512R1BRAINPOOLP512R1
SB_EC_BRAINPOOLP512T1BRAINPOOLP512T1
SB_EC_CURVE25519CURVE25519
SB_EC_CURVE448CURVE448

Fingerprint
String (read-only)

Default Value: ""

Contains the fingerprint (a hash imprint) of this certificate.

While there is no formal standard defining what a fingerprint is, a SHA1 hash of the certificate's DER-encoded body is typically used.

FriendlyName
String (read-only)

Default Value: ""

Contains an associated alias (friendly name) of the certificate. The friendly name is not a property of a certificate: it is maintained by the certificate media rather than being included in its DER representation. Windows certificate stores are one example of media that does support friendly names.

Handle
Int64

Default Value: 0

Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.

When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object after such operation. pdfSigner.setSigningCertHandle(certMgr.getCertHandle());

HashAlgorithm
String

Default Value: ""

Provides means to set the hash algorithm to be used in the subsequent operation on the certificate (such as generation or key signing). It is not a property of a certificate; use SigAlgorithm to find out the hash algorithm that is part of the certificate signature.

SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_MD2MD2
SB_HASH_ALGORITHM_MD4MD4
SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_CRC32CRC32
SB_HASH_ALGORITHM_SSL3SSL3
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_POLY1305POLY1305
SB_HASH_ALGORITHM_SHA3_224SHA3_224
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512
SB_HASH_ALGORITHM_BLAKE2S_128BLAKE2S_128
SB_HASH_ALGORITHM_BLAKE2S_160BLAKE2S_160
SB_HASH_ALGORITHM_BLAKE2S_224BLAKE2S_224
SB_HASH_ALGORITHM_BLAKE2S_256BLAKE2S_256
SB_HASH_ALGORITHM_BLAKE2B_160BLAKE2B_160
SB_HASH_ALGORITHM_BLAKE2B_256BLAKE2B_256
SB_HASH_ALGORITHM_BLAKE2B_384BLAKE2B_384
SB_HASH_ALGORITHM_BLAKE2B_512BLAKE2B_512
SB_HASH_ALGORITHM_SHAKE_128SHAKE_128
SB_HASH_ALGORITHM_SHAKE_256SHAKE_256
SB_HASH_ALGORITHM_SHAKE_128_LENSHAKE_128_LEN
SB_HASH_ALGORITHM_SHAKE_256_LENSHAKE_256_LEN

Issuer
String (read-only)

Default Value: ""

The common name of the certificate issuer (CA), typically a company name. This is part of a larger set of credentials available via IssuerRDN.

IssuerRDN
String

Default Value: ""

A list of Property=Value pairs that uniquely identify the certificate issuer.

Example: /C=US/O=Nationwide CA/CN=Web Certification Authority

KeyAlgorithm
String

Default Value: "0"

Specifies the public key algorithm of this certificate.

