Docs

SecureBlackbox 2022 .NET Edition

Version 22.0 [Build 8174]

CertificateStorage Component

Properties   Methods   Events   Configuration Settings   Errors  

The CertificateStorage component works with collections of certificates.

Syntax

nsoftware.SecureBlackbox.Certificatestorage

Remarks

CertificateStorage can work with certificates residing on a variety of media. Among others, it can access certificates residing in files, Windows and macOS system stores, and PKCS#11 devices. All such kinds of media can be accessed via a simple, unified interface, which makes CertificateStorage a handy certificate access option. Most users of SecureBlackbox use this component to access certificates residing on hardware devices. CertificateStorage is also a good alternative to CertificateManager where the certificate file contains more than one certificate.

To access certificates stored on certain type of media, start with the Open method. Provide the location of your certificates via a uniform URI-like specifier. Once the storage has been opened, you can access the certificates contained in it via the Certificates property.

Iterate over certificates by using the Certificates property, or use filtering facilities such as Select and SelectChain. You can add certificates to the storage with the Add, AddFromFile, and AddPinned methods. In the latter case please assign the certificate object to be imported to the PinnedCert property.

Use CreateNew method to create a new storage. Note that not all storage kinds can be created.

When you have finished working with the certificate storage, close it with the Close method.

Certain types of stores must be kept open for the certificates to continue to be usable. This means that while you can copy a certificate to a different storage, or assign it to a different component, you still must keep the storage it originates from open for as long as you intend to use that certificate in your code. This is because the storage is often a bridge between a certificate and its private key, and by closing the storage early you are destroying this bridge prematurely. See the code example below: // This code, although syntactically correct, will fail because the storage is closed too early: storage.Open("pkcs11://user:12345@localhost/C:/Windows/System32/asepkcs.dll"); pdfSigner.SigningCertificate = storage.Certificates[0]; storage.Close(false); // the private key of the SigningCertificate gets lost after this call pdfSigner.Sign(); // returns an error // This code will work as expected storage.Open("pkcs11://user:12345@localhost/C:/Windows/System32/asepkcs.dll"); pdfSigner.SigningCertificate = storage.Certificates[0]; pdfSigner.Sign(); storage.Close(false);

Property List


The following is the full list of the properties of the component with short descriptions. Click on the links for further details.

CertificatesA collection of certificates contained in the storage.
FIPSModeReserved.
OpenedIndicates whether the storage is in the open state.
PinnedCertA pinned certificate.
SelectedCertificatesA collection of selected certificates.
StorageIDA unique identifier of this storage.
StorageLocationSpecifies the location of the currently opened storage.

Method List


The following is the full list of the methods of the component with short descriptions. Click on the links for further details.

AddAdds a certificate to the storage.
AddFromFileAdds a certificate to the storage.
AddFromStreamAdds a certificate to the storage.
AddPinnedAdds the pinned certificate to the storage.
ClearRemoves all certificates from the storage.
CloseCloses the certificate storage.
ConfigSets or retrieves a configuration setting.
CreateNewCreates a new storage.
DoActionPerforms an additional action.
ExportBytesExports the certificates in the chosen format.
ExportToFileExports the certificates to a file.
ExportToStreamExports the certificate to a stream.
GetStoragePropertyTBD
ImportBytesImports a certificates.
ImportFromFileLoads a certificates from a file.
ImportFromStreamLoads a certificates from a stream.
ListStoresTBD
LoginTBD.
LogoutTBD.
OpenOpens existing storage or creates one in memory.
RefreshRefreshes all storage keychains.
RemoveRemoves a certificate from the storage.
SelectAllows the selection of certificates from the system store.
SelectChainSelects a chain of certificates given its index.
SetStoragePropertyTBD

Event List


The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.

ErrorInformation about errors during certificate loading or saving.
NotificationThis event notifies the application about an underlying control flow event.
PasswordNeededThis event is fired when a decryption password is needed.

Configuration Settings


The following is a list of configuration settings for the component with short descriptions. Click on the links for further details.

AuthAttemptsThe number of auth/login attempts to try.
PKCS11ActiveSlotThe index of the slot that the component is working with.
PKCS11NewPINChanges the current user's PIN.
PKCS11NewUserPINRegisters a new user PIN.
PKCS11PINSets the operation PIN.
PKCS11SlotCountThe number of slots exposed in the storage.
PKCS11SlotDescription[i]A human-readable description of the slot.
PKCS11SlotLoggedIn[i]Whether slot i has an active session associated with it.
PKCS11SlotPinNeeded[i]Whether slot i requires you to provide a PIN to log in or sign.
PKCS11SlotReadOnly[i]Whether slot i only supports read-only access.
PKCS11SlotTokenLabel[i]The label assigned to the token.
PKCS11SlotTokenModel[i]The token model.
PKCS11SlotTokenPresent[i]Indicates whether there is a token in the slot.
PKCS11SlotTokenSerial[i]The serial number of the token.
PKCS11SlotTokenVendorID[i]The manufacturer ID of the inserted token.
PKCS11SlotVendorID[i]Returns the manufacturer ID of the slot.
TempPathPath for storing temporary files.
CheckKeyIntegrityBeforeUseEnables or disable private key integrity check before use.
CookieCachingSpecifies whether a cookie cache should be used for HTTP(S) transports.
CookiesGets or sets local cookies for the component (supported for HTTPClient, RESTClient and SOAPClient only).
DefDeriveKeyIterationsSpecifies the default key derivation algorithm iteration count.
EnableClientSideSSLFFDHEEnables or disables finite field DHE key exchange support in TLS clients.
GlobalCookiesGets or sets global cookies for all the HTTP transports.
HttpUserAgentSpecifies the user agent name to be used by all HTTP clients.
LogDestinationSpecifies the debug log destination.
LogDetailsSpecifies the debug log details to dump.
LogFileSpecifies the debug log filename.
LogFiltersSpecifies the debug log filters.
LogFlushModeSpecifies the log flush mode.
LogLevelSpecifies the debug log level.
LogMaxEventCountSpecifies the maximum number of events to cache before further action is taken.
LogRotationModeSpecifies the log rotation mode.
MaxASN1BufferLengthSpecifies the maximal allowed length for ASN.1 primitive tag data.
MaxASN1TreeDepthSpecifies the maximal depth for processed ASN.1 trees.
OCSPHashAlgorithmSpecifies the hash algorithm to be used to identify certificates in OCSP requests.
TagAllows to store any custom data.
UseSharedSystemStoragesSpecifies whether the validation engine should use a global per-process copy of the system certificate stores.
UseSystemOAEPAndPSSEnforces or disables the use of system-driven RSA OAEP and PSS computations.
UseSystemRandomEnables or disables the use of the OS PRNG.

Certificates Property (CertificateStorage Component)

A collection of certificates contained in the storage.

Syntax

public CertificateList Certificates { get; }
Public ReadOnly Property Certificates As CertificateList

Remarks

Use this property to access all certificates contained in the opened storage.

