DCAuth Component

Properties   Methods   Events   Config Settings   Errors  

The DCAuth component represents the private key side of the SecureBlackbox distributed cryptography protocol.

Syntax

nsoftware.SecureBlackbox.Dcauth

Remarks

The purpose of DCAuth is to sign async requests produced by SignAsyncBegin calls. For each incoming async request containing a document hash, DCAuth produces the corresponding async response containing a signature over that hash.

Protocol Overview

The distributed cryptography protocol involves two principal parties. The signing party, represented by components such as PDFSigner, XAdESSigner, or OfficeSigner, pre-signs documents (such as PDF files), and encapsulates their hashes into what is called an async request. It then communicates the async request to the private key side, where the DCAuth component extracts the hash and signs it with a local private key. DCAuth then encapsulates the signature into an async response, which is sent back to the signing party. The signing party completes the signing operation by extracting the signature from the async response and embedding it into the pre-signed document.

The protocol supports a variety of uses. The scheme above describes the most typical of them, where the signing party is represented by a web application, and the private key side is represented by a workstation. In that particular scenario DC provides a mechanism for the web app to sign documents residing on the web server with private keys residing on the users workstations, perhaps in non-exportable form (e.g. a USB dongle). Other uses include creation of a signing server for a team of driver developers, or an automated signing gateway for outgoing official documents.

In the webapp-to-browser setting the DCAuth control would normally be used within a web server running on the users workstation. That web server would accept async requests from the web page running in the browser, use DCAuth to generate the matching async response, and feed that response back to the web page. The web page will then submit it back to the web server.

Configuring and Using DCAuth

To process an async request, you need to set up a DCAuth object first, and then call its ProcessRequest method:

  • Set the KeyId and KeySecret properties so they match the credentials used by the signing party - e.g. those of PDFSigner object: DCAuth.KeyId = "mykeyid"; DCAuth.KeySecret = "mykeysecret123";

    These two properties are used to verify the integrity of the incoming async requests. Keep them safe.

  • Provide the signing certificate: DCAuth.SigningCertificate = "C:\Certs\SigningCert.pfx"; DCAuth.CertPassword = "password789";

    Alternatively, use StorageId to provide a certificate residing elsewhere, such as a PKCS#11 device.

  • Assign the async request to the Input property: DCAuth.Input = Request;

    Make sure to provide the request in its original XML format. Some technologies and SecureBlackbox code samples may apply additional encoding when conveying async requests from their origin to the DCAuth endpoint. Please double check that you assign the request without any encodings applied. An async request is a properly formed XML document with the root element of SecureBlackboxAsyncState.

  • Call the ProcessRequest method: DCAuth.ProcessRequest;

    This method performs the actual signing of the hash. Make sure your code is prepared for potential signing errors.

  • If the ProcessRequest call has succeeded, grab the async response from the Output property: Result = DCAuth.Output;
Please see the demo folder for more in-depth code examples of this component.

Property List


The following is the full list of the properties of the component with short descriptions. Click on the links for further details.

ClaimedSigningTimeThe signing time from the signer's computer.
ExternalCryptoProvides access to external signing and DC parameters.
FIPSModeReserved.
InputContains the signing request to process
InputEncodingSpecifies request encoding.
KeyIdSpecifies the KeyID of the pre-shared authentication key.
KeySecretThe pre-shared authentication key.
OutputContains the output of the request processing.
OutputEncodingSpecifies response encoding.
PoliciesSpecifies the policies to use when processing requests.
ProfileSpecifies a pre-defined profile to apply when creating the signature.
ProxyThe proxy server settings.
SigningCertificateThe certificate to be used for signing.
SigningChainThe signing certificate chain.
SocketSettingsManages network connection settings.
StorageIdSpecifies the signing certificate residing in an alternative location
TimestampServerThe address of the timestamping server.
TLSClientChainThe TLS client certificate chain.
TLSServerChainThe TLS server's certificate chain.
TLSSettingsManages TLS layer settings.

Method List


The following is the full list of the methods of the component with short descriptions. Click on the links for further details.

ConfigSets or retrieves a configuration setting.
DoActionPerforms an additional action.
ProcessRequestProcesses the request

Event List


The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.

CustomParametersReceivedPasses custom request parameters to the application.
ErrorReports information about errors during request processing or signing.
ExternalSignHandles remote or external signing initiated by the SignExternal method or other source.
KeySecretNeededRequests the key secret from the application.
NotificationThis event notifies the application about an underlying control flow event.
ParameterReceivedPasses a standard request parameter to the user code.
SignRequestThis event signifies the processing of an atomic signing request.
SignRequestCompletedThis event signifies completion of the processing of an atomic signing request.
TimestampRequestFires when the component is ready to request a timestamp from an external TSA.
TLSCertNeededFires when a remote TLS party requests a client certificate.
TLSCertValidateThis event is fired upon receipt of the TLS server's certificate, allowing the user to control its acceptance.
TLSEstablishedFires when a TLS handshake with Host successfully completes.
TLSHandshakeFires when a new TLS handshake is initiated, before the handshake commences.
TLSShutdownReports the graceful closure of a TLS connection.

Config Settings


The following is a list of config settings for the component with short descriptions. Click on the links for further details.

DataURL(obsolete) The DataURL parameter to pass to the signer.
GoURL(obsolete) The GoURL parameter to pass to the signer.
RequireDefinedSignCert(obsolete) The RequireDefinedSignCert parameter to pass to the signer.
SchemeParamsThe algorithm scheme parameters to employ.
SessionID(obsolete) The SessionID parameter to pass to the signer.
TokenNameThe TokenName parameter to pass to the signer.
TokensLibraries(obsolete) The TokensLibraries parameter to pass to the signer.
CheckKeyIntegrityBeforeUseEnables or disable private key integrity check before use.
CookieCachingSpecifies whether a cookie cache should be used for HTTP(S) transports.
CookiesGets or sets local cookies for the component.
DefDeriveKeyIterationsSpecifies the default key derivation algorithm iteration count.
EnableClientSideSSLFFDHEEnables or disables finite field DHE key exchange support in TLS clients.
GlobalCookiesGets or sets global cookies for all the HTTP transports.
HttpUserAgentSpecifies the user agent name to be used by all HTTP clients.
LogDestinationSpecifies the debug log destination.
LogDetailsSpecifies the debug log details to dump.
LogFileSpecifies the debug log filename.
LogFiltersSpecifies the debug log filters.
LogFlushModeSpecifies the log flush mode.
LogLevelSpecifies the debug log level.
LogMaxEventCountSpecifies the maximum number of events to cache before further action is taken.
LogRotationModeSpecifies the log rotation mode.
MaxASN1BufferLengthSpecifies the maximal allowed length for ASN.1 primitive tag data.
MaxASN1TreeDepthSpecifies the maximal depth for processed ASN.1 trees.
OCSPHashAlgorithmSpecifies the hash algorithm to be used to identify certificates in OCSP requests.
StaticDNSSpecifies whether static DNS rules should be used.
StaticIPAddress[domain]Gets or sets an IP address for the specified domain name.
StaticIPAddressesGets or sets all the static DNS rules.
TagAllows to store any custom data.
TLSSessionGroupSpecifies the group name of TLS sessions to be used for session resumption.
TLSSessionLifetimeSpecifies lifetime in seconds of the cached TLS session.
TLSSessionPurgeIntervalSpecifies how often the session cache should remove the expired TLS sessions.
UseOwnDNSResolverSpecifies whether the client components should use own DNS resolver.
UseSharedSystemStoragesSpecifies whether the validation engine should use a global per-process copy of the system certificate stores.
UseSystemOAEPAndPSSEnforces or disables the use of system-driven RSA OAEP and PSS computations.
UseSystemRandomEnables or disables the use of the OS PRNG.

ClaimedSigningTime Property (DCAuth Component)

The signing time from the signer's computer.

Syntax

public string ClaimedSigningTime { get; set; }
Public Property ClaimedSigningTime As String

Default Value

""

Remarks

Use this property to provide the signature production time. The claimed time is not supported by a trusted source; it may be inaccurate, forfeited, or wrong, and as such is usually taken for informational purposes only by verifiers. Use timestamp servers to embed verifiable trusted timestamps. The time is in UTC.

ExternalCrypto Property (DCAuth Component)

Provides access to external signing and DC parameters.

Syntax

public ExternalCrypto ExternalCrypto { get; }
Public ReadOnly Property ExternalCrypto As ExternalCrypto

Remarks

Use this property to tune-up remote cryptography settings. SecureBlackbox supports two independent types of external cryptography: synchronous (based on the ExternalSign event) and asynchronous (based on the DC protocol and the DCAuth signing component).

This property is read-only.

Please refer to the ExternalCrypto type for a complete list of fields.

FIPSMode Property (DCAuth Component)

Reserved.

Syntax

public bool FIPSMode { get; set; }
Public Property FIPSMode As Boolean

Default Value

False

Remarks

This property is reserved for future use.

Input Property (DCAuth Component)

Contains the signing request to process

Syntax

public string Input { get; set; }
Public Property Input As String

Default Value

""

Remarks

Assign the request you received from the counterparty to this property before calling the ProcessRequest method. Use Output to read the resulting signature response after ProcessRequest completes.

InputEncoding Property (DCAuth Component)

Specifies request encoding.

Syntax

public DcauthInputEncodings InputEncoding { get; set; }

enum DcauthInputEncodings { encNone, encAuto, encBase64 }
Public Property InputEncoding As DcauthInputEncodings

Enum DcauthInputEncodings encNone encAuto encBase64 End Enum

Default Value

0

Remarks

Use this property to specify the encoding to expect the requests to be in.

KeyId Property (DCAuth Component)

Specifies the KeyID of the pre-shared authentication key.

Syntax

public string KeyId { get; set; }
Public Property KeyId As String

Default Value

""

Remarks

If processing requests from a single known party, assign the Id of the key you pre-shared with them to this property, and the key itself to the KeySecret property. If you expect to receive requests from many parties with different authentication keys, use KeySecretNeeded event instead.

KeySecret Property (DCAuth Component)

The pre-shared authentication key.

Syntax

public string KeySecret { get; set; }
Public Property KeySecret As String

Default Value

""

Remarks

If processing requests from a single known party, assign the key you pre-shared with them to this property. Use KeyId property to assign the ID of that key. If you expect to receive requests from many parties with different authentication keys, use KeySecretNeeded event instead.

Output Property (DCAuth Component)

Contains the output of the request processing.

Syntax

public string Output { get; }
Public ReadOnly Property Output As String

Default Value

""

Remarks

When ProcessRequest method completes it saves the processing output to this property. The output typically contains the response to be sent back to the requestor.

This property is read-only.

OutputEncoding Property (DCAuth Component)

Specifies response encoding.

Syntax

public DcauthOutputEncodings OutputEncoding { get; set; }

enum DcauthOutputEncodings { encNone, encAuto, encBase64 }
Public Property OutputEncoding As DcauthOutputEncodings

Enum DcauthOutputEncodings encNone encAuto encBase64 End Enum

Default Value

0

Remarks

Use this property to specify the encoding you want the response to be produced in.

Policies Property (DCAuth Component)

Specifies the policies to use when processing requests.

Syntax

public int Policies { get; set; }
Public Property Policies As Integer

Default Value

0

Remarks

This property lets you specify policies to apply blanketly to the requests. If this property does not give you enough flexibility - for example, if you need to cherry-pick requests basing on their content - please consider using the SignRequest (allows you to track individual requests) and/or ExternalSign (lets you perform the signing manually) events. This setting is a bit mask of the following flags:

aspAcceptUnsignedRequests1Allows the component to accept unauthenticated messages (those not signed with KeyID/KeySecret). Use with extreme care.

aspIgnorePKCS1Requests2Ignore requests of PKCS1 type.

aspIgnorePKCS7Requests4Ignore requests of PKCS7 type.

aspIgnoreRequestTSA8Ignore the TSA URL provided in the request, and either stick with the service provided via TimestampServer property, or not timestamp the message altogether.

aspIgnoreRequestSigningTime16Ignore the signing time included in the request.

aspIgnoreRequestPKCS7Settings32Ignore auxiliary PKCS7 settings (content type, attributes) included in the request.

aspAlwaysTimestampSigs64Timestamp created signatures (PKCS7 only), even if the client did not request it.

