Docs

SecureBlackbox 2022 Java Edition

Version 22.0 [Build 8174]

XMLDecryptor Class

Properties   Methods   Events   Configuration Settings   Errors  

The XMLDecryptor class decrypts XML documents.

Syntax

secureblackbox.Xmldecryptor

Remarks

XMlDecryptor decrypts XML documents encrypted with certificates or generic keys.

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

DecryptionKeyThe symmetric (session) key used to encrypt the data.
EncodingSpecifies XML encoding.
EncryptedDataTypeDefines the type of data being encrypted.
EncryptionMethodThe encryption method used to encrypt the document.
EncryptKeySpecifies if the encryption key is encrypted.
ExternalCryptoProvides access to external signing and DC parameters.
ExternalDataThe data that should be encrypted.
FIPSModeReserved.
InputBytesUse this property to pass the input to class in the byte array form.
InputFileThe XML file to be decrypted.
InputStreamStream containing the XML document.
KeyDecryptionCertificateThe certificate used to decrypt a session key.
KeyDecryptionKeyThe symmetric key used to decrypt a session key.
KeyEncryptionTypeDefines how the session key is encrypted.
KeyInfoA collection of KeyInfo items found in the KeyInfo element.
KeyInfoCertificatesA collection of certificates found in the KeyInfo element.
KeyTransportMethodDefines how the session key is encrypted.
KeyWrapMethodThe key wrap method used to encrypt the session key.
OutputBytesUse this property to read the output the class object has produced.
OutputFileDefines where to save the decrypted XML document.
OutputStreamThe stream where to write the decrypted XML document to.
UseGCMIndicates if GCM mode was enabled.
XMLElementDefines the XML element to decrypt.
XPathNamespacesSpecifies namespaces for XPath expressions.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

ConfigSets or retrieves a configuration setting.
DecryptDecrypts an XML document.
DoActionPerforms an additional action.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

DecryptionInfoNeededRequests decryption information from the application.
ErrorInformation about errors during signing.
ExternalDecryptHandles remote or external decryption.
NotificationThis event notifies the application about an underlying control flow event.
SaveExternalDataRequest to save decrypted external data.

Configuration Settings


The following is a list of configuration settings for the class with short descriptions. Click on the links for further details.

KeyNameContains information about the key used for encryption.
MimeTypeContains the mime type of the encrypted data.
TempPathLocation where the temporary files are stored.
WriteBOMSpecifies whether byte-order mark should be written when saving the document.
CheckKeyIntegrityBeforeUseEnables or disable private key integrity check before use.
CookieCachingSpecifies whether a cookie cache should be used for HTTP(S) transports.
CookiesGets or sets local cookies for the class (supported for HTTPClient, RESTClient and SOAPClient only).
DefDeriveKeyIterationsSpecifies the default key derivation algorithm iteration count.
EnableClientSideSSLFFDHEEnables or disables finite field DHE key exchange support in TLS clients.
GlobalCookiesGets or sets global cookies for all the HTTP transports.
HttpUserAgentSpecifies the user agent name to be used by all HTTP clients.
LogDestinationSpecifies the debug log destination.
LogDetailsSpecifies the debug log details to dump.
LogFileSpecifies the debug log filename.
LogFiltersSpecifies the debug log filters.
LogFlushModeSpecifies the log flush mode.
LogLevelSpecifies the debug log level.
LogMaxEventCountSpecifies the maximum number of events to cache before further action is taken.
LogRotationModeSpecifies the log rotation mode.
MaxASN1BufferLengthSpecifies the maximal allowed length for ASN.1 primitive tag data.
MaxASN1TreeDepthSpecifies the maximal depth for processed ASN.1 trees.
OCSPHashAlgorithmSpecifies the hash algorithm to be used to identify certificates in OCSP requests.
TagAllows to store any custom data.
UseSharedSystemStoragesSpecifies whether the validation engine should use a global per-process copy of the system certificate stores.
UseSystemOAEPAndPSSEnforces or disables the use of system-driven RSA OAEP and PSS computations.
UseSystemRandomEnables or disables the use of the OS PRNG.

DecryptionKey Property (XMLDecryptor Class)

The symmetric (session) key used to encrypt the data.

Syntax


public byte[] getDecryptionKey();


public void setDecryptionKey(byte[] decryptionKey);

Remarks

Use this property to provide the encryption symmetric (session) key that will be used to encrypt a data.

It is required when the EncryptKey property is disabled. If the EncryptKey property is enabled, and no value is set, the component will generate a random session key (recommended).

This property is not available at design time.

Encoding Property (XMLDecryptor Class)

Specifies XML encoding.

Syntax


public String getEncoding();


public void setEncoding(String encoding);

Default Value

""

Remarks

Use this property to specify the encoding to apply to the XML documents.

EncryptedDataType Property (XMLDecryptor Class)

Defines the type of data being encrypted.

Syntax


public int getEncryptedDataType();


Enumerated values:
  public final static int cxedtElement = 0;

  public final static int cxedtContent = 1;

  public final static int cxedtExternal = 2;

Default Value

0

Remarks

This property defines what data type is about to be encrypted.

Supported values:

cxedtElement0The XML element is encrypted.

XMLNode property specifies the XML element that should be encrypted.

cxedtContent1Element content is encrypted.

XMLNode property specifies the XML element which content should be encrypted.

cxedtExternal2External data is encrypted. Use ExternalData property to set the data that should be encrypted.

XMLNode property specifies the location where xenc:EncryptedData element should be placed.

If the XMLNode property is set to the empty string, and the InputStream and InputFile properties are not provided, then a new XML document will be created with the xenc:EncryptedData element as a document element.

This property is read-only and not available at design time.

EncryptionMethod Property (XMLDecryptor Class)

The encryption method used to encrypt the document.

Syntax


public String getEncryptionMethod();


Default Value

"AES256"

Remarks

This property contains the encryption algorithm used to encrypt the XML document.

Supported values:

SB_XML_ENCRYPTION_ALGORITHM_RC4RC4
SB_XML_ENCRYPTION_ALGORITHM_DESDES
SB_XML_ENCRYPTION_ALGORITHM_3DES3DEST
SB_XML_ENCRYPTION_ALGORITHM_AES128AES128
SB_XML_ENCRYPTION_ALGORITHM_AES192AES192
SB_XML_ENCRYPTION_ALGORITHM_AES256AES256
SB_XML_ENCRYPTION_ALGORITHM_CAMELLIA128Camellia128
SB_XML_ENCRYPTION_ALGORITHM_CAMELLIA192Camellia192
SB_XML_ENCRYPTION_ALGORITHM_CAMELLIA256Camellia256
SB_XML_ENCRYPTION_ALGORITHM_SEEDSEED

If UseGCM property is enabled, then supported values are:

SB_XML_ENCRYPTION_ALGORITHM_AES128AES128
SB_XML_ENCRYPTION_ALGORITHM_AES192AES192
SB_XML_ENCRYPTION_ALGORITHM_AES256AES256

This property is read-only and not available at design time.