This property is read-only and not available at design time.

FIPSMode Property (CertificateStorage Component)

Reserved.

Syntax

public bool FIPSMode { get; set; }
Public Property FIPSMode As Boolean

Default Value

False

Remarks

This property is reserved for future use.

Opened Property (CertificateStorage Component)

Indicates whether the storage is in the open state.

Syntax

public bool Opened { get; }
Public ReadOnly Property Opened As Boolean

Default Value

False

Remarks

Use this property to check if the storage has been 'opened.' Different kinds of certificate storages imply different meanings for 'being opened', but generally a storage is open if it is available for operations.

Use Open method to open a storage.

This property is read-only and not available at design time.

PinnedCert Property (CertificateStorage Component)

A pinned certificate.

Syntax

public Certificate PinnedCert { get; set; }
Public Property PinnedCert As Certificate

Remarks

Use this property to pin a certificate before adding it to the storage with AddPinned method.

This property is not available at design time.

SelectedCertificates Property (CertificateStorage Component)

A collection of selected certificates.

Syntax

public CertificateList SelectedCertificates { get; }
Public ReadOnly Property SelectedCertificates As CertificateList

Remarks

This property contains a list of certificates returned by Select or SelectChain method.

This property is read-only and not available at design time.

StorageID Property (CertificateStorage Component)

A unique identifier of this storage.

Syntax

public string StorageID { get; }
Public ReadOnly Property StorageID As String

Default Value

""

Remarks

Use this property to get a unique ID of this storage. The format of ID may differ for different kinds of certificate storages, and may range from a file path for a file storage, to a URI-like ID for a PKCS#11 storage, to an empty value for an in-memory storage.

This property is read-only.

StorageLocation Property (CertificateStorage Component)

Specifies the location of the currently opened storage.

Syntax

public string StorageLocation { get; }
Public ReadOnly Property StorageLocation As String

Default Value

""

Remarks

Use this property to get the location of the active storage. The location indicates the nature of the storage and can be assigned with one of the below values (more values may be added in future):

cslUnspecifiedunspecified
cslMemorymemoryin-memory storage

cslFilefilefile storage

cslSystemsystemOS-specific certificate storage (e.g. CryptoAPI)

cslPKCS11pkcs11PKCS#11 compatible device

cslKMIPkmip
cslAppleappleApple certificates storage (macOS and iOS only)

This property is read-only.

Add Method (CertificateStorage Component)

Adds a certificate to the storage.

Syntax

public void Add(byte[] data);
Public Sub Add(ByVal Data As Byte())

Remarks

Use this method to add a certificate supplied in its raw DER representation via the Data parameter.

AddFromFile Method (CertificateStorage Component)

Adds a certificate to the storage.

Syntax

public void AddFromFile(string filename);
Public Sub AddFromFile(ByVal Filename As String)

Remarks

Use this method to add a certificate stored in a file.

AddFromStream Method (CertificateStorage Component)

Adds a certificate to the storage.

Syntax

public void AddFromStream(System.IO.Stream stream);
Public Sub AddFromStream(ByVal Stream As System.IO.Stream)

Remarks

Use this method to add a certificate contained in a stream.

AddPinned Method (CertificateStorage Component)

Adds the pinned certificate to the storage.

Syntax

public void AddPinned();
Public Sub AddPinned()

Remarks

This method adds a certificate attached to the PinnedCert property to the storage. This method is a handy way of adding certificates generated/returned by other components.

Clear Method (CertificateStorage Component)

Removes all certificates from the storage.

Syntax

public void Clear();
Public Sub Clear()

Remarks

Use this method to empty the storage.

Close Method (CertificateStorage Component)

Closes the certificate storage.

Syntax

public void Close(bool save);
Public Sub Close(ByVal Save As Boolean)

Remarks

Use this method to close the storage component and clean up any resources associated with it.

This method releases all memory objects and handles associated with the certificates contained in the storage. Any certificate objects originating from the storage become invalid as soon as the storage is closed, and should not be used.

Save parameter only applies to certain types of stores, such as file stores. Set it to True to commit any changes to the underlying media. Note that PKCS#11 and Win32 storage types are of transactional nature and commit any changes immediately, so the value of the Save parameter does not make any difference with them.

Config Method (CertificateStorage Component)

Sets or retrieves a configuration setting.

Syntax

public string Config(string configurationString);
Public Function Config(ByVal ConfigurationString As String) As String

Remarks

Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

CreateNew Method (CertificateStorage Component)

Creates a new storage.

Syntax

public void CreateNew(string storageLocation, string storageID);
Public Sub CreateNew(ByVal StorageLocation As String, ByVal StorageID As String)

Remarks

Use this method to create new certificate storage.

StorageLocation specifies where the new storage should be created, and StorageID contains a unique storage identifier.

cslUnspecifiedunspecified
cslMemorymemoryin-memory storage

cslFilefilefile storage

cslSystemsystemOS-specific certificate storage (e.g. CryptoAPI)

cslPKCS11pkcs11PKCS#11 compatible device

cslKMIPkmip
cslAppleappleApple certificates storage (macOS and iOS only)

DoAction Method (CertificateStorage Component)

Performs an additional action.

Syntax

public string DoAction(string actionID, string actionParams);
Public Function DoAction(ByVal ActionID As String, ByVal ActionParams As String) As String

Remarks

DoAction is a generic method available in every component. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.

The unique identifier of the action is provided in ActionID parameter. ActionParams contains a list of parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....

ExportBytes Method (CertificateStorage Component)

Exports the certificates in the chosen format.

Syntax

public byte[] ExportBytes(string password, int format);
Public Function ExportBytes(ByVal Password As String, ByVal Format As Integer) As Byte()

Remarks

Use this method to save the certificates in one of the formats defined below.

Pass the encryption password via the Password parameter if needed.

cfmUnknown0Unknown certificate format

cfmDER1DER file format. Applicable to certificates, certificate requests, private keys. Encryption not supported

cfmPEM2PEM file format. Applicable to certificates, certificate requests, private keys. Encryption supported for private keys.

cfmPFX3PFX/PKCS#12 file format. Applicable to certificates. Encryption supported.

cfmSPC4SPC file format. Applicable to certificates. Encryption not supported.

cfmPVK5PVK file format. Applicable to private keys. Encryption not supported.

cfmPKCS86PKCS#8 file format. Applicable to private keys. Encryption supported.

cfmNET7NET file format. Applicable to private keys. Encryption not supported.

Note that not all formats support encryption, and some (like PEM) only support partial encryption (key only). Keep this in mind when considering which format to choose for storing your certificates.

ExportToFile Method (CertificateStorage Component)

Exports the certificates to a file.

