PGPWriter Component
Properties Methods Events Config Settings Errors
The PGPWriter component protects data using PGP keys and certificates.
Syntax
nsoftware.SecureBlackbox.Pgpwriter
Remarks
PGPWriter allows you to encrypt, sign, armor, and compress the input data.
Property List
The following is the full list of the properties of the component with short descriptions. Click on the links for further details.
Armor | Specifies whether the data should be armored. |
ArmorBoundary | A boundary to put around the base64 armor. |
ArmorHeaders | Additional headers to include with the armored message. |
Compress | Whether to compress the data before encrypting it. |
CompressionAlgorithm | The compression algorithm to use. |
CompressionLevel | The compression level to use. |
EncryptingKeys | The keys to be used for data encryption. |
EncryptionAlgorithm | A symmetric algorithm to use for data encryption. |
ExternalCrypto | Provides access to external signing and DC parameters. |
Filename | Specifies the name of the file being protected. |
FIPSMode | Reserved. |
HashAlgorithm | The hash algorithm to use for signing. |
InputBytes | Use this property to pass the input to component in byte array form. |
InputFile | Provides a filename of a file to process. |
InputIsText | Whether the input data is text. |
InputStream | A stream containing the input to process. |
OutputBytes | Use this property to read the output the component object has produced. |
OutputFile | The file where the encrypted and/or signed data will be saved. |
OutputStream | The stream where the encrypted and/or signed data will be saved. |
Passphrase | The encryption password. |
Profile | Specifies a pre-defined profile to apply when creating the signature. |
Protection | Specifies a password protection level. |
SigningKeys | The keys to be used for signing. |
Timestamp | The date and time of the last modification of the protected data file (in UTC). |
Method List
The following is the full list of the methods of the component with short descriptions. Click on the links for further details.
ClearTextSign | Creates a cleartext signature over the provided data. |
Config | Sets or retrieves a configuration setting. |
DoAction | Performs an additional action. |
Encrypt | Encrypts data. |
EncryptAndSign | Encrypts and signs data. |
Sign | Signs data. |
Event List
The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.
Error | Information about errors during PGP encryption. |
ExternalSign | Handles remote or external signing initiated by the SignExternal method or other source. |
KeyPassphraseNeeded | Requests a key protection password from the application. |
Notification | This event notifies the application about an underlying control flow event. |
Progress | Reports the progress of the decryption operation. |
Config Settings
The following is a list of config settings for the component with short descriptions. Click on the links for further details.
PasswordAttempts | The number of attempts allowed for entering password. |
PreserveFilePaths | Whether to preserve full file names when saving the PGP file. |
SignBufferingMethod | The type of buffering used during signing. |
TempPath | Path for storing temporary files. |
TextCompatibilityMode | Whether whitespaces must be trimmed from the signature. |
UndefInputLength | Set this property if you are working with non-seekable streams. |
UseNewFeatures | Whether the new algorithms, or only the algorithms compatible with PGP 2.6.x, are allowed. |
UseOldPackets | Whether signature packets of old format, compatible with PGP 2.6.3, should be used. |
CheckKeyIntegrityBeforeUse | Enables or disable private key integrity check before use. |
CookieCaching | Specifies whether a cookie cache should be used for HTTP(S) transports. |
Cookies | Gets or sets local cookies for the component. |
DefDeriveKeyIterations | Specifies the default key derivation algorithm iteration count. |
EnableClientSideSSLFFDHE | Enables or disables finite field DHE key exchange support in TLS clients. |
GlobalCookies | Gets or sets global cookies for all the HTTP transports. |
HttpUserAgent | Specifies the user agent name to be used by all HTTP clients. |
LogDestination | Specifies the debug log destination. |
LogDetails | Specifies the debug log details to dump. |
LogFile | Specifies the debug log filename. |
LogFilters | Specifies the debug log filters. |
LogFlushMode | Specifies the log flush mode. |
LogLevel | Specifies the debug log level. |
LogMaxEventCount | Specifies the maximum number of events to cache before further action is taken. |
LogRotationMode | Specifies the log rotation mode. |
MaxASN1BufferLength | Specifies the maximal allowed length for ASN.1 primitive tag data. |
MaxASN1TreeDepth | Specifies the maximal depth for processed ASN.1 trees. |
OCSPHashAlgorithm | Specifies the hash algorithm to be used to identify certificates in OCSP requests. |
StaticDNS | Specifies whether static DNS rules should be used. |
StaticIPAddress[domain] | Gets or sets an IP address for the specified domain name. |
StaticIPAddresses | Gets or sets all the static DNS rules. |
Tag | Allows to store any custom data. |
TLSSessionGroup | Specifies the group name of TLS sessions to be used for session resumption. |
TLSSessionLifetime | Specifies lifetime in seconds of the cached TLS session. |
TLSSessionPurgeInterval | Specifies how often the session cache should remove the expired TLS sessions. |
UseOwnDNSResolver | Specifies whether the client components should use own DNS resolver. |
UseSharedSystemStorages | Specifies whether the validation engine should use a global per-process copy of the system certificate stores. |
UseSystemOAEPAndPSS | Enforces or disables the use of system-driven RSA OAEP and PSS computations. |
UseSystemRandom | Enables or disables the use of the OS PRNG. |
Armor Property (PGPWriter Component)
Specifies whether the data should be armored.
