HTTPServer Component
Properties Methods Events Config Settings Errors
The HTTPServer component offers server-side functionality for the HTTP/HTTPS protocols.
Syntax
nsoftware.SecureBlackbox.Httpserver
Remarks
Both plain (HTTP) and secure (HTTPS) connection types are supported.
Follow the below steps to set up and run the server in your code:
- Create an instance of the server component and set up the license, if assumed by the edition you are using:
var server = new Httpserver(); server.RuntimeLicense = "5342..0000";
- Set up the listening port (make sure it is not in use):
server.Port = 443;
- Tell the component whether TLS connections should be enforced:
server.UseTLS = true; // set to false to disable TLS and server plain HTTP requests
- Set up the document root (a directory where all static files are kept):
server.DocumentRoot = "c:\\inetpub\\mywebserver";
- (TLS-enabled servers only) Configure TLS parameters. The exact way of doing that may vary for different scenarios and security requirements.
At the very least you need to set up the certificate chain that the server will use to authenticate itself to connecting clients. If you don"t,
the component will generate a dummy certificate itself, however, that certificate is unlikely to pass any security requirements.
It will let you accept test connections though.
Below is an example of tuning up the TLS parameters of the server:
// *** Switching TLS on and enabling the implicit mode *** server.UseTLS = true; server.TLSSettings.TLSMode = smImplicitTLS; // this must be implicit for HTTPS // Loading the certificate chain var mgr = new Certificatemanager(); mgr.RuntimeLicense = "5342..0000"; // *** Setting up the host certificate *** // - it should be issued in the name that matches the hostname (such as domain.com) or its IP address (1.2.3.4), // - it must have an associated private key - so likely is provided in PFX or PEM format. mgr.ImportFromFile("CertTLSServer.pfx", "password"); server.ServerCertificates.Add(mgr.Certificate); // The CA certificate: this is to help connecting clients validate the chain. mgr.ImportFromFile("CertCA.cer", ""); server.ServerCertificates.Add(mgr.Certificate); // *** Adjusting finer-grained TLS settings *** // - session resumption (allows for faster handshakes for connections from the same origin) server.TLSSettings.UseSessionResumption = true; // - secure configuration server.TLSSettings.BaseConfiguration = stpcHighlySecure; // - disabling a cipher suite we dislike (just because we can): server.TLSSettings.Ciphersuites = "-DHE_RSA_AES128_SHA" // *** Configuring versions *** // The default version setting at the time of writing (May 2021) is TLS 1.2 and TLS 1.3, // but that may change in future versions. The following tune-up additionally activates TLS 1.1 and TLS 1.0, // which weakens security, but may be necessary to accept connections from older clients: server.TLSSettings.Versions = csbTLS1 | csbTLS11 | csbTLS12 | csbTLS13;
- Now that your server has been fully set up, activate it:
server.Start();
- Once the Start call completes, your server can accept connections from clients. Each accepted connection runs in a separate thread, not interfering with each other
or your own threads. The server communicates its ongoing activities to your application by throwing events. The lower-level events deal with the underlying network
connections:
- Accept notifies you about a new incoming connection. This event lets you accept or reject it.
- Connect notifies your code of an accepted connection. This event introduces a ConnectionID, a unique identifier that you can use to track the connection throughout its lifetime.
- Disconnect notifies you that a connection has been closed.
- TLSEstablished and TLSShutdown let you know that a TLS layer has been activated/deactivated.
- Error reports a protocol or other error.
- CertificateValidate communicates the client authentication event to your code. To access the certificate(s) provided by the authenticating client,
pin the client and use the PinnedClientChain property to access its chain:
server.PinClient(e.ConnectionID); e.Accept = CheckCert(server.PinnedClientChain);
- GetRequest fires when a GET request is received from a connection.
- PostRequest notifies your code about a POST request. Similar events for other HTTP request types (e.g. DELETE) are also available.
- AuthAttempt fires when a connected client tries HTTP authentication (such as basic or digest) and let you accept or reject it.
Note: every such event is thrown from the respective connection thread, so make sure you use some synchronization mechanism when dispatching the events to your UI thread - for example, by updating UI controls by sending a Window Message rather than accessing the controls directly.
- Use GetRequestStream, GetRequestString, and GetRequestHeader methods inside your GetRequest and similar event handlers to access
request parameters and content supplied by the client. Use SetResponseHeader and SetResponseString method to supply the response content:
void serverGetRequest(object sender, EventArgs e) { e.Handled = true; // telling the Httpserver object that we will supply our own content if (e.URI == "/index.html") { server.SetResponseStatus(e.ConnectionID, 200); server.SetResponseString(e.ConnectionID, "<html><head></head><body>Hello!</body></html>", "text/html"); } else if (e.URI == "/secretfile") { server.SetResponseStatus(e.ConnectionID, 200); server.SetResponseBytes(e.ConnectionID, m_secretData, "application/pdf"); } else if (e.URI.StartsWith("/static/")) { e.Handled = false; // letting the server process the content and flush the file from the home directory (c:\inetpub\mywebserver) } else { Flush404Page(e.ConnectionID); } }
- To stop the server, call Stop:
server.Stop();
HTTPServer and SSLLabs
Qualys SSLLabs (https://www.ssllabs.com/) has been long known as a comprehensive TLS site quality checking tool. It is now a de-facto standard and a sign of good taste to aspire for the best SSLLabs test result for your web presence. SecureBlackbox developers share that effort and want to help their customers build secure TLS endpoints that can be independently endorsed by third-party evaluators like SSLLabs.Having said that, when assessing SecureBlackbox TLS-capable servers that are configured to use their default setup, you will often end up with a lower SSLLabs score than you could have. There is a simple reason for that. Being a vendor of a library used by thousands of customers, we have to find a delicate balance between security, compatibility, and keeping class contracts rolling from one product build to another. This makes the default configuration of the components not the strongest possible. To put it simple, we could easily make the default component setup bulletproof - but having done that, we would have likely ended up with hundreds of customers stuck with legacy environments (and there are a lot of them around) losing their connectivity.
If you are looking at achieving the best score at SSLLabs, please read on. The below guidance aims to help you tune up the server component in the way that should give you an A score.
First, switch your server to the highly secure base configuration:
server.TLSSettings.BaseConfiguration = stpcHighlySecure;
This should immediately give you an A, or a T if your server certificate does not chain up to a trusted anchor.
Some warnings will still be included in the report. One of those is related to the session resumption. It is normally shown in orange:
Session resumption (caching): No (IDs assigned but not accepted)
This literally means that the server is not configured to re-use older sessions, which may put extra computational burden on clients and itself.
Use the following setting to enable session caching:
server.TLSSettings.UseSessionResumption = true;
Besides, the report may show that there are some weak ciphersuites. All of those should be shown in orange (there should not be any reds; if
there are - please let us know), which means they are only relatively weak. While switching them off may affect the interoperability level of
the server, you may still want to do that. By using the below approach you can disable individual ciphersuites selectively. For example, if
the report shows that TLS_DHE_RSA_WITH_AES128_CBC_SHA256 and TLS_DHE_RSA_WITH_AES256_CBC_SHA256 are weak (because of their CBC mode), you can
disable them in the following way:
server.TLSSettings.Ciphersuites = '-DHE_RSA_AES128_SHA256;-DHE_RSA_AES256_SHA256';
Note that SBB uses slightly different, simpler naming convention by dropping unnecessart WITH and CBC. Let us know if you have difficulties matching
the cipher suite names.
Property List
The following is the full list of the properties of the component with short descriptions. Click on the links for further details.
Active | Indicates whether the server is active and is listening to new connections. |
AllowKeepAlive | Enables or disables keep-alive mode. |
AuthBasic | Enables or disables basic authentication. |
AuthDigest | Enables or disables digest authentication. |
AuthDigestExpire | Specifies digest expiration time for digest authentication. |
AuthRealm | Specifies authentication realm for digest and NTLM authentication. |
BoundPort | Indicates the bound listening port. |
ClientAuth | Enables or disables certificate-based client authentication. |
CompressionLevel | The default compression level to use. |
DocumentRoot | The document root of the server. |
ErrorOrigin | Indicates the endpoint where the error originates from. |
ErrorSeverity | The severity of the error that happened. |
ExternalCrypto | Provides access to external signing and DC parameters. |
FIPSMode | Reserved. |
HandshakeTimeout | Specifies the handshake timeout in milliseconds. |
Host | The host to bind the listening port to. |
PinnedClient | Populates the pinned client details. |
PinnedClientChain | Contains the certificate chain of the pinned client. |
Port | Specifies the port number to listen for connections on. |
PortRangeFrom | Specifies the lower limit of the listening port range for incoming connections. |
PortRangeTo | Specifies the upper limit of the listening port range for incoming connections. |
ServerCertificates | The server's TLS certificates. |
SessionTimeout | Specifies the default session timeout value in milliseconds. |
SocketSettings | Manages network connection settings. |
TLSSettings | Manages TLS layer settings. |
UseChunkedTransfer | Enables chunked transfer. |
UseCompression | Enables or disables server-side compression. |
Users | Provides a list of registered users. |
WebsiteName | Specifies the web site name to use in the certificate. |
Method List
The following is the full list of the methods of the component with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
DoAction | Performs an additional action. |
DropClient | Terminates a client connection. |
GetRequestBytes | Returns the contents of the client's HTTP request. |
GetRequestHeader | Returns a request header value. |
GetRequestStream | Returns the contents of the client's HTTP request. |
GetRequestString | Returns the contents of the client's HTTP request. |
GetRequestUsername | Returns the username for a connection. |
GetResponseHeader | Returns a response header value. |
ListClients | Enumerates the connected clients. |
PinClient | Takes a snapshot of the connection's properties. |
ProcessGenericRequest | Processes a generic HTTP request. |
ProcessGenericRequestStream | Processes a generic HTTP request from a stream. |
SetResponseBytes | Sets a byte array to be served as a response. |
SetResponseFile | Sets a file to be served as a response. |
SetResponseHeader | Sets a response header. |
SetResponseStatus | Sets an HTTP status to be sent with the response. |
SetResponseStream | Sets a stream to be served as a response. |
SetResponseString | Sets a string to be served as a response. |
Start | Starts the server. |
Stop | Stops the server. |
Event List
The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.
Accept | Reports an incoming connection. |
AuthAttempt | Fires when a connected client makes an authentication attempt. |
Connect | Reports an accepted connection. |
CustomRequest | Reports a request of a non-standard type (method). |
Data | Supplies a data chunk received within a POST or PUT upload. |
DeleteRequest | Reports a DELETE request. |
Disconnect | Fires to report a disconnected client. |
Error | Information about errors during data delivery. |
ExternalSign | Handles remote or external signing initiated by the server protocol. |
FileError | Reports a file access error to the application. |
GetRequest | Reports a GET request. |
HeadersPrepared | Fires when the response headers have been formed and are ready to be sent to the server. |
HeadRequest | Reports a HEAD request. |
Notification | This event notifies the application about an underlying control flow event. |
OptionsRequest | Reports an OPTIONS request. |
PatchRequest | Reports a PATCH request. |
PostRequest | Reports a POST request. |
PutRequest | Reports a PUT request. |
ResourceAccess | Reports an attempt to access a resource. |
TLSCertValidate | Fires when a client certificate needs to be validated. |
TLSEstablished | Reports the setup of a TLS session. |
TLSHandshake | Fires when a newly established client connection initiates a TLS handshake. |
TLSPSK | Requests a pre-shared key for TLS-PSK. |
TLSShutdown | Reports closure of a TLS session. |
TraceRequest | Reports a TRACE request. |
Config Settings
The following is a list of config settings for the component with short descriptions. Click on the links for further details.
AllowOptionsResponseWithoutAuth | Enables unauthenticated responses to OPTIONS requests. |
ClientAuth | Enables or disables certificate-based client authentication. |
DualStack | Allows the use of ip4 and ip6 simultaneously. |
HomePage | Specifies the home page resource name. |
Host | The host to bind to. |
RequestFilter | The request string modifier. |
ServerSSLDHKeyLength | Sets the size of the TLS DHE key exchange group. |
TempPath | Path for storing temporary files. |
WebsiteName | The website name for the TLS certificate. |
CheckKeyIntegrityBeforeUse | Enables or disable private key integrity check before use. |
CookieCaching | Specifies whether a cookie cache should be used for HTTP(S) transports. |
Cookies | Gets or sets local cookies for the component. |
DefDeriveKeyIterations | Specifies the default key derivation algorithm iteration count. |
EnableClientSideSSLFFDHE | Enables or disables finite field DHE key exchange support in TLS clients. |
GlobalCookies | Gets or sets global cookies for all the HTTP transports. |
HttpUserAgent | Specifies the user agent name to be used by all HTTP clients. |
LogDestination | Specifies the debug log destination. |
LogDetails | Specifies the debug log details to dump. |
LogFile | Specifies the debug log filename. |
LogFilters | Specifies the debug log filters. |
LogFlushMode | Specifies the log flush mode. |
LogLevel | Specifies the debug log level. |
LogMaxEventCount | Specifies the maximum number of events to cache before further action is taken. |
LogRotationMode | Specifies the log rotation mode. |
MaxASN1BufferLength | Specifies the maximal allowed length for ASN.1 primitive tag data. |
MaxASN1TreeDepth | Specifies the maximal depth for processed ASN.1 trees. |
OCSPHashAlgorithm | Specifies the hash algorithm to be used to identify certificates in OCSP requests. |
StaticDNS | Specifies whether static DNS rules should be used. |
StaticIPAddress[domain] | Gets or sets an IP address for the specified domain name. |
StaticIPAddresses | Gets or sets all the static DNS rules. |
Tag | Allows to store any custom data. |
TLSSessionGroup | Specifies the group name of TLS sessions to be used for session resumption. |
TLSSessionLifetime | Specifies lifetime in seconds of the cached TLS session. |
TLSSessionPurgeInterval | Specifies how often the session cache should remove the expired TLS sessions. |
UseOwnDNSResolver | Specifies whether the client components should use own DNS resolver. |
UseSharedSystemStorages | Specifies whether the validation engine should use a global per-process copy of the system certificate stores. |
UseSystemOAEPAndPSS | Enforces or disables the use of system-driven RSA OAEP and PSS computations. |
UseSystemRandom | Enables or disables the use of the OS PRNG. |
Active Property (HTTPServer Component)
Indicates whether the server is active and is listening to new connections.
