Docs

SecureBlackbox 2022 .NET Edition

Version 22.0 [Build 8174]

AuthenticodeSigner Component

Properties   Methods   Events   Configuration Settings   Errors  

The AuthenticodeSigner component signs executable files (EXE) and dynamically linked libraries (DLL).

Syntax

nsoftware.SecureBlackbox.Authenticodesigner

Remarks

Use this component to sign your binaries and optionally timestamp them.

Property List


The following is the full list of the properties of the component with short descriptions. Click on the links for further details.

BlockedCertificatesThe certificates that must be rejected as trust anchors.
ClaimedSigningTimeThe signing time from the signer's computer.
CurrentCACertificateThe CA of the currently processed certificate.
CurrentCertificateThe certificate that is currently being processed.
CustomSignedAttributesProvides custom signed attributes to be added to a signature.
CustomUnsignedAttributesProvides custom unsigned attributes to be added to a signature. These attributes can be added to an existing signature.
ExternalCryptoProvides access to external signing and DC parameters.
FIPSModeReserved.
HashAlgorithmThe hash algorithm to be used for signing.
IgnoreChainValidationErrorsMakes the component tolerant to chain validation errors.
InputBytesUse this property to pass the input to component in the byte array form.
InputFileA path to the executable to be signed
InputStreamStream containing the executable to be signed.
InterimValidationDetailsContains the validation details of the moment.
InterimValidationResultContains the validation status of the moment.
KnownCertificatesAdditional certificates for chain validation.
KnownCRLsAdditional CRLs for chain validation.
KnownOCSPsAdditional OCSP responses for chain validation.
OfflineModeSwitches the component to the offline mode.
OutputBytesUse this property to read the output the component object has produced.
OutputFileThe file to save the signed executable to.
OutputStreamThe stream where the signed executable should be written to.
ProfileSpecifies a pre-defined profile to apply when creating the signature.
ProxyThe proxy server settings.
RemoveExistingSignaturesSpecifies whether to remove any existing signatures before signing
RevocationCheckSpecifies the kind(s) of revocation check to perform.
SignatureDescriptionSets human-readable signature description.
SignatureIndexThe index of the signature to timstamp or update.
SignatureURLSets the URL to include in the signature.
SigningCertificateThe certificate to be used for signing.
SigningChainThe signing certificate chain.
SocketSettingsManages network connection settings.
StatementTypeSets the signature statement type.
TimestampServerThe address of the timestamping server.
TimestampTypeSets the signature timestamp type.
TLSClientChainThe TLS client certificate chain.
TLSServerChainThe TLS server's certificate chain.
TLSSettingsManages TLS layer settings.
TrustedCertificatesA list of trusted certificates for chain validation.
ValidationLogContains the complete log of the certificate validation routine.

Method List


The following is the full list of the methods of the component with short descriptions. Click on the links for further details.

ConfigSets or retrieves a configuration setting.
DoActionPerforms an additional action.
ExtractAsyncDataExtracts user data from the DC signing service response.
SignCalculates and adds a signature to the executable.
SignAsyncBeginInitiates the asynchronous signing operation.
SignAsyncEndCompletes the asynchronous signing operation.
SignExternalSigns the document using an external signing facility.
TimestampUse this method to add a timestamp to a new or to an existing signature.
UpdateUpdate an existing signature (or all the signatures) by adding or removing its (their) custom unsigned attributes.

Event List


The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.

ChainElementDownloadTBD
ChainElementNeededTBD
ErrorInformation about errors during Authenticode signing.
ExternalSignHandles remote or external signing initiated by the SignExternal method or other source.
NotificationThis event notifies the application about an underlying control flow event.
StartThis event is fired when the component is about to start the signing process.
TLSCertValidateThis event is fired upon receipt of the TLS server's certificate, allowing the user to control its acceptance.
ValidationProgressTBD

Configuration Settings


The following is a list of configuration settings for the component with short descriptions. Click on the links for further details.

AttributeConflictResolutionSpecifies how to resolve updating conflicts.
BufferSizeSpecifies processing buffer size in bytes.
ForceCompleteChainValidationForTrustedWhether to continue with the full validation up to the root CA certificate for mid-level trust anchors.
GracePeriodSpecifies a grace period to apply during revocation information checks.
IgnoreOCSPNoCheckExtensionWhether OCSP NoCheck extension should be ignored.
IgnoreSystemTrustWhether trusted Windows Certificate Stores should be treated as trusted.
ImplicitlyTrustSelfSignedCertificatesWhether to trust self-signed certificates.
PromoteLongOCSPResponsesWhether long OCSP responses are requested.
TempPathPath for storing temporary files.
TimestampConflictResolutionSpecifies how to resolve timestamping conflicts.
TimestampResponseA base16-encoded timestamp response received from a TSA.
TLSChainValidationDetailsContains the advanced details of the TLS server certificate validation.
TLSChainValidationResultContains the result of the TLS server certificate validation.
TLSClientAuthRequestedIndicates whether the TLS server requests client authentication.
TLSValidationLogContains the log of the TLS server certificate validation.
TolerateMinorChainIssuesWhether to tolerate minor chain issues.
UseMicrosoftCTLEnables or disables automatic use of Microsoft online certificate trust list.
UseSystemCertificatesEnables or disables the use of the system certificates.
CheckKeyIntegrityBeforeUseEnables or disable private key integrity check before use.
CookieCachingSpecifies whether a cookie cache should be used for HTTP(S) transports.
CookiesGets or sets local cookies for the component (supported for HTTPClient, RESTClient and SOAPClient only).
DefDeriveKeyIterationsSpecifies the default key derivation algorithm iteration count.
EnableClientSideSSLFFDHEEnables or disables finite field DHE key exchange support in TLS clients.
GlobalCookiesGets or sets global cookies for all the HTTP transports.
HttpUserAgentSpecifies the user agent name to be used by all HTTP clients.
LogDestinationSpecifies the debug log destination.
LogDetailsSpecifies the debug log details to dump.
LogFileSpecifies the debug log filename.
LogFiltersSpecifies the debug log filters.
LogFlushModeSpecifies the log flush mode.
LogLevelSpecifies the debug log level.
LogMaxEventCountSpecifies the maximum number of events to cache before further action is taken.
LogRotationModeSpecifies the log rotation mode.
MaxASN1BufferLengthSpecifies the maximal allowed length for ASN.1 primitive tag data.
MaxASN1TreeDepthSpecifies the maximal depth for processed ASN.1 trees.
OCSPHashAlgorithmSpecifies the hash algorithm to be used to identify certificates in OCSP requests.
TagAllows to store any custom data.
UseSharedSystemStoragesSpecifies whether the validation engine should use a global per-process copy of the system certificate stores.
UseSystemOAEPAndPSSEnforces or disables the use of system-driven RSA OAEP and PSS computations.
UseSystemRandomEnables or disables the use of the OS PRNG.

BlockedCertificates Property (AuthenticodeSigner Component)

The certificates that must be rejected as trust anchors.

Syntax

public CertificateList BlockedCertificates { get; }
Public Property BlockedCertificates As CertificateList

Remarks

Use this property to provide a list of compromised or blocked certificates. Any chain containing a blocked certificate will fail validation.

This property is not available at design time.

ClaimedSigningTime Property (AuthenticodeSigner Component)

The signing time from the signer's computer.

Syntax

public string ClaimedSigningTime { get; set; }
Public Property ClaimedSigningTime As String

Default Value

""

Remarks

Use this property to provide the signature production time. The claimed time is not supported by a trusted source; it may be inaccurate, forfeited, or wrong, and as such is usually taken for informational purposes only by verifiers. Use timestamp servers to embed verifiable trusted timestamps. The time is in UTC.

CurrentCACertificate Property (AuthenticodeSigner Component)

The CA of the currently processed certificate.

Syntax

public Certificate CurrentCACertificate { get; }
Public ReadOnly Property CurrentCACertificate As Certificate

Remarks

The validator component uses this property to publish the issuer certificate of the certificate that is currently being processed, if it is available.

This property is read-only and not available at design time.

CurrentCertificate Property (AuthenticodeSigner Component)

The certificate that is currently being processed.

Syntax

public Certificate CurrentCertificate { get; }
Public ReadOnly Property CurrentCertificate As Certificate

Remarks

This property returns the certificate that is currently being processed by the validator.

This property is read-only and not available at design time.

CustomSignedAttributes Property (AuthenticodeSigner Component)

Provides custom signed attributes to be added to a signature.

Syntax

public StringNameValuePairList CustomSignedAttributes { get; }
Public ReadOnly Property CustomSignedAttributes As StringNameValuePairList

Remarks

Use this property to add custom signed attributes to a signature. Attributes should be specified in form Name=Value where Name is eigther an OID string (1.2.34.56.77) or a hexidecimal string (2A864886F70D010101), and Value is a hexidecimal string.

This property is read-only and not available at design time.

CustomUnsignedAttributes Property (AuthenticodeSigner Component)

Provides custom unsigned attributes to be added to a signature. These attributes can be added to an existing signature.

Syntax

public StringNameValuePairList CustomUnsignedAttributes { get; }
Public ReadOnly Property CustomUnsignedAttributes As StringNameValuePairList

Remarks

Use this property to add custom unsigned attributes to a signature. Attributes should be specified in form Name=Value where Name is eigther an OID string (1.2.34.56.77) or a hexidecimal string (2A864886F70D010101), and Value is a hexidecimal string.

Leave the collection empty to remove all the custom unsigned attributes.

This property is read-only and not available at design time.

ExternalCrypto Property (AuthenticodeSigner Component)

Provides access to external signing and DC parameters.

Syntax

public ExternalCrypto ExternalCrypto { get; }
Public ReadOnly Property ExternalCrypto As ExternalCrypto

Remarks

Use this property to tune-up remote cryptography settings. SecureBlackbox supports two independent types of external cryptography: synchronous (based on OnExternalSign event) and asynchronous (based on DC protocol and DCAuth signing component).

This property is read-only.

FIPSMode Property (AuthenticodeSigner Component)

Reserved.

Syntax

public bool FIPSMode { get; set; }
Public Property FIPSMode As Boolean

Default Value

False

Remarks

This property is reserved for future use.

HashAlgorithm Property (AuthenticodeSigner Component)

The hash algorithm to be used for signing.

Syntax

public string HashAlgorithm { get; set; }
Public Property HashAlgorithm As String

Default Value

"SHA256"

Remarks

The following algorithms are supported: MD5, SHA1, SHA224, SHA256, SHA384, SHA512, SHA3_224, SHA3_256, SHA3_384, SHA3_512.

IgnoreChainValidationErrors Property (AuthenticodeSigner Component)

Makes the component tolerant to chain validation errors.

Syntax

public bool IgnoreChainValidationErrors { get; set; }
Public Property IgnoreChainValidationErrors As Boolean

Default Value

False

Remarks

If this property is set to True, any errors emerging during certificate chain validation will be ignored. This setting may be handy if the purpose of validation is the creation of an LTV signature, and the validation is performed in an environment that doesn't trust the signer's certificate chain.

InputBytes Property (AuthenticodeSigner Component)

Use this property to pass the input to component in the byte array form.

Syntax

public byte[] InputBytes { get; set; }
Public Property InputBytes As Byte()

Remarks

Assign a byte array containing the data to be processed to this property.

This property is not available at design time.

InputFile Property (AuthenticodeSigner Component)

A path to the executable to be signed

Syntax

public string InputFile { get; set; }
Public Property InputFile As String

Default Value

""

Remarks

A path to the file containing the executable to be signed. The input can alternatively be provided via InputStream.

InputStream Property (AuthenticodeSigner Component)

Stream containing the executable to be signed.

Syntax

public System.IO.Stream InputStream { get; set; }
Public Property InputStream As System.IO.Stream

Default Value

null

Remarks

A stream containing the executable to be signed. The input can alternatively be provided via InputFile.

This property is not available at design time.

InterimValidationDetails Property (AuthenticodeSigner Component)

Contains the validation details of the moment.

Syntax

public int InterimValidationDetails { get; set; }
Public Property InterimValidationDetails As Integer

Default Value

0

Remarks

Over the course of the validation process, the validator maintains an interim validity status for the chain that is being processed. This status is influenced by every single step of the validation routine, and may change along the way, before the end of the chain is reached and the final validation conclusion is drawn.

Use this property to check the interim validity details mid-flight.

The value of this property is a bit mask of the following options:

cvrBadData0x0001One or more certificates in the validation path are malformed

cvrRevoked0x0002One or more certificates are revoked

cvrNotYetValid0x0004One or more certificates are not yet valid

cvrExpired0x0008One or more certificates are expired

cvrInvalidSignature0x0010A certificate contains a non-valid digital signature

cvrUnknownCA0x0020A CA certificate for one or more certificates has not been found (chain incomplete)

cvrCAUnauthorized0x0040One of the CA certificates are not authorized to act as CA

cvrCRLNotVerified0x0080One or more CRLs could not be verified

cvrOCSPNotVerified0x0100One or more OCSP responses could not be verified

cvrIdentityMismatch0x0200The identity protected by the certificate (a TLS endpoint or an e-mail addressee) does not match what is recorded in the certificate

cvrNoKeyUsage0x0400A mandatory key usage is not enabled in one of the chain certificates

cvrBlocked0x0800One or more certificates are blocked

cvrFailure0x1000General validation failure

cvrChainLoop0x2000Chain loop: one of the CA certificates recursively signs itself

cvrWeakAlgorithm0x4000A weak algorithm is used in one of certificates or revocation elements

cvrUserEnforced0x8000The chain was considered invalid following intervention from a user code

This property is not available at design time.