EncryptKey Property (XMLDecryptor Class)

Specifies if the encryption key is encrypted.

Syntax


public boolean isEncryptKey();


Default Value

True

Remarks

Use this property to specify if encryption (session) key should be encrypted and also added to the encrypted data.

This property is read-only and not available at design time.

ExternalCrypto Property (XMLDecryptor Class)

Provides access to external signing and DC parameters.

Syntax


public ExternalCrypto getExternalCrypto();


Remarks

Use this property to tune-up remote cryptography settings. SecureBlackbox supports two independent types of external cryptography: synchronous (based on OnExternalSign event) and asynchronous (based on DC protocol and DCAuth signing component).

This property is read-only.

ExternalData Property (XMLDecryptor Class)

The data that should be encrypted.

Syntax


public byte[] getExternalData();


public void setExternalData(byte[] externalData);

Remarks

Use this property to provide the data that should be encrypted if EncryptedDataType property is set to cxedtExternal value.

This property is not available at design time.

FIPSMode Property (XMLDecryptor Class)

Reserved.

Syntax


public boolean isFIPSMode();


public void setFIPSMode(boolean FIPSMode);

Default Value

False

Remarks

This property is reserved for future use.

InputBytes Property (XMLDecryptor Class)

Use this property to pass the input to class in the byte array form.

Syntax


public byte[] getInputBytes();


public void setInputBytes(byte[] inputBytes);

Remarks

Assign a byte array containing the data to be processed to this property.

This property is not available at design time.

InputFile Property (XMLDecryptor Class)

The XML file to be decrypted.

Syntax


public String getInputFile();


public void setInputFile(String inputFile);

Default Value

""

Remarks

Provide the path to the XML document to be decrypted.

InputStream Property (XMLDecryptor Class)

Stream containing the XML document.

Syntax


public java.io.InputStream getInputStream();


public void setInputStream(java.io.InputStream inputStream);

Default Value

null

Remarks

Use this property to feed the XML document to the class via a stream.

This property is not available at design time.

KeyDecryptionCertificate Property (XMLDecryptor Class)

The certificate used to decrypt a session key.

Syntax


public Certificate getKeyDecryptionCertificate();


public void setKeyDecryptionCertificate(Certificate keyDecryptionCertificate);

Remarks

Use this property to provide the decryption certificate that will be used to decrypt a session key. It is required when EncryptKey property is enabled and KeyEncryptionType set to cxetKeyTransport value.

This property is not available at design time.

KeyDecryptionKey Property (XMLDecryptor Class)

The symmetric key used to decrypt a session key.

Syntax


public byte[] getKeyDecryptionKey();


public void setKeyDecryptionKey(byte[] keyDecryptionKey);

Remarks

Use this property to provide the decryption symmetric key that will be used to decrypt a session key. It is required when EncryptKey property is enabled and KeyEncryptionType set to cxetKeyWrap value.

This property is not available at design time.

KeyEncryptionType Property (XMLDecryptor Class)

Defines how the session key is encrypted.

Syntax


public int getKeyEncryptionType();


Enumerated values:
  public final static int cxetKeyTransport = 0;

  public final static int cxetKeyWrap = 1;

Default Value

0

Remarks

This property defines how the session key is encrypted.

Supported values:

cxetKeyTransport0The key is encrypted using public-key based algorithm
cxetKeyWrap1The key is encrypted using symmetric algorithm with pre-shared secret key

This property is read-only and not available at design time.

KeyInfo Property (XMLDecryptor Class)

A collection of KeyInfo items found in the KeyInfo element.

Syntax


public XMLKeyInfoItemList getKeyInfo();


Remarks

A collection of KeyInfo items that contains information about the public key that is used to perform encryption.

This property is read-only and not available at design time.

KeyInfoCertificates Property (XMLDecryptor Class)

A collection of certificates found in the KeyInfo element.

Syntax


public CertificateList getKeyInfoCertificates();


Remarks

A collection of certificates that contains information about the public key that is used to perform encryption.

This property is read-only and not available at design time.

KeyTransportMethod Property (XMLDecryptor Class)

Defines how the session key is encrypted.

Syntax


public int getKeyTransportMethod();


Enumerated values:
  public final static int cxktRSA15 = 0;

  public final static int cxktRSAOAEP = 1;

Default Value

0

Remarks

This property defines how the session key is encrypted.

Supported values:

cxktRSA150RSA 1.5 (RSAES-PKCS1-v1_5) encryption is used
cxktRSAOAEP1RSA-OAEP (RSAES-OAEP-ENCRYPT) encryption is used

This property is read-only and not available at design time.

KeyWrapMethod Property (XMLDecryptor Class)

The key wrap method used to encrypt the session key.

Syntax


public String getKeyWrapMethod();


Default Value

"Cammelia256"

Remarks

This property specifies the key wrap algorithm used to encrypt the session key.

Supported values:

SB_XML_ENCRYPTION_ALGORITHM_3DES3DEST
SB_XML_ENCRYPTION_ALGORITHM_AES128AES128
SB_XML_ENCRYPTION_ALGORITHM_AES192AES192
SB_XML_ENCRYPTION_ALGORITHM_AES256AES256
SB_XML_ENCRYPTION_ALGORITHM_CAMELLIA128Camellia128
SB_XML_ENCRYPTION_ALGORITHM_CAMELLIA192Camellia192
SB_XML_ENCRYPTION_ALGORITHM_CAMELLIA256Camellia256
SB_XML_ENCRYPTION_ALGORITHM_SEEDSEED

This property is read-only and not available at design time.

OutputBytes Property (XMLDecryptor Class)

Use this property to read the output the class object has produced.

Syntax


public byte[] getOutputBytes();


Remarks

Read the contents of this property after the operation is completed to read the produced output. This property will only be set if OutputFile and OutputStream properties had not been assigned.

This property is read-only and not available at design time.

OutputFile Property (XMLDecryptor Class)

Defines where to save the decrypted XML document.

Syntax


public String getOutputFile();


public void setOutputFile(String outputFile);

Default Value

""

Remarks

A path where the decrypted XML document should be saved.

OutputStream Property (XMLDecryptor Class)

The stream where to write the decrypted XML document to.