Syntax
Default Value
False
Remarks
This read-only property returns True if the server is listening to incoming connections.
This property is read-only and not available at design time.
AllowKeepAlive Property (HTTPServer Component)
Enables or disables keep-alive mode.
Syntax
Default Value
True
Remarks
Use this property to enable or disable the keep-alive connection mode. If keep-alive is enabled, clients that choose to use it may stay connected for a while.
AuthBasic Property (HTTPServer Component)
Enables or disables basic authentication.
Syntax
Default Value
False
Remarks
Use this property to enable or disable basic user authentication in the HTTP server.
AuthDigest Property (HTTPServer Component)
Enables or disables digest authentication.
Syntax
Default Value
False
Remarks
Use this property to enable or disable digest-based user authentication in the HTTP server.
AuthDigestExpire Property (HTTPServer Component)
Specifies digest expiration time for digest authentication.
Syntax
Default Value
20
Remarks
Use this property to specify the digest expiration time for digest authentication, in seconds.
AuthRealm Property (HTTPServer Component)
Specifies authentication realm for digest and NTLM authentication.
Syntax
Default Value
"SecureBlackbox"
Remarks
Specifies authentication realm for digest and NTLM authentication types.
BoundPort Property (HTTPServer Component)
Indicates the bound listening port.
Syntax
Default Value
0
Remarks
Check this property to find out the port that has been allocated to the server by the system. The bound port always equals Port if it is provided, or is allocated dynamically if configured to fall in the range between PortRangeFrom and PortRangeTo constraints.
This property is read-only and not available at design time.
ClientAuth Property (HTTPServer Component)
Enables or disables certificate-based client authentication.
Syntax
public HttpserverClientAuths ClientAuth { get; set; }
enum HttpserverClientAuths { ccatNoAuth, ccatRequestCert, ccatRequireCert }
Public Property ClientAuth As HttpserverClientAuths
Enum HttpserverClientAuths ccatNoAuth ccatRequestCert ccatRequireCert End Enum
Default Value
0
Remarks
Set this property to true to tune up the client authentication type: ccatNoAuth = 0; ccatRequestCert = 1; ccatRequireCert = 2;
CompressionLevel Property (HTTPServer Component)
The default compression level to use.
Syntax
Default Value
6
Remarks
Assign this property with the compression level (1 to 9) to apply for gzipped responses. 1 stands for the lightest but fastest compression, and 9 for the best but the slowest.
DocumentRoot Property (HTTPServer Component)
The document root of the server.
Syntax
Default Value
""
Remarks
Use this property to specify a local folder which is going to be the server's document root (the mount point of the virtual home directory).
ErrorOrigin Property (HTTPServer Component)
Indicates the endpoint where the error originates from.
Syntax
public HttpserverErrorOrigins ErrorOrigin { get; set; }
enum HttpserverErrorOrigins { eoLocal, eoRemote }
Public Property ErrorOrigin As HttpserverErrorOrigins
Enum HttpserverErrorOrigins eoLocal eoRemote End Enum
Default Value
0
Remarks
Use this property to establish whether the reported error originates from a local or remote endpoint.
eoLocal | 0 | |
eoRemote | 1 |
This property is not available at design time.
ErrorSeverity Property (HTTPServer Component)
The severity of the error that happened.
Syntax
public HttpserverErrorSeverities ErrorSeverity { get; set; }
enum HttpserverErrorSeverities { esInfo, esWarning, esFatal }
Public Property ErrorSeverity As HttpserverErrorSeverities
Enum HttpserverErrorSeverities esInfo esWarning esFatal End Enum
Default Value
1
Remarks
Use this property to establish whether the error is fatal.
esWarning | 1 | |
esFatal | 2 |
This property is not available at design time.
ExternalCrypto Property (HTTPServer Component)
Provides access to external signing and DC parameters.
Syntax
public ExternalCrypto ExternalCrypto { get; }
Public ReadOnly Property ExternalCrypto As ExternalCrypto
Remarks
Use this property to tune-up remote cryptography settings. SecureBlackbox supports two independent types of external cryptography: synchronous (based on the ExternalSign event) and asynchronous (based on the DC protocol and the DCAuth signing component).
This property is read-only.
Please refer to the ExternalCrypto type for a complete list of fields.FIPSMode Property (HTTPServer Component)
Reserved.
Syntax
Default Value
False
Remarks
This property is reserved for future use.
HandshakeTimeout Property (HTTPServer Component)
Specifies the handshake timeout in milliseconds.
Syntax
Default Value
20000
Remarks
Use this property to set the TLS handshake timeout.
Host Property (HTTPServer Component)
The host to bind the listening port to.
Syntax
Default Value
""
Remarks
Use this property to specify the IP address on which to listen to incoming connections.
PinnedClient Property (HTTPServer Component)
Populates the pinned client details.
Syntax
public TLSClientEntry PinnedClient { get; }
Public ReadOnly Property PinnedClient As TLSClientEntry
Remarks
Use this property to access the details of the client connection previously pinned with PinClient method.
This property is read-only and not available at design time.
Please refer to the TLSClientEntry type for a complete list of fields.PinnedClientChain Property (HTTPServer Component)
Contains the certificate chain of the pinned client.
Syntax
public CertificateList PinnedClientChain { get; }
Public ReadOnly Property PinnedClientChain As CertificateList
Remarks
Use this property to access the certificate chain of the client connection pinned previously with a PinClient call.
This property is read-only and not available at design time.
Please refer to the Certificate type for a complete list of fields.Port Property (HTTPServer Component)
Specifies the port number to listen for connections on.
Syntax
Default Value
80
Remarks
Use this property to specify the port number to listen to connections on. Standard port numbers are 80 for an HTTP server, and 443 for an HTTPS server.
Alternatively, you may specify the acceptable range of listening ports via PortRangeFrom and PortRangeTo properties. In this case the port will be allocated within the requested range by the operating system, and reported in BoundPort.
PortRangeFrom Property (HTTPServer Component)
Specifies the lower limit of the listening port range for incoming connections.
Syntax
Default Value
0
Remarks
Use this property to specify the lower limit of the port range to listen to connections on. When a port range is used to specify the listening port (as opposed to a fixed value provided via Port), the port will be allocated within the requested range by the operating system, and reported in BoundPort.
Note that this property is ignored if the Port property is set to a non-zero value, in which case the server always aims to listen on that fixed port.
PortRangeTo Property (HTTPServer Component)
Specifies the upper limit of the listening port range for incoming connections.
Syntax
Default Value
0
Remarks
Use this property to specify the upper limit of the port range to listen to connections on. When a port range is used to specify the listening port (as opposed to a fixed value provided via Port), the port will be allocated within the requested range by the operating system, and reported in BoundPort.
Note that this property is ignored if the Port property is set to a non-zero value, in which case the server always aims to listen on that fixed port.
ServerCertificates Property (HTTPServer Component)
The server's TLS certificates.
Syntax
public CertificateList ServerCertificates { get; }
Public Property ServerCertificates As CertificateList
Remarks
Use this property to provide a list of TLS certificates for the server endpoint.
A TLS endpoint needs a certificate to be able to accept TLS connections. At least one of the certificates in the collection - the endpoint certificate - must have a private key associated with it.
The collection may include more than one endpoint certificate, and more than one chain. A typical usage scenario is to include two chains (ECDSA and RSA), to cater for clients with different cipher suite preferences.
This property is not available at design time.
Please refer to the Certificate type for a complete list of fields.SessionTimeout Property (HTTPServer Component)
Specifies the default session timeout value in milliseconds.
Syntax
Default Value
360000
Remarks
Specifies the period of inactivity (in milliseconds) after which the connection will be terminated by the server.
SocketSettings Property (HTTPServer Component)
Manages network connection settings.
Syntax
public SocketSettings SocketSettings { get; }
Public ReadOnly Property SocketSettings As SocketSettings
Remarks
Use this property to tune up network connection parameters.
This property is read-only.
Please refer to the SocketSettings type for a complete list of fields.TLSSettings Property (HTTPServer Component)
Manages TLS layer settings.
Syntax
public TLSSettings TLSSettings { get; }
Public ReadOnly Property TLSSettings As TLSSettings
Remarks
Use this property to tune up the TLS layer parameters.
This property is read-only.
Please refer to the TLSSettings type for a complete list of fields.UseChunkedTransfer Property (HTTPServer Component)
Enables chunked transfer.
Syntax
Default Value
False
Remarks
Use this property to enable chunked content encoding.
UseCompression Property (HTTPServer Component)
Enables or disables server-side compression.
Syntax
Default Value
False
Remarks
Use this property to enable or disable server-side content compression.
Users Property (HTTPServer Component)
Provides a list of registered users.
Syntax
public UserAccountList Users { get; }
Public Property Users As UserAccountList
Remarks
Assign a list of 'known' users to this property to automate authentication handling by the component.
This property is not available at design time.
Please refer to the UserAccount type for a complete list of fields.WebsiteName Property (HTTPServer Component)
Specifies the web site name to use in the certificate.
Syntax
Default Value
"SecureBlackbox"
Remarks
If using an internally-generated certificate, use this property to specify the web site name to be included as a common name. A typical common name consists of the host name, such as '192.168.10.10' or 'domain.com'.
Config Method (HTTPServer Component)
Sets or retrieves a configuration setting.
Syntax
Remarks
Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
DoAction Method (HTTPServer Component)
Performs an additional action.
Syntax
Remarks
DoAction is a generic method available in every component. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.
The unique identifier (case insensitive) of the action is provided in the ActionID parameter.
ActionParams contains the value of a single parameter, or a list of multiple parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....
DropClient Method (HTTPServer Component)
Terminates a client connection.
Syntax
Remarks
Call this method to shut down a connected client. Forced indicates whether the connection should be closed in a graceful manner.
GetRequestBytes Method (HTTPServer Component)
Returns the contents of the client's HTTP request.
Syntax
Remarks
Use this method to get the body of the client's HTTP request. Note that the body of GET and HEAD requests is empty. The method returns the requested content.
The RequestFilter parameter allows you to select the element(s) that you would like to get. An empty request filter makes the whole body to be returned. The following request filters are currently supported:
params | Request query parameters only. |
params[Index] | A specific request parameter, by index. |
params['Name'] | A specific request parameter, by name. |
parts[Index] | The body of a particular part of a multipart message. |
GetRequestHeader Method (HTTPServer Component)
Returns a request header value.
Syntax
Remarks
Use this method to get the value of a request header. A good place to call this method is a request-marking event, such as GetRequest or PostRequest.
GetRequestStream Method (HTTPServer Component)
Returns the contents of the client's HTTP request.
Syntax
public void GetRequestStream(long connectionId, string requestFilter, System.IO.Stream outputStream);
Public Sub GetRequestStream(ByVal ConnectionId As Long, ByVal RequestFilter As String, ByVal OutputStream As System.IO.Stream)
Remarks
Use this method to get the body of the client's HTTP request into a stream. Note that the body of GET and HEAD requests is empty.
The RequestFilter parameter allows you to select the element(s) of the requests that you would like to get. An empty request filter makes the whole body to be returned. The following request filters are currently supported:
params | Request query parameters only. |
params[Index] | A specific request parameter, by index. |
params['Name'] | A specific request parameter, by name. |
parts[Index] | The body of a particular part of a multipart message. |
GetRequestString Method (HTTPServer Component)
Returns the contents of the client's HTTP request.
Syntax
Remarks
Use this method to get the body of the client's HTTP request to a string. Note that the body of GET and HEAD requests is empty.
The RequestFilter parameter allows you to select the element(s) of the requests that you would like to get. An empty request filter makes the whole body to be returned. The following request filters are currently supported:
params | Request query parameters only. |
params[Index] | A specific request parameter, by index. |
params['Name'] | A specific request parameter, by name. |
parts[Index] | The body of a particular part of a multipart message. |
GetRequestUsername Method (HTTPServer Component)
Returns the username for a connection.
Syntax
Remarks
Use this method to obtain a username for an active connection. The method will return an empty string if no authentication has been performed on the connection.
GetResponseHeader Method (HTTPServer Component)
Returns a response header value.
Syntax
Remarks
Use this method to get the value of a response header. A good place to call this method is HeadersPrepared event. Call the method with empty HeaderName to get the whole response header.
ListClients Method (HTTPServer Component)
Enumerates the connected clients.
Syntax
Remarks
This method enumerates the connected clients. It returns a list of strings, with each string being of 'ConnectionID|Address|Port' format, and representing a single connection.
PinClient Method (HTTPServer Component)
Takes a snapshot of the connection's properties.
Syntax
Remarks
Use this method to take a snapshot of a connected client. The captured properties are populated in PinnedClient and PinnedClientChain properties.
ProcessGenericRequest Method (HTTPServer Component)
Processes a generic HTTP request.
Syntax
Remarks
This method processes a generic HTTP request and produces a response. Use it to generate HTTP responses for requests obtained externally, out of the default HTTP channel.
This method respects all current settings of the server object, and invokes the corresponding events to consult about the request and response details with the application. ConnectionId allows to identify the request in the events.
The method returns the complete HTTP response including HTTP headers.
ProcessGenericRequestStream Method (HTTPServer Component)
Processes a generic HTTP request from a stream.
Syntax
public void ProcessGenericRequestStream(long connectionId, string requestHeaders, System.IO.Stream requestData, System.IO.Stream responseData);
Public Sub ProcessGenericRequestStream(ByVal ConnectionId As Long, ByVal RequestHeaders As String, ByVal RequestData As System.IO.Stream, ByVal ResponseData As System.IO.Stream)
Remarks
This method processes a generic HTTP request and produces a response. Use it to generate HTTP responses for requests obtained externally, out of the default HTTP channel.
The method expects the request headers in RequestHeaders, and the request data is read from RequestData stream. Once the request is processed, the response headers are reported through HeadersPrepared event before any data is written to ResponseData stream. ConnectionId allows to identify the request in the events.
