HTTPServer Component

Properties   Methods   Events   Config Settings   Errors  

The HTTPServer component offers server-side functionality for the HTTP/HTTPS protocols.

Syntax

TsbxHTTPServer

Remarks

Both plain (HTTP) and secure (HTTPS) connection types are supported.

Follow the below steps to set up and run the server in your code:

  • Create an instance of the server component and set up the license, if assumed by the edition you are using: var server = new Httpserver(); server.RuntimeLicense = "5342..0000";
  • Set up the listening port (make sure it is not in use): server.Port = 443;
  • Tell the component whether TLS connections should be enforced: server.UseTLS = true; // set to false to disable TLS and server plain HTTP requests
  • Set up the document root (a directory where all static files are kept): server.DocumentRoot = "c:\\inetpub\\mywebserver";
  • (TLS-enabled servers only) Configure TLS parameters. The exact way of doing that may vary for different scenarios and security requirements. At the very least you need to set up the certificate chain that the server will use to authenticate itself to connecting clients. If you don't, the component will generate a dummy certificate itself, however, that certificate is unlikely to pass any security requirements. It will let you accept test connections though.

    Below is an example of tuning up the TLS parameters of the server: // *** Switching TLS on and enabling the implicit mode *** server.UseTLS = true; server.TLSSettings.TLSMode = smImplicitTLS; // this must be implicit for HTTPS // Loading the certificate chain var mgr = new Certificatemanager(); mgr.RuntimeLicense = "5342..0000"; // *** Setting up the host certificate *** // - it should be issued in the name that matches the hostname (such as domain.com) or its IP address (1.2.3.4), // - it must have an associated private key - so likely is provided in PFX or PEM format. mgr.ImportFromFile("CertTLSServer.pfx", "password"); server.ServerCertificates.Add(mgr.Certificate); // The CA certificate: this is to help connecting clients validate the chain. mgr.ImportFromFile("CertCA.cer", ""); server.ServerCertificates.Add(mgr.Certificate); // *** Adjusting finer-grained TLS settings *** // - session resumption (allows for faster handshakes for connections from the same origin) server.TLSSettings.UseSessionResumption = true; // - secure configuration server.TLSSettings.BaseConfiguration = stpcHighlySecure; // - disabling a cipher suite we dislike (just because we can): server.TLSSettings.Ciphersuites = "-DHE_RSA_AES128_SHA" // *** Configuring versions *** // The default version setting at the time of writing (May 2021) is TLS 1.2 and TLS 1.3, // but that may change in future versions. The following tune-up additionally activates TLS 1.1 and TLS 1.0, // which weakens security, but may be necessary to accept connections from older clients: server.TLSSettings.Versions = csbTLS1 | csbTLS11 | csbTLS12 | csbTLS13;

  • Now that your server has been fully set up, activate it: server.Start();
  • Once the Start call completes, your server can accept connections from clients. Each accepted connection runs in a separate thread, not interfering with each other or your own threads. The server communicates its ongoing activities to your application by throwing events. The lower-level events deal with the underlying network connections:
    • Accept notifies you about a new incoming connection. This event lets you accept or reject it.
    • Connect notifies your code of an accepted connection. This event introduces a ConnectionID, a unique identifier that you can use to track the connection throughout its lifetime.
    • Disconnect notifies you that a connection has been closed.
    • TLSEstablished and TLSShutdown let you know that a TLS layer has been activated/deactivated.
    • Error reports a protocol or other error.
    • CertificateValidate communicates the client authentication event to your code. To access the certificate(s) provided by the authenticating client, pin the client and use the PinnedClientChain property to access its chain: server.PinClient(e.ConnectionID); e.Accept = CheckCert(server.PinnedClientChain);
    The higher-level events let you know what is going on at the HTTP layer, and let you serve your content on the fly:
    • GetRequest fires when a GET request is received from a connection.
    • PostRequest notifies your code about a POST request. Similar events for other HTTP request types (e.g. DELETE) are also available.
    • AuthAttempt fires when a connected client tries HTTP authentication (such as basic or digest) and let you accept or reject it.

    Note: every such event is thrown from the respective connection thread, so make sure you use some synchronization mechanism when dispatching the events to your UI thread - for example, by updating UI controls by sending a Window Message rather than accessing the controls directly.

  • Use GetRequestStream, GetRequestString, and GetRequestHeader methods inside your GetRequest and similar event handlers to access request parameters and content supplied by the client. Use SetResponseHeader and SetResponseString method to supply the response content: void serverGetRequest(object sender, EventArgs e) { e.Handled = true; // telling the Httpserver object that we will supply our own content if (e.URI == "/index.html") { server.SetResponseStatus(e.ConnectionID, 200); server.SetResponseString(e.ConnectionID, "<html><head></head><body>Hello!</body></html>", "text/html"); } else if (e.URI == "/secretfile") { server.SetResponseStatus(e.ConnectionID, 200); server.SetResponseBytes(e.ConnectionID, m_secretData, "application/pdf"); } else if (e.URI.StartsWith("/static/")) { e.Handled = false; // letting the server process the content and flush the file from the home directory (c:\inetpub\mywebserver) } else { Flush404Page(e.ConnectionID); } }
  • To stop the server, call Stop: server.Stop();

HTTPServer and SSLLabs

Qualys SSLLabs (https://www.ssllabs.com/) has been long known as a comprehensive TLS site quality checking tool. It is now a de-facto standard and a sign of good taste to aspire for the best SSLLabs test result for your web presence. SecureBlackbox developers share that effort and want to help their customers build secure TLS endpoints that can be independently endorsed by third-party evaluators like SSLLabs.

Having said that, when assessing SecureBlackbox TLS-capable servers that are configured to use their default setup, you will often end up with a lower SSLLabs score than you could have. There is a simple reason for that. Being a vendor of a library used by thousands of customers, we have to find a delicate balance between security, compatibility, and keeping class contracts rolling from one product build to another. This makes the default configuration of the components not the strongest possible. To put it simple, we could easily make the default component setup bulletproof - but having done that, we would have likely ended up with hundreds of customers stuck with legacy environments (and there are a lot of them around) losing their connectivity.

If you are looking at achieving the best score at SSLLabs, please read on. The below guidance aims to help you tune up the server component in the way that should give you an A score.

First, switch your server to the highly secure base configuration: server.TLSSettings.BaseConfiguration = stpcHighlySecure; This should immediately give you an A, or a T if your server certificate does not chain up to a trusted anchor.

Some warnings will still be included in the report. One of those is related to the session resumption. It is normally shown in orange:

Session resumption (caching): No (IDs assigned but not accepted)

This literally means that the server is not configured to re-use older sessions, which may put extra computational burden on clients and itself. Use the following setting to enable session caching: server.TLSSettings.UseSessionResumption = true;

Besides, the report may show that there are some weak ciphersuites. All of those should be shown in orange (there should not be any reds; if there are - please let us know), which means they are only relatively weak. While switching them off may affect the interoperability level of the server, you may still want to do that. By using the below approach you can disable individual ciphersuites selectively. For example, if the report shows that TLS_DHE_RSA_WITH_AES128_CBC_SHA256 and TLS_DHE_RSA_WITH_AES256_CBC_SHA256 are weak (because of their CBC mode), you can disable them in the following way: server.TLSSettings.Ciphersuites = '-DHE_RSA_AES128_SHA256;-DHE_RSA_AES256_SHA256'; Note that SBB uses slightly different, simpler naming convention by dropping unnecessart WITH and CBC. Let us know if you have difficulties matching the cipher suite names.

Property List


The following is the full list of the properties of the component with short descriptions. Click on the links for further details.

ActiveIndicates whether the server is active and is listening to new connections.
AllowKeepAliveEnables or disables keep-alive mode.
AuthBasicEnables or disables basic authentication.
AuthDigestEnables or disables digest authentication.
AuthDigestExpireSpecifies digest expiration time for digest authentication.
AuthRealmSpecifies authentication realm for digest and NTLM authentication.
BoundPortIndicates the bound listening port.
ClientAuthEnables or disables certificate-based client authentication.
CompressionLevelThe default compression level to use.
DocumentRootThe document root of the server.
ErrorOriginIndicates the endpoint where the error originates from.
ErrorSeverityThe severity of the error that happened.
ExternalCryptoProvides access to external signing and DC parameters.
FIPSModeReserved.
HandshakeTimeoutSpecifies the handshake timeout in milliseconds.
HostThe host to bind the listening port to.
PinnedClientPopulates the pinned client details.
PinnedClientChainContains the certificate chain of the pinned client.
PortSpecifies the port number to listen for connections on.
PortRangeFromSpecifies the lower limit of the listening port range for incoming connections.
PortRangeToSpecifies the upper limit of the listening port range for incoming connections.
ServerCertificatesThe server's TLS certificates.
SessionTimeoutSpecifies the default session timeout value in milliseconds.
SocketSettingsManages network connection settings.
TLSSettingsManages TLS layer settings.
UseChunkedTransferEnables chunked transfer.
UseCompressionEnables or disables server-side compression.
UsersProvides a list of registered users.
WebsiteNameSpecifies the web site name to use in the certificate.

Method List


The following is the full list of the methods of the component with short descriptions. Click on the links for further details.

ConfigSets or retrieves a configuration setting.
DoActionPerforms an additional action.
DropClientTerminates a client connection.
GetRequestBytesReturns the contents of the client's HTTP request.
GetRequestHeaderReturns a request header value.
GetRequestStreamReturns the contents of the client's HTTP request.
GetRequestStringReturns the contents of the client's HTTP request.
GetRequestUsernameReturns the username for a connection.
GetResponseHeaderReturns a response header value.
ListClientsEnumerates the connected clients.
PinClientTakes a snapshot of the connection's properties.
ProcessGenericRequestProcesses a generic HTTP request.
ProcessGenericRequestStreamProcesses a generic HTTP request from a stream.
SetResponseBytesSets a byte array to be served as a response.
SetResponseFileSets a file to be served as a response.
SetResponseHeaderSets a response header.
SetResponseStatusSets an HTTP status to be sent with the response.
SetResponseStreamSets a stream to be served as a response.
SetResponseStringSets a string to be served as a response.
StartStarts the server.
StopStops the server.

Event List


The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.

AcceptReports an incoming connection.
AuthAttemptFires when a connected client makes an authentication attempt.
ConnectReports an accepted connection.
CustomRequestReports a request of a non-standard type (method).
DataSupplies a data chunk received within a POST or PUT upload.
DeleteRequestReports a DELETE request.
DisconnectFires to report a disconnected client.
ErrorInformation about errors during data delivery.
ExternalSignHandles remote or external signing initiated by the server protocol.
FileErrorReports a file access error to the application.
GetRequestReports a GET request.
HeadersPreparedFires when the response headers have been formed and are ready to be sent to the server.
HeadRequestReports a HEAD request.
NotificationThis event notifies the application about an underlying control flow event.
OptionsRequestReports an OPTIONS request.
PatchRequestReports a PATCH request.
PostRequestReports a POST request.
PutRequestReports a PUT request.
ResourceAccessReports an attempt to access a resource.
TLSCertValidateFires when a client certificate needs to be validated.
TLSEstablishedReports the setup of a TLS session.
TLSHandshakeFires when a newly established client connection initiates a TLS handshake.
TLSPSKRequests a pre-shared key for TLS-PSK.
TLSShutdownReports closure of a TLS session.
TraceRequestReports a TRACE request.

Config Settings


The following is a list of config settings for the component with short descriptions. Click on the links for further details.

AllowOptionsResponseWithoutAuthEnables unauthenticated responses to OPTIONS requests.
ClientAuthEnables or disables certificate-based client authentication.
DualStackAllows the use of ip4 and ip6 simultaneously.
HomePageSpecifies the home page resource name.
HostThe host to bind to.
RequestFilterThe request string modifier.
ServerSSLDHKeyLengthSets the size of the TLS DHE key exchange group.
TempPathPath for storing temporary files.
WebsiteNameThe website name for the TLS certificate.
CheckKeyIntegrityBeforeUseEnables or disable private key integrity check before use.
CookieCachingSpecifies whether a cookie cache should be used for HTTP(S) transports.
CookiesGets or sets local cookies for the component.
DefDeriveKeyIterationsSpecifies the default key derivation algorithm iteration count.
EnableClientSideSSLFFDHEEnables or disables finite field DHE key exchange support in TLS clients.
GlobalCookiesGets or sets global cookies for all the HTTP transports.
HttpUserAgentSpecifies the user agent name to be used by all HTTP clients.
LogDestinationSpecifies the debug log destination.
LogDetailsSpecifies the debug log details to dump.
LogFileSpecifies the debug log filename.
LogFiltersSpecifies the debug log filters.
LogFlushModeSpecifies the log flush mode.
LogLevelSpecifies the debug log level.
LogMaxEventCountSpecifies the maximum number of events to cache before further action is taken.
LogRotationModeSpecifies the log rotation mode.
MaxASN1BufferLengthSpecifies the maximal allowed length for ASN.1 primitive tag data.
MaxASN1TreeDepthSpecifies the maximal depth for processed ASN.1 trees.
OCSPHashAlgorithmSpecifies the hash algorithm to be used to identify certificates in OCSP requests.
StaticDNSSpecifies whether static DNS rules should be used.
StaticIPAddress[domain]Gets or sets an IP address for the specified domain name.
StaticIPAddressesGets or sets all the static DNS rules.
TagAllows to store any custom data.
TLSSessionGroupSpecifies the group name of TLS sessions to be used for session resumption.
TLSSessionLifetimeSpecifies lifetime in seconds of the cached TLS session.
TLSSessionPurgeIntervalSpecifies how often the session cache should remove the expired TLS sessions.
UseOwnDNSResolverSpecifies whether the client components should use own DNS resolver.
UseSharedSystemStoragesSpecifies whether the validation engine should use a global per-process copy of the system certificate stores.
UseSystemOAEPAndPSSEnforces or disables the use of system-driven RSA OAEP and PSS computations.
UseSystemRandomEnables or disables the use of the OS PRNG.

