Authenticator Component
Properties Methods Events Config Settings Errors
The Authenticator component specializes in user authentication.
Syntax
TsbxAuthenticator
Remarks
Authenticator provides capabilities for implementing the authenticating party (as opposed to the one being authenticated) of the authentication protocol.
Authenticator can be used in a variety of authentication scenarios, ranging from simple password checks to complicated multi-factor variants. It also supports authentication via a SBB-own DC protocol, which makes it a good pair for DCAuth control.
In default configuration the component uses the attached database of users to handle authentication requests. The authentication flow can be altered if needed to match specific authentication requirements.
In Authenticator's terms, the authentication process is divided into a sequence of atomic steps. Each step is characterized by a user providing an authentication token - such as a password or PIN - and the authenticator validating that token. Each validation step may result in one of the following outcomes:
- Authentication succeeded: the authentication has been completed with the positive outcome;
- Authentication failed: the authentication process has failed, the user didn't provide enough evidence to confirm they are who they claim they are;
- Further authentication is required: the authentication was partly successful, but the settings of the component or user details require further step(s) to be taken.
Use the following logic when integrating the Authenticator into your project:
- Whenever you receive an authentication request from a user, call the StartAuth method, passing the UserID as a parameter. This initiates the authentication procedure: the Authenticator control looks up the user in the Users database and picks the first authentication method. It then returns the Further authentication is required result and stores the details of the first authentication step in AuthInfo property. Apart from the information about the authentication method that is to be performed during this step, AuthInfo also contains a > value, which accumulates parameters and progress of the user's authentication flow. You can save the state value on this stage, and restore it later when a response from the user is received. With that in mind, component is stateless; you can save the current authentication state in a database, and return to it from a different context.
- Now that you have obtained Further authentication needed from StartAuth, it's time to check the > and request the corresponding token from the user. For example, if the method is 'password', you may present the user with a password dialog.
- Upon receiving a password (or other kind of authentication token) from the user, pass it to the ContinueAuth method, together with the state object
that you saved on the preceding step. The component will process the token and come up with one of the three results given above,
signifying the end of the first authentication step. If Further authentication is required result is returned, another authentication step
needs to be performed (either because a multi-factor authentication is configured for this user, or because an alternative authentication method
was chosen following failure of the previous attempt). If that is the case, follow the guidance for StartAuth-initiated step above.
Depending on the settings, many authentication steps may need to be performed, so your code may ultimately end up calling ContinueAuth many times.
component can be customized to use external user information sources instead of a predefined user database. AuthStart, AuthVerify, and AuthAttemptResult events provide an opportunity for your code to intervene into the authentication process by defining your own authentication procedures and validating authentication tokens manually.
Property List
The following is the full list of the properties of the component with short descriptions. Click on the links for further details.
AuthInfoAuthLog | Contains the authentication log. |
AuthInfoAuthMethod | Contains the current authentication method. |
AuthInfoAuthMethodPars | Contains the authentication method parameters. |
AuthInfoCompletedMethods | Contains a comma-separated list of completed authentication methods. |
AuthInfoLastAuthMessage | Contains an uninterpreted authentication message to be displayed to the authenticating user. |
AuthInfoLastAuthResult | Contains the result of the last authentication token validation. |
AuthInfoRemainingMethods | Contains a comma-separated list of authentication methods yet to perform. |
AuthInfoState | Contains a state of the overall authentication process. |
AuthInfoUserID | Returns the ID of the user being authenticated, as passed to StartAuth . |
BlockedCertCount | The number of records in the BlockedCert arrays. |
BlockedCertBytes | Returns the raw certificate data in DER format. |
BlockedCertHandle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
CertCount | The number of records in the Cert arrays. |
CertBytes | Returns the raw certificate data in DER format. |
CertCA | Indicates whether the certificate has a CA capability. |
CertCAKeyID | A unique identifier (fingerprint) of the CA certificate's cryptographic key. |
CertCertType | Returns the type of the entity contained in the Certificate object. |
CertCRLDistributionPoints | Contains a list of locations of CRL distribution points used to check this certificate's validity. |
CertCurve | Specifies the elliptic curve associated with the certificate's public key. |
CertFingerprint | Contains the fingerprint (a hash imprint) of this certificate. |
CertFriendlyName | Contains an associated alias (friendly name) of the certificate. |
CertHandle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
CertHashAlgorithm | Provides means to set the hash algorithm to be used in the subsequent operation on the certificate (such as generation or key signing). |
CertIssuer | The common name of the certificate issuer (CA), typically a company name. |
CertIssuerRDN | A list of Property=Value pairs that uniquely identify the certificate issuer. |
CertKeyAlgorithm | Specifies the public key algorithm of this certificate. |
CertKeyBits | Returns the length of the public key in bits. |
CertKeyFingerprint | Returns a SHA1 fingerprint of the public key contained in the certificate. |
CertKeyUsage | Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set. |
CertKeyValid | Returns True if the certificate's key is cryptographically valid, and False otherwise. |
CertOCSPLocations | Locations of OCSP services that can be used to check this certificate's validity in real time, as recorded by the CA. |
CertOCSPNoCheck | Accessor to the value of the certificate's ocsp-no-check extension. |
CertOrigin | Returns the location that the certificate was taken or loaded from. |
CertPolicyIDs | Contains identifiers (OIDs) of the applicable certificate policies. |
CertPrivateKeyBytes | Returns the certificate's private key in DER-encoded format. |
CertPrivateKeyExists | Indicates whether the certificate has a usable private key associated with it. |
CertPrivateKeyExtractable | Indicates whether the private key is extractable (exportable). |
CertPublicKeyBytes | Contains the certificate's public key in DER format. |
CertQualified | Indicates whether the certificate is qualified. |
CertQualifiedStatements | Returns a simplified qualified status of the certificate. |
CertQualifiers | A list of qualifiers. |
CertSelfSigned | Indicates whether the certificate is self-signed (root) or signed by an external CA. |
CertSerialNumber | Returns the certificate's serial number. |
CertSigAlgorithm | Indicates the algorithm that was used by the CA to sign this certificate. |
CertSource | Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response. |
CertSubject | The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name. |
CertSubjectAlternativeName | Returns or sets the value of the Subject Alternative Name extension of the certificate. |
CertSubjectKeyID | Contains a unique identifier of the certificate's cryptographic key. |
CertSubjectRDN | A list of Property=Value pairs that uniquely identify the certificate holder (subject). |
CertValid | Indicates whether or not the signature over the certificate or the request is valid and matches the public key contained in the CA certificate/request. |
CertValidFrom | The time point at which the certificate becomes valid, in UTC. |
CertValidTo | The time point at which the certificate expires, in UTC. |
ChainValidationDetails | The details of a certificate chain validation outcome. |
ChainValidationResult | The general outcome of a certificate chain validation routine. Use ChainValidationDetails to get information about the reasons that contributed to the validation result. |
DefaultAuthMethods | Contains the list of default authentication methods. |
ExternalCryptoAsyncDocumentID | Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls. |
ExternalCryptoCustomParams | Custom parameters to be passed to the signing service (uninterpreted). |
ExternalCryptoData | Additional data to be included in the async state and mirrored back by the requestor. |
ExternalCryptoExternalHashCalculation | Specifies whether the message hash is to be calculated at the external endpoint. |
ExternalCryptoHashAlgorithm | Specifies the request's signature hash algorithm. |
ExternalCryptoKeyID | The ID of the pre-shared key used for DC request authentication. |
ExternalCryptoKeySecret | The pre-shared key used for DC request authentication. |
ExternalCryptoMethod | Specifies the asynchronous signing method. |
ExternalCryptoMode | Specifies the external cryptography mode. |
ExternalCryptoPublicKeyAlgorithm | Provide the public key algorithm here if the certificate is not available on the pre-signing stage. |
FIPSMode | Reserved. |
IgnoreChainValidationErrors | Makes the component tolerant to chain validation errors. |
KnownCertCount | The number of records in the KnownCert arrays. |
KnownCertBytes | Returns the raw certificate data in DER format. |
KnownCertHandle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
KnownCRLCount | The number of records in the KnownCRL arrays. |
KnownCRLBytes | Returns the raw CRL data in DER format. |
KnownCRLHandle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
KnownOCSPCount | The number of records in the KnownOCSP arrays. |
KnownOCSPBytes | A buffer containing the raw OCSP response data. |
KnownOCSPHandle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
OfflineMode | Switches the component to offline mode. |
ProxyAddress | The IP address of the proxy server. |
ProxyAuthentication | The authentication type used by the proxy server. |
ProxyPassword | The password to authenticate to the proxy server. |
ProxyPort | The port on the proxy server to connect to. |
ProxyProxyType | The type of the proxy server. |
ProxyRequestHeaders | Contains HTTP request headers for WebTunnel and HTTP proxy. |
ProxyResponseBody | Contains the HTTP or HTTPS (WebTunnel) proxy response body. |
ProxyResponseHeaders | Contains response headers received from an HTTP or HTTPS (WebTunnel) proxy server. |
ProxyUseIPv6 | Specifies whether IPv6 should be used when connecting through the proxy. |
ProxyUsername | Specifies the username credential for proxy authentication. |
RevocationCheck | Specifies the kind(s) of revocation check to perform for all chain certificates. |
SigningCertBytes | Returns the raw certificate data in DER format. |
SigningCertHandle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
SocketDNSMode | Selects the DNS resolver to use: the component's (secure) built-in one, or the one provided by the system. |
SocketDNSPort | Specifies the port number to be used for sending queries to the DNS server. |
SocketDNSQueryTimeout | The timeout (in milliseconds) for each DNS query. |
SocketDNSServers | The addresses of DNS servers to use for address resolution, separated by commas or semicolons. |
SocketDNSTotalTimeout | The timeout (in milliseconds) for the whole resolution process. |
SocketIncomingSpeedLimit | The maximum number of bytes to read from the socket, per second. |
SocketLocalAddress | The local network interface to bind the socket to. |
SocketLocalPort | The local port number to bind the socket to. |
SocketOutgoingSpeedLimit | The maximum number of bytes to write to the socket, per second. |
SocketTimeout | The maximum period of waiting, in milliseconds, after which the socket operation is considered unsuccessful. |
SocketUseIPv6 | Enables or disables IP protocol version 6. |
TLSAutoValidateCertificates | Specifies whether server-side TLS certificates should be validated automatically using internal validation rules. |
TLSBaseConfiguration | Selects the base configuration for the TLS settings. |
TLSCiphersuites | A list of ciphersuites separated with commas or semicolons. |
TLSClientAuth | Enables or disables certificate-based client authentication. |
TLSECCurves | Defines the elliptic curves to enable. |
TLSExtensions | Provides access to TLS extensions. |
TLSForceResumeIfDestinationChanges | Whether to force TLS session resumption when the destination address changes. |
TLSPreSharedIdentity | Defines the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated. |
TLSPreSharedKey | Contains the pre-shared key for the PSK (Pre-Shared Key) key-exchange mechanism, encoded with base16. |
TLSPreSharedKeyCiphersuite | Defines the ciphersuite used for PSK (Pre-Shared Key) negotiation. |
TLSRenegotiationAttackPreventionMode | Selects the renegotiation attack prevention mechanism. |
TLSRevocationCheck | Specifies the kind(s) of revocation check to perform. |
TLSSSLOptions | Various SSL (TLS) protocol options, set of cssloExpectShutdownMessage 0x001 Wait for the close-notify message when shutting down the connection cssloOpenSSLDTLSWorkaround 0x002 (DEPRECATED) Use a DTLS version workaround when talking to very old OpenSSL versions cssloDisableKexLengthAlignment 0x004 Do not align the client-side PMS by the RSA modulus size. |
TLSTLSMode | Specifies the TLS mode to use. |
TLSUseExtendedMasterSecret | Enables the Extended Master Secret Extension, as defined in RFC 7627. |
TLSUseSessionResumption | Enables or disables the TLS session resumption capability. |
TLSVersions | The SSL/TLS versions to enable by default. |
TrustedCertCount | The number of records in the TrustedCert arrays. |
TrustedCertBytes | Returns the raw certificate data in DER format. |
TrustedCertHandle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
UserCount | The number of records in the User arrays. |
UserAssociatedData | Contains the user's Associated Data when SSH AEAD (Authenticated Encryption with Associated Data) algorithm is used. |
UserBasePath | Base path for this user in the server's file system. |
UserCertificate | Contains the user's certificate. |
UserData | Contains uninterpreted user-defined data that should be associated with the user account, such as comments or custom settings. |
UserEmail | The user's email address. |
UserHandle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
UserHashAlgorithm | Specifies the hash algorithm used to generate TOTP (Time-based One-Time Passwords) passwords for this user. |
UserIncomingSpeedLimit | Specifies the incoming speed limit for this user. |
UserOtpAlgorithm | The algorithm used to generate one-time passwords (OTP) for this user, either HOTP (Hash-based OTP) or TOTP (Time-based OTP). |
UserOTPLen | Specifies the length of the user's OTP password. |
UserOtpValue | The user's time interval (TOTP) or Counter (HOTP). |
UserOutgoingSpeedLimit | Specifies the outgoing speed limit for this user. |
UserPassword | The user's authentication password. |
UserSharedSecret | Contains the user's secret key, which is essentially a shared secret between the client and server. |
UserSSHKey | Contains the user's SSH key. |
UserUsername | The registered name (login) of the user. |
ValidationLog | Contains the complete log of the certificate validation routine. |
ValidationMoment | The time point at which signature validity is to be established. |
Method List
The following is the full list of the methods of the component with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
ContinueAuth | Call this method to process an authentication token and proceed to the next authentication step. |
DoAction | Performs an additional action. |
Reset | Resets the component settings. |
StartAuth | Initiates an authentication process. |
Event List
The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.