This method respects all current settings of the server object, and invokes the corresponding events to consult about the request and response details with the application.
SetResponseBytes Method (HTTPServer Component)
Sets a byte array to be served as a response.
Syntax
Remarks
Use this property to provide the response content in a byte array. The ResponseFilter parameter lets you select the element of the response that you would like to set with this call. The empty filter stands for the entire response body. The only response filter currently supported is parts:
parts[Index] | The body of a particular part of a multipart response. |
SetResponseFile Method (HTTPServer Component)
Sets a file to be served as a response.
Syntax
Remarks
Use this property to provide the response content in a file. The ResponseFilter parameter lets you select the element of the response that you would like to set with this call. The empty filter stands for the entire response body. The only response filter currently supported is parts:
parts[Index] | The body of a particular part of a multipart response. |
SetResponseHeader Method (HTTPServer Component)
Sets a response header.
Syntax
Remarks
Use this method to set a response header. A good place to call this method is a request-marking event, such as GetRequest or PostRequest.
SetResponseStatus Method (HTTPServer Component)
Sets an HTTP status to be sent with the response.
Syntax
Remarks
Use this method to set an HTTP status for the request. A good place to call this method is a request-marking event, such as GetRequest.
SetResponseStream Method (HTTPServer Component)
Sets a stream to be served as a response.
Syntax
public void SetResponseStream(long connectionId, System.IO.Stream dataStream, bool closeStream, string contentType, string responseFilter);
Public Sub SetResponseStream(ByVal ConnectionId As Long, ByVal DataStream As System.IO.Stream, ByVal CloseStream As Boolean, ByVal ContentType As String, ByVal ResponseFilter As String)
Remarks
Use this property to provide the response content in a stream. Set CloseStream to indicate that the stream should be disposed of once sent. The ResponseFilter parameter lets you select the element of the response that you would like to set with this call. The empty filter stands for the entire response body. The only response filter currently supported is parts:
parts[Index] | The body of a particular part of a multipart response. |
SetResponseString Method (HTTPServer Component)
Sets a string to be served as a response.
Syntax
Remarks
Use this property to provide the response content in a string. The ResponseFilter parameter lets you select the element of the response that you would like to set with this call. The empty filter stands for the entire response body. The only response filter currently supported is parts:
parts[Index] | The body of a particular part of a multipart response. |
Start Method (HTTPServer Component)
Starts the server.
Syntax
public void Start();
Public Sub Start()
Remarks
Use this method to activate the server and start listening to incoming connections.
Stop Method (HTTPServer Component)
Stops the server.
Syntax
public void Stop();
Public Sub Stop()
Remarks
Call this method to stop listening to incoming connections and deactivate the server.
Accept Event (HTTPServer Component)
Reports an incoming connection.
Syntax
public event OnAcceptHandler OnAccept; public delegate void OnAcceptHandler(object sender, HttpserverAcceptEventArgs e); public class HttpserverAcceptEventArgs : EventArgs { public string RemoteAddress { get; } public int RemotePort { get; } public bool Accept { get; set; } }
Public Event OnAccept As OnAcceptHandler Public Delegate Sub OnAcceptHandler(sender As Object, e As HttpserverAcceptEventArgs) Public Class HttpserverAcceptEventArgs Inherits EventArgs Public ReadOnly Property RemoteAddress As String Public ReadOnly Property RemotePort As Integer Public Property Accept As Boolean End Class
Remarks
This event is fired when a new connection from RemoteAddress:RemotePort is ready to be accepted. Use the Accept parameter to accept or decline it.
Subscribe to Connect event to be notified of every connection that has been set up.
AuthAttempt Event (HTTPServer Component)
Fires when a connected client makes an authentication attempt.
Syntax
public event OnAuthAttemptHandler OnAuthAttempt; public delegate void OnAuthAttemptHandler(object sender, HttpserverAuthAttemptEventArgs e); public class HttpserverAuthAttemptEventArgs : EventArgs { public long ConnectionID { get; } public string HTTPMethod { get; } public string URI { get; } public string AuthMethod { get; } public string Username { get; } public string Password { get; } public bool Allow { get; set; } }
Public Event OnAuthAttempt As OnAuthAttemptHandler Public Delegate Sub OnAuthAttemptHandler(sender As Object, e As HttpserverAuthAttemptEventArgs) Public Class HttpserverAuthAttemptEventArgs Inherits EventArgs Public ReadOnly Property ConnectionID As Long Public ReadOnly Property HTTPMethod As String Public ReadOnly Property URI As String Public ReadOnly Property AuthMethod As String Public ReadOnly Property Username As String Public ReadOnly Property Password As String Public Property Allow As Boolean End Class
Remarks
The component fires this event whenever a client attempts to authenticate itself. Use the Allow parameter to let the client through.
ConnectionID contains the unique session identifier for that client, HTTPMethod specifies the HTTP method (GET, POST, etc.) used to access the URI resource, AuthMethod specifies the authentication method, and Username and Password contain the professed credentials.
Connect Event (HTTPServer Component)
Reports an accepted connection.
Syntax
public event OnConnectHandler OnConnect; public delegate void OnConnectHandler(object sender, HttpserverConnectEventArgs e); public class HttpserverConnectEventArgs : EventArgs { public long ConnectionID { get; } public string RemoteAddress { get; } public int RemotePort { get; } }
Public Event OnConnect As OnConnectHandler Public Delegate Sub OnConnectHandler(sender As Object, e As HttpserverConnectEventArgs) Public Class HttpserverConnectEventArgs Inherits EventArgs Public ReadOnly Property ConnectionID As Long Public ReadOnly Property RemoteAddress As String Public ReadOnly Property RemotePort As Integer End Class
Remarks
The component fires this event to report that a new connection has been established. ConnectionId indicates the unique ID assigned to this connection. The same ID will be supplied to any other events related to this connection, such as GetRequest or AuthAttempt.
CustomRequest Event (HTTPServer Component)
Reports a request of a non-standard type (method).
Syntax
public event OnCustomRequestHandler OnCustomRequest; public delegate void OnCustomRequestHandler(object sender, HttpserverCustomRequestEventArgs e); public class HttpserverCustomRequestEventArgs : EventArgs { public long ConnectionID { get; } public string URI { get; } public string HTTPMethod { get; } public bool Handled { get; set; } }
Public Event OnCustomRequest As OnCustomRequestHandler Public Delegate Sub OnCustomRequestHandler(sender As Object, e As HttpserverCustomRequestEventArgs) Public Class HttpserverCustomRequestEventArgs Inherits EventArgs Public ReadOnly Property ConnectionID As Long Public ReadOnly Property URI As String Public ReadOnly Property HTTPMethod As String Public Property Handled As Boolean End Class
Remarks
The component fires this event to notify the application about a non-standard request received from the client. The HTTPMethod contains the non-standard HTTP method.
ConnectionID indicates the connection that sent the request and URI suggests the requested resource.
Set Handled to true to indicate that your application's code will take care of the request. The application does it by providing the necessary details via SetResponseStatus, SetResponseHeader, and SetResponseFile methods. If the returned value of Handled is false, the server will try to take care of the request automatically by searching for the requested resource in DocumentRoot.
Data Event (HTTPServer Component)
Supplies a data chunk received within a POST or PUT upload.
Syntax
public event OnDataHandler OnData; public delegate void OnDataHandler(object sender, HttpserverDataEventArgs e); public class HttpserverDataEventArgs : EventArgs { public long ConnectionID { get; } public byte[] Buffer { get; } }
Public Event OnData As OnDataHandler Public Delegate Sub OnDataHandler(sender As Object, e As HttpserverDataEventArgs) Public Class HttpserverDataEventArgs Inherits EventArgs Public ReadOnly Property ConnectionID As Long Public ReadOnly Property Buffer As Byte() End Class
Remarks
This event is fired to supply another piece of data received within a POST or PUT upload operation. This event may fire multiple times during a single request upload to pass the uploaded data to the application chunk-by-chunk.
DeleteRequest Event (HTTPServer Component)
Reports a DELETE request.
Syntax
public event OnDeleteRequestHandler OnDeleteRequest; public delegate void OnDeleteRequestHandler(object sender, HttpserverDeleteRequestEventArgs e); public class HttpserverDeleteRequestEventArgs : EventArgs { public long ConnectionID { get; } public string URI { get; } public bool Handled { get; set; } }
Public Event OnDeleteRequest As OnDeleteRequestHandler Public Delegate Sub OnDeleteRequestHandler(sender As Object, e As HttpserverDeleteRequestEventArgs) Public Class HttpserverDeleteRequestEventArgs Inherits EventArgs Public ReadOnly Property ConnectionID As Long Public ReadOnly Property URI As String Public Property Handled As Boolean End Class
Remarks
The component fires this event to notify the application about a DELETE request received from the client.
ConnectionID indicates the connection that sent the request and URI suggests the requested resource.
Set Handled to true to indicate that your application's code will take care of the request. The application does it by providing the necessary details via SetResponseStatus, SetResponseHeader, and SetResponseFile methods. If the returned value of Handled is false, the server will try to take care of the request automatically by searching for the requested resource in DocumentRoot.
Disconnect Event (HTTPServer Component)
Fires to report a disconnected client.
Syntax
public event OnDisconnectHandler OnDisconnect; public delegate void OnDisconnectHandler(object sender, HttpserverDisconnectEventArgs e); public class HttpserverDisconnectEventArgs : EventArgs { public long ConnectionID { get; } }
Public Event OnDisconnect As OnDisconnectHandler Public Delegate Sub OnDisconnectHandler(sender As Object, e As HttpserverDisconnectEventArgs) Public Class HttpserverDisconnectEventArgs Inherits EventArgs Public ReadOnly Property ConnectionID As Long End Class
Remarks
The component fires this event when a connected client disconnects.
Error Event (HTTPServer Component)
Information about errors during data delivery.
Syntax
public event OnErrorHandler OnError; public delegate void OnErrorHandler(object sender, HttpserverErrorEventArgs e); public class HttpserverErrorEventArgs : EventArgs { public long ConnectionID { get; } public int ErrorCode { get; } public string Description { get; } }
Public Event OnError As OnErrorHandler Public Delegate Sub OnErrorHandler(sender As Object, e As HttpserverErrorEventArgs) Public Class HttpserverErrorEventArgs Inherits EventArgs Public ReadOnly Property ConnectionID As Long Public ReadOnly Property ErrorCode As Integer Public ReadOnly Property Description As String End Class
Remarks
The event is fired in case of exceptional conditions during message processing.
ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the HTTPS section.
ExternalSign Event (HTTPServer Component)
Handles remote or external signing initiated by the server protocol.
Syntax
public event OnExternalSignHandler OnExternalSign; public delegate void OnExternalSignHandler(object sender, HttpserverExternalSignEventArgs e); public class HttpserverExternalSignEventArgs : EventArgs { public long ConnectionID { get; } public string OperationId { get; } public string HashAlgorithm { get; } public string Pars { get; } public string Data { get; } public string SignedData { get; set; } }
Public Event OnExternalSign As OnExternalSignHandler Public Delegate Sub OnExternalSignHandler(sender As Object, e As HttpserverExternalSignEventArgs) Public Class HttpserverExternalSignEventArgs Inherits EventArgs Public ReadOnly Property ConnectionID As Long Public ReadOnly Property OperationId As String Public ReadOnly Property HashAlgorithm As String Public ReadOnly Property Pars As String Public ReadOnly Property Data As String Public Property SignedData As String End Class
Remarks
Assign a handler to this event if you need to delegate a low-level signing operation to an external, remote, or custom signing engine. Depending on the settings, the handler will receive a hashed or unhashed value to be signed.
The event handler must pass the value of Data to the signer, obtain the signature, and pass it back to the component via the SignedData parameter.
OperationId provides a comment about the operation and its origin. It depends on the exact component being used, and may be empty. HashAlgorithm specifies the hash algorithm being used for the operation, and Pars contains algorithm-dependent parameters.
The component uses base16 (hex) encoding for the Data, SignedData, and Pars parameters. If your signing engine uses a different input and output encoding, you may need to decode and/or encode the data before and/or after the signing.
A sample MD5 hash encoded in base16: a0dee2a0382afbb09120ffa7ccd8a152 - lower case base16 A0DEE2A0382AFBB09120FFA7CCD8A152 - upper case base16
A sample event handler that uses the .NET RSACryptoServiceProvider class may look like the following:
signer.OnExternalSign += (s, e) =>
{
var cert = new X509Certificate2("cert.pfx", "", X509KeyStorageFlags.Exportable);
var key = (RSACryptoServiceProvider)cert.PrivateKey;
var dataToSign = e.Data.FromBase16String();
var signedData = key.SignHash(dataToSign, "2.16.840.1.101.3.4.2.1");
e.SignedData = signedData.ToBase16String();
};
FileError Event (HTTPServer Component)
Reports a file access error to the application.
Syntax
public event OnFileErrorHandler OnFileError; public delegate void OnFileErrorHandler(object sender, HttpserverFileErrorEventArgs e); public class HttpserverFileErrorEventArgs : EventArgs { public long ConnectionID { get; } public string FileName { get; } public int ErrorCode { get; } }
Public Event OnFileError As OnFileErrorHandler Public Delegate Sub OnFileErrorHandler(sender As Object, e As HttpserverFileErrorEventArgs) Public Class HttpserverFileErrorEventArgs Inherits EventArgs Public ReadOnly Property ConnectionID As Long Public ReadOnly Property FileName As String Public ReadOnly Property ErrorCode As Integer End Class
Remarks
The component uses this event to report a file access errors. FileName and ErrorCode contain the file path and the error code respectively.
GetRequest Event (HTTPServer Component)
Reports a GET request.