Syntax


public java.io.OutputStream getOutputStream();


public void setOutputStream(java.io.OutputStream outputStream);

Default Value

null

Remarks

Use this property to save the decrypted XML document to a stream.

This property is not available at design time.

UseGCM Property (XMLDecryptor Class)

Indicates if GCM mode was enabled.

Syntax


public boolean isUseGCM();


Default Value

True

Remarks

Use this property to check if GCM encryption mode was enabled.

This property is read-only and not available at design time.

XMLElement Property (XMLDecryptor Class)

Defines the XML element to decrypt.

Syntax


public String getXMLElement();


public void setXMLElement(String XMLElement);

Default Value

""

Remarks

Defines the XML element to decrypt.

Supported values are:

""an empty string indicates that all xenc:EncryptedData elements will be decrypted.
"#id"indicates an XML element with specified Id.
XPointer expressionindicates an XML element selected using XPointer expression. Use XPathNamespaces property to specify Prefixes and NamespaceURIs

For example:

"/root/data[1]" - indicates the second "data" element under the document element with a name "root"

"//ns1:data" - indicates a data element. "ns1" prefix should be defined in XPathNamespaces property

Node nameindicates an XML element selected using its NodeName.

For example: "data" - indicates an XML element with node name "data".

XPathNamespaces Property (XMLDecryptor Class)

Specifies namespaces for XPath expressions.

Syntax


public XMLNamespaceList getXPathNamespaces();


public void setXPathNamespaces(XMLNamespaceList XPathNamespaces);

Remarks

This property contains a list of prefixes and namespaceURIs that used in XPath expression with XMLElement property.

Config Method (Xmldecryptor Class)

Sets or retrieves a configuration setting.

Syntax

public String config(String configurationString);

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Decrypt Method (Xmldecryptor Class)

Decrypts an XML document.

Syntax

public void decrypt();

Remarks

Call this method to decrypt an XML document.

DoAction Method (Xmldecryptor Class)

Performs an additional action.

Syntax

public String doAction(String actionID, String actionParams);

Remarks

DoAction is a generic method available in every class. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.

The unique identifier of the action is provided in ActionID parameter. ActionParams contains a list of parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....

DecryptionInfoNeeded Event (Xmldecryptor Class)

Requests decryption information from the application.

Syntax

public class DefaultXmldecryptorEventListener implements XmldecryptorEventListener {
  ...
  public void decryptionInfoNeeded(XmldecryptorDecryptionInfoNeededEvent e) {}
  ...
}

public class XmldecryptorDecryptionInfoNeededEvent {
  public boolean cancelDecryption;

}

Remarks

This event is fired when the component needs decryption information (the private key) from the user.

Use EncryptKey, Config["KeyName"] and KeyEncryptionType properties to identify the encryption type and then set DecryptionKey or KeyDecryptionKey or KeyDecryptionCertificate properties accordingly.

if CancelDecryption property is set to true value (default value) then decryption would fail if provided key/certificate is invalid. Otherwise this event would be fired again.

Error Event (Xmldecryptor Class)

Information about errors during signing.

Syntax

public class DefaultXmldecryptorEventListener implements XmldecryptorEventListener {
  ...
  public void error(XmldecryptorErrorEvent e) {}
  ...
}

public class XmldecryptorErrorEvent {
  public int errorCode;

  public String description;

}

Remarks

The event is fired in case of exceptional conditions during signing.

ErrorCode contains an error code and Description contains a textual description of the error.

ExternalDecrypt Event (Xmldecryptor Class)

Handles remote or external decryption.

Syntax

public class DefaultXmldecryptorEventListener implements XmldecryptorEventListener {
  ...
  public void externalDecrypt(XmldecryptorExternalDecryptEvent e) {}
  ...
}

public class XmldecryptorExternalDecryptEvent {
  public String operationId;

  public String algorithm;

  public String pars;

  public String encryptedData;

  public String data;

}

Remarks

Assign a handler to this event if you need to delegate a low-level decryption operation to an external, remote, or custom decryption engine. The handler receives a encrypted value in the EncryptedData parameter, and is expected to decrypt it and place the decrypted value into the Data parameter.

OperationId provides a comment about the operation and its origin. It depends on the exact component being used, and may be empty. Algorithm specifies the encryption algorithm being used, and Pars contain algorithm-dependent parameters.

The component uses base16 (hex) encoding for EncryptedData, Data, and Pars parameters. If your decryption engine uses a different input and output encoding, you may need to decode and/or encode the data before and/or after the decryption.

A sample data encoded in base16: a0dee2a0382afbb09120ffa7ccd8a152 - lower case base16 A0DEE2A0382AFBB09120FFA7CCD8A152 - upper case base16

Notification Event (Xmldecryptor Class)

This event notifies the application about an underlying control flow event.

Syntax

public class DefaultXmldecryptorEventListener implements XmldecryptorEventListener {
  ...
  public void notification(XmldecryptorNotificationEvent e) {}
  ...
}

public class XmldecryptorNotificationEvent {
  public String eventID;

  public String eventParam;

}

Remarks

The class fires this event to let the application know about some event, occurrence, or milestone in the component. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.

The unique identifier of the event is provided in EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the component, the exact action it is performing, or the document being processed, one or both may be omitted.

SaveExternalData Event (Xmldecryptor Class)

Request to save decrypted external data.

Syntax

public class DefaultXmldecryptorEventListener implements XmldecryptorEventListener {
  ...
  public void saveExternalData(XmldecryptorSaveExternalDataEvent e) {}
  ...
}

public class XmldecryptorSaveExternalDataEvent {
  public byte[] externalData;

}

Remarks

This event is fired when the component successfully decrypted an external data and needs to save it. The same data could be read using ExternalData property.

It makes sense to use this event when the XML document contains several xenc:EncryptedData elements and the component decrypts them all.

Certificate Type

Provides details of an individual X.509 certificate.

Remarks

This type provides access to X.509 certificate details.

Fields

Bytes
byte[]

Returns raw certificate data in DER format.

CA
boolean

Indicates whether the certificate has a CA capability (a setting in BasicConstraints extension).

CAKeyID
byte[]

A unique identifier (fingerprint) of the CA certificate's private key.

Authority Key Identifier is a (non-critical) X.509 certificate extension which allows the identification of certificates produced by the same issuer, but with different public keys.

CRLDistributionPoints
String

Locations of the CRL (Certificate Revocation List) distribution points used to check this certificate's validity.

Curve
String

Specifies the elliptic curve of the EC public key.