AuthAttemptResult | Reports the outcome of an authentication attempt. |
AuthAttemptStart | Signifies the start of an authentication attempt. |
AuthStart | Signifies the start of an authentication process. |
AuthVerify | Requests the application to validate an authentication token. |
CustomAuthStart | Reports the beginning of a custom authentication method. |
Error | Reports information about errors during authentication. |
Notification | This event notifies the application about an underlying control flow event. |
Config Settings
The following is a list of config settings for the component with short descriptions. Click on the links for further details.
BaseTime | TBD. |
ChainCurrentCACert | Returns the current CA certificate. |
ChainCurrentCert | Returns the certificate that is currently being validated. |
ChainCurrentCRL | Returns the current CRL. |
ChainCurrentCRLSize | Returns the size of the current CRL. |
ChainCurrentOCSP | Returns the current OCSP response. |
ChainCurrentOCSPSigner | Returns the signer of the current OCSP object. |
ChainInterimDetails | Returns the current interim validation details. |
ChainInterimResult | Returns the current interim validation result. |
CheckValidityPeriodForTrusted | Whether to check validity period for trusted certificates. |
Delta | TBD. |
DislikeOpenEndedOCSPs | Tells the component to discourage OCSP responses without an explicit NextUpdate parameter. |
ForceCompleteChainValidation | Whether to check the CA certificates when the signing certificate is invalid. |
ForceCompleteChainValidationForTrusted | Whether to continue with the full validation up to the root CA certificate for mid-level trust anchors. |
GracePeriod | Specifies a grace period to apply during revocation information checks. |
IgnoreChainLoops | Whether chain loops should be ignored. |
IgnoreOCSPNoCheckExtension | Whether the OCSP NoCheck extension should be ignored. |
IgnoreSystemTrust | Whether trusted Windows Certificate Stores should be treated as trusted. |
ImplicitlyTrustSelfSignedCertificates | Whether to trust self-signed certificates. |
PromoteLongOCSPResponses | Whether long OCSP responses are requested. |
TolerateMinorChainIssues | Whether to tolerate minor chain issues. |
UseMicrosoftCTL | Enables or disables the automatic use of the Microsoft online certificate trust list. |
UseSystemCertificates | Enables or disables the use of the system certificates. |
UseValidationCache | Enables or disable the use of the product-wide certificate chain validation cache. |
ASN1UseGlobalTagCache | Controls whether ASN.1 module should use a global object cache. |
AssignSystemSmartCardPins | Specifies whether CSP-level PINs should be assigned to CNG keys. |
CheckKeyIntegrityBeforeUse | Enables or disable private key integrity check before use. |
CookieCaching | Specifies whether a cookie cache should be used for HTTP(S) transports. |
Cookies | Gets or sets local cookies for the component. |
DefDeriveKeyIterations | Specifies the default key derivation algorithm iteration count. |
DNSLocalSuffix | The suffix to assign for TLD names. |
EnableClientSideSSLFFDHE | Enables or disables finite field DHE key exchange support in TLS clients. |
GlobalCookies | Gets or sets global cookies for all the HTTP transports. |
HardwareCryptoUsePolicy | The hardware crypto usage policy. |
HttpUserAgent | Specifies the user agent name to be used by all HTTP clients. |
HttpVersion | The HTTP version to use in any inner HTTP client components created. |
IgnoreExpiredMSCTLSigningCert | Whether to tolerate the expired Windows Update signing certificate. |
ListDelimiter | The delimiter character for multi-element lists. |
LogDestination | Specifies the debug log destination. |
LogDetails | Specifies the debug log details to dump. |
LogFile | Specifies the debug log filename. |
LogFilters | Specifies the debug log filters. |
LogFlushMode | Specifies the log flush mode. |
LogLevel | Specifies the debug log level. |
LogMaxEventCount | Specifies the maximum number of events to cache before further action is taken. |
LogRotationMode | Specifies the log rotation mode. |
MaxASN1BufferLength | Specifies the maximal allowed length for ASN.1 primitive tag data. |
MaxASN1TreeDepth | Specifies the maximal depth for processed ASN.1 trees. |
OCSPHashAlgorithm | Specifies the hash algorithm to be used to identify certificates in OCSP requests. |
OldClientSideRSAFallback | Specifies whether the SSH client should use a SHA1 fallback. |
ProductVersion | Returns the version of the SecureBlackbox library. |
ServerSSLDHKeyLength | Sets the size of the TLS DHE key exchange group. |
StaticDNS | Specifies whether static DNS rules should be used. |
StaticIPAddress[domain] | Gets or sets an IP address for the specified domain name. |
StaticIPAddresses | Gets or sets all the static DNS rules. |
Tag | Allows to store any custom data. |
TLSSessionGroup | Specifies the group name of TLS sessions to be used for session resumption. |
TLSSessionLifetime | Specifies lifetime in seconds of the cached TLS session. |
TLSSessionPurgeInterval | Specifies how often the session cache should remove the expired TLS sessions. |
UseInternalRandom | Switches between SecureBlackbox-own and platform PRNGs. |
UseLegacyAdESValidation | Enables legacy AdES validation mode. |
UseOwnDNSResolver | Specifies whether the client components should use own DNS resolver. |
UseSharedSystemStorages | Specifies whether the validation engine should use a global per-process copy of the system certificate stores. |
UseSystemNativeSizeCalculation | An internal CryptoAPI access tweak. |
UseSystemOAEPAndPSS | Enforces or disables the use of system-driven RSA OAEP and PSS computations. |
UseSystemRandom | Enables or disables the use of the OS PRNG. |
AuthInfoAuthLog Property (Authenticator Component)
Contains the authentication log.
Syntax
__property String AuthInfoAuthLog = { read=FAuthInfoAuthLog };
Default Value
""
Remarks
Contains the authentication log. This can be used for accountability purposes.
This property is read-only and not available at design time.
Data Type
String
AuthInfoAuthMethod Property (Authenticator Component)
Contains the current authentication method.
Syntax
__property String AuthInfoAuthMethod = { read=FAuthInfoAuthMethod };
Default Value
""
Remarks
Contains the current authentication method.
This property is read-only and not available at design time.
Data Type
String
AuthInfoAuthMethodPars Property (Authenticator Component)
Contains the authentication method parameters.
Syntax
__property String AuthInfoAuthMethodPars = { read=FAuthInfoAuthMethodPars };
Default Value
""
Remarks
Contains the authentication method parameters. These are method-dependent. For example, the dcauth method will have a DC request in this property.
This property is read-only and not available at design time.
Data Type
String
AuthInfoCompletedMethods Property (Authenticator Component)
Contains a comma-separated list of completed authentication methods.
Syntax
__property String AuthInfoCompletedMethods = { read=FAuthInfoCompletedMethods };
Default Value
""
Remarks
Contains a comma-separated list of completed authentication methods.
This property is read-only and not available at design time.
Data Type
String
AuthInfoLastAuthMessage Property (Authenticator Component)
Contains an uninterpreted authentication message to be displayed to the authenticating user.
Syntax
__property String AuthInfoLastAuthMessage = { read=FAuthInfoLastAuthMessage };
Default Value
""
Remarks
Contains an uninterpreted authentication message to be displayed to the authenticating user.
This property is read-only and not available at design time.
Data Type
String
AuthInfoLastAuthResult Property (Authenticator Component)
Contains the result of the last authentication token validation.
Syntax
__property int AuthInfoLastAuthResult = { read=FAuthInfoLastAuthResult };
Default Value
-1
Remarks
Contains the result of the last authentication token validation.
This property is read-only and not available at design time.
Data Type
Integer
AuthInfoRemainingMethods Property (Authenticator Component)
Contains a comma-separated list of authentication methods yet to perform.
Syntax
__property String AuthInfoRemainingMethods = { read=FAuthInfoRemainingMethods };
Default Value
""
Remarks
Contains a comma-separated list of authentication methods yet to perform.
This property is read-only and not available at design time.
Data Type
String
AuthInfoState Property (Authenticator Component)
Contains a state of the overall authentication process.
Syntax
__property String AuthInfoState = { read=FAuthInfoState };
Default Value
""
Remarks
Contains a state of the overall authentication process. Save the content of this property after calling StartAuth or ContinueAuth to remember the setup of the authenticator control, and pass it to the next ContinueAuth call to resume from the same stage.
This property is read-only and not available at design time.
Data Type
String
AuthInfoUserID Property (Authenticator Component)
Returns the ID of the user being authenticated, as passed to StartAuth .
Syntax
__property String AuthInfoUserID = { read=FAuthInfoUserID };
Default Value
""
Remarks
Returns the ID of the user being authenticated, as passed to StartAuth.
This property is read-only and not available at design time.
Data Type
String
BlockedCertCount Property (Authenticator Component)
The number of records in the BlockedCert arrays.
Syntax
__property int BlockedCertCount = { read=FBlockedCertCount, write=FSetBlockedCertCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at BlockedCertCount - 1.This property is not available at design time.
Data Type
Integer
BlockedCertBytes Property (Authenticator Component)
Returns the raw certificate data in DER format.
Syntax
__property DynamicArrayBlockedCertBytes[int BlockedCertIndex] = { read=FBlockedCertBytes };
Remarks
Returns the raw certificate data in DER format.
The BlockedCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlockedCertCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
BlockedCertHandle Property (Authenticator Component)
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
__property __int64 BlockedCertHandle[int BlockedCertIndex] = { read=FBlockedCertHandle, write=FSetBlockedCertHandle };
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The BlockedCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlockedCertCount property.
This property is not available at design time.
Data Type
Long64
CertCount Property (Authenticator Component)
The number of records in the Cert arrays.
Syntax
__property int CertCount = { read=FCertCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
- CertBytes
- CertCA
- CertCAKeyID
- CertCertType
- CertCRLDistributionPoints
- CertCurve
- CertFingerprint
- CertFriendlyName
- CertHandle
- CertHashAlgorithm
- CertIssuer
- CertIssuerRDN
- CertKeyAlgorithm
- CertKeyBits
- CertKeyFingerprint
- CertKeyUsage
- CertKeyValid
- CertOCSPLocations
- CertOCSPNoCheck
- CertOrigin
- CertPolicyIDs
- CertPrivateKeyBytes
- CertPrivateKeyExists
- CertPrivateKeyExtractable
- CertPublicKeyBytes
- CertQualified
- CertQualifiedStatements
- CertQualifiers
- CertSelfSigned
- CertSerialNumber
- CertSigAlgorithm
- CertSource
- CertSubject
- CertSubjectAlternativeName
- CertSubjectKeyID
- CertSubjectRDN
- CertValid
- CertValidFrom
- CertValidTo
This property is read-only and not available at design time.
Data Type
Integer
CertBytes Property (Authenticator Component)
Returns the raw certificate data in DER format.
Syntax
__property DynamicArrayCertBytes[int CertIndex] = { read=FCertBytes };
Remarks
Returns the raw certificate data in DER format.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
CertCA Property (Authenticator Component)
Indicates whether the certificate has a CA capability.
Syntax
__property bool CertCA[int CertIndex] = { read=FCertCA };
Default Value
false
Remarks
Indicates whether the certificate has a CA capability. For the certificate to be considered a CA, it must have its Basic Constraints extension set with the CA indicator enabled.
Set this property when generating a new certificate to have its Basic Constraints extension generated automatically.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Boolean
CertCAKeyID Property (Authenticator Component)
A unique identifier (fingerprint) of the CA certificate's cryptographic key.
Syntax
__property DynamicArrayCertCAKeyID[int CertIndex] = { read=FCertCAKeyID };
Remarks
A unique identifier (fingerprint) of the CA certificate's cryptographic key.
Authority Key Identifier is a certificate extension which allows identification of certificates belonging to the same issuer, but with different public keys. It is a de-facto standard to include this extension in all certificates to facilitate chain building.
This setting cannot be set when generating a certificate as it always derives from another certificate property. CertificateManager generates this setting automatically if enough information is available to it: for self-signed certificates, this value is copied from the CertSubjectKeyID setting, and for lower-level certificates, from the parent certificate's subject key ID extension.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
CertCertType Property (Authenticator Component)
Returns the type of the entity contained in the Certificate object.