Syntax
public event OnGetRequestHandler OnGetRequest; public delegate void OnGetRequestHandler(object sender, HttpserverGetRequestEventArgs e); public class HttpserverGetRequestEventArgs : EventArgs { public long ConnectionID { get; } public string URI { get; } public bool Handled { get; set; } }
Public Event OnGetRequest As OnGetRequestHandler Public Delegate Sub OnGetRequestHandler(sender As Object, e As HttpserverGetRequestEventArgs) Public Class HttpserverGetRequestEventArgs Inherits EventArgs Public ReadOnly Property ConnectionID As Long Public ReadOnly Property URI As String Public Property Handled As Boolean End Class
Remarks
The component fires this event to notify the application about a GET request received from the client.
ConnectionID indicates the connection that sent the request and URI suggests the requested resource.
Set Handled to true to indicate that your application's code will take care of the request. The application does it by providing the necessary details via SetResponseStatus, SetResponseHeader, SetResponseFile or SetResponseString methods. If the returned value of Handled is false, the server will try to take care of the request automatically by searching for the requested resource in DocumentRoot.
HeadersPrepared Event (HTTPServer Component)
Fires when the response headers have been formed and are ready to be sent to the server.
Syntax
public event OnHeadersPreparedHandler OnHeadersPrepared; public delegate void OnHeadersPreparedHandler(object sender, HttpserverHeadersPreparedEventArgs e); public class HttpserverHeadersPreparedEventArgs : EventArgs { public long ConnectionID { get; } }
Public Event OnHeadersPrepared As OnHeadersPreparedHandler Public Delegate Sub OnHeadersPreparedHandler(sender As Object, e As HttpserverHeadersPreparedEventArgs) Public Class HttpserverHeadersPreparedEventArgs Inherits EventArgs Public ReadOnly Property ConnectionID As Long End Class
Remarks
The component fires this event when the response headers are ready to be sent to the server. ConnectionID indicates the connection that processed the request.
Use GetResponseHeader method with an empty header name to get the whole response header.
HeadRequest Event (HTTPServer Component)
Reports a HEAD request.
Syntax
public event OnHeadRequestHandler OnHeadRequest; public delegate void OnHeadRequestHandler(object sender, HttpserverHeadRequestEventArgs e); public class HttpserverHeadRequestEventArgs : EventArgs { public long ConnectionID { get; } public string URI { get; } public bool Handled { get; set; } }
Public Event OnHeadRequest As OnHeadRequestHandler Public Delegate Sub OnHeadRequestHandler(sender As Object, e As HttpserverHeadRequestEventArgs) Public Class HttpserverHeadRequestEventArgs Inherits EventArgs Public ReadOnly Property ConnectionID As Long Public ReadOnly Property URI As String Public Property Handled As Boolean End Class
Remarks
The component fires this event to notify the application about a HEAD request received from the client.
ConnectionID indicates the connection that sent the request and URI suggests the requested resource.
Set Handled to true to indicate that your application's code will take care of the request. The application does it by providing the necessary details via SetResponseStatus, SetResponseHeader, and SetResponseFile methods. If the returned value of Handled is false, the server will try to take care of the request automatically by searching for the requested resource in DocumentRoot.
Notification Event (HTTPServer Component)
This event notifies the application about an underlying control flow event.
Syntax
public event OnNotificationHandler OnNotification; public delegate void OnNotificationHandler(object sender, HttpserverNotificationEventArgs e); public class HttpserverNotificationEventArgs : EventArgs { public string EventID { get; } public string EventParam { get; } }
Public Event OnNotification As OnNotificationHandler Public Delegate Sub OnNotificationHandler(sender As Object, e As HttpserverNotificationEventArgs) Public Class HttpserverNotificationEventArgs Inherits EventArgs Public ReadOnly Property EventID As String Public ReadOnly Property EventParam As String End Class
Remarks
The component fires this event to let the application know about some event, occurrence, or milestone in the component. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.
The unique identifier of the event is provided in the EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the component, the exact action it is performing, or the document being processed, one or both may be omitted.
OptionsRequest Event (HTTPServer Component)
Reports an OPTIONS request.
Syntax
public event OnOptionsRequestHandler OnOptionsRequest; public delegate void OnOptionsRequestHandler(object sender, HttpserverOptionsRequestEventArgs e); public class HttpserverOptionsRequestEventArgs : EventArgs { public long ConnectionID { get; } public string URI { get; } public bool Handled { get; set; } }
Public Event OnOptionsRequest As OnOptionsRequestHandler Public Delegate Sub OnOptionsRequestHandler(sender As Object, e As HttpserverOptionsRequestEventArgs) Public Class HttpserverOptionsRequestEventArgs Inherits EventArgs Public ReadOnly Property ConnectionID As Long Public ReadOnly Property URI As String Public Property Handled As Boolean End Class
Remarks
The component fires this event to notify the application about an OPTIONS request received from the client.
ConnectionID indicates the connection that sent the request and URI suggests the requested resource.
Set Handled to true to indicate that your application's code will take care of the request. The application does it by providing the necessary details via SetResponseStatus, SetResponseHeader, and SetResponseFile methods. If the returned value of Handled is false, the server will try to take care of the request automatically by searching for the requested resource in DocumentRoot.
PatchRequest Event (HTTPServer Component)
Reports a PATCH request.
Syntax
public event OnPatchRequestHandler OnPatchRequest; public delegate void OnPatchRequestHandler(object sender, HttpserverPatchRequestEventArgs e); public class HttpserverPatchRequestEventArgs : EventArgs { public long ConnectionID { get; } public string URI { get; } public bool Handled { get; set; } }
Public Event OnPatchRequest As OnPatchRequestHandler Public Delegate Sub OnPatchRequestHandler(sender As Object, e As HttpserverPatchRequestEventArgs) Public Class HttpserverPatchRequestEventArgs Inherits EventArgs Public ReadOnly Property ConnectionID As Long Public ReadOnly Property URI As String Public Property Handled As Boolean End Class
Remarks
The component fires this event to notify the application about a PATCH request received from the client.
ConnectionID indicates the connection that sent the request and URI suggests the requested resource.
Set Handled to true to indicate that your application's code will take care of the request. The application does it by providing the necessary details via SetResponseStatus, SetResponseHeader, and SetResponseFile methods. If the returned value of Handled is false, the server will try to take care of the request automatically by searching for the requested resource in DocumentRoot.
PostRequest Event (HTTPServer Component)
Reports a POST request.
Syntax
public event OnPostRequestHandler OnPostRequest; public delegate void OnPostRequestHandler(object sender, HttpserverPostRequestEventArgs e); public class HttpserverPostRequestEventArgs : EventArgs { public long ConnectionID { get; } public string URI { get; } public bool Handled { get; set; } }
Public Event OnPostRequest As OnPostRequestHandler Public Delegate Sub OnPostRequestHandler(sender As Object, e As HttpserverPostRequestEventArgs) Public Class HttpserverPostRequestEventArgs Inherits EventArgs Public ReadOnly Property ConnectionID As Long Public ReadOnly Property URI As String Public Property Handled As Boolean End Class
Remarks
The component fires this event to notify the application about a POST request received from the client.
ConnectionID indicates the connection that sent the request and URI suggests the requested resource.
Set Handled to true to indicate that your application's code will take care of the request. The application does it by providing the necessary details via SetResponseStatus, SetResponseHeader, and SetResponseFile methods. If the returned value of Handled is false, the server will try to take care of the request automatically by searching for the requested resource in DocumentRoot.
PutRequest Event (HTTPServer Component)
Reports a PUT request.
Syntax
public event OnPutRequestHandler OnPutRequest; public delegate void OnPutRequestHandler(object sender, HttpserverPutRequestEventArgs e); public class HttpserverPutRequestEventArgs : EventArgs { public long ConnectionID { get; } public string URI { get; } public bool Handled { get; set; } }
Public Event OnPutRequest As OnPutRequestHandler Public Delegate Sub OnPutRequestHandler(sender As Object, e As HttpserverPutRequestEventArgs) Public Class HttpserverPutRequestEventArgs Inherits EventArgs Public ReadOnly Property ConnectionID As Long Public ReadOnly Property URI As String Public Property Handled As Boolean End Class
Remarks
The component fires this event to notify the application about a PUT request received from the client.
ConnectionID indicates the connection that sent the request and URI suggests the requested resource.
Set Handled to true to indicate that your application's code will take care of the request. The application does it by providing the necessary details via SetResponseStatus, SetResponseHeader, and SetResponseFile methods. If the returned value of Handled is false, the server will try to take care of the request automatically by searching for the requested resource in DocumentRoot.
ResourceAccess Event (HTTPServer Component)
Reports an attempt to access a resource.
Syntax
public event OnResourceAccessHandler OnResourceAccess; public delegate void OnResourceAccessHandler(object sender, HttpserverResourceAccessEventArgs e); public class HttpserverResourceAccessEventArgs : EventArgs { public long ConnectionID { get; } public string HTTPMethod { get; } public string URI { get; } public bool Allow { get; set; } public string RedirectURI { get; set; } }
Public Event OnResourceAccess As OnResourceAccessHandler Public Delegate Sub OnResourceAccessHandler(sender As Object, e As HttpserverResourceAccessEventArgs) Public Class HttpserverResourceAccessEventArgs Inherits EventArgs Public ReadOnly Property ConnectionID As Long Public ReadOnly Property HTTPMethod As String Public ReadOnly Property URI As String Public Property Allow As Boolean Public Property RedirectURI As String End Class
Remarks
The component fires this event to notify the application about a request received from the client. The HTTPMethod parameter indicates the HTTP method used (GET, POST, etc.)
ConnectionID indicates the connection that sent the request and URI suggests the requested resource.
Set Allow to false to prevent the client from accessing the resource. The component will automatically send a "forbidden" status code (403).
Set a non-empty value to RedirectURI to notify the client that the resource has moved to another place. The component will automatically send a "found" status code (302). If Allow is set to false, the value of RedirectURI is ignored.
TLSCertValidate Event (HTTPServer Component)
Fires when a client certificate needs to be validated.
Syntax
public event OnTLSCertValidateHandler OnTLSCertValidate; public delegate void OnTLSCertValidateHandler(object sender, HttpserverTLSCertValidateEventArgs e); public class HttpserverTLSCertValidateEventArgs : EventArgs { public long ConnectionID { get; } public bool Accept { get; set; } }
Public Event OnTLSCertValidate As OnTLSCertValidateHandler Public Delegate Sub OnTLSCertValidateHandler(sender As Object, e As HttpserverTLSCertValidateEventArgs) Public Class HttpserverTLSCertValidateEventArgs Inherits EventArgs Public ReadOnly Property ConnectionID As Long Public Property Accept As Boolean End Class
Remarks
The component fires this event to notify the application of an authenticating client. Use the event handler to validate the certificate and pass your decision back to the server component via the Accept parameter.
TLSEstablished Event (HTTPServer Component)
Reports the setup of a TLS session.
Syntax
public event OnTLSEstablishedHandler OnTLSEstablished; public delegate void OnTLSEstablishedHandler(object sender, HttpserverTLSEstablishedEventArgs e); public class HttpserverTLSEstablishedEventArgs : EventArgs { public long ConnectionID { get; } }
Public Event OnTLSEstablished As OnTLSEstablishedHandler Public Delegate Sub OnTLSEstablishedHandler(sender As Object, e As HttpserverTLSEstablishedEventArgs) Public Class HttpserverTLSEstablishedEventArgs Inherits EventArgs Public ReadOnly Property ConnectionID As Long End Class
Remarks
Subscribe to this event to be notified about the setup of a TLS connection by a connected client.
TLSHandshake Event (HTTPServer Component)
Fires when a newly established client connection initiates a TLS handshake.
Syntax
public event OnTLSHandshakeHandler OnTLSHandshake; public delegate void OnTLSHandshakeHandler(object sender, HttpserverTLSHandshakeEventArgs e); public class HttpserverTLSHandshakeEventArgs : EventArgs { public long ConnectionID { get; } public string ServerName { get; } public bool Abort { get; set; } }
Public Event OnTLSHandshake As OnTLSHandshakeHandler Public Delegate Sub OnTLSHandshakeHandler(sender As Object, e As HttpserverTLSHandshakeEventArgs) Public Class HttpserverTLSHandshakeEventArgs Inherits EventArgs Public ReadOnly Property ConnectionID As Long Public ReadOnly Property ServerName As String Public Property Abort As Boolean End Class
Remarks
Use this event to get notified about the initiation of the TLS handshake by the remote client. The ServerName parameter specifies the requested host from the client hello message.
TLSPSK Event (HTTPServer Component)
Requests a pre-shared key for TLS-PSK.
Syntax
public event OnTLSPSKHandler OnTLSPSK; public delegate void OnTLSPSKHandler(object sender, HttpserverTLSPSKEventArgs e); public class HttpserverTLSPSKEventArgs : EventArgs { public long ConnectionID { get; } public string Identity { get; } public string PSK { get; set; } public string Ciphersuite { get; set; } }
Public Event OnTLSPSK As OnTLSPSKHandler Public Delegate Sub OnTLSPSKHandler(sender As Object, e As HttpserverTLSPSKEventArgs) Public Class HttpserverTLSPSKEventArgs Inherits EventArgs Public ReadOnly Property ConnectionID As Long Public ReadOnly Property Identity As String Public Property PSK As String Public Property Ciphersuite As String End Class
Remarks
The component fires this event to report that a client has requested a TLS-PSK negotiation. ConnectionId indicates the unique connection ID that requested the PSK handshake.
Use Identity to look up for the corresponding pre-shared key in the server's database, then assign the key to the PSK parameter. If TLS 1.3 PSK is used, you will also need to assign the Ciphersuite parameter with the cipher suite associated with that identity and their key.
TLSShutdown Event (HTTPServer Component)
Reports closure of a TLS session.
Syntax
public event OnTLSShutdownHandler OnTLSShutdown; public delegate void OnTLSShutdownHandler(object sender, HttpserverTLSShutdownEventArgs e); public class HttpserverTLSShutdownEventArgs : EventArgs { public long ConnectionID { get; } }
Public Event OnTLSShutdown As OnTLSShutdownHandler Public Delegate Sub OnTLSShutdownHandler(sender As Object, e As HttpserverTLSShutdownEventArgs) Public Class HttpserverTLSShutdownEventArgs Inherits EventArgs Public ReadOnly Property ConnectionID As Long End Class
Remarks
The component fires this event when a connected client closes their TLS session gracefully. This event is typically followed by a Disconnect, which marks the closure of the underlying TCP session.