This property is not available at design time.

Profile Property (DCAuth Component)

Specifies a pre-defined profile to apply when creating the signature.

Syntax

public string Profile { get; set; }
Public Property Profile As String

Default Value

""

Remarks

Advanced signatures come in many variants, which are often defined by parties that needs to process them or by local standards. SecureBlackbox profiles are sets of pre-defined configurations which correspond to particular signature variants. By specifying a profile, you are pre-configuring the component to make it produce the signature that matches the configuration corresponding to that profile.

Proxy Property (DCAuth Component)

The proxy server settings.

Syntax

public ProxySettings Proxy { get; }
Public ReadOnly Property Proxy As ProxySettings

Remarks

Use this property to tune up the proxy server settings.

This property is read-only.

Please refer to the ProxySettings type for a complete list of fields.

SigningCertificate Property (DCAuth Component)

The certificate to be used for signing.

Syntax

public Certificate SigningCertificate { get; set; }
Public Property SigningCertificate As Certificate

Remarks

Use this property to specify the certificate that shall be used for signing the data. Note that this certificate should have a private key associated with it. Use SigningChain to supply the rest of the certificate chain for inclusion into the signature.

This property is not available at design time.

Please refer to the Certificate type for a complete list of fields.

SigningChain Property (DCAuth Component)

The signing certificate chain.

Syntax

public CertificateList SigningChain { get; }
Public Property SigningChain As CertificateList

Remarks

Use this property to provide the chain for the signing certificate. Use the SigningCertificate property, if it is available, to provide the signing certificate itself.

This property is not available at design time.

Please refer to the Certificate type for a complete list of fields.

SocketSettings Property (DCAuth Component)

Manages network connection settings.

Syntax

public SocketSettings SocketSettings { get; }
Public ReadOnly Property SocketSettings As SocketSettings

Remarks

Use this property to tune up network connection parameters.

This property is read-only.

Please refer to the SocketSettings type for a complete list of fields.

StorageId Property (DCAuth Component)

Specifies the signing certificate residing in an alternative location

Syntax

public string StorageId { get; set; }
Public Property StorageId As String

Default Value

""

Remarks

Use this property to specify the signing certificate contained on alternative media, such as a hardware device or in a system certificate store.

Example 1: The certificate resides on a PKCS#11 device

pkcs11://user:pin@/c:/windows/system32/pkcsdriver.dll?slot=0&readonly=1

Example 2: The certificate resides in a system store

system://localmachine@/?store=MY

You can use the following URI modifiers to provide more accurate specifiers for the needed certificate:

  • cn: the common name of the certificate subject.
  • keyid: the unique identifier included in subject key identifier extension of the certificate.
  • keyusage: a comma-separated list of enabled (+) or disabled (-) key usages. The following usages are supported: signature, nonrepudiation, keyencipherment, dataencipherment, keyagreement, keycertsign, crlsign, encipheronly, decipheronly, serverauth, clientauth, codesigning, emailprotection, timestamping, ocspsigning, smartcardlogon, keypurposeclientauth, keypurposekdc.
  • fingerprint: the fingerprint of the certificate.

Example 3: selecting the certificate with a given fingerprint:

pkcs11://user:pin@/c:/windows/system32/pkcsdriver.dll?slot=0&readonly=1&fingerprint=001122334455667788aabbccddeeff0011223344

TimestampServer Property (DCAuth Component)

The address of the timestamping server.

Syntax

public string TimestampServer { get; set; }
Public Property TimestampServer As String

Default Value

""

Remarks

Use this property to provide the address of the Time Stamping Authority (TSA) server to be used for timestamping the signature.

SecureBlackbox supports RFC3161-compliant timestamping servers, available via HTTP or HTTPS.

If your timestamping service enforces credential-based user authentication (basic or digest), you can provide the credentials in the same URL:

http://user:password@timestamp.server.com/TsaService

For TSAs using certificate-based TLS authentication, provide the client certificate via the TLSClientChain property.

If this property is left empty, no timestamp will be added to the signature.

Starting from summer 2021 update (Vol. 2), the virtual timestamping service is supported, which allows you to intervene in the timestamping routine and provide your own handling for the TSA exchange. This may be handy if the service that you are requesting timestamps from uses a non-standard TSP protocol or requires special authentication option.

To employ the virtual service, assign an URI of the following format to this property:

virtual://localhost?hashonly=true&includecerts=true&reqpolicy=1.2.3.4.5&halg=SHA256

Subscribe to Notification event to get notified about the virtualized timestamping event. The EventID of the timestamping event is TimestampRequest. Inside the event handler, read the base16-encoded request from the EventParam parameter and forward it to the timestamping authority. Upon receiving the response, pass it back to the component, encoded in base16, via the TimestampResponse config property:

component.Config("TimestampResponse=308208ab...");

Note that all the exchange with your custom TSA should take place within the same invocation of the Notification event.

The hashonly parameter of the virtual URI tells the component to only return the timestamp message imprint via the EventParam parameter. If set to false, EventParam will contain the complete RFC3161 timestamping request.

The includecerts parameter specifies that the requestCertificates parameter of the timestamping request should be set to true.

The reqpolicy parameter lets you specify the request policy, and the halg parameter specifies the hash algorithm to use for timestamping.

All the parameters are optional.

TLSClientChain Property (DCAuth Component)

The TLS client certificate chain.

Syntax

public CertificateList TLSClientChain { get; }
Public Property TLSClientChain As CertificateList

Remarks

Assign a certificate chain to this property to enable TLS client authentication in the component. Note that the client's end-entity certificate should have a private key associated with it.

Use the CertificateStorage or CertificateManager components to import the certificate from a file, system store, or PKCS11 device.

This property is not available at design time.

Please refer to the Certificate type for a complete list of fields.

TLSServerChain Property (DCAuth Component)

The TLS server's certificate chain.

Syntax

public CertificateList TLSServerChain { get; }
Public ReadOnly Property TLSServerChain As CertificateList

Remarks

Use this property to access the certificate chain sent by the TLS server. This property is ready to read when the TLSCertValidate event is fired by the client component.

This property is read-only and not available at design time.

Please refer to the Certificate type for a complete list of fields.

TLSSettings Property (DCAuth Component)

Manages TLS layer settings.

Syntax

public TLSSettings TLSSettings { get; }
Public ReadOnly Property TLSSettings As TLSSettings

Remarks

Use this property to tune up the TLS layer parameters.

This property is read-only.

Please refer to the TLSSettings type for a complete list of fields.

Config Method (DCAuth Component)

Sets or retrieves a configuration setting.

Syntax

public string Config(string configurationString);
Public Function Config(ByVal ConfigurationString As String) As String

Remarks

Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

DoAction Method (DCAuth Component)

Performs an additional action.

Syntax

public string DoAction(string actionID, string actionParams);
Public Function DoAction(ByVal ActionID As String, ByVal ActionParams As String) As String

Remarks

DoAction is a generic method available in every component. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.

The unique identifier (case insensitive) of the action is provided in the ActionID parameter.

ActionParams contains the value of a single parameter, or a list of multiple parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....

ProcessRequest Method (DCAuth Component)

Processes the request

Syntax

public void ProcessRequest();
Public Sub ProcessRequest()

Remarks

Use this method to process the request, sign the hashes, and produce the response. This is the main method of the class. Note that a single request received from the counterparty may contain more than one signature request. This method processes them all, reporting each atomic signature request with SignRequest and SignRequestCompleted events. Before calling this method, make sure you assign the request content to Input. Upon completion, read the response (containing all the signatures) from Output property.

CustomParametersReceived Event (DCAuth Component)

Passes custom request parameters to the application.

Syntax

public event OnCustomParametersReceivedHandler OnCustomParametersReceived;

public delegate void OnCustomParametersReceivedHandler(object sender, DcauthCustomParametersReceivedEventArgs e);

public class DcauthCustomParametersReceivedEventArgs : EventArgs {
  public string Value { get; }
}
Public Event OnCustomParametersReceived As OnCustomParametersReceivedHandler

Public Delegate Sub OnCustomParametersReceivedHandler(sender As Object, e As DcauthCustomParametersReceivedEventArgs)

Public Class DcauthCustomParametersReceivedEventArgs Inherits EventArgs
  Public ReadOnly Property Value As String
End Class

Remarks

This event is only provided for backward compatibility and is not currently used.

Error Event (DCAuth Component)

Reports information about errors during request processing or signing.

Syntax

public event OnErrorHandler OnError;

public delegate void OnErrorHandler(object sender, DcauthErrorEventArgs e);

public class DcauthErrorEventArgs : EventArgs {
  public int ErrorCode { get; }
  public string Description { get; }
}
Public Event OnError As OnErrorHandler

Public Delegate Sub OnErrorHandler(sender As Object, e As DcauthErrorEventArgs)

Public Class DcauthErrorEventArgs Inherits EventArgs
  Public ReadOnly Property ErrorCode As Integer
  Public ReadOnly Property Description As String
End Class

Remarks

The event is fired if an error occurs during the request processing. Use the ErrorCode and Description parameters to get the details.

ExternalSign Event (DCAuth Component)

Handles remote or external signing initiated by the SignExternal method or other source.

Syntax

public event OnExternalSignHandler OnExternalSign;

public delegate void OnExternalSignHandler(object sender, DcauthExternalSignEventArgs e);

public class DcauthExternalSignEventArgs : EventArgs {
  public string OperationId { get; }
  public string HashAlgorithm { get; }
  public string Pars { get; }
  public string MethodPars { get; }
  public string Data { get; }
  public string SignedData { get; set; }
}
Public Event OnExternalSign As OnExternalSignHandler

Public Delegate Sub OnExternalSignHandler(sender As Object, e As DcauthExternalSignEventArgs)

Public Class DcauthExternalSignEventArgs Inherits EventArgs
  Public ReadOnly Property OperationId As String
  Public ReadOnly Property HashAlgorithm As String
  Public ReadOnly Property Pars As String
  Public ReadOnly Property MethodPars As String
  Public ReadOnly Property Data As String
  Public Property SignedData As String
End Class

Remarks

Assign a handler to this event if you need to delegate a low-level signing operation to an external, remote, or custom signing engine. Depending on the settings, the handler will receive a hashed or unhashed value to be signed.

The event handler must pass the value of Data to the signer, obtain the signature, and pass it back to the component via the SignedData parameter.

OperationId provides a comment about the operation and its origin. It depends on the exact component being used, and may be empty. HashAlgorithm specifies the hash algorithm being used for the operation, and Pars contains algorithm-dependent parameters.

The component uses base16 (hex) encoding for the Data, SignedData, and Pars parameters. If your signing engine uses a different input and output encoding, you may need to decode and/or encode the data before and/or after the signing.

A sample MD5 hash encoded in base16: a0dee2a0382afbb09120ffa7ccd8a152 - lower case base16 A0DEE2A0382AFBB09120FFA7CCD8A152 - upper case base16

A sample event handler that uses the .NET RSACryptoServiceProvider class may look like the following: signer.OnExternalSign += (s, e) => { var cert = new X509Certificate2("cert.pfx", "", X509KeyStorageFlags.Exportable); var key = (RSACryptoServiceProvider)cert.PrivateKey; var dataToSign = e.Data.FromBase16String(); var signedData = key.SignHash(dataToSign, "2.16.840.1.101.3.4.2.1"); e.SignedData = signedData.ToBase16String(); };

The MethodPars parameter contains the method-specific parameters. For example, for PKCS7 requests it contains the requested parameters of the PKCS7 blob.