Active Property (HTTPServer Component)

Indicates whether the server is active and is listening to new connections.

Syntax

property Active: Boolean read get_Active;

Default Value

false

Remarks

This read-only property returns True if the server is listening to incoming connections.

This property is read-only and not available at design time.

AllowKeepAlive Property (HTTPServer Component)

Enables or disables keep-alive mode.

Syntax

property AllowKeepAlive: Boolean read get_AllowKeepAlive write set_AllowKeepAlive;

Default Value

true

Remarks

Use this property to enable or disable the keep-alive connection mode. If keep-alive is enabled, clients that choose to use it may stay connected for a while.

AuthBasic Property (HTTPServer Component)

Enables or disables basic authentication.

Syntax

property AuthBasic: Boolean read get_AuthBasic write set_AuthBasic;

Default Value

false

Remarks

Use this property to enable or disable basic user authentication in the HTTP server.

AuthDigest Property (HTTPServer Component)

Enables or disables digest authentication.

Syntax

property AuthDigest: Boolean read get_AuthDigest write set_AuthDigest;

Default Value

false

Remarks

Use this property to enable or disable digest-based user authentication in the HTTP server.

AuthDigestExpire Property (HTTPServer Component)

Specifies digest expiration time for digest authentication.

Syntax

property AuthDigestExpire: Integer read get_AuthDigestExpire write set_AuthDigestExpire;

Default Value

20

Remarks

Use this property to specify the digest expiration time for digest authentication, in seconds.

AuthRealm Property (HTTPServer Component)

Specifies authentication realm for digest and NTLM authentication.

Syntax

property AuthRealm: String read get_AuthRealm write set_AuthRealm;

Default Value

'SecureBlackbox'

Remarks

Specifies authentication realm for digest and NTLM authentication types.

BoundPort Property (HTTPServer Component)

Indicates the bound listening port.

Syntax

property BoundPort: Integer read get_BoundPort;

Default Value

0

Remarks

Check this property to find out the port that has been allocated to the server by the system. The bound port always equals Port if it is provided, or is allocated dynamically if configured to fall in the range between PortRangeFrom and PortRangeTo constraints.

This property is read-only and not available at design time.

ClientAuth Property (HTTPServer Component)

Enables or disables certificate-based client authentication.

Syntax

property ClientAuth: TsbxClientAuthTypes read get_ClientAuth write set_ClientAuth;
TsbxClientAuthTypes = ( ccatNoAuth, ccatRequestCert, ccatRequireCert );

Default Value

ccatNoAuth

Remarks

Set this property to true to tune up the client authentication type: ccatNoAuth = 0; ccatRequestCert = 1; ccatRequireCert = 2;

CompressionLevel Property (HTTPServer Component)

The default compression level to use.

Syntax

property CompressionLevel: Integer read get_CompressionLevel write set_CompressionLevel;

Default Value

6

Remarks

Assign this property with the compression level (1 to 9) to apply for gzipped responses. 1 stands for the lightest but fastest compression, and 9 for the best but the slowest.

DocumentRoot Property (HTTPServer Component)

The document root of the server.

Syntax

property DocumentRoot: String read get_DocumentRoot write set_DocumentRoot;

Default Value

''

Remarks

Use this property to specify a local folder which is going to be the server's document root (the mount point of the virtual home directory).

ErrorOrigin Property (HTTPServer Component)

Indicates the endpoint where the error originates from.

Syntax

property ErrorOrigin: TsbxErrorOrigins read get_ErrorOrigin write set_ErrorOrigin;
TsbxErrorOrigins = ( eoLocal, eoRemote );

Default Value

eoLocal

Remarks

Use this property to establish whether the reported error originates from a local or remote endpoint.

eoLocal0
eoRemote1

This property is not available at design time.

ErrorSeverity Property (HTTPServer Component)

The severity of the error that happened.

Syntax

property ErrorSeverity: TsbxErrorSeverities read get_ErrorSeverity write set_ErrorSeverity;
TsbxErrorSeverities = ( esInfo, esWarning, esFatal );

Default Value

esWarning

Remarks

Use this property to establish whether the error is fatal.

esWarning1
esFatal2

This property is not available at design time.

ExternalCrypto Property (HTTPServer Component)

Provides access to external signing and DC parameters.

Syntax

property ExternalCrypto: TsbxExternalCrypto read get_ExternalCrypto;

Remarks

Use this property to tune-up remote cryptography settings. SecureBlackbox supports two independent types of external cryptography: synchronous (based on the ExternalSign event) and asynchronous (based on the DC protocol and the DCAuth signing component).

This property is read-only.

Please refer to the ExternalCrypto type for a complete list of fields.

FIPSMode Property (HTTPServer Component)

Reserved.

Syntax

property FIPSMode: Boolean read get_FIPSMode write set_FIPSMode;

Default Value

false

Remarks

This property is reserved for future use.

HandshakeTimeout Property (HTTPServer Component)

Specifies the handshake timeout in milliseconds.

Syntax

property HandshakeTimeout: Integer read get_HandshakeTimeout write set_HandshakeTimeout;

Default Value

20000

Remarks

Use this property to set the TLS handshake timeout.

Host Property (HTTPServer Component)

The host to bind the listening port to.

Syntax

property Host: String read get_Host write set_Host;

Default Value

''

Remarks

Use this property to specify the IP address on which to listen to incoming connections.

PinnedClient Property (HTTPServer Component)

Populates the pinned client details.

Syntax

property PinnedClient: TsbxTLSClientEntry read get_PinnedClient;

Remarks

Use this property to access the details of the client connection previously pinned with PinClient method.

This property is read-only and not available at design time.

Please refer to the TLSClientEntry type for a complete list of fields.

PinnedClientChain Property (HTTPServer Component)

Contains the certificate chain of the pinned client.

Syntax

property PinnedClientChain: TsbxCertificateList read get_PinnedClientChain;

Remarks

Use this property to access the certificate chain of the client connection pinned previously with a PinClient call.

This property is read-only and not available at design time.

Please refer to the Certificate type for a complete list of fields.

Port Property (HTTPServer Component)

Specifies the port number to listen for connections on.

Syntax

property Port: Integer read get_Port write set_Port;

Default Value

80

Remarks

Use this property to specify the port number to listen to connections on. Standard port numbers are 80 for an HTTP server, and 443 for an HTTPS server.

Alternatively, you may specify the acceptable range of listening ports via PortRangeFrom and PortRangeTo properties. In this case the port will be allocated within the requested range by the operating system, and reported in BoundPort.

PortRangeFrom Property (HTTPServer Component)

Specifies the lower limit of the listening port range for incoming connections.

Syntax

property PortRangeFrom: Integer read get_PortRangeFrom write set_PortRangeFrom;

Default Value

0

Remarks

Use this property to specify the lower limit of the port range to listen to connections on. When a port range is used to specify the listening port (as opposed to a fixed value provided via Port), the port will be allocated within the requested range by the operating system, and reported in BoundPort.

Note that this property is ignored if the Port property is set to a non-zero value, in which case the server always aims to listen on that fixed port.

PortRangeTo Property (HTTPServer Component)

Specifies the upper limit of the listening port range for incoming connections.

Syntax

property PortRangeTo: Integer read get_PortRangeTo write set_PortRangeTo;

Default Value

0

Remarks

Use this property to specify the upper limit of the port range to listen to connections on. When a port range is used to specify the listening port (as opposed to a fixed value provided via Port), the port will be allocated within the requested range by the operating system, and reported in BoundPort.

Note that this property is ignored if the Port property is set to a non-zero value, in which case the server always aims to listen on that fixed port.

ServerCertificates Property (HTTPServer Component)

The server's TLS certificates.

Syntax

property ServerCertificates: TsbxCertificateList read get_ServerCertificates write set_ServerCertificates;

Remarks

Use this property to provide a list of TLS certificates for the server endpoint.

A TLS endpoint needs a certificate to be able to accept TLS connections. At least one of the certificates in the collection - the endpoint certificate - must have a private key associated with it.

The collection may include more than one endpoint certificate, and more than one chain. A typical usage scenario is to include two chains (ECDSA and RSA), to cater for clients with different cipher suite preferences.

This property is not available at design time.

Please refer to the Certificate type for a complete list of fields.

SessionTimeout Property (HTTPServer Component)

Specifies the default session timeout value in milliseconds.

Syntax

property SessionTimeout: Integer read get_SessionTimeout write set_SessionTimeout;

Default Value

360000

Remarks

Specifies the period of inactivity (in milliseconds) after which the connection will be terminated by the server.

SocketSettings Property (HTTPServer Component)

Manages network connection settings.

Syntax

property SocketSettings: TsbxSocketSettings read get_SocketSettings;

Remarks

Use this property to tune up network connection parameters.

This property is read-only.

Please refer to the SocketSettings type for a complete list of fields.

TLSSettings Property (HTTPServer Component)

Manages TLS layer settings.

Syntax

property TLSSettings: TsbxTLSSettings read get_TLSSettings;

Remarks

Use this property to tune up the TLS layer parameters.

This property is read-only.

Please refer to the TLSSettings type for a complete list of fields.

UseChunkedTransfer Property (HTTPServer Component)

Enables chunked transfer.

Syntax

property UseChunkedTransfer: Boolean read get_UseChunkedTransfer write set_UseChunkedTransfer;

Default Value

false

Remarks

Use this property to enable chunked content encoding.

UseCompression Property (HTTPServer Component)

Enables or disables server-side compression.

Syntax

property UseCompression: Boolean read get_UseCompression write set_UseCompression;

Default Value

false

Remarks

Use this property to enable or disable server-side content compression.

Users Property (HTTPServer Component)

Provides a list of registered users.

Syntax

property Users: TsbxUserAccountList read get_Users write set_Users;

Remarks

Assign a list of 'known' users to this property to automate authentication handling by the component.

This property is not available at design time.

Please refer to the UserAccount type for a complete list of fields.

WebsiteName Property (HTTPServer Component)

Specifies the web site name to use in the certificate.

Syntax

property WebsiteName: String read get_WebsiteName write set_WebsiteName;

Default Value

'SecureBlackbox'

Remarks

If using an internally-generated certificate, use this property to specify the web site name to be included as a common name. A typical common name consists of the host name, such as '192.168.10.10' or 'domain.com'.

Config Method (HTTPServer Component)

Sets or retrieves a configuration setting.

Syntax

function Config(ConfigurationString: String): String;

Remarks

Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

DoAction Method (HTTPServer Component)

Performs an additional action.

Syntax

function DoAction(ActionID: String; ActionParams: String): String;

Remarks

DoAction is a generic method available in every component. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.

The unique identifier (case insensitive) of the action is provided in the ActionID parameter.

ActionParams contains the value of a single parameter, or a list of multiple parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....

DropClient Method (HTTPServer Component)

Terminates a client connection.

Syntax

procedure DropClient(ConnectionId: Int64; Forced: Boolean);

Remarks

Call this method to shut down a connected client. Forced indicates whether the connection should be closed in a graceful manner.

GetRequestBytes Method (HTTPServer Component)

Returns the contents of the client's HTTP request.

Syntax

function GetRequestBytes(ConnectionId: Int64; RequestFilter: String): TBytes;

Remarks

Use this method to get the body of the client's HTTP request. Note that the body of GET and HEAD requests is empty. The method returns the requested content.

The RequestFilter parameter allows you to select the element(s) that you would like to get. An empty request filter makes the whole body to be returned. The following request filters are currently supported:

paramsRequest query parameters only.
params[Index]A specific request parameter, by index.
params['Name']A specific request parameter, by name.
parts[Index]The body of a particular part of a multipart message.

GetRequestHeader Method (HTTPServer Component)

Returns a request header value.

Syntax

function GetRequestHeader(ConnectionId: Int64; HeaderName: String): String;

Remarks

Use this method to get the value of a request header. A good place to call this method is a request-marking event, such as GetRequest or PostRequest.

GetRequestStream Method (HTTPServer Component)

Returns the contents of the client's HTTP request.

Syntax

procedure GetRequestStream(ConnectionId: Int64; RequestFilter: String; OutputStream: TStream);

Remarks

Use this method to get the body of the client's HTTP request into a stream. Note that the body of GET and HEAD requests is empty.

The RequestFilter parameter allows you to select the element(s) of the requests that you would like to get. An empty request filter makes the whole body to be returned. The following request filters are currently supported:

paramsRequest query parameters only.
params[Index]A specific request parameter, by index.
params['Name']A specific request parameter, by name.
parts[Index]The body of a particular part of a multipart message.

GetRequestString Method (HTTPServer Component)

Returns the contents of the client's HTTP request.

Syntax

function GetRequestString(ConnectionId: Int64; RequestFilter: String): String;

Remarks

Use this method to get the body of the client's HTTP request to a string. Note that the body of GET and HEAD requests is empty.

The RequestFilter parameter allows you to select the element(s) of the requests that you would like to get. An empty request filter makes the whole body to be returned. The following request filters are currently supported:

paramsRequest query parameters only.
params[Index]A specific request parameter, by index.
params['Name']A specific request parameter, by name.
parts[Index]The body of a particular part of a multipart message.

GetRequestUsername Method (HTTPServer Component)

Returns the username for a connection.

Syntax

function GetRequestUsername(ConnectionId: Int64): String;

Remarks

Use this method to obtain a username for an active connection. The method will return an empty string if no authentication has been performed on the connection.

GetResponseHeader Method (HTTPServer Component)

Returns a response header value.

Syntax

function GetResponseHeader(ConnectionId: Int64; HeaderName: String): String;

Remarks

Use this method to get the value of a response header. A good place to call this method is HeadersPrepared event. Call the method with empty HeaderName to get the whole response header.