TraceRequest Event (HTTPServer Component)
Reports a TRACE request.
Syntax
public event OnTraceRequestHandler OnTraceRequest; public delegate void OnTraceRequestHandler(object sender, HttpserverTraceRequestEventArgs e); public class HttpserverTraceRequestEventArgs : EventArgs { public long ConnectionID { get; } public string URI { get; } public bool Handled { get; set; } }
Public Event OnTraceRequest As OnTraceRequestHandler Public Delegate Sub OnTraceRequestHandler(sender As Object, e As HttpserverTraceRequestEventArgs) Public Class HttpserverTraceRequestEventArgs Inherits EventArgs Public ReadOnly Property ConnectionID As Long Public ReadOnly Property URI As String Public Property Handled As Boolean End Class
Remarks
The component fires this event to notify the application about a TRACE request received from the client.
ConnectionID indicates the connection that sent the request and URI suggests the requested resource.
Set Handled to true to indicate that your application's code will take care of the request. The application does it by providing the necessary details via SetResponseStatus, SetResponseHeader, and SetResponseFile methods. If the returned value of Handled is false, the server will try to take care of the request automatically by searching for the requested resource in DocumentRoot.
Certificate Type
Provides details of an individual X.509 certificate.
Remarks
This type provides access to X.509 certificate details.
Fields
Bytes
byte[] (read-only)
Default Value: ""
Returns the raw certificate data in DER format.
CA
bool
Default Value: False
Indicates whether the certificate has a CA capability (a setting in the BasicConstraints extension).
CAKeyID
byte[] (read-only)
Default Value: ""
A unique identifier (fingerprint) of the CA certificate's private key.
Authority Key Identifier is a (non-critical) X.509 certificate extension which allows the identification of certificates produced by the same issuer, but with different public keys.
CRLDistributionPoints
string
Default Value: ""
Locations of the CRL (Certificate Revocation List) distribution points used to check this certificate's validity.
Curve
string
Default Value: ""
Specifies the elliptic curve of the EC public key.
SB_EC_SECP112R1 | SECP112R1 | |
SB_EC_SECP112R2 | SECP112R2 | |
SB_EC_SECP128R1 | SECP128R1 | |
SB_EC_SECP128R2 | SECP128R2 | |
SB_EC_SECP160K1 | SECP160K1 | |
SB_EC_SECP160R1 | SECP160R1 | |
SB_EC_SECP160R2 | SECP160R2 | |
SB_EC_SECP192K1 | SECP192K1 | |
SB_EC_SECP192R1 | SECP192R1 | |
SB_EC_SECP224K1 | SECP224K1 | |
SB_EC_SECP224R1 | SECP224R1 | |
SB_EC_SECP256K1 | SECP256K1 | |
SB_EC_SECP256R1 | SECP256R1 | |
SB_EC_SECP384R1 | SECP384R1 | |
SB_EC_SECP521R1 | SECP521R1 | |
SB_EC_SECT113R1 | SECT113R1 | |
SB_EC_SECT113R2 | SECT113R2 | |
SB_EC_SECT131R1 | SECT131R1 | |
SB_EC_SECT131R2 | SECT131R2 | |
SB_EC_SECT163K1 | SECT163K1 | |
SB_EC_SECT163R1 | SECT163R1 | |
SB_EC_SECT163R2 | SECT163R2 | |
SB_EC_SECT193R1 | SECT193R1 | |
SB_EC_SECT193R2 | SECT193R2 | |
SB_EC_SECT233K1 | SECT233K1 | |
SB_EC_SECT233R1 | SECT233R1 | |
SB_EC_SECT239K1 | SECT239K1 | |
SB_EC_SECT283K1 | SECT283K1 | |
SB_EC_SECT283R1 | SECT283R1 | |
SB_EC_SECT409K1 | SECT409K1 | |
SB_EC_SECT409R1 | SECT409R1 | |
SB_EC_SECT571K1 | SECT571K1 | |
SB_EC_SECT571R1 | SECT571R1 | |
SB_EC_PRIME192V1 | PRIME192V1 | |
SB_EC_PRIME192V2 | PRIME192V2 | |
SB_EC_PRIME192V3 | PRIME192V3 | |
SB_EC_PRIME239V1 | PRIME239V1 | |
SB_EC_PRIME239V2 | PRIME239V2 | |
SB_EC_PRIME239V3 | PRIME239V3 | |
SB_EC_PRIME256V1 | PRIME256V1 | |
SB_EC_C2PNB163V1 | C2PNB163V1 | |
SB_EC_C2PNB163V2 | C2PNB163V2 | |
SB_EC_C2PNB163V3 | C2PNB163V3 | |
SB_EC_C2PNB176W1 | C2PNB176W1 | |
SB_EC_C2TNB191V1 | C2TNB191V1 | |
SB_EC_C2TNB191V2 | C2TNB191V2 | |
SB_EC_C2TNB191V3 | C2TNB191V3 | |
SB_EC_C2ONB191V4 | C2ONB191V4 | |
SB_EC_C2ONB191V5 | C2ONB191V5 | |
SB_EC_C2PNB208W1 | C2PNB208W1 | |
SB_EC_C2TNB239V1 | C2TNB239V1 | |
SB_EC_C2TNB239V2 | C2TNB239V2 | |
SB_EC_C2TNB239V3 | C2TNB239V3 | |
SB_EC_C2ONB239V4 | C2ONB239V4 | |
SB_EC_C2ONB239V5 | C2ONB239V5 | |
SB_EC_C2PNB272W1 | C2PNB272W1 | |
SB_EC_C2PNB304W1 | C2PNB304W1 | |
SB_EC_C2TNB359V1 | C2TNB359V1 | |
SB_EC_C2PNB368W1 | C2PNB368W1 | |
SB_EC_C2TNB431R1 | C2TNB431R1 | |
SB_EC_NISTP192 | NISTP192 | |
SB_EC_NISTP224 | NISTP224 | |
SB_EC_NISTP256 | NISTP256 | |
SB_EC_NISTP384 | NISTP384 | |
SB_EC_NISTP521 | NISTP521 | |
SB_EC_NISTB163 | NISTB163 | |
SB_EC_NISTB233 | NISTB233 | |
SB_EC_NISTB283 | NISTB283 | |
SB_EC_NISTB409 | NISTB409 | |
SB_EC_NISTB571 | NISTB571 | |
SB_EC_NISTK163 | NISTK163 | |
SB_EC_NISTK233 | NISTK233 | |
SB_EC_NISTK283 | NISTK283 | |
SB_EC_NISTK409 | NISTK409 | |
SB_EC_NISTK571 | NISTK571 | |
SB_EC_GOSTCPTEST | GOSTCPTEST | |
SB_EC_GOSTCPA | GOSTCPA | |
SB_EC_GOSTCPB | GOSTCPB | |
SB_EC_GOSTCPC | GOSTCPC | |
SB_EC_GOSTCPXCHA | GOSTCPXCHA | |
SB_EC_GOSTCPXCHB | GOSTCPXCHB | |
SB_EC_BRAINPOOLP160R1 | BRAINPOOLP160R1 | |
SB_EC_BRAINPOOLP160T1 | BRAINPOOLP160T1 | |
SB_EC_BRAINPOOLP192R1 | BRAINPOOLP192R1 | |
SB_EC_BRAINPOOLP192T1 | BRAINPOOLP192T1 | |
SB_EC_BRAINPOOLP224R1 | BRAINPOOLP224R1 | |
SB_EC_BRAINPOOLP224T1 | BRAINPOOLP224T1 | |
SB_EC_BRAINPOOLP256R1 | BRAINPOOLP256R1 | |
SB_EC_BRAINPOOLP256T1 | BRAINPOOLP256T1 | |
SB_EC_BRAINPOOLP320R1 | BRAINPOOLP320R1 | |
SB_EC_BRAINPOOLP320T1 | BRAINPOOLP320T1 | |
SB_EC_BRAINPOOLP384R1 | BRAINPOOLP384R1 | |
SB_EC_BRAINPOOLP384T1 | BRAINPOOLP384T1 | |
SB_EC_BRAINPOOLP512R1 | BRAINPOOLP512R1 | |
SB_EC_BRAINPOOLP512T1 | BRAINPOOLP512T1 | |
SB_EC_CURVE25519 | CURVE25519 | |
SB_EC_CURVE448 | CURVE448 |
Fingerprint
byte[] (read-only)
Default Value: ""
Contains the fingerprint (a hash imprint) of this certificate.
FriendlyName
string (read-only)
Default Value: ""
Contains an associated alias (friendly name) of the certificate.
HashAlgorithm
string
Default Value: ""
Specifies the hash algorithm to be used in the operations on the certificate (such as key signing)
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
Issuer
string (read-only)
Default Value: ""
The common name of the certificate issuer (CA), typically a company name.
IssuerRDN
string
Default Value: ""
A collection of information, in the form of [OID, Value] pairs, uniquely identifying the certificate issuer.
KeyAlgorithm
string
Default Value: "0"
Specifies the public key algorithm of this certificate.
SB_CERT_ALGORITHM_ID_RSA_ENCRYPTION | rsaEncryption | |
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTION | md2withRSAEncryption | |
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTION | md5withRSAEncryption | |
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTION | sha1withRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA | id-dsa | |
SB_CERT_ALGORITHM_ID_DSA_SHA1 | id-dsa-with-sha1 | |
SB_CERT_ALGORITHM_DH_PUBLIC | dhpublicnumber | |
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTION | sha224WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTION | sha256WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTION | sha384WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTION | sha512WithRSAEncryption | |
SB_CERT_ALGORITHM_ID_RSAPSS | id-RSASSA-PSS | |
SB_CERT_ALGORITHM_ID_RSAOAEP | id-RSAES-OAEP | |
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160 | ripemd160withRSA | |
SB_CERT_ALGORITHM_ID_ELGAMAL | elGamal | |
SB_CERT_ALGORITHM_SHA1_ECDSA | ecdsa-with-SHA1 | |
SB_CERT_ALGORITHM_RECOMMENDED_ECDSA | ecdsa-recommended | |
SB_CERT_ALGORITHM_SHA224_ECDSA | ecdsa-with-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA | ecdsa-with-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA | ecdsa-with-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA | ecdsa-with-SHA512 | |
SB_CERT_ALGORITHM_EC | id-ecPublicKey | |
SB_CERT_ALGORITHM_SPECIFIED_ECDSA | ecdsa-specified | |
SB_CERT_ALGORITHM_GOST_R3410_1994 | id-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3410_2001 | id-GostR3410-2001 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994 | id-GostR3411-94-with-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001 | id-GostR3411-94-with-GostR3410-2001 | |
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAIN | ecdsa-plain-SHA1 | |
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAIN | ecdsa-plain-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAIN | ecdsa-plain-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAIN | ecdsa-plain-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAIN | ecdsa-plain-SHA512 | |
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAIN | ecdsa-plain-RIPEMD160 | |
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTION | whirlpoolWithRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA_SHA224 | id-dsa-with-sha224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA256 | id-dsa-with-sha256 | |
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA | id-ecdsa-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA | id-ecdsa-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA | id-ecdsa-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA | id-ecdsa-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-512 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_224 | id-dsa-with-sha3-224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_256 | id-dsa-with-sha3-256 | |
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA | id-ecdsa-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA | id-ecdsa-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA | id-ecdsa-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA | id-ecdsa-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA | id-ecdsa-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA | id-ecdsa-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA | id-ecdsa-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA | id-ecdsa-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b512 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224 | id-dsa-with-blake2s224 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256 | id-dsa-with-blake2s256 | |
SB_CERT_ALGORITHM_EDDSA_ED25519 | id-Ed25519 | |
SB_CERT_ALGORITHM_EDDSA_ED448 | id-Ed448 | |
SB_CERT_ALGORITHM_EDDSA_ED25519_PH | id-Ed25519ph | |
SB_CERT_ALGORITHM_EDDSA_ED448_PH | id-Ed448ph | |
SB_CERT_ALGORITHM_EDDSA | id-EdDSA | |
SB_CERT_ALGORITHM_EDDSA_SIGNATURE | id-EdDSA-sig |
KeyBits
int (read-only)
Default Value: 0
Returns the length of the public key.
KeyFingerprint
byte[] (read-only)
Default Value: ""
Returns a fingerprint of the public key contained in the certificate.
KeyUsage
int
Default Value: 0
Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.
This value is a bit mask of the following values:
ckuUnknown | 0x00000 | Unknown key usage |
ckuDigitalSignature | 0x00001 | Digital signature |
ckuNonRepudiation | 0x00002 | Non-repudiation |
ckuKeyEncipherment | 0x00004 | Key encipherment |
ckuDataEncipherment | 0x00008 | Data encipherment |
ckuKeyAgreement | 0x00010 | Key agreement |
ckuKeyCertSign | 0x00020 | Certificate signing |
ckuCRLSign | 0x00040 | Revocation signing |
ckuEncipherOnly | 0x00080 | Encipher only |
ckuDecipherOnly | 0x00100 | Decipher only |
ckuServerAuthentication | 0x00200 | Server authentication |
ckuClientAuthentication | 0x00400 | Client authentication |
ckuCodeSigning | 0x00800 | Code signing |
ckuEmailProtection | 0x01000 | Email protection |
ckuTimeStamping | 0x02000 | Timestamping |
ckuOCSPSigning | 0x04000 | OCSP signing |
ckuSmartCardLogon | 0x08000 | Smartcard logon |
ckuKeyPurposeClientAuth | 0x10000 | Kerberos - client authentication |
ckuKeyPurposeKDC | 0x20000 | Kerberos - KDC |
KeyValid
bool (read-only)
Default Value: False
Returns True if the certificate's key is cryptographically valid, and False otherwise.
OCSPLocations
string
Default Value: ""
Locations of OCSP (Online Certificate Status Protocol) services that can be used to check this certificate's validity, as recorded by the CA.
OCSPNoCheck
bool
Default Value: False
Accessor to the value of the certificate's ocsp-no-check extension.