Syntax

public void ExportToFile(string certFile, string password, int format);
Public Sub ExportToFile(ByVal CertFile As String, ByVal Password As String, ByVal Format As Integer)

Remarks

Use this method to save the certificates to a file in one of the formats given below. Pass the encryption password via the Password parameter.

cfmUnknown0Unknown certificate format

cfmDER1DER file format. Applicable to certificates, certificate requests, private keys. Encryption not supported

cfmPEM2PEM file format. Applicable to certificates, certificate requests, private keys. Encryption supported for private keys.

cfmPFX3PFX/PKCS#12 file format. Applicable to certificates. Encryption supported.

cfmSPC4SPC file format. Applicable to certificates. Encryption not supported.

cfmPVK5PVK file format. Applicable to private keys. Encryption not supported.

cfmPKCS86PKCS#8 file format. Applicable to private keys. Encryption supported.

cfmNET7NET file format. Applicable to private keys. Encryption not supported.

Note that not all formats support encryption, and some (like PEM) only support partial encryption (key only). Keep this in mind when considering which format to choose for storing your certificates.

ExportToStream Method (CertificateStorage Component)

Exports the certificate to a stream.

Syntax

public void ExportToStream(System.IO.Stream certStream, string password, int format);
Public Sub ExportToStream(ByVal CertStream As System.IO.Stream, ByVal Password As String, ByVal Format As Integer)

Remarks

Use this method to save the certificate to a stream in one of the formats given below. Pass the encryption password via the Password parameter.

cfmUnknown0Unknown certificate format

cfmDER1DER file format. Applicable to certificates, certificate requests, private keys. Encryption not supported

cfmPEM2PEM file format. Applicable to certificates, certificate requests, private keys. Encryption supported for private keys.

cfmPFX3PFX/PKCS#12 file format. Applicable to certificates. Encryption supported.

cfmSPC4SPC file format. Applicable to certificates. Encryption not supported.

cfmPVK5PVK file format. Applicable to private keys. Encryption not supported.

cfmPKCS86PKCS#8 file format. Applicable to private keys. Encryption supported.

cfmNET7NET file format. Applicable to private keys. Encryption not supported.

Note that not all formats support encryption, and some (like PEM) only support partial encryption (key only). Keep this in mind when considering which format to choose for storing your certificates.

GetStorageProperty Method (CertificateStorage Component)

TBD

Syntax

public string GetStorageProperty(string name);
Public Function GetStorageProperty(ByVal Name As String) As String

Remarks

TBD

ImportBytes Method (CertificateStorage Component)

Imports a certificates.

Syntax

public void ImportBytes(byte[] certBytes, string password, bool clear);
Public Sub ImportBytes(ByVal CertBytes As Byte(), ByVal Password As String, ByVal Clear As Boolean)

Remarks

Use this method to load a certificates from a byte array. Provide the password via the Password parameter. The Password parameter is optional. If it is omitted and it is later discovered that the key is password-encrypted, the PasswordNeeded event will be fired to request it. This method supports certificates in DER, PEM, PFX, and SPC formats.

ImportFromFile Method (CertificateStorage Component)

Loads a certificates from a file.

Syntax

public void ImportFromFile(string path, string password, bool clear);
Public Sub ImportFromFile(ByVal Path As String, ByVal Password As String, ByVal Clear As Boolean)

Remarks

This method can load certificates saved in one of the following formats: DER, PEM, PFX, SPC.

Use the Path parameter to provide a path to the certificate, and Password to specify the password. The Password parameter is optional. If it is omitted and it is later discovered that the certificate is password-encrypted, the PasswordNeeded event will be fired to request it.

ImportFromStream Method (CertificateStorage Component)

Loads a certificates from a stream.

Syntax

public void ImportFromStream(System.IO.Stream certStream, string password, bool clear);
Public Sub ImportFromStream(ByVal CertStream As System.IO.Stream, ByVal Password As String, ByVal Clear As Boolean)

Remarks

This method can load certificates saved in one of the following formats: DER, PEM, PFX, SPC.

Use the CertStream parameter to provide a stream containing the certificate data, and Password to specify the password. The Password parameter is optional. If it is omitted and it is later discovered that the certificate is password-encrypted, the PasswordNeeded event will be fired to request it.

ListStores Method (CertificateStorage Component)

TBD

Syntax

public string ListStores();
Public Function ListStores() As String

Remarks

TBD

Login Method (CertificateStorage Component)

TBD.

Syntax

public void Login(int sessionType, string pin, bool readOnly);
Public Sub Login(ByVal SessionType As Integer, ByVal Pin As String, ByVal ReadOnly As Boolean)

Remarks

SessionType is a type of longing. Possible values:

stUnauthenticated0
stUser1
stSecurityOfficer2

TBD

Logout Method (CertificateStorage Component)

TBD.

Syntax

public void Logout(bool closeSesion);
Public Sub Logout(ByVal CloseSesion As Boolean)

Remarks

TBD

Open Method (CertificateStorage Component)

Opens existing storage or creates one in memory.

Syntax

public void Open(string storageID);
Public Sub Open(ByVal StorageID As String)

Remarks

Use this method to open the storage with the given StorageID. Certificate storages can come from several different locations, detailed below.

Memory

A storage can be created in memory by passing an empty string ("").

File

A storage can be opened from a file using one of two syntaxes:

  • C:\Certs\certs.pem
  • file://C:/Certs/certs.pem

Windows System

A storage can be opened from the Windows System using this syntax: system://{user}@{host}/?{params}

user is one of these values:

  • currentuser
  • localmachine
  • currentservice
host is either "localhost", an IP address, or FQDN.

params are chosen from this list:

  • store (required), is the name of the Windows store to access (e.g. "MY")
  • readonly, whether to access the store with only read permissions. Use 0 for false, and 1 for true.
Example: system://currentuser@localhost/?store=MY&readonly=1

PKCS#11 Device

A storage can be opened from a PKCS#11 device using this syntax: pkcs11://{user}:{pin}@/{driverpath}?{params}

user is the username used to access the device; typically it's either "user" or "admin".

pin is the pin code used to access the device.

driverpath is the path to the driver used to access the device.

params are chosen from this list:

  • slot, the token slot to access on the device. If not provided, one will be chosen automatically. If set to -1, no session will be opened.
  • readonly, whether to access the device with only read permissions. Use 0 for false, and 1 for true.
  • login, whether to sign in to the device with a PIN. Use 0 or no to avoid signing in, or 1 or yes to enforce it. When not specified, the yes mode is used.
Example: pkcs11://user:1234@/c:/windows/system32/asepkcs.dll?slot=0&readonly=1

KMIP Server

A storage can be opened from a KMIP server using this syntax: mailto:{password}@{remotehost}:{remoteport}/?{params}

password is the password use to authenticate to the server.

remotehost is the FQDN to the server.

remoteport is the server port to connect to.

params are chosen from this list:

  • encoder, the message encoding used to communicate with the server. Possible values are:
    • 1 (XML)
    • 2 (JSON)
    • 3 (TTLV)
Example: mailto:password@kmip.website.com:5696/?encoder=1

Apple

A storage can be opened on macOS using this syntax: apple:///{path}/?{params}

path is the path for storage file.

params are chosen from this list:

  • keychainindex, key chain index. If not provided, one will be set to 0.
  • readonly, whether to access the storage with only read permissions. Use 0 for false, and 1 for true.
Example: apple:///Users/test/Documents/test.storage?readonly=1 A storage can be opened on iOS using this syntax: apple:///?{params}

params are chosen from this list:

  • readonly, whether to access the storage with only read permissions. Use 0 for false, and 1 for true.
Example: apple:///?readonly=1 In Xamarin projects for iOS keychain support should be enabled manually. To do this: 1. Double click on Entitlements.plist file, go to "Entitlements" tab and turn "Enable Keychain" option on. 2. Go to project options, select "iOS Bundle Signing", choose correct configuration and platform and set "Custom Entitlements" to "Entitlements.plist" value.