SB_CERT_ALGORITHM_ID_RSA_ENCRYPTIONrsaEncryption
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTIONmd2withRSAEncryption
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTIONmd5withRSAEncryption
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTIONsha1withRSAEncryption
SB_CERT_ALGORITHM_ID_DSAid-dsa
SB_CERT_ALGORITHM_ID_DSA_SHA1id-dsa-with-sha1
SB_CERT_ALGORITHM_DH_PUBLICdhpublicnumber
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTIONsha224WithRSAEncryption
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTIONsha256WithRSAEncryption
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTIONsha384WithRSAEncryption
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTIONsha512WithRSAEncryption
SB_CERT_ALGORITHM_ID_RSAPSSid-RSASSA-PSS
SB_CERT_ALGORITHM_ID_RSAOAEPid-RSAES-OAEP
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160ripemd160withRSA
SB_CERT_ALGORITHM_ID_ELGAMALelGamal
SB_CERT_ALGORITHM_SHA1_ECDSAecdsa-with-SHA1
SB_CERT_ALGORITHM_RECOMMENDED_ECDSAecdsa-recommended
SB_CERT_ALGORITHM_SHA224_ECDSAecdsa-with-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSAecdsa-with-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSAecdsa-with-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSAecdsa-with-SHA512
SB_CERT_ALGORITHM_ECid-ecPublicKey
SB_CERT_ALGORITHM_SPECIFIED_ECDSAecdsa-specified
SB_CERT_ALGORITHM_GOST_R3410_1994id-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3410_2001id-GostR3410-2001
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994id-GostR3411-94-with-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001id-GostR3411-94-with-GostR3410-2001
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAINecdsa-plain-SHA1
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAINecdsa-plain-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAINecdsa-plain-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAINecdsa-plain-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAINecdsa-plain-SHA512
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAINecdsa-plain-RIPEMD160
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTIONwhirlpoolWithRSAEncryption
SB_CERT_ALGORITHM_ID_DSA_SHA224id-dsa-with-sha224
SB_CERT_ALGORITHM_ID_DSA_SHA256id-dsa-with-sha256
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSAid-ecdsa-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSAid-ecdsa-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSAid-ecdsa-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSAid-ecdsa-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAINid-ecdsa-plain-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAINid-ecdsa-plain-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAINid-ecdsa-plain-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAINid-ecdsa-plain-with-sha3-512
SB_CERT_ALGORITHM_ID_DSA_SHA3_224id-dsa-with-sha3-224
SB_CERT_ALGORITHM_ID_DSA_SHA3_256id-dsa-with-sha3-256
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSAid-ecdsa-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSAid-ecdsa-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSAid-ecdsa-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSAid-ecdsa-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSAid-ecdsa-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSAid-ecdsa-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSAid-ecdsa-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSAid-ecdsa-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAINid-ecdsa-plain-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAINid-ecdsa-plain-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAINid-ecdsa-plain-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAINid-ecdsa-plain-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAINid-ecdsa-plain-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAINid-ecdsa-plain-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAINid-ecdsa-plain-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAINid-ecdsa-plain-with-blake2b512
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224id-dsa-with-blake2s224
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256id-dsa-with-blake2s256
SB_CERT_ALGORITHM_EDDSA_ED25519id-Ed25519
SB_CERT_ALGORITHM_EDDSA_ED448id-Ed448
SB_CERT_ALGORITHM_EDDSA_ED25519_PHid-Ed25519ph
SB_CERT_ALGORITHM_EDDSA_ED448_PHid-Ed448ph
SB_CERT_ALGORITHM_EDDSAid-EdDSA
SB_CERT_ALGORITHM_EDDSA_SIGNATUREid-EdDSA-sig

Use the KeyBits, Curve, and PublicKeyBytes properties to get more details about the key the certificate contains.

KeyBits
Integer (read-only)

Default Value: 0

Returns the length of the public key in bits.

This value indicates the length of the principal cryptographic parameter of the key, such as the length of the RSA modulus or ECDSA field. The key data returned by the PublicKeyBytes or PrivateKeyBytes property would typically contain auxiliary values, and therefore be longer.

KeyFingerprint
String (read-only)

Default Value: ""

Returns a SHA1 fingerprint of the public key contained in the certificate.

Note that the key fingerprint is different from the certificate fingerprint accessible via the Fingerprint property. The key fingeprint uniquely identifies the public key, and so can be the same for multiple certificates containing the same key.

KeyUsage
Integer

Default Value: 0

Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.

This value is a bit mask of the following values:

ckuUnknown0x00000Unknown key usage

ckuDigitalSignature0x00001Digital signature

ckuNonRepudiation0x00002Non-repudiation

ckuKeyEncipherment0x00004Key encipherment

ckuDataEncipherment0x00008Data encipherment

ckuKeyAgreement0x00010Key agreement

ckuKeyCertSign0x00020Certificate signing

ckuCRLSign0x00040Revocation signing

ckuEncipherOnly0x00080Encipher only

ckuDecipherOnly0x00100Decipher only

ckuServerAuthentication0x00200Server authentication

ckuClientAuthentication0x00400Client authentication

ckuCodeSigning0x00800Code signing

ckuEmailProtection0x01000Email protection

ckuTimeStamping0x02000Timestamping

ckuOCSPSigning0x04000OCSP signing

ckuSmartCardLogon0x08000Smartcard logon

ckuKeyPurposeClientAuth0x10000Kerberos - client authentication

ckuKeyPurposeKDC0x20000Kerberos - KDC

Set this property before generating the certificate to propagate the key usage flags to the new certificate.

KeyValid
Boolean (read-only)

Default Value: False

Returns True if the certificate's key is cryptographically valid, and False otherwise.

OCSPLocations
String

Default Value: ""

Locations of OCSP services that can be used to check this certificate's validity in real time, as recorded by the CA.

Set this property before calling the certificate manager's Generate method to propagate it to the new certificate.

The OCSP locations are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.

OCSPNoCheck
Boolean

Default Value: False

Accessor to the value of the certificate's ocsp-no-check extension.

Origin
Integer (read-only)

Default Value: 0

Returns the location that the certificate was taken or loaded from.

PolicyIDs
String

Default Value: ""

Contains identifiers (OIDs) of the applicable certificate policies.