Syntax
Default Value
False
Remarks
Switch this property on to armor the protected data by encoding it in base64 and enveloping with BEGIN and END markings.
ArmorBoundary Property (PGPWriter Component)
A boundary to put around the base64 armor.
Syntax
Default Value
""
Remarks
Use this property to specify the boundary to put around the base64 armor. If set to 'PGP MESSAGE', the armored data will be enveloped with '-----BEGIN PGP MESSAGE-----' and '-----END PGP MESSAGE-----' lines.
This property only makes sense if Armor is set True.
ArmorHeaders Property (PGPWriter Component)
Additional headers to include with the armored message.
Syntax
Default Value
""
Remarks
Use this property to specify additional headers to be included with the armored message.
Assign this property with a multi-line text, with each line being of "header: value" form (without quotes).
Compress Property (PGPWriter Component)
Whether to compress the data before encrypting it.
Syntax
Default Value
False
Remarks
Set this property to True to compress the data before encryption. Use CompressionAlgorithm and CompressionLevel to tune up compression parameters.
CompressionAlgorithm Property (PGPWriter Component)
The compression algorithm to use.
Syntax
Default Value
"Uncompressed"
Remarks
Use this property to specify the compression algorithm to use before encrypting the data. This property only makes sense if Compress is True.
SB_PGP_COMPRESSION_ALGORITHM_NONE | Uncompressed | |
SB_PGP_COMPRESSION_ALGORITHM_ZIP | ZIP | |
SB_PGP_COMPRESSION_ALGORITHM_ZLIB | Zlib | |
SB_PGP_COMPRESSION_ALGORITHM_BZIP2 | Bzip2 |
CompressionLevel Property (PGPWriter Component)
The compression level to use.
Syntax
Default Value
0
Remarks
Use this property to specify the compression level, from 1 (fastest) to 9 (best).
EncryptingKeys Property (PGPWriter Component)
The keys to be used for data encryption.
Syntax
public PGPKeyList EncryptingKeys { get; }
Public Property EncryptingKeys As PGPKeyList
Remarks
Use this property to set the keys to encrypt the message for. You only need public keys to encrypt data.
This property is not available at design time.
Please refer to the PGPKey type for a complete list of fields.EncryptionAlgorithm Property (PGPWriter Component)
A symmetric algorithm to use for data encryption.
Syntax
Default Value
"CAST5"
Remarks
Use this property to specify a symmetric algorithm to use for data encryption.
SB_PGP_SYMMETRIC_ALGORITHM_PLAINTEXT | Plaintext | |
SB_PGP_SYMMETRIC_ALGORITHM_IDEA | Idea | |
SB_PGP_SYMMETRIC_ALGORITHM_3DES | 3DES | |
SB_PGP_SYMMETRIC_ALGORITHM_CAST5 | CAST5 | |
SB_PGP_SYMMETRIC_ALGORITHM_BLOWFISH | Blowfish | |
SB_PGP_SYMMETRIC_ALGORITHM_AES128 | AES128 | |
SB_PGP_SYMMETRIC_ALGORITHM_AES192 | AES192 | |
SB_PGP_SYMMETRIC_ALGORITHM_AES256 | AES256 | |
SB_PGP_SYMMETRIC_ALGORITHM_TWOFISH256 | Twofish256 |
ExternalCrypto Property (PGPWriter Component)
Provides access to external signing and DC parameters.
Syntax
public ExternalCrypto ExternalCrypto { get; }
Public ReadOnly Property ExternalCrypto As ExternalCrypto
Remarks
Use this property to tune-up remote cryptography settings. SecureBlackbox supports two independent types of external cryptography: synchronous (based on the ExternalSign event) and asynchronous (based on the DC protocol and the DCAuth signing component).
This property is read-only.
Please refer to the ExternalCrypto type for a complete list of fields.Filename Property (PGPWriter Component)
Specifies the name of the file being protected.
Syntax
Default Value
""
Remarks
Use this property to set the name of the file being protected, such as 'document.txt'. If Filename is empty or its value is "_CONSOLE", the data will be protected for-your-eyes-only, meaning the decryptor will only be able to read it on their screen, but not save.
FIPSMode Property (PGPWriter Component)
Reserved.