Azure Key Vault

A storage can be opened from the Azure Key Vault service using this syntax: vault://{clientid}:{clientsecret}@{vaultname}.{vaulthost}/

clientid is the client id obtained from Azure Portal when registering an app.

clientsecret is the client secret obtained from Azure Portal when registering an app.

vaultname is the name of the vault to connect to.

vaulthost is the Cloud environment where the vault is located; supported environments are:

Cloud environmentvaulthost
Azure Cloudvault.azure.net
Azure China Cloudvault.azure.cn
Azure US Governmentvault.usgovcloudapi.net
Azure German Cloudvault.microsoftazure.de

Example: vault://xxxx:yyyy@myvault.vault.azure.net/

Refresh Method (CertificateStorage Component)

Refreshes all storage keychains.

Syntax

public void Refresh();
Public Sub Refresh()

Remarks

Call this method to refresh the storage.

Remove Method (CertificateStorage Component)

Removes a certificate from the storage.

Syntax

public void Remove(int index);
Public Sub Remove(ByVal Index As Integer)

Remarks

Use this method to remove the certificate from the storage given its index.

Select Method (CertificateStorage Component)

Allows the selection of certificates from the system store.

Syntax

public void Select(string filter, bool privateKeyNeeded, int maxCount);
Public Sub Select(ByVal Filter As String, ByVal PrivateKeyNeeded As Boolean, ByVal MaxCount As Integer)

Remarks

This function allows the user to select certificates from the system store by Filter and save them to SelectedCertificates. PrivateKeyNeeded specifies whether the method only should consider certificates having associated private keys. MaxCount limits the number of certificates selected.

The supported filters are listed below. Split the name and value of a specific filter with colon (:). Use | separator to pass more than one filter. During the search, the filters are joined using OR logic.

  • subjectkeyid: the subject key identifier, in hexadecimal format.
  • cakeyid: the key identifier of the issuing certificate, in hexadecimal format.
  • serialnumber: the serial number of the certificate, in hexadecimal format.
  • keyusage: certificate key usage flags. Use bitwise OR to specify several key usage flags using the values shown below.
  • fingerprint: certificate fingerprint in hexadecimal format. MD5, SHA1, SHA256, and SHA512 fingerprints are supported.
  • email: the e-mail parameter of the certificate subject.
  • subject: the subject of the certificate, either as an RDN, or as its common name parameter.
  • issuer: the issuer of the certificate, either as an RDN or a common name.
  • ui (Windows system stores only): whether to use UI dialog to select a certificate. Supported values: true, false, 1, 0. All other filters are ignored if this filter is specified.
  • * (asterisk): selects all certificates. This filter should always be used as a single character, not as a name:value pair.

Examples of filters

ui:1 - use Windows certificate selection dialog to let the user select a certificate visually.

* - select all certificates.

email:user@server.com - select all certificates with subject RDNs containing this e-mail address.

fingerprint:0a1b3c4d5e6f708192a3b4c5d6e7f8091a2b3c4d - select all certificates with this SHA1 fingerprint.

subject:/C=US/O=Big Company Inc/CN=Signing Certificate - select all certificates with the specified subject RDN.

keyusage:3|email:user@server.com - select all certificates with key usages of Digital Signature or Non-Repudiation, or those having this e-mail address in their subject.

Key usage flags

ckuUnknown0x00000Unknown key usage

ckuDigitalSignature0x00001Digital signature

ckuNonRepudiation0x00002Non-repudiation

ckuKeyEncipherment0x00004Key encipherment

ckuDataEncipherment0x00008Data encipherment

ckuKeyAgreement0x00010Key agreement

ckuKeyCertSign0x00020Certificate signing

ckuCRLSign0x00040Revocation signing

ckuEncipherOnly0x00080Encipher only

ckuDecipherOnly0x00100Decipher only

ckuServerAuthentication0x00200Server authentication

ckuClientAuthentication0x00400Client authentication

ckuCodeSigning0x00800Code signing

ckuEmailProtection0x01000Email protection

ckuTimeStamping0x02000Timestamping

ckuOCSPSigning0x04000OCSP signing

ckuSmartCardLogon0x08000Smartcard logon

ckuKeyPurposeClientAuth0x10000Kerberos - client authentication

ckuKeyPurposeKDC0x20000Kerberos - KDC

SelectChain Method (CertificateStorage Component)

Selects a chain of certificates given its index.

Syntax

public void SelectChain(int index);
Public Sub SelectChain(ByVal Index As Integer)

Remarks

Use this method to select a certificate chain given its index.

SetStorageProperty Method (CertificateStorage Component)

TBD

Syntax

public void SetStorageProperty(string name, string value);
Public Sub SetStorageProperty(ByVal Name As String, ByVal Value As String)

Remarks

TBD

Error Event (CertificateStorage Component)

Information about errors during certificate loading or saving.

Syntax

public event OnErrorHandler OnError;

public delegate void OnErrorHandler(object sender, CertificatestorageErrorEventArgs e);

public class CertificatestorageErrorEventArgs : EventArgs {
  public int ErrorCode { get; }

  public string Description { get; }

}
Public Event OnError As OnErrorHandler

Public Delegate Sub OnErrorHandler(sender As Object, e As CertificatestorageErrorEventArgs)

Public Class CertificatestorageErrorEventArgs Inherits EventArgs
  Public ReadOnly Property ErrorCode As Integer

  Public ReadOnly Property Description As String

End Class

Remarks

Reports exceptional conditions during certificate loading or exporting.

ErrorCode contains an error code and Description contains a textual description of the error.

Notification Event (CertificateStorage Component)

This event notifies the application about an underlying control flow event.

Syntax

public event OnNotificationHandler OnNotification;

public delegate void OnNotificationHandler(object sender, CertificatestorageNotificationEventArgs e);

public class CertificatestorageNotificationEventArgs : EventArgs {
  public string EventID { get; }

  public string EventParam { get; }

}
Public Event OnNotification As OnNotificationHandler

Public Delegate Sub OnNotificationHandler(sender As Object, e As CertificatestorageNotificationEventArgs)

Public Class CertificatestorageNotificationEventArgs Inherits EventArgs
  Public ReadOnly Property EventID As String

  Public ReadOnly Property EventParam As String

End Class

Remarks

The component fires this event to let the application know about some event, occurrence, or milestone in the component. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.