The Certificate Policies extension identifies a sequence of policies under which the certificate has been issued, and which regulate its usage.

Set this property when generating a certificate to propagate the policies information to the new certificate.

The policies are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the policy element separator.

PrivateKeyBytes
TBytes (read-only)

Default Value: ""

Returns the certificate's private key in DER-encoded format. It is normal for this property to be empty if the private key is non-exportable, which, for example, is typical for certificates originating from hardware security devices.

PrivateKeyExists
Boolean (read-only)

Default Value: False

Indicates whether the certificate has a usable private key associated with it. If it is set to True, the certificate can be used for private key operations, such as signing or decryption.

This property is independent from PrivateKeyBytes, and can be set to True even if the former is empty. This would imply that the private key is non-exportable, but still can be used for cryptographic operations.

PrivateKeyExtractable
Boolean (read-only)

Default Value: False

Indicates whether the private key is extractable (exportable).

PublicKeyBytes
TBytes (read-only)

Default Value: ""

Contains the certificate's public key in DER format.

This typically would contain an ASN.1-encoded public key value. The exact format depends on the type of the public key contained in the certificate.

Qualified
Boolean (read-only)

Default Value: False

Indicates whether the certificate is qualified.

This property is set to True if the certificate is confirmed by a Trusted List to be qualified.

QualifiedStatements
TsbxQualifiedStatementsTypes

Default Value: 0

Returns a simplified qualified status of the certificate.

Qualifiers
String (read-only)

Default Value: ""

A list of qualifiers.

Contains a comma-separated list of qualifier aliases for the certificate, for example QCP-n-qscd,QCWithSSCD.

SelfSigned
Boolean (read-only)

Default Value: False

Indicates whether the certificate is self-signed (root) or signed by an external CA.

SerialNumber
TBytes

Default Value: ""

Returns the certificate's serial number.

The serial number is a binary string that uniquely identifies a certificate among others issued by the same CA. According to the X.509 standard, the (issuer, serial number) pair should be globally unique to facilitate chain building.

SigAlgorithm
String (read-only)

Default Value: ""

Indicates the algorithm that was used by the CA to sign this certificate.

A signature algorithm typically combines hash and public key algorithms together, such as sha256WithRSAEncryption or ecdsa-with-SHA256.

Source
TsbxPKISources (read-only)

Default Value: 0

Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.

Subject
String (read-only)

Default Value: ""

The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name. This is part of a larger set of credentials available via SubjectRDN.

SubjectAlternativeName
String

Default Value: ""

Returns or sets the value of the Subject Alternative Name extension of the certificate.

Subject alternative names are used to provide additional names that are impractical to store in the main SubjectRDN field. For example, it is often used to store all the domain names that a TLS certificate is authorized to protect.

The alternative names are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the element separator.

SubjectKeyID
TBytes

Default Value: ""

Contains a unique identifier of the certificate's cryptographic key.

Subject Key Identifier is a certificate extension which allows a specific public key to be associated with a certificate holder. Typically, subject key identifiers of CA certificates are recorded as respective CA key identifiers in the subordinate certificates that they issue, which facilitates chain building.

The SubjectKeyID and CAKeyID properties of self-signed certificates typically contain identical values, as in that specific case, the issuer and the subject are the same entity.

SubjectRDN
String

Default Value: ""

A list of Property=Value pairs that uniquely identify the certificate holder (subject).

Depending on the purpose of the certificate and the policies of the CA that issued it, the values included in the subject record may differ drastically and contain business or personal names, web URLs, email addresses, and other data.

Example: /C=US/O=Oranges and Apples, Inc./OU=Accounts Receivable/1.2.3.4.5=Value with unknown OID/CN=Margaret Watkins.

Valid
Boolean (read-only)

Default Value: False

Indicates whether or not the signature over the certificate or the request is valid and matches the public key contained in the CA certificate/request.

ValidFrom
String

Default Value: ""

The time point at which the certificate becomes valid, in UTC.

ValidTo
String

Default Value: ""

The time point at which the certificate expires, in UTC.

Constructors

>

constructor Create();

Creates a new object with default field values.

ExternalCrypto Type

Specifies the parameters of external cryptographic calls.

Remarks

External cryptocalls are used in a Distributed Cryptography (DC) subsystem, which allows the delegation of security operations to the remote agent. For instance, it can be used to compute the signature value on the server, while retaining the client's private key locally.

The following fields are available:

Fields

AsyncDocumentID
String

Default Value: ""

Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.