InterimValidationResult Property (AuthenticodeSigner Component)

Contains the validation status of the moment.

Syntax

public AuthenticodesignerInterimValidationResults InterimValidationResult { get; set; }

enum AuthenticodesignerInterimValidationResults { cvtValid, cvtValidButUntrusted, cvtInvalid, cvtCantBeEstablished }
Public Property InterimValidationResult As AuthenticodesignerInterimValidationResults

Enum AuthenticodesignerInterimValidationResults cvtValid cvtValidButUntrusted cvtInvalid cvtCantBeEstablished End Enum

Default Value

0

Remarks

Over the course of the validation process, the validator maintains an interim validity status for the chain that is being processed. This status is influenced by every single step of the validation routine, and may change along the way, before the end of the chain is reached and the final validation conclusion is drawn.

Use this property to check the interim validity status mid-flight.

cvtValid0The chain is valid

cvtValidButUntrusted1The chain is valid, but the root certificate is not trusted

cvtInvalid2The chain is not valid (some of certificates are revoked, expired, or contain an invalid signature)

cvtCantBeEstablished3The validity of the chain cannot be established because of missing or unavailable validation information (certificates, CRLs, or OCSP responses)

This property is not available at design time.

KnownCertificates Property (AuthenticodeSigner Component)

Additional certificates for chain validation.

Syntax

public CertificateList KnownCertificates { get; }
Public Property KnownCertificates As CertificateList

Remarks

Use this property to supply a list of additional certificates that might be needed for chain validation. An example of a scenario where you might want to do that is when intermediary CA certificates are absent from the standard system locations (or when there are no standard system locations), and therefore should be supplied to the component manually.

The purpose of certificates to be added to this collection is roughly equivalent to that of Intermediate Certification Authorities system store in Windows.

Do not add trust anchors or root certificates to this collection: add them to TrustedCertificates instead.

This property is not available at design time.

KnownCRLs Property (AuthenticodeSigner Component)

Additional CRLs for chain validation.

Syntax

public CRLList KnownCRLs { get; }
Public Property KnownCRLs As CRLList

Remarks

Use this property to supply additional CRLs that might be needed for chain validation. This property may be helpful when a chain is validated in offline mode, and the associated CRLs are stored separately from the signed message or document.

This property is not available at design time.

KnownOCSPs Property (AuthenticodeSigner Component)

Additional OCSP responses for chain validation.

Syntax

public OCSPResponseList KnownOCSPs { get; }
Public Property KnownOCSPs As OCSPResponseList

Remarks

Use this property to supply additional OCSP responses that might be needed for chain validation. This property may be helpful when a chain is validated in offline mode, and the associated OCSP responses are stored separately from the signed message or document.

This property is not available at design time.

OfflineMode Property (AuthenticodeSigner Component)

Switches the component to the offline mode.

Syntax

public bool OfflineMode { get; set; }
Public Property OfflineMode As Boolean

Default Value

False

Remarks

When working in offline mode, the component restricts itself from using any online revocation information sources, such as CRL or OCSP responders.

Offline mode may be useful if there is a need to verify the completeness of validation information included within the signature or provided via KnownCertificates, KnownCRLs, and other related properties.

OutputBytes Property (AuthenticodeSigner Component)

Use this property to read the output the component object has produced.

Syntax

public byte[] OutputBytes { get; }
Public ReadOnly Property OutputBytes As Byte()

Remarks

Read the contents of this property after the operation is completed to read the produced output. This property will only be set if OutputFile and OutputStream properties had not been assigned.

This property is read-only and not available at design time.

OutputFile Property (AuthenticodeSigner Component)

The file to save the signed executable to.

Syntax

public string OutputFile { get; set; }
Public Property OutputFile As String

Default Value

""

Remarks

A path to the file where the component should save the signed executable file. Use OutputStream to save the signed file to a stream instead.

OutputStream Property (AuthenticodeSigner Component)

The stream where the signed executable should be written to.

Syntax

public System.IO.Stream OutputStream { get; set; }
Public Property OutputStream As System.IO.Stream

Default Value

null

Remarks

Use this property to specify the stream to accommodate the resulting signed executable.

This property is not available at design time.

Profile Property (AuthenticodeSigner Component)

Specifies a pre-defined profile to apply when creating the signature.

Syntax

public string Profile { get; set; }
Public Property Profile As String

Default Value

""

Remarks

Advanced signatures come in many variants, which are often defined by parties that needs to process them or by local standards. SecureBlackbox profiles are sets of pre-defined configurations which correspond to particular signature variants. By specifying a profile, you are pre-configuring the component to make it produce the signature that matches the configuration corresponding to that profile.

Proxy Property (AuthenticodeSigner Component)

The proxy server settings.

Syntax

public ProxySettings Proxy { get; }
Public ReadOnly Property Proxy As ProxySettings

Remarks

Use this property to tune up the proxy server settings.

This property is read-only.

RemoveExistingSignatures Property (AuthenticodeSigner Component)

Specifies whether to remove any existing signatures before signing

Syntax

public bool RemoveExistingSignatures { get; set; }
Public Property RemoveExistingSignatures As Boolean

Default Value

False

Remarks

If this property is set to True, all the existing Authenticode signatures will be removed from the executable before adding the new one. If this property is False, the new signature will be added on top of the existing ones.

RevocationCheck Property (AuthenticodeSigner Component)

Specifies the kind(s) of revocation check to perform.

Syntax

public AuthenticodesignerRevocationChecks RevocationCheck { get; set; }

enum AuthenticodesignerRevocationChecks { crcNone, crcAuto, crcAllCRL, crcAllOCSP, crcAllCRLAndOCSP, crcAnyCRL, crcAnyOCSP, crcAnyCRLOrOCSP, crcAnyOCSPOrCRL }
Public Property RevocationCheck As AuthenticodesignerRevocationChecks

Enum AuthenticodesignerRevocationChecks crcNone crcAuto crcAllCRL crcAllOCSP crcAllCRLAndOCSP crcAnyCRL crcAnyOCSP crcAnyCRLOrOCSP crcAnyOCSPOrCRL End Enum

Default Value

1

Remarks

Revocation checking is necessary to ensure the integrity of the chain and obtain up-to-date certificate validity and trustworthiness information.

Certificate Revocation Lists (CRL) and Online Certificate Status Protocol (OCSP) responses serve the same purpose of ensuring that the certificate had not been revoked by the Certificate Authority (CA) at the time of use. Depending on your circumstances and security policy requirements, you may want to use either one or both of the revocation information source types.

crcNone (0)No revocation checking
crcAuto (1)Automatic mode selection. Currently this maps to crcAnyOCSPOrCRL, but it may change in the future.
crcAllCRL (2)Check all provided CRL endpoints for all chain certificates.
crcAllOCSP (3)Check all provided OCSP endpoints for all chain certificates.
crcAllCRLAndOCSP (4)Check all CRL and OCSP endpoints for all chain certificates.
crcAnyCRL (5)At least one CRL check for every certificate in the chain must succeed.
crcAnyOCSP (6)At least one OCSP check for every certificate in the chain must succeed.
crcAnyCRLOrOCSP (7)At least one CRL or OCSP check for every certificate in the chain must succeed. CRL endpoints are checked first.
crcAnyOCSPOrCRL (8)At least one CRL or OCSP check for every certificate in the chain must succeed. OCSP endpoints are checked first.

This setting controls the way the revocation checks are performed. Typically certificates come with two types of revocation information sources: CRL (certificate revocation lists) and OCSP responders. CRLs are static objects periodically published by the CA at some online location. OCSP responders are active online services maintained by the CA that can provide up-to-date information on certificate statuses in near real time.

There are some conceptual differences between the two. CRLs are normally larger in size. Their use involves some latency because there is normally some delay between the time when a certificate was revoked and the time the subsequent CRL mentioning that is published. The benefits of CRL is that the same object can provide statuses for all certificates issued by a particular CA, and that the whole technology is much simpler than OCSP (and thus is supported by more CAs).

This setting lets you adjust the validation course by including or excluding certain types of revocation sources from the validation process. The crcAnyOCSPOrCRL setting (give preference to faster OCSP route and only demand one source to succeed) is a good choice for most of typical validation environments. The "crcAll*" modes are much stricter, and may be used in scenarios where bulletproof validity information is essential.

SignatureDescription Property (AuthenticodeSigner Component)

Sets human-readable signature description.

Syntax

public string SignatureDescription { get; set; }
Public Property SignatureDescription As String

Default Value

""

Remarks

Use this property to provide description for the new signature. This is optional.

SignatureIndex Property (AuthenticodeSigner Component)

The index of the signature to timstamp or update.

Syntax

public int SignatureIndex { get; set; }
Public Property SignatureIndex As Integer

Default Value

-1

Remarks

Use this property to specify the index of the existing signature before timestamping or adding custom unsigned attributes. -1 means all the existing signatures.

SignatureURL Property (AuthenticodeSigner Component)

Sets the URL to include in the signature.

Syntax

public string SignatureURL { get; set; }
Public Property SignatureURL As String

Default Value

""

Remarks

Use this property to provide a custom URL with the signature. This is optional.

SigningCertificate Property (AuthenticodeSigner Component)

The certificate to be used for signing.

Syntax

public Certificate SigningCertificate { get; set; }
Public Property SigningCertificate As Certificate

Remarks

Use this property to specify the certificate that shall be used for signing the data. Note that this certificate should have a private key associated with it. Use SigningChain to supply the rest of the certificate chain for inclusion into the signature.

This property is not available at design time.

SigningChain Property (AuthenticodeSigner Component)

The signing certificate chain.

Syntax

public CertificateList SigningChain { get; }
Public Property SigningChain As CertificateList

Remarks

Use this property to provide the chain for the signing certificate. Use SigningCertificate property, if it is available, to provide the signing certificate itself.

This property is not available at design time.

SocketSettings Property (AuthenticodeSigner Component)

Manages network connection settings.

Syntax

public SocketSettings SocketSettings { get; }
Public ReadOnly Property SocketSettings As SocketSettings

Remarks

Use this property to tune up network connection parameters.

This property is read-only.

StatementType Property (AuthenticodeSigner Component)

Sets the signature statement type.

Syntax

public AuthenticodesignerStatementTypes StatementType { get; set; }

enum AuthenticodesignerStatementTypes { acsUnknown, acsIndividual, acsCommercial }
Public Property StatementType As AuthenticodesignerStatementTypes

Enum AuthenticodesignerStatementTypes acsUnknown acsIndividual acsCommercial End Enum

Default Value

1

Remarks

Use this property to specify the signature statement type.

acsUnknown0
acsIndividual1
acsCommercial2

TimestampServer Property (AuthenticodeSigner Component)

The address of the timestamping server.

Syntax

public string TimestampServer { get; set; }
Public Property TimestampServer As String

Default Value

""

Remarks

Use this property to provide the address of the Time Stamping Authority (TSA) server to be used for timestamping the signature.

SecureBlackbox supports RFC3161-compliant timestamping servers, available via HTTP or HTTPS.

If your timestamping service enforces credential-based user authentication (basic or digest), you can provide the credentials in the same URL:

http://user:password@timestamp.server.com/TsaService

For TSAs using certificate-based TLS authentication, provide the client certificate via the TLSClientChain property.

If this property is left empty, no timestamp will be added to the signature.

Starting from summer 2021 update (Vol. 2), the virtual timestamping service is supported, which allows you to intervene in the timestamping routine and provide your own handling for the TSA exchange. This may be handy if the service that you are requesting timestamps from uses a non-standard TSP protocol or requires special authentication option.

To employ the virtual service, assign an URI of the following format to this property:

virtual://localhost?hashonly=true&includecerts=true&reqpolicy=1.2.3.4.5&halg=SHA256

Subscribe to Notification event to get notified about the virtualized timestamping event. The EventID of the timestamping event is TimestampRequest. Inside the event handler, read the base16-encoded request from the EventParam parameter and forward it to the timestamping authority. Upon receiving the response, pass it back to the component, encoded in base16, via the TimestampResponse config property:

component.Config("TimestampResponse=308208ab...");

Note that all the exchange with your custom TSA should take place within the same invocation of the Notification event.

The hashonly parameter of the virtual URI tells the component to only return the timestamp message imprint via the EventParam parameter. If set to false, EventParam will contain the complete RFC3161 timestamping request.

The includecerts parameter specifies that the requestCertificates parameter of the timestamping request should be set to true.

The reqpolicy parameter lets you specify the request policy, and the halg parameter specifies the hash algorithm to use for timestamping.

All the parameters are optional.

TimestampType Property (AuthenticodeSigner Component)

Sets the signature timestamp type.