The unique identifier of the event is provided in EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the component, the exact action it is performing, or the document being processed, one or both may be omitted.

PasswordNeeded Event (CertificateStorage Component)

This event is fired when a decryption password is needed.

Syntax

public event OnPasswordNeededHandler OnPasswordNeeded;

public delegate void OnPasswordNeededHandler(object sender, CertificatestoragePasswordNeededEventArgs e);

public class CertificatestoragePasswordNeededEventArgs : EventArgs {
  public string NeededFor { get; }

  public string Password { get; set; }

  public bool Cancel { get; set; }

}
Public Event OnPasswordNeeded As OnPasswordNeededHandler

Public Delegate Sub OnPasswordNeededHandler(sender As Object, e As CertificatestoragePasswordNeededEventArgs)

Public Class CertificatestoragePasswordNeededEventArgs Inherits EventArgs
  Public ReadOnly Property NeededFor As String

  Public Property Password As String

  Public Property Cancel As Boolean

End Class

Remarks

The component fires this event when a password is needed to decrypt a certificate or a private key.

In the handler of this event, assign the password to the Password parameter, or set Cancel to true to abort the operation.

The NeededFor parameter identifies the certificate for which the password is requested.

Certificate Type

Provides details of an individual X.509 certificate.

Remarks

This type provides access to X.509 certificate details.

Fields

Bytes
Byte()

Returns raw certificate data in DER format.

CA
Boolean

Indicates whether the certificate has a CA capability (a setting in BasicConstraints extension).

CAKeyID
Byte()

A unique identifier (fingerprint) of the CA certificate's private key.

Authority Key Identifier is a (non-critical) X.509 certificate extension which allows the identification of certificates produced by the same issuer, but with different public keys.

CRLDistributionPoints
String

Locations of the CRL (Certificate Revocation List) distribution points used to check this certificate's validity.

Curve
String

Specifies the elliptic curve of the EC public key.

SB_EC_SECP112R1SECP112R1
SB_EC_SECP112R2SECP112R2
SB_EC_SECP128R1SECP128R1
SB_EC_SECP128R2SECP128R2
SB_EC_SECP160K1SECP160K1
SB_EC_SECP160R1SECP160R1
SB_EC_SECP160R2SECP160R2
SB_EC_SECP192K1SECP192K1
SB_EC_SECP192R1SECP192R1
SB_EC_SECP224K1SECP224K1
SB_EC_SECP224R1SECP224R1
SB_EC_SECP256K1SECP256K1
SB_EC_SECP256R1SECP256R1
SB_EC_SECP384R1SECP384R1
SB_EC_SECP521R1SECP521R1
SB_EC_SECT113R1SECT113R1
SB_EC_SECT113R2SECT113R2
SB_EC_SECT131R1SECT131R1
SB_EC_SECT131R2SECT131R2
SB_EC_SECT163K1SECT163K1
SB_EC_SECT163R1SECT163R1
SB_EC_SECT163R2SECT163R2
SB_EC_SECT193R1SECT193R1
SB_EC_SECT193R2SECT193R2
SB_EC_SECT233K1SECT233K1
SB_EC_SECT233R1SECT233R1
SB_EC_SECT239K1SECT239K1
SB_EC_SECT283K1SECT283K1
SB_EC_SECT283R1SECT283R1
SB_EC_SECT409K1SECT409K1
SB_EC_SECT409R1SECT409R1
SB_EC_SECT571K1SECT571K1
SB_EC_SECT571R1SECT571R1
SB_EC_PRIME192V1PRIME192V1
SB_EC_PRIME192V2PRIME192V2
SB_EC_PRIME192V3PRIME192V3
SB_EC_PRIME239V1PRIME239V1
SB_EC_PRIME239V2PRIME239V2
SB_EC_PRIME239V3PRIME239V3
SB_EC_PRIME256V1PRIME256V1
SB_EC_C2PNB163V1C2PNB163V1
SB_EC_C2PNB163V2C2PNB163V2
SB_EC_C2PNB163V3C2PNB163V3
SB_EC_C2PNB176W1C2PNB176W1
SB_EC_C2TNB191V1C2TNB191V1
SB_EC_C2TNB191V2C2TNB191V2
SB_EC_C2TNB191V3C2TNB191V3
SB_EC_C2ONB191V4C2ONB191V4
SB_EC_C2ONB191V5C2ONB191V5
SB_EC_C2PNB208W1C2PNB208W1
SB_EC_C2TNB239V1C2TNB239V1
SB_EC_C2TNB239V2C2TNB239V2
SB_EC_C2TNB239V3C2TNB239V3
SB_EC_C2ONB239V4C2ONB239V4
SB_EC_C2ONB239V5C2ONB239V5
SB_EC_C2PNB272W1C2PNB272W1
SB_EC_C2PNB304W1C2PNB304W1
SB_EC_C2TNB359V1C2TNB359V1
SB_EC_C2PNB368W1C2PNB368W1
SB_EC_C2TNB431R1C2TNB431R1
SB_EC_NISTP192NISTP192
SB_EC_NISTP224NISTP224
SB_EC_NISTP256NISTP256
SB_EC_NISTP384NISTP384
SB_EC_NISTP521NISTP521
SB_EC_NISTB163NISTB163
SB_EC_NISTB233NISTB233
SB_EC_NISTB283NISTB283
SB_EC_NISTB409NISTB409
SB_EC_NISTB571NISTB571
SB_EC_NISTK163NISTK163
SB_EC_NISTK233NISTK233
SB_EC_NISTK283NISTK283
SB_EC_NISTK409NISTK409
SB_EC_NISTK571NISTK571
SB_EC_GOSTCPTESTGOSTCPTEST
SB_EC_GOSTCPAGOSTCPA
SB_EC_GOSTCPBGOSTCPB
SB_EC_GOSTCPCGOSTCPC
SB_EC_GOSTCPXCHAGOSTCPXCHA
SB_EC_GOSTCPXCHBGOSTCPXCHB
SB_EC_BRAINPOOLP160R1BRAINPOOLP160R1
SB_EC_BRAINPOOLP160T1BRAINPOOLP160T1
SB_EC_BRAINPOOLP192R1BRAINPOOLP192R1
SB_EC_BRAINPOOLP192T1BRAINPOOLP192T1
SB_EC_BRAINPOOLP224R1BRAINPOOLP224R1
SB_EC_BRAINPOOLP224T1BRAINPOOLP224T1
SB_EC_BRAINPOOLP256R1BRAINPOOLP256R1
SB_EC_BRAINPOOLP256T1BRAINPOOLP256T1
SB_EC_BRAINPOOLP320R1BRAINPOOLP320R1
SB_EC_BRAINPOOLP320T1BRAINPOOLP320T1
SB_EC_BRAINPOOLP384R1BRAINPOOLP384R1
SB_EC_BRAINPOOLP384T1BRAINPOOLP384T1
SB_EC_BRAINPOOLP512R1BRAINPOOLP512R1
SB_EC_BRAINPOOLP512T1BRAINPOOLP512T1
SB_EC_CURVE25519CURVE25519
SB_EC_CURVE448CURVE448

Fingerprint
Byte()

Contains the fingerprint (a hash imprint) of this certificate.