Syntax
Default Value
False
Remarks
This property is reserved for future use.
HashAlgorithm Property (PGPWriter Component)
The hash algorithm to use for signing.
Syntax
Default Value
""
Remarks
Use this property to specify the hash algorithm to use for calculating signatures.
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 |
InputBytes Property (PGPWriter Component)
Use this property to pass the input to component in byte array form.
Syntax
Remarks
Assign a byte array containing the data to be processed to this property.
This property is not available at design time.
InputFile Property (PGPWriter Component)
Provides a filename of a file to process.
Syntax
Default Value
""
Remarks
Use this property to provide a path to the file to be encrypted and/or signed.
InputIsText Property (PGPWriter Component)
Whether the input data is text.
Syntax
Default Value
False
Remarks
Set this property to true to indicate that the supplied data should be treated as text.
InputStream Property (PGPWriter Component)
A stream containing the input to process.
Syntax
public System.IO.Stream InputStream { get; set; }
Public Property InputStream As System.IO.Stream
Default Value
null
Remarks
Use this property to feed the input data to the component from a stream object.
This property is not available at design time.
OutputBytes Property (PGPWriter Component)
Use this property to read the output the component object has produced.
Syntax
Remarks
Read the contents of this property after the operation has completed to read the produced output. This property will only be set if the OutputFile and OutputStream properties had not been assigned.
This property is read-only and not available at design time.
OutputFile Property (PGPWriter Component)
The file where the encrypted and/or signed data will be saved.
Syntax
Default Value
""
Remarks
Use this property to provide a path to the file where the component should store the encrypted and/or signed data.
OutputStream Property (PGPWriter Component)
The stream where the encrypted and/or signed data will be saved.
Syntax
public System.IO.Stream OutputStream { get; set; }
Public Property OutputStream As System.IO.Stream
Default Value
null
Remarks
Use this property to specify the stream to take the resulting encrypted and/or signed data.
This property is not available at design time.
Passphrase Property (PGPWriter Component)
The encryption password.
Syntax
Default Value
""
Remarks
Use this property to provide the encryption password. If an encryption password is used, no key will be needed to decrypt the data.
Profile Property (PGPWriter Component)
Specifies a pre-defined profile to apply when creating the signature.
Syntax
Default Value
""
Remarks
Advanced signatures come in many variants, which are often defined by parties that needs to process them or by local standards. SecureBlackbox profiles are sets of pre-defined configurations which correspond to particular signature variants. By specifying a profile, you are pre-configuring the component to make it produce the signature that matches the configuration corresponding to that profile.
Protection Property (PGPWriter Component)
Specifies a password protection level.
Syntax
public PgpwriterProtections Protection { get; set; }
enum PgpwriterProtections { pptNone, pptLow, pptNormal, pptHigh }
Public Property Protection As PgpwriterProtections
Enum PgpwriterProtections pptNone pptLow pptNormal pptHigh End Enum
Default Value
0
Remarks
This property specifies the complexity of key derivation function for password-protected documents.
Allowed values:
pptNone | 0 | Key is not encrypted |
pptLow | 1 | Only the password hash is used to derive the secret key |
pptNormal | 2 | Password hash with salt is used to derive the secret key |
pptHigh | 3 | Hash from multiple passwords and salt are used for key derivation |
SigningKeys Property (PGPWriter Component)
The keys to be used for signing.
Syntax
public PGPKeyList SigningKeys { get; }
Public Property SigningKeys As PGPKeyList
Remarks
Use this property to set the keys to sign the message with. The keys need to contain their secret compound.
In most cases you will also need to supply a passphrase for the chosen signing keys. Use this by subscribing to KeyPassphraseNeeded event, or setting the Passphrase property of the relevant key object.
This property is not available at design time.
Please refer to the PGPKey type for a complete list of fields.Timestamp Property (PGPWriter Component)
The date and time of the last modification of the protected data file (in UTC).
Syntax
Default Value
""
Remarks
Use this property to set a timestamp for the data being protected.
ClearTextSign Method (PGPWriter Component)
Creates a cleartext signature over the provided data.
Syntax
public void ClearTextSign();
Public Sub ClearTextSign()
Remarks
Call this method to create a cleartext signature over the provided data buffer (InputBytes). Only textual data can be signed in cleartext.
Pass the signing key(s) via SigningKeys property.
Config Method (PGPWriter Component)
Sets or retrieves a configuration setting.
Syntax
Remarks
Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
DoAction Method (PGPWriter Component)
Performs an additional action.
Syntax
Remarks
DoAction is a generic method available in every component. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.
The unique identifier (case insensitive) of the action is provided in the ActionID parameter.
ActionParams contains the value of a single parameter, or a list of multiple parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....
Encrypt Method (PGPWriter Component)
Encrypts data.