SB_EC_SECP112R1SECP112R1
SB_EC_SECP112R2SECP112R2
SB_EC_SECP128R1SECP128R1
SB_EC_SECP128R2SECP128R2
SB_EC_SECP160K1SECP160K1
SB_EC_SECP160R1SECP160R1
SB_EC_SECP160R2SECP160R2
SB_EC_SECP192K1SECP192K1
SB_EC_SECP192R1SECP192R1
SB_EC_SECP224K1SECP224K1
SB_EC_SECP224R1SECP224R1
SB_EC_SECP256K1SECP256K1
SB_EC_SECP256R1SECP256R1
SB_EC_SECP384R1SECP384R1
SB_EC_SECP521R1SECP521R1
SB_EC_SECT113R1SECT113R1
SB_EC_SECT113R2SECT113R2
SB_EC_SECT131R1SECT131R1
SB_EC_SECT131R2SECT131R2
SB_EC_SECT163K1SECT163K1
SB_EC_SECT163R1SECT163R1
SB_EC_SECT163R2SECT163R2
SB_EC_SECT193R1SECT193R1
SB_EC_SECT193R2SECT193R2
SB_EC_SECT233K1SECT233K1
SB_EC_SECT233R1SECT233R1
SB_EC_SECT239K1SECT239K1
SB_EC_SECT283K1SECT283K1
SB_EC_SECT283R1SECT283R1
SB_EC_SECT409K1SECT409K1
SB_EC_SECT409R1SECT409R1
SB_EC_SECT571K1SECT571K1
SB_EC_SECT571R1SECT571R1
SB_EC_PRIME192V1PRIME192V1
SB_EC_PRIME192V2PRIME192V2
SB_EC_PRIME192V3PRIME192V3
SB_EC_PRIME239V1PRIME239V1
SB_EC_PRIME239V2PRIME239V2
SB_EC_PRIME239V3PRIME239V3
SB_EC_PRIME256V1PRIME256V1
SB_EC_C2PNB163V1C2PNB163V1
SB_EC_C2PNB163V2C2PNB163V2
SB_EC_C2PNB163V3C2PNB163V3
SB_EC_C2PNB176W1C2PNB176W1
SB_EC_C2TNB191V1C2TNB191V1
SB_EC_C2TNB191V2C2TNB191V2
SB_EC_C2TNB191V3C2TNB191V3
SB_EC_C2ONB191V4C2ONB191V4
SB_EC_C2ONB191V5C2ONB191V5
SB_EC_C2PNB208W1C2PNB208W1
SB_EC_C2TNB239V1C2TNB239V1
SB_EC_C2TNB239V2C2TNB239V2
SB_EC_C2TNB239V3C2TNB239V3
SB_EC_C2ONB239V4C2ONB239V4
SB_EC_C2ONB239V5C2ONB239V5
SB_EC_C2PNB272W1C2PNB272W1
SB_EC_C2PNB304W1C2PNB304W1
SB_EC_C2TNB359V1C2TNB359V1
SB_EC_C2PNB368W1C2PNB368W1
SB_EC_C2TNB431R1C2TNB431R1
SB_EC_NISTP192NISTP192
SB_EC_NISTP224NISTP224
SB_EC_NISTP256NISTP256
SB_EC_NISTP384NISTP384
SB_EC_NISTP521NISTP521
SB_EC_NISTB163NISTB163
SB_EC_NISTB233NISTB233
SB_EC_NISTB283NISTB283
SB_EC_NISTB409NISTB409
SB_EC_NISTB571NISTB571
SB_EC_NISTK163NISTK163
SB_EC_NISTK233NISTK233
SB_EC_NISTK283NISTK283
SB_EC_NISTK409NISTK409
SB_EC_NISTK571NISTK571
SB_EC_GOSTCPTESTGOSTCPTEST
SB_EC_GOSTCPAGOSTCPA
SB_EC_GOSTCPBGOSTCPB
SB_EC_GOSTCPCGOSTCPC
SB_EC_GOSTCPXCHAGOSTCPXCHA
SB_EC_GOSTCPXCHBGOSTCPXCHB
SB_EC_BRAINPOOLP160R1BRAINPOOLP160R1
SB_EC_BRAINPOOLP160T1BRAINPOOLP160T1
SB_EC_BRAINPOOLP192R1BRAINPOOLP192R1
SB_EC_BRAINPOOLP192T1BRAINPOOLP192T1
SB_EC_BRAINPOOLP224R1BRAINPOOLP224R1
SB_EC_BRAINPOOLP224T1BRAINPOOLP224T1
SB_EC_BRAINPOOLP256R1BRAINPOOLP256R1
SB_EC_BRAINPOOLP256T1BRAINPOOLP256T1
SB_EC_BRAINPOOLP320R1BRAINPOOLP320R1
SB_EC_BRAINPOOLP320T1BRAINPOOLP320T1
SB_EC_BRAINPOOLP384R1BRAINPOOLP384R1
SB_EC_BRAINPOOLP384T1BRAINPOOLP384T1
SB_EC_BRAINPOOLP512R1BRAINPOOLP512R1
SB_EC_BRAINPOOLP512T1BRAINPOOLP512T1
SB_EC_CURVE25519CURVE25519
SB_EC_CURVE448CURVE448

Fingerprint
byte[]

Contains the fingerprint (a hash imprint) of this certificate.

FriendlyName
String

Contains an associated alias (friendly name) of the certificate.

HashAlgorithm
String

Specifies the hash algorithm to be used in the operations on the certificate (such as key signing)

SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_MD2MD2
SB_HASH_ALGORITHM_MD4MD4
SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_CRC32CRC32
SB_HASH_ALGORITHM_SSL3SSL3
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_POLY1305POLY1305
SB_HASH_ALGORITHM_SHA3_224SHA3_224
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512
SB_HASH_ALGORITHM_BLAKE2S_128BLAKE2S_128
SB_HASH_ALGORITHM_BLAKE2S_160BLAKE2S_160
SB_HASH_ALGORITHM_BLAKE2S_224BLAKE2S_224
SB_HASH_ALGORITHM_BLAKE2S_256BLAKE2S_256
SB_HASH_ALGORITHM_BLAKE2B_160BLAKE2B_160
SB_HASH_ALGORITHM_BLAKE2B_256BLAKE2B_256
SB_HASH_ALGORITHM_BLAKE2B_384BLAKE2B_384
SB_HASH_ALGORITHM_BLAKE2B_512BLAKE2B_512
SB_HASH_ALGORITHM_SHAKE_128SHAKE_128
SB_HASH_ALGORITHM_SHAKE_256SHAKE_256
SB_HASH_ALGORITHM_SHAKE_128_LENSHAKE_128_LEN
SB_HASH_ALGORITHM_SHAKE_256_LENSHAKE_256_LEN

Issuer
String

The common name of the certificate issuer (CA), typically a company name.