ListClients Method (HTTPServer Component)

Enumerates the connected clients.

Syntax

function ListClients(): String;

Remarks

This method enumerates the connected clients. It returns a list of strings, with each string being of 'ConnectionID|Address|Port' format, and representing a single connection.

PinClient Method (HTTPServer Component)

Takes a snapshot of the connection's properties.

Syntax

procedure PinClient(ConnectionId: Int64);

Remarks

Use this method to take a snapshot of a connected client. The captured properties are populated in PinnedClient and PinnedClientChain properties.

ProcessGenericRequest Method (HTTPServer Component)

Processes a generic HTTP request.

Syntax

function ProcessGenericRequest(ConnectionId: Int64; RequestBytes: TBytes): TBytes;

Remarks

This method processes a generic HTTP request and produces a response. Use it to generate HTTP responses for requests obtained externally, out of the default HTTP channel.

This method respects all current settings of the server object, and invokes the corresponding events to consult about the request and response details with the application. ConnectionId allows to identify the request in the events.

The method returns the complete HTTP response including HTTP headers.

ProcessGenericRequestStream Method (HTTPServer Component)

Processes a generic HTTP request from a stream.

Syntax

procedure ProcessGenericRequestStream(ConnectionId: Int64; RequestHeaders: String; RequestData: TStream; ResponseData: TStream);

Remarks

This method processes a generic HTTP request and produces a response. Use it to generate HTTP responses for requests obtained externally, out of the default HTTP channel.

The method expects the request headers in RequestHeaders, and the request data is read from RequestData stream. Once the request is processed, the response headers are reported through HeadersPrepared event before any data is written to ResponseData stream. ConnectionId allows to identify the request in the events.

This method respects all current settings of the server object, and invokes the corresponding events to consult about the request and response details with the application.

SetResponseBytes Method (HTTPServer Component)

Sets a byte array to be served as a response.

Syntax

procedure SetResponseBytes(ConnectionId: Int64; Bytes: TBytes; ContentType: String; ResponseFilter: String);

Remarks

Use this property to provide the response content in a byte array. The ResponseFilter parameter lets you select the element of the response that you would like to set with this call. The empty filter stands for the entire response body. The only response filter currently supported is parts:

parts[Index]The body of a particular part of a multipart response.

SetResponseFile Method (HTTPServer Component)

Sets a file to be served as a response.

Syntax

procedure SetResponseFile(ConnectionId: Int64; FileName: String; ContentType: String; ResponseFilter: String);

Remarks

Use this property to provide the response content in a file. The ResponseFilter parameter lets you select the element of the response that you would like to set with this call. The empty filter stands for the entire response body. The only response filter currently supported is parts:

parts[Index]The body of a particular part of a multipart response.

SetResponseHeader Method (HTTPServer Component)

Sets a response header.

Syntax

function SetResponseHeader(ConnectionId: Int64; HeaderName: String; Value: String): Boolean;

Remarks

Use this method to set a response header. A good place to call this method is a request-marking event, such as GetRequest or PostRequest.

SetResponseStatus Method (HTTPServer Component)

Sets an HTTP status to be sent with the response.

Syntax

procedure SetResponseStatus(ConnectionId: Int64; StatusCode: Integer);

Remarks

Use this method to set an HTTP status for the request. A good place to call this method is a request-marking event, such as GetRequest.

SetResponseStream Method (HTTPServer Component)

Sets a stream to be served as a response.

Syntax

procedure SetResponseStream(ConnectionId: Int64; DataStream: TStream; CloseStream: Boolean; ContentType: String; ResponseFilter: String);

Remarks

Use this property to provide the response content in a stream. Set CloseStream to indicate that the stream should be disposed of once sent. The ResponseFilter parameter lets you select the element of the response that you would like to set with this call. The empty filter stands for the entire response body. The only response filter currently supported is parts:

parts[Index]The body of a particular part of a multipart response.

SetResponseString Method (HTTPServer Component)

Sets a string to be served as a response.

Syntax

procedure SetResponseString(ConnectionId: Int64; DataStr: String; ContentType: String; ResponseFilter: String);

Remarks

Use this property to provide the response content in a string. The ResponseFilter parameter lets you select the element of the response that you would like to set with this call. The empty filter stands for the entire response body. The only response filter currently supported is parts:

parts[Index]The body of a particular part of a multipart response.

Start Method (HTTPServer Component)

Starts the server.

Syntax

procedure Start();

Remarks

Use this method to activate the server and start listening to incoming connections.

Stop Method (HTTPServer Component)

Stops the server.

Syntax

procedure Stop();

Remarks

Call this method to stop listening to incoming connections and deactivate the server.

Accept Event (HTTPServer Component)

Reports an incoming connection.

Syntax

type TAcceptEvent = procedure (
  Sender: TObject;
  const RemoteAddress: String;
  RemotePort: Integer;
  var Accept: Boolean
) of Object;

property OnAccept: TAcceptEvent read FOnAccept write FOnAccept;

Remarks

This event is fired when a new connection from RemoteAddress:RemotePort is ready to be accepted. Use the Accept parameter to accept or decline it.

Subscribe to Connect event to be notified of every connection that has been set up.

AuthAttempt Event (HTTPServer Component)

Fires when a connected client makes an authentication attempt.

Syntax

type TAuthAttemptEvent = procedure (
  Sender: TObject;
  ConnectionID: Int64;
  const HTTPMethod: String;
  const URI: String;
  const AuthMethod: String;
  const Username: String;
  const Password: String;
  var Allow: Boolean
) of Object;

property OnAuthAttempt: TAuthAttemptEvent read FOnAuthAttempt write FOnAuthAttempt;

Remarks

The component fires this event whenever a client attempts to authenticate itself. Use the Allow parameter to let the client through.

ConnectionID contains the unique session identifier for that client, HTTPMethod specifies the HTTP method (GET, POST, etc.) used to access the URI resource, AuthMethod specifies the authentication method, and Username and Password contain the professed credentials.

Connect Event (HTTPServer Component)

Reports an accepted connection.

Syntax

type TConnectEvent = procedure (
  Sender: TObject;
  ConnectionID: Int64;
  const RemoteAddress: String;
  RemotePort: Integer
) of Object;

property OnConnect: TConnectEvent read FOnConnect write FOnConnect;

Remarks

The component fires this event to report that a new connection has been established. ConnectionId indicates the unique ID assigned to this connection. The same ID will be supplied to any other events related to this connection, such as GetRequest or AuthAttempt.

CustomRequest Event (HTTPServer Component)

Reports a request of a non-standard type (method).

Syntax

type TCustomRequestEvent = procedure (
  Sender: TObject;
  ConnectionID: Int64;
  const URI: String;
  const HTTPMethod: String;
  var Handled: Boolean
) of Object;

property OnCustomRequest: TCustomRequestEvent read FOnCustomRequest write FOnCustomRequest;

Remarks

The component fires this event to notify the application about a non-standard request received from the client. The HTTPMethod contains the non-standard HTTP method.

ConnectionID indicates the connection that sent the request and URI suggests the requested resource.

Set Handled to true to indicate that your application's code will take care of the request. The application does it by providing the necessary details via SetResponseStatus, SetResponseHeader, and SetResponseFile methods. If the returned value of Handled is false, the server will try to take care of the request automatically by searching for the requested resource in DocumentRoot.

Data Event (HTTPServer Component)

Supplies a data chunk received within a POST or PUT upload.

Syntax

type TDataEvent = procedure (
  Sender: TObject;
  ConnectionID: Int64;
  Buffer: TBytes
) of Object;

property OnData: TDataEvent read FOnData write FOnData;

Remarks

This event is fired to supply another piece of data received within a POST or PUT upload operation. This event may fire multiple times during a single request upload to pass the uploaded data to the application chunk-by-chunk.

DeleteRequest Event (HTTPServer Component)

Reports a DELETE request.

Syntax

type TDeleteRequestEvent = procedure (
  Sender: TObject;
  ConnectionID: Int64;
  const URI: String;
  var Handled: Boolean
) of Object;

property OnDeleteRequest: TDeleteRequestEvent read FOnDeleteRequest write FOnDeleteRequest;

Remarks

The component fires this event to notify the application about a DELETE request received from the client.

ConnectionID indicates the connection that sent the request and URI suggests the requested resource.

Set Handled to true to indicate that your application's code will take care of the request. The application does it by providing the necessary details via SetResponseStatus, SetResponseHeader, and SetResponseFile methods. If the returned value of Handled is false, the server will try to take care of the request automatically by searching for the requested resource in DocumentRoot.

Disconnect Event (HTTPServer Component)

Fires to report a disconnected client.

Syntax

type TDisconnectEvent = procedure (
  Sender: TObject;
  ConnectionID: Int64
) of Object;

property OnDisconnect: TDisconnectEvent read FOnDisconnect write FOnDisconnect;

Remarks

The component fires this event when a connected client disconnects.

Error Event (HTTPServer Component)

Information about errors during data delivery.

Syntax

type TErrorEvent = procedure (
  Sender: TObject;
  ConnectionID: Int64;
  ErrorCode: Integer;
  const Description: String
) of Object;

property OnError: TErrorEvent read FOnError write FOnError;

Remarks

The event is fired in case of exceptional conditions during message processing.

ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the HTTPS section.

ExternalSign Event (HTTPServer Component)

Handles remote or external signing initiated by the server protocol.

Syntax

type TExternalSignEvent = procedure (
  Sender: TObject;
  ConnectionID: Int64;
  const OperationId: String;
  const HashAlgorithm: String;
  const Pars: String;
  const Data: String;
  var SignedData: String
) of Object;

property OnExternalSign: TExternalSignEvent read FOnExternalSign write FOnExternalSign;

Remarks

Assign a handler to this event if you need to delegate a low-level signing operation to an external, remote, or custom signing engine. Depending on the settings, the handler will receive a hashed or unhashed value to be signed.

The event handler must pass the value of Data to the signer, obtain the signature, and pass it back to the component via the SignedData parameter.

OperationId provides a comment about the operation and its origin. It depends on the exact component being used, and may be empty. HashAlgorithm specifies the hash algorithm being used for the operation, and Pars contains algorithm-dependent parameters.

The component uses base16 (hex) encoding for the Data, SignedData, and Pars parameters. If your signing engine uses a different input and output encoding, you may need to decode and/or encode the data before and/or after the signing.

A sample MD5 hash encoded in base16: a0dee2a0382afbb09120ffa7ccd8a152 - lower case base16 A0DEE2A0382AFBB09120FFA7CCD8A152 - upper case base16

A sample event handler that uses the .NET RSACryptoServiceProvider class may look like the following: signer.OnExternalSign += (s, e) => { var cert = new X509Certificate2("cert.pfx", "", X509KeyStorageFlags.Exportable); var key = (RSACryptoServiceProvider)cert.PrivateKey; var dataToSign = e.Data.FromBase16String(); var signedData = key.SignHash(dataToSign, "2.16.840.1.101.3.4.2.1"); e.SignedData = signedData.ToBase16String(); };

FileError Event (HTTPServer Component)

Reports a file access error to the application.

Syntax

type TFileErrorEvent = procedure (
  Sender: TObject;
  ConnectionID: Int64;
  const FileName: String;
  ErrorCode: Integer
) of Object;

property OnFileError: TFileErrorEvent read FOnFileError write FOnFileError;

Remarks

The component uses this event to report a file access errors. FileName and ErrorCode contain the file path and the error code respectively.

GetRequest Event (HTTPServer Component)

Reports a GET request.

Syntax

type TGetRequestEvent = procedure (
  Sender: TObject;
  ConnectionID: Int64;
  const URI: String;
  var Handled: Boolean
) of Object;

property OnGetRequest: TGetRequestEvent read FOnGetRequest write FOnGetRequest;

Remarks

The component fires this event to notify the application about a GET request received from the client.

ConnectionID indicates the connection that sent the request and URI suggests the requested resource.

Set Handled to true to indicate that your application's code will take care of the request. The application does it by providing the necessary details via SetResponseStatus, SetResponseHeader, SetResponseFile or SetResponseString methods. If the returned value of Handled is false, the server will try to take care of the request automatically by searching for the requested resource in DocumentRoot.

HeadersPrepared Event (HTTPServer Component)

Fires when the response headers have been formed and are ready to be sent to the server.

Syntax

type THeadersPreparedEvent = procedure (
  Sender: TObject;
  ConnectionID: Int64
) of Object;

property OnHeadersPrepared: THeadersPreparedEvent read FOnHeadersPrepared write FOnHeadersPrepared;

Remarks

The component fires this event when the response headers are ready to be sent to the server. ConnectionID indicates the connection that processed the request.

Use GetResponseHeader method with an empty header name to get the whole response header.

HeadRequest Event (HTTPServer Component)

Reports a HEAD request.

Syntax

type THeadRequestEvent = procedure (
  Sender: TObject;
  ConnectionID: Int64;
  const URI: String;
  var Handled: Boolean
) of Object;

property OnHeadRequest: THeadRequestEvent read FOnHeadRequest write FOnHeadRequest;

Remarks

The component fires this event to notify the application about a HEAD request received from the client.

ConnectionID indicates the connection that sent the request and URI suggests the requested resource.

Set Handled to true to indicate that your application's code will take care of the request. The application does it by providing the necessary details via SetResponseStatus, SetResponseHeader, and SetResponseFile methods. If the returned value of Handled is false, the server will try to take care of the request automatically by searching for the requested resource in DocumentRoot.

Notification Event (HTTPServer Component)

This event notifies the application about an underlying control flow event.

Syntax

type TNotificationEvent = procedure (
  Sender: TObject;
  const EventID: String;
  const EventParam: String
) of Object;

property OnNotification: TNotificationEvent read FOnNotification write FOnNotification;

Remarks

The component fires this event to let the application know about some event, occurrence, or milestone in the component. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.