KeySecretNeeded Event (DCAuth Component)

Requests the key secret from the application.

Syntax

public event OnKeySecretNeededHandler OnKeySecretNeeded;

public delegate void OnKeySecretNeededHandler(object sender, DcauthKeySecretNeededEventArgs e);

public class DcauthKeySecretNeededEventArgs : EventArgs {
  public string KeyId { get; }
  public string KeySecret { get; set; }
}
Public Event OnKeySecretNeeded As OnKeySecretNeededHandler

Public Delegate Sub OnKeySecretNeededHandler(sender As Object, e As DcauthKeySecretNeededEventArgs)

Public Class DcauthKeySecretNeededEventArgs Inherits EventArgs
  Public ReadOnly Property KeyId As String
  Public Property KeySecret As String
End Class

Remarks

Subscribe to this event to pass the key secret (a pre-shared request authentication code) to the signing component when it is needed. The authentication combination consists of the KeyId, a non-secret unique key identifier, and the KeySecret, shared by the parties, which should be kept private. This event is an alternative for KeySecret property. Use it when you expect to process requests from requestors with different KeyIds and secrets. If you only expect to receive requests from a single requestor with a known KeyId, providing the key secret via KeyId and KeySecret properties would be an easier route.

Notification Event (DCAuth Component)

This event notifies the application about an underlying control flow event.

Syntax

public event OnNotificationHandler OnNotification;

public delegate void OnNotificationHandler(object sender, DcauthNotificationEventArgs e);

public class DcauthNotificationEventArgs : EventArgs {
  public string EventID { get; }
  public string EventParam { get; }
}
Public Event OnNotification As OnNotificationHandler

Public Delegate Sub OnNotificationHandler(sender As Object, e As DcauthNotificationEventArgs)

Public Class DcauthNotificationEventArgs Inherits EventArgs
  Public ReadOnly Property EventID As String
  Public ReadOnly Property EventParam As String
End Class

Remarks

The component fires this event to let the application know about some event, occurrence, or milestone in the component. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.

The unique identifier of the event is provided in the EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the component, the exact action it is performing, or the document being processed, one or both may be omitted.

ParameterReceived Event (DCAuth Component)

Passes a standard request parameter to the user code.

Syntax

public event OnParameterReceivedHandler OnParameterReceived;

public delegate void OnParameterReceivedHandler(object sender, DcauthParameterReceivedEventArgs e);

public class DcauthParameterReceivedEventArgs : EventArgs {
  public string Name { get; }
  public string Value { get; }
}
Public Event OnParameterReceived As OnParameterReceivedHandler

Public Delegate Sub OnParameterReceivedHandler(sender As Object, e As DcauthParameterReceivedEventArgs)

Public Class DcauthParameterReceivedEventArgs Inherits EventArgs
  Public ReadOnly Property Name As String
  Public ReadOnly Property Value As String
End Class

Remarks

This event is only provided for backward compatibility and is not currently used.

SignRequest Event (DCAuth Component)

This event signifies the processing of an atomic signing request.

Syntax

public event OnSignRequestHandler OnSignRequest;

public delegate void OnSignRequestHandler(object sender, DcauthSignRequestEventArgs e);

public class DcauthSignRequestEventArgs : EventArgs {
  public int Method { get; }
  public string HashAlgorithm { get; }
  public byte[] Hash { get; }
  public string KeyID { get; }
  public string Pars { get; }
  public string MethodPars { get; }
  public bool Allow { get; set; }
}
Public Event OnSignRequest As OnSignRequestHandler

Public Delegate Sub OnSignRequestHandler(sender As Object, e As DcauthSignRequestEventArgs)

Public Class DcauthSignRequestEventArgs Inherits EventArgs
  Public ReadOnly Property Method As Integer
  Public ReadOnly Property HashAlgorithm As String
  Public ReadOnly Property Hash As Byte()
  Public ReadOnly Property KeyID As String
  Public ReadOnly Property Pars As String
  Public ReadOnly Property MethodPars As String
  Public Property Allow As Boolean
End Class

Remarks

Subscribe to this event to be notified of every signature request processed by the DC server. Note that any one request coming from the requestor may contain multiple individual signature requests (so-called 'batching'). This event is a good mechanism to track signature requests for accountability purposes, and provide basic access control over the signing operations. The Method parameter specifies the async signing method requested by the client:

asmdPKCS10
asmdPKCS71

The Hash parameter contains the hash, made using HashAlgorithm, that needs to be signed. KeyID contains the key identifier of the requestor.

The Pars string contains a semicolon-separated string of the principal signature parameters. This has the same format and content that is passed to ExternalSign, if it is used. The MethodPars contains a similar parameter string, but for the specific async signing method used. For the PKCS1 method there are no defined method parameters, while the PKCS7 method supports a selection of settings that tune up the CMS blob.

Set Allow to false to stop the request from being served. Use the SignRequestCompleted event to track completion of the initiated operation.

SignRequestCompleted Event (DCAuth Component)

This event signifies completion of the processing of an atomic signing request.

Syntax

public event OnSignRequestCompletedHandler OnSignRequestCompleted;

public delegate void OnSignRequestCompletedHandler(object sender, DcauthSignRequestCompletedEventArgs e);

public class DcauthSignRequestCompletedEventArgs : EventArgs {
  public int Method { get; }
  public string HashAlgorithm { get; }
  public byte[] Hash { get; }
  public string KeyID { get; }
  public string Pars { get; }
  public string MethodPars { get; }
  public byte[] Signature { get; }
}
Public Event OnSignRequestCompleted As OnSignRequestCompletedHandler

Public Delegate Sub OnSignRequestCompletedHandler(sender As Object, e As DcauthSignRequestCompletedEventArgs)

Public Class DcauthSignRequestCompletedEventArgs Inherits EventArgs
  Public ReadOnly Property Method As Integer
  Public ReadOnly Property HashAlgorithm As String
  Public ReadOnly Property Hash As Byte()
  Public ReadOnly Property KeyID As String
  Public ReadOnly Property Pars As String
  Public ReadOnly Property MethodPars As String
  Public ReadOnly Property Signature As Byte()
End Class

Remarks

Use this event to track completion of signing request processing. The Hash parameter contains the hash that is signed, as supplied by the requestor, and the Signature parameter contains the resulting cryptographic signature. The KeyID parameter matches the parameter in SignRequest event.

TimestampRequest Event (DCAuth Component)

Fires when the component is ready to request a timestamp from an external TSA.

Syntax

public event OnTimestampRequestHandler OnTimestampRequest;

public delegate void OnTimestampRequestHandler(object sender, DcauthTimestampRequestEventArgs e);

public class DcauthTimestampRequestEventArgs : EventArgs {
  public string TSA { get; }
  public string TimestampRequest { get; }
  public string TimestampResponse { get; set; }
  public bool SuppressDefault { get; set; }
}
Public Event OnTimestampRequest As OnTimestampRequestHandler

Public Delegate Sub OnTimestampRequestHandler(sender As Object, e As DcauthTimestampRequestEventArgs)

Public Class DcauthTimestampRequestEventArgs Inherits EventArgs
  Public ReadOnly Property TSA As String
  Public ReadOnly Property TimestampRequest As String
  Public Property TimestampResponse As String
  Public Property SuppressDefault As Boolean
End Class

Remarks

Subscribe to this event to intercept timestamp requests. You can use it to override timestamping requests and perform them in your code.

The TSA parameter indicates the timestamping service being used. It matches the value passed to the TimestampServer property. Set the SuppressDefault parameter to false if you would like to stop the built-in TSA request from going ahead. The built-in TSA request is also not performed if the returned TimestampResponse parameter is not empty.

TLSCertNeeded Event (DCAuth Component)

Fires when a remote TLS party requests a client certificate.

Syntax

public event OnTLSCertNeededHandler OnTLSCertNeeded;

public delegate void OnTLSCertNeededHandler(object sender, DcauthTLSCertNeededEventArgs e);

public class DcauthTLSCertNeededEventArgs : EventArgs {
  public string Host { get; }
  public string CANames { get; }
}
Public Event OnTLSCertNeeded As OnTLSCertNeededHandler

Public Delegate Sub OnTLSCertNeededHandler(sender As Object, e As DcauthTLSCertNeededEventArgs)

Public Class DcauthTLSCertNeededEventArgs Inherits EventArgs
  Public ReadOnly Property Host As String
  Public ReadOnly Property CANames As String
End Class

Remarks

This event fires to notify the implementation that a remote TLS server has requested a client certificate. The Host parameter identifies the host that makes a request, and the CANames parameter (optional, according to the TLS spec) advises on the accepted issuing CAs.

Use the TLSClientChain property in response to this event to provide the requested certificate. Please make sure the client certificate includes the associated private key. Note that you may set the certificates before the connection without waiting for this event to fire.

This event is preceded by the TLSHandshake event for the given host and, if the certificate was accepted, succeeded by the TLSEstablished event.

TLSCertValidate Event (DCAuth Component)

This event is fired upon receipt of the TLS server's certificate, allowing the user to control its acceptance.

Syntax

public event OnTLSCertValidateHandler OnTLSCertValidate;

public delegate void OnTLSCertValidateHandler(object sender, DcauthTLSCertValidateEventArgs e);

public class DcauthTLSCertValidateEventArgs : EventArgs {
  public string ServerHost { get; }
  public string ServerIP { get; }
  public bool Accept { get; set; }
}
Public Event OnTLSCertValidate As OnTLSCertValidateHandler

Public Delegate Sub OnTLSCertValidateHandler(sender As Object, e As DcauthTLSCertValidateEventArgs)

Public Class DcauthTLSCertValidateEventArgs Inherits EventArgs
  Public ReadOnly Property ServerHost As String
  Public ReadOnly Property ServerIP As String
  Public Property Accept As Boolean
End Class

Remarks

This event is fired during a TLS handshake. Use the TLSServerChain property to access the certificate chain. In general, components may contact a number of TLS endpoints during their work, depending on their configuration.

Accept is assigned in accordance with the outcome of the internal validation check performed by the component, and can be adjusted if needed.

TLSEstablished Event (DCAuth Component)

Fires when a TLS handshake with Host successfully completes.

Syntax

public event OnTLSEstablishedHandler OnTLSEstablished;

public delegate void OnTLSEstablishedHandler(object sender, DcauthTLSEstablishedEventArgs e);

public class DcauthTLSEstablishedEventArgs : EventArgs {
  public string Host { get; }
  public string Version { get; }
  public string Ciphersuite { get; }
  public byte[] ConnectionId { get; }
  public bool Abort { get; set; }
}
Public Event OnTLSEstablished As OnTLSEstablishedHandler

Public Delegate Sub OnTLSEstablishedHandler(sender As Object, e As DcauthTLSEstablishedEventArgs)

Public Class DcauthTLSEstablishedEventArgs Inherits EventArgs
  Public ReadOnly Property Host As String
  Public ReadOnly Property Version As String
  Public ReadOnly Property Ciphersuite As String
  Public ReadOnly Property ConnectionId As Byte()
  Public Property Abort As Boolean
End Class

Remarks

The component uses this event to notify the application about a successful completion of a TLS handshake.

The Version, Ciphersuite, and ConnectionId parameters indicate the security parameters of the new connection. Use the Abort parameter if you need to terminate the connection at this stage.

TLSHandshake Event (DCAuth Component)

Fires when a new TLS handshake is initiated, before the handshake commences.