IssuerRDN
String

A collection of information, in the form of [OID, Value] pairs, uniquely identifying the certificate issuer.

KeyAlgorithm
String

Specifies the public key algorithm of this certificate.

SB_CERT_ALGORITHM_ID_RSA_ENCRYPTIONrsaEncryption
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTIONmd2withRSAEncryption
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTIONmd5withRSAEncryption
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTIONsha1withRSAEncryption
SB_CERT_ALGORITHM_ID_DSAid-dsa
SB_CERT_ALGORITHM_ID_DSA_SHA1id-dsa-with-sha1
SB_CERT_ALGORITHM_DH_PUBLICdhpublicnumber
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTIONsha224WithRSAEncryption
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTIONsha256WithRSAEncryption
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTIONsha384WithRSAEncryption
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTIONsha512WithRSAEncryption
SB_CERT_ALGORITHM_ID_RSAPSSid-RSASSA-PSS
SB_CERT_ALGORITHM_ID_RSAOAEPid-RSAES-OAEP
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160ripemd160withRSA
SB_CERT_ALGORITHM_ID_ELGAMALelGamal
SB_CERT_ALGORITHM_SHA1_ECDSAecdsa-with-SHA1
SB_CERT_ALGORITHM_RECOMMENDED_ECDSAecdsa-recommended
SB_CERT_ALGORITHM_SHA224_ECDSAecdsa-with-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSAecdsa-with-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSAecdsa-with-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSAecdsa-with-SHA512
SB_CERT_ALGORITHM_ECid-ecPublicKey
SB_CERT_ALGORITHM_SPECIFIED_ECDSAecdsa-specified
SB_CERT_ALGORITHM_GOST_R3410_1994id-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3410_2001id-GostR3410-2001
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994id-GostR3411-94-with-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001id-GostR3411-94-with-GostR3410-2001
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAINecdsa-plain-SHA1
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAINecdsa-plain-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAINecdsa-plain-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAINecdsa-plain-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAINecdsa-plain-SHA512
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAINecdsa-plain-RIPEMD160
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTIONwhirlpoolWithRSAEncryption
SB_CERT_ALGORITHM_ID_DSA_SHA224id-dsa-with-sha224
SB_CERT_ALGORITHM_ID_DSA_SHA256id-dsa-with-sha256
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSAid-ecdsa-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSAid-ecdsa-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSAid-ecdsa-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSAid-ecdsa-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAINid-ecdsa-plain-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAINid-ecdsa-plain-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAINid-ecdsa-plain-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAINid-ecdsa-plain-with-sha3-512
SB_CERT_ALGORITHM_ID_DSA_SHA3_224id-dsa-with-sha3-224
SB_CERT_ALGORITHM_ID_DSA_SHA3_256id-dsa-with-sha3-256
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSAid-ecdsa-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSAid-ecdsa-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSAid-ecdsa-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSAid-ecdsa-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSAid-ecdsa-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSAid-ecdsa-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSAid-ecdsa-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSAid-ecdsa-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAINid-ecdsa-plain-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAINid-ecdsa-plain-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAINid-ecdsa-plain-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAINid-ecdsa-plain-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAINid-ecdsa-plain-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAINid-ecdsa-plain-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAINid-ecdsa-plain-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAINid-ecdsa-plain-with-blake2b512
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224id-dsa-with-blake2s224
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256id-dsa-with-blake2s256
SB_CERT_ALGORITHM_EDDSA_ED25519id-Ed25519
SB_CERT_ALGORITHM_EDDSA_ED448id-Ed448
SB_CERT_ALGORITHM_EDDSA_ED25519_PHid-Ed25519ph
SB_CERT_ALGORITHM_EDDSA_ED448_PHid-Ed448ph
SB_CERT_ALGORITHM_EDDSAid-EdDSA
SB_CERT_ALGORITHM_EDDSA_SIGNATUREid-EdDSA-sig

KeyBits
int

Returns the length of the public key.

KeyFingerprint
byte[]

Returns a fingerprint of the public key contained in the certificate.

KeyUsage
int

Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.

This value is a bit mask of the following values:

ckuUnknown0x00000Unknown key usage

ckuDigitalSignature0x00001Digital signature

ckuNonRepudiation0x00002Non-repudiation

ckuKeyEncipherment0x00004Key encipherment

ckuDataEncipherment0x00008Data encipherment

ckuKeyAgreement0x00010Key agreement

ckuKeyCertSign0x00020Certificate signing

ckuCRLSign0x00040Revocation signing

ckuEncipherOnly0x00080Encipher only

ckuDecipherOnly0x00100Decipher only

ckuServerAuthentication0x00200Server authentication

ckuClientAuthentication0x00400Client authentication

ckuCodeSigning0x00800Code signing

ckuEmailProtection0x01000Email protection

ckuTimeStamping0x02000Timestamping

ckuOCSPSigning0x04000OCSP signing

ckuSmartCardLogon0x08000Smartcard logon

ckuKeyPurposeClientAuth0x10000Kerberos - client authentication

ckuKeyPurposeKDC0x20000Kerberos - KDC

KeyValid
boolean

Returns True if the certificate's key is cryptographically valid, and False otherwise.

OCSPLocations
String

Locations of OCSP (Online Certificate Status Protocol) services that can be used to check this certificate's validity, as recorded by the CA.

OCSPNoCheck
boolean

TBD.

Origin
int

Returns the origin of this certificate.

PolicyIDs
String

Contains identifiers (OIDs) of the applicable certificate policies.

The Certificate Policies extension identifies a sequence of policies under which the certificate has been issued, and which regulate its usage.

PrivateKeyBytes
byte[]

Contains the certificate's private key. It is normal for this property to be empty if the private key is non-exportable.

PrivateKeyExists
boolean

Indicates whether the certificate has an associated private key.

PrivateKeyExtractable
boolean

Indicates whether the private key is extractable

PublicKeyBytes
byte[]

Contains the certificate's public key in DER format.

QualifiedStatements
int

TBD

SelfSigned
boolean

Indicates whether the certificate is self-signed (root) or signed by an external CA.

SerialNumber
byte[]

Returns the certificate's serial number.

SigAlgorithm
String

Indicates the algorithm that was used by the CA to sign this certificate.

Subject
String

The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name.

SubjectAlternativeName
String

TBD.

SubjectKeyID
byte[]

Contains a unique identifier (fingerprint) of the certificate's private key.

Subject Key Identifier is a (non-critical) X.509 certificate extension which allows the identification of certificates containing a particular public key. In SecureBlackbox, the unique identifier is represented with a SHA1 hash of the bit string of the subject public key.