The unique identifier of the event is provided in the EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the component, the exact action it is performing, or the document being processed, one or both may be omitted.

OptionsRequest Event (HTTPServer Component)

Reports an OPTIONS request.

Syntax

type TOptionsRequestEvent = procedure (
  Sender: TObject;
  ConnectionID: Int64;
  const URI: String;
  var Handled: Boolean
) of Object;

property OnOptionsRequest: TOptionsRequestEvent read FOnOptionsRequest write FOnOptionsRequest;

Remarks

The component fires this event to notify the application about an OPTIONS request received from the client.

ConnectionID indicates the connection that sent the request and URI suggests the requested resource.

Set Handled to true to indicate that your application's code will take care of the request. The application does it by providing the necessary details via SetResponseStatus, SetResponseHeader, and SetResponseFile methods. If the returned value of Handled is false, the server will try to take care of the request automatically by searching for the requested resource in DocumentRoot.

PatchRequest Event (HTTPServer Component)

Reports a PATCH request.

Syntax

type TPatchRequestEvent = procedure (
  Sender: TObject;
  ConnectionID: Int64;
  const URI: String;
  var Handled: Boolean
) of Object;

property OnPatchRequest: TPatchRequestEvent read FOnPatchRequest write FOnPatchRequest;

Remarks

The component fires this event to notify the application about a PATCH request received from the client.

ConnectionID indicates the connection that sent the request and URI suggests the requested resource.

Set Handled to true to indicate that your application's code will take care of the request. The application does it by providing the necessary details via SetResponseStatus, SetResponseHeader, and SetResponseFile methods. If the returned value of Handled is false, the server will try to take care of the request automatically by searching for the requested resource in DocumentRoot.

PostRequest Event (HTTPServer Component)

Reports a POST request.

Syntax

type TPostRequestEvent = procedure (
  Sender: TObject;
  ConnectionID: Int64;
  const URI: String;
  var Handled: Boolean
) of Object;

property OnPostRequest: TPostRequestEvent read FOnPostRequest write FOnPostRequest;

Remarks

The component fires this event to notify the application about a POST request received from the client.

ConnectionID indicates the connection that sent the request and URI suggests the requested resource.

Set Handled to true to indicate that your application's code will take care of the request. The application does it by providing the necessary details via SetResponseStatus, SetResponseHeader, and SetResponseFile methods. If the returned value of Handled is false, the server will try to take care of the request automatically by searching for the requested resource in DocumentRoot.

PutRequest Event (HTTPServer Component)

Reports a PUT request.

Syntax

type TPutRequestEvent = procedure (
  Sender: TObject;
  ConnectionID: Int64;
  const URI: String;
  var Handled: Boolean
) of Object;

property OnPutRequest: TPutRequestEvent read FOnPutRequest write FOnPutRequest;

Remarks

The component fires this event to notify the application about a PUT request received from the client.

ConnectionID indicates the connection that sent the request and URI suggests the requested resource.

Set Handled to true to indicate that your application's code will take care of the request. The application does it by providing the necessary details via SetResponseStatus, SetResponseHeader, and SetResponseFile methods. If the returned value of Handled is false, the server will try to take care of the request automatically by searching for the requested resource in DocumentRoot.

ResourceAccess Event (HTTPServer Component)

Reports an attempt to access a resource.

Syntax

type TResourceAccessEvent = procedure (
  Sender: TObject;
  ConnectionID: Int64;
  const HTTPMethod: String;
  const URI: String;
  var Allow: Boolean;
  var RedirectURI: String
) of Object;

property OnResourceAccess: TResourceAccessEvent read FOnResourceAccess write FOnResourceAccess;

Remarks

The component fires this event to notify the application about a request received from the client. The HTTPMethod parameter indicates the HTTP method used (GET, POST, etc.)

ConnectionID indicates the connection that sent the request and URI suggests the requested resource.

Set Allow to false to prevent the client from accessing the resource. The component will automatically send a "forbidden" status code (403).

Set a non-empty value to RedirectURI to notify the client that the resource has moved to another place. The component will automatically send a "found" status code (302). If Allow is set to false, the value of RedirectURI is ignored.

TLSCertValidate Event (HTTPServer Component)

Fires when a client certificate needs to be validated.

Syntax

type TTLSCertValidateEvent = procedure (
  Sender: TObject;
  ConnectionID: Int64;
  var Accept: Boolean
) of Object;

property OnTLSCertValidate: TTLSCertValidateEvent read FOnTLSCertValidate write FOnTLSCertValidate;

Remarks

The component fires this event to notify the application of an authenticating client. Use the event handler to validate the certificate and pass your decision back to the server component via the Accept parameter.

TLSEstablished Event (HTTPServer Component)

Reports the setup of a TLS session.

Syntax

type TTLSEstablishedEvent = procedure (
  Sender: TObject;
  ConnectionID: Int64
) of Object;

property OnTLSEstablished: TTLSEstablishedEvent read FOnTLSEstablished write FOnTLSEstablished;

Remarks

Subscribe to this event to be notified about the setup of a TLS connection by a connected client.

TLSHandshake Event (HTTPServer Component)

Fires when a newly established client connection initiates a TLS handshake.

Syntax

type TTLSHandshakeEvent = procedure (
  Sender: TObject;
  ConnectionID: Int64;
  const ServerName: String;
  var Abort: Boolean
) of Object;

property OnTLSHandshake: TTLSHandshakeEvent read FOnTLSHandshake write FOnTLSHandshake;

Remarks

Use this event to get notified about the initiation of the TLS handshake by the remote client. The ServerName parameter specifies the requested host from the client hello message.

TLSPSK Event (HTTPServer Component)

Requests a pre-shared key for TLS-PSK.

Syntax

type TTLSPSKEvent = procedure (
  Sender: TObject;
  ConnectionID: Int64;
  const Identity: String;
  var PSK: String;
  var Ciphersuite: String
) of Object;

property OnTLSPSK: TTLSPSKEvent read FOnTLSPSK write FOnTLSPSK;

Remarks

The component fires this event to report that a client has requested a TLS-PSK negotiation. ConnectionId indicates the unique connection ID that requested the PSK handshake.

Use Identity to look up for the corresponding pre-shared key in the server's database, then assign the key to the PSK parameter. If TLS 1.3 PSK is used, you will also need to assign the Ciphersuite parameter with the cipher suite associated with that identity and their key.

TLSShutdown Event (HTTPServer Component)

Reports closure of a TLS session.

Syntax

type TTLSShutdownEvent = procedure (
  Sender: TObject;
  ConnectionID: Int64
) of Object;

property OnTLSShutdown: TTLSShutdownEvent read FOnTLSShutdown write FOnTLSShutdown;

Remarks

The component fires this event when a connected client closes their TLS session gracefully. This event is typically followed by a Disconnect, which marks the closure of the underlying TCP session.

TraceRequest Event (HTTPServer Component)

Reports a TRACE request.

Syntax

type TTraceRequestEvent = procedure (
  Sender: TObject;
  ConnectionID: Int64;
  const URI: String;
  var Handled: Boolean
) of Object;

property OnTraceRequest: TTraceRequestEvent read FOnTraceRequest write FOnTraceRequest;

Remarks

The component fires this event to notify the application about a TRACE request received from the client.

ConnectionID indicates the connection that sent the request and URI suggests the requested resource.

Set Handled to true to indicate that your application's code will take care of the request. The application does it by providing the necessary details via SetResponseStatus, SetResponseHeader, and SetResponseFile methods. If the returned value of Handled is false, the server will try to take care of the request automatically by searching for the requested resource in DocumentRoot.

Certificate Type

Provides details of an individual X.509 certificate.

Remarks

This type provides access to X.509 certificate details.

Fields

Bytes
TBytes (read-only)

Default Value: ""

Returns the raw certificate data in DER format.

CA
Boolean

Default Value: False

Indicates whether the certificate has a CA capability (a setting in the BasicConstraints extension).

CAKeyID
TBytes (read-only)

Default Value: ""

A unique identifier (fingerprint) of the CA certificate's private key.

Authority Key Identifier is a (non-critical) X.509 certificate extension which allows the identification of certificates produced by the same issuer, but with different public keys.

CRLDistributionPoints
String

Default Value: ""

Locations of the CRL (Certificate Revocation List) distribution points used to check this certificate's validity.

Curve
String

Default Value: ""

Specifies the elliptic curve of the EC public key.

SB_EC_SECP112R1SECP112R1
SB_EC_SECP112R2SECP112R2
SB_EC_SECP128R1SECP128R1
SB_EC_SECP128R2SECP128R2
SB_EC_SECP160K1SECP160K1
SB_EC_SECP160R1SECP160R1
SB_EC_SECP160R2SECP160R2
SB_EC_SECP192K1SECP192K1
SB_EC_SECP192R1SECP192R1
SB_EC_SECP224K1SECP224K1
SB_EC_SECP224R1SECP224R1
SB_EC_SECP256K1SECP256K1
SB_EC_SECP256R1SECP256R1
SB_EC_SECP384R1SECP384R1
SB_EC_SECP521R1SECP521R1
SB_EC_SECT113R1SECT113R1
SB_EC_SECT113R2SECT113R2
SB_EC_SECT131R1SECT131R1
SB_EC_SECT131R2SECT131R2
SB_EC_SECT163K1SECT163K1
SB_EC_SECT163R1SECT163R1
SB_EC_SECT163R2SECT163R2
SB_EC_SECT193R1SECT193R1
SB_EC_SECT193R2SECT193R2
SB_EC_SECT233K1SECT233K1
SB_EC_SECT233R1SECT233R1
SB_EC_SECT239K1SECT239K1
SB_EC_SECT283K1SECT283K1
SB_EC_SECT283R1SECT283R1
SB_EC_SECT409K1SECT409K1
SB_EC_SECT409R1SECT409R1
SB_EC_SECT571K1SECT571K1
SB_EC_SECT571R1SECT571R1
SB_EC_PRIME192V1PRIME192V1
SB_EC_PRIME192V2PRIME192V2
SB_EC_PRIME192V3PRIME192V3
SB_EC_PRIME239V1PRIME239V1
SB_EC_PRIME239V2PRIME239V2
SB_EC_PRIME239V3PRIME239V3
SB_EC_PRIME256V1PRIME256V1
SB_EC_C2PNB163V1C2PNB163V1
SB_EC_C2PNB163V2C2PNB163V2
SB_EC_C2PNB163V3C2PNB163V3
SB_EC_C2PNB176W1C2PNB176W1
SB_EC_C2TNB191V1C2TNB191V1
SB_EC_C2TNB191V2C2TNB191V2
SB_EC_C2TNB191V3C2TNB191V3
SB_EC_C2ONB191V4C2ONB191V4
SB_EC_C2ONB191V5C2ONB191V5
SB_EC_C2PNB208W1C2PNB208W1
SB_EC_C2TNB239V1C2TNB239V1
SB_EC_C2TNB239V2C2TNB239V2
SB_EC_C2TNB239V3C2TNB239V3
SB_EC_C2ONB239V4C2ONB239V4
SB_EC_C2ONB239V5C2ONB239V5
SB_EC_C2PNB272W1C2PNB272W1
SB_EC_C2PNB304W1C2PNB304W1
SB_EC_C2TNB359V1C2TNB359V1
SB_EC_C2PNB368W1C2PNB368W1
SB_EC_C2TNB431R1C2TNB431R1
SB_EC_NISTP192NISTP192
SB_EC_NISTP224NISTP224
SB_EC_NISTP256NISTP256
SB_EC_NISTP384NISTP384
SB_EC_NISTP521NISTP521
SB_EC_NISTB163NISTB163
SB_EC_NISTB233NISTB233
SB_EC_NISTB283NISTB283
SB_EC_NISTB409NISTB409
SB_EC_NISTB571NISTB571
SB_EC_NISTK163NISTK163
SB_EC_NISTK233NISTK233
SB_EC_NISTK283NISTK283
SB_EC_NISTK409NISTK409
SB_EC_NISTK571NISTK571
SB_EC_GOSTCPTESTGOSTCPTEST
SB_EC_GOSTCPAGOSTCPA
SB_EC_GOSTCPBGOSTCPB
SB_EC_GOSTCPCGOSTCPC
SB_EC_GOSTCPXCHAGOSTCPXCHA
SB_EC_GOSTCPXCHBGOSTCPXCHB
SB_EC_BRAINPOOLP160R1BRAINPOOLP160R1
SB_EC_BRAINPOOLP160T1BRAINPOOLP160T1
SB_EC_BRAINPOOLP192R1BRAINPOOLP192R1
SB_EC_BRAINPOOLP192T1BRAINPOOLP192T1
SB_EC_BRAINPOOLP224R1BRAINPOOLP224R1
SB_EC_BRAINPOOLP224T1BRAINPOOLP224T1
SB_EC_BRAINPOOLP256R1BRAINPOOLP256R1
SB_EC_BRAINPOOLP256T1BRAINPOOLP256T1
SB_EC_BRAINPOOLP320R1BRAINPOOLP320R1
SB_EC_BRAINPOOLP320T1BRAINPOOLP320T1
SB_EC_BRAINPOOLP384R1BRAINPOOLP384R1
SB_EC_BRAINPOOLP384T1BRAINPOOLP384T1
SB_EC_BRAINPOOLP512R1BRAINPOOLP512R1
SB_EC_BRAINPOOLP512T1BRAINPOOLP512T1
SB_EC_CURVE25519CURVE25519
SB_EC_CURVE448CURVE448

Fingerprint
TBytes (read-only)

Default Value: ""

Contains the fingerprint (a hash imprint) of this certificate.

FriendlyName
String (read-only)

Default Value: ""

Contains an associated alias (friendly name) of the certificate.

Handle
Int64

Default Value: 0

Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.