Syntax

public event OnTLSHandshakeHandler OnTLSHandshake;

public delegate void OnTLSHandshakeHandler(object sender, DcauthTLSHandshakeEventArgs e);

public class DcauthTLSHandshakeEventArgs : EventArgs {
  public string Host { get; }
  public bool Abort { get; set; }
}
Public Event OnTLSHandshake As OnTLSHandshakeHandler

Public Delegate Sub OnTLSHandshakeHandler(sender As Object, e As DcauthTLSHandshakeEventArgs)

Public Class DcauthTLSHandshakeEventArgs Inherits EventArgs
  Public ReadOnly Property Host As String
  Public Property Abort As Boolean
End Class

Remarks

The component uses this event to notify the application about the start of a new TLS handshake to Host. If the handshake is successful, this event will be followed by the TLSEstablished event. If the server chooses to request a client certificate, the TLSCertNeeded event will also be fired.

TLSShutdown Event (DCAuth Component)

Reports the graceful closure of a TLS connection.

Syntax

public event OnTLSShutdownHandler OnTLSShutdown;

public delegate void OnTLSShutdownHandler(object sender, DcauthTLSShutdownEventArgs e);

public class DcauthTLSShutdownEventArgs : EventArgs {
  public string Host { get; }
}
Public Event OnTLSShutdown As OnTLSShutdownHandler

Public Delegate Sub OnTLSShutdownHandler(sender As Object, e As DcauthTLSShutdownEventArgs)

Public Class DcauthTLSShutdownEventArgs Inherits EventArgs
  Public ReadOnly Property Host As String
End Class

Remarks

This event notifies the application about the closure of an earlier established TLS connection. Note that only graceful connection closures are reported.

Certificate Type

Provides details of an individual X.509 certificate.

Remarks

This type provides access to X.509 certificate details.

Fields

Bytes
byte[] (read-only)

Default Value: ""

Returns the raw certificate data in DER format.

CA
bool

Default Value: False

Indicates whether the certificate has a CA capability (a setting in the BasicConstraints extension).

CAKeyID
byte[] (read-only)

Default Value: ""

A unique identifier (fingerprint) of the CA certificate's private key.

Authority Key Identifier is a (non-critical) X.509 certificate extension which allows the identification of certificates produced by the same issuer, but with different public keys.

CRLDistributionPoints
string

Default Value: ""

Locations of the CRL (Certificate Revocation List) distribution points used to check this certificate's validity.

Curve
string

Default Value: ""

Specifies the elliptic curve of the EC public key.

SB_EC_SECP112R1SECP112R1
SB_EC_SECP112R2SECP112R2
SB_EC_SECP128R1SECP128R1
SB_EC_SECP128R2SECP128R2
SB_EC_SECP160K1SECP160K1
SB_EC_SECP160R1SECP160R1
SB_EC_SECP160R2SECP160R2
SB_EC_SECP192K1SECP192K1
SB_EC_SECP192R1SECP192R1
SB_EC_SECP224K1SECP224K1
SB_EC_SECP224R1SECP224R1
SB_EC_SECP256K1SECP256K1
SB_EC_SECP256R1SECP256R1
SB_EC_SECP384R1SECP384R1
SB_EC_SECP521R1SECP521R1
SB_EC_SECT113R1SECT113R1
SB_EC_SECT113R2SECT113R2
SB_EC_SECT131R1SECT131R1
SB_EC_SECT131R2SECT131R2
SB_EC_SECT163K1SECT163K1
SB_EC_SECT163R1SECT163R1
SB_EC_SECT163R2SECT163R2
SB_EC_SECT193R1SECT193R1
SB_EC_SECT193R2SECT193R2
SB_EC_SECT233K1SECT233K1
SB_EC_SECT233R1SECT233R1
SB_EC_SECT239K1SECT239K1
SB_EC_SECT283K1SECT283K1
SB_EC_SECT283R1SECT283R1
SB_EC_SECT409K1SECT409K1
SB_EC_SECT409R1SECT409R1
SB_EC_SECT571K1SECT571K1
SB_EC_SECT571R1SECT571R1
SB_EC_PRIME192V1PRIME192V1
SB_EC_PRIME192V2PRIME192V2
SB_EC_PRIME192V3PRIME192V3
SB_EC_PRIME239V1PRIME239V1
SB_EC_PRIME239V2PRIME239V2
SB_EC_PRIME239V3PRIME239V3
SB_EC_PRIME256V1PRIME256V1
SB_EC_C2PNB163V1C2PNB163V1
SB_EC_C2PNB163V2C2PNB163V2
SB_EC_C2PNB163V3C2PNB163V3
SB_EC_C2PNB176W1C2PNB176W1
SB_EC_C2TNB191V1C2TNB191V1
SB_EC_C2TNB191V2C2TNB191V2
SB_EC_C2TNB191V3C2TNB191V3
SB_EC_C2ONB191V4C2ONB191V4
SB_EC_C2ONB191V5C2ONB191V5
SB_EC_C2PNB208W1C2PNB208W1
SB_EC_C2TNB239V1C2TNB239V1
SB_EC_C2TNB239V2C2TNB239V2
SB_EC_C2TNB239V3C2TNB239V3
SB_EC_C2ONB239V4C2ONB239V4
SB_EC_C2ONB239V5C2ONB239V5
SB_EC_C2PNB272W1C2PNB272W1
SB_EC_C2PNB304W1C2PNB304W1
SB_EC_C2TNB359V1C2TNB359V1
SB_EC_C2PNB368W1C2PNB368W1
SB_EC_C2TNB431R1C2TNB431R1
SB_EC_NISTP192NISTP192
SB_EC_NISTP224NISTP224
SB_EC_NISTP256NISTP256
SB_EC_NISTP384NISTP384
SB_EC_NISTP521NISTP521
SB_EC_NISTB163NISTB163
SB_EC_NISTB233NISTB233
SB_EC_NISTB283NISTB283
SB_EC_NISTB409NISTB409
SB_EC_NISTB571NISTB571
SB_EC_NISTK163NISTK163
SB_EC_NISTK233NISTK233
SB_EC_NISTK283NISTK283
SB_EC_NISTK409NISTK409
SB_EC_NISTK571NISTK571
SB_EC_GOSTCPTESTGOSTCPTEST
SB_EC_GOSTCPAGOSTCPA
SB_EC_GOSTCPBGOSTCPB
SB_EC_GOSTCPCGOSTCPC
SB_EC_GOSTCPXCHAGOSTCPXCHA
SB_EC_GOSTCPXCHBGOSTCPXCHB
SB_EC_BRAINPOOLP160R1BRAINPOOLP160R1
SB_EC_BRAINPOOLP160T1BRAINPOOLP160T1
SB_EC_BRAINPOOLP192R1BRAINPOOLP192R1
SB_EC_BRAINPOOLP192T1BRAINPOOLP192T1
SB_EC_BRAINPOOLP224R1BRAINPOOLP224R1
SB_EC_BRAINPOOLP224T1BRAINPOOLP224T1
SB_EC_BRAINPOOLP256R1BRAINPOOLP256R1
SB_EC_BRAINPOOLP256T1BRAINPOOLP256T1
SB_EC_BRAINPOOLP320R1BRAINPOOLP320R1
SB_EC_BRAINPOOLP320T1BRAINPOOLP320T1
SB_EC_BRAINPOOLP384R1BRAINPOOLP384R1
SB_EC_BRAINPOOLP384T1BRAINPOOLP384T1
SB_EC_BRAINPOOLP512R1BRAINPOOLP512R1
SB_EC_BRAINPOOLP512T1BRAINPOOLP512T1
SB_EC_CURVE25519CURVE25519
SB_EC_CURVE448CURVE448

Fingerprint
byte[] (read-only)

Default Value: ""

Contains the fingerprint (a hash imprint) of this certificate.

FriendlyName
string (read-only)

Default Value: ""

Contains an associated alias (friendly name) of the certificate.

HashAlgorithm
string

Default Value: ""

Specifies the hash algorithm to be used in the operations on the certificate (such as key signing)

SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_MD2MD2
SB_HASH_ALGORITHM_MD4MD4
SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_CRC32CRC32
SB_HASH_ALGORITHM_SSL3SSL3
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_POLY1305POLY1305
SB_HASH_ALGORITHM_SHA3_224SHA3_224
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512
SB_HASH_ALGORITHM_BLAKE2S_128BLAKE2S_128
SB_HASH_ALGORITHM_BLAKE2S_160BLAKE2S_160
SB_HASH_ALGORITHM_BLAKE2S_224BLAKE2S_224
SB_HASH_ALGORITHM_BLAKE2S_256BLAKE2S_256
SB_HASH_ALGORITHM_BLAKE2B_160BLAKE2B_160
SB_HASH_ALGORITHM_BLAKE2B_256BLAKE2B_256
SB_HASH_ALGORITHM_BLAKE2B_384BLAKE2B_384
SB_HASH_ALGORITHM_BLAKE2B_512BLAKE2B_512
SB_HASH_ALGORITHM_SHAKE_128SHAKE_128
SB_HASH_ALGORITHM_SHAKE_256SHAKE_256
SB_HASH_ALGORITHM_SHAKE_128_LENSHAKE_128_LEN
SB_HASH_ALGORITHM_SHAKE_256_LENSHAKE_256_LEN

Issuer
string (read-only)

Default Value: ""

The common name of the certificate issuer (CA), typically a company name.

IssuerRDN
string

Default Value: ""

A collection of information, in the form of [OID, Value] pairs, uniquely identifying the certificate issuer.

KeyAlgorithm
string

Default Value: "0"

Specifies the public key algorithm of this certificate.

SB_CERT_ALGORITHM_ID_RSA_ENCRYPTIONrsaEncryption
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTIONmd2withRSAEncryption
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTIONmd5withRSAEncryption
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTIONsha1withRSAEncryption
SB_CERT_ALGORITHM_ID_DSAid-dsa
SB_CERT_ALGORITHM_ID_DSA_SHA1id-dsa-with-sha1
SB_CERT_ALGORITHM_DH_PUBLICdhpublicnumber
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTIONsha224WithRSAEncryption
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTIONsha256WithRSAEncryption
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTIONsha384WithRSAEncryption
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTIONsha512WithRSAEncryption
SB_CERT_ALGORITHM_ID_RSAPSSid-RSASSA-PSS
SB_CERT_ALGORITHM_ID_RSAOAEPid-RSAES-OAEP
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160ripemd160withRSA
SB_CERT_ALGORITHM_ID_ELGAMALelGamal
SB_CERT_ALGORITHM_SHA1_ECDSAecdsa-with-SHA1
SB_CERT_ALGORITHM_RECOMMENDED_ECDSAecdsa-recommended
SB_CERT_ALGORITHM_SHA224_ECDSAecdsa-with-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSAecdsa-with-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSAecdsa-with-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSAecdsa-with-SHA512
SB_CERT_ALGORITHM_ECid-ecPublicKey
SB_CERT_ALGORITHM_SPECIFIED_ECDSAecdsa-specified
SB_CERT_ALGORITHM_GOST_R3410_1994id-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3410_2001id-GostR3410-2001
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994id-GostR3411-94-with-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001id-GostR3411-94-with-GostR3410-2001
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAINecdsa-plain-SHA1
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAINecdsa-plain-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAINecdsa-plain-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAINecdsa-plain-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAINecdsa-plain-SHA512
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAINecdsa-plain-RIPEMD160
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTIONwhirlpoolWithRSAEncryption
SB_CERT_ALGORITHM_ID_DSA_SHA224id-dsa-with-sha224
SB_CERT_ALGORITHM_ID_DSA_SHA256id-dsa-with-sha256
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSAid-ecdsa-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSAid-ecdsa-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSAid-ecdsa-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSAid-ecdsa-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAINid-ecdsa-plain-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAINid-ecdsa-plain-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAINid-ecdsa-plain-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAINid-ecdsa-plain-with-sha3-512
SB_CERT_ALGORITHM_ID_DSA_SHA3_224id-dsa-with-sha3-224
SB_CERT_ALGORITHM_ID_DSA_SHA3_256id-dsa-with-sha3-256
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSAid-ecdsa-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSAid-ecdsa-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSAid-ecdsa-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSAid-ecdsa-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSAid-ecdsa-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSAid-ecdsa-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSAid-ecdsa-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSAid-ecdsa-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAINid-ecdsa-plain-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAINid-ecdsa-plain-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAINid-ecdsa-plain-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAINid-ecdsa-plain-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAINid-ecdsa-plain-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAINid-ecdsa-plain-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAINid-ecdsa-plain-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAINid-ecdsa-plain-with-blake2b512
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224id-dsa-with-blake2s224
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256id-dsa-with-blake2s256
SB_CERT_ALGORITHM_EDDSA_ED25519id-Ed25519
SB_CERT_ALGORITHM_EDDSA_ED448id-Ed448
SB_CERT_ALGORITHM_EDDSA_ED25519_PHid-Ed25519ph
SB_CERT_ALGORITHM_EDDSA_ED448_PHid-Ed448ph
SB_CERT_ALGORITHM_EDDSAid-EdDSA
SB_CERT_ALGORITHM_EDDSA_SIGNATUREid-EdDSA-sig

KeyBits
int (read-only)

Default Value: 0

Returns the length of the public key.