Syntax
public void Encrypt();
Public Sub Encrypt()
Remarks
Use this method to encrypt input data from a byte array (InputBytes), a file (InputFile) or a stream (InputStream) and get the protected message in another byte array (OutputBytes), or another file (OutputFile), or another stream (OutputStream).
Specify encryption keys in EncryptingKeys property, and/or encryption password via Passphrase property.
EncryptAndSign Method (PGPWriter Component)
Encrypts and signs data.
Syntax
public void EncryptAndSign();
Public Sub EncryptAndSign()
Remarks
Use this method to encrypt and sign a byte array (InputBytes), a file (InputFile) or a stream (InputStream) and get the protected message in another byte array (OutputBytes), or another file (OutputFile), or another stream (OutputStream).
Specify encryption keys in EncryptingKeys property, and/or encryption password via Passphrase property. Use SigningKeys to provide the signing keys.
Please note that you might need to provide a passphrase to decrypt your signing key. This can be done via KeyPassphraseNeeded event, or by assigning the passphrase to the key object's Passphrase property.
Sign Method (PGPWriter Component)
Signs data.
Syntax
Remarks
Use this method to sign a byte array (InputBytes), a file (InputFile) or a stream (InputStream) and get the signed message in another byte array (OutputBytes), or another file (OutputFile), or another stream (OutputStream).
Use SigningKeys to provide the signing keys.
Please note that you might need to provide a passphrase to decrypt your signing key. This can be done via KeyPassphraseNeeded event, or by assigning the passphrase to the key object's Passphrase property.
Error Event (PGPWriter Component)
Information about errors during PGP encryption.
Syntax
public event OnErrorHandler OnError; public delegate void OnErrorHandler(object sender, PgpwriterErrorEventArgs e); public class PgpwriterErrorEventArgs : EventArgs { public int ErrorCode { get; } public string Description { get; } }
Public Event OnError As OnErrorHandler Public Delegate Sub OnErrorHandler(sender As Object, e As PgpwriterErrorEventArgs) Public Class PgpwriterErrorEventArgs Inherits EventArgs Public ReadOnly Property ErrorCode As Integer Public ReadOnly Property Description As String End Class
Remarks
The event is fired in case of exceptional conditions during data encryption or signing.
ErrorCode contains an error code and Description contains a textual description of the error.
ExternalSign Event (PGPWriter Component)
Handles remote or external signing initiated by the SignExternal method or other source.
Syntax
public event OnExternalSignHandler OnExternalSign; public delegate void OnExternalSignHandler(object sender, PgpwriterExternalSignEventArgs e); public class PgpwriterExternalSignEventArgs : EventArgs { public string OperationId { get; } public string HashAlgorithm { get; } public string Pars { get; } public string Data { get; } public string SignedData { get; set; } }
Public Event OnExternalSign As OnExternalSignHandler Public Delegate Sub OnExternalSignHandler(sender As Object, e As PgpwriterExternalSignEventArgs) Public Class PgpwriterExternalSignEventArgs Inherits EventArgs Public ReadOnly Property OperationId As String Public ReadOnly Property HashAlgorithm As String Public ReadOnly Property Pars As String Public ReadOnly Property Data As String Public Property SignedData As String End Class
Remarks
Assign a handler to this event if you need to delegate a low-level signing operation to an external, remote, or custom signing engine. Depending on the settings, the handler will receive a hashed or unhashed value to be signed.
The event handler must pass the value of Data to the signer, obtain the signature, and pass it back to the component via the SignedData parameter.
OperationId provides a comment about the operation and its origin. It depends on the exact component being used, and may be empty. HashAlgorithm specifies the hash algorithm being used for the operation, and Pars contains algorithm-dependent parameters.
The component uses base16 (hex) encoding for the Data, SignedData, and Pars parameters. If your signing engine uses a different input and output encoding, you may need to decode and/or encode the data before and/or after the signing.
A sample MD5 hash encoded in base16: a0dee2a0382afbb09120ffa7ccd8a152 - lower case base16 A0DEE2A0382AFBB09120FFA7CCD8A152 - upper case base16
A sample event handler that uses the .NET RSACryptoServiceProvider class may look like the following:
signer.OnExternalSign += (s, e) =>
{
var cert = new X509Certificate2("cert.pfx", "", X509KeyStorageFlags.Exportable);
var key = (RSACryptoServiceProvider)cert.PrivateKey;
var dataToSign = e.Data.FromBase16String();
var signedData = key.SignHash(dataToSign, "2.16.840.1.101.3.4.2.1");
e.SignedData = signedData.ToBase16String();
};
KeyPassphraseNeeded Event (PGPWriter Component)
Requests a key protection password from the application.