Syntax

public AuthenticodesignerTimestampTypes TimestampType { get; set; }

enum AuthenticodesignerTimestampTypes { actUnknown, actLegacy, actTrusted }
Public Property TimestampType As AuthenticodesignerTimestampTypes

Enum AuthenticodesignerTimestampTypes actUnknown actLegacy actTrusted End Enum

Default Value

2

Remarks

Use this property to specify the signature timestamp type. This can either be a "trusted" timestamp (a weird name applied by the Authenticode specification to a standard RFC 3161 timestamp), or a "legacy" timestamp (an older variant of the base64-encoded TSP protocol).

actUnknown0
actLegacy1
actTrusted2

TLSClientChain Property (AuthenticodeSigner Component)

The TLS client certificate chain.

Syntax

public CertificateList TLSClientChain { get; }
Public Property TLSClientChain As CertificateList

Remarks

Assign a certificate chain to this property to enable TLS client authentication in the component. Note that the client's end-entity certificate should have a private key associated with it.

This property is not available at design time.

TLSServerChain Property (AuthenticodeSigner Component)

The TLS server's certificate chain.

Syntax

public CertificateList TLSServerChain { get; }
Public ReadOnly Property TLSServerChain As CertificateList

Remarks

Use this property to access the certificate chain sent by the TLS server.

This property is read-only and not available at design time.

TLSSettings Property (AuthenticodeSigner Component)

Manages TLS layer settings.

Syntax

public TLSSettings TLSSettings { get; }
Public ReadOnly Property TLSSettings As TLSSettings

Remarks

Use this property to tune up the TLS layer parameters.

This property is read-only.

TrustedCertificates Property (AuthenticodeSigner Component)

A list of trusted certificates for chain validation.

Syntax

public CertificateList TrustedCertificates { get; }
Public Property TrustedCertificates As CertificateList

Remarks

Use this property to supply a list of trusted certificates that might be needed for chain validation. An example of a scenario where you might want to do that is when root CA certificates are absent from the standard system locations (or when there are no standard system locations), and therefore should be supplied to the component manually.

The purpose of this certificate collection is largely the same than that of Windows Trusted Root Certification Authorities system store.

Use this property with extreme care as it directly affects chain verifiability; a wrong certificate added to the trusted list may result in bad chains being accepted, and forfeited signatures being recognized as genuine. Only add certificates that originate from the parties that you know and trust.

This property is not available at design time.

ValidationLog Property (AuthenticodeSigner Component)

Contains the complete log of the certificate validation routine.

Syntax

public string ValidationLog { get; }
Public ReadOnly Property ValidationLog As String

Default Value

""

Remarks

Use this property to access the chain validation log produced by the component. The log can be very useful when investigating issues with chain validation, as it contains a step-by-step trace of the entire validation procedure.

This property is read-only and not available at design time.

Config Method (AuthenticodeSigner Component)

Sets or retrieves a configuration setting.

Syntax

public string Config(string configurationString);
Public Function Config(ByVal ConfigurationString As String) As String

Remarks

Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

DoAction Method (AuthenticodeSigner Component)

Performs an additional action.

Syntax

public string DoAction(string actionID, string actionParams);
Public Function DoAction(ByVal ActionID As String, ByVal ActionParams As String) As String

Remarks

DoAction is a generic method available in every component. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.

The unique identifier of the action is provided in ActionID parameter. ActionParams contains a list of parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....

ExtractAsyncData Method (AuthenticodeSigner Component)

Extracts user data from the DC signing service response.

Syntax

public string ExtractAsyncData(string asyncReply);
Public Function ExtractAsyncData(ByVal AsyncReply As String) As String

Remarks

Call this method before finalizing the asynchronous signing process to extract the data passed to the ExternalCrypto.Data property on the pre-signing stage.

The Data parameter can be used to pass some state or document identifier along with the signing request from the pre-signing to completion async stage.

Sign Method (AuthenticodeSigner Component)

Calculates and adds a signature to the executable.

Syntax

public void Sign();
Public Sub Sign()

Remarks

Use this method to create a new Authenticode signature over the executable as per the configuration of the component.

SignAsyncBegin Method (AuthenticodeSigner Component)

Initiates the asynchronous signing operation.

Syntax

public string SignAsyncBegin();
Public Function SignAsyncBegin() As String

Remarks

When using the DC framework, call this method to initiate the asynchronous signing process. Upon completion, a pre-signed copy of the document will be saved in OutputFile (or OutputStream). Keep the pre-signed copy somewhere local, and pass the returned string ('the request state') to the DC processor for handling.

Upon receiving the response state from the DC processor, assign the path to the pre-signed copy to InputFile (or InputStream), and call SignAsyncEnd to finalize the signing.

Note that depending on the signing method and DC configuration used, you may still need to provide the public part of the signing certificate via the SigningCertificate property.

AsyncState is a message of the distributed cryptography (DC) protocol. DC protocol is based on exchange of async states between a DC client (an application that wants to sign a PDF, XML, or Office document) and a DC server (an application that controls access to the private key). An async state can carry one or more signing requests, comprised of document hashes, or one or more signatures produced over those hashes.

In a typical scenario you get a client-side async state from the SignAsyncBegin method. This state contains document hashes to be signed on the DC server side. You then send the async state to the DC server (often represented by the DCAuth control), which processes it and produces a matching signatures state. The async state produced by the server is then passed to the SignAsyncEnd method.

SignAsyncEnd Method (AuthenticodeSigner Component)

Completes the asynchronous signing operation.

Syntax

public void SignAsyncEnd(string asyncReply);
Public Sub SignAsyncEnd(ByVal AsyncReply As String)

Remarks

When using the DC framework, call this method upon receiving the response state from the DC processor to complete the asynchronous signing process.

Before calling this method, assign the path to the pre-signed copy of the document obtained from prior SignAsyncBegin call to InputFile (or InputStream). The method will embed the signature into the pre-signed document, and save the complete signed document to OutputFile (or OutputStream).

Note that depending on the signing method and DC configuration used, you may still need to provide the public part of the signing certificate via the SigningCertificate property.

AsyncState is a message of the distributed cryptography (DC) protocol. DC protocol is based on exchange of async states between a DC client (an application that wants to sign a PDF, XML, or Office document) and a DC server (an application that controls access to the private key). An async state can carry one or more signing requests, comprised of document hashes, or one or more signatures produced over those hashes.

In a typical scenario you get a client-side async state from the SignAsyncBegin method. This state contains document hashes to be signed on the DC server side. You then send the async state to the DC server (often represented by the DCAuth control), which processes it and produces a matching signatures state. The async state produced by the server is then passed to the SignAsyncEnd method.

SignExternal Method (AuthenticodeSigner Component)

Signs the document using an external signing facility.

Syntax

public void SignExternal();
Public Sub SignExternal()

Remarks

Use this method to create an Authenticode signature using an external signing facility for the cryptographic computations. SignExternal delegates the low-level signing operation to an external, remote, or custom signing engine. This method is useful if the signature has to be made by a device accessible through a custom or non-standard signing interface.

When all preparations are done and hash is computed, the component fires ExternalSign event which allows to pass the hash value for signing.

Timestamp Method (AuthenticodeSigner Component)

Use this method to add a timestamp to a new or to an existing signature.

Syntax

public void Timestamp();
Public Sub Timestamp()

Remarks

Call this method to timestamp the signature(s). If only one of the existing signatures should be timestamped, specify its index using the SignatureIndex property.

Use the TimestampServer property to provide the address of the TSA (Time Stamping Authority) server which should be used for timestamping. Use the TimestampType property to specify the type of timestamp to create.

If a timestamp already exists, this will be handled according to the value of the TimestampConflictResolution config property.

Update Method (AuthenticodeSigner Component)

Update an existing signature (or all the signatures) by adding or removing its (their) custom unsigned attributes.

Syntax

public void Update();
Public Sub Update()

Remarks

Call this method to add one or mode custom unsigned attributes to an existing signature (specify its index using the SignatureIndex property) or to all the existing signatures (set SignatureIndex to -1).

Use the CustomUnsignedAttributes property to provide new attributes to be added. If an unsigned attribute with the same OID already exists, this will be handled according to the value of the AttributeConflictResolution config property.

If the CustomUnsignedAttributes property is empty, all the existing unsigned attributes in the specified signature (or all the signatures) will be removed.

ChainElementDownload Event (AuthenticodeSigner Component)

TBD

Syntax

public event OnChainElementDownloadHandler OnChainElementDownload;

public delegate void OnChainElementDownloadHandler(object sender, AuthenticodesignerChainElementDownloadEventArgs e);

public class AuthenticodesignerChainElementDownloadEventArgs : EventArgs {
  public string Cert { get; }

  public string CACert { get; }

  public string Location { get; }

}
Public Event OnChainElementDownload As OnChainElementDownloadHandler

Public Delegate Sub OnChainElementDownloadHandler(sender As Object, e As AuthenticodesignerChainElementDownloadEventArgs)

Public Class AuthenticodesignerChainElementDownloadEventArgs Inherits EventArgs
  Public ReadOnly Property Cert As String

  Public ReadOnly Property CACert As String

  Public ReadOnly Property Location As String

End Class

Remarks

TBD.

ChainElementNeeded Event (AuthenticodeSigner Component)

TBD

Syntax

public event OnChainElementNeededHandler OnChainElementNeeded;

public delegate void OnChainElementNeededHandler(object sender, AuthenticodesignerChainElementNeededEventArgs e);

public class AuthenticodesignerChainElementNeededEventArgs : EventArgs {
  public string Cert { get; }

  public string CACert { get; }

}
Public Event OnChainElementNeeded As OnChainElementNeededHandler

Public Delegate Sub OnChainElementNeededHandler(sender As Object, e As AuthenticodesignerChainElementNeededEventArgs)

Public Class AuthenticodesignerChainElementNeededEventArgs Inherits EventArgs
  Public ReadOnly Property Cert As String

  Public ReadOnly Property CACert As String

End Class

Remarks

TBD.

Error Event (AuthenticodeSigner Component)

Information about errors during Authenticode signing.

Syntax

public event OnErrorHandler OnError;

public delegate void OnErrorHandler(object sender, AuthenticodesignerErrorEventArgs e);

public class AuthenticodesignerErrorEventArgs : EventArgs {
  public int ErrorCode { get; }

  public string Description { get; }

}
Public Event OnError As OnErrorHandler

Public Delegate Sub OnErrorHandler(sender As Object, e As AuthenticodesignerErrorEventArgs)

Public Class AuthenticodesignerErrorEventArgs Inherits EventArgs
  Public ReadOnly Property ErrorCode As Integer

  Public ReadOnly Property Description As String

End Class

Remarks

This event is fired in case of exceptional conditions during binary processing.

ErrorCode contains an error code and Description contains a textual description of the error.

ExternalSign Event (AuthenticodeSigner Component)

Handles remote or external signing initiated by the SignExternal method or other source.

Syntax

public event OnExternalSignHandler OnExternalSign;

public delegate void OnExternalSignHandler(object sender, AuthenticodesignerExternalSignEventArgs e);

public class AuthenticodesignerExternalSignEventArgs : EventArgs {
  public string OperationId { get; }

  public string HashAlgorithm { get; }

  public string Pars { get; }

  public string Data { get; }

  public string SignedData { get; set; }

}
Public Event OnExternalSign As OnExternalSignHandler

Public Delegate Sub OnExternalSignHandler(sender As Object, e As AuthenticodesignerExternalSignEventArgs)

Public Class AuthenticodesignerExternalSignEventArgs Inherits EventArgs
  Public ReadOnly Property OperationId As String

  Public ReadOnly Property HashAlgorithm As String

  Public ReadOnly Property Pars As String

  Public ReadOnly Property Data As String

  Public Property SignedData As String

End Class

Remarks

Assign a handler to this event if you need to delegate a low-level signing operation to an external, remote, or custom signing engine. Depending on the settings, the handler will receive a hashed or unhashed value to be signed.

The event handler must pass the value of Data to the signer, obtain the signature, and pass it back to the component via SignedData parameter.

OperationId provides a comment about the operation and its origin. It depends on the exact component being used, and may be empty. HashAlgorithm specifies the hash algorithm being used for the operation, and Pars contain algorithm-dependent parameters.

The component uses base16 (hex) encoding for Data, SignedData, and Pars parameters. If your signing engine uses a different input and output encoding, you may need to decode and/or encode the data before and/or after the signing.

A sample MD5 hash encoded in base16: a0dee2a0382afbb09120ffa7ccd8a152 - lower case base16 A0DEE2A0382AFBB09120FFA7CCD8A152 - upper case base16

A sample event handler that uses a .NET RSACryptoServiceProvider class may look like the following: signer.OnExternalSign += (s, e) => { var cert = new X509Certificate2("cert.pfx", "", X509KeyStorageFlags.Exportable); var key = (RSACryptoServiceProvider)cert.PrivateKey; var dataToSign = e.Data.FromBase16String(); var signedData = key.SignHash(dataToSign, "2.16.840.1.101.3.4.2.1"); e.SignedData = signedData.ToBase16String(); };

Notification Event (AuthenticodeSigner Component)

This event notifies the application about an underlying control flow event.