SubjectRDN
String

A collection of information, in the form of [OID, Value] pairs, uniquely identifying the certificate holder (subject).

ValidFrom
String

The time point at which the certificate becomes valid, in UTC.

ValidTo
String

The time point at which the certificate expires, in UTC.

Constructors

public Certificate(byte[] bytes, int startIndex, int count, String password);

Loads the X.509 certificate from a memory buffer. Bytes is a buffer containing the raw certificate data. StartIndex and Count specify the starting position and number of bytes to be read from the buffer, respectively. Password is a password encrypting the certificate.

public Certificate(byte[] certBytes, int certStartIndex, int certCount, byte[] keyBytes, int keyStartIndex, int keyCount, String password);

Loads the X.509 certificate from a memory buffer. CertBytes is a buffer containing the raw certificate data. CertStartIndex and CertCount specify the number of bytes to be read from the buffer, respectively. KeyBytes is a buffer containing the private key data. KeyStartIndex and KeyCount specify the starting position and number of bytes to be read from the buffer, respectively. Password is a password encrypting the certificate.

public Certificate(byte[] bytes, int startIndex, int count);

Loads the X.509 certificate from a memory buffer. Bytes is a buffer containing the raw certificate data. StartIndex and Count specify the starting position and number of bytes to be read from the buffer, respectively.

public Certificate(String path, String password);

Loads the X.509 certificate from a file. Path specifies the full path to the file containing the certificate data. Password is a password encrypting the certificate.

public Certificate(String certPath, String keyPath, String password);

Loads the X.509 certificate from a file. CertPath specifies the full path to the file containing the certificate data. KeyPath specifies the full path to the file containing the private key. Password is a password encrypting the certificate.

public Certificate(String path);

Loads the X.509 certificate from a file. Path specifies the full path to the file containing the certificate data.

public Certificate(java.io.InputStream stream);

Loads the X.509 certificate from a stream. Stream is a stream containing the certificate data.

public Certificate(java.io.InputStream stream, String password);

Loads the X.509 certificate from a stream. Stream is a stream containing the certificate data. Password is a password encrypting the certificate.

public Certificate(java.io.InputStream certStream, java.io.InputStream keyStream, String password);

Loads the X.509 certificate from a stream. CertStream is a stream containing the certificate data. KeyStream is a stream containing the private key. Password is a password encrypting the certificate.

public Certificate();

Creates a new object with default field values.

ExternalCrypto Type

Specifies the parameters of external cryptographic calls.

Remarks

External cryptocalls are used in a Distributed Cryptography (DC) subsystem, which allows the delegation of security operations to the remote agent. For instance, it can be used to compute the signature value on the server, while retaining the client's private key locally.

Fields

AsyncDocumentID
String

Specifies the document ID for SignAsyncEnd() call

Use this property when working with multi-signature DCAuth requests and responses to uniquely identify documents signed within a larger batch. This value helps ASiCSigner identify the correct signature in the returned batch of responses. If using batched requests, make sure to set this property to the same value on both pre-signing (SignAsyncBegin) and completion (SignAsyncEnd) stages.

CustomParams
String

Custom parameters to be passed to the signing service (uninterpreted).

Data
String

Additional data to be included in the async state and mirrored back by the requestor

ExternalHashCalculation
boolean

Specifies whether the message hash is to be calculated at the external endpoint. Please note that this mode is not supported by all components. In particular, components operating with larger objects (PDFSigner, CAdESSigner, XAdESSigner) do not support it.

HashAlgorithm
String

Specifies the request's signature hash algorithm.

SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_MD2MD2
SB_HASH_ALGORITHM_MD4MD4
SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_CRC32CRC32
SB_HASH_ALGORITHM_SSL3SSL3
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_POLY1305POLY1305
SB_HASH_ALGORITHM_SHA3_224SHA3_224
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512
SB_HASH_ALGORITHM_BLAKE2S_128BLAKE2S_128
SB_HASH_ALGORITHM_BLAKE2S_160BLAKE2S_160
SB_HASH_ALGORITHM_BLAKE2S_224BLAKE2S_224
SB_HASH_ALGORITHM_BLAKE2S_256BLAKE2S_256
SB_HASH_ALGORITHM_BLAKE2B_160BLAKE2B_160
SB_HASH_ALGORITHM_BLAKE2B_256BLAKE2B_256
SB_HASH_ALGORITHM_BLAKE2B_384BLAKE2B_384
SB_HASH_ALGORITHM_BLAKE2B_512BLAKE2B_512
SB_HASH_ALGORITHM_SHAKE_128SHAKE_128
SB_HASH_ALGORITHM_SHAKE_256SHAKE_256
SB_HASH_ALGORITHM_SHAKE_128_LENSHAKE_128_LEN
SB_HASH_ALGORITHM_SHAKE_256_LENSHAKE_256_LEN

KeyID
String

The ID of the pre-shared key used for DC request authentication.

Asynchronous DCAuth-driven communication requires that parties authenticate each other with a secret pre-shared cryptographic key. This provides extra protection layer for the protocol and diminishes the risk of private key becoming abused by foreign parties. Use this property to provide the pre-shared key identifier, and use KeySecret to pass the key itself.

The same KeyID/KeySecret pair should be used on the DCAuth side for the signing requests to be accepted.

Note: The KeyID/KeySecret scheme is very similar to the AuthKey scheme used in various Cloud service providers to authenticate users.

Example: signer.ExternalCrypto.KeyID = "MainSigningKey"; signer.ExternalCrypto.KeySecret = "abcdef0123456789";

KeySecret
String

The pre-shared key used for DC request authentication. This key must be set and match the key used by the DCAuth counterpart for the scheme to work.

Read more about configuring authentication in the KeyID topic.

Method
int

Specifies the asynchronous signing method. This is typically defined by the DC server capabilities and setup.

Available options:

asmdPKCS10
asmdPKCS71

Mode
int

Specifies the external cryptography mode.

Available options:

ecmDefaultThe default value (0)
ecmDisabledDo not use DC or external signing (1)
ecmGenericGeneric external signing with OnExternalSign event (2)
ecmDCAuthDCAuth signing (3)
ecmDCAuthJSONDCAuth signing in JSON format (4)

PublicKeyAlgorithm
String

Provide public key algorithm here if the certificate is not available on the pre-signing stage.