When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object after such operation. pdfSigner.setSigningCertHandle(certMgr.getCertHandle());

HashAlgorithm
String

Default Value: ""

Specifies the hash algorithm to be used in the operations on the certificate (such as key signing)

SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_MD2MD2
SB_HASH_ALGORITHM_MD4MD4
SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_CRC32CRC32
SB_HASH_ALGORITHM_SSL3SSL3
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_POLY1305POLY1305
SB_HASH_ALGORITHM_SHA3_224SHA3_224
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512
SB_HASH_ALGORITHM_BLAKE2S_128BLAKE2S_128
SB_HASH_ALGORITHM_BLAKE2S_160BLAKE2S_160
SB_HASH_ALGORITHM_BLAKE2S_224BLAKE2S_224
SB_HASH_ALGORITHM_BLAKE2S_256BLAKE2S_256
SB_HASH_ALGORITHM_BLAKE2B_160BLAKE2B_160
SB_HASH_ALGORITHM_BLAKE2B_256BLAKE2B_256
SB_HASH_ALGORITHM_BLAKE2B_384BLAKE2B_384
SB_HASH_ALGORITHM_BLAKE2B_512BLAKE2B_512
SB_HASH_ALGORITHM_SHAKE_128SHAKE_128
SB_HASH_ALGORITHM_SHAKE_256SHAKE_256
SB_HASH_ALGORITHM_SHAKE_128_LENSHAKE_128_LEN
SB_HASH_ALGORITHM_SHAKE_256_LENSHAKE_256_LEN

Issuer
String (read-only)

Default Value: ""

The common name of the certificate issuer (CA), typically a company name.

IssuerRDN
String

Default Value: ""

A collection of information, in the form of [OID, Value] pairs, uniquely identifying the certificate issuer.

KeyAlgorithm
String

Default Value: "0"

Specifies the public key algorithm of this certificate.

SB_CERT_ALGORITHM_ID_RSA_ENCRYPTIONrsaEncryption
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTIONmd2withRSAEncryption
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTIONmd5withRSAEncryption
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTIONsha1withRSAEncryption
SB_CERT_ALGORITHM_ID_DSAid-dsa
SB_CERT_ALGORITHM_ID_DSA_SHA1id-dsa-with-sha1
SB_CERT_ALGORITHM_DH_PUBLICdhpublicnumber
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTIONsha224WithRSAEncryption
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTIONsha256WithRSAEncryption
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTIONsha384WithRSAEncryption
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTIONsha512WithRSAEncryption
SB_CERT_ALGORITHM_ID_RSAPSSid-RSASSA-PSS
SB_CERT_ALGORITHM_ID_RSAOAEPid-RSAES-OAEP
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160ripemd160withRSA
SB_CERT_ALGORITHM_ID_ELGAMALelGamal
SB_CERT_ALGORITHM_SHA1_ECDSAecdsa-with-SHA1
SB_CERT_ALGORITHM_RECOMMENDED_ECDSAecdsa-recommended
SB_CERT_ALGORITHM_SHA224_ECDSAecdsa-with-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSAecdsa-with-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSAecdsa-with-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSAecdsa-with-SHA512
SB_CERT_ALGORITHM_ECid-ecPublicKey
SB_CERT_ALGORITHM_SPECIFIED_ECDSAecdsa-specified
SB_CERT_ALGORITHM_GOST_R3410_1994id-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3410_2001id-GostR3410-2001
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994id-GostR3411-94-with-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001id-GostR3411-94-with-GostR3410-2001
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAINecdsa-plain-SHA1
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAINecdsa-plain-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAINecdsa-plain-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAINecdsa-plain-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAINecdsa-plain-SHA512
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAINecdsa-plain-RIPEMD160
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTIONwhirlpoolWithRSAEncryption
SB_CERT_ALGORITHM_ID_DSA_SHA224id-dsa-with-sha224
SB_CERT_ALGORITHM_ID_DSA_SHA256id-dsa-with-sha256
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSAid-ecdsa-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSAid-ecdsa-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSAid-ecdsa-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSAid-ecdsa-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAINid-ecdsa-plain-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAINid-ecdsa-plain-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAINid-ecdsa-plain-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAINid-ecdsa-plain-with-sha3-512
SB_CERT_ALGORITHM_ID_DSA_SHA3_224id-dsa-with-sha3-224
SB_CERT_ALGORITHM_ID_DSA_SHA3_256id-dsa-with-sha3-256
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSAid-ecdsa-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSAid-ecdsa-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSAid-ecdsa-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSAid-ecdsa-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSAid-ecdsa-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSAid-ecdsa-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSAid-ecdsa-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSAid-ecdsa-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAINid-ecdsa-plain-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAINid-ecdsa-plain-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAINid-ecdsa-plain-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAINid-ecdsa-plain-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAINid-ecdsa-plain-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAINid-ecdsa-plain-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAINid-ecdsa-plain-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAINid-ecdsa-plain-with-blake2b512
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224id-dsa-with-blake2s224
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256id-dsa-with-blake2s256
SB_CERT_ALGORITHM_EDDSA_ED25519id-Ed25519
SB_CERT_ALGORITHM_EDDSA_ED448id-Ed448
SB_CERT_ALGORITHM_EDDSA_ED25519_PHid-Ed25519ph
SB_CERT_ALGORITHM_EDDSA_ED448_PHid-Ed448ph
SB_CERT_ALGORITHM_EDDSAid-EdDSA
SB_CERT_ALGORITHM_EDDSA_SIGNATUREid-EdDSA-sig

KeyBits
Integer (read-only)

Default Value: 0

Returns the length of the public key.

KeyFingerprint
TBytes (read-only)

Default Value: ""

Returns a fingerprint of the public key contained in the certificate.

KeyUsage
Integer

Default Value: 0

Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.

This value is a bit mask of the following values:

ckuUnknown0x00000Unknown key usage

ckuDigitalSignature0x00001Digital signature

ckuNonRepudiation0x00002Non-repudiation

ckuKeyEncipherment0x00004Key encipherment

ckuDataEncipherment0x00008Data encipherment

ckuKeyAgreement0x00010Key agreement

ckuKeyCertSign0x00020Certificate signing

ckuCRLSign0x00040Revocation signing

ckuEncipherOnly0x00080Encipher only

ckuDecipherOnly0x00100Decipher only

ckuServerAuthentication0x00200Server authentication

ckuClientAuthentication0x00400Client authentication

ckuCodeSigning0x00800Code signing

ckuEmailProtection0x01000Email protection

ckuTimeStamping0x02000Timestamping

ckuOCSPSigning0x04000OCSP signing

ckuSmartCardLogon0x08000Smartcard logon

ckuKeyPurposeClientAuth0x10000Kerberos - client authentication

ckuKeyPurposeKDC0x20000Kerberos - KDC

KeyValid
Boolean (read-only)

Default Value: False

Returns True if the certificate's key is cryptographically valid, and False otherwise.

OCSPLocations
String

Default Value: ""

Locations of OCSP (Online Certificate Status Protocol) services that can be used to check this certificate's validity, as recorded by the CA.

OCSPNoCheck
Boolean

Default Value: False

Accessor to the value of the certificate's ocsp-no-check extension.

Origin
Integer (read-only)

Default Value: 0

Returns the origin of this certificate.

PolicyIDs
String

Default Value: ""

Contains identifiers (OIDs) of the applicable certificate policies.

The Certificate Policies extension identifies a sequence of policies under which the certificate has been issued, and which regulate its usage.

PrivateKeyBytes
TBytes (read-only)

Default Value: ""

Contains the certificate's private key. It is normal for this property to be empty if the private key is non-exportable.

PrivateKeyExists
Boolean (read-only)

Default Value: False

Indicates whether the certificate has an associated private key.

PrivateKeyExtractable
Boolean (read-only)

Default Value: False

Indicates whether the private key is extractable.

PublicKeyBytes
TBytes (read-only)

Default Value: ""

Contains the certificate's public key in DER format.

QualifiedStatements
TsbxQualifiedStatementsTypes

Default Value: 0

Returns the qualified status of the certificate.

SelfSigned
Boolean (read-only)

Default Value: False

Indicates whether the certificate is self-signed (root) or signed by an external CA.

SerialNumber
TBytes

Default Value: ""

Returns the certificate's serial number.

SigAlgorithm
String (read-only)

Default Value: ""

Indicates the algorithm that was used by the CA to sign this certificate.

Subject
String (read-only)

Default Value: ""

The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name.

SubjectAlternativeName
String

Default Value: ""

Returns or sets the value of the Subject Alternative Name extension of the certificate.

SubjectKeyID
TBytes

Default Value: ""

Contains a unique identifier (fingerprint) of the certificate's private key.

Subject Key Identifier is a (non-critical) X.509 certificate extension which allows the identification of certificates containing a particular public key. In SecureBlackbox, the unique identifier is represented with a SHA1 hash of the bit string of the subject public key.

SubjectRDN
String

Default Value: ""

A collection of information, in the form of [OID, Value] pairs, uniquely identifying the certificate holder (subject).

ValidFrom
String

Default Value: ""

The time point at which the certificate becomes valid, in UTC.

ValidTo
String

Default Value: ""

The time point at which the certificate expires, in UTC.

Constructors

>

constructor Create();

Creates a new object with default field values.

ExternalCrypto Type

Specifies the parameters of external cryptographic calls.

Remarks

External cryptocalls are used in a Distributed Cryptography (DC) subsystem, which allows the delegation of security operations to the remote agent. For instance, it can be used to compute the signature value on the server, while retaining the client's private key locally.

Fields

AsyncDocumentID
String

Default Value: ""

Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.

Use this property when working with multi-signature DCAuth requests and responses to uniquely identify documents signed within a larger batch. On the completion stage, this value helps the signing component identify the correct signature in the returned batch of responses.

If using batched requests, make sure to set this property to the same value on both the pre-signing (SignAsyncBegin) and completion (SignAsyncEnd) stages.

CustomParams
String

Default Value: ""

Custom parameters to be passed to the signing service (uninterpreted).

Data
String

Default Value: ""

Additional data to be included in the async state and mirrored back by the requestor.

ExternalHashCalculation
Boolean

Default Value: False

Specifies whether the message hash is to be calculated at the external endpoint. Please note that this mode is not supported by the DCAuth component.

If set to true, the component will pass a few kilobytes of to-be-signed data from the document to the OnExternalSign event. This only applies when SignExternal() is called.

HashAlgorithm
String

Default Value: "SHA256"

Specifies the request's signature hash algorithm.

SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_MD2MD2
SB_HASH_ALGORITHM_MD4MD4
SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_CRC32CRC32
SB_HASH_ALGORITHM_SSL3SSL3
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_POLY1305POLY1305
SB_HASH_ALGORITHM_SHA3_224SHA3_224
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512
SB_HASH_ALGORITHM_BLAKE2S_128BLAKE2S_128
SB_HASH_ALGORITHM_BLAKE2S_160BLAKE2S_160
SB_HASH_ALGORITHM_BLAKE2S_224BLAKE2S_224
SB_HASH_ALGORITHM_BLAKE2S_256BLAKE2S_256
SB_HASH_ALGORITHM_BLAKE2B_160BLAKE2B_160
SB_HASH_ALGORITHM_BLAKE2B_256BLAKE2B_256
SB_HASH_ALGORITHM_BLAKE2B_384BLAKE2B_384
SB_HASH_ALGORITHM_BLAKE2B_512BLAKE2B_512
SB_HASH_ALGORITHM_SHAKE_128SHAKE_128
SB_HASH_ALGORITHM_SHAKE_256SHAKE_256
SB_HASH_ALGORITHM_SHAKE_128_LENSHAKE_128_LEN
SB_HASH_ALGORITHM_SHAKE_256_LENSHAKE_256_LEN

KeyID
String

Default Value: ""

The ID of the pre-shared key used for DC request authentication.

Asynchronous DCAuth-driven communication requires that parties authenticate each other with a secret pre-shared cryptographic key. This provides an extra protection layer for the protocol and diminishes the risk of the private key becoming abused by foreign parties. Use this property to provide the pre-shared key identifier, and use KeySecret to pass the key itself.

The same KeyID/KeySecret pair should be used on the DCAuth side for the signing requests to be accepted.

Note: The KeyID/KeySecret scheme is very similar to the AuthKey scheme used in various Cloud service providers to authenticate users.

Example: signer.ExternalCrypto.KeyID = "MainSigningKey"; signer.ExternalCrypto.KeySecret = "abcdef0123456789";

KeySecret
String

Default Value: ""

The pre-shared key used for DC request authentication. This key must be set and match the key used by the DCAuth counterpart for the scheme to work.

Read more about configuring authentication in the KeyID topic.

Method
TsbxAsyncSignMethods

Default Value: 0

Specifies the asynchronous signing method. This is typically defined by the DC server capabilities and setup.

Available options:

asmdPKCS10
asmdPKCS71

Mode
TsbxExternalCryptoModes

Default Value: 0

Specifies the external cryptography mode.

Available options:

ecmDefaultThe default value (0)
ecmDisabledDo not use DC or external signing (1)
ecmGenericGeneric external signing with the OnExternalSign event (2)
ecmDCAuthDCAuth signing (3)
ecmDCAuthJSONDCAuth signing in JSON format (4)

PublicKeyAlgorithm
String

Default Value: ""

Provide the public key algorithm here if the certificate is not available on the pre-signing stage.