Use this property when working with multi-signature DCAuth requests and responses to uniquely identify documents signed within a larger batch. On the completion stage, this value helps the signing component identify the correct signature in the returned batch of responses.

If using batched requests, make sure to set this property to the same value on both the pre-signing (SignAsyncBegin) and completion (SignAsyncEnd) stages.

CustomParams
String

Default Value: ""

Custom parameters to be passed to the signing service (uninterpreted).

Data
String

Default Value: ""

Additional data to be included in the async state and mirrored back by the requestor.

ExternalHashCalculation
Boolean

Default Value: False

Specifies whether the message hash is to be calculated at the external endpoint. Please note that this mode is not supported by the DCAuth component.

If set to true, the component will pass a few kilobytes of to-be-signed data from the document to the OnExternalSign event. This only applies when SignExternal() is called.

HashAlgorithm
String

Default Value: "SHA256"

Specifies the request's signature hash algorithm.

SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_MD2MD2
SB_HASH_ALGORITHM_MD4MD4
SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_CRC32CRC32
SB_HASH_ALGORITHM_SSL3SSL3
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_POLY1305POLY1305
SB_HASH_ALGORITHM_SHA3_224SHA3_224
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512
SB_HASH_ALGORITHM_BLAKE2S_128BLAKE2S_128
SB_HASH_ALGORITHM_BLAKE2S_160BLAKE2S_160
SB_HASH_ALGORITHM_BLAKE2S_224BLAKE2S_224
SB_HASH_ALGORITHM_BLAKE2S_256BLAKE2S_256
SB_HASH_ALGORITHM_BLAKE2B_160BLAKE2B_160
SB_HASH_ALGORITHM_BLAKE2B_256BLAKE2B_256
SB_HASH_ALGORITHM_BLAKE2B_384BLAKE2B_384
SB_HASH_ALGORITHM_BLAKE2B_512BLAKE2B_512
SB_HASH_ALGORITHM_SHAKE_128SHAKE_128
SB_HASH_ALGORITHM_SHAKE_256SHAKE_256
SB_HASH_ALGORITHM_SHAKE_128_LENSHAKE_128_LEN
SB_HASH_ALGORITHM_SHAKE_256_LENSHAKE_256_LEN

KeyID
String

Default Value: ""

The ID of the pre-shared key used for DC request authentication.

Asynchronous DCAuth-driven communication requires that parties authenticate each other with a secret pre-shared cryptographic key. This provides an extra protection layer for the protocol and diminishes the risk of the private key becoming abused by foreign parties. Use this property to provide the pre-shared key identifier, and use KeySecret to pass the key itself.

The same KeyID/KeySecret pair should be used on the DCAuth side for the signing requests to be accepted.

Note: The KeyID/KeySecret scheme is very similar to the AuthKey scheme used in various Cloud service providers to authenticate users.

Example: signer.ExternalCrypto.KeyID = "MainSigningKey"; signer.ExternalCrypto.KeySecret = "abcdef0123456789";

KeySecret
String

Default Value: ""

The pre-shared key used for DC request authentication. This key must be set and match the key used by the DCAuth counterpart for the scheme to work.

Read more about configuring authentication in the KeyID topic.

Method
TsbxAsyncSignMethods

Default Value: 0

Specifies the asynchronous signing method. This is typically defined by the DC server capabilities and setup.

Available options:

asmdPKCS10
asmdPKCS71

Mode
TsbxExternalCryptoModes

Default Value: 0

Specifies the external cryptography mode.

Available options:

ecmDefaultThe default value (0)
ecmDisabledDo not use DC or external signing (1)
ecmGenericGeneric external signing with the OnExternalSign event (2)
ecmDCAuthDCAuth signing (3)
ecmDCAuthJSONDCAuth signing in JSON format (4)

PublicKeyAlgorithm
String

Default Value: ""

Provide the public key algorithm here if the certificate is not available on the pre-signing stage.