Origin
int (read-only)
Default Value: 0
Returns the origin of this certificate.
PolicyIDs
string
Default Value: ""
Contains identifiers (OIDs) of the applicable certificate policies.
The Certificate Policies extension identifies a sequence of policies under which the certificate has been issued, and which regulate its usage.
PrivateKeyBytes
byte[] (read-only)
Default Value: ""
Contains the certificate's private key. It is normal for this property to be empty if the private key is non-exportable.
PrivateKeyExists
bool (read-only)
Default Value: False
Indicates whether the certificate has an associated private key.
PrivateKeyExtractable
bool (read-only)
Default Value: False
Indicates whether the private key is extractable.
PublicKeyBytes
byte[] (read-only)
Default Value: ""
Contains the certificate's public key in DER format.
QualifiedStatements
QualifiedStatementsTypes
Default Value: 0
Returns the qualified status of the certificate.
SelfSigned
bool (read-only)
Default Value: False
Indicates whether the certificate is self-signed (root) or signed by an external CA.
SerialNumber
byte[]
Default Value: ""
Returns the certificate's serial number.
SigAlgorithm
string (read-only)
Default Value: ""
Indicates the algorithm that was used by the CA to sign this certificate.
Subject
string (read-only)
Default Value: ""
The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name.
SubjectAlternativeName
string
Default Value: ""
Returns or sets the value of the Subject Alternative Name extension of the certificate.
SubjectKeyID
byte[]
Default Value: ""
Contains a unique identifier (fingerprint) of the certificate's private key.
Subject Key Identifier is a (non-critical) X.509 certificate extension which allows the identification of certificates containing a particular public key. In SecureBlackbox, the unique identifier is represented with a SHA1 hash of the bit string of the subject public key.
SubjectRDN
string
Default Value: ""
A collection of information, in the form of [OID, Value] pairs, uniquely identifying the certificate holder (subject).
ValidFrom
string
Default Value: ""
The time point at which the certificate becomes valid, in UTC.
ValidTo
string
Default Value: ""
The time point at which the certificate expires, in UTC.
Constructors
public Certificate(byte[] bytes, int startIndex, int count, string password);
Public Certificate(ByVal Bytes As Byte(), ByVal StartIndex As Integer, ByVal Count As Integer, ByVal Password As String)
Loads the X.509 certificate from a memory buffer. Bytes is a buffer containing the raw certificate data. StartIndex and Count specify the starting position and number of bytes to be read from the buffer, respectively. Password is a password encrypting the certificate.
Loads the X.509 certificate from a memory buffer. CertBytes is a buffer containing the raw certificate data. CertStartIndex and CertCount specify the number of bytes to be read from the buffer, respectively. KeyBytes is a buffer containing the private key data. KeyStartIndex and KeyCount specify the starting position and number of bytes to be read from the buffer, respectively. Password is a password encrypting the certificate.
public Certificate(byte[] bytes, int startIndex, int count);
Public Certificate(ByVal Bytes As Byte(), ByVal StartIndex As Integer, ByVal Count As Integer)
Loads the X.509 certificate from a memory buffer. Bytes is a buffer containing the raw certificate data. StartIndex and Count specify the starting position and number of bytes to be read from the buffer, respectively.
public Certificate(string path, string password);
Public Certificate(ByVal Path As String, ByVal Password As String)
Loads the X.509 certificate from a file. Path specifies the full path to the file containing the certificate data. Password is a password encrypting the certificate.
public Certificate(string certPath, string keyPath, string password);
Public Certificate(ByVal CertPath As String, ByVal KeyPath As String, ByVal Password As String)
Loads the X.509 certificate from a file. CertPath specifies the full path to the file containing the certificate data. KeyPath specifies the full path to the file containing the private key. Password is a password encrypting the certificate.
public Certificate(string path);
Public Certificate(ByVal Path As String)
Loads the X.509 certificate from a file. Path specifies the full path to the file containing the certificate data.
public Certificate(System.IO.Stream stream);
Public Certificate(ByVal Stream As System.IO.Stream)
Loads the X.509 certificate from a stream. Stream is a stream containing the certificate data.
public Certificate(System.IO.Stream stream, string password);
Public Certificate(ByVal Stream As System.IO.Stream, ByVal Password As String)
Loads the X.509 certificate from a stream. Stream is a stream containing the certificate data. Password is a password encrypting the certificate.
public Certificate(System.IO.Stream certStream, System.IO.Stream keyStream, string password);
Public Certificate(ByVal CertStream As System.IO.Stream, ByVal KeyStream As System.IO.Stream, ByVal Password As String)
Loads the X.509 certificate from a stream. CertStream is a stream containing the certificate data. KeyStream is a stream containing the private key. Password is a password encrypting the certificate.
public Certificate();
Public Certificate()
Creates a new object with default field values.
ExternalCrypto Type
Specifies the parameters of external cryptographic calls.
Remarks
External cryptocalls are used in a Distributed Cryptography (DC) subsystem, which allows the delegation of security operations to the remote agent. For instance, it can be used to compute the signature value on the server, while retaining the client's private key locally.
Fields
AsyncDocumentID
string
Default Value: ""
Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.
Use this property when working with multi-signature DCAuth requests and responses to uniquely identify documents signed within a larger batch. On the completion stage, this value helps the signing component identify the correct signature in the returned batch of responses.
If using batched requests, make sure to set this property to the same value on both the pre-signing (SignAsyncBegin) and completion (SignAsyncEnd) stages.
CustomParams
string
Default Value: ""
Custom parameters to be passed to the signing service (uninterpreted).
Data
string
Default Value: ""
Additional data to be included in the async state and mirrored back by the requestor.
ExternalHashCalculation
bool
Default Value: False
Specifies whether the message hash is to be calculated at the external endpoint. Please note that this mode is not supported by the DCAuth component.
If set to true, the component will pass a few kilobytes of to-be-signed data from the document to the OnExternalSign event. This only applies when SignExternal() is called.
HashAlgorithm
string
Default Value: "SHA256"
Specifies the request's signature hash algorithm.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
KeyID
string
Default Value: ""
The ID of the pre-shared key used for DC request authentication.
Asynchronous DCAuth-driven communication requires that parties authenticate each other with a secret pre-shared cryptographic key. This provides an extra protection layer for the protocol and diminishes the risk of the private key becoming abused by foreign parties. Use this property to provide the pre-shared key identifier, and use KeySecret to pass the key itself.
The same KeyID/KeySecret pair should be used on the DCAuth side for the signing requests to be accepted.
Note: The KeyID/KeySecret scheme is very similar to the AuthKey scheme used in various Cloud service providers to authenticate users.
Example:
signer.ExternalCrypto.KeyID = "MainSigningKey";
signer.ExternalCrypto.KeySecret = "abcdef0123456789";
KeySecret
string
Default Value: ""
The pre-shared key used for DC request authentication. This key must be set and match the key used by the DCAuth counterpart for the scheme to work.
Read more about configuring authentication in the KeyID topic.
Method
AsyncSignMethods
Default Value: 0
Specifies the asynchronous signing method. This is typically defined by the DC server capabilities and setup.
Available options:
asmdPKCS1 | 0 |
asmdPKCS7 | 1 |
Mode
ExternalCryptoModes
Default Value: 0
Specifies the external cryptography mode.
Available options:
ecmDefault | The default value (0) |
ecmDisabled | Do not use DC or external signing (1) |
ecmGeneric | Generic external signing with the OnExternalSign event (2) |
ecmDCAuth | DCAuth signing (3) |
ecmDCAuthJSON | DCAuth signing in JSON format (4) |
PublicKeyAlgorithm
string
Default Value: ""
Provide the public key algorithm here if the certificate is not available on the pre-signing stage.
SB_CERT_ALGORITHM_ID_RSA_ENCRYPTION | rsaEncryption | |
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTION | md2withRSAEncryption | |
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTION | md5withRSAEncryption | |
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTION | sha1withRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA | id-dsa | |
SB_CERT_ALGORITHM_ID_DSA_SHA1 | id-dsa-with-sha1 | |
SB_CERT_ALGORITHM_DH_PUBLIC | dhpublicnumber | |
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTION | sha224WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTION | sha256WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTION | sha384WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTION | sha512WithRSAEncryption | |
SB_CERT_ALGORITHM_ID_RSAPSS | id-RSASSA-PSS | |
SB_CERT_ALGORITHM_ID_RSAOAEP | id-RSAES-OAEP | |
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160 | ripemd160withRSA | |
SB_CERT_ALGORITHM_ID_ELGAMAL | elGamal | |
SB_CERT_ALGORITHM_SHA1_ECDSA | ecdsa-with-SHA1 | |
SB_CERT_ALGORITHM_RECOMMENDED_ECDSA | ecdsa-recommended | |
SB_CERT_ALGORITHM_SHA224_ECDSA | ecdsa-with-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA | ecdsa-with-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA | ecdsa-with-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA | ecdsa-with-SHA512 | |
SB_CERT_ALGORITHM_EC | id-ecPublicKey | |
SB_CERT_ALGORITHM_SPECIFIED_ECDSA | ecdsa-specified | |
SB_CERT_ALGORITHM_GOST_R3410_1994 | id-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3410_2001 | id-GostR3410-2001 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994 | id-GostR3411-94-with-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001 | id-GostR3411-94-with-GostR3410-2001 | |
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAIN | ecdsa-plain-SHA1 | |
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAIN | ecdsa-plain-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAIN | ecdsa-plain-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAIN | ecdsa-plain-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAIN | ecdsa-plain-SHA512 | |
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAIN | ecdsa-plain-RIPEMD160 | |
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTION | whirlpoolWithRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA_SHA224 | id-dsa-with-sha224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA256 | id-dsa-with-sha256 | |
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA | id-ecdsa-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA | id-ecdsa-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA | id-ecdsa-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA | id-ecdsa-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-512 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_224 | id-dsa-with-sha3-224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_256 | id-dsa-with-sha3-256 | |
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA | id-ecdsa-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA | id-ecdsa-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA | id-ecdsa-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA | id-ecdsa-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA | id-ecdsa-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA | id-ecdsa-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA | id-ecdsa-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA | id-ecdsa-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b512 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224 | id-dsa-with-blake2s224 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256 | id-dsa-with-blake2s256 | |
SB_CERT_ALGORITHM_EDDSA_ED25519 | id-Ed25519 | |
SB_CERT_ALGORITHM_EDDSA_ED448 | id-Ed448 | |
SB_CERT_ALGORITHM_EDDSA_ED25519_PH | id-Ed25519ph | |
SB_CERT_ALGORITHM_EDDSA_ED448_PH | id-Ed448ph | |
SB_CERT_ALGORITHM_EDDSA | id-EdDSA | |
SB_CERT_ALGORITHM_EDDSA_SIGNATURE | id-EdDSA-sig |
Constructors
public ExternalCrypto();
Public ExternalCrypto()
Creates a new ExternalCrypto object with default field values.
SocketSettings Type
A container for the socket settings.
Remarks
This type is a container for socket-layer parameters.
Fields
DNSMode
DNSResolveModes
Default Value: 0
Selects the DNS resolver to use: the component's (secure) built-in one, or the one provided by the system.
dmAuto | 0 |
dmPlatform | 1 |
dmOwn | 2 |
dmOwnSecure | 3 |
DNSPort
int
Default Value: 0
Specifies the port number to be used for sending queries to the DNS server.
DNSQueryTimeout
int
Default Value: 0
The timeout (in milliseconds) for each DNS query. The value of 0 indicates an infinite timeout.
DNSServers
string
Default Value: ""
The addresses of DNS servers to use for address resolution, separated by commas or semicolons.
DNSTotalTimeout
int
Default Value: 0
The timeout (in milliseconds) for the whole resolution process. The value of 0 indicates an infinite timeout.
IncomingSpeedLimit
int
Default Value: 0
The maximum number of bytes to read from the socket, per second.
LocalAddress
string
Default Value: ""
The local network interface to bind the socket to.
LocalPort
int
Default Value: 0
The local port number to bind the socket to.
OutgoingSpeedLimit
int
Default Value: 0
The maximum number of bytes to write to the socket, per second.
Timeout
int
Default Value: 60000
The maximum period of waiting, in milliseconds, after which the socket operation is considered unsuccessful.
If Timeout is set to 0, a socket operation will expire after the system-default timeout (2 hrs 8 min for TCP stack).
UseIPv6
bool
Default Value: False
Enables or disables IP protocol version 6.
Constructors
public SocketSettings();
Public SocketSettings()
Creates a new SocketSettings object.
TLSClientEntry Type
A container for a connected TLS client's details.
Remarks
Use this property to access the details of a particular connected client.
Fields
Address
string (read-only)
Default Value: ""
The client's IP address.
ChainValidationDetails
int (read-only)
Default Value: 0
The details of a certificate chain validation outcome. They may often suggest the reasons that contributed to the overall validation result.
Returns a bit mask of the following options:
cvrBadData | 0x0001 | One or more certificates in the validation path are malformed |
cvrRevoked | 0x0002 | One or more certificates are revoked |
cvrNotYetValid | 0x0004 | One or more certificates are not yet valid |
cvrExpired | 0x0008 | One or more certificates are expired |
cvrInvalidSignature | 0x0010 | A certificate contains a non-valid digital signature |
cvrUnknownCA | 0x0020 | A CA certificate for one or more certificates has not been found (chain incomplete) |
cvrCAUnauthorized | 0x0040 | One of the CA certificates are not authorized to act as CA |
cvrCRLNotVerified | 0x0080 | One or more CRLs could not be verified |
cvrOCSPNotVerified | 0x0100 | One or more OCSP responses could not be verified |
cvrIdentityMismatch | 0x0200 | The identity protected by the certificate (a TLS endpoint or an e-mail addressee) does not match what is recorded in the certificate |
cvrNoKeyUsage | 0x0400 | A mandatory key usage is not enabled in one of the chain certificates |
cvrBlocked | 0x0800 | One or more certificates are blocked |
cvrFailure | 0x1000 | General validation failure |
cvrChainLoop | 0x2000 | Chain loop: one of the CA certificates recursively signs itself |
cvrWeakAlgorithm | 0x4000 | A weak algorithm is used in one of certificates or revocation elements |
cvrUserEnforced | 0x8000 | The chain was considered invalid following intervention from a user code |
ChainValidationResult
ChainValidities (read-only)
Default Value: 0
The outcome of a certificate chain validation routine.