SB_CERT_ALGORITHM_ID_RSA_ENCRYPTIONrsaEncryption
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTIONmd2withRSAEncryption
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTIONmd5withRSAEncryption
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTIONsha1withRSAEncryption
SB_CERT_ALGORITHM_ID_DSAid-dsa
SB_CERT_ALGORITHM_ID_DSA_SHA1id-dsa-with-sha1
SB_CERT_ALGORITHM_DH_PUBLICdhpublicnumber
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTIONsha224WithRSAEncryption
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTIONsha256WithRSAEncryption
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTIONsha384WithRSAEncryption
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTIONsha512WithRSAEncryption
SB_CERT_ALGORITHM_ID_RSAPSSid-RSASSA-PSS
SB_CERT_ALGORITHM_ID_RSAOAEPid-RSAES-OAEP
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160ripemd160withRSA
SB_CERT_ALGORITHM_ID_ELGAMALelGamal
SB_CERT_ALGORITHM_SHA1_ECDSAecdsa-with-SHA1
SB_CERT_ALGORITHM_RECOMMENDED_ECDSAecdsa-recommended
SB_CERT_ALGORITHM_SHA224_ECDSAecdsa-with-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSAecdsa-with-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSAecdsa-with-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSAecdsa-with-SHA512
SB_CERT_ALGORITHM_ECid-ecPublicKey
SB_CERT_ALGORITHM_SPECIFIED_ECDSAecdsa-specified
SB_CERT_ALGORITHM_GOST_R3410_1994id-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3410_2001id-GostR3410-2001
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994id-GostR3411-94-with-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001id-GostR3411-94-with-GostR3410-2001
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAINecdsa-plain-SHA1
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAINecdsa-plain-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAINecdsa-plain-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAINecdsa-plain-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAINecdsa-plain-SHA512
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAINecdsa-plain-RIPEMD160
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTIONwhirlpoolWithRSAEncryption
SB_CERT_ALGORITHM_ID_DSA_SHA224id-dsa-with-sha224
SB_CERT_ALGORITHM_ID_DSA_SHA256id-dsa-with-sha256
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSAid-ecdsa-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSAid-ecdsa-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSAid-ecdsa-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSAid-ecdsa-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAINid-ecdsa-plain-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAINid-ecdsa-plain-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAINid-ecdsa-plain-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAINid-ecdsa-plain-with-sha3-512
SB_CERT_ALGORITHM_ID_DSA_SHA3_224id-dsa-with-sha3-224
SB_CERT_ALGORITHM_ID_DSA_SHA3_256id-dsa-with-sha3-256
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSAid-ecdsa-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSAid-ecdsa-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSAid-ecdsa-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSAid-ecdsa-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSAid-ecdsa-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSAid-ecdsa-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSAid-ecdsa-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSAid-ecdsa-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAINid-ecdsa-plain-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAINid-ecdsa-plain-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAINid-ecdsa-plain-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAINid-ecdsa-plain-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAINid-ecdsa-plain-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAINid-ecdsa-plain-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAINid-ecdsa-plain-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAINid-ecdsa-plain-with-blake2b512
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224id-dsa-with-blake2s224
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256id-dsa-with-blake2s256
SB_CERT_ALGORITHM_EDDSA_ED25519id-Ed25519
SB_CERT_ALGORITHM_EDDSA_ED448id-Ed448
SB_CERT_ALGORITHM_EDDSA_ED25519_PHid-Ed25519ph
SB_CERT_ALGORITHM_EDDSA_ED448_PHid-Ed448ph
SB_CERT_ALGORITHM_EDDSAid-EdDSA
SB_CERT_ALGORITHM_EDDSA_SIGNATUREid-EdDSA-sig

Constructors

public ExternalCrypto();

Creates a new ExternalCrypto object with default field values.

XMLKeyInfoItem Type

Represents an XML KeyInfo item.

Remarks

This object contains information about the public key that was used to perform encryption or signing.

Fields

IssuerRDN
String

A collection of information, in the form of [OID, Value] pairs, uniquely identifying the certificate issuer.

SerialNumber
byte[]

Returns the certificate's serial number.

SubjectKeyID
byte[]

Contains a unique identifier (fingerprint) of the certificate's private key.

Subject Key Identifier is a (non-critical) X.509 certificate extension which allows the identification of certificates containing a particular public key. In SecureBlackbox, the unique identifier is represented with a SHA1 hash of the bit string of the subject public key.

SubjectRDN
String

A collection of information, in the form of [OID, Value] pairs, uniquely identifying the certificate holder (subject).

Constructors

public XMLKeyInfoItem();

Creates a new XMLKeyInfo item object.

XMLNamespace Type

Represents an XML namespace map for XPath expressions.

Remarks

This class defines the correspondence between Prefixes and namespace URIs.

Fields

Prefix
String

A user-defined prefix value of a namespace.

URI
String

A user-defined URI value of a namespace.

Constructors

public XMLNamespace();

Creates a new XML namespace object.

Configuration Settings (Xmldecryptor Class)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

XMLDecryptor Configuration Settings

KeyName:   Contains information about the key used for encryption.

The KeyName element contains a string value (with significant whitespaces) which may be used by the encryptor to communicate a key identifier to the recipient. Typically, the KeyName element contains an identifier related to the key pair used to sign the message, but it may contain other protocol-related information that indirectly identifies a key pair. Common uses of the KeyName include simple string names for keys, a key index, a distinguished name (DN), an email address, etc.

MimeType:   Contains the mime type of the encrypted data.

MimeType is an optional (advisory) attribute which describes the media type of the data which is encrypted. The value of this attribute is a string with values defined by MIME specification (RFC 2045). For example, if the data that is encrypted is a base64 encoded PNG, the transfer Encoding may be specified as 'http://www.w3.org/2000/09/xmldsig#base64' and the MimeType as 'image/png'. This attribute is purely advisory; no validation of the MimeType information is required and it does not indicate the encryption application must do any additional processing.

TempPath:   Location where the temporary files are stored.

This setting specifies an absolute path to the location on disk where temporary files are stored.

WriteBOM:   Specifies whether byte-order mark should be written when saving the document.

Set this property to False to disable writing byte-order mark (BOM) when saving the XML document in Unicode encoding.

Base Configuration Settings

CheckKeyIntegrityBeforeUse:   Enables or disable private key integrity check before use.

This global property enables or disables private key material check before each signing operation. This slows down performance a bit, but prevents a selection of attacks on RSA keys where keys with unknown origins are used.

You can switch this property off to improve performance if your project only uses known, good private keys.

CookieCaching:   Specifies whether a cookie cache should be used for HTTP(S) transports.

Set this property to enable or disable cookies caching for the class.

Supported values are:

offNo caching (default)
localLocal caching (supported for HTTPClient, RESTClient and SOAPClient only)
globalGlobal caching

Cookies:   Gets or sets local cookies for the class (supported for HTTPClient, RESTClient and SOAPClient only).

Use this property to get cookies from the internal cookie storage of the class and/or restore them back between application sessions.