Syntax
public event OnKeyPassphraseNeededHandler OnKeyPassphraseNeeded; public delegate void OnKeyPassphraseNeededHandler(object sender, PgpwriterKeyPassphraseNeededEventArgs e); public class PgpwriterKeyPassphraseNeededEventArgs : EventArgs { public string KeyID { get; } public string UserID { get; } public bool MainKey { get; } public string Passphrase { get; set; } public bool Skip { get; set; } }
Public Event OnKeyPassphraseNeeded As OnKeyPassphraseNeededHandler Public Delegate Sub OnKeyPassphraseNeededHandler(sender As Object, e As PgpwriterKeyPassphraseNeededEventArgs) Public Class PgpwriterKeyPassphraseNeededEventArgs Inherits EventArgs Public ReadOnly Property KeyID As String Public ReadOnly Property UserID As String Public ReadOnly Property MainKey As Boolean Public Property Passphrase As String Public Property Skip As Boolean End Class
Remarks
The component fires this event to request a secret key passphrase from the application. Note that this event asks for a key protection passphrase rather than a message protection passphrase. The component fires it when it attempts to use a secret key to sign the data.
This event is fired for every protected secret key residing in SigningKeys. KeyID specifies the key for which the password is requested, and UserID identifies its user. MainKey tells whether the key is a master key or a subkey.
The handler should provide password via the Passphrase parameter, or set Skip to True to skip this key.
For each key KeyPassphraseNeeded is called in a loop until the correct password is provided or the maximum number of password attempts reached.
Notification Event (PGPWriter Component)
This event notifies the application about an underlying control flow event.
Syntax
public event OnNotificationHandler OnNotification; public delegate void OnNotificationHandler(object sender, PgpwriterNotificationEventArgs e); public class PgpwriterNotificationEventArgs : EventArgs { public string EventID { get; } public string EventParam { get; } }
Public Event OnNotification As OnNotificationHandler Public Delegate Sub OnNotificationHandler(sender As Object, e As PgpwriterNotificationEventArgs) Public Class PgpwriterNotificationEventArgs Inherits EventArgs Public ReadOnly Property EventID As String Public ReadOnly Property EventParam As String End Class
Remarks
The component fires this event to let the application know about some event, occurrence, or milestone in the component. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.
The unique identifier of the event is provided in the EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the component, the exact action it is performing, or the document being processed, one or both may be omitted.
Progress Event (PGPWriter Component)
Reports the progress of the decryption operation.
Syntax
public event OnProgressHandler OnProgress; public delegate void OnProgressHandler(object sender, PgpwriterProgressEventArgs e); public class PgpwriterProgressEventArgs : EventArgs { public long Current { get; } public long Total { get; } public bool Cancel { get; set; } }
Public Event OnProgress As OnProgressHandler Public Delegate Sub OnProgressHandler(sender As Object, e As PgpwriterProgressEventArgs) Public Class PgpwriterProgressEventArgs Inherits EventArgs Public ReadOnly Property Current As Long Public ReadOnly Property Total As Long Public Property Cancel As Boolean End Class
Remarks
The component fires this event repeatedly to report the progress of the file protection operation.
Current indicates the amount of processed data in bytes, and Total is the total number of bytes to be processed. Use Cancel to terminate the protection process.
ExternalCrypto Type
Specifies the parameters of external cryptographic calls.
Remarks
External cryptocalls are used in a Distributed Cryptography (DC) subsystem, which allows the delegation of security operations to the remote agent. For instance, it can be used to compute the signature value on the server, while retaining the client's private key locally.
Fields
AsyncDocumentID
string
Default Value: ""
Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.
Use this property when working with multi-signature DCAuth requests and responses to uniquely identify documents signed within a larger batch. On the completion stage, this value helps the signing component identify the correct signature in the returned batch of responses.
If using batched requests, make sure to set this property to the same value on both the pre-signing (SignAsyncBegin) and completion (SignAsyncEnd) stages.
CustomParams
string
Default Value: ""
Custom parameters to be passed to the signing service (uninterpreted).
Data
string
Default Value: ""
Additional data to be included in the async state and mirrored back by the requestor.
ExternalHashCalculation
bool
Default Value: False
Specifies whether the message hash is to be calculated at the external endpoint. Please note that this mode is not supported by the DCAuth component.
If set to true, the component will pass a few kilobytes of to-be-signed data from the document to the OnExternalSign event. This only applies when SignExternal() is called.
HashAlgorithm
string
Default Value: "SHA256"
Specifies the request's signature hash algorithm.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
KeyID
string
Default Value: ""
The ID of the pre-shared key used for DC request authentication.
Asynchronous DCAuth-driven communication requires that parties authenticate each other with a secret pre-shared cryptographic key. This provides an extra protection layer for the protocol and diminishes the risk of the private key becoming abused by foreign parties. Use this property to provide the pre-shared key identifier, and use KeySecret to pass the key itself.