KeyFingerprint
byte[] (read-only)

Default Value: ""

Returns a fingerprint of the public key contained in the certificate.

KeyUsage
int

Default Value: 0

Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.

This value is a bit mask of the following values:

ckuUnknown0x00000Unknown key usage

ckuDigitalSignature0x00001Digital signature

ckuNonRepudiation0x00002Non-repudiation

ckuKeyEncipherment0x00004Key encipherment

ckuDataEncipherment0x00008Data encipherment

ckuKeyAgreement0x00010Key agreement

ckuKeyCertSign0x00020Certificate signing

ckuCRLSign0x00040Revocation signing

ckuEncipherOnly0x00080Encipher only

ckuDecipherOnly0x00100Decipher only

ckuServerAuthentication0x00200Server authentication

ckuClientAuthentication0x00400Client authentication

ckuCodeSigning0x00800Code signing

ckuEmailProtection0x01000Email protection

ckuTimeStamping0x02000Timestamping

ckuOCSPSigning0x04000OCSP signing

ckuSmartCardLogon0x08000Smartcard logon

ckuKeyPurposeClientAuth0x10000Kerberos - client authentication

ckuKeyPurposeKDC0x20000Kerberos - KDC

KeyValid
bool (read-only)

Default Value: False

Returns True if the certificate's key is cryptographically valid, and False otherwise.

OCSPLocations
string

Default Value: ""

Locations of OCSP (Online Certificate Status Protocol) services that can be used to check this certificate's validity, as recorded by the CA.

OCSPNoCheck
bool

Default Value: False

Accessor to the value of the certificate's ocsp-no-check extension.

Origin
int (read-only)

Default Value: 0

Returns the origin of this certificate.

PolicyIDs
string

Default Value: ""

Contains identifiers (OIDs) of the applicable certificate policies.

The Certificate Policies extension identifies a sequence of policies under which the certificate has been issued, and which regulate its usage.

PrivateKeyBytes
byte[] (read-only)

Default Value: ""

Contains the certificate's private key. It is normal for this property to be empty if the private key is non-exportable.

PrivateKeyExists
bool (read-only)

Default Value: False

Indicates whether the certificate has an associated private key.

PrivateKeyExtractable
bool (read-only)

Default Value: False

Indicates whether the private key is extractable.

PublicKeyBytes
byte[] (read-only)

Default Value: ""

Contains the certificate's public key in DER format.

QualifiedStatements
QualifiedStatementsTypes

Default Value: 0

Returns the qualified status of the certificate.

SelfSigned
bool (read-only)

Default Value: False

Indicates whether the certificate is self-signed (root) or signed by an external CA.

SerialNumber
byte[]

Default Value: ""

Returns the certificate's serial number.

SigAlgorithm
string (read-only)

Default Value: ""

Indicates the algorithm that was used by the CA to sign this certificate.

Subject
string (read-only)

Default Value: ""

The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name.

SubjectAlternativeName
string

Default Value: ""

Returns or sets the value of the Subject Alternative Name extension of the certificate.

SubjectKeyID
byte[]

Default Value: ""

Contains a unique identifier (fingerprint) of the certificate's private key.

Subject Key Identifier is a (non-critical) X.509 certificate extension which allows the identification of certificates containing a particular public key. In SecureBlackbox, the unique identifier is represented with a SHA1 hash of the bit string of the subject public key.

SubjectRDN
string

Default Value: ""

A collection of information, in the form of [OID, Value] pairs, uniquely identifying the certificate holder (subject).

ValidFrom
string

Default Value: ""

The time point at which the certificate becomes valid, in UTC.

ValidTo
string

Default Value: ""

The time point at which the certificate expires, in UTC.

Constructors

public Certificate(byte[] bytes, int startIndex, int count, string password);
Public Certificate(ByVal Bytes As Byte(), ByVal StartIndex As Integer, ByVal Count As Integer, ByVal Password As String)

Loads the X.509 certificate from a memory buffer. Bytes is a buffer containing the raw certificate data. StartIndex and Count specify the starting position and number of bytes to be read from the buffer, respectively. Password is a password encrypting the certificate.

public Certificate(byte[] certBytes, int certStartIndex, int certCount, byte[] keyBytes, int keyStartIndex, int keyCount, string password);
Public Certificate(ByVal CertBytes As Byte(), ByVal CertStartIndex As Integer, ByVal CertCount As Integer, ByVal KeyBytes As Byte(), ByVal KeyStartIndex As Integer, ByVal KeyCount As Integer, ByVal Password As String)

Loads the X.509 certificate from a memory buffer. CertBytes is a buffer containing the raw certificate data. CertStartIndex and CertCount specify the number of bytes to be read from the buffer, respectively. KeyBytes is a buffer containing the private key data. KeyStartIndex and KeyCount specify the starting position and number of bytes to be read from the buffer, respectively. Password is a password encrypting the certificate.

public Certificate(byte[] bytes, int startIndex, int count);
Public Certificate(ByVal Bytes As Byte(), ByVal StartIndex As Integer, ByVal Count As Integer)

Loads the X.509 certificate from a memory buffer. Bytes is a buffer containing the raw certificate data. StartIndex and Count specify the starting position and number of bytes to be read from the buffer, respectively.

public Certificate(string path, string password);
Public Certificate(ByVal Path As String, ByVal Password As String)

Loads the X.509 certificate from a file. Path specifies the full path to the file containing the certificate data. Password is a password encrypting the certificate.

public Certificate(string certPath, string keyPath, string password);
Public Certificate(ByVal CertPath As String, ByVal KeyPath As String, ByVal Password As String)

Loads the X.509 certificate from a file. CertPath specifies the full path to the file containing the certificate data. KeyPath specifies the full path to the file containing the private key. Password is a password encrypting the certificate.

public Certificate(string path);
Public Certificate(ByVal Path As String)

Loads the X.509 certificate from a file. Path specifies the full path to the file containing the certificate data.

Public Certificate(ByVal Stream As System.IO.Stream)

Loads the X.509 certificate from a stream. Stream is a stream containing the certificate data.

public Certificate(System.IO.Stream stream, string password);
Public Certificate(ByVal Stream As System.IO.Stream, ByVal Password As String)

Loads the X.509 certificate from a stream. Stream is a stream containing the certificate data. Password is a password encrypting the certificate.

public Certificate(System.IO.Stream certStream, System.IO.Stream keyStream, string password);
Public Certificate(ByVal CertStream As System.IO.Stream, ByVal KeyStream As System.IO.Stream, ByVal Password As String)

Loads the X.509 certificate from a stream. CertStream is a stream containing the certificate data. KeyStream is a stream containing the private key. Password is a password encrypting the certificate.

public Certificate();
Public Certificate()

Creates a new object with default field values.

ExternalCrypto Type

Specifies the parameters of external cryptographic calls.

Remarks

External cryptocalls are used in a Distributed Cryptography (DC) subsystem, which allows the delegation of security operations to the remote agent. For instance, it can be used to compute the signature value on the server, while retaining the client's private key locally.

Fields

AsyncDocumentID
string

Default Value: ""

Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.

Use this property when working with multi-signature DCAuth requests and responses to uniquely identify documents signed within a larger batch. On the completion stage, this value helps the signing component identify the correct signature in the returned batch of responses.

If using batched requests, make sure to set this property to the same value on both the pre-signing (SignAsyncBegin) and completion (SignAsyncEnd) stages.

CustomParams
string

Default Value: ""

Custom parameters to be passed to the signing service (uninterpreted).

Data
string

Default Value: ""

Additional data to be included in the async state and mirrored back by the requestor.

ExternalHashCalculation
bool

Default Value: False

Specifies whether the message hash is to be calculated at the external endpoint. Please note that this mode is not supported by the DCAuth component.

If set to true, the component will pass a few kilobytes of to-be-signed data from the document to the OnExternalSign event. This only applies when SignExternal() is called.

HashAlgorithm
string

Default Value: "SHA256"

Specifies the request's signature hash algorithm.

SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_MD2MD2
SB_HASH_ALGORITHM_MD4MD4
SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_CRC32CRC32
SB_HASH_ALGORITHM_SSL3SSL3
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_POLY1305POLY1305
SB_HASH_ALGORITHM_SHA3_224SHA3_224
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512
SB_HASH_ALGORITHM_BLAKE2S_128BLAKE2S_128
SB_HASH_ALGORITHM_BLAKE2S_160BLAKE2S_160
SB_HASH_ALGORITHM_BLAKE2S_224BLAKE2S_224
SB_HASH_ALGORITHM_BLAKE2S_256BLAKE2S_256
SB_HASH_ALGORITHM_BLAKE2B_160BLAKE2B_160
SB_HASH_ALGORITHM_BLAKE2B_256BLAKE2B_256
SB_HASH_ALGORITHM_BLAKE2B_384BLAKE2B_384
SB_HASH_ALGORITHM_BLAKE2B_512BLAKE2B_512
SB_HASH_ALGORITHM_SHAKE_128SHAKE_128
SB_HASH_ALGORITHM_SHAKE_256SHAKE_256
SB_HASH_ALGORITHM_SHAKE_128_LENSHAKE_128_LEN
SB_HASH_ALGORITHM_SHAKE_256_LENSHAKE_256_LEN

KeyID
string

Default Value: ""

The ID of the pre-shared key used for DC request authentication.

Asynchronous DCAuth-driven communication requires that parties authenticate each other with a secret pre-shared cryptographic key. This provides an extra protection layer for the protocol and diminishes the risk of the private key becoming abused by foreign parties. Use this property to provide the pre-shared key identifier, and use KeySecret to pass the key itself.

The same KeyID/KeySecret pair should be used on the DCAuth side for the signing requests to be accepted.

Note: The KeyID/KeySecret scheme is very similar to the AuthKey scheme used in various Cloud service providers to authenticate users.

Example: signer.ExternalCrypto.KeyID = "MainSigningKey"; signer.ExternalCrypto.KeySecret = "abcdef0123456789";

KeySecret
string

Default Value: ""

The pre-shared key used for DC request authentication. This key must be set and match the key used by the DCAuth counterpart for the scheme to work.

Read more about configuring authentication in the KeyID topic.

Method
AsyncSignMethods

Default Value: 0

Specifies the asynchronous signing method. This is typically defined by the DC server capabilities and setup.