SB_CERT_ALGORITHM_ID_RSA_ENCRYPTIONrsaEncryption
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTIONmd2withRSAEncryption
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTIONmd5withRSAEncryption
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTIONsha1withRSAEncryption
SB_CERT_ALGORITHM_ID_DSAid-dsa
SB_CERT_ALGORITHM_ID_DSA_SHA1id-dsa-with-sha1
SB_CERT_ALGORITHM_DH_PUBLICdhpublicnumber
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTIONsha224WithRSAEncryption
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTIONsha256WithRSAEncryption
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTIONsha384WithRSAEncryption
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTIONsha512WithRSAEncryption
SB_CERT_ALGORITHM_ID_RSAPSSid-RSASSA-PSS
SB_CERT_ALGORITHM_ID_RSAOAEPid-RSAES-OAEP
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160ripemd160withRSA
SB_CERT_ALGORITHM_ID_ELGAMALelGamal
SB_CERT_ALGORITHM_SHA1_ECDSAecdsa-with-SHA1
SB_CERT_ALGORITHM_RECOMMENDED_ECDSAecdsa-recommended
SB_CERT_ALGORITHM_SHA224_ECDSAecdsa-with-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSAecdsa-with-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSAecdsa-with-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSAecdsa-with-SHA512
SB_CERT_ALGORITHM_ECid-ecPublicKey
SB_CERT_ALGORITHM_SPECIFIED_ECDSAecdsa-specified
SB_CERT_ALGORITHM_GOST_R3410_1994id-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3410_2001id-GostR3410-2001
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994id-GostR3411-94-with-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001id-GostR3411-94-with-GostR3410-2001
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAINecdsa-plain-SHA1
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAINecdsa-plain-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAINecdsa-plain-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAINecdsa-plain-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAINecdsa-plain-SHA512
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAINecdsa-plain-RIPEMD160
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTIONwhirlpoolWithRSAEncryption
SB_CERT_ALGORITHM_ID_DSA_SHA224id-dsa-with-sha224
SB_CERT_ALGORITHM_ID_DSA_SHA256id-dsa-with-sha256
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSAid-ecdsa-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSAid-ecdsa-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSAid-ecdsa-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSAid-ecdsa-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAINid-ecdsa-plain-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAINid-ecdsa-plain-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAINid-ecdsa-plain-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAINid-ecdsa-plain-with-sha3-512
SB_CERT_ALGORITHM_ID_DSA_SHA3_224id-dsa-with-sha3-224
SB_CERT_ALGORITHM_ID_DSA_SHA3_256id-dsa-with-sha3-256
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSAid-ecdsa-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSAid-ecdsa-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSAid-ecdsa-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSAid-ecdsa-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSAid-ecdsa-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSAid-ecdsa-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSAid-ecdsa-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSAid-ecdsa-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAINid-ecdsa-plain-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAINid-ecdsa-plain-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAINid-ecdsa-plain-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAINid-ecdsa-plain-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAINid-ecdsa-plain-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAINid-ecdsa-plain-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAINid-ecdsa-plain-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAINid-ecdsa-plain-with-blake2b512
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224id-dsa-with-blake2s224
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256id-dsa-with-blake2s256
SB_CERT_ALGORITHM_EDDSA_ED25519id-Ed25519
SB_CERT_ALGORITHM_EDDSA_ED448id-Ed448
SB_CERT_ALGORITHM_EDDSA_ED25519_PHid-Ed25519ph
SB_CERT_ALGORITHM_EDDSA_ED448_PHid-Ed448ph
SB_CERT_ALGORITHM_EDDSAid-EdDSA
SB_CERT_ALGORITHM_EDDSA_SIGNATUREid-EdDSA-sig

Constructors

>

constructor Create();

Creates a new ExternalCrypto object with default field values.

XMLKeyInfoItem Type

Represents an XML KeyInfo item.

Remarks

This object contains information about the public key that was used to perform encryption or signing.

The following fields are available:

Fields

IssuerRDN
String

Default Value: ""

A list of Property=Value pairs that uniquely identify the certificate issuer.

Example: /C=US/O=Nationwide CA/CN=Web Certification Authority

SerialNumber
TBytes

Default Value: ""

Returns the certificate's serial number.

The serial number is a binary string that uniquely identifies a certificate among others issued by the same CA. According to the X.509 standard, the (issuer, serial number) pair should be globally unique to facilitate chain building.

SubjectKeyID
TBytes

Default Value: ""

Contains a unique identifier of the certificate's cryptographic key.

Subject Key Identifier is a certificate extension which allows a specific public key to be associated with a certificate holder. Typically, subject key identifiers of CA certificates are recorded as respective CA key identifiers in the subordinate certificates that they issue, which facilitates chain building.

The SubjectKeyID and CAKeyID properties of self-signed certificates typically contain identical values, as in that specific case, the issuer and the subject are the same entity.

SubjectRDN
String

Default Value: ""

A list of Property=Value pairs that uniquely identify the certificate holder (subject).

Depending on the purpose of the certificate and the policies of the CA that issued it, the values included in the subject record may differ drastically and contain business or personal names, web URLs, email addresses, and other data.