The same KeyID/KeySecret pair should be used on the DCAuth side for the signing requests to be accepted.
Note: The KeyID/KeySecret scheme is very similar to the AuthKey scheme used in various Cloud service providers to authenticate users.
Example:
signer.ExternalCrypto.KeyID = "MainSigningKey";
signer.ExternalCrypto.KeySecret = "abcdef0123456789";
KeySecret
string
Default Value: ""
The pre-shared key used for DC request authentication. This key must be set and match the key used by the DCAuth counterpart for the scheme to work.
Read more about configuring authentication in the KeyID topic.
Method
AsyncSignMethods
Default Value: 0
Specifies the asynchronous signing method. This is typically defined by the DC server capabilities and setup.
Available options:
asmdPKCS1 | 0 |
asmdPKCS7 | 1 |
Mode
ExternalCryptoModes
Default Value: 0
Specifies the external cryptography mode.
Available options:
ecmDefault | The default value (0) |
ecmDisabled | Do not use DC or external signing (1) |
ecmGeneric | Generic external signing with the OnExternalSign event (2) |
ecmDCAuth | DCAuth signing (3) |
ecmDCAuthJSON | DCAuth signing in JSON format (4) |
PublicKeyAlgorithm
string
Default Value: ""
Provide the public key algorithm here if the certificate is not available on the pre-signing stage.
SB_CERT_ALGORITHM_ID_RSA_ENCRYPTION | rsaEncryption | |
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTION | md2withRSAEncryption | |
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTION | md5withRSAEncryption | |
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTION | sha1withRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA | id-dsa | |
SB_CERT_ALGORITHM_ID_DSA_SHA1 | id-dsa-with-sha1 | |
SB_CERT_ALGORITHM_DH_PUBLIC | dhpublicnumber | |
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTION | sha224WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTION | sha256WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTION | sha384WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTION | sha512WithRSAEncryption | |
SB_CERT_ALGORITHM_ID_RSAPSS | id-RSASSA-PSS | |
SB_CERT_ALGORITHM_ID_RSAOAEP | id-RSAES-OAEP | |
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160 | ripemd160withRSA | |
SB_CERT_ALGORITHM_ID_ELGAMAL | elGamal | |
SB_CERT_ALGORITHM_SHA1_ECDSA | ecdsa-with-SHA1 | |
SB_CERT_ALGORITHM_RECOMMENDED_ECDSA | ecdsa-recommended | |
SB_CERT_ALGORITHM_SHA224_ECDSA | ecdsa-with-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA | ecdsa-with-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA | ecdsa-with-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA | ecdsa-with-SHA512 | |
SB_CERT_ALGORITHM_EC | id-ecPublicKey | |
SB_CERT_ALGORITHM_SPECIFIED_ECDSA | ecdsa-specified | |
SB_CERT_ALGORITHM_GOST_R3410_1994 | id-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3410_2001 | id-GostR3410-2001 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994 | id-GostR3411-94-with-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001 | id-GostR3411-94-with-GostR3410-2001 | |
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAIN | ecdsa-plain-SHA1 | |
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAIN | ecdsa-plain-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAIN | ecdsa-plain-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAIN | ecdsa-plain-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAIN | ecdsa-plain-SHA512 | |
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAIN | ecdsa-plain-RIPEMD160 | |
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTION | whirlpoolWithRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA_SHA224 | id-dsa-with-sha224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA256 | id-dsa-with-sha256 | |
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA | id-ecdsa-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA | id-ecdsa-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA | id-ecdsa-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA | id-ecdsa-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-512 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_224 | id-dsa-with-sha3-224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_256 | id-dsa-with-sha3-256 | |
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA | id-ecdsa-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA | id-ecdsa-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA | id-ecdsa-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA | id-ecdsa-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA | id-ecdsa-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA | id-ecdsa-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA | id-ecdsa-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA | id-ecdsa-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b512 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224 | id-dsa-with-blake2s224 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256 | id-dsa-with-blake2s256 | |
SB_CERT_ALGORITHM_EDDSA_ED25519 | id-Ed25519 | |
SB_CERT_ALGORITHM_EDDSA_ED448 | id-Ed448 | |
SB_CERT_ALGORITHM_EDDSA_ED25519_PH | id-Ed25519ph | |
SB_CERT_ALGORITHM_EDDSA_ED448_PH | id-Ed448ph | |
SB_CERT_ALGORITHM_EDDSA | id-EdDSA | |
SB_CERT_ALGORITHM_EDDSA_SIGNATURE | id-EdDSA-sig |
Constructors
public ExternalCrypto();
Public ExternalCrypto()
Creates a new ExternalCrypto object with default field values.
PGPKey Type
This container represents a PGP key.