FriendlyName
String

Contains an associated alias (friendly name) of the certificate.

HashAlgorithm
String

Specifies the hash algorithm to be used in the operations on the certificate (such as key signing)

SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_MD2MD2
SB_HASH_ALGORITHM_MD4MD4
SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_CRC32CRC32
SB_HASH_ALGORITHM_SSL3SSL3
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_POLY1305POLY1305
SB_HASH_ALGORITHM_SHA3_224SHA3_224
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512
SB_HASH_ALGORITHM_BLAKE2S_128BLAKE2S_128
SB_HASH_ALGORITHM_BLAKE2S_160BLAKE2S_160
SB_HASH_ALGORITHM_BLAKE2S_224BLAKE2S_224
SB_HASH_ALGORITHM_BLAKE2S_256BLAKE2S_256
SB_HASH_ALGORITHM_BLAKE2B_160BLAKE2B_160
SB_HASH_ALGORITHM_BLAKE2B_256BLAKE2B_256
SB_HASH_ALGORITHM_BLAKE2B_384BLAKE2B_384
SB_HASH_ALGORITHM_BLAKE2B_512BLAKE2B_512
SB_HASH_ALGORITHM_SHAKE_128SHAKE_128
SB_HASH_ALGORITHM_SHAKE_256SHAKE_256
SB_HASH_ALGORITHM_SHAKE_128_LENSHAKE_128_LEN
SB_HASH_ALGORITHM_SHAKE_256_LENSHAKE_256_LEN

Issuer
String

The common name of the certificate issuer (CA), typically a company name.

IssuerRDN
String

A collection of information, in the form of [OID, Value] pairs, uniquely identifying the certificate issuer.

KeyAlgorithm
String

Specifies the public key algorithm of this certificate.

SB_CERT_ALGORITHM_ID_RSA_ENCRYPTIONrsaEncryption
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTIONmd2withRSAEncryption
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTIONmd5withRSAEncryption
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTIONsha1withRSAEncryption
SB_CERT_ALGORITHM_ID_DSAid-dsa
SB_CERT_ALGORITHM_ID_DSA_SHA1id-dsa-with-sha1
SB_CERT_ALGORITHM_DH_PUBLICdhpublicnumber
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTIONsha224WithRSAEncryption
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTIONsha256WithRSAEncryption
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTIONsha384WithRSAEncryption
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTIONsha512WithRSAEncryption
SB_CERT_ALGORITHM_ID_RSAPSSid-RSASSA-PSS
SB_CERT_ALGORITHM_ID_RSAOAEPid-RSAES-OAEP
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160ripemd160withRSA
SB_CERT_ALGORITHM_ID_ELGAMALelGamal
SB_CERT_ALGORITHM_SHA1_ECDSAecdsa-with-SHA1
SB_CERT_ALGORITHM_RECOMMENDED_ECDSAecdsa-recommended
SB_CERT_ALGORITHM_SHA224_ECDSAecdsa-with-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSAecdsa-with-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSAecdsa-with-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSAecdsa-with-SHA512
SB_CERT_ALGORITHM_ECid-ecPublicKey
SB_CERT_ALGORITHM_SPECIFIED_ECDSAecdsa-specified
SB_CERT_ALGORITHM_GOST_R3410_1994id-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3410_2001id-GostR3410-2001
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994id-GostR3411-94-with-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001id-GostR3411-94-with-GostR3410-2001
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAINecdsa-plain-SHA1
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAINecdsa-plain-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAINecdsa-plain-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAINecdsa-plain-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAINecdsa-plain-SHA512
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAINecdsa-plain-RIPEMD160
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTIONwhirlpoolWithRSAEncryption
SB_CERT_ALGORITHM_ID_DSA_SHA224id-dsa-with-sha224
SB_CERT_ALGORITHM_ID_DSA_SHA256id-dsa-with-sha256
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSAid-ecdsa-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSAid-ecdsa-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSAid-ecdsa-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSAid-ecdsa-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAINid-ecdsa-plain-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAINid-ecdsa-plain-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAINid-ecdsa-plain-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAINid-ecdsa-plain-with-sha3-512
SB_CERT_ALGORITHM_ID_DSA_SHA3_224id-dsa-with-sha3-224
SB_CERT_ALGORITHM_ID_DSA_SHA3_256id-dsa-with-sha3-256
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSAid-ecdsa-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSAid-ecdsa-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSAid-ecdsa-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSAid-ecdsa-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSAid-ecdsa-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSAid-ecdsa-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSAid-ecdsa-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSAid-ecdsa-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAINid-ecdsa-plain-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAINid-ecdsa-plain-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAINid-ecdsa-plain-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAINid-ecdsa-plain-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAINid-ecdsa-plain-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAINid-ecdsa-plain-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAINid-ecdsa-plain-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAINid-ecdsa-plain-with-blake2b512
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224id-dsa-with-blake2s224
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256id-dsa-with-blake2s256
SB_CERT_ALGORITHM_EDDSA_ED25519id-Ed25519
SB_CERT_ALGORITHM_EDDSA_ED448id-Ed448
SB_CERT_ALGORITHM_EDDSA_ED25519_PHid-Ed25519ph
SB_CERT_ALGORITHM_EDDSA_ED448_PHid-Ed448ph
SB_CERT_ALGORITHM_EDDSAid-EdDSA
SB_CERT_ALGORITHM_EDDSA_SIGNATUREid-EdDSA-sig

KeyBits
Integer

Returns the length of the public key.

KeyFingerprint
Byte()

Returns a fingerprint of the public key contained in the certificate.

KeyUsage
Integer

Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.

This value is a bit mask of the following values:

ckuUnknown0x00000Unknown key usage

ckuDigitalSignature0x00001Digital signature

ckuNonRepudiation0x00002Non-repudiation

ckuKeyEncipherment0x00004Key encipherment

ckuDataEncipherment0x00008Data encipherment

ckuKeyAgreement0x00010Key agreement

ckuKeyCertSign0x00020Certificate signing

ckuCRLSign0x00040Revocation signing

ckuEncipherOnly0x00080Encipher only

ckuDecipherOnly0x00100Decipher only

ckuServerAuthentication0x00200Server authentication

ckuClientAuthentication0x00400Client authentication

ckuCodeSigning0x00800Code signing

ckuEmailProtection0x01000Email protection

ckuTimeStamping0x02000Timestamping

ckuOCSPSigning0x04000OCSP signing

ckuSmartCardLogon0x08000Smartcard logon

ckuKeyPurposeClientAuth0x10000Kerberos - client authentication

ckuKeyPurposeKDC0x20000Kerberos - KDC

KeyValid
Boolean

Returns True if the certificate's key is cryptographically valid, and False otherwise.