Example: /C=US/O=Oranges and Apples, Inc./OU=Accounts Receivable/1.2.3.4.5=Value with unknown OID/CN=Margaret Watkins.

Constructors

>

constructor Create();

Creates a new XMLKeyInfo item object.

Config Settings (XMLDecryptor Component)

The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

XMLDecryptor Config Settings

EncryptedKeyXMLElement:   Specifies the XML element where the encrypted key element is located.

This property specifies the XML element where the xenc:EncryptedKey element is located. May be used to decrypt data in SOAP messages.

Supported values are:

""an empty string indicates the Document element
"#id"indicates an XML element with specified Id
XPath expressionindicates an XML element selected using XPath expression. Use AddKnownNamespace method to specify Prefixes and NamespaceURIs

For example:

"/root/data[1]" - indicates the second "data" element under the document element with a name "root"

"//ns1:data" - indicates a data element. "ns1" prefix should be defined via AddKnownNamespace method.

Node nameindicates an XML element selected using its NodeName.

For example: "data" - indicates an XML element with node name "data".

KeyName:   Contains information about the key used for encryption.

The KeyName element contains a string value (with significant whitespaces) which may be used by the encryptor to communicate a key identifier to the recipient. Typically, the KeyName element contains an identifier related to the key pair used to sign the message, but it may contain other protocol-related information that indirectly identifies a key pair. Common uses of the KeyName include simple string names for keys, a key index, a distinguished name (DN), an email address, etc.

MimeType:   Contains the mime type of the encrypted data.

MimeType is an optional (advisory) attribute which describes the media type of the data which is encrypted. The value of this attribute is a string with values defined by MIME specification (RFC 2045). For example, if the data that is encrypted is a base64 encoded PNG, the transfer Encoding may be specified as 'http://www.w3.org/2000/09/xmldsig#base64' and the MimeType as 'image/png'. This attribute is purely advisory; no validation of the MimeType information is required and it does not indicate the encryption application must do any additional processing.

TempPath:   Path for storing temporary files.

This setting specifies an absolute path to the location on disk where temporary files are stored.

WriteBOM:   Specifies whether byte-order mark should be written when saving the document.

Set this property to False to disable writing byte-order mark (BOM) when saving the XML document in Unicode encoding.

Base Config Settings

ASN1UseGlobalTagCache:   Controls whether ASN.1 module should use a global object cache.

This is a performance setting. It is unlikely that you will ever need to adjust it.

AssignSystemSmartCardPins:   Specifies whether CSP-level PINs should be assigned to CNG keys.

This is a low-level tweak for certain cryptographic providers. It is unlikely that you will ever need to adjust it.

CheckKeyIntegrityBeforeUse:   Enables or disable private key integrity check before use.

This global property enables or disables private key material check before each signing operation. This slows down performance a bit, but prevents a selection of attacks on RSA keys where keys with unknown origins are used.

You can switch this property off to improve performance if your project only uses known, good private keys.

CookieCaching:   Specifies whether a cookie cache should be used for HTTP(S) transports.

Set this property to enable or disable cookies caching for the component.

Supported values are:

offNo caching (default)
localLocal caching
globalGlobal caching

Cookies:   Gets or sets local cookies for the component.

Use this property to get cookies from the internal cookie storage of the component and/or restore them back between application sessions.

DefDeriveKeyIterations:   Specifies the default key derivation algorithm iteration count.

This global property sets the default number of iterations for all supported key derivation algorithms. Note that you can provide the required number of iterations by using properties of the relevant key generation component; this global setting is used in scenarios where specific iteration count is not or cannot be provided.

DNSLocalSuffix:   The suffix to assign for TLD names.

Use this global setting to adjust the default suffix to assign to top-level domain names. The default is .local.

EnableClientSideSSLFFDHE:   Enables or disables finite field DHE key exchange support in TLS clients.

This global property enables or disables support for finite field DHE key exchange methods in TLS clients. FF DHE is a slower algorithm if compared to EC DHE; enabling it may result in slower connections.

This setting only applies to sessions negotiated with TLS version 1.3.

GlobalCookies:   Gets or sets global cookies for all the HTTP transports.

Use this property to get cookies from the GLOBAL cookie storage or restore them back between application sessions. These cookies will be used by all the components that have its CookieCaching property set to "global".

HardwareCryptoUsePolicy:   The hardware crypto usage policy.

This global setting controls the hardware cryptography usage policy: auto, enable, or disable.

HttpUserAgent:   Specifies the user agent name to be used by all HTTP clients.

This global setting defines the User-Agent field of the HTTP request provides information about the software that initiates the request. This value will be used by all the HTTP clients including the ones used internally in other components.