Available options:

asmdPKCS10
asmdPKCS71

Mode
ExternalCryptoModes

Default Value: 0

Specifies the external cryptography mode.

Available options:

ecmDefaultThe default value (0)
ecmDisabledDo not use DC or external signing (1)
ecmGenericGeneric external signing with the OnExternalSign event (2)
ecmDCAuthDCAuth signing (3)
ecmDCAuthJSONDCAuth signing in JSON format (4)

PublicKeyAlgorithm
string

Default Value: ""

Provide the public key algorithm here if the certificate is not available on the pre-signing stage.

SB_CERT_ALGORITHM_ID_RSA_ENCRYPTIONrsaEncryption
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTIONmd2withRSAEncryption
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTIONmd5withRSAEncryption
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTIONsha1withRSAEncryption
SB_CERT_ALGORITHM_ID_DSAid-dsa
SB_CERT_ALGORITHM_ID_DSA_SHA1id-dsa-with-sha1
SB_CERT_ALGORITHM_DH_PUBLICdhpublicnumber
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTIONsha224WithRSAEncryption
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTIONsha256WithRSAEncryption
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTIONsha384WithRSAEncryption
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTIONsha512WithRSAEncryption
SB_CERT_ALGORITHM_ID_RSAPSSid-RSASSA-PSS
SB_CERT_ALGORITHM_ID_RSAOAEPid-RSAES-OAEP
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160ripemd160withRSA
SB_CERT_ALGORITHM_ID_ELGAMALelGamal
SB_CERT_ALGORITHM_SHA1_ECDSAecdsa-with-SHA1
SB_CERT_ALGORITHM_RECOMMENDED_ECDSAecdsa-recommended
SB_CERT_ALGORITHM_SHA224_ECDSAecdsa-with-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSAecdsa-with-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSAecdsa-with-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSAecdsa-with-SHA512
SB_CERT_ALGORITHM_ECid-ecPublicKey
SB_CERT_ALGORITHM_SPECIFIED_ECDSAecdsa-specified
SB_CERT_ALGORITHM_GOST_R3410_1994id-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3410_2001id-GostR3410-2001
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994id-GostR3411-94-with-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001id-GostR3411-94-with-GostR3410-2001
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAINecdsa-plain-SHA1
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAINecdsa-plain-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAINecdsa-plain-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAINecdsa-plain-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAINecdsa-plain-SHA512
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAINecdsa-plain-RIPEMD160
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTIONwhirlpoolWithRSAEncryption
SB_CERT_ALGORITHM_ID_DSA_SHA224id-dsa-with-sha224
SB_CERT_ALGORITHM_ID_DSA_SHA256id-dsa-with-sha256
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSAid-ecdsa-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSAid-ecdsa-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSAid-ecdsa-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSAid-ecdsa-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAINid-ecdsa-plain-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAINid-ecdsa-plain-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAINid-ecdsa-plain-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAINid-ecdsa-plain-with-sha3-512
SB_CERT_ALGORITHM_ID_DSA_SHA3_224id-dsa-with-sha3-224
SB_CERT_ALGORITHM_ID_DSA_SHA3_256id-dsa-with-sha3-256
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSAid-ecdsa-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSAid-ecdsa-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSAid-ecdsa-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSAid-ecdsa-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSAid-ecdsa-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSAid-ecdsa-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSAid-ecdsa-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSAid-ecdsa-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAINid-ecdsa-plain-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAINid-ecdsa-plain-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAINid-ecdsa-plain-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAINid-ecdsa-plain-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAINid-ecdsa-plain-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAINid-ecdsa-plain-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAINid-ecdsa-plain-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAINid-ecdsa-plain-with-blake2b512
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224id-dsa-with-blake2s224
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256id-dsa-with-blake2s256
SB_CERT_ALGORITHM_EDDSA_ED25519id-Ed25519
SB_CERT_ALGORITHM_EDDSA_ED448id-Ed448
SB_CERT_ALGORITHM_EDDSA_ED25519_PHid-Ed25519ph
SB_CERT_ALGORITHM_EDDSA_ED448_PHid-Ed448ph
SB_CERT_ALGORITHM_EDDSAid-EdDSA
SB_CERT_ALGORITHM_EDDSA_SIGNATUREid-EdDSA-sig

Constructors

public ExternalCrypto();
Public ExternalCrypto()

Creates a new ExternalCrypto object with default field values.

ProxySettings Type

A container for proxy server settings.

Remarks

This type exposes a collection of properties for tuning up the proxy server configuration.

Fields

Address
string

Default Value: ""

The IP address of the proxy server.

Authentication
ProxyAuthTypes

Default Value: 0

The authentication type used by the proxy server.

patNoAuthentication0
patBasic1
patDigest2
patNTLM3

Password
string

Default Value: ""

The password to authenticate to the proxy server.

Port
int

Default Value: 0

The port on the proxy server to connect to.

ProxyType
ProxyTypes

Default Value: 0

The type of the proxy server.

The WebTunnel proxy is also known as HTTPS proxy. Unlike HTTP proxy, HTTPS proxy (WebTunnel) provides end-to-end security.

cptNone0
cptSocks41
cptSocks52
cptWebTunnel3
cptHTTP4

RequestHeaders
string

Default Value: ""

Contains HTTP request headers for WebTunnel and HTTP proxy.

ResponseBody
string

Default Value: ""

Contains the HTTP or HTTPS (WebTunnel) proxy response body.

ResponseHeaders
string

Default Value: ""

Contains response headers received from an HTTP or HTTPS (WebTunnel) proxy server.

UseIPv6
bool

Default Value: False

Specifies whether IPv6 should be used when connecting through the proxy.

UseProxy
bool

Default Value: False

Enables or disables proxy-driven connection.

Username
string

Default Value: ""

Specifies the username credential for proxy authentication.

Constructors

public ProxySettings();
Public ProxySettings()

Creates a new ProxySettings object.

SocketSettings Type

A container for the socket settings.

Remarks

This type is a container for socket-layer parameters.

Fields

DNSMode
DNSResolveModes

Default Value: 0

Selects the DNS resolver to use: the component's (secure) built-in one, or the one provided by the system.

dmAuto0
dmPlatform1
dmOwn2
dmOwnSecure3

DNSPort
int

Default Value: 0

Specifies the port number to be used for sending queries to the DNS server.

DNSQueryTimeout
int

Default Value: 0

The timeout (in milliseconds) for each DNS query. The value of 0 indicates an infinite timeout.

DNSServers
string

Default Value: ""

The addresses of DNS servers to use for address resolution, separated by commas or semicolons.

DNSTotalTimeout
int

Default Value: 0

The timeout (in milliseconds) for the whole resolution process. The value of 0 indicates an infinite timeout.

IncomingSpeedLimit
int

Default Value: 0

The maximum number of bytes to read from the socket, per second.

LocalAddress
string

Default Value: ""

The local network interface to bind the socket to.

LocalPort
int

Default Value: 0

The local port number to bind the socket to.

OutgoingSpeedLimit
int

Default Value: 0

The maximum number of bytes to write to the socket, per second.

Timeout
int

Default Value: 60000

The maximum period of waiting, in milliseconds, after which the socket operation is considered unsuccessful.

If Timeout is set to 0, a socket operation will expire after the system-default timeout (2 hrs 8 min for TCP stack).

UseIPv6
bool

Default Value: False

Enables or disables IP protocol version 6.

Constructors

public SocketSettings();
Public SocketSettings()

Creates a new SocketSettings object.

TLSSettings Type

A container for TLS connection settings.

Remarks

The TLS (Transport Layer Security) protocol provides security for information exchanged over insecure connections such as TCP/IP.

Fields

AutoValidateCertificates
bool

Default Value: True

Specifies whether server-side TLS certificates should be validated automatically using internal validation rules.

BaseConfiguration
SecureTransportPredefinedConfigurations

Default Value: 0

Selects the base configuration for the TLS settings. Several profiles are offered and tuned up for different purposes, such as high security or higher compatibility.

stpcDefault0
stpcCompatible1
stpcComprehensiveInsecure2
stpcHighlySecure3

Ciphersuites
string

Default Value: ""

A list of ciphersuites separated with commas or semicolons. Each ciphersuite in the list may be prefixed with a minus sign (-) to indicate that the ciphersuite should be disabled rather than enabled. Besides the specific ciphersuite modifiers, this property supports the all (and -all) aliases, allowing all ciphersuites to be blanketly enabled or disabled at once.

Note: the list of ciphersuites provided to this property alters the baseline list of ciphersuites as defined by BaseConfiguration. Remember to start your ciphersuite string with -all; if you need to only enable a specific fixed set of ciphersuites. The list of supported ciphersuites is provided below:

  • NULL_NULL_NULL
  • RSA_NULL_MD5
  • RSA_NULL_SHA
  • RSA_RC4_MD5
  • RSA_RC4_SHA
  • RSA_RC2_MD5
  • RSA_IDEA_MD5
  • RSA_IDEA_SHA
  • RSA_DES_MD5
  • RSA_DES_SHA
  • RSA_3DES_MD5
  • RSA_3DES_SHA
  • RSA_AES128_SHA
  • RSA_AES256_SHA
  • DH_DSS_DES_SHA
  • DH_DSS_3DES_SHA
  • DH_DSS_AES128_SHA
  • DH_DSS_AES256_SHA
  • DH_RSA_DES_SHA
  • DH_RSA_3DES_SHA
  • DH_RSA_AES128_SHA
  • DH_RSA_AES256_SHA
  • DHE_DSS_DES_SHA
  • DHE_DSS_3DES_SHA
  • DHE_DSS_AES128_SHA
  • DHE_DSS_AES256_SHA
  • DHE_RSA_DES_SHA
  • DHE_RSA_3DES_SHA
  • DHE_RSA_AES128_SHA
  • DHE_RSA_AES256_SHA
  • DH_ANON_RC4_MD5
  • DH_ANON_DES_SHA
  • DH_ANON_3DES_SHA
  • DH_ANON_AES128_SHA
  • DH_ANON_AES256_SHA
  • RSA_RC2_MD5_EXPORT
  • RSA_RC4_MD5_EXPORT
  • RSA_DES_SHA_EXPORT
  • DH_DSS_DES_SHA_EXPORT
  • DH_RSA_DES_SHA_EXPORT
  • DHE_DSS_DES_SHA_EXPORT
  • DHE_RSA_DES_SHA_EXPORT
  • DH_ANON_RC4_MD5_EXPORT
  • DH_ANON_DES_SHA_EXPORT
  • RSA_CAMELLIA128_SHA
  • DH_DSS_CAMELLIA128_SHA
  • DH_RSA_CAMELLIA128_SHA
  • DHE_DSS_CAMELLIA128_SHA
  • DHE_RSA_CAMELLIA128_SHA
  • DH_ANON_CAMELLIA128_SHA
  • RSA_CAMELLIA256_SHA
  • DH_DSS_CAMELLIA256_SHA
  • DH_RSA_CAMELLIA256_SHA
  • DHE_DSS_CAMELLIA256_SHA
  • DHE_RSA_CAMELLIA256_SHA
  • DH_ANON_CAMELLIA256_SHA
  • PSK_RC4_SHA
  • PSK_3DES_SHA
  • PSK_AES128_SHA
  • PSK_AES256_SHA
  • DHE_PSK_RC4_SHA
  • DHE_PSK_3DES_SHA
  • DHE_PSK_AES128_SHA
  • DHE_PSK_AES256_SHA
  • RSA_PSK_RC4_SHA
  • RSA_PSK_3DES_SHA
  • RSA_PSK_AES128_SHA
  • RSA_PSK_AES256_SHA
  • RSA_SEED_SHA
  • DH_DSS_SEED_SHA
  • DH_RSA_SEED_SHA
  • DHE_DSS_SEED_SHA
  • DHE_RSA_SEED_SHA
  • DH_ANON_SEED_SHA
  • SRP_SHA_3DES_SHA
  • SRP_SHA_RSA_3DES_SHA
  • SRP_SHA_DSS_3DES_SHA
  • SRP_SHA_AES128_SHA
  • SRP_SHA_RSA_AES128_SHA
  • SRP_SHA_DSS_AES128_SHA
  • SRP_SHA_AES256_SHA
  • SRP_SHA_RSA_AES256_SHA
  • SRP_SHA_DSS_AES256_SHA
  • ECDH_ECDSA_NULL_SHA
  • ECDH_ECDSA_RC4_SHA
  • ECDH_ECDSA_3DES_SHA
  • ECDH_ECDSA_AES128_SHA
  • ECDH_ECDSA_AES256_SHA
  • ECDHE_ECDSA_NULL_SHA
  • ECDHE_ECDSA_RC4_SHA
  • ECDHE_ECDSA_3DES_SHA
  • ECDHE_ECDSA_AES128_SHA
  • ECDHE_ECDSA_AES256_SHA
  • ECDH_RSA_NULL_SHA
  • ECDH_RSA_RC4_SHA
  • ECDH_RSA_3DES_SHA
  • ECDH_RSA_AES128_SHA
  • ECDH_RSA_AES256_SHA
  • ECDHE_RSA_NULL_SHA
  • ECDHE_RSA_RC4_SHA
  • ECDHE_RSA_3DES_SHA
  • ECDHE_RSA_AES128_SHA
  • ECDHE_RSA_AES256_SHA
  • ECDH_ANON_NULL_SHA
  • ECDH_ANON_RC4_SHA
  • ECDH_ANON_3DES_SHA
  • ECDH_ANON_AES128_SHA
  • ECDH_ANON_AES256_SHA
  • RSA_NULL_SHA256
  • RSA_AES128_SHA256
  • RSA_AES256_SHA256
  • DH_DSS_AES128_SHA256
  • DH_RSA_AES128_SHA256
  • DHE_DSS_AES128_SHA256
  • DHE_RSA_AES128_SHA256
  • DH_DSS_AES256_SHA256
  • DH_RSA_AES256_SHA256
  • DHE_DSS_AES256_SHA256
  • DHE_RSA_AES256_SHA256
  • DH_ANON_AES128_SHA256
  • DH_ANON_AES256_SHA256
  • RSA_AES128_GCM_SHA256
  • RSA_AES256_GCM_SHA384
  • DHE_RSA_AES128_GCM_SHA256
  • DHE_RSA_AES256_GCM_SHA384
  • DH_RSA_AES128_GCM_SHA256
  • DH_RSA_AES256_GCM_SHA384
  • DHE_DSS_AES128_GCM_SHA256
  • DHE_DSS_AES256_GCM_SHA384
  • DH_DSS_AES128_GCM_SHA256
  • DH_DSS_AES256_GCM_SHA384
  • DH_ANON_AES128_GCM_SHA256
  • DH_ANON_AES256_GCM_SHA384
  • ECDHE_ECDSA_AES128_SHA256
  • ECDHE_ECDSA_AES256_SHA384
  • ECDH_ECDSA_AES128_SHA256
  • ECDH_ECDSA_AES256_SHA384
  • ECDHE_RSA_AES128_SHA256
  • ECDHE_RSA_AES256_SHA384
  • ECDH_RSA_AES128_SHA256
  • ECDH_RSA_AES256_SHA384
  • ECDHE_ECDSA_AES128_GCM_SHA256
  • ECDHE_ECDSA_AES256_GCM_SHA384
  • ECDH_ECDSA_AES128_GCM_SHA256
  • ECDH_ECDSA_AES256_GCM_SHA384
  • ECDHE_RSA_AES128_GCM_SHA256
  • ECDHE_RSA_AES256_GCM_SHA384
  • ECDH_RSA_AES128_GCM_SHA256
  • ECDH_RSA_AES256_GCM_SHA384
  • PSK_AES128_GCM_SHA256
  • PSK_AES256_GCM_SHA384
  • DHE_PSK_AES128_GCM_SHA256
  • DHE_PSK_AES256_GCM_SHA384
  • RSA_PSK_AES128_GCM_SHA256
  • RSA_PSK_AES256_GCM_SHA384
  • PSK_AES128_SHA256
  • PSK_AES256_SHA384
  • PSK_NULL_SHA256
  • PSK_NULL_SHA384
  • DHE_PSK_AES128_SHA256
  • DHE_PSK_AES256_SHA384
  • DHE_PSK_NULL_SHA256
  • DHE_PSK_NULL_SHA384
  • RSA_PSK_AES128_SHA256
  • RSA_PSK_AES256_SHA384
  • RSA_PSK_NULL_SHA256
  • RSA_PSK_NULL_SHA384
  • RSA_CAMELLIA128_SHA256
  • DH_DSS_CAMELLIA128_SHA256
  • DH_RSA_CAMELLIA128_SHA256
  • DHE_DSS_CAMELLIA128_SHA256
  • DHE_RSA_CAMELLIA128_SHA256
  • DH_ANON_CAMELLIA128_SHA256
  • RSA_CAMELLIA256_SHA256
  • DH_DSS_CAMELLIA256_SHA256
  • DH_RSA_CAMELLIA256_SHA256
  • DHE_DSS_CAMELLIA256_SHA256
  • DHE_RSA_CAMELLIA256_SHA256
  • DH_ANON_CAMELLIA256_SHA256
  • ECDHE_ECDSA_CAMELLIA128_SHA256
  • ECDHE_ECDSA_CAMELLIA256_SHA384
  • ECDH_ECDSA_CAMELLIA128_SHA256
  • ECDH_ECDSA_CAMELLIA256_SHA384
  • ECDHE_RSA_CAMELLIA128_SHA256
  • ECDHE_RSA_CAMELLIA256_SHA384
  • ECDH_RSA_CAMELLIA128_SHA256
  • ECDH_RSA_CAMELLIA256_SHA384
  • RSA_CAMELLIA128_GCM_SHA256
  • RSA_CAMELLIA256_GCM_SHA384
  • DHE_RSA_CAMELLIA128_GCM_SHA256
  • DHE_RSA_CAMELLIA256_GCM_SHA384
  • DH_RSA_CAMELLIA128_GCM_SHA256
  • DH_RSA_CAMELLIA256_GCM_SHA384
  • DHE_DSS_CAMELLIA128_GCM_SHA256
  • DHE_DSS_CAMELLIA256_GCM_SHA384
  • DH_DSS_CAMELLIA128_GCM_SHA256
  • DH_DSS_CAMELLIA256_GCM_SHA384
  • DH_anon_CAMELLIA128_GCM_SHA256
  • DH_anon_CAMELLIA256_GCM_SHA384
  • ECDHE_ECDSA_CAMELLIA128_GCM_SHA256
  • ECDHE_ECDSA_CAMELLIA256_GCM_SHA384
  • ECDH_ECDSA_CAMELLIA128_GCM_SHA256
  • ECDH_ECDSA_CAMELLIA256_GCM_SHA384
  • ECDHE_RSA_CAMELLIA128_GCM_SHA256
  • ECDHE_RSA_CAMELLIA256_GCM_SHA384
  • ECDH_RSA_CAMELLIA128_GCM_SHA256
  • ECDH_RSA_CAMELLIA256_GCM_SHA384
  • PSK_CAMELLIA128_GCM_SHA256
  • PSK_CAMELLIA256_GCM_SHA384
  • DHE_PSK_CAMELLIA128_GCM_SHA256
  • DHE_PSK_CAMELLIA256_GCM_SHA384
  • RSA_PSK_CAMELLIA128_GCM_SHA256
  • RSA_PSK_CAMELLIA256_GCM_SHA384
  • PSK_CAMELLIA128_SHA256
  • PSK_CAMELLIA256_SHA384
  • DHE_PSK_CAMELLIA128_SHA256
  • DHE_PSK_CAMELLIA256_SHA384
  • RSA_PSK_CAMELLIA128_SHA256
  • RSA_PSK_CAMELLIA256_SHA384
  • ECDHE_PSK_CAMELLIA128_SHA256
  • ECDHE_PSK_CAMELLIA256_SHA384
  • ECDHE_PSK_RC4_SHA
  • ECDHE_PSK_3DES_SHA
  • ECDHE_PSK_AES128_SHA
  • ECDHE_PSK_AES256_SHA
  • ECDHE_PSK_AES128_SHA256
  • ECDHE_PSK_AES256_SHA384
  • ECDHE_PSK_NULL_SHA
  • ECDHE_PSK_NULL_SHA256
  • ECDHE_PSK_NULL_SHA384
  • ECDHE_RSA_CHACHA20_POLY1305_SHA256
  • ECDHE_ECDSA_CHACHA20_POLY1305_SHA256
  • DHE_RSA_CHACHA20_POLY1305_SHA256
  • PSK_CHACHA20_POLY1305_SHA256
  • ECDHE_PSK_CHACHA20_POLY1305_SHA256
  • DHE_PSK_CHACHA20_POLY1305_SHA256
  • RSA_PSK_CHACHA20_POLY1305_SHA256
  • AES128_GCM_SHA256
  • AES256_GCM_SHA384
  • CHACHA20_POLY1305_SHA256
  • AES128_CCM_SHA256
  • AES128_CCM8_SHA256

ECCurves
string

Default Value: ""

Defines the elliptic curves to enable.

Extensions
string

Default Value: ""

Provides access to TLS extensions.

ForceResumeIfDestinationChanges
bool

Default Value: False

Whether to force TLS session resumption when the destination address changes.

PreSharedIdentity
string

Default Value: ""

Defines the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.

PreSharedKey
string

Default Value: ""

Contains the pre-shared key for the PSK (Pre-Shared Key) key-exchange mechanism, encoded with base16.

PreSharedKeyCiphersuite
string

Default Value: ""

Defines the ciphersuite used for PSK (Pre-Shared Key) negotiation.

RenegotiationAttackPreventionMode
RenegotiationAttackPreventionModes

Default Value: 0

Selects the renegotiation attack prevention mechanism.

The following options are available:

crapmCompatible0TLS 1.0 and 1.1 compatibility mode (renegotiation indication extension is disabled).
crapmStrict1Renegotiation attack prevention is enabled and enforced.
crapmAuto2Automatically choose whether to enable or disable renegotiation attack prevention.

RevocationCheck
RevocationCheckKinds

Default Value: 1

Specifies the kind(s) of revocation check to perform.

Revocation checking is necessary to ensure the integrity of the chain and obtain up-to-date certificate validity and trustworthiness information.

crcNone0No revocation checking.
crcAuto1Automatic mode selection. Currently this maps to crcAnyOCSPOrCRL, but it may change in the future.
crcAllCRL2All provided CRL endpoints will be checked, and all checks must succeed.
crcAllOCSP3All provided OCSP endpoints will be checked, and all checks must succeed.
crcAllCRLAndOCSP4All provided CRL and OCSP endpoints will be checked, and all checks must succeed.
crcAnyCRL5All provided CRL endpoints will be checked, and at least one check must succeed.
crcAnyOCSP6All provided OCSP endpoints will be checked, and at least one check must succeed.
crcAnyCRLOrOCSP7All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. CRL endpoints are checked first.
crcAnyOCSPOrCRL8All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. OCSP endpoints are checked first.

This setting controls the way the revocation checks are performed for every certificate in the chain. Typically certificates come with two types of revocation information sources: CRL (certificate revocation lists) and OCSP responders. CRLs are static objects periodically published by the CA at some online location. OCSP responders are active online services maintained by the CA that can provide up-to-date information on certificate statuses in near real time.