OCSPLocations
String

Locations of OCSP (Online Certificate Status Protocol) services that can be used to check this certificate's validity, as recorded by the CA.

OCSPNoCheck
Boolean

TBD.

Origin
Integer

Returns the origin of this certificate.

PolicyIDs
String

Contains identifiers (OIDs) of the applicable certificate policies.

The Certificate Policies extension identifies a sequence of policies under which the certificate has been issued, and which regulate its usage.

PrivateKeyBytes
Byte()

Contains the certificate's private key. It is normal for this property to be empty if the private key is non-exportable.

PrivateKeyExists
Boolean

Indicates whether the certificate has an associated private key.

PrivateKeyExtractable
Boolean

Indicates whether the private key is extractable

PublicKeyBytes
Byte()

Contains the certificate's public key in DER format.

QualifiedStatements
QualifiedStatementsTypes

TBD

SelfSigned
Boolean

Indicates whether the certificate is self-signed (root) or signed by an external CA.

SerialNumber
Byte()

Returns the certificate's serial number.

SigAlgorithm
String

Indicates the algorithm that was used by the CA to sign this certificate.

Subject
String

The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name.

SubjectAlternativeName
String

TBD.

SubjectKeyID
Byte()

Contains a unique identifier (fingerprint) of the certificate's private key.

Subject Key Identifier is a (non-critical) X.509 certificate extension which allows the identification of certificates containing a particular public key. In SecureBlackbox, the unique identifier is represented with a SHA1 hash of the bit string of the subject public key.

SubjectRDN
String

A collection of information, in the form of [OID, Value] pairs, uniquely identifying the certificate holder (subject).

ValidFrom
String

The time point at which the certificate becomes valid, in UTC.

ValidTo
String

The time point at which the certificate expires, in UTC.

Constructors

public Certificate(byte[] bytes, int startIndex, int count, string password);
Public Certificate(ByVal Bytes As Byte(), ByVal StartIndex As Integer, ByVal Count As Integer, ByVal Password As String)

Loads the X.509 certificate from a memory buffer. Bytes is a buffer containing the raw certificate data. StartIndex and Count specify the starting position and number of bytes to be read from the buffer, respectively. Password is a password encrypting the certificate.

public Certificate(byte[] certBytes, int certStartIndex, int certCount, byte[] keyBytes, int keyStartIndex, int keyCount, string password);
Public Certificate(ByVal CertBytes As Byte(), ByVal CertStartIndex As Integer, ByVal CertCount As Integer, ByVal KeyBytes As Byte(), ByVal KeyStartIndex As Integer, ByVal KeyCount As Integer, ByVal Password As String)

Loads the X.509 certificate from a memory buffer. CertBytes is a buffer containing the raw certificate data. CertStartIndex and CertCount specify the number of bytes to be read from the buffer, respectively. KeyBytes is a buffer containing the private key data. KeyStartIndex and KeyCount specify the starting position and number of bytes to be read from the buffer, respectively. Password is a password encrypting the certificate.

public Certificate(byte[] bytes, int startIndex, int count);
Public Certificate(ByVal Bytes As Byte(), ByVal StartIndex As Integer, ByVal Count As Integer)

Loads the X.509 certificate from a memory buffer. Bytes is a buffer containing the raw certificate data. StartIndex and Count specify the starting position and number of bytes to be read from the buffer, respectively.

public Certificate(string path, string password);
Public Certificate(ByVal Path As String, ByVal Password As String)

Loads the X.509 certificate from a file. Path specifies the full path to the file containing the certificate data. Password is a password encrypting the certificate.

public Certificate(string certPath, string keyPath, string password);
Public Certificate(ByVal CertPath As String, ByVal KeyPath As String, ByVal Password As String)

Loads the X.509 certificate from a file. CertPath specifies the full path to the file containing the certificate data. KeyPath specifies the full path to the file containing the private key. Password is a password encrypting the certificate.

public Certificate(string path);
Public Certificate(ByVal Path As String)

Loads the X.509 certificate from a file. Path specifies the full path to the file containing the certificate data.

public Certificate(System.IO.Stream stream);
Public Certificate(ByVal Stream As System.IO.Stream)

Loads the X.509 certificate from a stream. Stream is a stream containing the certificate data.

public Certificate(System.IO.Stream stream, string password);
Public Certificate(ByVal Stream As System.IO.Stream, ByVal Password As String)

Loads the X.509 certificate from a stream. Stream is a stream containing the certificate data. Password is a password encrypting the certificate.

public Certificate(System.IO.Stream certStream, System.IO.Stream keyStream, string password);
Public Certificate(ByVal CertStream As System.IO.Stream, ByVal KeyStream As System.IO.Stream, ByVal Password As String)

Loads the X.509 certificate from a stream. CertStream is a stream containing the certificate data. KeyStream is a stream containing the private key. Password is a password encrypting the certificate.

public Certificate();
Public Certificate()

Creates a new object with default field values.

Configuration Settings (CertificateStorage Component)

The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

CertificateStorage Configuration Settings

AuthAttempts:   The number of auth/login attempts to try.

Specifies the number of tries to authenticate to the storage (the default is 3). The control will fire PasswordNeeded event after each unsuccessful attempt. Applicable to: PKCS11.

PKCS11ActiveSlot:   The index of the slot that the component is working with.

Returns the index of the PKCS#11 slot that is currently being accessed.

PKCS11NewPIN:   Changes the current user's PIN.

Setting this property will change the current users's PIN to the provided value. Most HSMs require the user to be signed in to perform this operation. This is the way to change your own PIN, either for admin or regular user accounts.

PKCS11NewUserPIN:   Registers a new user PIN.

Setting this property will register a new PIN to the HSM user account. This property is the way to administratively reset the user's PIN, and can only be set from under the 'admin' session.

PKCS11PIN:   Sets the operation PIN.

Use this property to provide your PIN on the fly for an operation requiring the private key (e.g. signing). This may be useful if the PIN was not provided on the Open stage.

PKCS11SlotCount:   The number of slots exposed in the storage.

Returns the number of slots available in an opened PKCS#11 storage.

PKCS11SlotDescription[i]:   A human-readable description of the slot.

Returns a human-readable description of slot i.

PKCS11SlotLoggedIn[i]:   Whether slot i has an active session associated with it.

Returns true if there is an active session associated with slot number i.

PKCS11SlotPinNeeded[i]:   Whether slot i requires you to provide a PIN to log in or sign.

Returns true if you need to provide a PIN to sign in to the session for slot i.

PKCS11SlotReadOnly[i]:   Whether slot i only supports read-only access.

Returns the availability of the slot for write operations.

PKCS11SlotTokenLabel[i]:   The label assigned to the token.

Returns the label assigned to the token.

PKCS11SlotTokenModel[i]:   The token model.

Returns the model of the token as provided by the driver.

PKCS11SlotTokenPresent[i]:   Indicates whether there is a token in the slot.

Returns true if slot number i has a token inserted.