HttpVersion:   The HTTP version to use in any inner HTTP client components created.

Set this property to 1.0 or 1.1 to indicate the HTTP version that any internal HTTP clients should use.

IgnoreExpiredMSCTLSigningCert:   Whether to tolerate the expired Windows Update signing certificate.

It is not uncommon for Microsoft Windows Update Certificate Trust List to be signed with an expired Microsoft certificate. Setting this global property to true makes SBB ignore the expired factor and take the Trust List into account.

ListDelimiter:   The delimiter character for multi-element lists.

Allows to set the delimiter for any multi-entry values returned by the component as a string object, such as file lists. For most of the components, this property is set to a newline sequence.

LogDestination:   Specifies the debug log destination.

Contains a comma-separated list of values that specifies where debug log should be dumped.

Supported values are:

fileFile
consoleConsole
systemlogSystem Log (supported for Android only)
debuggerDebugger (supported for VCL for Windows and .Net)

LogDetails:   Specifies the debug log details to dump.

Contains a comma-separated list of values that specifies which debug log details to dump.

Supported values are:

timeCurrent time
levelLevel
packagePackage name
moduleModule name
classClass name
methodMethod name
threadidThread Id
contenttypeContent type
contentContent
allAll details

LogFile:   Specifies the debug log filename.

Use this property to provide a path to the log file.

LogFilters:   Specifies the debug log filters.

Contains a comma-separated list of value pairs ("name:value") that describe filters.

Supported filter names are:

exclude-packageExclude a package specified in the value
exclude-moduleExclude a module specified in the value
exclude-classExclude a class specified in the value
exclude-methodExclude a method specified in the value
include-packageInclude a package specified in the value
include-moduleInclude a module specified in the value
include-classInclude a class specified in the value
include-methodInclude a method specified in the value

LogFlushMode:   Specifies the log flush mode.

Use this property to set the log flush mode. The following values are defined:

noneNo flush (caching only)
immediateImmediate flush (real-time logging)
maxcountFlush cached entries upon reaching LogMaxEventCount entries in the cache.

LogLevel:   Specifies the debug log level.

Use this property to provide the desired debug log level.

Supported values are:

noneNone (by default)
fatalSevere errors that cause premature termination.
errorOther runtime errors or unexpected conditions.
warningUse of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong".
infoInteresting runtime events (startup/shutdown).
debugDetailed information on flow of through the system.
traceMore detailed information.

LogMaxEventCount:   Specifies the maximum number of events to cache before further action is taken.

Use this property to specify the log event number threshold. This threshold may have different effects, depending on the rotation setting and/or the flush mode.

The default value of this setting is 100.

LogRotationMode:   Specifies the log rotation mode.

Use this property to set the log rotation mode. The following values are defined:

noneNo rotation
deleteolderDelete older entries from the cache upon reaching LogMaxEventCount
keepolderKeep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded)

MaxASN1BufferLength:   Specifies the maximal allowed length for ASN.1 primitive tag data.

This global property limits the maximal allowed length for ASN.1 tag data for non-content-carrying structures, such as certificates, CRLs, or timestamps. It does not affect structures that can carry content, such as CMS/CAdES messages. This is a security property aiming at preventing DoS attacks.

MaxASN1TreeDepth:   Specifies the maximal depth for processed ASN.1 trees.

This global property limits the maximal depth of ASN.1 trees that the component can handle without throwing an error. This is a security property aiming at preventing DoS attacks.

OCSPHashAlgorithm:   Specifies the hash algorithm to be used to identify certificates in OCSP requests.

This global setting defines the hash algorithm to use in OCSP requests during chain validation. Some OCSP responders can only use older algorithms, in which case setting this property to SHA1 may be helpful.

OldClientSideRSAFallback:   Specifies whether the SSH client should use a SHA1 fallback.

Tells the SSH client to use a legacy ssh-rsa authentication even if the server indicates support for newer algorithms, such as rsa-sha-256. This is a backward-compatibility tweak.

ProductVersion:   Returns the version of the SecureBlackbox library.

This property returns the long version string of the SecureBlackbox library being used (major.minor.build.revision).

ServerSSLDHKeyLength:   Sets the size of the TLS DHE key exchange group.

Use this property to adjust the length, in bits, of the DHE prime to be used by the TLS server.

StaticDNS:   Specifies whether static DNS rules should be used.

Set this property to enable or disable static DNS rules for the component. Works only if UseOwnDNSResolver is set to true.