Syntax
__property TsbxAuthenticatorCertCertTypes CertCertType[int CertIndex] = { read=FCertCertType };
enum TsbxAuthenticatorCertCertTypes { ctUnknown=0, ctX509Certificate=1, ctX509CertificateRequest=2 };
Default Value
ctUnknown
Remarks
Returns the type of the entity contained in the Certificate object.
A Certificate object can contain two types of cryptographic objects: a ready-to-use X.509 certificate, or a certificate request ("an unsigned certificate"). Certificate requests can be upgraded to full certificates by signing them with a CA certificate.
Use the CertificateManager component to load or create new certificate and certificate requests objects.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Integer
CertCRLDistributionPoints Property (Authenticator Component)
Contains a list of locations of CRL distribution points used to check this certificate's validity.
Syntax
__property String CertCRLDistributionPoints[int CertIndex] = { read=FCertCRLDistributionPoints };
Default Value
""
Remarks
Contains a list of locations of CRL distribution points used to check this certificate's validity. The list is taken from the respective certificate extension.
Use this property when generating a certificate to provide a list of CRL endpoints that should be made part of the new certificate.
The endpoints are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertCurve Property (Authenticator Component)
Specifies the elliptic curve associated with the certificate's public key.
Syntax
__property String CertCurve[int CertIndex] = { read=FCertCurve };
Default Value
""
Remarks
Specifies the elliptic curve associated with the certificate's public key. This setting only applies to certificates containing EC keys.
SB_EC_SECP112R1 | SECP112R1 | |
SB_EC_SECP112R2 | SECP112R2 | |
SB_EC_SECP128R1 | SECP128R1 | |
SB_EC_SECP128R2 | SECP128R2 | |
SB_EC_SECP160K1 | SECP160K1 | |
SB_EC_SECP160R1 | SECP160R1 | |
SB_EC_SECP160R2 | SECP160R2 | |
SB_EC_SECP192K1 | SECP192K1 | |
SB_EC_SECP192R1 | SECP192R1 | |
SB_EC_SECP224K1 | SECP224K1 | |
SB_EC_SECP224R1 | SECP224R1 | |
SB_EC_SECP256K1 | SECP256K1 | |
SB_EC_SECP256R1 | SECP256R1 | |
SB_EC_SECP384R1 | SECP384R1 | |
SB_EC_SECP521R1 | SECP521R1 | |
SB_EC_SECT113R1 | SECT113R1 | |
SB_EC_SECT113R2 | SECT113R2 | |
SB_EC_SECT131R1 | SECT131R1 | |
SB_EC_SECT131R2 | SECT131R2 | |
SB_EC_SECT163K1 | SECT163K1 | |
SB_EC_SECT163R1 | SECT163R1 | |
SB_EC_SECT163R2 | SECT163R2 | |
SB_EC_SECT193R1 | SECT193R1 | |
SB_EC_SECT193R2 | SECT193R2 | |
SB_EC_SECT233K1 | SECT233K1 | |
SB_EC_SECT233R1 | SECT233R1 | |
SB_EC_SECT239K1 | SECT239K1 | |
SB_EC_SECT283K1 | SECT283K1 | |
SB_EC_SECT283R1 | SECT283R1 | |
SB_EC_SECT409K1 | SECT409K1 | |
SB_EC_SECT409R1 | SECT409R1 | |
SB_EC_SECT571K1 | SECT571K1 | |
SB_EC_SECT571R1 | SECT571R1 | |
SB_EC_PRIME192V1 | PRIME192V1 | |
SB_EC_PRIME192V2 | PRIME192V2 | |
SB_EC_PRIME192V3 | PRIME192V3 | |
SB_EC_PRIME239V1 | PRIME239V1 | |
SB_EC_PRIME239V2 | PRIME239V2 | |
SB_EC_PRIME239V3 | PRIME239V3 | |
SB_EC_PRIME256V1 | PRIME256V1 | |
SB_EC_C2PNB163V1 | C2PNB163V1 | |
SB_EC_C2PNB163V2 | C2PNB163V2 | |
SB_EC_C2PNB163V3 | C2PNB163V3 | |
SB_EC_C2PNB176W1 | C2PNB176W1 | |
SB_EC_C2TNB191V1 | C2TNB191V1 | |
SB_EC_C2TNB191V2 | C2TNB191V2 | |
SB_EC_C2TNB191V3 | C2TNB191V3 | |
SB_EC_C2ONB191V4 | C2ONB191V4 | |
SB_EC_C2ONB191V5 | C2ONB191V5 | |
SB_EC_C2PNB208W1 | C2PNB208W1 | |
SB_EC_C2TNB239V1 | C2TNB239V1 | |
SB_EC_C2TNB239V2 | C2TNB239V2 | |
SB_EC_C2TNB239V3 | C2TNB239V3 | |
SB_EC_C2ONB239V4 | C2ONB239V4 | |
SB_EC_C2ONB239V5 | C2ONB239V5 | |
SB_EC_C2PNB272W1 | C2PNB272W1 | |
SB_EC_C2PNB304W1 | C2PNB304W1 | |
SB_EC_C2TNB359V1 | C2TNB359V1 | |
SB_EC_C2PNB368W1 | C2PNB368W1 | |
SB_EC_C2TNB431R1 | C2TNB431R1 | |
SB_EC_NISTP192 | NISTP192 | |
SB_EC_NISTP224 | NISTP224 | |
SB_EC_NISTP256 | NISTP256 | |
SB_EC_NISTP384 | NISTP384 | |
SB_EC_NISTP521 | NISTP521 | |
SB_EC_NISTB163 | NISTB163 | |
SB_EC_NISTB233 | NISTB233 | |
SB_EC_NISTB283 | NISTB283 | |
SB_EC_NISTB409 | NISTB409 | |
SB_EC_NISTB571 | NISTB571 | |
SB_EC_NISTK163 | NISTK163 | |
SB_EC_NISTK233 | NISTK233 | |
SB_EC_NISTK283 | NISTK283 | |
SB_EC_NISTK409 | NISTK409 | |
SB_EC_NISTK571 | NISTK571 | |
SB_EC_GOSTCPTEST | GOSTCPTEST | |
SB_EC_GOSTCPA | GOSTCPA | |
SB_EC_GOSTCPB | GOSTCPB | |
SB_EC_GOSTCPC | GOSTCPC | |
SB_EC_GOSTCPXCHA | GOSTCPXCHA | |
SB_EC_GOSTCPXCHB | GOSTCPXCHB | |
SB_EC_BRAINPOOLP160R1 | BRAINPOOLP160R1 | |
SB_EC_BRAINPOOLP160T1 | BRAINPOOLP160T1 | |
SB_EC_BRAINPOOLP192R1 | BRAINPOOLP192R1 | |
SB_EC_BRAINPOOLP192T1 | BRAINPOOLP192T1 | |
SB_EC_BRAINPOOLP224R1 | BRAINPOOLP224R1 | |
SB_EC_BRAINPOOLP224T1 | BRAINPOOLP224T1 | |
SB_EC_BRAINPOOLP256R1 | BRAINPOOLP256R1 | |
SB_EC_BRAINPOOLP256T1 | BRAINPOOLP256T1 | |
SB_EC_BRAINPOOLP320R1 | BRAINPOOLP320R1 | |
SB_EC_BRAINPOOLP320T1 | BRAINPOOLP320T1 | |
SB_EC_BRAINPOOLP384R1 | BRAINPOOLP384R1 | |
SB_EC_BRAINPOOLP384T1 | BRAINPOOLP384T1 | |
SB_EC_BRAINPOOLP512R1 | BRAINPOOLP512R1 | |
SB_EC_BRAINPOOLP512T1 | BRAINPOOLP512T1 | |
SB_EC_CURVE25519 | CURVE25519 | |
SB_EC_CURVE448 | CURVE448 |
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertFingerprint Property (Authenticator Component)
Contains the fingerprint (a hash imprint) of this certificate.
Syntax
__property String CertFingerprint[int CertIndex] = { read=FCertFingerprint };
Default Value
""
Remarks
Contains the fingerprint (a hash imprint) of this certificate.
While there is no formal standard defining what a fingerprint is, a SHA1 hash of the certificate's DER-encoded body is typically used.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertFriendlyName Property (Authenticator Component)
Contains an associated alias (friendly name) of the certificate.
Syntax
__property String CertFriendlyName[int CertIndex] = { read=FCertFriendlyName };
Default Value
""
Remarks
Contains an associated alias (friendly name) of the certificate. The friendly name is not a property of a certificate: it is maintained by the certificate media rather than being included in its DER representation. Windows certificate stores are one example of media that does support friendly names.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertHandle Property (Authenticator Component)
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
__property __int64 CertHandle[int CertIndex] = { read=FCertHandle };
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Long64
CertHashAlgorithm Property (Authenticator Component)
Provides means to set the hash algorithm to be used in the subsequent operation on the certificate (such as generation or key signing).
Syntax
__property String CertHashAlgorithm[int CertIndex] = { read=FCertHashAlgorithm };
Default Value
""
Remarks
Provides means to set the hash algorithm to be used in the subsequent operation on the certificate (such as generation or key signing). It is not a property of a certificate; use CertSigAlgorithm to find out the hash algorithm that is part of the certificate signature.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertIssuer Property (Authenticator Component)
The common name of the certificate issuer (CA), typically a company name.
Syntax
__property String CertIssuer[int CertIndex] = { read=FCertIssuer };
Default Value
""
Remarks
The common name of the certificate issuer (CA), typically a company name. This is part of a larger set of credentials available via CertIssuerRDN.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertIssuerRDN Property (Authenticator Component)
A list of Property=Value pairs that uniquely identify the certificate issuer.
Syntax
__property String CertIssuerRDN[int CertIndex] = { read=FCertIssuerRDN };
Default Value
""
Remarks
A list of Property=Value pairs that uniquely identify the certificate issuer.
Example: /C=US/O=Nationwide CA/CN=Web Certification Authority
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertKeyAlgorithm Property (Authenticator Component)
Specifies the public key algorithm of this certificate.
Syntax
__property String CertKeyAlgorithm[int CertIndex] = { read=FCertKeyAlgorithm };
Default Value
"0"
Remarks
Specifies the public key algorithm of this certificate.
SB_CERT_ALGORITHM_ID_RSA_ENCRYPTION | rsaEncryption | |
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTION | md2withRSAEncryption | |
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTION | md5withRSAEncryption | |
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTION | sha1withRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA | id-dsa | |
SB_CERT_ALGORITHM_ID_DSA_SHA1 | id-dsa-with-sha1 | |
SB_CERT_ALGORITHM_DH_PUBLIC | dhpublicnumber | |
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTION | sha224WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTION | sha256WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTION | sha384WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTION | sha512WithRSAEncryption | |
SB_CERT_ALGORITHM_ID_RSAPSS | id-RSASSA-PSS | |
SB_CERT_ALGORITHM_ID_RSAOAEP | id-RSAES-OAEP | |
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160 | ripemd160withRSA | |
SB_CERT_ALGORITHM_ID_ELGAMAL | elGamal | |
SB_CERT_ALGORITHM_SHA1_ECDSA | ecdsa-with-SHA1 | |
SB_CERT_ALGORITHM_RECOMMENDED_ECDSA | ecdsa-recommended | |
SB_CERT_ALGORITHM_SHA224_ECDSA | ecdsa-with-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA | ecdsa-with-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA | ecdsa-with-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA | ecdsa-with-SHA512 | |
SB_CERT_ALGORITHM_EC | id-ecPublicKey | |
SB_CERT_ALGORITHM_SPECIFIED_ECDSA | ecdsa-specified | |
SB_CERT_ALGORITHM_GOST_R3410_1994 | id-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3410_2001 | id-GostR3410-2001 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994 | id-GostR3411-94-with-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001 | id-GostR3411-94-with-GostR3410-2001 | |
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAIN | ecdsa-plain-SHA1 | |
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAIN | ecdsa-plain-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAIN | ecdsa-plain-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAIN | ecdsa-plain-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAIN | ecdsa-plain-SHA512 | |
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAIN | ecdsa-plain-RIPEMD160 | |
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTION | whirlpoolWithRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA_SHA224 | id-dsa-with-sha224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA256 | id-dsa-with-sha256 | |
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA | id-ecdsa-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA | id-ecdsa-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA | id-ecdsa-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA | id-ecdsa-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-512 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_224 | id-dsa-with-sha3-224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_256 | id-dsa-with-sha3-256 | |
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA | id-ecdsa-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA | id-ecdsa-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA | id-ecdsa-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA | id-ecdsa-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA | id-ecdsa-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA | id-ecdsa-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA | id-ecdsa-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA | id-ecdsa-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b512 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224 | id-dsa-with-blake2s224 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256 | id-dsa-with-blake2s256 | |
SB_CERT_ALGORITHM_EDDSA_ED25519 | id-Ed25519 | |
SB_CERT_ALGORITHM_EDDSA_ED448 | id-Ed448 | |
SB_CERT_ALGORITHM_EDDSA_ED25519_PH | id-Ed25519ph | |
SB_CERT_ALGORITHM_EDDSA_ED448_PH | id-Ed448ph | |
SB_CERT_ALGORITHM_EDDSA | id-EdDSA | |
SB_CERT_ALGORITHM_EDDSA_SIGNATURE | id-EdDSA-sig |
Use the CertKeyBits, CertCurve, and CertPublicKeyBytes properties to get more details about the key the certificate contains.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertKeyBits Property (Authenticator Component)
Returns the length of the public key in bits.