SB_CERT_ALGORITHM_ID_RSA_ENCRYPTIONrsaEncryption
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTIONmd2withRSAEncryption
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTIONmd5withRSAEncryption
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTIONsha1withRSAEncryption
SB_CERT_ALGORITHM_ID_DSAid-dsa
SB_CERT_ALGORITHM_ID_DSA_SHA1id-dsa-with-sha1
SB_CERT_ALGORITHM_DH_PUBLICdhpublicnumber
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTIONsha224WithRSAEncryption
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTIONsha256WithRSAEncryption
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTIONsha384WithRSAEncryption
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTIONsha512WithRSAEncryption
SB_CERT_ALGORITHM_ID_RSAPSSid-RSASSA-PSS
SB_CERT_ALGORITHM_ID_RSAOAEPid-RSAES-OAEP
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160ripemd160withRSA
SB_CERT_ALGORITHM_ID_ELGAMALelGamal
SB_CERT_ALGORITHM_SHA1_ECDSAecdsa-with-SHA1
SB_CERT_ALGORITHM_RECOMMENDED_ECDSAecdsa-recommended
SB_CERT_ALGORITHM_SHA224_ECDSAecdsa-with-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSAecdsa-with-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSAecdsa-with-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSAecdsa-with-SHA512
SB_CERT_ALGORITHM_ECid-ecPublicKey
SB_CERT_ALGORITHM_SPECIFIED_ECDSAecdsa-specified
SB_CERT_ALGORITHM_GOST_R3410_1994id-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3410_2001id-GostR3410-2001
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994id-GostR3411-94-with-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001id-GostR3411-94-with-GostR3410-2001
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAINecdsa-plain-SHA1
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAINecdsa-plain-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAINecdsa-plain-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAINecdsa-plain-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAINecdsa-plain-SHA512
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAINecdsa-plain-RIPEMD160
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTIONwhirlpoolWithRSAEncryption
SB_CERT_ALGORITHM_ID_DSA_SHA224id-dsa-with-sha224
SB_CERT_ALGORITHM_ID_DSA_SHA256id-dsa-with-sha256
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSAid-ecdsa-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSAid-ecdsa-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSAid-ecdsa-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSAid-ecdsa-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAINid-ecdsa-plain-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAINid-ecdsa-plain-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAINid-ecdsa-plain-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAINid-ecdsa-plain-with-sha3-512
SB_CERT_ALGORITHM_ID_DSA_SHA3_224id-dsa-with-sha3-224
SB_CERT_ALGORITHM_ID_DSA_SHA3_256id-dsa-with-sha3-256
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSAid-ecdsa-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSAid-ecdsa-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSAid-ecdsa-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSAid-ecdsa-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSAid-ecdsa-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSAid-ecdsa-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSAid-ecdsa-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSAid-ecdsa-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAINid-ecdsa-plain-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAINid-ecdsa-plain-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAINid-ecdsa-plain-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAINid-ecdsa-plain-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAINid-ecdsa-plain-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAINid-ecdsa-plain-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAINid-ecdsa-plain-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAINid-ecdsa-plain-with-blake2b512
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224id-dsa-with-blake2s224
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256id-dsa-with-blake2s256
SB_CERT_ALGORITHM_EDDSA_ED25519id-Ed25519
SB_CERT_ALGORITHM_EDDSA_ED448id-Ed448
SB_CERT_ALGORITHM_EDDSA_ED25519_PHid-Ed25519ph
SB_CERT_ALGORITHM_EDDSA_ED448_PHid-Ed448ph
SB_CERT_ALGORITHM_EDDSAid-EdDSA
SB_CERT_ALGORITHM_EDDSA_SIGNATUREid-EdDSA-sig

Constructors

>

constructor Create();

Creates a new ExternalCrypto object with default field values.

SocketSettings Type

A container for the socket settings.

Remarks

This type is a container for socket-layer parameters.

Fields

DNSMode
TsbxDNSResolveModes

Default Value: 0

Selects the DNS resolver to use: the component's (secure) built-in one, or the one provided by the system.

dmAuto0
dmPlatform1
dmOwn2
dmOwnSecure3

DNSPort
Integer

Default Value: 0

Specifies the port number to be used for sending queries to the DNS server.

DNSQueryTimeout
Integer

Default Value: 0

The timeout (in milliseconds) for each DNS query. The value of 0 indicates an infinite timeout.

DNSServers
String

Default Value: ""

The addresses of DNS servers to use for address resolution, separated by commas or semicolons.

DNSTotalTimeout
Integer

Default Value: 0

The timeout (in milliseconds) for the whole resolution process. The value of 0 indicates an infinite timeout.

IncomingSpeedLimit
Integer

Default Value: 0

The maximum number of bytes to read from the socket, per second.

LocalAddress
String

Default Value: ""

The local network interface to bind the socket to.

LocalPort
Integer

Default Value: 0

The local port number to bind the socket to.

OutgoingSpeedLimit
Integer

Default Value: 0

The maximum number of bytes to write to the socket, per second.

Timeout
Integer

Default Value: 60000

The maximum period of waiting, in milliseconds, after which the socket operation is considered unsuccessful.

If Timeout is set to 0, a socket operation will expire after the system-default timeout (2 hrs 8 min for TCP stack).

UseIPv6
Boolean

Default Value: False

Enables or disables IP protocol version 6.

Constructors

>

constructor Create();

Creates a new SocketSettings object.

TLSClientEntry Type

A container for a connected TLS client's details.

Remarks

Use this property to access the details of a particular connected client.

Fields

Address
String (read-only)

Default Value: ""

The client's IP address.

ChainValidationDetails
Integer (read-only)

Default Value: 0

The details of a certificate chain validation outcome. They may often suggest the reasons that contributed to the overall validation result.

Returns a bit mask of the following options:

cvrBadData0x0001One or more certificates in the validation path are malformed

cvrRevoked0x0002One or more certificates are revoked

cvrNotYetValid0x0004One or more certificates are not yet valid

cvrExpired0x0008One or more certificates are expired

cvrInvalidSignature0x0010A certificate contains a non-valid digital signature

cvrUnknownCA0x0020A CA certificate for one or more certificates has not been found (chain incomplete)

cvrCAUnauthorized0x0040One of the CA certificates are not authorized to act as CA

cvrCRLNotVerified0x0080One or more CRLs could not be verified

cvrOCSPNotVerified0x0100One or more OCSP responses could not be verified

cvrIdentityMismatch0x0200The identity protected by the certificate (a TLS endpoint or an e-mail addressee) does not match what is recorded in the certificate

cvrNoKeyUsage0x0400A mandatory key usage is not enabled in one of the chain certificates

cvrBlocked0x0800One or more certificates are blocked

cvrFailure0x1000General validation failure

cvrChainLoop0x2000Chain loop: one of the CA certificates recursively signs itself

cvrWeakAlgorithm0x4000A weak algorithm is used in one of certificates or revocation elements

cvrUserEnforced0x8000The chain was considered invalid following intervention from a user code

ChainValidationResult
TsbxChainValidities (read-only)

Default Value: 0

The outcome of a certificate chain validation routine.

Available options:

cvtValid0The chain is valid

cvtValidButUntrusted1The chain is valid, but the root certificate is not trusted

cvtInvalid2The chain is not valid (some of certificates are revoked, expired, or contain an invalid signature)

cvtCantBeEstablished3The validity of the chain cannot be established because of missing or unavailable validation information (certificates, CRLs, or OCSP responses)

Use the ValidationLog property to access the detailed validation log.

Ciphersuite
String (read-only)

Default Value: ""

The cipher suite employed by this connection.

For TLS connections, this property returns the ciphersuite that was/is employed by the connection.

ClientAuthenticated
Boolean (read-only)

Default Value: False

Specifies whether client authentication was performed during this connection.

DigestAlgorithm
String (read-only)

Default Value: ""

The digest algorithm used in a TLS-enabled connection.

EncryptionAlgorithm
String (read-only)

Default Value: ""

The symmetric encryption algorithm used in a TLS-enabled connection.

ID
Int64 (read-only)

Default Value: -1

The client connection's unique identifier. This value is used throughout to refer to a particular client connection.

KeyExchangeAlgorithm
String (read-only)

Default Value: ""

The key exchange algorithm used in a TLS-enabled connection.

KeyExchangeKeyBits
Integer (read-only)

Default Value: 0

The length of the key exchange key of a TLS-enabled connection.

NamedECCurve
String (read-only)

Default Value: ""

The elliptic curve used in this connection.

PFSCipher
Boolean (read-only)

Default Value: False

Indicates whether the chosen ciphersuite provides perfect forward secrecy (PFS).

Port
Integer (read-only)

Default Value: 0

The remote port of the client connection.

PreSharedIdentity
String

Default Value: ""

Specifies the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.

PublicKeyBits
Integer (read-only)

Default Value: 0

The length of the public key.

ResumedSession
Boolean (read-only)

Default Value: False

Indicates whether a TLS-enabled connection was spawned from another TLS connection

SecureConnection
Boolean (read-only)

Default Value: False

Indicates whether TLS or SSL is enabled for this connection.

SignatureAlgorithm
String (read-only)

Default Value: ""

The signature algorithm used in a TLS handshake.

SymmetricBlockSize
Integer (read-only)

Default Value: 0

The block size of the symmetric algorithm used.

SymmetricKeyBits
Integer (read-only)

Default Value: 0

The key length of the symmetric algorithm used.

TotalBytesReceived
Int64 (read-only)

Default Value: 0

The total number of bytes received over this connection.

TotalBytesSent
Int64 (read-only)

Default Value: 0

The total number of bytes sent over this connection.

ValidationLog
String (read-only)

Default Value: ""

Contains the server certificate's chain validation log. This information may be very useful in investigating chain validation failures.

Version
String (read-only)

Default Value: ""

Indicates the version of SSL/TLS protocol negotiated during this connection.

Constructors

>

constructor Create();

Creates a new TLSClientEntry object.

TLSSettings Type

A container for TLS connection settings.

Remarks

The TLS (Transport Layer Security) protocol provides security for information exchanged over insecure connections such as TCP/IP.

Fields

AutoValidateCertificates
Boolean

Default Value: True

Specifies whether server-side TLS certificates should be validated automatically using internal validation rules.

BaseConfiguration
TsbxSecureTransportPredefinedConfigurations

Default Value: 0

Selects the base configuration for the TLS settings. Several profiles are offered and tuned up for different purposes, such as high security or higher compatibility.

stpcDefault0
stpcCompatible1
stpcComprehensiveInsecure2
stpcHighlySecure3

Ciphersuites
String

Default Value: ""

A list of ciphersuites separated with commas or semicolons. Each ciphersuite in the list may be prefixed with a minus sign (-) to indicate that the ciphersuite should be disabled rather than enabled. Besides the specific ciphersuite modifiers, this property supports the all (and -all) aliases, allowing all ciphersuites to be blanketly enabled or disabled at once.

Note: the list of ciphersuites provided to this property alters the baseline list of ciphersuites as defined by BaseConfiguration. Remember to start your ciphersuite string with -all; if you need to only enable a specific fixed set of ciphersuites. The list of supported ciphersuites is provided below:

  • NULL_NULL_NULL
  • RSA_NULL_MD5
  • RSA_NULL_SHA
  • RSA_RC4_MD5
  • RSA_RC4_SHA
  • RSA_RC2_MD5
  • RSA_IDEA_MD5
  • RSA_IDEA_SHA
  • RSA_DES_MD5
  • RSA_DES_SHA
  • RSA_3DES_MD5
  • RSA_3DES_SHA
  • RSA_AES128_SHA
  • RSA_AES256_SHA
  • DH_DSS_DES_SHA
  • DH_DSS_3DES_SHA
  • DH_DSS_AES128_SHA
  • DH_DSS_AES256_SHA
  • DH_RSA_DES_SHA
  • DH_RSA_3DES_SHA
  • DH_RSA_AES128_SHA
  • DH_RSA_AES256_SHA
  • DHE_DSS_DES_SHA
  • DHE_DSS_3DES_SHA
  • DHE_DSS_AES128_SHA
  • DHE_DSS_AES256_SHA
  • DHE_RSA_DES_SHA
  • DHE_RSA_3DES_SHA
  • DHE_RSA_AES128_SHA
  • DHE_RSA_AES256_SHA
  • DH_ANON_RC4_MD5
  • DH_ANON_DES_SHA
  • DH_ANON_3DES_SHA
  • DH_ANON_AES128_SHA
  • DH_ANON_AES256_SHA
  • RSA_RC2_MD5_EXPORT
  • RSA_RC4_MD5_EXPORT
  • RSA_DES_SHA_EXPORT
  • DH_DSS_DES_SHA_EXPORT
  • DH_RSA_DES_SHA_EXPORT
  • DHE_DSS_DES_SHA_EXPORT
  • DHE_RSA_DES_SHA_EXPORT
  • DH_ANON_RC4_MD5_EXPORT
  • DH_ANON_DES_SHA_EXPORT
  • RSA_CAMELLIA128_SHA
  • DH_DSS_CAMELLIA128_SHA
  • DH_RSA_CAMELLIA128_SHA
  • DHE_DSS_CAMELLIA128_SHA
  • DHE_RSA_CAMELLIA128_SHA
  • DH_ANON_CAMELLIA128_SHA
  • RSA_CAMELLIA256_SHA
  • DH_DSS_CAMELLIA256_SHA
  • DH_RSA_CAMELLIA256_SHA
  • DHE_DSS_CAMELLIA256_SHA
  • DHE_RSA_CAMELLIA256_SHA
  • DH_ANON_CAMELLIA256_SHA
  • PSK_RC4_SHA
  • PSK_3DES_SHA
  • PSK_AES128_SHA
  • PSK_AES256_SHA
  • DHE_PSK_RC4_SHA
  • DHE_PSK_3DES_SHA
  • DHE_PSK_AES128_SHA
  • DHE_PSK_AES256_SHA
  • RSA_PSK_RC4_SHA
  • RSA_PSK_3DES_SHA
  • RSA_PSK_AES128_SHA
  • RSA_PSK_AES256_SHA
  • RSA_SEED_SHA
  • DH_DSS_SEED_SHA
  • DH_RSA_SEED_SHA
  • DHE_DSS_SEED_SHA
  • DHE_RSA_SEED_SHA
  • DH_ANON_SEED_SHA
  • SRP_SHA_3DES_SHA
  • SRP_SHA_RSA_3DES_SHA
  • SRP_SHA_DSS_3DES_SHA
  • SRP_SHA_AES128_SHA
  • SRP_SHA_RSA_AES128_SHA
  • SRP_SHA_DSS_AES128_SHA
  • SRP_SHA_AES256_SHA
  • SRP_SHA_RSA_AES256_SHA
  • SRP_SHA_DSS_AES256_SHA
  • ECDH_ECDSA_NULL_SHA
  • ECDH_ECDSA_RC4_SHA
  • ECDH_ECDSA_3DES_SHA
  • ECDH_ECDSA_AES128_SHA
  • ECDH_ECDSA_AES256_SHA
  • ECDHE_ECDSA_NULL_SHA
  • ECDHE_ECDSA_RC4_SHA
  • ECDHE_ECDSA_3DES_SHA
  • ECDHE_ECDSA_AES128_SHA
  • ECDHE_ECDSA_AES256_SHA
  • ECDH_RSA_NULL_SHA
  • ECDH_RSA_RC4_SHA
  • ECDH_RSA_3DES_SHA
  • ECDH_RSA_AES128_SHA
  • ECDH_RSA_AES256_SHA
  • ECDHE_RSA_NULL_SHA
  • ECDHE_RSA_RC4_SHA
  • ECDHE_RSA_3DES_SHA
  • ECDHE_RSA_AES128_SHA
  • ECDHE_RSA_AES256_SHA
  • ECDH_ANON_NULL_SHA
  • ECDH_ANON_RC4_SHA
  • ECDH_ANON_3DES_SHA
  • ECDH_ANON_AES128_SHA
  • ECDH_ANON_AES256_SHA
  • RSA_NULL_SHA256
  • RSA_AES128_SHA256
  • RSA_AES256_SHA256
  • DH_DSS_AES128_SHA256
  • DH_RSA_AES128_SHA256
  • DHE_DSS_AES128_SHA256
  • DHE_RSA_AES128_SHA256
  • DH_DSS_AES256_SHA256
  • DH_RSA_AES256_SHA256
  • DHE_DSS_AES256_SHA256
  • DHE_RSA_AES256_SHA256
  • DH_ANON_AES128_SHA256
  • DH_ANON_AES256_SHA256
  • RSA_AES128_GCM_SHA256
  • RSA_AES256_GCM_SHA384
  • DHE_RSA_AES128_GCM_SHA256
  • DHE_RSA_AES256_GCM_SHA384
  • DH_RSA_AES128_GCM_SHA256
  • DH_RSA_AES256_GCM_SHA384
  • DHE_DSS_AES128_GCM_SHA256
  • DHE_DSS_AES256_GCM_SHA384
  • DH_DSS_AES128_GCM_SHA256
  • DH_DSS_AES256_GCM_SHA384
  • DH_ANON_AES128_GCM_SHA256
  • DH_ANON_AES256_GCM_SHA384
  • ECDHE_ECDSA_AES128_SHA256
  • ECDHE_ECDSA_AES256_SHA384
  • ECDH_ECDSA_AES128_SHA256
  • ECDH_ECDSA_AES256_SHA384
  • ECDHE_RSA_AES128_SHA256
  • ECDHE_RSA_AES256_SHA384
  • ECDH_RSA_AES128_SHA256
  • ECDH_RSA_AES256_SHA384
  • ECDHE_ECDSA_AES128_GCM_SHA256
  • ECDHE_ECDSA_AES256_GCM_SHA384
  • ECDH_ECDSA_AES128_GCM_SHA256
  • ECDH_ECDSA_AES256_GCM_SHA384
  • ECDHE_RSA_AES128_GCM_SHA256
  • ECDHE_RSA_AES256_GCM_SHA384
  • ECDH_RSA_AES128_GCM_SHA256
  • ECDH_RSA_AES256_GCM_SHA384
  • PSK_AES128_GCM_SHA256
  • PSK_AES256_GCM_SHA384
  • DHE_PSK_AES128_GCM_SHA256
  • DHE_PSK_AES256_GCM_SHA384
  • RSA_PSK_AES128_GCM_SHA256
  • RSA_PSK_AES256_GCM_SHA384
  • PSK_AES128_SHA256
  • PSK_AES256_SHA384
  • PSK_NULL_SHA256
  • PSK_NULL_SHA384
  • DHE_PSK_AES128_SHA256
  • DHE_PSK_AES256_SHA384
  • DHE_PSK_NULL_SHA256
  • DHE_PSK_NULL_SHA384
  • RSA_PSK_AES128_SHA256
  • RSA_PSK_AES256_SHA384
  • RSA_PSK_NULL_SHA256
  • RSA_PSK_NULL_SHA384
  • RSA_CAMELLIA128_SHA256
  • DH_DSS_CAMELLIA128_SHA256
  • DH_RSA_CAMELLIA128_SHA256
  • DHE_DSS_CAMELLIA128_SHA256
  • DHE_RSA_CAMELLIA128_SHA256
  • DH_ANON_CAMELLIA128_SHA256
  • RSA_CAMELLIA256_SHA256
  • DH_DSS_CAMELLIA256_SHA256
  • DH_RSA_CAMELLIA256_SHA256
  • DHE_DSS_CAMELLIA256_SHA256
  • DHE_RSA_CAMELLIA256_SHA256
  • DH_ANON_CAMELLIA256_SHA256
  • ECDHE_ECDSA_CAMELLIA128_SHA256
  • ECDHE_ECDSA_CAMELLIA256_SHA384
  • ECDH_ECDSA_CAMELLIA128_SHA256
  • ECDH_ECDSA_CAMELLIA256_SHA384
  • ECDHE_RSA_CAMELLIA128_SHA256
  • ECDHE_RSA_CAMELLIA256_SHA384
  • ECDH_RSA_CAMELLIA128_SHA256
  • ECDH_RSA_CAMELLIA256_SHA384
  • RSA_CAMELLIA128_GCM_SHA256
  • RSA_CAMELLIA256_GCM_SHA384
  • DHE_RSA_CAMELLIA128_GCM_SHA256
  • DHE_RSA_CAMELLIA256_GCM_SHA384
  • DH_RSA_CAMELLIA128_GCM_SHA256
  • DH_RSA_CAMELLIA256_GCM_SHA384
  • DHE_DSS_CAMELLIA128_GCM_SHA256
  • DHE_DSS_CAMELLIA256_GCM_SHA384
  • DH_DSS_CAMELLIA128_GCM_SHA256
  • DH_DSS_CAMELLIA256_GCM_SHA384
  • DH_anon_CAMELLIA128_GCM_SHA256
  • DH_anon_CAMELLIA256_GCM_SHA384
  • ECDHE_ECDSA_CAMELLIA128_GCM_SHA256
  • ECDHE_ECDSA_CAMELLIA256_GCM_SHA384
  • ECDH_ECDSA_CAMELLIA128_GCM_SHA256
  • ECDH_ECDSA_CAMELLIA256_GCM_SHA384
  • ECDHE_RSA_CAMELLIA128_GCM_SHA256
  • ECDHE_RSA_CAMELLIA256_GCM_SHA384
  • ECDH_RSA_CAMELLIA128_GCM_SHA256
  • ECDH_RSA_CAMELLIA256_GCM_SHA384
  • PSK_CAMELLIA128_GCM_SHA256
  • PSK_CAMELLIA256_GCM_SHA384
  • DHE_PSK_CAMELLIA128_GCM_SHA256
  • DHE_PSK_CAMELLIA256_GCM_SHA384
  • RSA_PSK_CAMELLIA128_GCM_SHA256
  • RSA_PSK_CAMELLIA256_GCM_SHA384
  • PSK_CAMELLIA128_SHA256
  • PSK_CAMELLIA256_SHA384
  • DHE_PSK_CAMELLIA128_SHA256
  • DHE_PSK_CAMELLIA256_SHA384
  • RSA_PSK_CAMELLIA128_SHA256
  • RSA_PSK_CAMELLIA256_SHA384
  • ECDHE_PSK_CAMELLIA128_SHA256
  • ECDHE_PSK_CAMELLIA256_SHA384
  • ECDHE_PSK_RC4_SHA
  • ECDHE_PSK_3DES_SHA
  • ECDHE_PSK_AES128_SHA
  • ECDHE_PSK_AES256_SHA
  • ECDHE_PSK_AES128_SHA256
  • ECDHE_PSK_AES256_SHA384
  • ECDHE_PSK_NULL_SHA
  • ECDHE_PSK_NULL_SHA256
  • ECDHE_PSK_NULL_SHA384
  • ECDHE_RSA_CHACHA20_POLY1305_SHA256
  • ECDHE_ECDSA_CHACHA20_POLY1305_SHA256
  • DHE_RSA_CHACHA20_POLY1305_SHA256
  • PSK_CHACHA20_POLY1305_SHA256
  • ECDHE_PSK_CHACHA20_POLY1305_SHA256
  • DHE_PSK_CHACHA20_POLY1305_SHA256
  • RSA_PSK_CHACHA20_POLY1305_SHA256
  • AES128_GCM_SHA256
  • AES256_GCM_SHA384
  • CHACHA20_POLY1305_SHA256
  • AES128_CCM_SHA256
  • AES128_CCM8_SHA256

ECCurves
String

Default Value: ""

Defines the elliptic curves to enable.

Extensions
String

Default Value: ""

Provides access to TLS extensions.

ForceResumeIfDestinationChanges
Boolean

Default Value: False

Whether to force TLS session resumption when the destination address changes.

PreSharedIdentity
String

Default Value: ""

Defines the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.

PreSharedKey
String

Default Value: ""

Contains the pre-shared key for the PSK (Pre-Shared Key) key-exchange mechanism, encoded with base16.

PreSharedKeyCiphersuite
String

Default Value: ""

Defines the ciphersuite used for PSK (Pre-Shared Key) negotiation.

RenegotiationAttackPreventionMode
TsbxRenegotiationAttackPreventionModes

Default Value: 0

Selects the renegotiation attack prevention mechanism.

The following options are available:

crapmCompatible0TLS 1.0 and 1.1 compatibility mode (renegotiation indication extension is disabled).
crapmStrict1Renegotiation attack prevention is enabled and enforced.
crapmAuto2Automatically choose whether to enable or disable renegotiation attack prevention.

RevocationCheck
TsbxRevocationCheckKinds

Default Value: 1

Specifies the kind(s) of revocation check to perform.

Revocation checking is necessary to ensure the integrity of the chain and obtain up-to-date certificate validity and trustworthiness information.

crcNone0No revocation checking.
crcAuto1Automatic mode selection. Currently this maps to crcAnyOCSPOrCRL, but it may change in the future.
crcAllCRL2All provided CRL endpoints will be checked, and all checks must succeed.
crcAllOCSP3All provided OCSP endpoints will be checked, and all checks must succeed.
crcAllCRLAndOCSP4All provided CRL and OCSP endpoints will be checked, and all checks must succeed.
crcAnyCRL5All provided CRL endpoints will be checked, and at least one check must succeed.
crcAnyOCSP6All provided OCSP endpoints will be checked, and at least one check must succeed.
crcAnyCRLOrOCSP7All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. CRL endpoints are checked first.
crcAnyOCSPOrCRL8All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. OCSP endpoints are checked first.

This setting controls the way the revocation checks are performed for every certificate in the chain. Typically certificates come with two types of revocation information sources: CRL (certificate revocation lists) and OCSP responders. CRLs are static objects periodically published by the CA at some online location. OCSP responders are active online services maintained by the CA that can provide up-to-date information on certificate statuses in near real time.

There are some conceptual differences between the two. CRLs are normally larger in size. Their use involves some latency because there is normally some delay between the time when a certificate was revoked and the time the subsequent CRL mentioning that is published. The benefits of CRL is that the same object can provide statuses for all certificates issued by a particular CA, and that the whole technology is much simpler than OCSP (and thus is supported by more CAs).

This setting lets you adjust the validation course by including or excluding certain types of revocation sources from the validation process. The crcAnyOCSPOrCRL setting (give preference to the faster OCSP route and only demand one source to succeed) is a good choice for most typical validation environments. The 'crcAll*' modes are much stricter, and may be used in scenarios where bulletproof validity information is essential.

Note: If no CRL or OCSP endpoints are provided by the CA, the revocation check will be considered successful. This is because the CA chose not to supply revocation information for its certificates, meaning they are considered irrevocable.

Note: Within each of the above settings, if any retrieved CRL or OCSP response indicates that the certificate has been revoked, the revocation check fails.

SSLOptions
Integer

Default Value: 16

Various SSL (TLS) protocol options, set of

cssloExpectShutdownMessage0x001Wait for the close-notify message when shutting down the connection

cssloOpenSSLDTLSWorkaround0x002(DEPRECATED) Use a DTLS version workaround when talking to very old OpenSSL versions

cssloDisableKexLengthAlignment0x004Do not align the client-side PMS by the RSA modulus size. It is unlikely that you will ever need to adjust it.

cssloForceUseOfClientCertHashAlg0x008Enforce the use of the client certificate hash algorithm. It is unlikely that you will ever need to adjust it.

cssloAutoAddServerNameExtension0x010Automatically add the server name extension when known

cssloAcceptTrustedSRPPrimesOnly0x020Accept trusted SRP primes only

cssloDisableSignatureAlgorithmsExtension0x040Disable (do not send) the signature algorithms extension. It is unlikely that you will ever need to adjust it.

cssloIntolerateHigherProtocolVersions0x080(server option) Do not allow fallback from TLS versions higher than currently enabled

cssloStickToPrefCertHashAlg0x100Stick to preferred certificate hash algorithms

cssloNoImplicitTLS12Fallback0x200Disable implicit TLS 1.3 to 1.2 fallbacks

cssloUseHandshakeBatches0x400Send the handshake message as large batches rather than individually

TLSMode
TsbxSSLModes

Default Value: 0

Specifies the TLS mode to use.

smDefault0
smNoTLS1Do not use TLS
smExplicitTLS2Connect to the server without any encryption and then request an SSL session.
smImplicitTLS3Connect to the specified port, and establish the SSL session at once.
smMixedTLS4Connect to the specified port, and establish the SSL session at once, but allow plain data.