Available options:
cvtValid | 0 | The chain is valid |
cvtValidButUntrusted | 1 | The chain is valid, but the root certificate is not trusted |
cvtInvalid | 2 | The chain is not valid (some of certificates are revoked, expired, or contain an invalid signature) |
cvtCantBeEstablished | 3 | The validity of the chain cannot be established because of missing or unavailable validation information (certificates, CRLs, or OCSP responses) |
Use the ValidationLog property to access the detailed validation log.
Ciphersuite
string (read-only)
Default Value: ""
The cipher suite employed by this connection.
For TLS connections, this property returns the ciphersuite that was/is employed by the connection.
ClientAuthenticated
bool (read-only)
Default Value: False
Specifies whether client authentication was performed during this connection.
DigestAlgorithm
string (read-only)
Default Value: ""
The digest algorithm used in a TLS-enabled connection.
EncryptionAlgorithm
string (read-only)
Default Value: ""
The symmetric encryption algorithm used in a TLS-enabled connection.
ID
long (read-only)
Default Value: -1
The client connection's unique identifier. This value is used throughout to refer to a particular client connection.
KeyExchangeAlgorithm
string (read-only)
Default Value: ""
The key exchange algorithm used in a TLS-enabled connection.
KeyExchangeKeyBits
int (read-only)
Default Value: 0
The length of the key exchange key of a TLS-enabled connection.
NamedECCurve
string (read-only)
Default Value: ""
The elliptic curve used in this connection.
PFSCipher
bool (read-only)
Default Value: False
Indicates whether the chosen ciphersuite provides perfect forward secrecy (PFS).
Port
int (read-only)
Default Value: 0
The remote port of the client connection.
PreSharedIdentity
string
Default Value: ""
Specifies the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.
PublicKeyBits
int (read-only)
Default Value: 0
The length of the public key.
ResumedSession
bool (read-only)
Default Value: False
Indicates whether a TLS-enabled connection was spawned from another TLS connection
SecureConnection
bool (read-only)
Default Value: False
Indicates whether TLS or SSL is enabled for this connection.
SignatureAlgorithm
string (read-only)
Default Value: ""
The signature algorithm used in a TLS handshake.
SymmetricBlockSize
int (read-only)
Default Value: 0
The block size of the symmetric algorithm used.
SymmetricKeyBits
int (read-only)
Default Value: 0
The key length of the symmetric algorithm used.
TotalBytesReceived
long (read-only)
Default Value: 0
The total number of bytes received over this connection.
TotalBytesSent
long (read-only)
Default Value: 0
The total number of bytes sent over this connection.
ValidationLog
string (read-only)
Default Value: ""
Contains the server certificate's chain validation log. This information may be very useful in investigating chain validation failures.
Version
string (read-only)
Default Value: ""
Indicates the version of SSL/TLS protocol negotiated during this connection.
Constructors
public TLSClientEntry();
Public TLSClientEntry()
Creates a new TLSClientEntry object.
TLSSettings Type
A container for TLS connection settings.
Remarks
The TLS (Transport Layer Security) protocol provides security for information exchanged over insecure connections such as TCP/IP.
Fields
AutoValidateCertificates
bool
Default Value: True
Specifies whether server-side TLS certificates should be validated automatically using internal validation rules.
BaseConfiguration
SecureTransportPredefinedConfigurations
Default Value: 0
Selects the base configuration for the TLS settings. Several profiles are offered and tuned up for different purposes, such as high security or higher compatibility.
stpcDefault | 0 | |
stpcCompatible | 1 | |
stpcComprehensiveInsecure | 2 | |
stpcHighlySecure | 3 |
Ciphersuites
string
Default Value: ""
A list of ciphersuites separated with commas or semicolons. Each ciphersuite in the list may be prefixed with a minus sign (-) to indicate that the ciphersuite should be disabled rather than enabled. Besides the specific ciphersuite modifiers, this property supports the all (and -all) aliases, allowing all ciphersuites to be blanketly enabled or disabled at once.
Note: the list of ciphersuites provided to this property alters the baseline list of ciphersuites as defined by BaseConfiguration. Remember to start your ciphersuite string with -all; if you need to only enable a specific fixed set of ciphersuites. The list of supported ciphersuites is provided below:
- NULL_NULL_NULL
- RSA_NULL_MD5
- RSA_NULL_SHA
- RSA_RC4_MD5
- RSA_RC4_SHA
- RSA_RC2_MD5
- RSA_IDEA_MD5
- RSA_IDEA_SHA
- RSA_DES_MD5
- RSA_DES_SHA
- RSA_3DES_MD5
- RSA_3DES_SHA
- RSA_AES128_SHA
- RSA_AES256_SHA
- DH_DSS_DES_SHA
- DH_DSS_3DES_SHA
- DH_DSS_AES128_SHA
- DH_DSS_AES256_SHA
- DH_RSA_DES_SHA
- DH_RSA_3DES_SHA
- DH_RSA_AES128_SHA
- DH_RSA_AES256_SHA
- DHE_DSS_DES_SHA
- DHE_DSS_3DES_SHA
- DHE_DSS_AES128_SHA
- DHE_DSS_AES256_SHA
- DHE_RSA_DES_SHA
- DHE_RSA_3DES_SHA
- DHE_RSA_AES128_SHA
- DHE_RSA_AES256_SHA
- DH_ANON_RC4_MD5
- DH_ANON_DES_SHA
- DH_ANON_3DES_SHA
- DH_ANON_AES128_SHA
- DH_ANON_AES256_SHA
- RSA_RC2_MD5_EXPORT
- RSA_RC4_MD5_EXPORT
- RSA_DES_SHA_EXPORT
- DH_DSS_DES_SHA_EXPORT
- DH_RSA_DES_SHA_EXPORT
- DHE_DSS_DES_SHA_EXPORT
- DHE_RSA_DES_SHA_EXPORT
- DH_ANON_RC4_MD5_EXPORT
- DH_ANON_DES_SHA_EXPORT
- RSA_CAMELLIA128_SHA
- DH_DSS_CAMELLIA128_SHA
- DH_RSA_CAMELLIA128_SHA
- DHE_DSS_CAMELLIA128_SHA
- DHE_RSA_CAMELLIA128_SHA
- DH_ANON_CAMELLIA128_SHA
- RSA_CAMELLIA256_SHA
- DH_DSS_CAMELLIA256_SHA
- DH_RSA_CAMELLIA256_SHA
- DHE_DSS_CAMELLIA256_SHA
- DHE_RSA_CAMELLIA256_SHA
- DH_ANON_CAMELLIA256_SHA
- PSK_RC4_SHA
- PSK_3DES_SHA
- PSK_AES128_SHA
- PSK_AES256_SHA
- DHE_PSK_RC4_SHA
- DHE_PSK_3DES_SHA
- DHE_PSK_AES128_SHA
- DHE_PSK_AES256_SHA
- RSA_PSK_RC4_SHA
- RSA_PSK_3DES_SHA
- RSA_PSK_AES128_SHA
- RSA_PSK_AES256_SHA
- RSA_SEED_SHA
- DH_DSS_SEED_SHA
- DH_RSA_SEED_SHA
- DHE_DSS_SEED_SHA
- DHE_RSA_SEED_SHA
- DH_ANON_SEED_SHA
- SRP_SHA_3DES_SHA
- SRP_SHA_RSA_3DES_SHA
- SRP_SHA_DSS_3DES_SHA
- SRP_SHA_AES128_SHA
- SRP_SHA_RSA_AES128_SHA
- SRP_SHA_DSS_AES128_SHA
- SRP_SHA_AES256_SHA
- SRP_SHA_RSA_AES256_SHA
- SRP_SHA_DSS_AES256_SHA
- ECDH_ECDSA_NULL_SHA
- ECDH_ECDSA_RC4_SHA
- ECDH_ECDSA_3DES_SHA
- ECDH_ECDSA_AES128_SHA
- ECDH_ECDSA_AES256_SHA
- ECDHE_ECDSA_NULL_SHA
- ECDHE_ECDSA_RC4_SHA
- ECDHE_ECDSA_3DES_SHA
- ECDHE_ECDSA_AES128_SHA
- ECDHE_ECDSA_AES256_SHA
- ECDH_RSA_NULL_SHA
- ECDH_RSA_RC4_SHA
- ECDH_RSA_3DES_SHA
- ECDH_RSA_AES128_SHA
- ECDH_RSA_AES256_SHA
- ECDHE_RSA_NULL_SHA
- ECDHE_RSA_RC4_SHA
- ECDHE_RSA_3DES_SHA
- ECDHE_RSA_AES128_SHA
- ECDHE_RSA_AES256_SHA
- ECDH_ANON_NULL_SHA
- ECDH_ANON_RC4_SHA
- ECDH_ANON_3DES_SHA
- ECDH_ANON_AES128_SHA
- ECDH_ANON_AES256_SHA
- RSA_NULL_SHA256
- RSA_AES128_SHA256
- RSA_AES256_SHA256
- DH_DSS_AES128_SHA256
- DH_RSA_AES128_SHA256
- DHE_DSS_AES128_SHA256
- DHE_RSA_AES128_SHA256
- DH_DSS_AES256_SHA256
- DH_RSA_AES256_SHA256
- DHE_DSS_AES256_SHA256
- DHE_RSA_AES256_SHA256
- DH_ANON_AES128_SHA256
- DH_ANON_AES256_SHA256
- RSA_AES128_GCM_SHA256
- RSA_AES256_GCM_SHA384
- DHE_RSA_AES128_GCM_SHA256
- DHE_RSA_AES256_GCM_SHA384
- DH_RSA_AES128_GCM_SHA256
- DH_RSA_AES256_GCM_SHA384
- DHE_DSS_AES128_GCM_SHA256
- DHE_DSS_AES256_GCM_SHA384
- DH_DSS_AES128_GCM_SHA256
- DH_DSS_AES256_GCM_SHA384
- DH_ANON_AES128_GCM_SHA256
- DH_ANON_AES256_GCM_SHA384
- ECDHE_ECDSA_AES128_SHA256
- ECDHE_ECDSA_AES256_SHA384
- ECDH_ECDSA_AES128_SHA256
- ECDH_ECDSA_AES256_SHA384
- ECDHE_RSA_AES128_SHA256
- ECDHE_RSA_AES256_SHA384
- ECDH_RSA_AES128_SHA256
- ECDH_RSA_AES256_SHA384
- ECDHE_ECDSA_AES128_GCM_SHA256
- ECDHE_ECDSA_AES256_GCM_SHA384
- ECDH_ECDSA_AES128_GCM_SHA256
- ECDH_ECDSA_AES256_GCM_SHA384
- ECDHE_RSA_AES128_GCM_SHA256
- ECDHE_RSA_AES256_GCM_SHA384
- ECDH_RSA_AES128_GCM_SHA256
- ECDH_RSA_AES256_GCM_SHA384
- PSK_AES128_GCM_SHA256
- PSK_AES256_GCM_SHA384
- DHE_PSK_AES128_GCM_SHA256
- DHE_PSK_AES256_GCM_SHA384
- RSA_PSK_AES128_GCM_SHA256
- RSA_PSK_AES256_GCM_SHA384
- PSK_AES128_SHA256
- PSK_AES256_SHA384
- PSK_NULL_SHA256
- PSK_NULL_SHA384
- DHE_PSK_AES128_SHA256
- DHE_PSK_AES256_SHA384
- DHE_PSK_NULL_SHA256
- DHE_PSK_NULL_SHA384
- RSA_PSK_AES128_SHA256
- RSA_PSK_AES256_SHA384
- RSA_PSK_NULL_SHA256
- RSA_PSK_NULL_SHA384
- RSA_CAMELLIA128_SHA256
- DH_DSS_CAMELLIA128_SHA256
- DH_RSA_CAMELLIA128_SHA256
- DHE_DSS_CAMELLIA128_SHA256
- DHE_RSA_CAMELLIA128_SHA256
- DH_ANON_CAMELLIA128_SHA256
- RSA_CAMELLIA256_SHA256
- DH_DSS_CAMELLIA256_SHA256
- DH_RSA_CAMELLIA256_SHA256
- DHE_DSS_CAMELLIA256_SHA256
- DHE_RSA_CAMELLIA256_SHA256
- DH_ANON_CAMELLIA256_SHA256
- ECDHE_ECDSA_CAMELLIA128_SHA256
- ECDHE_ECDSA_CAMELLIA256_SHA384
- ECDH_ECDSA_CAMELLIA128_SHA256
- ECDH_ECDSA_CAMELLIA256_SHA384
- ECDHE_RSA_CAMELLIA128_SHA256
- ECDHE_RSA_CAMELLIA256_SHA384
- ECDH_RSA_CAMELLIA128_SHA256
- ECDH_RSA_CAMELLIA256_SHA384
- RSA_CAMELLIA128_GCM_SHA256
- RSA_CAMELLIA256_GCM_SHA384
- DHE_RSA_CAMELLIA128_GCM_SHA256
- DHE_RSA_CAMELLIA256_GCM_SHA384
- DH_RSA_CAMELLIA128_GCM_SHA256
- DH_RSA_CAMELLIA256_GCM_SHA384
- DHE_DSS_CAMELLIA128_GCM_SHA256
- DHE_DSS_CAMELLIA256_GCM_SHA384
- DH_DSS_CAMELLIA128_GCM_SHA256
- DH_DSS_CAMELLIA256_GCM_SHA384
- DH_anon_CAMELLIA128_GCM_SHA256
- DH_anon_CAMELLIA256_GCM_SHA384
- ECDHE_ECDSA_CAMELLIA128_GCM_SHA256
- ECDHE_ECDSA_CAMELLIA256_GCM_SHA384
- ECDH_ECDSA_CAMELLIA128_GCM_SHA256
- ECDH_ECDSA_CAMELLIA256_GCM_SHA384
- ECDHE_RSA_CAMELLIA128_GCM_SHA256
- ECDHE_RSA_CAMELLIA256_GCM_SHA384
- ECDH_RSA_CAMELLIA128_GCM_SHA256
- ECDH_RSA_CAMELLIA256_GCM_SHA384
- PSK_CAMELLIA128_GCM_SHA256
- PSK_CAMELLIA256_GCM_SHA384
- DHE_PSK_CAMELLIA128_GCM_SHA256
- DHE_PSK_CAMELLIA256_GCM_SHA384
- RSA_PSK_CAMELLIA128_GCM_SHA256
- RSA_PSK_CAMELLIA256_GCM_SHA384
- PSK_CAMELLIA128_SHA256
- PSK_CAMELLIA256_SHA384
- DHE_PSK_CAMELLIA128_SHA256
- DHE_PSK_CAMELLIA256_SHA384
- RSA_PSK_CAMELLIA128_SHA256
- RSA_PSK_CAMELLIA256_SHA384
- ECDHE_PSK_CAMELLIA128_SHA256
- ECDHE_PSK_CAMELLIA256_SHA384
- ECDHE_PSK_RC4_SHA
- ECDHE_PSK_3DES_SHA
- ECDHE_PSK_AES128_SHA
- ECDHE_PSK_AES256_SHA
- ECDHE_PSK_AES128_SHA256
- ECDHE_PSK_AES256_SHA384
- ECDHE_PSK_NULL_SHA
- ECDHE_PSK_NULL_SHA256
- ECDHE_PSK_NULL_SHA384
- ECDHE_RSA_CHACHA20_POLY1305_SHA256
- ECDHE_ECDSA_CHACHA20_POLY1305_SHA256
- DHE_RSA_CHACHA20_POLY1305_SHA256
- PSK_CHACHA20_POLY1305_SHA256
- ECDHE_PSK_CHACHA20_POLY1305_SHA256
- DHE_PSK_CHACHA20_POLY1305_SHA256
- RSA_PSK_CHACHA20_POLY1305_SHA256
- AES128_GCM_SHA256
- AES256_GCM_SHA384
- CHACHA20_POLY1305_SHA256
- AES128_CCM_SHA256
- AES128_CCM8_SHA256
ECCurves
string
Default Value: ""
Defines the elliptic curves to enable.