PKCS11SlotTokenSerial[i]:   The serial number of the token.

Returns the serial number of the token.

PKCS11SlotTokenVendorID[i]:   The manufacturer ID of the inserted token.

Returns true if there is an active session associated with slot number i.

PKCS11SlotVendorID[i]:   Returns the manufacturer ID of the slot.

Returns the manufacturer name associated with the slot.

TempPath:   Path for storing temporary files.

This setting specifies an absolute path to the location on disk where temporary files are stored.

Base Configuration Settings

CheckKeyIntegrityBeforeUse:   Enables or disable private key integrity check before use.

This global property enables or disables private key material check before each signing operation. This slows down performance a bit, but prevents a selection of attacks on RSA keys where keys with unknown origins are used.

You can switch this property off to improve performance if your project only uses known, good private keys.

CookieCaching:   Specifies whether a cookie cache should be used for HTTP(S) transports.

Set this property to enable or disable cookies caching for the component.

Supported values are:

offNo caching (default)
localLocal caching (supported for HTTPClient, RESTClient and SOAPClient only)
globalGlobal caching

Cookies:   Gets or sets local cookies for the component (supported for HTTPClient, RESTClient and SOAPClient only).

Use this property to get cookies from the internal cookie storage of the component and/or restore them back between application sessions.

DefDeriveKeyIterations:   Specifies the default key derivation algorithm iteration count.

This global property sets the default number of iterations for all supported key derivation algorithms. Note that you can provide the required number of iterations by using properties of the relevant key generation component; this global setting is used in scenarios where specific iteration count is not or cannot be provided.

EnableClientSideSSLFFDHE:   Enables or disables finite field DHE key exchange support in TLS clients.

This global property enables or disables support for finite field DHE key exchange methods in TLS clients. FF DHE is a slower algorithm if compared to EC DHE; enabling it may result in slower connections.

This setting only applies to sessions negotiated with TLS version 1.3.

GlobalCookies:   Gets or sets global cookies for all the HTTP transports.

Use this property to get cookies from the GLOBAL cookie storage or restore them back between application sessions. These cookies will be used by all the components that have its CookieCaching property set to "global".

HttpUserAgent:   Specifies the user agent name to be used by all HTTP clients.

This global setting defines the User-Agent field of the HTTP request provides information about the software that initiates the request. This value will be used by all the HTTP clients including the ones used internally in other components.

LogDestination:   Specifies the debug log destination.

Contains a comma-separated list of values that specifies where debug log should be dumped.

Supported values are:

fileFile
consoleConsole
systemlogSystem Log (supported for Android only)
debuggerDebugger (supported for VCL for Windows and .Net)

LogDetails:   Specifies the debug log details to dump.

Contains a comma-separated list of values that specifies which debug log details to dump.

Supported values are:

timeCurrent time
levelLevel
packagePackage name
moduleModule name
classClass name
methodMethod name
threadidThread Id
contenttypeContent type
contentContent
allAll details

LogFile:   Specifies the debug log filename.

Use this property to provide a path to the log file.

LogFilters:   Specifies the debug log filters.

Contains a comma-separated list of value pairs ("name:value") that describe filters.

Supported filter names are:

exclude-packageExclude a package specified in the value
exclude-moduleExclude a module specified in the value
exclude-classExclude a class specified in the value
exclude-methodExclude a method specified in the value
include-packageInclude a package specified in the value
include-moduleInclude a module specified in the value
include-classInclude a class specified in the value
include-methodInclude a method specified in the value

LogFlushMode:   Specifies the log flush mode.

Use this property to set the log flush mode. The following values are defined:

noneNo flush (caching only)
immediateImmediate flush (real-time logging)
maxcountFlush cached entries upon reaching LogMaxEventCount entries in the cache.

LogLevel:   Specifies the debug log level.

Use this property to provide the desired debug log level.

Supported values are:

noneNone (by default)
fatalSevere errors that cause premature termination.
errorOther runtime errors or unexpected conditions.
warningUse of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong".
infoInteresting runtime events (startup/shutdown).
debugDetailed information on flow of through the system.
traceMore detailed information.

LogMaxEventCount:   Specifies the maximum number of events to cache before further action is taken.

Use this property to specify the log event number threshold. This threshold may have different effects, depending on the rotation setting and/or the flush mode.

The default value of this setting is 100.

LogRotationMode:   Specifies the log rotation mode.

Use this property to set the log rotation mode. The following values are defined:

noneNo rotation
deleteolderDelete older entries from the cache upon reaching LogMaxEventCount
keepolderKeep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded)

MaxASN1BufferLength:   Specifies the maximal allowed length for ASN.1 primitive tag data.

This global property limits the maximal allowed length for ASN.1 tag data for non-content-carrying structures, such as certificates, CRLs, or timestamps. It does not affect structures that can carry content, such as CMS/CAdES messages. This is a security property aiming at preventing DoS attacks.

MaxASN1TreeDepth:   Specifies the maximal depth for processed ASN.1 trees.

This global property limits the maximal depth of ASN.1 trees that the component can handle without throwing an error. This is a security property aiming at preventing DoS attacks.

OCSPHashAlgorithm:   Specifies the hash algorithm to be used to identify certificates in OCSP requests.

This global setting defines the hash algorithm to use in OCSP requests during chain validation. Some OCSP responders can only use older algorithms, in which case setting this property to SHA1 may be helpful.

Tag:   Allows to store any custom data.

Use this config property to store any custom data.

UseSharedSystemStorages:   Specifies whether the validation engine should use a global per-process copy of the system certificate stores.

Set this global property to false to make each validation run use its own copy of system certificate stores.

UseSystemOAEPAndPSS:   Enforces or disables the use of system-driven RSA OAEP and PSS computations.

This global setting defines who is responsible for performing RSA-OAEP and RSA-PSS computations where the private key is stored in a Windows system store and is exportable. If set to true, SBB will delegate the computations to Windows via a CryptoAPI call. Otherwise, it will export the key material and perform the computations using its own OAEP/PSS implementation.

This setting only applies to certificates originating from a Windows system store.

UseSystemRandom:   Enables or disables the use of the OS PRNG.

Use this global property to enable or disable the use of operating system-driven pseudorandom number generation.

Trappable Errors (CertificateStorage Component)

CertificateStorage Errors

1048577   Invalid parameter value (SB_ERROR_INVALID_PARAMETER)
1048578   Component is configured incorrectly (SB_ERROR_INVALID_SETUP)
1048579   Operation cannot be executed in the current state (SB_ERROR_INVALID_STATE)
1048580   Attempt to set an invalid value to a property (SB_ERROR_INVALID_VALUE)
1048581   Certificate does not have its private key loaded (SB_ERROR_NO_PRIVATE_KEY)
1048581   Cancelled by the user (SB_ERROR_CANCELLED_BY_USER)

Copyright (c) 2022 /n software inc. - All rights reserved.
SecureBlackbox 2022 .NET Edition - Version 22.0 [Build 8174]