Syntax

public event OnNotificationHandler OnNotification;

public delegate void OnNotificationHandler(object sender, AuthenticodesignerNotificationEventArgs e);

public class AuthenticodesignerNotificationEventArgs : EventArgs {
  public string EventID { get; }

  public string EventParam { get; }

}
Public Event OnNotification As OnNotificationHandler

Public Delegate Sub OnNotificationHandler(sender As Object, e As AuthenticodesignerNotificationEventArgs)

Public Class AuthenticodesignerNotificationEventArgs Inherits EventArgs
  Public ReadOnly Property EventID As String

  Public ReadOnly Property EventParam As String

End Class

Remarks

The component fires this event to let the application know about some event, occurrence, or milestone in the component. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.

The unique identifier of the event is provided in EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the component, the exact action it is performing, or the document being processed, one or both may be omitted.

This component can fire this event with the following EventID values:

TimestampRequestA timestamp is requested from the custom timestamping authority. This event is only fired if TimestampServer was set to a virtual:// URI. The EventParam parameter contains the TSP request (or the plain hash, depending on the value provided to TimestampServer), in base16, that needs to be sent to the TSA.

Use the event handler to send the request to the TSA. Upon receiving the response, assign it, in base16, to the TimestampResponse configuration property.

Start Event (AuthenticodeSigner Component)

This event is fired when the component is about to start the signing process.

Syntax

public event OnStartHandler OnStart;

public delegate void OnStartHandler(object sender, AuthenticodesignerStartEventArgs e);

public class AuthenticodesignerStartEventArgs : EventArgs {
  public int SpecifiedChecksum { get; }

  public int ActualChecksum { get; }

  public bool IsSigned { get; }

  public bool Cancel { get; set; }

}
Public Event OnStart As OnStartHandler

Public Delegate Sub OnStartHandler(sender As Object, e As AuthenticodesignerStartEventArgs)

Public Class AuthenticodesignerStartEventArgs Inherits EventArgs
  Public ReadOnly Property SpecifiedChecksum As Integer

  Public ReadOnly Property ActualChecksum As Integer

  Public ReadOnly Property IsSigned As Boolean

  Public Property Cancel As Boolean

End Class

Remarks

This event marks the start of the signing process over a certain file.

SpecifiedChecksum is the checksum specified in the file itself, ActualChecksum is the actual checksum computed by the component, IsSigned specifies whether the file is already signed, and Cancel allows to stop the operation.

TLSCertValidate Event (AuthenticodeSigner Component)

This event is fired upon receipt of the TLS server's certificate, allowing the user to control its acceptance.

Syntax

public event OnTLSCertValidateHandler OnTLSCertValidate;

public delegate void OnTLSCertValidateHandler(object sender, AuthenticodesignerTLSCertValidateEventArgs e);

public class AuthenticodesignerTLSCertValidateEventArgs : EventArgs {
  public string ServerHostname { get; }

  public string ServerIP { get; }

  public bool Accept { get; set; }

}
Public Event OnTLSCertValidate As OnTLSCertValidateHandler

Public Delegate Sub OnTLSCertValidateHandler(sender As Object, e As AuthenticodesignerTLSCertValidateEventArgs)

Public Class AuthenticodesignerTLSCertValidateEventArgs Inherits EventArgs
  Public ReadOnly Property ServerHostname As String

  Public ReadOnly Property ServerIP As String

  Public Property Accept As Boolean

End Class

Remarks

This event is fired during a TLS handshake. Use TLSServerChain property to access the certificate chain. In general case, components may contact a number of TLS endpoints during their work, depending on their configuration.

Accept is assigned in accordance with the outcome of the internal validation check performed by the component, and can be adjusted if needed.

ValidationProgress Event (AuthenticodeSigner Component)

TBD

Syntax

public event OnValidationProgressHandler OnValidationProgress;

public delegate void OnValidationProgressHandler(object sender, AuthenticodesignerValidationProgressEventArgs e);

public class AuthenticodesignerValidationProgressEventArgs : EventArgs {
  public string ValidationEventType { get; }

  public string Cert { get; }

  public string CACert { get; }

  public bool DoContinue { get; set; }

}
Public Event OnValidationProgress As OnValidationProgressHandler

Public Delegate Sub OnValidationProgressHandler(sender As Object, e As AuthenticodesignerValidationProgressEventArgs)

Public Class AuthenticodesignerValidationProgressEventArgs Inherits EventArgs
  Public ReadOnly Property ValidationEventType As String

  Public ReadOnly Property Cert As String

  Public ReadOnly Property CACert As String

  Public Property DoContinue As Boolean

End Class

Remarks

TBD.

Certificate Type

Provides details of an individual X.509 certificate.

Remarks

This type provides access to X.509 certificate details.

Fields

Bytes
Byte()

Returns raw certificate data in DER format.

CA
Boolean

Indicates whether the certificate has a CA capability (a setting in BasicConstraints extension).

CAKeyID
Byte()

A unique identifier (fingerprint) of the CA certificate's private key.

Authority Key Identifier is a (non-critical) X.509 certificate extension which allows the identification of certificates produced by the same issuer, but with different public keys.

CRLDistributionPoints
String

Locations of the CRL (Certificate Revocation List) distribution points used to check this certificate's validity.

Curve
String

Specifies the elliptic curve of the EC public key.

SB_EC_SECP112R1SECP112R1
SB_EC_SECP112R2SECP112R2
SB_EC_SECP128R1SECP128R1
SB_EC_SECP128R2SECP128R2
SB_EC_SECP160K1SECP160K1
SB_EC_SECP160R1SECP160R1
SB_EC_SECP160R2SECP160R2
SB_EC_SECP192K1SECP192K1
SB_EC_SECP192R1SECP192R1
SB_EC_SECP224K1SECP224K1
SB_EC_SECP224R1SECP224R1
SB_EC_SECP256K1SECP256K1
SB_EC_SECP256R1SECP256R1
SB_EC_SECP384R1SECP384R1
SB_EC_SECP521R1SECP521R1
SB_EC_SECT113R1SECT113R1
SB_EC_SECT113R2SECT113R2
SB_EC_SECT131R1SECT131R1
SB_EC_SECT131R2SECT131R2
SB_EC_SECT163K1SECT163K1
SB_EC_SECT163R1SECT163R1
SB_EC_SECT163R2SECT163R2
SB_EC_SECT193R1SECT193R1
SB_EC_SECT193R2SECT193R2
SB_EC_SECT233K1SECT233K1
SB_EC_SECT233R1SECT233R1
SB_EC_SECT239K1SECT239K1
SB_EC_SECT283K1SECT283K1
SB_EC_SECT283R1SECT283R1
SB_EC_SECT409K1SECT409K1
SB_EC_SECT409R1SECT409R1
SB_EC_SECT571K1SECT571K1
SB_EC_SECT571R1SECT571R1
SB_EC_PRIME192V1PRIME192V1
SB_EC_PRIME192V2PRIME192V2
SB_EC_PRIME192V3PRIME192V3
SB_EC_PRIME239V1PRIME239V1
SB_EC_PRIME239V2PRIME239V2
SB_EC_PRIME239V3PRIME239V3
SB_EC_PRIME256V1PRIME256V1
SB_EC_C2PNB163V1C2PNB163V1
SB_EC_C2PNB163V2C2PNB163V2
SB_EC_C2PNB163V3C2PNB163V3
SB_EC_C2PNB176W1C2PNB176W1
SB_EC_C2TNB191V1C2TNB191V1
SB_EC_C2TNB191V2C2TNB191V2
SB_EC_C2TNB191V3C2TNB191V3
SB_EC_C2ONB191V4C2ONB191V4
SB_EC_C2ONB191V5C2ONB191V5
SB_EC_C2PNB208W1C2PNB208W1
SB_EC_C2TNB239V1C2TNB239V1
SB_EC_C2TNB239V2C2TNB239V2
SB_EC_C2TNB239V3C2TNB239V3
SB_EC_C2ONB239V4C2ONB239V4
SB_EC_C2ONB239V5C2ONB239V5
SB_EC_C2PNB272W1C2PNB272W1
SB_EC_C2PNB304W1C2PNB304W1
SB_EC_C2TNB359V1C2TNB359V1
SB_EC_C2PNB368W1C2PNB368W1
SB_EC_C2TNB431R1C2TNB431R1
SB_EC_NISTP192NISTP192
SB_EC_NISTP224NISTP224
SB_EC_NISTP256NISTP256
SB_EC_NISTP384NISTP384
SB_EC_NISTP521NISTP521
SB_EC_NISTB163NISTB163
SB_EC_NISTB233NISTB233
SB_EC_NISTB283NISTB283
SB_EC_NISTB409NISTB409
SB_EC_NISTB571NISTB571
SB_EC_NISTK163NISTK163
SB_EC_NISTK233NISTK233
SB_EC_NISTK283NISTK283
SB_EC_NISTK409NISTK409
SB_EC_NISTK571NISTK571
SB_EC_GOSTCPTESTGOSTCPTEST
SB_EC_GOSTCPAGOSTCPA
SB_EC_GOSTCPBGOSTCPB
SB_EC_GOSTCPCGOSTCPC
SB_EC_GOSTCPXCHAGOSTCPXCHA
SB_EC_GOSTCPXCHBGOSTCPXCHB
SB_EC_BRAINPOOLP160R1BRAINPOOLP160R1
SB_EC_BRAINPOOLP160T1BRAINPOOLP160T1
SB_EC_BRAINPOOLP192R1BRAINPOOLP192R1
SB_EC_BRAINPOOLP192T1BRAINPOOLP192T1
SB_EC_BRAINPOOLP224R1BRAINPOOLP224R1
SB_EC_BRAINPOOLP224T1BRAINPOOLP224T1
SB_EC_BRAINPOOLP256R1BRAINPOOLP256R1
SB_EC_BRAINPOOLP256T1BRAINPOOLP256T1
SB_EC_BRAINPOOLP320R1BRAINPOOLP320R1
SB_EC_BRAINPOOLP320T1BRAINPOOLP320T1
SB_EC_BRAINPOOLP384R1BRAINPOOLP384R1
SB_EC_BRAINPOOLP384T1BRAINPOOLP384T1
SB_EC_BRAINPOOLP512R1BRAINPOOLP512R1
SB_EC_BRAINPOOLP512T1BRAINPOOLP512T1
SB_EC_CURVE25519CURVE25519
SB_EC_CURVE448CURVE448

Fingerprint
Byte()

Contains the fingerprint (a hash imprint) of this certificate.

FriendlyName
String

Contains an associated alias (friendly name) of the certificate.

HashAlgorithm
String

Specifies the hash algorithm to be used in the operations on the certificate (such as key signing)

SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_MD2MD2
SB_HASH_ALGORITHM_MD4MD4
SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_CRC32CRC32
SB_HASH_ALGORITHM_SSL3SSL3
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_POLY1305POLY1305
SB_HASH_ALGORITHM_SHA3_224SHA3_224
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512
SB_HASH_ALGORITHM_BLAKE2S_128BLAKE2S_128
SB_HASH_ALGORITHM_BLAKE2S_160BLAKE2S_160
SB_HASH_ALGORITHM_BLAKE2S_224BLAKE2S_224
SB_HASH_ALGORITHM_BLAKE2S_256BLAKE2S_256
SB_HASH_ALGORITHM_BLAKE2B_160BLAKE2B_160
SB_HASH_ALGORITHM_BLAKE2B_256BLAKE2B_256
SB_HASH_ALGORITHM_BLAKE2B_384BLAKE2B_384
SB_HASH_ALGORITHM_BLAKE2B_512BLAKE2B_512
SB_HASH_ALGORITHM_SHAKE_128SHAKE_128
SB_HASH_ALGORITHM_SHAKE_256SHAKE_256
SB_HASH_ALGORITHM_SHAKE_128_LENSHAKE_128_LEN
SB_HASH_ALGORITHM_SHAKE_256_LENSHAKE_256_LEN

Issuer
String

The common name of the certificate issuer (CA), typically a company name.

IssuerRDN
String

A collection of information, in the form of [OID, Value] pairs, uniquely identifying the certificate issuer.

KeyAlgorithm
String

Specifies the public key algorithm of this certificate.