Syntax
__property int CertKeyBits[int CertIndex] = { read=FCertKeyBits };
Default Value
0
Remarks
Returns the length of the public key in bits.
This value indicates the length of the principal cryptographic parameter of the key, such as the length of the RSA modulus or ECDSA field. The key data returned by the CertPublicKeyBytes or CertPrivateKeyBytes property would typically contain auxiliary values, and therefore be longer.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Integer
CertKeyFingerprint Property (Authenticator Component)
Returns a SHA1 fingerprint of the public key contained in the certificate.
Syntax
__property String CertKeyFingerprint[int CertIndex] = { read=FCertKeyFingerprint };
Default Value
""
Remarks
Returns a SHA1 fingerprint of the public key contained in the certificate.
Note that the key fingerprint is different from the certificate fingerprint accessible via the CertFingerprint property. The key fingeprint uniquely identifies the public key, and so can be the same for multiple certificates containing the same key.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertKeyUsage Property (Authenticator Component)
Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.
Syntax
__property int CertKeyUsage[int CertIndex] = { read=FCertKeyUsage };
Default Value
0
Remarks
Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.
This value is a bit mask of the following values:
ckuUnknown | 0x00000 | Unknown key usage |
ckuDigitalSignature | 0x00001 | Digital signature |
ckuNonRepudiation | 0x00002 | Non-repudiation |
ckuKeyEncipherment | 0x00004 | Key encipherment |
ckuDataEncipherment | 0x00008 | Data encipherment |
ckuKeyAgreement | 0x00010 | Key agreement |
ckuKeyCertSign | 0x00020 | Certificate signing |
ckuCRLSign | 0x00040 | Revocation signing |
ckuEncipherOnly | 0x00080 | Encipher only |
ckuDecipherOnly | 0x00100 | Decipher only |
ckuServerAuthentication | 0x00200 | Server authentication |
ckuClientAuthentication | 0x00400 | Client authentication |
ckuCodeSigning | 0x00800 | Code signing |
ckuEmailProtection | 0x01000 | Email protection |
ckuTimeStamping | 0x02000 | Timestamping |
ckuOCSPSigning | 0x04000 | OCSP signing |
ckuSmartCardLogon | 0x08000 | Smartcard logon |
ckuKeyPurposeClientAuth | 0x10000 | Kerberos - client authentication |
ckuKeyPurposeKDC | 0x20000 | Kerberos - KDC |
Set this property before generating the certificate to propagate the key usage flags to the new certificate.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Integer
CertKeyValid Property (Authenticator Component)
Returns True if the certificate's key is cryptographically valid, and False otherwise.
Syntax
__property bool CertKeyValid[int CertIndex] = { read=FCertKeyValid };
Default Value
false
Remarks
Returns True if the certificate's key is cryptographically valid, and False otherwise.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Boolean
CertOCSPLocations Property (Authenticator Component)
Locations of OCSP services that can be used to check this certificate's validity in real time, as recorded by the CA.
Syntax
__property String CertOCSPLocations[int CertIndex] = { read=FCertOCSPLocations };
Default Value
""
Remarks
Locations of OCSP services that can be used to check this certificate's validity in real time, as recorded by the CA.
Set this property before calling the certificate manager's Generate method to propagate it to the new certificate.
The OCSP locations are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertOCSPNoCheck Property (Authenticator Component)
Accessor to the value of the certificate's ocsp-no-check extension.
Syntax
__property bool CertOCSPNoCheck[int CertIndex] = { read=FCertOCSPNoCheck };
Default Value
false
Remarks
Accessor to the value of the certificate's ocsp-no-check extension.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Boolean
CertOrigin Property (Authenticator Component)
Returns the location that the certificate was taken or loaded from.
Syntax
__property int CertOrigin[int CertIndex] = { read=FCertOrigin };
Default Value
0
Remarks
Returns the location that the certificate was taken or loaded from.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Integer
CertPolicyIDs Property (Authenticator Component)
Contains identifiers (OIDs) of the applicable certificate policies.
Syntax
__property String CertPolicyIDs[int CertIndex] = { read=FCertPolicyIDs };
Default Value
""
Remarks
Contains identifiers (OIDs) of the applicable certificate policies.
The Certificate Policies extension identifies a sequence of policies under which the certificate has been issued, and which regulate its usage.
Set this property when generating a certificate to propagate the policies information to the new certificate.
The policies are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the policy element separator.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertPrivateKeyBytes Property (Authenticator Component)
Returns the certificate's private key in DER-encoded format.
Syntax
__property DynamicArrayCertPrivateKeyBytes[int CertIndex] = { read=FCertPrivateKeyBytes };
Remarks
Returns the certificate's private key in DER-encoded format. It is normal for this property to be empty if the private key is non-exportable, which, for example, is typical for certificates originating from hardware security devices.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
CertPrivateKeyExists Property (Authenticator Component)
Indicates whether the certificate has a usable private key associated with it.
Syntax
__property bool CertPrivateKeyExists[int CertIndex] = { read=FCertPrivateKeyExists };
Default Value
false
Remarks
Indicates whether the certificate has a usable private key associated with it. If it is set to True, the certificate can be used for private key operations, such as signing or decryption.
This property is independent from CertPrivateKeyBytes, and can be set to True even if the former is empty. This would imply that the private key is non-exportable, but still can be used for cryptographic operations.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Boolean
CertPrivateKeyExtractable Property (Authenticator Component)
Indicates whether the private key is extractable (exportable).
Syntax
__property bool CertPrivateKeyExtractable[int CertIndex] = { read=FCertPrivateKeyExtractable };
Default Value
false
Remarks
Indicates whether the private key is extractable (exportable).
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Boolean
CertPublicKeyBytes Property (Authenticator Component)
Contains the certificate's public key in DER format.
Syntax
__property DynamicArrayCertPublicKeyBytes[int CertIndex] = { read=FCertPublicKeyBytes };
Remarks
Contains the certificate's public key in DER format.
This typically would contain an ASN.1-encoded public key value. The exact format depends on the type of the public key contained in the certificate.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
CertQualified Property (Authenticator Component)
Indicates whether the certificate is qualified.
Syntax
__property bool CertQualified[int CertIndex] = { read=FCertQualified };
Default Value
false
Remarks
Indicates whether the certificate is qualified.
This property is set to True if the certificate is confirmed by a Trusted List to be qualified.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Boolean
CertQualifiedStatements Property (Authenticator Component)
Returns a simplified qualified status of the certificate.
Syntax
__property TsbxAuthenticatorCertQualifiedStatements CertQualifiedStatements[int CertIndex] = { read=FCertQualifiedStatements };
enum TsbxAuthenticatorCertQualifiedStatements { qstNonQualified=0, qstQualifiedHardware=1, qstQualifiedSoftware=2 };
Default Value
qstNonQualified
Remarks
Returns a simplified qualified status of the certificate.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Integer
CertQualifiers Property (Authenticator Component)
A list of qualifiers.
Syntax
__property String CertQualifiers[int CertIndex] = { read=FCertQualifiers };
Default Value
""
Remarks
A list of qualifiers.
Contains a comma-separated list of qualifier aliases for the certificate, for example QCP-n-qscd,QCWithSSCD.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertSelfSigned Property (Authenticator Component)
Indicates whether the certificate is self-signed (root) or signed by an external CA.
Syntax
__property bool CertSelfSigned[int CertIndex] = { read=FCertSelfSigned };
Default Value
false
Remarks
Indicates whether the certificate is self-signed (root) or signed by an external CA.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Boolean
CertSerialNumber Property (Authenticator Component)
Returns the certificate's serial number.
Syntax
__property DynamicArrayCertSerialNumber[int CertIndex] = { read=FCertSerialNumber };
Remarks
Returns the certificate's serial number.
The serial number is a binary string that uniquely identifies a certificate among others issued by the same CA. According to the X.509 standard, the (issuer, serial number) pair should be globally unique to facilitate chain building.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
CertSigAlgorithm Property (Authenticator Component)
Indicates the algorithm that was used by the CA to sign this certificate.
Syntax
__property String CertSigAlgorithm[int CertIndex] = { read=FCertSigAlgorithm };
Default Value
""
Remarks
Indicates the algorithm that was used by the CA to sign this certificate.
A signature algorithm typically combines hash and public key algorithms together, such as sha256WithRSAEncryption or ecdsa-with-SHA256.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertSource Property (Authenticator Component)
Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.
Syntax
__property TsbxAuthenticatorCertSources CertSource[int CertIndex] = { read=FCertSource };
enum TsbxAuthenticatorCertSources { pksUnknown=0, pksSignature=1, pksDocument=2, pksUser=3, pksLocal=4, pksOnline=5 };
Default Value
pksUnknown
Remarks
Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Integer
CertSubject Property (Authenticator Component)
The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name.
Syntax
__property String CertSubject[int CertIndex] = { read=FCertSubject };
Default Value
""
Remarks
The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name. This is part of a larger set of credentials available via CertSubjectRDN.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertSubjectAlternativeName Property (Authenticator Component)
Returns or sets the value of the Subject Alternative Name extension of the certificate.
Syntax
__property String CertSubjectAlternativeName[int CertIndex] = { read=FCertSubjectAlternativeName };
Default Value
""
Remarks
Returns or sets the value of the Subject Alternative Name extension of the certificate.
Subject alternative names are used to provide additional names that are impractical to store in the main CertSubjectRDN field. For example, it is often used to store all the domain names that a TLS certificate is authorized to protect.
The alternative names are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the element separator.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertSubjectKeyID Property (Authenticator Component)
Contains a unique identifier of the certificate's cryptographic key.
Syntax
__property DynamicArrayCertSubjectKeyID[int CertIndex] = { read=FCertSubjectKeyID };
Remarks
Contains a unique identifier of the certificate's cryptographic key.
Subject Key Identifier is a certificate extension which allows a specific public key to be associated with a certificate holder. Typically, subject key identifiers of CA certificates are recorded as respective CA key identifiers in the subordinate certificates that they issue, which facilitates chain building.
The CertSubjectKeyID and CertCAKeyID properties of self-signed certificates typically contain identical values, as in that specific case, the issuer and the subject are the same entity.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
CertSubjectRDN Property (Authenticator Component)
A list of Property=Value pairs that uniquely identify the certificate holder (subject).
Syntax
__property String CertSubjectRDN[int CertIndex] = { read=FCertSubjectRDN };
Default Value
""
Remarks
A list of Property=Value pairs that uniquely identify the certificate holder (subject).
Depending on the purpose of the certificate and the policies of the CA that issued it, the values included in the subject record may differ drastically and contain business or personal names, web URLs, email addresses, and other data.
Example: /C=US/O=Oranges and Apples, Inc./OU=Accounts Receivable/1.2.3.4.5=Value with unknown OID/CN=Margaret Watkins.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertValid Property (Authenticator Component)
Indicates whether or not the signature over the certificate or the request is valid and matches the public key contained in the CA certificate/request.
Syntax
__property bool CertValid[int CertIndex] = { read=FCertValid };
Default Value
false
Remarks
Indicates whether or not the signature over the certificate or the request is valid and matches the public key contained in the CA certificate/request.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Boolean
CertValidFrom Property (Authenticator Component)
The time point at which the certificate becomes valid, in UTC.
Syntax
__property String CertValidFrom[int CertIndex] = { read=FCertValidFrom };
Default Value
""
Remarks
The time point at which the certificate becomes valid, in UTC.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertValidTo Property (Authenticator Component)
The time point at which the certificate expires, in UTC.
Syntax
__property String CertValidTo[int CertIndex] = { read=FCertValidTo };
Default Value
""
Remarks
The time point at which the certificate expires, in UTC.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
ChainValidationDetails Property (Authenticator Component)
The details of a certificate chain validation outcome.
Syntax
__property int ChainValidationDetails = { read=FChainValidationDetails };
Default Value
0
Remarks
Use the value(s) returned by this property to identify the reasons that contributed to the overall validation result.