Supported values are:

noneNo static DNS rules (default)
localLocal static DNS rules
globalGlobal static DNS rules

StaticIPAddress[domain]:   Gets or sets an IP address for the specified domain name.

Use this property to get or set an IP address for the specified domain name in the internal (of the component) or global DNS rules storage depending on the StaticDNS value. The type of the IP address (IPv4 or IPv6) is determined automatically. If both addresses are available, they are devided by the | (pipe) character.

StaticIPAddresses:   Gets or sets all the static DNS rules.

Use this property to get static DNS rules from the current rules storage or restore them back between application sessions. If StaticDNS of the component is set to "local", the property returns/restores the rules from/to the internal storage of the component. If StaticDNS of the component is set to "global", the property returns/restores the rules from/to the GLOBAL storage. The rules list is returned and accepted in JSON format.

Tag:   Allows to store any custom data.

Use this config property to store any custom data.

TLSSessionGroup:   Specifies the group name of TLS sessions to be used for session resumption.

Use this property to limit the search of chached TLS sessions to the specified group. Sessions from other groups will be ignored. By default, all sessions are cached with an empty group name and available to all the components.

TLSSessionLifetime:   Specifies lifetime in seconds of the cached TLS session.

Use this property to specify how much time the TLS session should be kept in the session cache. After this time, the session expires and will be automatically removed from the cache. Default value is 300 seconds (5 minutes).

TLSSessionPurgeInterval:   Specifies how often the session cache should remove the expired TLS sessions.

Use this property to specify the time interval of purging the expired TLS sessions from the session cache. Default value is 60 seconds (1 minute).

UseInternalRandom:   Switches between SecureBlackbox-own and platform PRNGs.

Allows to switch between internal/native PRNG implementation and the one provided by the platform.

UseLegacyAdESValidation:   Enables legacy AdES validation mode.

Use this setting to switch the AdES component to the validation approach that was used in SBB 2020/SBB 2022 (less attention to temporal details).

UseOwnDNSResolver:   Specifies whether the client components should use own DNS resolver.

Set this global property to false to force all the client components to use the DNS resolver provided by the target OS instead of using own one.

UseSharedSystemStorages:   Specifies whether the validation engine should use a global per-process copy of the system certificate stores.

Set this global property to false to make each validation run use its own copy of system certificate stores.

UseSystemNativeSizeCalculation:   An internal CryptoAPI access tweak.

This is an internal setting. Please do not use it unless instructed by the support team.

UseSystemOAEPAndPSS:   Enforces or disables the use of system-driven RSA OAEP and PSS computations.

This global setting defines who is responsible for performing RSA-OAEP and RSA-PSS computations where the private key is stored in a Windows system store and is exportable. If set to true, SBB will delegate the computations to Windows via a CryptoAPI call. Otherwise, it will export the key material and perform the computations using its own OAEP/PSS implementation.

This setting only applies to certificates originating from a Windows system store.

UseSystemRandom:   Enables or disables the use of the OS PRNG.

Use this global property to enable or disable the use of operating system-driven pseudorandom number generation.

Trappable Errors (XMLDecryptor Component)

XMLDecryptor Errors

1048577   Invalid parameter (SB_ERROR_INVALID_PARAMETER)
1048578   Invalid configuration (SB_ERROR_INVALID_SETUP)
1048579   Invalid state (SB_ERROR_INVALID_STATE)
1048580   Invalid value (SB_ERROR_INVALID_VALUE)
1048581   Private key not found (SB_ERROR_NO_PRIVATE_KEY)
1048582   Cancelled by the user (SB_ERROR_CANCELLED_BY_USER)
1048583   The file was not found (SB_ERROR_NO_SUCH_FILE)
1048584   Unsupported feature or operation (SB_ERROR_UNSUPPORTED_FEATURE)
1048585   General error (SB_ERROR_GENERAL_ERROR)
39845889   The input file does not exist (SB_ERROR_XML_INPUTFILE_NOT_EXISTS)
39845890   Data file does not exist (SB_ERROR_XML_DATAFILE_NOT_EXISTS)
39845892   Unsupported hash algorithm (SB_ERROR_XML_UNSUPPORTED_HASH_ALGORITHM)
39845893   Unsupported key type (SB_ERROR_XML_UNSUPPORTED_KEY_TYPE)
39845895   Unsupported encryption algorithm (SB_ERROR_XML_INVALID_ENCRYPTION_METHOD)
39845896   XML element not found (SB_ERROR_XML_NOT_FOUND)
39845897   XML element has no ID (SB_ERROR_XML_NO_ELEMENT_ID)