Remarks
OpenPGP standard supports several types of keys. In our days, a typical OpenPGP keypair actually consists of two cryptographic keys: a primary key and a subkey. The primary key is normally used for signing, while the subkey is used for encryption.
While it is typical for PGP environments to use a primary key/subkey bundle, this is not a must. Sometimes you may come across standalone keys (mainly when dealing with older implementations), as well as whole key trees, each of those carrying a bunch of differently-purposed subkeys bound to the same primary key.
Algorithm-wise, OpenPGP keys also differ. Generally speaking, OpenPGP supports the following public key algorithms: RSA, Elgamal (often incorrectly referred to as DH), DSA, ECDH and ECDSA. When it comes to primary key/subkey bundles, DSA/Elgamal, RSA/RSA and ECDSA/ECDH pairs are typically used. Although there's no restriction on algorithm bundles, and, e.g. a ECDSA/Elgamal key bundle is perfectly possible, such combination is rarely used in practice.
A typical OpenPGP key is associated with some kind of user ID (Username). It is normally represented with a user's e-mail address, while in theory can be any piece of text. The secret part of the OpenPGP keypair is protected with a password (Passphrase).
Fields
BitsInKey
int
Default Value: 2048
Indicates the key length in bits.
CanEncrypt
bool (read-only)
Default Value: False
Returns True if this key can be used for encryption.
CanSign
bool (read-only)
Default Value: False
Returns True if this key can be used for signing.
Curve
string
Default Value: ""
Indicates the elliptic curve associated with a EC key.
Supported values:
SB_PGP_CURVE_P256 | P256 | |
SB_PGP_CURVE_P384 | P384 | |
SB_PGP_CURVE_P521 | P521 | |
SB_PGP_CURVE_ED25519 | ED25519 | |
SB_PGP_CURVE_CURVE25519 | CURVE25519 | |
SB_PGP_CURVE_BRAINPOOLP256R1 | BRAINPOOLP256 | |
SB_PGP_CURVE_BRAINPOOLP512R1 | BRAINPOOLP512 |
Enabled
bool
Default Value: False
Enables or disables this key for use in encryption or signing operation.
EncryptionAlgorithm
string
Default Value: "CAST5"
Indicates the symmetric algorithm used to encrypt the secret key.
Expires
int
Default Value: 0
Indicates key expiration time in whole days from its generation moment. The value of 0 indicates that the key does not expire.
HashAlgorithm
string
Default Value: "SHA256"
Specifies the hash algorithm associated with the key.
IsPublic
bool (read-only)
Default Value: False
Returns True if this key is a public key, and False otherwise.
IsSecret
bool (read-only)
Default Value: False
Returns True if this key is a secret key, and False otherwise.
IsSubkey
bool (read-only)
Default Value: False
Returns True if this key is a subkey of another key, and False otherwise.
KeyFP
string (read-only)
Default Value: ""
The 20-byte fingerprint (hash value) of this key.
KeyFP could be used to distinguish two keys with the same KeyID.
KeyHashAlgorithm
string (read-only)
Default Value: "SHA256"
Specifies the hash algorithm used with DSA keys to calculate signatures.
KeyID
string (read-only)
Default Value: ""
Contains a 8-byte key identifier.
It is quite rare that IDs of two keys collide. If that happens, their fingerprints (KeyFP) can be used for distinguish between the keys. Please note that many PGP implementations show only 4 lowest bytes of the KeyID to the user.
OldPacketFormat
bool
Default Value: False
Indicates whether legacy (PGP 2.6.x) packet format should be used.
Passphrase
string
Default Value: ""
The key protection password.
PassphraseValid
bool (read-only)
Default Value: False
Use this property to check whether the specified Passphrase is valid and can be used to unlock the secret key.
PrimaryKeyID
string (read-only)
Default Value: ""
If this key is a subkey (IsSubkey returns True), this field contains the identifier of the subkey's primary key.
Protection
PGPProtectionTypes
Default Value: 0
Specifies the level of protection applied to the secret key.
Allowed values:
pptNone | 0 | Key is not encrypted |
pptLow | 1 | Only the password hash is used to derive the secret key |
pptNormal | 2 | Password hash with salt is used to derive the secret key |
pptHigh | 3 | Hash from multiple passwords and salt are used for key derivation |
PublicKeyAlgorithm
string
Default Value: ""
Specifies the asymmetric algorithm of the key.
QBits
int
Default Value: 0
The length of the DSA Q (legitimate range: 160-512).
This parameter corresponds to the hash algorithm used with the key. For example, if the value of Q is 256, SHA-256 will be used.
Revoked
bool (read-only)
Default Value: False
Returns True if the key has been revoked, and False otherwise.
SubkeyFP
string (read-only)
Default Value: ""
The 20-byte fingerprint (hash value) of this key's subkey.