Returns a bit mask of the following options:
cvrBadData | 0x0001 | One or more certificates in the validation path are malformed |
cvrRevoked | 0x0002 | One or more certificates are revoked |
cvrNotYetValid | 0x0004 | One or more certificates are not yet valid |
cvrExpired | 0x0008 | One or more certificates are expired |
cvrInvalidSignature | 0x0010 | A certificate contains a non-valid digital signature |
cvrUnknownCA | 0x0020 | A CA certificate for one or more certificates has not been found (chain incomplete) |
cvrCAUnauthorized | 0x0040 | One of the CA certificates are not authorized to act as CA |
cvrCRLNotVerified | 0x0080 | One or more CRLs could not be verified |
cvrOCSPNotVerified | 0x0100 | One or more OCSP responses could not be verified |
cvrIdentityMismatch | 0x0200 | The identity protected by the certificate (a TLS endpoint or an e-mail addressee) does not match what is recorded in the certificate |
cvrNoKeyUsage | 0x0400 | A mandatory key usage is not enabled in one of the chain certificates |
cvrBlocked | 0x0800 | One or more certificates are blocked |
cvrFailure | 0x1000 | General validation failure |
cvrChainLoop | 0x2000 | Chain loop: one of the CA certificates recursively signs itself |
cvrWeakAlgorithm | 0x4000 | A weak algorithm is used in one of certificates or revocation elements |
cvrUserEnforced | 0x8000 | The chain was considered invalid following intervention from a user code |
This property is read-only and not available at design time.
Data Type
Integer
ChainValidationResult Property (Authenticator Component)
The general outcome of a certificate chain validation routine. Use ChainValidationDetails to get information about the reasons that contributed to the validation result.
Syntax
__property TsbxAuthenticatorChainValidationResults ChainValidationResult = { read=FChainValidationResult };
enum TsbxAuthenticatorChainValidationResults { cvtValid=0, cvtValidButUntrusted=1, cvtInvalid=2, cvtCantBeEstablished=3 };
Default Value
cvtValid
Remarks
Available options:
cvtValid | 0 | The chain is valid |
cvtValidButUntrusted | 1 | The chain is valid, but the root certificate is not trusted |
cvtInvalid | 2 | The chain is not valid (some of certificates are revoked, expired, or contain an invalid signature) |
cvtCantBeEstablished | 3 | The validity of the chain cannot be established because of missing or unavailable validation information (certificates, CRLs, or OCSP responses) |
Use the ValidationLog property to access the detailed validation log.
This property is read-only and not available at design time.
Data Type
Integer
DefaultAuthMethods Property (Authenticator Component)
Contains the list of default authentication methods.
Syntax
__property String DefaultAuthMethods = { read=FDefaultAuthMethods, write=FSetDefaultAuthMethods };
Default Value
""
Remarks
Use this property to specify a list of default authentication methods to apply to users that are not included in the Users database. Assign this property with a comma-separated list of standard and custom authentication methods.
The following standard authentication methods are supported by the component:
- password
- otp-h
- otp-t
- dcauth
You can use any names not clashing with the standard methods to indicate your own custom authentication methods. Use CustomAuthStart and AuthVerify events to handle custom authentication methods.
Data Type
String
ExternalCryptoAsyncDocumentID Property (Authenticator Component)
Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.
Syntax
__property String ExternalCryptoAsyncDocumentID = { read=FExternalCryptoAsyncDocumentID, write=FSetExternalCryptoAsyncDocumentID };
Default Value
""
Remarks
Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.
Use this property when working with multi-signature DCAuth requests and responses to uniquely identify documents signed within a larger batch. On the completion stage, this value helps the signing component identify the correct signature in the returned batch of responses.
If using batched requests, make sure to set this property to the same value on both the pre-signing (SignAsyncBegin) and completion (SignAsyncEnd) stages.
Data Type
String
ExternalCryptoCustomParams Property (Authenticator Component)
Custom parameters to be passed to the signing service (uninterpreted).
Syntax
__property String ExternalCryptoCustomParams = { read=FExternalCryptoCustomParams, write=FSetExternalCryptoCustomParams };
Default Value
""
Remarks
Custom parameters to be passed to the signing service (uninterpreted).
This property is not available at design time.
Data Type
String
ExternalCryptoData Property (Authenticator Component)
Additional data to be included in the async state and mirrored back by the requestor.
Syntax
__property String ExternalCryptoData = { read=FExternalCryptoData, write=FSetExternalCryptoData };
Default Value
""
Remarks
Additional data to be included in the async state and mirrored back by the requestor.
This property is not available at design time.
Data Type
String
ExternalCryptoExternalHashCalculation Property (Authenticator Component)
Specifies whether the message hash is to be calculated at the external endpoint.
Syntax
__property bool ExternalCryptoExternalHashCalculation = { read=FExternalCryptoExternalHashCalculation, write=FSetExternalCryptoExternalHashCalculation };
Default Value
false
Remarks
Specifies whether the message hash is to be calculated at the external endpoint. Please note that this mode is not supported by the DCAuth component.
If set to true, the component will pass a few kilobytes of to-be-signed data from the document to the OnExternalSign event. This only applies when SignExternal() is called.
Data Type
Boolean
ExternalCryptoHashAlgorithm Property (Authenticator Component)
Specifies the request's signature hash algorithm.
Syntax
__property String ExternalCryptoHashAlgorithm = { read=FExternalCryptoHashAlgorithm, write=FSetExternalCryptoHashAlgorithm };
Default Value
"SHA256"
Remarks
Specifies the request's signature hash algorithm.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
Data Type
String
ExternalCryptoKeyID Property (Authenticator Component)
The ID of the pre-shared key used for DC request authentication.
Syntax
__property String ExternalCryptoKeyID = { read=FExternalCryptoKeyID, write=FSetExternalCryptoKeyID };
Default Value
""
Remarks
The ID of the pre-shared key used for DC request authentication.
Asynchronous DCAuth-driven communication requires that parties authenticate each other with a secret pre-shared cryptographic key. This provides an extra protection layer for the protocol and diminishes the risk of the private key becoming abused by foreign parties. Use this property to provide the pre-shared key identifier, and use ExternalCryptoKeySecret to pass the key itself.
The same KeyID/KeySecret pair should be used on the DCAuth side for the signing requests to be accepted.
Note: The KeyID/KeySecret scheme is very similar to the AuthKey scheme used in various Cloud service providers to authenticate users.
Example:
signer.ExternalCrypto.KeyID = "MainSigningKey";
signer.ExternalCrypto.KeySecret = "abcdef0123456789";
Data Type
String
ExternalCryptoKeySecret Property (Authenticator Component)
The pre-shared key used for DC request authentication.
Syntax
__property String ExternalCryptoKeySecret = { read=FExternalCryptoKeySecret, write=FSetExternalCryptoKeySecret };
Default Value
""
Remarks
The pre-shared key used for DC request authentication. This key must be set and match the key used by the DCAuth counterpart for the scheme to work.
Read more about configuring authentication in the ExternalCryptoKeyID topic.
Data Type
String
ExternalCryptoMethod Property (Authenticator Component)
Specifies the asynchronous signing method.
Syntax
__property TsbxAuthenticatorExternalCryptoMethods ExternalCryptoMethod = { read=FExternalCryptoMethod, write=FSetExternalCryptoMethod };
enum TsbxAuthenticatorExternalCryptoMethods { asmdPKCS1=0, asmdPKCS7=1 };
Default Value
asmdPKCS1
Remarks
Specifies the asynchronous signing method. This is typically defined by the DC server capabilities and setup.
Available options:
asmdPKCS1 | 0 |
asmdPKCS7 | 1 |
Data Type
Integer
ExternalCryptoMode Property (Authenticator Component)
Specifies the external cryptography mode.
Syntax
__property TsbxAuthenticatorExternalCryptoModes ExternalCryptoMode = { read=FExternalCryptoMode, write=FSetExternalCryptoMode };
enum TsbxAuthenticatorExternalCryptoModes { ecmDefault=0, ecmDisabled=1, ecmGeneric=2, ecmDCAuth=3, ecmDCAuthJSON=4 };
Default Value
ecmDefault
Remarks
Specifies the external cryptography mode.
Available options:
ecmDefault | The default value (0) |
ecmDisabled | Do not use DC or external signing (1) |
ecmGeneric | Generic external signing with the OnExternalSign event (2) |
ecmDCAuth | DCAuth signing (3) |
ecmDCAuthJSON | DCAuth signing in JSON format (4) |
This property is not available at design time.
Data Type
Integer
ExternalCryptoPublicKeyAlgorithm Property (Authenticator Component)
Provide the public key algorithm here if the certificate is not available on the pre-signing stage.
Syntax
__property String ExternalCryptoPublicKeyAlgorithm = { read=FExternalCryptoPublicKeyAlgorithm, write=FSetExternalCryptoPublicKeyAlgorithm };
Default Value
""
Remarks
Provide the public key algorithm here if the certificate is not available on the pre-signing stage.
SB_CERT_ALGORITHM_ID_RSA_ENCRYPTION | rsaEncryption | |
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTION | md2withRSAEncryption | |
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTION | md5withRSAEncryption | |
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTION | sha1withRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA | id-dsa | |
SB_CERT_ALGORITHM_ID_DSA_SHA1 | id-dsa-with-sha1 | |
SB_CERT_ALGORITHM_DH_PUBLIC | dhpublicnumber | |
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTION | sha224WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTION | sha256WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTION | sha384WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTION | sha512WithRSAEncryption | |
SB_CERT_ALGORITHM_ID_RSAPSS | id-RSASSA-PSS | |
SB_CERT_ALGORITHM_ID_RSAOAEP | id-RSAES-OAEP | |
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160 | ripemd160withRSA | |
SB_CERT_ALGORITHM_ID_ELGAMAL | elGamal | |
SB_CERT_ALGORITHM_SHA1_ECDSA | ecdsa-with-SHA1 | |
SB_CERT_ALGORITHM_RECOMMENDED_ECDSA | ecdsa-recommended | |
SB_CERT_ALGORITHM_SHA224_ECDSA | ecdsa-with-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA | ecdsa-with-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA | ecdsa-with-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA | ecdsa-with-SHA512 | |
SB_CERT_ALGORITHM_EC | id-ecPublicKey | |
SB_CERT_ALGORITHM_SPECIFIED_ECDSA | ecdsa-specified | |
SB_CERT_ALGORITHM_GOST_R3410_1994 | id-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3410_2001 | id-GostR3410-2001 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994 | id-GostR3411-94-with-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001 | id-GostR3411-94-with-GostR3410-2001 | |
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAIN | ecdsa-plain-SHA1 | |
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAIN | ecdsa-plain-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAIN | ecdsa-plain-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAIN | ecdsa-plain-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAIN | ecdsa-plain-SHA512 | |
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAIN | ecdsa-plain-RIPEMD160 | |
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTION | whirlpoolWithRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA_SHA224 | id-dsa-with-sha224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA256 | id-dsa-with-sha256 | |
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA | id-ecdsa-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA | id-ecdsa-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA | id-ecdsa-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA | id-ecdsa-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-512 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_224 | id-dsa-with-sha3-224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_256 | id-dsa-with-sha3-256 | |
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA | id-ecdsa-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA | id-ecdsa-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA | id-ecdsa-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA | id-ecdsa-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA | id-ecdsa-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA | id-ecdsa-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA | id-ecdsa-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA | id-ecdsa-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b512 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224 | id-dsa-with-blake2s224 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256 | id-dsa-with-blake2s256 | |
SB_CERT_ALGORITHM_EDDSA_ED25519 | id-Ed25519 | |
SB_CERT_ALGORITHM_EDDSA_ED448 | id-Ed448 | |
SB_CERT_ALGORITHM_EDDSA_ED25519_PH | id-Ed25519ph | |
SB_CERT_ALGORITHM_EDDSA_ED448_PH | id-Ed448ph | |
SB_CERT_ALGORITHM_EDDSA | id-EdDSA | |
SB_CERT_ALGORITHM_EDDSA_SIGNATURE | id-EdDSA-sig |
Data Type
String
FIPSMode Property (Authenticator Component)
Reserved.
Syntax
__property bool FIPSMode = { read=FFIPSMode, write=FSetFIPSMode };
Default Value
false
Remarks
This property is reserved for future use.
Data Type
Boolean
IgnoreChainValidationErrors Property (Authenticator Component)
Makes the component tolerant to chain validation errors.
Syntax
__property bool IgnoreChainValidationErrors = { read=FIgnoreChainValidationErrors, write=FSetIgnoreChainValidationErrors };
Default Value
false
Remarks
If this property is set to True, any errors emerging during certificate chain validation will be ignored. This setting may be handy if the purpose of validation is the creation of an LTV signature, and the validation is performed in an environment that doesn't trust the signer's certificate chain.
Data Type
Boolean
KnownCertCount Property (Authenticator Component)
The number of records in the KnownCert arrays.
Syntax
__property int KnownCertCount = { read=FKnownCertCount, write=FSetKnownCertCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at KnownCertCount - 1.This property is not available at design time.
Data Type
Integer
KnownCertBytes Property (Authenticator Component)
Returns the raw certificate data in DER format.