UseExtendedMasterSecret
Boolean

Default Value: False

Enables the Extended Master Secret Extension, as defined in RFC 7627.

UseSessionResumption
Boolean

Default Value: False

Enables or disables the TLS session resumption capability.

Versions
Integer

Default Value: 16

The SSL/TLS versions to enable by default.

csbSSL20x01SSL 2

csbSSL30x02SSL 3

csbTLS10x04TLS 1.0

csbTLS110x08TLS 1.1

csbTLS120x10TLS 1.2

csbTLS130x20TLS 1.3

Constructors

>

constructor Create();

Creates a new TLSSettings object.

UserAccount Type

A container for user account information.

Remarks

UserAccount objects are used to store user account information, such as logins and passwords.

Fields

AssociatedData
TBytes

Default Value: ""

Contains the user's Associated Data when SSH AEAD (Authenticated Encryption with Associated Data) algorithm is used.

BasePath
String

Default Value: ""

Base path for this user in the server's file system.

Cert
TBytes

Default Value: ""

Contains the user's certificate.

Data
String

Default Value: ""

Contains uninterpreted user-defined data that should be associated with the user account, such as comments or custom settings.

Handle
Int64

Default Value: 0

Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.

When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object after such operation. pdfSigner.setSigningCertHandle(certMgr.getCertHandle());

HashAlgorithm
String

Default Value: ""

Specifies the hash algorithm used to generate TOTP (Time-based One-Time Passwords) passwords for this user. Three HMAC algorithms are supported, with SHA-1, SHA-256, and SHA-512 digests:

SB_MAC_ALGORITHM_HMAC_SHA1SHA1
SB_MAC_ALGORITHM_HMAC_SHA256SHA256
SB_MAC_ALGORITHM_HMAC_SHA512SHA512

IncomingSpeedLimit
Integer

Default Value: 0

Specifies the incoming speed limit for this user. The value of 0 (zero) means "no limitation".

OtpAlgorithm
TsbxOTPAlgorithms

Default Value: 0

The algorithm used to generate one-time passwords (OTP) for this user, either HOTP (Hash-based OTP) or TOTP (Time-based OTP). In the former case, a value of a dedicated counter is used to generate a unique password, while in the latter the password is generated on the basis of the current time value.

oaHmac0
oaTime1

OtpValue
Integer

Default Value: 0

The user's time interval (TOTP) or Counter (HOTP).

OutgoingSpeedLimit
Integer

Default Value: 0

Specifies the outgoing speed limit for this user. The value of 0 (zero) means "no limitation".

Password
String

Default Value: ""

The user's authentication password.

PasswordLen
Integer

Default Value: 0

Specifies the length of the user's OTP password.

SharedSecret
TBytes

Default Value: ""

Contains the user's secret key, which is essentially a shared secret between the client and server.

Shared secrets can be used in TLS-driven protocols, as well as in OTP (where it is called a 'key secret') for generating one-time passwords on one side, and validate them on the other.

SSHKey
TBytes

Default Value: ""

Contains the user's SSH key.

Username
String

Default Value: ""

The registered name (login) of the user.

Constructors

>

constructor Create();

Creates a new UserAccount object.

Config Settings (HTTPServer Component)

The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

HTTPServer Config Settings

AllowOptionsResponseWithoutAuth:   Enables unauthenticated responses to OPTIONS requests.

Set this property to true to allow the server serve OPTIONS requests without prior authentication of the client.

ClientAuth:   Enables or disables certificate-based client authentication.

Set this property to one of the below values to tune up the client authentication logic:

0No client authentication (the default setting)
1Request certificates. The server will ask connecting clients for their certificates. Non-authenticated client connections will be accepted anyway.
2Require certificates. The server will ask connecting clients for their certificates. If a client fails to provide a certificate, the server will terminate the connection.

If this property is set to 1 or 2, the component will request certificates from the connecting clients. Depending on the setting, the clients that fail to provide their certificate in response will be allowed or disallowed to proceed with the connection. The server signals about a received certificate by firing its CertificateValidate event. Use PinClient method in the event handler to pin the client details, and access the provided certificate chain via the PinnedClientChain property.

Note that this event is fired from the connecting clients threads, so please make sure you avoid bottlenecks in the event handler and put appropriate thread safety measures in place.

Unlike the client-side components, the server component does not perform automated certificate validation against the local security policy. You must perform appropriate certificate validation steps in your CertificateValidate event handler.

DualStack:   Allows the use of ip4 and ip6 simultaneously.

This setting specifies a socket can use ip4 and ip6 simultaneously.

HomePage:   Specifies the home page resource name.

Use this property to specify the home page (/) resource name.

Host:   The host to bind to.

Specifies a specific interface the server should listen on.

RequestFilter:   The request string modifier.

Use this property to tune up the request string as returned by GetRequestString method. Supported filters: params (request parameters only), params[Index] or params['Name'] (a specific request parameter), parts[Index] (the contents of a particular part of a multipart message). An empty request filter makes GetRequestString return the whole body of the request.

ServerSSLDHKeyLength:   Sets the size of the TLS DHE key exchange group.

Use this property to adjust the length, in bits, of the DHE prime to be used by the TLS server.

TempPath:   Path for storing temporary files.

This setting specifies an absolute path to the location on disk where temporary files are stored.

WebsiteName:   The website name for the TLS certificate.

Assign this property with a name to put in a self-generated TLS certificate.

Base Config Settings

CheckKeyIntegrityBeforeUse:   Enables or disable private key integrity check before use.

This global property enables or disables private key material check before each signing operation. This slows down performance a bit, but prevents a selection of attacks on RSA keys where keys with unknown origins are used.

You can switch this property off to improve performance if your project only uses known, good private keys.

CookieCaching:   Specifies whether a cookie cache should be used for HTTP(S) transports.

Set this property to enable or disable cookies caching for the component.

Supported values are:

offNo caching (default)
localLocal caching
globalGlobal caching

Cookies:   Gets or sets local cookies for the component.

Use this property to get cookies from the internal cookie storage of the component and/or restore them back between application sessions.

DefDeriveKeyIterations:   Specifies the default key derivation algorithm iteration count.

This global property sets the default number of iterations for all supported key derivation algorithms. Note that you can provide the required number of iterations by using properties of the relevant key generation component; this global setting is used in scenarios where specific iteration count is not or cannot be provided.

EnableClientSideSSLFFDHE:   Enables or disables finite field DHE key exchange support in TLS clients.

This global property enables or disables support for finite field DHE key exchange methods in TLS clients. FF DHE is a slower algorithm if compared to EC DHE; enabling it may result in slower connections.

This setting only applies to sessions negotiated with TLS version 1.3.

GlobalCookies:   Gets or sets global cookies for all the HTTP transports.

Use this property to get cookies from the GLOBAL cookie storage or restore them back between application sessions. These cookies will be used by all the components that have its CookieCaching property set to "global".

HttpUserAgent:   Specifies the user agent name to be used by all HTTP clients.

This global setting defines the User-Agent field of the HTTP request provides information about the software that initiates the request. This value will be used by all the HTTP clients including the ones used internally in other components.

LogDestination:   Specifies the debug log destination.

Contains a comma-separated list of values that specifies where debug log should be dumped.

Supported values are:

fileFile
consoleConsole
systemlogSystem Log (supported for Android only)
debuggerDebugger (supported for VCL for Windows and .Net)

LogDetails:   Specifies the debug log details to dump.

Contains a comma-separated list of values that specifies which debug log details to dump.

Supported values are:

timeCurrent time
levelLevel
packagePackage name
moduleModule name
classClass name
methodMethod name
threadidThread Id
contenttypeContent type
contentContent
allAll details

LogFile:   Specifies the debug log filename.

Use this property to provide a path to the log file.

LogFilters:   Specifies the debug log filters.

Contains a comma-separated list of value pairs ("name:value") that describe filters.

Supported filter names are:

exclude-packageExclude a package specified in the value
exclude-moduleExclude a module specified in the value
exclude-classExclude a class specified in the value
exclude-methodExclude a method specified in the value
include-packageInclude a package specified in the value
include-moduleInclude a module specified in the value
include-classInclude a class specified in the value
include-methodInclude a method specified in the value

LogFlushMode:   Specifies the log flush mode.

Use this property to set the log flush mode. The following values are defined:

noneNo flush (caching only)
immediateImmediate flush (real-time logging)
maxcountFlush cached entries upon reaching LogMaxEventCount entries in the cache.

LogLevel:   Specifies the debug log level.

Use this property to provide the desired debug log level.

Supported values are:

noneNone (by default)
fatalSevere errors that cause premature termination.
errorOther runtime errors or unexpected conditions.
warningUse of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong".
infoInteresting runtime events (startup/shutdown).
debugDetailed information on flow of through the system.
traceMore detailed information.

LogMaxEventCount:   Specifies the maximum number of events to cache before further action is taken.

Use this property to specify the log event number threshold. This threshold may have different effects, depending on the rotation setting and/or the flush mode.

The default value of this setting is 100.

LogRotationMode:   Specifies the log rotation mode.

Use this property to set the log rotation mode. The following values are defined:

noneNo rotation
deleteolderDelete older entries from the cache upon reaching LogMaxEventCount
keepolderKeep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded)

MaxASN1BufferLength:   Specifies the maximal allowed length for ASN.1 primitive tag data.

This global property limits the maximal allowed length for ASN.1 tag data for non-content-carrying structures, such as certificates, CRLs, or timestamps. It does not affect structures that can carry content, such as CMS/CAdES messages. This is a security property aiming at preventing DoS attacks.

MaxASN1TreeDepth:   Specifies the maximal depth for processed ASN.1 trees.

This global property limits the maximal depth of ASN.1 trees that the component can handle without throwing an error. This is a security property aiming at preventing DoS attacks.

OCSPHashAlgorithm:   Specifies the hash algorithm to be used to identify certificates in OCSP requests.

This global setting defines the hash algorithm to use in OCSP requests during chain validation. Some OCSP responders can only use older algorithms, in which case setting this property to SHA1 may be helpful.

StaticDNS:   Specifies whether static DNS rules should be used.

Set this property to enable or disable static DNS rules for the component. Works only if UseOwnDNSResolver is set to true.

Supported values are:

noneNo static DNS rules (default)
localLocal static DNS rules
globalGlobal static DNS rules

StaticIPAddress[domain]:   Gets or sets an IP address for the specified domain name.

Use this property to get or set an IP address for the specified domain name in the internal (of the component) or global DNS rules storage depending on the StaticDNS value. The type of the IP address (IPv4 or IPv6) is determined automatically. If both addresses are available, they are devided by the | (pipe) character.

StaticIPAddresses:   Gets or sets all the static DNS rules.

Use this property to get static DNS rules from the current rules storage or restore them back between application sessions. If StaticDNS of the component is set to "local", the property returns/restores the rules from/to the internal storage of the component. If StaticDNS of the component is set to "global", the property returns/restores the rules from/to the GLOBAL storage. The rules list is returned and accepted in JSON format.

Tag:   Allows to store any custom data.

Use this config property to store any custom data.

TLSSessionGroup:   Specifies the group name of TLS sessions to be used for session resumption.

Use this property to limit the search of chached TLS sessions to the specified group. Sessions from other groups will be ignored. By default, all sessions are cached with an empty group name and available to all the components.

TLSSessionLifetime:   Specifies lifetime in seconds of the cached TLS session.

Use this property to specify how much time the TLS session should be kept in the session cache. After this time, the session expires and will be automatically removed from the cache. Default value is 300 seconds (5 minutes).

TLSSessionPurgeInterval:   Specifies how often the session cache should remove the expired TLS sessions.

Use this property to specify the time interval of purging the expired TLS sessions from the session cache. Default value is 60 seconds (1 minute).

UseOwnDNSResolver:   Specifies whether the client components should use own DNS resolver.

Set this global property to false to force all the client components to use the DNS resolver provided by the target OS instead of using own one.

UseSharedSystemStorages:   Specifies whether the validation engine should use a global per-process copy of the system certificate stores.

Set this global property to false to make each validation run use its own copy of system certificate stores.

UseSystemOAEPAndPSS:   Enforces or disables the use of system-driven RSA OAEP and PSS computations.

This global setting defines who is responsible for performing RSA-OAEP and RSA-PSS computations where the private key is stored in a Windows system store and is exportable. If set to true, SBB will delegate the computations to Windows via a CryptoAPI call. Otherwise, it will export the key material and perform the computations using its own OAEP/PSS implementation.

This setting only applies to certificates originating from a Windows system store.

UseSystemRandom:   Enables or disables the use of the OS PRNG.

Use this global property to enable or disable the use of operating system-driven pseudorandom number generation.

Trappable Errors (HTTPServer Component)

HTTPServer Errors

1048577   Invalid parameter value (SB_ERROR_INVALID_PARAMETER)
1048578   Component is configured incorrectly (SB_ERROR_INVALID_SETUP)
1048579   Operation cannot be executed in the current state (SB_ERROR_INVALID_STATE)
1048580   Attempt to set an invalid value to a property (SB_ERROR_INVALID_VALUE)
1048581   Certificate does not have its private key loaded (SB_ERROR_NO_PRIVATE_KEY)
1048581   Cancelled by the user (SB_ERROR_CANCELLED_BY_USER) 
19922945   Unsupported keep-alive policy (SB_ERROR_HTTP_UNSUPPORTED_KEEPALIVEPOLICY)