Extensions
string
Default Value: ""
Provides access to TLS extensions.
ForceResumeIfDestinationChanges
bool
Default Value: False
Whether to force TLS session resumption when the destination address changes.
PreSharedIdentity
string
Default Value: ""
Defines the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.
PreSharedKey
string
Default Value: ""
Contains the pre-shared key for the PSK (Pre-Shared Key) key-exchange mechanism, encoded with base16.
PreSharedKeyCiphersuite
string
Default Value: ""
Defines the ciphersuite used for PSK (Pre-Shared Key) negotiation.
RenegotiationAttackPreventionMode
RenegotiationAttackPreventionModes
Default Value: 0
Selects the renegotiation attack prevention mechanism.
The following options are available:
crapmCompatible | 0 | TLS 1.0 and 1.1 compatibility mode (renegotiation indication extension is disabled). |
crapmStrict | 1 | Renegotiation attack prevention is enabled and enforced. |
crapmAuto | 2 | Automatically choose whether to enable or disable renegotiation attack prevention. |
RevocationCheck
RevocationCheckKinds
Default Value: 1
Specifies the kind(s) of revocation check to perform.
Revocation checking is necessary to ensure the integrity of the chain and obtain up-to-date certificate validity and trustworthiness information.
crcNone | 0 | No revocation checking. |
crcAuto | 1 | Automatic mode selection. Currently this maps to crcAnyOCSPOrCRL, but it may change in the future. |
crcAllCRL | 2 | All provided CRL endpoints will be checked, and all checks must succeed. |
crcAllOCSP | 3 | All provided OCSP endpoints will be checked, and all checks must succeed. |
crcAllCRLAndOCSP | 4 | All provided CRL and OCSP endpoints will be checked, and all checks must succeed. |
crcAnyCRL | 5 | All provided CRL endpoints will be checked, and at least one check must succeed. |
crcAnyOCSP | 6 | All provided OCSP endpoints will be checked, and at least one check must succeed. |
crcAnyCRLOrOCSP | 7 | All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. CRL endpoints are checked first. |
crcAnyOCSPOrCRL | 8 | All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. OCSP endpoints are checked first. |
This setting controls the way the revocation checks are performed for every certificate in the chain. Typically certificates come with two types of revocation information sources: CRL (certificate revocation lists) and OCSP responders. CRLs are static objects periodically published by the CA at some online location. OCSP responders are active online services maintained by the CA that can provide up-to-date information on certificate statuses in near real time.
There are some conceptual differences between the two. CRLs are normally larger in size. Their use involves some latency because there is normally some delay between the time when a certificate was revoked and the time the subsequent CRL mentioning that is published. The benefits of CRL is that the same object can provide statuses for all certificates issued by a particular CA, and that the whole technology is much simpler than OCSP (and thus is supported by more CAs).
This setting lets you adjust the validation course by including or excluding certain types of revocation sources from the validation process. The crcAnyOCSPOrCRL setting (give preference to the faster OCSP route and only demand one source to succeed) is a good choice for most typical validation environments. The "crcAll*" modes are much stricter, and may be used in scenarios where bulletproof validity information is essential.
Note: If no CRL or OCSP endpoints are provided by the CA, the revocation check will be considered successful. This is because the CA chose not to supply revocation information for its certificates, meaning they are considered irrevocable.
Note: Within each of the above settings, if any retrieved CRL or OCSP response indicates that the certificate has been revoked, the revocation check fails.
SSLOptions
int
Default Value: 16
Various SSL (TLS) protocol options, set of
cssloExpectShutdownMessage | 0x001 | Wait for the close-notify message when shutting down the connection |
cssloOpenSSLDTLSWorkaround | 0x002 | (DEPRECATED) Use a DTLS version workaround when talking to very old OpenSSL versions |
cssloDisableKexLengthAlignment | 0x004 | Do not align the client-side PMS by the RSA modulus size. It is unlikely that you will ever need to adjust it. |
cssloForceUseOfClientCertHashAlg | 0x008 | Enforce the use of the client certificate hash algorithm. It is unlikely that you will ever need to adjust it. |
cssloAutoAddServerNameExtension | 0x010 | Automatically add the server name extension when known |
cssloAcceptTrustedSRPPrimesOnly | 0x020 | Accept trusted SRP primes only |
cssloDisableSignatureAlgorithmsExtension | 0x040 | Disable (do not send) the signature algorithms extension. It is unlikely that you will ever need to adjust it. |
cssloIntolerateHigherProtocolVersions | 0x080 | (server option) Do not allow fallback from TLS versions higher than currently enabled |
cssloStickToPrefCertHashAlg | 0x100 | Stick to preferred certificate hash algorithms |
cssloNoImplicitTLS12Fallback | 0x200 | Disable implicit TLS 1.3 to 1.2 fallbacks |
cssloUseHandshakeBatches | 0x400 | Send the handshake message as large batches rather than individually |
TLSMode
SSLModes
Default Value: 0
Specifies the TLS mode to use.
smDefault | 0 | |
smNoTLS | 1 | Do not use TLS |
smExplicitTLS | 2 | Connect to the server without any encryption and then request an SSL session. |
smImplicitTLS | 3 | Connect to the specified port, and establish the SSL session at once. |
smMixedTLS | 4 | Connect to the specified port, and establish the SSL session at once, but allow plain data. |
UseExtendedMasterSecret
bool
Default Value: False
Enables the Extended Master Secret Extension, as defined in RFC 7627.
UseSessionResumption
bool
Default Value: False
Enables or disables the TLS session resumption capability.
Versions
int
Default Value: 16
The SSL/TLS versions to enable by default.
csbSSL2 | 0x01 | SSL 2 |
csbSSL3 | 0x02 | SSL 3 |
csbTLS1 | 0x04 | TLS 1.0 |
csbTLS11 | 0x08 | TLS 1.1 |
csbTLS12 | 0x10 | TLS 1.2 |
csbTLS13 | 0x20 | TLS 1.3 |
Constructors
public TLSSettings();
Public TLSSettings()
Creates a new TLSSettings object.
UserAccount Type
A container for user account information.
Remarks
UserAccount objects are used to store user account information, such as logins and passwords.
Fields
AssociatedData
byte[]
Default Value: ""
Contains the user's Associated Data when SSH AEAD (Authenticated Encryption with Associated Data) algorithm is used.
BasePath
string
Default Value: ""
Base path for this user in the server's file system.
Cert
byte[]
Default Value: ""
Contains the user's certificate.
Data
string
Default Value: ""
Contains uninterpreted user-defined data that should be associated with the user account, such as comments or custom settings.
HashAlgorithm
string
Default Value: ""
Specifies the hash algorithm used to generate TOTP (Time-based One-Time Passwords) passwords for this user. Three HMAC algorithms are supported, with SHA-1, SHA-256, and SHA-512 digests:
SB_MAC_ALGORITHM_HMAC_SHA1 | SHA1 | |
SB_MAC_ALGORITHM_HMAC_SHA256 | SHA256 | |
SB_MAC_ALGORITHM_HMAC_SHA512 | SHA512 |
IncomingSpeedLimit
int
Default Value: 0
Specifies the incoming speed limit for this user. The value of 0 (zero) means "no limitation".
OtpAlgorithm
OTPAlgorithms
Default Value: 0
The algorithm used to generate one-time passwords (OTP) for this user, either HOTP (Hash-based OTP) or TOTP (Time-based OTP). In the former case, a value of a dedicated counter is used to generate a unique password, while in the latter the password is generated on the basis of the current time value.
oaHmac | 0 | |
oaTime | 1 |
OtpValue
int
Default Value: 0
The user's time interval (TOTP) or Counter (HOTP).
OutgoingSpeedLimit
int
Default Value: 0
Specifies the outgoing speed limit for this user. The value of 0 (zero) means "no limitation".
Password
string
Default Value: ""
The user's authentication password.
PasswordLen
int
Default Value: 0
Specifies the length of the user's OTP password.
SharedSecret
byte[]
Default Value: ""
Contains the user's secret key, which is essentially a shared secret between the client and server.
Shared secrets can be used in TLS-driven protocols, as well as in OTP (where it is called a 'key secret') for generating one-time passwords on one side, and validate them on the other.
SSHKey
byte[]
Default Value: ""
Contains the user's SSH key.
Username
string
Default Value: ""
The registered name (login) of the user.
Constructors
public UserAccount();
Public UserAccount()
Creates a new UserAccount object.
Config Settings (HTTPServer Component)
The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.HTTPServer Config Settings
0 | No client authentication (the default setting) | |
1 | Request certificates. The server will ask connecting clients for their certificates. Non-authenticated client connections will be accepted anyway. | |
2 | Require certificates. The server will ask connecting clients for their certificates. If a client fails to provide a certificate, the server will terminate the connection. |
If this property is set to 1 or 2, the component will request certificates from the connecting clients. Depending on the setting, the clients that fail to provide their certificate in response will be allowed or disallowed to proceed with the connection. The server signals about a received certificate by firing its CertificateValidate event. Use PinClient method in the event handler to pin the client details, and access the provided certificate chain via the PinnedClientChain property.
Note that this event is fired from the connecting clients threads, so please make sure you avoid bottlenecks in the event handler and put appropriate thread safety measures in place.
Unlike the client-side components, the server component does not perform automated certificate validation against the local security policy. You must perform appropriate certificate validation steps in your CertificateValidate event handler.
Base Config Settings
You can switch this property off to improve performance if your project only uses known, good private keys.
Supported values are:
off | No caching (default) | |
local | Local caching | |
global | Global caching |
This setting only applies to sessions negotiated with TLS version 1.3.
Supported values are:
file | File | |
console | Console | |
systemlog | System Log (supported for Android only) | |
debugger | Debugger (supported for VCL for Windows and .Net) |
Supported values are:
time | Current time | |
level | Level | |
package | Package name | |
module | Module name | |
class | Class name | |
method | Method name | |
threadid | Thread Id | |
contenttype | Content type | |
content | Content | |
all | All details |
Supported filter names are:
exclude-package | Exclude a package specified in the value | |
exclude-module | Exclude a module specified in the value | |
exclude-class | Exclude a class specified in the value | |
exclude-method | Exclude a method specified in the value | |
include-package | Include a package specified in the value | |
include-module | Include a module specified in the value | |
include-class | Include a class specified in the value | |
include-method | Include a method specified in the value |
none | No flush (caching only) | |
immediate | Immediate flush (real-time logging) | |
maxcount | Flush cached entries upon reaching LogMaxEventCount entries in the cache. |
Supported values are:
none | None (by default) | |
fatal | Severe errors that cause premature termination. | |
error | Other runtime errors or unexpected conditions. | |
warning | Use of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong". | |
info | Interesting runtime events (startup/shutdown). | |
debug | Detailed information on flow of through the system. | |
trace | More detailed information. |
The default value of this setting is 100.
none | No rotation | |
deleteolder | Delete older entries from the cache upon reaching LogMaxEventCount | |
keepolder | Keep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded) |
Supported values are:
none | No static DNS rules (default) | |
local | Local static DNS rules | |
global | Global static DNS rules |
This setting only applies to certificates originating from a Windows system store.
Trappable Errors (HTTPServer Component)
HTTPServer Errors
1048577 Invalid parameter value (SB_ERROR_INVALID_PARAMETER) | |
1048578 Component is configured incorrectly (SB_ERROR_INVALID_SETUP) | |
1048579 Operation cannot be executed in the current state (SB_ERROR_INVALID_STATE) | |
1048580 Attempt to set an invalid value to a property (SB_ERROR_INVALID_VALUE) | |
1048581 Certificate does not have its private key loaded (SB_ERROR_NO_PRIVATE_KEY) | |
1048581 Cancelled by the user (SB_ERROR_CANCELLED_BY_USER) | |
19922945 Unsupported keep-alive policy (SB_ERROR_HTTP_UNSUPPORTED_KEEPALIVEPOLICY) |