SB_CERT_ALGORITHM_ID_RSA_ENCRYPTIONrsaEncryption
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTIONmd2withRSAEncryption
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTIONmd5withRSAEncryption
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTIONsha1withRSAEncryption
SB_CERT_ALGORITHM_ID_DSAid-dsa
SB_CERT_ALGORITHM_ID_DSA_SHA1id-dsa-with-sha1
SB_CERT_ALGORITHM_DH_PUBLICdhpublicnumber
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTIONsha224WithRSAEncryption
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTIONsha256WithRSAEncryption
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTIONsha384WithRSAEncryption
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTIONsha512WithRSAEncryption
SB_CERT_ALGORITHM_ID_RSAPSSid-RSASSA-PSS
SB_CERT_ALGORITHM_ID_RSAOAEPid-RSAES-OAEP
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160ripemd160withRSA
SB_CERT_ALGORITHM_ID_ELGAMALelGamal
SB_CERT_ALGORITHM_SHA1_ECDSAecdsa-with-SHA1
SB_CERT_ALGORITHM_RECOMMENDED_ECDSAecdsa-recommended
SB_CERT_ALGORITHM_SHA224_ECDSAecdsa-with-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSAecdsa-with-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSAecdsa-with-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSAecdsa-with-SHA512
SB_CERT_ALGORITHM_ECid-ecPublicKey
SB_CERT_ALGORITHM_SPECIFIED_ECDSAecdsa-specified
SB_CERT_ALGORITHM_GOST_R3410_1994id-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3410_2001id-GostR3410-2001
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994id-GostR3411-94-with-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001id-GostR3411-94-with-GostR3410-2001
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAINecdsa-plain-SHA1
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAINecdsa-plain-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAINecdsa-plain-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAINecdsa-plain-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAINecdsa-plain-SHA512
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAINecdsa-plain-RIPEMD160
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTIONwhirlpoolWithRSAEncryption
SB_CERT_ALGORITHM_ID_DSA_SHA224id-dsa-with-sha224
SB_CERT_ALGORITHM_ID_DSA_SHA256id-dsa-with-sha256
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSAid-ecdsa-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSAid-ecdsa-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSAid-ecdsa-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSAid-ecdsa-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAINid-ecdsa-plain-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAINid-ecdsa-plain-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAINid-ecdsa-plain-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAINid-ecdsa-plain-with-sha3-512
SB_CERT_ALGORITHM_ID_DSA_SHA3_224id-dsa-with-sha3-224
SB_CERT_ALGORITHM_ID_DSA_SHA3_256id-dsa-with-sha3-256
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSAid-ecdsa-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSAid-ecdsa-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSAid-ecdsa-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSAid-ecdsa-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSAid-ecdsa-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSAid-ecdsa-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSAid-ecdsa-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSAid-ecdsa-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAINid-ecdsa-plain-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAINid-ecdsa-plain-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAINid-ecdsa-plain-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAINid-ecdsa-plain-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAINid-ecdsa-plain-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAINid-ecdsa-plain-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAINid-ecdsa-plain-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAINid-ecdsa-plain-with-blake2b512
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224id-dsa-with-blake2s224
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256id-dsa-with-blake2s256
SB_CERT_ALGORITHM_EDDSA_ED25519id-Ed25519
SB_CERT_ALGORITHM_EDDSA_ED448id-Ed448
SB_CERT_ALGORITHM_EDDSA_ED25519_PHid-Ed25519ph
SB_CERT_ALGORITHM_EDDSA_ED448_PHid-Ed448ph
SB_CERT_ALGORITHM_EDDSAid-EdDSA
SB_CERT_ALGORITHM_EDDSA_SIGNATUREid-EdDSA-sig

KeyBits
Integer

Returns the length of the public key.

KeyFingerprint
Byte()

Returns a fingerprint of the public key contained in the certificate.

KeyUsage
Integer

Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.

This value is a bit mask of the following values:

ckuUnknown0x00000Unknown key usage

ckuDigitalSignature0x00001Digital signature

ckuNonRepudiation0x00002Non-repudiation

ckuKeyEncipherment0x00004Key encipherment

ckuDataEncipherment0x00008Data encipherment

ckuKeyAgreement0x00010Key agreement

ckuKeyCertSign0x00020Certificate signing

ckuCRLSign0x00040Revocation signing

ckuEncipherOnly0x00080Encipher only

ckuDecipherOnly0x00100Decipher only

ckuServerAuthentication0x00200Server authentication

ckuClientAuthentication0x00400Client authentication

ckuCodeSigning0x00800Code signing

ckuEmailProtection0x01000Email protection

ckuTimeStamping0x02000Timestamping

ckuOCSPSigning0x04000OCSP signing

ckuSmartCardLogon0x08000Smartcard logon

ckuKeyPurposeClientAuth0x10000Kerberos - client authentication

ckuKeyPurposeKDC0x20000Kerberos - KDC

KeyValid
Boolean

Returns True if the certificate's key is cryptographically valid, and False otherwise.

OCSPLocations
String

Locations of OCSP (Online Certificate Status Protocol) services that can be used to check this certificate's validity, as recorded by the CA.

OCSPNoCheck
Boolean

TBD.

Origin
Integer

Returns the origin of this certificate.

PolicyIDs
String

Contains identifiers (OIDs) of the applicable certificate policies.

The Certificate Policies extension identifies a sequence of policies under which the certificate has been issued, and which regulate its usage.

PrivateKeyBytes
Byte()

Contains the certificate's private key. It is normal for this property to be empty if the private key is non-exportable.

PrivateKeyExists
Boolean

Indicates whether the certificate has an associated private key.

PrivateKeyExtractable
Boolean

Indicates whether the private key is extractable

PublicKeyBytes
Byte()

Contains the certificate's public key in DER format.

QualifiedStatements
QualifiedStatementsTypes

TBD

SelfSigned
Boolean

Indicates whether the certificate is self-signed (root) or signed by an external CA.

SerialNumber
Byte()

Returns the certificate's serial number.

SigAlgorithm
String

Indicates the algorithm that was used by the CA to sign this certificate.

Subject
String

The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name.

SubjectAlternativeName
String

TBD.

SubjectKeyID
Byte()

Contains a unique identifier (fingerprint) of the certificate's private key.

Subject Key Identifier is a (non-critical) X.509 certificate extension which allows the identification of certificates containing a particular public key. In SecureBlackbox, the unique identifier is represented with a SHA1 hash of the bit string of the subject public key.

SubjectRDN
String

A collection of information, in the form of [OID, Value] pairs, uniquely identifying the certificate holder (subject).

ValidFrom
String

The time point at which the certificate becomes valid, in UTC.

ValidTo
String

The time point at which the certificate expires, in UTC.

Constructors

public Certificate(byte[] bytes, int startIndex, int count, string password);
Public Certificate(ByVal Bytes As Byte(), ByVal StartIndex As Integer, ByVal Count As Integer, ByVal Password As String)

Loads the X.509 certificate from a memory buffer. Bytes is a buffer containing the raw certificate data. StartIndex and Count specify the starting position and number of bytes to be read from the buffer, respectively. Password is a password encrypting the certificate.

public Certificate(byte[] certBytes, int certStartIndex, int certCount, byte[] keyBytes, int keyStartIndex, int keyCount, string password);
Public Certificate(ByVal CertBytes As Byte(), ByVal CertStartIndex As Integer, ByVal CertCount As Integer, ByVal KeyBytes As Byte(), ByVal KeyStartIndex As Integer, ByVal KeyCount As Integer, ByVal Password As String)

Loads the X.509 certificate from a memory buffer. CertBytes is a buffer containing the raw certificate data. CertStartIndex and CertCount specify the number of bytes to be read from the buffer, respectively. KeyBytes is a buffer containing the private key data. KeyStartIndex and KeyCount specify the starting position and number of bytes to be read from the buffer, respectively. Password is a password encrypting the certificate.

public Certificate(byte[] bytes, int startIndex, int count);
Public Certificate(ByVal Bytes As Byte(), ByVal StartIndex As Integer, ByVal Count As Integer)

Loads the X.509 certificate from a memory buffer. Bytes is a buffer containing the raw certificate data. StartIndex and Count specify the starting position and number of bytes to be read from the buffer, respectively.

public Certificate(string path, string password);
Public Certificate(ByVal Path As String, ByVal Password As String)

Loads the X.509 certificate from a file. Path specifies the full path to the file containing the certificate data. Password is a password encrypting the certificate.

public Certificate(string certPath, string keyPath, string password);
Public Certificate(ByVal CertPath As String, ByVal KeyPath As String, ByVal Password As String)

Loads the X.509 certificate from a file. CertPath specifies the full path to the file containing the certificate data. KeyPath specifies the full path to the file containing the private key. Password is a password encrypting the certificate.

public Certificate(string path);
Public Certificate(ByVal Path As String)

Loads the X.509 certificate from a file. Path specifies the full path to the file containing the certificate data.

public Certificate(System.IO.Stream stream);
Public Certificate(ByVal Stream As System.IO.Stream)

Loads the X.509 certificate from a stream. Stream is a stream containing the certificate data.

public Certificate(System.IO.Stream stream, string password);
Public Certificate(ByVal Stream As System.IO.Stream, ByVal Password As String)

Loads the X.509 certificate from a stream. Stream is a stream containing the certificate data. Password is a password encrypting the certificate.

public Certificate(System.IO.Stream certStream, System.IO.Stream keyStream, string password);
Public Certificate(ByVal CertStream As System.IO.Stream, ByVal KeyStream As System.IO.Stream, ByVal Password As String)

Loads the X.509 certificate from a stream. CertStream is a stream containing the certificate data. KeyStream is a stream containing the private key. Password is a password encrypting the certificate.

public Certificate();
Public Certificate()

Creates a new object with default field values.

CRL Type

Represents a Certificate Revocation List.

Remarks

CRLs store information about revoked certificates, i.e., certificates that have been identified as invalid by their issuing certificate authority (CA) for any number of reasons.

Each CRL object lists certificates from a single CA and identifies them by their serial numbers. A CA may or may not publish a CRL, may publish several CRLs, or may publish the same CRL in multiple locations.

Unlike OCSP responses, CRLs only list certificates that have been revoked. They do not list certificates that are still valid.

Fields

Bytes
Byte()

Returns raw CRL data in DER format.

CAKeyID
Byte()

A unique identifier (fingerprint) of the CA certificate's private key, if present in the CRL.

EntryCount
Integer

Returns the number of certificate status entries in the CRL.

Issuer
String

The common name of the CRL issuer (CA), typically a company name.

IssuerRDN
String

A collection of information, in the form of [OID, Value] pairs, uniquely identifying the CRL issuer.

Location
String

The URL that the CRL was downloaded from.

NextUpdate
String

The planned time and date of the next version of this CRL to be published.

SigAlgorithm
String

The public key algorithm that was used by the CA to sign this CRL.

TBS
Byte()

The to-be-signed part of the CRL (the CRL without the signature part).

ThisUpdate
String

The date and time at which this version of the CRL was published.

Constructors

public CRL(byte[] bytes, int startIndex, int count);
Public CRL(ByVal Bytes As Byte(), ByVal StartIndex As Integer, ByVal Count As Integer)

Creates a CRL object from a memory buffer. Bytes is a buffer containing raw (DER) CRL data, StartIndex and Count specify the starting position and the length of the CRL data in the buffer, respectively.

public CRL(string location);
Public CRL(ByVal Location As String)

Creates a CRL object by downloading it from a remote location.

public CRL(System.IO.Stream stream);
Public CRL(ByVal Stream As System.IO.Stream)

Creates a CRL object from data contained in a stream.

public CRL();
Public CRL()

Creates an empty CRL object.

ExternalCrypto Type

Specifies the parameters of external cryptographic calls.

Remarks

External cryptocalls are used in a Distributed Cryptography (DC) subsystem, which allows the delegation of security operations to the remote agent. For instance, it can be used to compute the signature value on the server, while retaining the client's private key locally.

Fields

AsyncDocumentID
String

Specifies the document ID for SignAsyncEnd() call

Use this property when working with multi-signature DCAuth requests and responses to uniquely identify documents signed within a larger batch. This value helps ASiCSigner identify the correct signature in the returned batch of responses. If using batched requests, make sure to set this property to the same value on both pre-signing (SignAsyncBegin) and completion (SignAsyncEnd) stages.

CustomParams
String

Custom parameters to be passed to the signing service (uninterpreted).

Data
String

Additional data to be included in the async state and mirrored back by the requestor

ExternalHashCalculation
Boolean

Specifies whether the message hash is to be calculated at the external endpoint. Please note that this mode is not supported by all components. In particular, components operating with larger objects (PDFSigner, CAdESSigner, XAdESSigner) do not support it.

HashAlgorithm
String

Specifies the request's signature hash algorithm.

SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_MD2MD2
SB_HASH_ALGORITHM_MD4MD4
SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_CRC32CRC32
SB_HASH_ALGORITHM_SSL3SSL3
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_POLY1305POLY1305
SB_HASH_ALGORITHM_SHA3_224SHA3_224
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512
SB_HASH_ALGORITHM_BLAKE2S_128BLAKE2S_128
SB_HASH_ALGORITHM_BLAKE2S_160BLAKE2S_160
SB_HASH_ALGORITHM_BLAKE2S_224BLAKE2S_224
SB_HASH_ALGORITHM_BLAKE2S_256BLAKE2S_256
SB_HASH_ALGORITHM_BLAKE2B_160BLAKE2B_160
SB_HASH_ALGORITHM_BLAKE2B_256BLAKE2B_256
SB_HASH_ALGORITHM_BLAKE2B_384BLAKE2B_384
SB_HASH_ALGORITHM_BLAKE2B_512BLAKE2B_512
SB_HASH_ALGORITHM_SHAKE_128SHAKE_128
SB_HASH_ALGORITHM_SHAKE_256SHAKE_256
SB_HASH_ALGORITHM_SHAKE_128_LENSHAKE_128_LEN
SB_HASH_ALGORITHM_SHAKE_256_LENSHAKE_256_LEN

KeyID
String

The ID of the pre-shared key used for DC request authentication.