Syntax
__property DynamicArrayKnownCertBytes[int KnownCertIndex] = { read=FKnownCertBytes };
Remarks
Returns the raw certificate data in DER format.
The KnownCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KnownCertCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
KnownCertHandle Property (Authenticator Component)
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
__property __int64 KnownCertHandle[int KnownCertIndex] = { read=FKnownCertHandle, write=FSetKnownCertHandle };
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The KnownCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KnownCertCount property.
This property is not available at design time.
Data Type
Long64
KnownCRLCount Property (Authenticator Component)
The number of records in the KnownCRL arrays.
Syntax
__property int KnownCRLCount = { read=FKnownCRLCount, write=FSetKnownCRLCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at KnownCRLCount - 1.This property is not available at design time.
Data Type
Integer
KnownCRLBytes Property (Authenticator Component)
Returns the raw CRL data in DER format.
Syntax
__property DynamicArrayKnownCRLBytes[int KnownCRLIndex] = { read=FKnownCRLBytes };
Remarks
Returns the raw CRL data in DER format.
The KnownCRLIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KnownCRLCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
KnownCRLHandle Property (Authenticator Component)
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
__property __int64 KnownCRLHandle[int KnownCRLIndex] = { read=FKnownCRLHandle, write=FSetKnownCRLHandle };
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The KnownCRLIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KnownCRLCount property.
This property is not available at design time.
Data Type
Long64
KnownOCSPCount Property (Authenticator Component)
The number of records in the KnownOCSP arrays.
Syntax
__property int KnownOCSPCount = { read=FKnownOCSPCount, write=FSetKnownOCSPCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at KnownOCSPCount - 1.This property is not available at design time.
Data Type
Integer
KnownOCSPBytes Property (Authenticator Component)
A buffer containing the raw OCSP response data.
Syntax
__property DynamicArrayKnownOCSPBytes[int KnownOCSPIndex] = { read=FKnownOCSPBytes };
Remarks
A buffer containing the raw OCSP response data.
The KnownOCSPIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KnownOCSPCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
KnownOCSPHandle Property (Authenticator Component)
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
__property __int64 KnownOCSPHandle[int KnownOCSPIndex] = { read=FKnownOCSPHandle, write=FSetKnownOCSPHandle };
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The KnownOCSPIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KnownOCSPCount property.
This property is not available at design time.
Data Type
Long64
OfflineMode Property (Authenticator Component)
Switches the component to offline mode.
Syntax
__property bool OfflineMode = { read=FOfflineMode, write=FSetOfflineMode };
Default Value
false
Remarks
When working in offline mode, the component restricts itself from using any online revocation information sources, such as CRL or OCSP responders.
Offline mode may be useful if there is a need to verify the completeness of the validation information included within the signature or provided via KnownCertificates, KnownCRLs, and other related properties.
Data Type
Boolean
ProxyAddress Property (Authenticator Component)
The IP address of the proxy server.
Syntax
__property String ProxyAddress = { read=FProxyAddress, write=FSetProxyAddress };
Default Value
""
Remarks
The IP address of the proxy server.
Data Type
String
ProxyAuthentication Property (Authenticator Component)
The authentication type used by the proxy server.
Syntax
__property TsbxAuthenticatorProxyAuthentications ProxyAuthentication = { read=FProxyAuthentication, write=FSetProxyAuthentication };
enum TsbxAuthenticatorProxyAuthentications { patNoAuthentication=0, patBasic=1, patDigest=2, patNTLM=3 };
Default Value
patNoAuthentication
Remarks
The authentication type used by the proxy server.
patNoAuthentication | 0 |
patBasic | 1 |
patDigest | 2 |
patNTLM | 3 |
Data Type
Integer
ProxyPassword Property (Authenticator Component)
The password to authenticate to the proxy server.
Syntax
__property String ProxyPassword = { read=FProxyPassword, write=FSetProxyPassword };
Default Value
""
Remarks
The password to authenticate to the proxy server.
Data Type
String
ProxyPort Property (Authenticator Component)
The port on the proxy server to connect to.
Syntax
__property int ProxyPort = { read=FProxyPort, write=FSetProxyPort };
Default Value
0
Remarks
The port on the proxy server to connect to.
Data Type
Integer
ProxyProxyType Property (Authenticator Component)
The type of the proxy server.
Syntax
__property TsbxAuthenticatorProxyProxyTypes ProxyProxyType = { read=FProxyProxyType, write=FSetProxyProxyType };
enum TsbxAuthenticatorProxyProxyTypes { cptNone=0, cptSocks4=1, cptSocks5=2, cptWebTunnel=3, cptHTTP=4 };
Default Value
cptNone
Remarks
The type of the proxy server.
cptNone | 0 |
cptSocks4 | 1 |
cptSocks5 | 2 |
cptWebTunnel | 3 |
cptHTTP | 4 |
Data Type
Integer
ProxyRequestHeaders Property (Authenticator Component)
Contains HTTP request headers for WebTunnel and HTTP proxy.
Syntax
__property String ProxyRequestHeaders = { read=FProxyRequestHeaders, write=FSetProxyRequestHeaders };
Default Value
""
Remarks
Contains HTTP request headers for WebTunnel and HTTP proxy.
Data Type
String
ProxyResponseBody Property (Authenticator Component)
Contains the HTTP or HTTPS (WebTunnel) proxy response body.
Syntax
__property String ProxyResponseBody = { read=FProxyResponseBody, write=FSetProxyResponseBody };
Default Value
""
Remarks
Contains the HTTP or HTTPS (WebTunnel) proxy response body.
Data Type
String
ProxyResponseHeaders Property (Authenticator Component)
Contains response headers received from an HTTP or HTTPS (WebTunnel) proxy server.
Syntax
__property String ProxyResponseHeaders = { read=FProxyResponseHeaders, write=FSetProxyResponseHeaders };
Default Value
""
Remarks
Contains response headers received from an HTTP or HTTPS (WebTunnel) proxy server.
Data Type
String
ProxyUseIPv6 Property (Authenticator Component)
Specifies whether IPv6 should be used when connecting through the proxy.
Syntax
__property bool ProxyUseIPv6 = { read=FProxyUseIPv6, write=FSetProxyUseIPv6 };
Default Value
false
Remarks
Specifies whether IPv6 should be used when connecting through the proxy.
Data Type
Boolean
ProxyUsername Property (Authenticator Component)
Specifies the username credential for proxy authentication.
Syntax
__property String ProxyUsername = { read=FProxyUsername, write=FSetProxyUsername };
Default Value
""
Remarks
Specifies the username credential for proxy authentication.
Data Type
String
RevocationCheck Property (Authenticator Component)
Specifies the kind(s) of revocation check to perform for all chain certificates.
Syntax
__property TsbxAuthenticatorRevocationChecks RevocationCheck = { read=FRevocationCheck, write=FSetRevocationCheck };
enum TsbxAuthenticatorRevocationChecks { crcNone=0, crcAuto=1, crcAllCRL=2, crcAllOCSP=3, crcAllCRLAndOCSP=4, crcAnyCRL=5, crcAnyOCSP=6, crcAnyCRLOrOCSP=7, crcAnyOCSPOrCRL=8 };
Default Value
crcAuto
Remarks
Revocation checking is necessary to ensure the integrity of the chain and obtain up-to-date certificate validity and trustworthiness information.
Certificate Revocation Lists (CRLs) and Online Certificate Status Protocol (OCSP) responses serve the same purpose of ensuring that the certificate had not been revoked by the Certificate Authority (CA) at the time of use. Depending on your circumstances and security policy requirements, you may want to use either one or both of the revocation information source types.
crcNone | 0 | No revocation checking. |
crcAuto | 1 | Automatic mode selection. Currently this maps to crcAnyOCSPOrCRL, but it may change in the future. |
crcAllCRL | 2 | All provided CRL endpoints will be checked, and all checks must succeed. |
crcAllOCSP | 3 | All provided OCSP endpoints will be checked, and all checks must succeed. |
crcAllCRLAndOCSP | 4 | All provided CRL and OCSP endpoints will be checked, and all checks must succeed. |
crcAnyCRL | 5 | All provided CRL endpoints will be checked, and at least one check must succeed. |
crcAnyOCSP | 6 | All provided OCSP endpoints will be checked, and at least one check must succeed. |
crcAnyCRLOrOCSP | 7 | All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. CRL endpoints are checked first. |
crcAnyOCSPOrCRL | 8 | All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. OCSP endpoints are checked first. |
This setting controls the way the revocation checks are performed for every certificate in the chain. Typically certificates come with two types of revocation information sources: CRL (certificate revocation lists) and OCSP responders. CRLs are static objects periodically published by the CA at some online location. OCSP responders are active online services maintained by the CA that can provide up-to-date information on certificate statuses in near real time.
There are some conceptual differences between the two. CRLs are normally larger in size. Their use involves some latency because there is normally some delay between the time when a certificate was revoked and the time the subsequent CRL mentioning that is published. The benefits of CRL is that the same object can provide statuses for all certificates issued by a particular CA, and that the whole technology is much simpler than OCSP (and thus is supported by more CAs).
This setting lets you adjust the validation course by including or excluding certain types of revocation sources from the validation process. The crcAnyOCSPOrCRL setting (give preference to the faster OCSP route and only demand one source to succeed) is a good choice for most typical validation environments. The "crcAll*" modes are much stricter, and may be used in scenarios where bulletproof validity information is essential.
Note: If no CRL or OCSP endpoints are provided by the CA, the revocation check will be considered successful. This is because the CA chose not to supply revocation information for its certificates, meaning they are considered irrevocable.
Note: Within each of the above settings, if any retrieved CRL or OCSP response indicates that the certificate has been revoked, the revocation check fails.
Data Type
Integer
SigningCertBytes Property (Authenticator Component)
Returns the raw certificate data in DER format.
Syntax
__property DynamicArraySigningCertBytes = { read=FSigningCertBytes };
Remarks
Returns the raw certificate data in DER format.
This property is read-only and not available at design time.
Data Type
Byte Array
SigningCertHandle Property (Authenticator Component)
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
__property __int64 SigningCertHandle = { read=FSigningCertHandle, write=FSetSigningCertHandle };
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
This property is not available at design time.
Data Type
Long64
SocketDNSMode Property (Authenticator Component)
Selects the DNS resolver to use: the component's (secure) built-in one, or the one provided by the system.
Syntax
__property TsbxAuthenticatorSocketDNSModes SocketDNSMode = { read=FSocketDNSMode, write=FSetSocketDNSMode };
enum TsbxAuthenticatorSocketDNSModes { dmAuto=0, dmPlatform=1, dmOwn=2, dmOwnSecure=3 };
Default Value
dmAuto
Remarks
Selects the DNS resolver to use: the component's (secure) built-in one, or the one provided by the system.
dmAuto | 0 |
dmPlatform | 1 |
dmOwn | 2 |
dmOwnSecure | 3 |
Data Type
Integer
SocketDNSPort Property (Authenticator Component)
Specifies the port number to be used for sending queries to the DNS server.
Syntax
__property int SocketDNSPort = { read=FSocketDNSPort, write=FSetSocketDNSPort };
Default Value
0
Remarks
Specifies the port number to be used for sending queries to the DNS server.
Data Type
Integer
SocketDNSQueryTimeout Property (Authenticator Component)
The timeout (in milliseconds) for each DNS query.
Syntax
__property int SocketDNSQueryTimeout = { read=FSocketDNSQueryTimeout, write=FSetSocketDNSQueryTimeout };
Default Value
0
Remarks
The timeout (in milliseconds) for each DNS query. The value of 0 indicates an infinite timeout.
Data Type
Integer
SocketDNSServers Property (Authenticator Component)
The addresses of DNS servers to use for address resolution, separated by commas or semicolons.
Syntax
__property String SocketDNSServers = { read=FSocketDNSServers, write=FSetSocketDNSServers };
Default Value
""
Remarks
The addresses of DNS servers to use for address resolution, separated by commas or semicolons.
Data Type
String
SocketDNSTotalTimeout Property (Authenticator Component)
The timeout (in milliseconds) for the whole resolution process.
Syntax
__property int SocketDNSTotalTimeout = { read=FSocketDNSTotalTimeout, write=FSetSocketDNSTotalTimeout };
Default Value
0
Remarks
The timeout (in milliseconds) for the whole resolution process. The value of 0 indicates an infinite timeout.
Data Type
Integer
SocketIncomingSpeedLimit Property (Authenticator Component)
The maximum number of bytes to read from the socket, per second.
Syntax
__property int SocketIncomingSpeedLimit = { read=FSocketIncomingSpeedLimit, write=FSetSocketIncomingSpeedLimit };
Default Value
0
Remarks
The maximum number of bytes to read from the socket, per second.
Data Type
Integer
SocketLocalAddress Property (Authenticator Component)
The local network interface to bind the socket to.
Syntax
__property String SocketLocalAddress = { read=FSocketLocalAddress, write=FSetSocketLocalAddress };
Default Value
""
Remarks
The local network interface to bind the socket to.