There are some conceptual differences between the two. CRLs are normally larger in size. Their use involves some latency because there is normally some delay between the time when a certificate was revoked and the time the subsequent CRL mentioning that is published. The benefits of CRL is that the same object can provide statuses for all certificates issued by a particular CA, and that the whole technology is much simpler than OCSP (and thus is supported by more CAs).

This setting lets you adjust the validation course by including or excluding certain types of revocation sources from the validation process. The crcAnyOCSPOrCRL setting (give preference to the faster OCSP route and only demand one source to succeed) is a good choice for most typical validation environments. The "crcAll*" modes are much stricter, and may be used in scenarios where bulletproof validity information is essential.

Note: If no CRL or OCSP endpoints are provided by the CA, the revocation check will be considered successful. This is because the CA chose not to supply revocation information for its certificates, meaning they are considered irrevocable.

Note: Within each of the above settings, if any retrieved CRL or OCSP response indicates that the certificate has been revoked, the revocation check fails.

SSLOptions
int

Default Value: 16

Various SSL (TLS) protocol options, set of

cssloExpectShutdownMessage0x001Wait for the close-notify message when shutting down the connection

cssloOpenSSLDTLSWorkaround0x002(DEPRECATED) Use a DTLS version workaround when talking to very old OpenSSL versions

cssloDisableKexLengthAlignment0x004Do not align the client-side PMS by the RSA modulus size. It is unlikely that you will ever need to adjust it.

cssloForceUseOfClientCertHashAlg0x008Enforce the use of the client certificate hash algorithm. It is unlikely that you will ever need to adjust it.

cssloAutoAddServerNameExtension0x010Automatically add the server name extension when known

cssloAcceptTrustedSRPPrimesOnly0x020Accept trusted SRP primes only

cssloDisableSignatureAlgorithmsExtension0x040Disable (do not send) the signature algorithms extension. It is unlikely that you will ever need to adjust it.

cssloIntolerateHigherProtocolVersions0x080(server option) Do not allow fallback from TLS versions higher than currently enabled

cssloStickToPrefCertHashAlg0x100Stick to preferred certificate hash algorithms

cssloNoImplicitTLS12Fallback0x200Disable implicit TLS 1.3 to 1.2 fallbacks

cssloUseHandshakeBatches0x400Send the handshake message as large batches rather than individually

TLSMode
SSLModes

Default Value: 0

Specifies the TLS mode to use.

smDefault0
smNoTLS1Do not use TLS
smExplicitTLS2Connect to the server without any encryption and then request an SSL session.
smImplicitTLS3Connect to the specified port, and establish the SSL session at once.
smMixedTLS4Connect to the specified port, and establish the SSL session at once, but allow plain data.

UseExtendedMasterSecret
bool

Default Value: False

Enables the Extended Master Secret Extension, as defined in RFC 7627.

UseSessionResumption
bool

Default Value: False

Enables or disables the TLS session resumption capability.

Versions
int

Default Value: 16

The SSL/TLS versions to enable by default.

csbSSL20x01SSL 2

csbSSL30x02SSL 3

csbTLS10x04TLS 1.0

csbTLS110x08TLS 1.1

csbTLS120x10TLS 1.2

csbTLS130x20TLS 1.3

Constructors

public TLSSettings();
Public TLSSettings()

Creates a new TLSSettings object.

Config Settings (DCAuth Component)

The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

DCAuth Config Settings

DataURL:   (obsolete) The DataURL parameter to pass to the signer.

(obsolete) The DataURL parameter to pass to the signer.

GoURL:   (obsolete) The GoURL parameter to pass to the signer.

(obsolete) The GoURL parameter to pass to the signer.

RequireDefinedSignCert:   (obsolete) The RequireDefinedSignCert parameter to pass to the signer.

(obsolete) The RequireDefinedSignCert parameter to pass to the signer.

SchemeParams:   The algorithm scheme parameters to employ.

Use this property to specify the parameters of the algorithm scheme if needed.

This setting is used to provide parameters for some cryptographic schemes. Use the Name1=Value1;Name2=Value2;... syntax to encode the parameters. For example: Scheme=PSS;SaltSize=32;TrailerField=1.

SessionID:   (obsolete) The SessionID parameter to pass to the signer.

(obsolete) The SessionID parameter to pass to the signer.

TokenName:   The TokenName parameter to pass to the signer.

(obsolete) The TokenName parameter to pass to the signer.

TokensLibraries:   (obsolete) The TokensLibraries parameter to pass to the signer.

(obsolete) The TokensLibraries parameter to pass to the signer.

Base Config Settings

CheckKeyIntegrityBeforeUse:   Enables or disable private key integrity check before use.

This global property enables or disables private key material check before each signing operation. This slows down performance a bit, but prevents a selection of attacks on RSA keys where keys with unknown origins are used.

You can switch this property off to improve performance if your project only uses known, good private keys.

CookieCaching:   Specifies whether a cookie cache should be used for HTTP(S) transports.

Set this property to enable or disable cookies caching for the component.

Supported values are:

offNo caching (default)
localLocal caching
globalGlobal caching

Cookies:   Gets or sets local cookies for the component.

Use this property to get cookies from the internal cookie storage of the component and/or restore them back between application sessions.

DefDeriveKeyIterations:   Specifies the default key derivation algorithm iteration count.

This global property sets the default number of iterations for all supported key derivation algorithms. Note that you can provide the required number of iterations by using properties of the relevant key generation component; this global setting is used in scenarios where specific iteration count is not or cannot be provided.

EnableClientSideSSLFFDHE:   Enables or disables finite field DHE key exchange support in TLS clients.

This global property enables or disables support for finite field DHE key exchange methods in TLS clients. FF DHE is a slower algorithm if compared to EC DHE; enabling it may result in slower connections.

This setting only applies to sessions negotiated with TLS version 1.3.

GlobalCookies:   Gets or sets global cookies for all the HTTP transports.

Use this property to get cookies from the GLOBAL cookie storage or restore them back between application sessions. These cookies will be used by all the components that have its CookieCaching property set to "global".

HttpUserAgent:   Specifies the user agent name to be used by all HTTP clients.

This global setting defines the User-Agent field of the HTTP request provides information about the software that initiates the request. This value will be used by all the HTTP clients including the ones used internally in other components.

LogDestination:   Specifies the debug log destination.

Contains a comma-separated list of values that specifies where debug log should be dumped.

Supported values are:

fileFile
consoleConsole
systemlogSystem Log (supported for Android only)
debuggerDebugger (supported for VCL for Windows and .Net)

LogDetails:   Specifies the debug log details to dump.

Contains a comma-separated list of values that specifies which debug log details to dump.

Supported values are:

timeCurrent time
levelLevel
packagePackage name
moduleModule name
classClass name
methodMethod name
threadidThread Id
contenttypeContent type
contentContent
allAll details

LogFile:   Specifies the debug log filename.

Use this property to provide a path to the log file.

LogFilters:   Specifies the debug log filters.

Contains a comma-separated list of value pairs ("name:value") that describe filters.

Supported filter names are:

exclude-packageExclude a package specified in the value
exclude-moduleExclude a module specified in the value
exclude-classExclude a class specified in the value
exclude-methodExclude a method specified in the value
include-packageInclude a package specified in the value
include-moduleInclude a module specified in the value
include-classInclude a class specified in the value
include-methodInclude a method specified in the value

LogFlushMode:   Specifies the log flush mode.

Use this property to set the log flush mode. The following values are defined:

noneNo flush (caching only)
immediateImmediate flush (real-time logging)
maxcountFlush cached entries upon reaching LogMaxEventCount entries in the cache.

LogLevel:   Specifies the debug log level.

Use this property to provide the desired debug log level.

Supported values are:

noneNone (by default)
fatalSevere errors that cause premature termination.
errorOther runtime errors or unexpected conditions.
warningUse of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong".
infoInteresting runtime events (startup/shutdown).
debugDetailed information on flow of through the system.
traceMore detailed information.

LogMaxEventCount:   Specifies the maximum number of events to cache before further action is taken.

Use this property to specify the log event number threshold. This threshold may have different effects, depending on the rotation setting and/or the flush mode.

The default value of this setting is 100.

LogRotationMode:   Specifies the log rotation mode.

Use this property to set the log rotation mode. The following values are defined:

noneNo rotation
deleteolderDelete older entries from the cache upon reaching LogMaxEventCount
keepolderKeep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded)

MaxASN1BufferLength:   Specifies the maximal allowed length for ASN.1 primitive tag data.

This global property limits the maximal allowed length for ASN.1 tag data for non-content-carrying structures, such as certificates, CRLs, or timestamps. It does not affect structures that can carry content, such as CMS/CAdES messages. This is a security property aiming at preventing DoS attacks.

MaxASN1TreeDepth:   Specifies the maximal depth for processed ASN.1 trees.

This global property limits the maximal depth of ASN.1 trees that the component can handle without throwing an error. This is a security property aiming at preventing DoS attacks.

OCSPHashAlgorithm:   Specifies the hash algorithm to be used to identify certificates in OCSP requests.

This global setting defines the hash algorithm to use in OCSP requests during chain validation. Some OCSP responders can only use older algorithms, in which case setting this property to SHA1 may be helpful.

StaticDNS:   Specifies whether static DNS rules should be used.

Set this property to enable or disable static DNS rules for the component. Works only if UseOwnDNSResolver is set to true.

Supported values are:

noneNo static DNS rules (default)
localLocal static DNS rules
globalGlobal static DNS rules

StaticIPAddress[domain]:   Gets or sets an IP address for the specified domain name.

Use this property to get or set an IP address for the specified domain name in the internal (of the component) or global DNS rules storage depending on the StaticDNS value. The type of the IP address (IPv4 or IPv6) is determined automatically. If both addresses are available, they are devided by the | (pipe) character.

StaticIPAddresses:   Gets or sets all the static DNS rules.

Use this property to get static DNS rules from the current rules storage or restore them back between application sessions. If StaticDNS of the component is set to "local", the property returns/restores the rules from/to the internal storage of the component. If StaticDNS of the component is set to "global", the property returns/restores the rules from/to the GLOBAL storage. The rules list is returned and accepted in JSON format.

Tag:   Allows to store any custom data.

Use this config property to store any custom data.

TLSSessionGroup:   Specifies the group name of TLS sessions to be used for session resumption.

Use this property to limit the search of chached TLS sessions to the specified group. Sessions from other groups will be ignored. By default, all sessions are cached with an empty group name and available to all the components.

TLSSessionLifetime:   Specifies lifetime in seconds of the cached TLS session.

Use this property to specify how much time the TLS session should be kept in the session cache. After this time, the session expires and will be automatically removed from the cache. Default value is 300 seconds (5 minutes).

TLSSessionPurgeInterval:   Specifies how often the session cache should remove the expired TLS sessions.

Use this property to specify the time interval of purging the expired TLS sessions from the session cache. Default value is 60 seconds (1 minute).

UseOwnDNSResolver:   Specifies whether the client components should use own DNS resolver.

Set this global property to false to force all the client components to use the DNS resolver provided by the target OS instead of using own one.

UseSharedSystemStorages:   Specifies whether the validation engine should use a global per-process copy of the system certificate stores.

Set this global property to false to make each validation run use its own copy of system certificate stores.

UseSystemOAEPAndPSS:   Enforces or disables the use of system-driven RSA OAEP and PSS computations.

This global setting defines who is responsible for performing RSA-OAEP and RSA-PSS computations where the private key is stored in a Windows system store and is exportable. If set to true, SBB will delegate the computations to Windows via a CryptoAPI call. Otherwise, it will export the key material and perform the computations using its own OAEP/PSS implementation.

This setting only applies to certificates originating from a Windows system store.

UseSystemRandom:   Enables or disables the use of the OS PRNG.

Use this global property to enable or disable the use of operating system-driven pseudorandom number generation.

Trappable Errors (DCAuth Component)