Asynchronous DCAuth-driven communication requires that parties authenticate each other with a secret pre-shared cryptographic key. This provides extra protection layer for the protocol and diminishes the risk of private key becoming abused by foreign parties. Use this property to provide the pre-shared key identifier, and use KeySecret to pass the key itself.

The same KeyID/KeySecret pair should be used on the DCAuth side for the signing requests to be accepted.

Note: The KeyID/KeySecret scheme is very similar to the AuthKey scheme used in various Cloud service providers to authenticate users.

Example: signer.ExternalCrypto.KeyID = "MainSigningKey"; signer.ExternalCrypto.KeySecret = "abcdef0123456789";

KeySecret
String

The pre-shared key used for DC request authentication. This key must be set and match the key used by the DCAuth counterpart for the scheme to work.

Read more about configuring authentication in the KeyID topic.

Method
AsyncSignMethods

Specifies the asynchronous signing method. This is typically defined by the DC server capabilities and setup.

Available options:

asmdPKCS10
asmdPKCS71

Mode
ExternalCryptoModes

Specifies the external cryptography mode.

Available options:

ecmDefaultThe default value (0)
ecmDisabledDo not use DC or external signing (1)
ecmGenericGeneric external signing with OnExternalSign event (2)
ecmDCAuthDCAuth signing (3)
ecmDCAuthJSONDCAuth signing in JSON format (4)

PublicKeyAlgorithm
String

Provide public key algorithm here if the certificate is not available on the pre-signing stage.

SB_CERT_ALGORITHM_ID_RSA_ENCRYPTIONrsaEncryption
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTIONmd2withRSAEncryption
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTIONmd5withRSAEncryption
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTIONsha1withRSAEncryption
SB_CERT_ALGORITHM_ID_DSAid-dsa
SB_CERT_ALGORITHM_ID_DSA_SHA1id-dsa-with-sha1
SB_CERT_ALGORITHM_DH_PUBLICdhpublicnumber
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTIONsha224WithRSAEncryption
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTIONsha256WithRSAEncryption
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTIONsha384WithRSAEncryption
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTIONsha512WithRSAEncryption
SB_CERT_ALGORITHM_ID_RSAPSSid-RSASSA-PSS
SB_CERT_ALGORITHM_ID_RSAOAEPid-RSAES-OAEP
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160ripemd160withRSA
SB_CERT_ALGORITHM_ID_ELGAMALelGamal
SB_CERT_ALGORITHM_SHA1_ECDSAecdsa-with-SHA1
SB_CERT_ALGORITHM_RECOMMENDED_ECDSAecdsa-recommended
SB_CERT_ALGORITHM_SHA224_ECDSAecdsa-with-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSAecdsa-with-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSAecdsa-with-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSAecdsa-with-SHA512
SB_CERT_ALGORITHM_ECid-ecPublicKey
SB_CERT_ALGORITHM_SPECIFIED_ECDSAecdsa-specified
SB_CERT_ALGORITHM_GOST_R3410_1994id-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3410_2001id-GostR3410-2001
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994id-GostR3411-94-with-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001id-GostR3411-94-with-GostR3410-2001
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAINecdsa-plain-SHA1
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAINecdsa-plain-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAINecdsa-plain-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAINecdsa-plain-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAINecdsa-plain-SHA512
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAINecdsa-plain-RIPEMD160
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTIONwhirlpoolWithRSAEncryption
SB_CERT_ALGORITHM_ID_DSA_SHA224id-dsa-with-sha224
SB_CERT_ALGORITHM_ID_DSA_SHA256id-dsa-with-sha256
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSAid-ecdsa-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSAid-ecdsa-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSAid-ecdsa-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSAid-ecdsa-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAINid-ecdsa-plain-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAINid-ecdsa-plain-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAINid-ecdsa-plain-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAINid-ecdsa-plain-with-sha3-512
SB_CERT_ALGORITHM_ID_DSA_SHA3_224id-dsa-with-sha3-224
SB_CERT_ALGORITHM_ID_DSA_SHA3_256id-dsa-with-sha3-256
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSAid-ecdsa-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSAid-ecdsa-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSAid-ecdsa-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSAid-ecdsa-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSAid-ecdsa-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSAid-ecdsa-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSAid-ecdsa-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSAid-ecdsa-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAINid-ecdsa-plain-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAINid-ecdsa-plain-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAINid-ecdsa-plain-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAINid-ecdsa-plain-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAINid-ecdsa-plain-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAINid-ecdsa-plain-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAINid-ecdsa-plain-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAINid-ecdsa-plain-with-blake2b512
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224id-dsa-with-blake2s224
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256id-dsa-with-blake2s256
SB_CERT_ALGORITHM_EDDSA_ED25519id-Ed25519
SB_CERT_ALGORITHM_EDDSA_ED448id-Ed448
SB_CERT_ALGORITHM_EDDSA_ED25519_PHid-Ed25519ph
SB_CERT_ALGORITHM_EDDSA_ED448_PHid-Ed448ph
SB_CERT_ALGORITHM_EDDSAid-EdDSA
SB_CERT_ALGORITHM_EDDSA_SIGNATUREid-EdDSA-sig

Constructors

public ExternalCrypto();
Public ExternalCrypto()

Creates a new ExternalCrypto object with default field values.

OCSPResponse Type

Represents a single OCSP response originating from an OCSP responder.

Remarks

OCSP is a protocol that allows verification of certificate status in real-time, and is an alternative to Certificate Revocation Lists (CRL).

An OCSP response is a snapshot of the certificate status at a given time.

Fields

Bytes
Byte()

Buffer containing raw OCSP response data.

EntryCount
Integer

The number of SingleResponse elements contained in this OCSP response. Each SingleResponse element corresponds to a certificate status.

Issuer
String

Indicates the issuer of this response (a CA or its authorized representative).

IssuerRDN
String

Indicates the RDN of the issuer of this response (a CA or its authorized representative).

Location
String

Location of the OCSP responder.

ProducedAt
String

Specifies the time when the response was produced, in UTC.

Constructors

public OCSPResponse(byte[] bytes, int startIndex, int count);
Public OCSPResponse(ByVal Bytes As Byte(), ByVal StartIndex As Integer, ByVal Count As Integer)

Initializes the response from a memory buffer. Bytes is a buffer containing raw OCSP response data, StartIndex and Count specify the starting position and the number of bytes to be read from this buffer.

public OCSPResponse(string location);
Public OCSPResponse(ByVal Location As String)

Downloads an OCSP response from a remote location.

public OCSPResponse(System.IO.Stream stream);
Public OCSPResponse(ByVal Stream As System.IO.Stream)

Initializes the response with the data from a stream.

public OCSPResponse();
Public OCSPResponse()

Creates an empty OCSP response object.

ProxySettings Type

A container for proxy server settings.

Remarks

This type exposes a collection of properties for tuning up the proxy server configuration.

Fields

Address
String

The IP address of the proxy server.

Authentication
ProxyAuthTypes

The authentication type used by the proxy server.

patNoAuthentication0
patBasic1
patDigest2
patNTLM3

Password
String

The password to authenticate to the proxy server.

Port
Integer

The port on the proxy server to connect to.

ProxyType
ProxyTypes

The type of the proxy server.

The WebTunnel proxy is also known as HTTPS proxy. Unlike HTTP proxy, HTTPS proxy (WebTunnel) provides end-to-end security.

cptNone0
cptSocks41
cptSocks52
cptWebTunnel3
cptHTTP4

RequestHeaders
String

Contains HTTP request headers for WebTunnel and HTTP proxy.

ResponseBody
String

Contains the HTTP or HTTPS (WebTunnel) proxy response body.

ResponseHeaders
String

Contains response headers received from an HTTP or HTTPS (WebTunnel) proxy server.

UseIPv6
Boolean

Specifies whether IPv6 should be used when connecting through the proxy.

UseProxy
Boolean

Enables or disables proxy-driven connection.

Username
String

Specifies the username credential for proxy authentication.

Constructors

public ProxySettings();
Public ProxySettings()

Creates a new ProxySettings object.

SocketSettings Type

A container for the socket settings.

Remarks

This type is a container for socket-layer parameters.

Fields

DNSMode
DNSResolveModes

Selects the DNS resolver to use: the component's (secure) built-in one, or the one provided by the system.

dmAuto0
dmPlatform1
dmOwn2
dmOwnSecure3

DNSPort
Integer

Specifies the port number to be used for sending queries to the DNS server.

DNSQueryTimeout
Integer

The timeout (in milliseconds) for each DNS query. The value of 0 indicates the infinite timeout.

DNSServers
String

The addresses of DNS servers to use for address resolution, separated by commas or semicolons.

DNSTotalTimeout
Integer

The timeout (in milliseconds) for the whole resolution process. The value of 0 indicates the infinite timeout.

IncomingSpeedLimit
Integer

The maximum number of bytes to read from the socket, per second.

LocalAddress
String

The local network interface to bind the socket to.

LocalPort
Integer

The local port number to bind the socket to.

OutgoingSpeedLimit
Integer

The maximum number of bytes to write to the socket, per second.

Timeout
Integer

The maximum period of waiting, in milliseconds, after which the socket operation is considered unsuccessful.

If Timeout is set to 0, a socket operation will expire after the system-default timeout (2 hrs 8 min for TCP stack).

UseIPv6
Boolean

Enables or disables IP protocol version 6.

Constructors

public SocketSettings();
Public SocketSettings()

Creates a new SocketSettings object.

StringNameValuePair Type

A simple name-value pair object.

Remarks

The component represents a name-value string pair used in a variety of network components.

Fields

Name
String

The name element in a (name, value) pair.

Value
String

The value element in a (name, value) pair.

Constructors

public StringNameValuePair(string name, string value);
Public StringNameValuePair(ByVal Name As String, ByVal Value As String)

Creates a name-value pair from a name and a value.

Creates an empty name-value object.

TLSSettings Type

A container for TLS connection settings.

Remarks

TLS (Transport Layer Security) protocol provides security for information exchanged over insecure connections such as TCP/IP.

Fields

AutoValidateCertificates
Boolean

Specifies whether server-side TLS certificates should be validated automatically using internal validation rules.

BaseConfiguration
SecureTransportPredefinedConfigurations

Selects the base configuration for the TLS settings. Several profiles are on offer, tuned up for different purposes, such as high security or higher compatibility.

stpcDefault0
stpcCompatible1
stpcComprehensiveInsecure2
stpcHighlySecure3

Ciphersuites
String

A list of ciphersuites separated with commas or semicolons. Each ciphersuite in the list may be prefixed with a minus sign (-) to indicate that the ciphersuite should be disabled rather than enabled. Besides the specific ciphersuite modifiers, this property supports the all (and -all) aliases that allow to blanketly enable or disable all ciphersuites at once.

Note: the list of ciphersuites provided to this property alters the baseline list of ciphersuites as defined by BaseConfiguration. Remember to start your ciphersuite string with -all; if you need to only enable a specific fixed set of ciphersuites. The list of supported ciphersuites is provided below:

  • NULL_NULL_NULL
  • RSA_NULL_MD5
  • RSA_NULL_SHA
  • RSA_RC4_MD5
  • RSA_RC4_SHA
  • RSA_RC2_MD5
  • RSA_IDEA_MD5
  • RSA_IDEA_SHA
  • RSA_DES_MD5
  • RSA_DES_SHA
  • RSA_3DES_MD5
  • RSA_3DES_SHA
  • RSA_AES128_SHA
  • RSA_AES256_SHA
  • DH_DSS_DES_SHA
  • DH_DSS_3DES_SHA
  • DH_DSS_AES128_SHA
  • DH_DSS_AES256_SHA
  • DH_RSA_DES_SHA
  • DH_RSA_3DES_SHA
  • DH_RSA_AES128_SHA
  • DH_RSA_AES256_SHA
  • DHE_DSS_DES_SHA
  • DHE_DSS_3DES_SHA
  • DHE_DSS_AES128_SHA
  • DHE_DSS_AES256_SHA
  • DHE_RSA_DES_SHA
  • DHE_RSA_3DES_SHA
  • DHE_RSA_AES128_SHA
  • DHE_RSA_AES256_SHA
  • DH_ANON_RC4_MD5
  • DH_ANON_DES_SHA
  • DH_ANON_3DES_SHA
  • DH_ANON_AES128_SHA
  • DH_ANON_AES256_SHA
  • RSA_RC2_MD5_EXPORT
  • RSA_RC4_MD5_EXPORT
  • RSA_DES_SHA_EXPORT
  • DH_DSS_DES_SHA_EXPORT
  • DH_RSA_DES_SHA_EXPORT
  • DHE_DSS_DES_SHA_EXPORT
  • DHE_RSA_DES_SHA_EXPORT
  • DH_ANON_RC4_MD5_EXPORT
  • DH_ANON_DES_SHA_EXPORT
  • RSA_CAMELLIA128_SHA
  • DH_DSS_CAMELLIA128_SHA
  • DH_RSA_CAMELLIA128_SHA
  • DHE_DSS_CAMELLIA128_SHA
  • DHE_RSA_CAMELLIA128_SHA
  • DH_ANON_CAMELLIA128_SHA
  • RSA_CAMELLIA256_SHA
  • DH_DSS_CAMELLIA256_SHA
  • DH_RSA_CAMELLIA256_SHA
  • DHE_DSS_CAMELLIA256_SHA
  • DHE_RSA_CAMELLIA256_SHA
  • DH_ANON_CAMELLIA256_SHA
  • PSK_RC4_SHA
  • PSK_3DES_SHA
  • PSK_AES128_SHA
  • PSK_AES256_SHA
  • DHE_PSK_RC4_SHA
  • DHE_PSK_3DES_SHA
  • DHE_PSK_AES128_SHA
  • DHE_PSK_AES256_SHA
  • RSA_PSK_RC4_SHA
  • RSA_PSK_3DES_SHA
  • RSA_PSK_AES128_SHA
  • RSA_PSK_AES256_SHA
  • RSA_SEED_SHA
  • DH_DSS_SEED_SHA
  • DH_RSA_SEED_SHA
  • DHE_DSS_SEED_SHA
  • DHE_RSA_SEED_SHA
  • DH_ANON_SEED_SHA
  • SRP_SHA_3DES_SHA
  • SRP_SHA_RSA_3DES_SHA
  • SRP_SHA_DSS_3DES_SHA
  • SRP_SHA_AES128_SHA
  • SRP_SHA_RSA_AES128_SHA
  • SRP_SHA_DSS_AES128_SHA
  • SRP_SHA_AES256_SHA
  • SRP_SHA_RSA_AES256_SHA
  • SRP_SHA_DSS_AES256_SHA
  • ECDH_ECDSA_NULL_SHA
  • ECDH_ECDSA_RC4_SHA
  • ECDH_ECDSA_3DES_SHA
  • ECDH_ECDSA_AES128_SHA
  • ECDH_ECDSA_AES256_SHA
  • ECDHE_ECDSA_NULL_SHA
  • ECDHE_ECDSA_RC4_SHA
  • ECDHE_ECDSA_3DES_SHA
  • ECDHE_ECDSA_AES128_SHA
  • ECDHE_ECDSA_AES256_SHA
  • ECDH_RSA_NULL_SHA
  • ECDH_RSA_RC4_SHA
  • ECDH_RSA_3DES_SHA
  • ECDH_RSA_AES128_SHA
  • ECDH_RSA_AES256_SHA
  • ECDHE_RSA_NULL_SHA
  • ECDHE_RSA_RC4_SHA
  • ECDHE_RSA_3DES_SHA
  • ECDHE_RSA_AES128_SHA
  • ECDHE_RSA_AES256_SHA
  • ECDH_ANON_NULL_SHA
  • ECDH_ANON_RC4_SHA
  • ECDH_ANON_3DES_SHA
  • ECDH_ANON_AES128_SHA
  • ECDH_ANON_AES256_SHA
  • RSA_NULL_SHA256
  • RSA_AES128_SHA256
  • RSA_AES256_SHA256
  • DH_DSS_AES128_SHA256
  • DH_RSA_AES128_SHA256
  • DHE_DSS_AES128_SHA256
  • DHE_RSA_AES128_SHA256
  • DH_DSS_AES256_SHA256
  • DH_RSA_AES256_SHA256
  • DHE_DSS_AES256_SHA256
  • DHE_RSA_AES256_SHA256
  • DH_ANON_AES128_SHA256
  • DH_ANON_AES256_SHA256
  • RSA_AES128_GCM_SHA256
  • RSA_AES256_GCM_SHA384
  • DHE_RSA_AES128_GCM_SHA256
  • DHE_RSA_AES256_GCM_SHA384
  • DH_RSA_AES128_GCM_SHA256
  • DH_RSA_AES256_GCM_SHA384
  • DHE_DSS_AES128_GCM_SHA256
  • DHE_DSS_AES256_GCM_SHA384
  • DH_DSS_AES128_GCM_SHA256
  • DH_DSS_AES256_GCM_SHA384
  • DH_ANON_AES128_GCM_SHA256
  • DH_ANON_AES256_GCM_SHA384
  • ECDHE_ECDSA_AES128_SHA256
  • ECDHE_ECDSA_AES256_SHA384
  • ECDH_ECDSA_AES128_SHA256
  • ECDH_ECDSA_AES256_SHA384
  • ECDHE_RSA_AES128_SHA256
  • ECDHE_RSA_AES256_SHA384
  • ECDH_RSA_AES128_SHA256
  • ECDH_RSA_AES256_SHA384
  • ECDHE_ECDSA_AES128_GCM_SHA256
  • ECDHE_ECDSA_AES256_GCM_SHA384
  • ECDH_ECDSA_AES128_GCM_SHA256
  • ECDH_ECDSA_AES256_GCM_SHA384
  • ECDHE_RSA_AES128_GCM_SHA256
  • ECDHE_RSA_AES256_GCM_SHA384
  • ECDH_RSA_AES128_GCM_SHA256
  • ECDH_RSA_AES256_GCM_SHA384
  • PSK_AES128_GCM_SHA256
  • PSK_AES256_GCM_SHA384
  • DHE_PSK_AES128_GCM_SHA256
  • DHE_PSK_AES256_GCM_SHA384
  • RSA_PSK_AES128_GCM_SHA256
  • RSA_PSK_AES256_GCM_SHA384
  • PSK_AES128_SHA256
  • PSK_AES256_SHA384
  • PSK_NULL_SHA256
  • PSK_NULL_SHA384
  • DHE_PSK_AES128_SHA256
  • DHE_PSK_AES256_SHA384
  • DHE_PSK_NULL_SHA256
  • DHE_PSK_NULL_SHA384
  • RSA_PSK_AES128_SHA256
  • RSA_PSK_AES256_SHA384
  • RSA_PSK_NULL_SHA256
  • RSA_PSK_NULL_SHA384
  • RSA_CAMELLIA128_SHA256
  • DH_DSS_CAMELLIA128_SHA256
  • DH_RSA_CAMELLIA128_SHA256
  • DHE_DSS_CAMELLIA128_SHA256
  • DHE_RSA_CAMELLIA128_SHA256
  • DH_ANON_CAMELLIA128_SHA256
  • RSA_CAMELLIA256_SHA256
  • DH_DSS_CAMELLIA256_SHA256
  • DH_RSA_CAMELLIA256_SHA256
  • DHE_DSS_CAMELLIA256_SHA256
  • DHE_RSA_CAMELLIA256_SHA256
  • DH_ANON_CAMELLIA256_SHA256
  • ECDHE_ECDSA_CAMELLIA128_SHA256
  • ECDHE_ECDSA_CAMELLIA256_SHA384
  • ECDH_ECDSA_CAMELLIA128_SHA256
  • ECDH_ECDSA_CAMELLIA256_SHA384
  • ECDHE_RSA_CAMELLIA128_SHA256
  • ECDHE_RSA_CAMELLIA256_SHA384
  • ECDH_RSA_CAMELLIA128_SHA256
  • ECDH_RSA_CAMELLIA256_SHA384
  • RSA_CAMELLIA128_GCM_SHA256
  • RSA_CAMELLIA256_GCM_SHA384
  • DHE_RSA_CAMELLIA128_GCM_SHA256
  • DHE_RSA_CAMELLIA256_GCM_SHA384
  • DH_RSA_CAMELLIA128_GCM_SHA256
  • DH_RSA_CAMELLIA256_GCM_SHA384
  • DHE_DSS_CAMELLIA128_GCM_SHA256
  • DHE_DSS_CAMELLIA256_GCM_SHA384
  • DH_DSS_CAMELLIA128_GCM_SHA256
  • DH_DSS_CAMELLIA256_GCM_SHA384
  • DH_anon_CAMELLIA128_GCM_SHA256
  • DH_anon_CAMELLIA256_GCM_SHA384
  • ECDHE_ECDSA_CAMELLIA128_GCM_SHA256
  • ECDHE_ECDSA_CAMELLIA256_GCM_SHA384
  • ECDH_ECDSA_CAMELLIA128_GCM_SHA256
  • ECDH_ECDSA_CAMELLIA256_GCM_SHA384
  • ECDHE_RSA_CAMELLIA128_GCM_SHA256
  • ECDHE_RSA_CAMELLIA256_GCM_SHA384
  • ECDH_RSA_CAMELLIA128_GCM_SHA256
  • ECDH_RSA_CAMELLIA256_GCM_SHA384
  • PSK_CAMELLIA128_GCM_SHA256
  • PSK_CAMELLIA256_GCM_SHA384
  • DHE_PSK_CAMELLIA128_GCM_SHA256
  • DHE_PSK_CAMELLIA256_GCM_SHA384
  • RSA_PSK_CAMELLIA128_GCM_SHA256
  • RSA_PSK_CAMELLIA256_GCM_SHA384
  • PSK_CAMELLIA128_SHA256
  • PSK_CAMELLIA256_SHA384
  • DHE_PSK_CAMELLIA128_SHA256
  • DHE_PSK_CAMELLIA256_SHA384
  • RSA_PSK_CAMELLIA128_SHA256
  • RSA_PSK_CAMELLIA256_SHA384
  • ECDHE_PSK_CAMELLIA128_SHA256
  • ECDHE_PSK_CAMELLIA256_SHA384
  • ECDHE_PSK_RC4_SHA
  • ECDHE_PSK_3DES_SHA
  • ECDHE_PSK_AES128_SHA
  • ECDHE_PSK_AES256_SHA
  • ECDHE_PSK_AES128_SHA256
  • ECDHE_PSK_AES256_SHA384
  • ECDHE_PSK_NULL_SHA
  • ECDHE_PSK_NULL_SHA256
  • ECDHE_PSK_NULL_SHA384
  • ECDHE_RSA_CHACHA20_POLY1305_SHA256
  • ECDHE_ECDSA_CHACHA20_POLY1305_SHA256
  • DHE_RSA_CHACHA20_POLY1305_SHA256
  • PSK_CHACHA20_POLY1305_SHA256
  • ECDHE_PSK_CHACHA20_POLY1305_SHA256
  • DHE_PSK_CHACHA20_POLY1305_SHA256
  • RSA_PSK_CHACHA20_POLY1305_SHA256
  • AES128_GCM_SHA256
  • AES256_GCM_SHA384
  • CHACHA20_POLY1305_SHA256
  • AES128_CCM_SHA256
  • AES128_CCM8_SHA256

ECCurves
String

Defines the elliptic curves to enable.

Extensions
String

Provides access to TLS extensions.

ForceResumeIfDestinationChanges
Boolean

Whether to force TLS session resumption when the destination address changes.

PreSharedIdentity
String

Defines the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.

PreSharedKey
String

Contains the pre-shared for the PSK (Pre-Shared Key) key-exchange mechanism, encoded with base16.

PreSharedKeyCiphersuite
String

Defines the ciphersuite used for PSK (Pre-Shared Key) negotiation.

RenegotiationAttackPreventionMode
RenegotiationAttackPreventionModes

Selects renegotiation attack prevention mechanism.

The following options are available:

crapmCompatible0TLS 1.0 and 1.1 compatibility mode (renegotiation indication extension is disabled).
crapmStrict1Renegotiation attack prevention is enabled and enforced.
crapmAuto2Automatically choose whether to enable or disable renegotiation attack prevention.

RevocationCheck
RevocationCheckKinds

Specifies the kind(s) of revocation check to perform.

Revocation checking is necessary to ensure the integrity of the chain and obtain up-to-date certificate validity and trustworthiness information.

crcNone (0)No revocation checking
crcAuto (1)Automatic mode selection. Currently this maps to crcAnyOCSPOrCRL, but it may change in the future.
crcAllCRL (2)Check all provided CRL endpoints for all chain certificates.
crcAllOCSP (3)Check all provided OCSP endpoints for all chain certificates.
crcAllCRLAndOCSP (4)Check all CRL and OCSP endpoints for all chain certificates.
crcAnyCRL (5)At least one CRL check for every certificate in the chain must succeed.
crcAnyOCSP (6)At least one OCSP check for every certificate in the chain must succeed.
crcAnyCRLOrOCSP (7)At least one CRL or OCSP check for every certificate in the chain must succeed. CRL endpoints are checked first.
crcAnyOCSPOrCRL (8)At least one CRL or OCSP check for every certificate in the chain must succeed. OCSP endpoints are checked first.

This setting controls the way the revocation checks are performed. Typically certificates come with two types of revocation information sources: CRL (certificate revocation lists) and OCSP responders. CRLs are static objects periodically published by the CA at some online location. OCSP responders are active online services maintained by the CA that can provide up-to-date information on certificate statuses in near real time.

There are some conceptual differences between the two. CRLs are normally larger in size. Their use involves some latency because there is normally some delay between the time when a certificate was revoked and the time the subsequent CRL mentioning that is published. The benefits of CRL is that the same object can provide statuses for all certificates issued by a particular CA, and that the whole technology is much simpler than OCSP (and thus is supported by more CAs).

This setting lets you adjust the validation course by including or excluding certain types of revocation sources from the validation process. The crcAnyOCSPOrCRL setting (give preference to faster OCSP route and only demand one source to succeed) is a good choice for most of typical validation environments. The "crcAll*" modes are much stricter, and may be used in scenarios where bulletproof validity information is essential.