KeyFP could be used to distinguish two subkeys with the same SubkeyID.
SubkeyID
string (read-only)
Default Value: ""
Contains a 8-byte subkey identifier.
It is quite rare that IDs of two keys collide. If that happens, their fingerprints (SubkeyFP) can be used to distinguish between the keys. Please note that many PGP implementations show only 4 lowest bytes of the KeyID to the user.
Timestamp
string (read-only)
Default Value: ""
Use this property to check the time the key was generated. The date and time are stored and retrieved in Universal Coordinate Time (UTC).
Username
string
Default Value: ""
Specifies the name of the user bound to this key.
The PGP username is typically represented with a full name and an email address, but generally can be any non-empty string.
Valid
PGPKeyValidities (read-only)
Default Value: 0
Indicates the validity status of the key.
pkvStrictlyValid | 0 | Strictly valid |
pkvValid | 1 | Valid |
pkvInvalid | 2 | Invalid |
pkvFailure | 3 | Generic validation failure |
pkvUnknown | 4 | Validity unknown |
ValidTo
string (read-only)
Default Value: "0"
Provide accurate expiration moment indication. This is different to Expires property which only contains expiration time in days in old keys.
Version
int (read-only)
Default Value: -1
Indicates the key version.
The key version refers to the version of the public-key packet format as defined in RFC 4880.
Only two versions are currently allowed here: 3 and 4. It is recommended that all new keys are created with version of 4.
Constructors
Creates an empty PGP key object.
Create a PGP key object from a key file.
Config Settings (PGPWriter Component)
The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.PGPWriter Config Settings
When this property is True, the file names are saved exactly as they are passed to the above mentioned methods, including full paths. This lets you to save directory structures to the encrypted and/or signed PGP files.
Base Config Settings
You can switch this property off to improve performance if your project only uses known, good private keys.
Supported values are:
off | No caching (default) | |
local | Local caching | |
global | Global caching |
This setting only applies to sessions negotiated with TLS version 1.3.
Supported values are:
file | File | |
console | Console | |
systemlog | System Log (supported for Android only) | |
debugger | Debugger (supported for VCL for Windows and .Net) |
Supported values are:
time | Current time | |
level | Level | |
package | Package name | |
module | Module name | |
class | Class name | |
method | Method name | |
threadid | Thread Id | |
contenttype | Content type | |
content | Content | |
all | All details |
Supported filter names are:
exclude-package | Exclude a package specified in the value | |
exclude-module | Exclude a module specified in the value | |
exclude-class | Exclude a class specified in the value | |
exclude-method | Exclude a method specified in the value | |
include-package | Include a package specified in the value | |
include-module | Include a module specified in the value | |
include-class | Include a class specified in the value | |
include-method | Include a method specified in the value |
none | No flush (caching only) | |
immediate | Immediate flush (real-time logging) | |
maxcount | Flush cached entries upon reaching LogMaxEventCount entries in the cache. |
Supported values are:
none | None (by default) | |
fatal | Severe errors that cause premature termination. | |
error | Other runtime errors or unexpected conditions. | |
warning | Use of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong". | |
info | Interesting runtime events (startup/shutdown). | |
debug | Detailed information on flow of through the system. | |
trace | More detailed information. |
The default value of this setting is 100.
none | No rotation | |
deleteolder | Delete older entries from the cache upon reaching LogMaxEventCount | |
keepolder | Keep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded) |
Supported values are:
none | No static DNS rules (default) | |
local | Local static DNS rules | |
global | Global static DNS rules |
This setting only applies to certificates originating from a Windows system store.
Trappable Errors (PGPWriter Component)
PGPWriter Errors
1048577 Invalid parameter value (SB_ERROR_INVALID_PARAMETER) | |
1048578 Component is configured incorrectly (SB_ERROR_INVALID_SETUP) | |
1048579 Operation cannot be executed in the current state (SB_ERROR_INVALID_STATE) | |
1048580 Attempt to set an invalid value to a property (SB_ERROR_INVALID_VALUE) | |
1048581 Certificate does not have its private key loaded (SB_ERROR_NO_PRIVATE_KEY) | |
1048581 Cancelled by the user (SB_ERROR_CANCELLED_BY_USER) | |
27262977 File does not exist (SB_ERROR_PGP_FILE_NOT_EXISTS) | |
27262978 Invalid key (SB_ERROR_PGP_INVALID_KEY) | |
27262979 No public key (SB_ERROR_PGP_NO_PUBLIC_KEY) | |
27262980 No secret key (SB_ERROR_PGP_NO_SECRET_KEY) | |
27262981 Not found (SB_ERROR_PGP_NOT_FOUND) | |
27262982 Operation cannot be performed on a subkey (SB_ERROR_PGP_OPERATION_ON_SUBKEY) |