DefDeriveKeyIterations:   Specifies the default key derivation algorithm iteration count.

This global property sets the default number of iterations for all supported key derivation algorithms. Note that you can provide the required number of iterations by using properties of the relevant key generation component; this global setting is used in scenarios where specific iteration count is not or cannot be provided.

EnableClientSideSSLFFDHE:   Enables or disables finite field DHE key exchange support in TLS clients.

This global property enables or disables support for finite field DHE key exchange methods in TLS clients. FF DHE is a slower algorithm if compared to EC DHE; enabling it may result in slower connections.

This setting only applies to sessions negotiated with TLS version 1.3.

GlobalCookies:   Gets or sets global cookies for all the HTTP transports.

Use this property to get cookies from the GLOBAL cookie storage or restore them back between application sessions. These cookies will be used by all the classes that have its CookieCaching property set to "global".

HttpUserAgent:   Specifies the user agent name to be used by all HTTP clients.

This global setting defines the User-Agent field of the HTTP request provides information about the software that initiates the request. This value will be used by all the HTTP clients including the ones used internally in other classes.

LogDestination:   Specifies the debug log destination.

Contains a comma-separated list of values that specifies where debug log should be dumped.

Supported values are:

fileFile
consoleConsole
systemlogSystem Log (supported for Android only)
debuggerDebugger (supported for VCL for Windows and .Net)

LogDetails:   Specifies the debug log details to dump.

Contains a comma-separated list of values that specifies which debug log details to dump.

Supported values are:

timeCurrent time
levelLevel
packagePackage name
moduleModule name
classClass name
methodMethod name
threadidThread Id
contenttypeContent type
contentContent
allAll details

LogFile:   Specifies the debug log filename.

Use this property to provide a path to the log file.

LogFilters:   Specifies the debug log filters.

Contains a comma-separated list of value pairs ("name:value") that describe filters.

Supported filter names are:

exclude-packageExclude a package specified in the value
exclude-moduleExclude a module specified in the value
exclude-classExclude a class specified in the value
exclude-methodExclude a method specified in the value
include-packageInclude a package specified in the value
include-moduleInclude a module specified in the value
include-classInclude a class specified in the value
include-methodInclude a method specified in the value

LogFlushMode:   Specifies the log flush mode.

Use this property to set the log flush mode. The following values are defined:

noneNo flush (caching only)
immediateImmediate flush (real-time logging)
maxcountFlush cached entries upon reaching LogMaxEventCount entries in the cache.

LogLevel:   Specifies the debug log level.

Use this property to provide the desired debug log level.

Supported values are:

noneNone (by default)
fatalSevere errors that cause premature termination.
errorOther runtime errors or unexpected conditions.
warningUse of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong".
infoInteresting runtime events (startup/shutdown).
debugDetailed information on flow of through the system.
traceMore detailed information.

LogMaxEventCount:   Specifies the maximum number of events to cache before further action is taken.

Use this property to specify the log event number threshold. This threshold may have different effects, depending on the rotation setting and/or the flush mode.

The default value of this setting is 100.

LogRotationMode:   Specifies the log rotation mode.

Use this property to set the log rotation mode. The following values are defined:

noneNo rotation
deleteolderDelete older entries from the cache upon reaching LogMaxEventCount
keepolderKeep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded)

MaxASN1BufferLength:   Specifies the maximal allowed length for ASN.1 primitive tag data.

This global property limits the maximal allowed length for ASN.1 tag data for non-content-carrying structures, such as certificates, CRLs, or timestamps. It does not affect structures that can carry content, such as CMS/CAdES messages. This is a security property aiming at preventing DoS attacks.

MaxASN1TreeDepth:   Specifies the maximal depth for processed ASN.1 trees.

This global property limits the maximal depth of ASN.1 trees that the component can handle without throwing an error. This is a security property aiming at preventing DoS attacks.

OCSPHashAlgorithm:   Specifies the hash algorithm to be used to identify certificates in OCSP requests.

This global setting defines the hash algorithm to use in OCSP requests during chain validation. Some OCSP responders can only use older algorithms, in which case setting this property to SHA1 may be helpful.

Tag:   Allows to store any custom data.

Use this config property to store any custom data.

UseSharedSystemStorages:   Specifies whether the validation engine should use a global per-process copy of the system certificate stores.

Set this global property to false to make each validation run use its own copy of system certificate stores.

UseSystemOAEPAndPSS:   Enforces or disables the use of system-driven RSA OAEP and PSS computations.

This global setting defines who is responsible for performing RSA-OAEP and RSA-PSS computations where the private key is stored in a Windows system store and is exportable. If set to true, SBB will delegate the computations to Windows via a CryptoAPI call. Otherwise, it will export the key material and perform the computations using its own OAEP/PSS implementation.

This setting only applies to certificates originating from a Windows system store.

UseSystemRandom:   Enables or disables the use of the OS PRNG.

Use this global property to enable or disable the use of operating system-driven pseudorandom number generation.

Trappable Errors (Xmldecryptor Class)

XMLDecryptor Errors

1048577   Invalid parameter value (SB_ERROR_INVALID_PARAMETER)
1048578   Class is configured incorrectly (SB_ERROR_INVALID_SETUP)
1048579   Operation cannot be executed in the current state (SB_ERROR_INVALID_STATE)
1048580   Attempt to set an invalid value to a property (SB_ERROR_INVALID_VALUE)
1048581   Certificate does not have its private key loaded (SB_ERROR_NO_PRIVATE_KEY)
1048581   Cancelled by the user (SB_ERROR_CANCELLED_BY_USER) 
39845889   Input file does not exist (SB_ERROR_XML_INPUTFILE_NOT_EXISTS)
39845890   Data file does not exist (SB_ERROR_XML_DATAFILE_NOT_EXISTS)
39845891   Unsupported signature method type (SB_ERROR_XML_UNSUPPORTED_SIGNATURE_METHOD_TYPE)
39845892   Unsupported has algorithm (SB_ERROR_XML_UNSUPPORTED_HASH_ALGORITHM)
39845893   Unsupported key type (SB_ERROR_XML_UNSUPPORTED_KEY_TYPE)
39845894   Invalid key type (SB_ERROR_XML_INVALID_KEY_TYPE)
39845895   Invalid encryption method (SB_ERROR_XML_INVALID_ENCRYPTION_METHOD)
39845896   Not found (SB_ERROR_XML_NOT_FOUND)
39845897   No element ID (SB_ERROR_XML_NO_ELEMENT_ID)

Copyright (c) 2022 /n software inc. - All rights reserved.
SecureBlackbox 2022 Java Edition - Version 22.0 [Build 8174]