Data Type
String
SocketLocalPort Property (Authenticator Component)
The local port number to bind the socket to.
Syntax
__property int SocketLocalPort = { read=FSocketLocalPort, write=FSetSocketLocalPort };
Default Value
0
Remarks
The local port number to bind the socket to.
Data Type
Integer
SocketOutgoingSpeedLimit Property (Authenticator Component)
The maximum number of bytes to write to the socket, per second.
Syntax
__property int SocketOutgoingSpeedLimit = { read=FSocketOutgoingSpeedLimit, write=FSetSocketOutgoingSpeedLimit };
Default Value
0
Remarks
The maximum number of bytes to write to the socket, per second.
Data Type
Integer
SocketTimeout Property (Authenticator Component)
The maximum period of waiting, in milliseconds, after which the socket operation is considered unsuccessful.
Syntax
__property int SocketTimeout = { read=FSocketTimeout, write=FSetSocketTimeout };
Default Value
60000
Remarks
The maximum period of waiting, in milliseconds, after which the socket operation is considered unsuccessful.
If Timeout is set to 0, a socket operation will expire after the system-default timeout (2 hrs 8 min for TCP stack).
Data Type
Integer
SocketUseIPv6 Property (Authenticator Component)
Enables or disables IP protocol version 6.
Syntax
__property bool SocketUseIPv6 = { read=FSocketUseIPv6, write=FSetSocketUseIPv6 };
Default Value
false
Remarks
Enables or disables IP protocol version 6.
Data Type
Boolean
TLSAutoValidateCertificates Property (Authenticator Component)
Specifies whether server-side TLS certificates should be validated automatically using internal validation rules.
Syntax
__property bool TLSAutoValidateCertificates = { read=FTLSAutoValidateCertificates, write=FSetTLSAutoValidateCertificates };
Default Value
true
Remarks
Specifies whether server-side TLS certificates should be validated automatically using internal validation rules.
Data Type
Boolean
TLSBaseConfiguration Property (Authenticator Component)
Selects the base configuration for the TLS settings.
Syntax
__property TsbxAuthenticatorTLSBaseConfigurations TLSBaseConfiguration = { read=FTLSBaseConfiguration, write=FSetTLSBaseConfiguration };
enum TsbxAuthenticatorTLSBaseConfigurations { stpcDefault=0, stpcCompatible=1, stpcComprehensiveInsecure=2, stpcHighlySecure=3 };
Default Value
stpcDefault
Remarks
Selects the base configuration for the TLS settings. Several profiles are offered and tuned up for different purposes, such as high security or higher compatibility.
stpcDefault | 0 | |
stpcCompatible | 1 | |
stpcComprehensiveInsecure | 2 | |
stpcHighlySecure | 3 |
Data Type
Integer
TLSCiphersuites Property (Authenticator Component)
A list of ciphersuites separated with commas or semicolons.
Syntax
__property String TLSCiphersuites = { read=FTLSCiphersuites, write=FSetTLSCiphersuites };
Default Value
""
Remarks
A list of ciphersuites separated with commas or semicolons. Each ciphersuite in the list may be prefixed with a minus sign (-) to indicate that the ciphersuite should be disabled rather than enabled. Besides the specific ciphersuite modifiers, this property supports the all (and -all) aliases, allowing all ciphersuites to be blanketly enabled or disabled at once.
Note: the list of ciphersuites provided to this property alters the baseline list of ciphersuites as defined by TLSBaseConfiguration. Remember to start your ciphersuite string with -all; if you need to only enable a specific fixed set of ciphersuites. The list of supported ciphersuites is provided below:
- NULL_NULL_NULL
- RSA_NULL_MD5
- RSA_NULL_SHA
- RSA_RC4_MD5
- RSA_RC4_SHA
- RSA_RC2_MD5
- RSA_IDEA_MD5
- RSA_IDEA_SHA
- RSA_DES_MD5
- RSA_DES_SHA
- RSA_3DES_MD5
- RSA_3DES_SHA
- RSA_AES128_SHA
- RSA_AES256_SHA
- DH_DSS_DES_SHA
- DH_DSS_3DES_SHA
- DH_DSS_AES128_SHA
- DH_DSS_AES256_SHA
- DH_RSA_DES_SHA
- DH_RSA_3DES_SHA
- DH_RSA_AES128_SHA
- DH_RSA_AES256_SHA
- DHE_DSS_DES_SHA
- DHE_DSS_3DES_SHA
- DHE_DSS_AES128_SHA
- DHE_DSS_AES256_SHA
- DHE_RSA_DES_SHA
- DHE_RSA_3DES_SHA
- DHE_RSA_AES128_SHA
- DHE_RSA_AES256_SHA
- DH_ANON_RC4_MD5
- DH_ANON_DES_SHA
- DH_ANON_3DES_SHA
- DH_ANON_AES128_SHA
- DH_ANON_AES256_SHA
- RSA_RC2_MD5_EXPORT
- RSA_RC4_MD5_EXPORT
- RSA_DES_SHA_EXPORT
- DH_DSS_DES_SHA_EXPORT
- DH_RSA_DES_SHA_EXPORT
- DHE_DSS_DES_SHA_EXPORT
- DHE_RSA_DES_SHA_EXPORT
- DH_ANON_RC4_MD5_EXPORT
- DH_ANON_DES_SHA_EXPORT
- RSA_CAMELLIA128_SHA
- DH_DSS_CAMELLIA128_SHA
- DH_RSA_CAMELLIA128_SHA
- DHE_DSS_CAMELLIA128_SHA
- DHE_RSA_CAMELLIA128_SHA
- DH_ANON_CAMELLIA128_SHA
- RSA_CAMELLIA256_SHA
- DH_DSS_CAMELLIA256_SHA
- DH_RSA_CAMELLIA256_SHA
- DHE_DSS_CAMELLIA256_SHA
- DHE_RSA_CAMELLIA256_SHA
- DH_ANON_CAMELLIA256_SHA
- PSK_RC4_SHA
- PSK_3DES_SHA
- PSK_AES128_SHA
- PSK_AES256_SHA
- DHE_PSK_RC4_SHA
- DHE_PSK_3DES_SHA
- DHE_PSK_AES128_SHA
- DHE_PSK_AES256_SHA
- RSA_PSK_RC4_SHA
- RSA_PSK_3DES_SHA
- RSA_PSK_AES128_SHA
- RSA_PSK_AES256_SHA
- RSA_SEED_SHA
- DH_DSS_SEED_SHA
- DH_RSA_SEED_SHA
- DHE_DSS_SEED_SHA
- DHE_RSA_SEED_SHA
- DH_ANON_SEED_SHA
- SRP_SHA_3DES_SHA
- SRP_SHA_RSA_3DES_SHA
- SRP_SHA_DSS_3DES_SHA
- SRP_SHA_AES128_SHA
- SRP_SHA_RSA_AES128_SHA
- SRP_SHA_DSS_AES128_SHA
- SRP_SHA_AES256_SHA
- SRP_SHA_RSA_AES256_SHA
- SRP_SHA_DSS_AES256_SHA
- ECDH_ECDSA_NULL_SHA
- ECDH_ECDSA_RC4_SHA
- ECDH_ECDSA_3DES_SHA
- ECDH_ECDSA_AES128_SHA
- ECDH_ECDSA_AES256_SHA
- ECDHE_ECDSA_NULL_SHA
- ECDHE_ECDSA_RC4_SHA
- ECDHE_ECDSA_3DES_SHA
- ECDHE_ECDSA_AES128_SHA
- ECDHE_ECDSA_AES256_SHA
- ECDH_RSA_NULL_SHA
- ECDH_RSA_RC4_SHA
- ECDH_RSA_3DES_SHA
- ECDH_RSA_AES128_SHA
- ECDH_RSA_AES256_SHA
- ECDHE_RSA_NULL_SHA
- ECDHE_RSA_RC4_SHA
- ECDHE_RSA_3DES_SHA
- ECDHE_RSA_AES128_SHA
- ECDHE_RSA_AES256_SHA
- ECDH_ANON_NULL_SHA
- ECDH_ANON_RC4_SHA
- ECDH_ANON_3DES_SHA
- ECDH_ANON_AES128_SHA
- ECDH_ANON_AES256_SHA
- RSA_NULL_SHA256
- RSA_AES128_SHA256
- RSA_AES256_SHA256
- DH_DSS_AES128_SHA256
- DH_RSA_AES128_SHA256
- DHE_DSS_AES128_SHA256
- DHE_RSA_AES128_SHA256
- DH_DSS_AES256_SHA256
- DH_RSA_AES256_SHA256
- DHE_DSS_AES256_SHA256
- DHE_RSA_AES256_SHA256
- DH_ANON_AES128_SHA256
- DH_ANON_AES256_SHA256
- RSA_AES128_GCM_SHA256
- RSA_AES256_GCM_SHA384
- DHE_RSA_AES128_GCM_SHA256
- DHE_RSA_AES256_GCM_SHA384
- DH_RSA_AES128_GCM_SHA256
- DH_RSA_AES256_GCM_SHA384
- DHE_DSS_AES128_GCM_SHA256
- DHE_DSS_AES256_GCM_SHA384
- DH_DSS_AES128_GCM_SHA256
- DH_DSS_AES256_GCM_SHA384
- DH_ANON_AES128_GCM_SHA256
- DH_ANON_AES256_GCM_SHA384
- ECDHE_ECDSA_AES128_SHA256
- ECDHE_ECDSA_AES256_SHA384
- ECDH_ECDSA_AES128_SHA256
- ECDH_ECDSA_AES256_SHA384
- ECDHE_RSA_AES128_SHA256
- ECDHE_RSA_AES256_SHA384
- ECDH_RSA_AES128_SHA256
- ECDH_RSA_AES256_SHA384
- ECDHE_ECDSA_AES128_GCM_SHA256
- ECDHE_ECDSA_AES256_GCM_SHA384
- ECDH_ECDSA_AES128_GCM_SHA256
- ECDH_ECDSA_AES256_GCM_SHA384
- ECDHE_RSA_AES128_GCM_SHA256
- ECDHE_RSA_AES256_GCM_SHA384
- ECDH_RSA_AES128_GCM_SHA256
- ECDH_RSA_AES256_GCM_SHA384
- PSK_AES128_GCM_SHA256
- PSK_AES256_GCM_SHA384
- DHE_PSK_AES128_GCM_SHA256
- DHE_PSK_AES256_GCM_SHA384
- RSA_PSK_AES128_GCM_SHA256
- RSA_PSK_AES256_GCM_SHA384
- PSK_AES128_SHA256
- PSK_AES256_SHA384
- PSK_NULL_SHA256
- PSK_NULL_SHA384
- DHE_PSK_AES128_SHA256
- DHE_PSK_AES256_SHA384
- DHE_PSK_NULL_SHA256
- DHE_PSK_NULL_SHA384
- RSA_PSK_AES128_SHA256
- RSA_PSK_AES256_SHA384
- RSA_PSK_NULL_SHA256
- RSA_PSK_NULL_SHA384
- RSA_CAMELLIA128_SHA256
- DH_DSS_CAMELLIA128_SHA256
- DH_RSA_CAMELLIA128_SHA256
- DHE_DSS_CAMELLIA128_SHA256
- DHE_RSA_CAMELLIA128_SHA256
- DH_ANON_CAMELLIA128_SHA256
- RSA_CAMELLIA256_SHA256
- DH_DSS_CAMELLIA256_SHA256
- DH_RSA_CAMELLIA256_SHA256
- DHE_DSS_CAMELLIA256_SHA256
- DHE_RSA_CAMELLIA256_SHA256
- DH_ANON_CAMELLIA256_SHA256
- ECDHE_ECDSA_CAMELLIA128_SHA256
- ECDHE_ECDSA_CAMELLIA256_SHA384
- ECDH_ECDSA_CAMELLIA128_SHA256
- ECDH_ECDSA_CAMELLIA256_SHA384
- ECDHE_RSA_CAMELLIA128_SHA256
- ECDHE_RSA_CAMELLIA256_SHA384
- ECDH_RSA_CAMELLIA128_SHA256
- ECDH_RSA_CAMELLIA256_SHA384
- RSA_CAMELLIA128_GCM_SHA256
- RSA_CAMELLIA256_GCM_SHA384
- DHE_RSA_CAMELLIA128_GCM_SHA256
- DHE_RSA_CAMELLIA256_GCM_SHA384
- DH_RSA_CAMELLIA128_GCM_SHA256
- DH_RSA_CAMELLIA256_GCM_SHA384
- DHE_DSS_CAMELLIA128_GCM_SHA256
- DHE_DSS_CAMELLIA256_GCM_SHA384
- DH_DSS_CAMELLIA128_GCM_SHA256
- DH_DSS_CAMELLIA256_GCM_SHA384
- DH_anon_CAMELLIA128_GCM_SHA256
- DH_anon_CAMELLIA256_GCM_SHA384
- ECDHE_ECDSA_CAMELLIA128_GCM_SHA256
- ECDHE_ECDSA_CAMELLIA256_GCM_SHA384
- ECDH_ECDSA_CAMELLIA128_GCM_SHA256
- ECDH_ECDSA_CAMELLIA256_GCM_SHA384
- ECDHE_RSA_CAMELLIA128_GCM_SHA256
- ECDHE_RSA_CAMELLIA256_GCM_SHA384
- ECDH_RSA_CAMELLIA128_GCM_SHA256
- ECDH_RSA_CAMELLIA256_GCM_SHA384
- PSK_CAMELLIA128_GCM_SHA256
- PSK_CAMELLIA256_GCM_SHA384
- DHE_PSK_CAMELLIA128_GCM_SHA256
- DHE_PSK_CAMELLIA256_GCM_SHA384
- RSA_PSK_CAMELLIA128_GCM_SHA256
- RSA_PSK_CAMELLIA256_GCM_SHA384
- PSK_CAMELLIA128_SHA256
- PSK_CAMELLIA256_SHA384
- DHE_PSK_CAMELLIA128_SHA256
- DHE_PSK_CAMELLIA256_SHA384
- RSA_PSK_CAMELLIA128_SHA256
- RSA_PSK_CAMELLIA256_SHA384
- ECDHE_PSK_CAMELLIA128_SHA256
- ECDHE_PSK_CAMELLIA256_SHA384
- ECDHE_PSK_RC4_SHA
- ECDHE_PSK_3DES_SHA
- ECDHE_PSK_AES128_SHA
- ECDHE_PSK_AES256_SHA
- ECDHE_PSK_AES128_SHA256
- ECDHE_PSK_AES256_SHA384
- ECDHE_PSK_NULL_SHA
- ECDHE_PSK_NULL_SHA256
- ECDHE_PSK_NULL_SHA384
- ECDHE_RSA_CHACHA20_POLY1305_SHA256
- ECDHE_ECDSA_CHACHA20_POLY1305_SHA256
- DHE_RSA_CHACHA20_POLY1305_SHA256
- PSK_CHACHA20_POLY1305_SHA256
- ECDHE_PSK_CHACHA20_POLY1305_SHA256
- DHE_PSK_CHACHA20_POLY1305_SHA256
- RSA_PSK_CHACHA20_POLY1305_SHA256
- AES128_GCM_SHA256
- AES256_GCM_SHA384
- CHACHA20_POLY1305_SHA256
- AES128_CCM_SHA256
- AES128_CCM8_SHA256
Data Type
String
TLSClientAuth Property (Authenticator Component)
Enables or disables certificate-based client authentication.