SSLOptions
Integer

Various SSL (TLS) protocol options, set of

cssloExpectShutdownMessage0x001Wait for the close-notify message when shutting down the connection

cssloOpenSSLDTLSWorkaround0x002(DEPRECATED) Use a DTLS version workaround when talking to very old OpenSSL versions

cssloDisableKexLengthAlignment0x004Do not align the client-side PMS by the RSA modulus size. It is unlikely that you will ever need to adjust it.

cssloForceUseOfClientCertHashAlg0x008Enforce use of client certificate hash algorithm. It is unlikely that you will ever need to adjust it.

cssloAutoAddServerNameExtension0x010Automatically add server name extension when known

cssloAcceptTrustedSRPPrimesOnly0x020Accept trusted SRP primes only

cssloDisableSignatureAlgorithmsExtension0x040Disable (not send) signature algorithms extension. It is unlikely that you will ever need to adjust it.

cssloIntolerateHigherProtocolVersions0x080(server option) Do not allow fallback from TLS versions higher than currently enabled

cssloStickToPrefCertHashAlg0x100Stick to preferred certificate hash algorithms

cssloNoImplicitTLS12Fallback0x200Disable implicit TLS 1.3 to 1.2 fallbacks

cssloUseHandshakeBatches0x400Send handshake message as large batches rather than individually

TLSMode
SSLModes

Specifies the TLS mode to use.

smDefault0
smNoTLS1Do not use TLS
smExplicitTLS2Connect to the server without any encryption and then request an SSL session.
smImplicitTLS3Connect to the specified port, and establish the SSL session at once.

UseExtendedMasterSecret
Boolean

Enables Extended Master Secret Extension, as defined in RFC 7627.

UseSessionResumption
Boolean

Enables or disables TLS session resumption capability.

Versions
Integer

Th SSL/TLS versions to enable by default.

csbSSL20x01SSL 2

csbSSL30x02SSL 3

csbTLS10x04TLS 1.0

csbTLS110x08TLS 1.1

csbTLS120x10TLS 1.2

csbTLS130x20TLS 1.3

Constructors

public TLSSettings();
Public TLSSettings()

Creates a new TLSSettings object.

Configuration Settings (AuthenticodeSigner Component)

The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

AuthenticodeSigner Configuration Settings

AttributeConflictResolution:   Specifies how to resolve updating conflicts.

Use this property to specify what to do when a custom unsigned attribute with the same OID already exists. Default: tcrInsert. Available options are:

acrInsert0Add one more unsigned attribute with the same OID.
acrIgnore1Do nothing.
acrReplace2Replace the existing unsigned attribute with the provided one.
acrError3Throw an error.

BufferSize:   Specifies processing buffer size in bytes.

Use this property to set the buffer size (in bytes) that should be used when processing binaries. The default value is 1048576 (1 MB).

ForceCompleteChainValidationForTrusted:   Whether to continue with the full validation up to the root CA certificate for mid-level trust anchors.

Set this property to True to enable full chain validation for explicitly trusted intermediary or end-entity certificates. This may be useful when creating signatures to enforce completeness of the collected revocation information. It often makes sense to set this property to false when validating signatures to reduce validation time and avoid issues with badly configured environments.

GracePeriod:   Specifies a grace period to apply during revocation information checks.

Use this property to specify a grace period (in seconds). Grace period applies to certain subprotocols, such as OCSP, and caters to the inaccuracy and/or missynchronization of clocks on different participating systems. Any time deviations within the grace period will be tolerated.

IgnoreOCSPNoCheckExtension:   Whether OCSP NoCheck extension should be ignored.

Set this property to false to make the validation engine ignore the OCSP no-check extension. You would normally need to set this property when validating severely non-compliant chains that misuse the extension, causing chain loops or other validation issues.

IgnoreSystemTrust:   Whether trusted Windows Certificate Stores should be treated as trusted.

Specifies whether, during chain validation, the component should respect the trust to CA certificates as configured in the operating system. In Windows this effectively defines whether the component should trust the certificates residing in the Trusted Root Certification Authorities store.

If IgnoreSystemTrust is True, certificates residing in the trusted root store are treated as if they are known, rather than trusted. Only certificates provided via other means (such as TrustedCertificates property) are considered trusted.

ImplicitlyTrustSelfSignedCertificates:   Whether to trust self-signed certificates.

Set this property to True to implicitly trust all self-signed certificates. Use it with care as trusting just about every self-signed certificate is unwise. One exceptional reason where this property may be handy is where a chain is validated in an environment that is not supposed to trust it (for example, a signing, rather than verifying environment, or a QA server). Trusting all self-signing certificates (which are normally trusted) allows to emulate the verifying environment without actually changing its security settings.

PromoteLongOCSPResponses:   Whether long OCSP responses are requested.

Set this property to True to force the component to publish 'long' form of OCSP responses. Otherwise, only BasicOCSPResponse blobs are promoted.

TempPath:   Path for storing temporary files.

This setting specifies an absolute path to the location on disk where temporary files are stored.

TimestampConflictResolution:   Specifies how to resolve timestamping conflicts.

Use this property to specify how timestamping conflicts should be resolved. Default value: tcrIgnore. Available options are:

tcrIgnore0Do nothing.
tcrReplace1Replace the existing timestamp with a new one.
tcrError2Throw an error.

TimestampResponse:   A base16-encoded timestamp response received from a TSA.

When using virtual:// timestamp endpoints, assign this property in your Notification event handler with the TSP response that you receive from the TSA. Remember to encode the response in hex (base16).

TLSChainValidationDetails:   Contains the advanced details of the TLS server certificate validation.

Check this property in TLSCertValidate event handler to access the TLS certificate validation details.

TLSChainValidationResult:   Contains the result of the TLS server certificate validation.

Check this property in TLSCertValidate event handler to obtain the TLS certificate validation result.

TLSClientAuthRequested:   Indicates whether the TLS server requests client authentication.

Check this property in TLSCertValidate event handler to find out whether the TLS server requests the client to provide the authentication certificate. If this property is set to true, provide your certificate via TLSClientChain property. Note that the component may fire this event more than once during each operation, as more than one TLS-enabled server may need to be contacted.

TLSValidationLog:   Contains the log of the TLS server certificate validation.

Check this property in TLSCertValidate event handler to retrieve the validation log of the TLS server.

TolerateMinorChainIssues:   Whether to tolerate minor chain issues.

TBD

UseMicrosoftCTL:   Enables or disables automatic use of Microsoft online certificate trust list.

Enable this property to make the chain validation module automatically look up missing CA certificates in the public Windows Update repository.

UseSystemCertificates:   Enables or disables the use of the system certificates.

Use this property to tell chain validation module automatically look up missing CA certificates in the system certificates. In many cases it is beneficial to switch this property on, as the operating system certificate configuration provides a representative trust framework.

Base Configuration Settings

CheckKeyIntegrityBeforeUse:   Enables or disable private key integrity check before use.

This global property enables or disables private key material check before each signing operation. This slows down performance a bit, but prevents a selection of attacks on RSA keys where keys with unknown origins are used.

You can switch this property off to improve performance if your project only uses known, good private keys.

CookieCaching:   Specifies whether a cookie cache should be used for HTTP(S) transports.

Set this property to enable or disable cookies caching for the component.

Supported values are:

offNo caching (default)
localLocal caching (supported for HTTPClient, RESTClient and SOAPClient only)
globalGlobal caching

Cookies:   Gets or sets local cookies for the component (supported for HTTPClient, RESTClient and SOAPClient only).

Use this property to get cookies from the internal cookie storage of the component and/or restore them back between application sessions.

DefDeriveKeyIterations:   Specifies the default key derivation algorithm iteration count.

This global property sets the default number of iterations for all supported key derivation algorithms. Note that you can provide the required number of iterations by using properties of the relevant key generation component; this global setting is used in scenarios where specific iteration count is not or cannot be provided.

EnableClientSideSSLFFDHE:   Enables or disables finite field DHE key exchange support in TLS clients.

This global property enables or disables support for finite field DHE key exchange methods in TLS clients. FF DHE is a slower algorithm if compared to EC DHE; enabling it may result in slower connections.

This setting only applies to sessions negotiated with TLS version 1.3.

GlobalCookies:   Gets or sets global cookies for all the HTTP transports.

Use this property to get cookies from the GLOBAL cookie storage or restore them back between application sessions. These cookies will be used by all the components that have its CookieCaching property set to "global".

HttpUserAgent:   Specifies the user agent name to be used by all HTTP clients.

This global setting defines the User-Agent field of the HTTP request provides information about the software that initiates the request. This value will be used by all the HTTP clients including the ones used internally in other components.

LogDestination:   Specifies the debug log destination.

Contains a comma-separated list of values that specifies where debug log should be dumped.

Supported values are:

fileFile
consoleConsole
systemlogSystem Log (supported for Android only)
debuggerDebugger (supported for VCL for Windows and .Net)

LogDetails:   Specifies the debug log details to dump.

Contains a comma-separated list of values that specifies which debug log details to dump.

Supported values are:

timeCurrent time
levelLevel
packagePackage name
moduleModule name
classClass name
methodMethod name
threadidThread Id
contenttypeContent type
contentContent
allAll details

LogFile:   Specifies the debug log filename.

Use this property to provide a path to the log file.

LogFilters:   Specifies the debug log filters.

Contains a comma-separated list of value pairs ("name:value") that describe filters.

Supported filter names are:

exclude-packageExclude a package specified in the value
exclude-moduleExclude a module specified in the value
exclude-classExclude a class specified in the value
exclude-methodExclude a method specified in the value
include-packageInclude a package specified in the value
include-moduleInclude a module specified in the value
include-classInclude a class specified in the value
include-methodInclude a method specified in the value

LogFlushMode:   Specifies the log flush mode.

Use this property to set the log flush mode. The following values are defined:

noneNo flush (caching only)
immediateImmediate flush (real-time logging)
maxcountFlush cached entries upon reaching LogMaxEventCount entries in the cache.

LogLevel:   Specifies the debug log level.

Use this property to provide the desired debug log level.

Supported values are:

noneNone (by default)
fatalSevere errors that cause premature termination.
errorOther runtime errors or unexpected conditions.
warningUse of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong".
infoInteresting runtime events (startup/shutdown).
debugDetailed information on flow of through the system.
traceMore detailed information.

LogMaxEventCount:   Specifies the maximum number of events to cache before further action is taken.

Use this property to specify the log event number threshold. This threshold may have different effects, depending on the rotation setting and/or the flush mode.

The default value of this setting is 100.

LogRotationMode:   Specifies the log rotation mode.

Use this property to set the log rotation mode. The following values are defined:

noneNo rotation
deleteolderDelete older entries from the cache upon reaching LogMaxEventCount
keepolderKeep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded)

MaxASN1BufferLength:   Specifies the maximal allowed length for ASN.1 primitive tag data.

This global property limits the maximal allowed length for ASN.1 tag data for non-content-carrying structures, such as certificates, CRLs, or timestamps. It does not affect structures that can carry content, such as CMS/CAdES messages. This is a security property aiming at preventing DoS attacks.

MaxASN1TreeDepth:   Specifies the maximal depth for processed ASN.1 trees.

This global property limits the maximal depth of ASN.1 trees that the component can handle without throwing an error. This is a security property aiming at preventing DoS attacks.

OCSPHashAlgorithm:   Specifies the hash algorithm to be used to identify certificates in OCSP requests.

This global setting defines the hash algorithm to use in OCSP requests during chain validation. Some OCSP responders can only use older algorithms, in which case setting this property to SHA1 may be helpful.

Tag:   Allows to store any custom data.

Use this config property to store any custom data.

UseSharedSystemStorages:   Specifies whether the validation engine should use a global per-process copy of the system certificate stores.

Set this global property to false to make each validation run use its own copy of system certificate stores.

UseSystemOAEPAndPSS:   Enforces or disables the use of system-driven RSA OAEP and PSS computations.

This global setting defines who is responsible for performing RSA-OAEP and RSA-PSS computations where the private key is stored in a Windows system store and is exportable. If set to true, SBB will delegate the computations to Windows via a CryptoAPI call. Otherwise, it will export the key material and perform the computations using its own OAEP/PSS implementation.

This setting only applies to certificates originating from a Windows system store.

UseSystemRandom:   Enables or disables the use of the OS PRNG.

Use this global property to enable or disable the use of operating system-driven pseudorandom number generation.

Trappable Errors (AuthenticodeSigner Component)

AuthenticodeSigner Errors

1048577   Invalid parameter value (SB_ERROR_INVALID_PARAMETER)
1048578   Component is configured incorrectly (SB_ERROR_INVALID_SETUP)
1048579   Operation cannot be executed in the current state (SB_ERROR_INVALID_STATE)
1048580   Attempt to set an invalid value to a property (SB_ERROR_INVALID_VALUE)
1048581   Certificate does not have its private key loaded (SB_ERROR_NO_PRIVATE_KEY)
1048581   Cancelled by the user (SB_ERROR_CANCELLED_BY_USER)

Copyright (c) 2022 /n software inc. - All rights reserved.
SecureBlackbox 2022 .NET Edition - Version 22.0 [Build 8174]