Syntax
__property TsbxAuthenticatorTLSClientAuths TLSClientAuth = { read=FTLSClientAuth, write=FSetTLSClientAuth };
enum TsbxAuthenticatorTLSClientAuths { ccatNoAuth=0, ccatRequestCert=1, ccatRequireCert=2 };
Default Value
ccatNoAuth
Remarks
Enables or disables certificate-based client authentication.
Set this property to true to tune up the client authentication type:
ccatNoAuth | 0 | |
ccatRequestCert | 1 | |
ccatRequireCert | 2 |
Data Type
Integer
TLSECCurves Property (Authenticator Component)
Defines the elliptic curves to enable.
Syntax
__property String TLSECCurves = { read=FTLSECCurves, write=FSetTLSECCurves };
Default Value
""
Remarks
Defines the elliptic curves to enable.
Data Type
String
TLSExtensions Property (Authenticator Component)
Provides access to TLS extensions.
Syntax
__property String TLSExtensions = { read=FTLSExtensions, write=FSetTLSExtensions };
Default Value
""
Remarks
Provides access to TLS extensions.
Data Type
String
TLSForceResumeIfDestinationChanges Property (Authenticator Component)
Whether to force TLS session resumption when the destination address changes.
Syntax
__property bool TLSForceResumeIfDestinationChanges = { read=FTLSForceResumeIfDestinationChanges, write=FSetTLSForceResumeIfDestinationChanges };
Default Value
false
Remarks
Whether to force TLS session resumption when the destination address changes.
Data Type
Boolean
TLSPreSharedIdentity Property (Authenticator Component)
Defines the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.
Syntax
__property String TLSPreSharedIdentity = { read=FTLSPreSharedIdentity, write=FSetTLSPreSharedIdentity };
Default Value
""
Remarks
Defines the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.
This property is not available at design time.
Data Type
String
TLSPreSharedKey Property (Authenticator Component)
Contains the pre-shared key for the PSK (Pre-Shared Key) key-exchange mechanism, encoded with base16.
Syntax
__property String TLSPreSharedKey = { read=FTLSPreSharedKey, write=FSetTLSPreSharedKey };
Default Value
""
Remarks
Contains the pre-shared key for the PSK (Pre-Shared Key) key-exchange mechanism, encoded with base16.
This property is not available at design time.
Data Type
String
TLSPreSharedKeyCiphersuite Property (Authenticator Component)
Defines the ciphersuite used for PSK (Pre-Shared Key) negotiation.
Syntax
__property String TLSPreSharedKeyCiphersuite = { read=FTLSPreSharedKeyCiphersuite, write=FSetTLSPreSharedKeyCiphersuite };
Default Value
""
Remarks
Defines the ciphersuite used for PSK (Pre-Shared Key) negotiation.
Data Type
String
TLSRenegotiationAttackPreventionMode Property (Authenticator Component)
Selects the renegotiation attack prevention mechanism.
Syntax
__property TsbxAuthenticatorTLSRenegotiationAttackPreventionModes TLSRenegotiationAttackPreventionMode = { read=FTLSRenegotiationAttackPreventionMode, write=FSetTLSRenegotiationAttackPreventionMode };
enum TsbxAuthenticatorTLSRenegotiationAttackPreventionModes { crapmCompatible=0, crapmStrict=1, crapmAuto=2 };
Default Value
crapmAuto
Remarks
Selects the renegotiation attack prevention mechanism.
The following options are available:
crapmCompatible | 0 | TLS 1.0 and 1.1 compatibility mode (renegotiation indication extension is disabled). |
crapmStrict | 1 | Renegotiation attack prevention is enabled and enforced. |
crapmAuto | 2 | Automatically choose whether to enable or disable renegotiation attack prevention. |
Data Type
Integer
TLSRevocationCheck Property (Authenticator Component)
Specifies the kind(s) of revocation check to perform.
Syntax
__property TsbxAuthenticatorTLSRevocationChecks TLSRevocationCheck = { read=FTLSRevocationCheck, write=FSetTLSRevocationCheck };
enum TsbxAuthenticatorTLSRevocationChecks { crcNone=0, crcAuto=1, crcAllCRL=2, crcAllOCSP=3, crcAllCRLAndOCSP=4, crcAnyCRL=5, crcAnyOCSP=6, crcAnyCRLOrOCSP=7, crcAnyOCSPOrCRL=8 };
Default Value
crcAuto
Remarks
Specifies the kind(s) of revocation check to perform.
Revocation checking is necessary to ensure the integrity of the chain and obtain up-to-date certificate validity and trustworthiness information.
crcNone | 0 | No revocation checking. |
crcAuto | 1 | Automatic mode selection. Currently this maps to crcAnyOCSPOrCRL, but it may change in the future. |
crcAllCRL | 2 | All provided CRL endpoints will be checked, and all checks must succeed. |
crcAllOCSP | 3 | All provided OCSP endpoints will be checked, and all checks must succeed. |
crcAllCRLAndOCSP | 4 | All provided CRL and OCSP endpoints will be checked, and all checks must succeed. |
crcAnyCRL | 5 | All provided CRL endpoints will be checked, and at least one check must succeed. |
crcAnyOCSP | 6 | All provided OCSP endpoints will be checked, and at least one check must succeed. |
crcAnyCRLOrOCSP | 7 | All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. CRL endpoints are checked first. |
crcAnyOCSPOrCRL | 8 | All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. OCSP endpoints are checked first. |
This setting controls the way the revocation checks are performed for every certificate in the chain. Typically certificates come with two types of revocation information sources: CRL (certificate revocation lists) and OCSP responders. CRLs are static objects periodically published by the CA at some online location. OCSP responders are active online services maintained by the CA that can provide up-to-date information on certificate statuses in near real time.
There are some conceptual differences between the two. CRLs are normally larger in size. Their use involves some latency because there is normally some delay between the time when a certificate was revoked and the time the subsequent CRL mentioning that is published. The benefits of CRL is that the same object can provide statuses for all certificates issued by a particular CA, and that the whole technology is much simpler than OCSP (and thus is supported by more CAs).
This setting lets you adjust the validation course by including or excluding certain types of revocation sources from the validation process. The crcAnyOCSPOrCRL setting (give preference to the faster OCSP route and only demand one source to succeed) is a good choice for most typical validation environments. The "crcAll*" modes are much stricter, and may be used in scenarios where bulletproof validity information is essential.
Note: If no CRL or OCSP endpoints are provided by the CA, the revocation check will be considered successful. This is because the CA chose not to supply revocation information for its certificates, meaning they are considered irrevocable.
Note: Within each of the above settings, if any retrieved CRL or OCSP response indicates that the certificate has been revoked, the revocation check fails.
This property is not available at design time.
Data Type
Integer
TLSSSLOptions Property (Authenticator Component)
Various SSL (TLS) protocol options, set of cssloExpectShutdownMessage 0x001 Wait for the close-notify message when shutting down the connection cssloOpenSSLDTLSWorkaround 0x002 (DEPRECATED) Use a DTLS version workaround when talking to very old OpenSSL versions cssloDisableKexLengthAlignment 0x004 Do not align the client-side PMS by the RSA modulus size.
Syntax
__property int TLSSSLOptions = { read=FTLSSSLOptions, write=FSetTLSSSLOptions };
Default Value
16
Remarks
Various SSL (TLS) protocol options, set of
cssloExpectShutdownMessage | 0x001 | Wait for the close-notify message when shutting down the connection |
cssloOpenSSLDTLSWorkaround | 0x002 | (DEPRECATED) Use a DTLS version workaround when talking to very old OpenSSL versions |
cssloDisableKexLengthAlignment | 0x004 | Do not align the client-side PMS by the RSA modulus size. It is unlikely that you will ever need to adjust it. |
cssloForceUseOfClientCertHashAlg | 0x008 | Enforce the use of the client certificate hash algorithm. It is unlikely that you will ever need to adjust it. |
cssloAutoAddServerNameExtension | 0x010 | Automatically add the server name extension when known |
cssloAcceptTrustedSRPPrimesOnly | 0x020 | Accept trusted SRP primes only |
cssloDisableSignatureAlgorithmsExtension | 0x040 | Disable (do not send) the signature algorithms extension. It is unlikely that you will ever need to adjust it. |
cssloIntolerateHigherProtocolVersions | 0x080 | (server option) Do not allow fallback from TLS versions higher than currently enabled |
cssloStickToPrefCertHashAlg | 0x100 | Stick to preferred certificate hash algorithms |
cssloNoImplicitTLS12Fallback | 0x200 | Disable implicit TLS 1.3 to 1.2 fallbacks |
cssloUseHandshakeBatches | 0x400 | Send the handshake message as large batches rather than individually |
Data Type
Integer
TLSTLSMode Property (Authenticator Component)
Specifies the TLS mode to use.
Syntax
__property TsbxAuthenticatorTLSTLSModes TLSTLSMode = { read=FTLSTLSMode, write=FSetTLSTLSMode };
enum TsbxAuthenticatorTLSTLSModes { smDefault=0, smNoTLS=1, smExplicitTLS=2, smImplicitTLS=3, smMixedTLS=4 };
Default Value
smDefault
Remarks
Specifies the TLS mode to use.
smDefault | 0 | |
smNoTLS | 1 | Do not use TLS |
smExplicitTLS | 2 | Connect to the server without any encryption and then request an SSL session. |
smImplicitTLS | 3 | Connect to the specified port, and establish the SSL session at once. |
smMixedTLS | 4 | Connect to the specified port, and establish the SSL session at once, but allow plain data. |
Data Type
Integer
TLSUseExtendedMasterSecret Property (Authenticator Component)
Enables the Extended Master Secret Extension, as defined in RFC 7627.
Syntax
__property bool TLSUseExtendedMasterSecret = { read=FTLSUseExtendedMasterSecret, write=FSetTLSUseExtendedMasterSecret };
Default Value
false
Remarks
Enables the Extended Master Secret Extension, as defined in RFC 7627.
Data Type
Boolean
TLSUseSessionResumption Property (Authenticator Component)
Enables or disables the TLS session resumption capability.
Syntax
__property bool TLSUseSessionResumption = { read=FTLSUseSessionResumption, write=FSetTLSUseSessionResumption };
Default Value
false
Remarks
Enables or disables the TLS session resumption capability.
Data Type
Boolean
TLSVersions Property (Authenticator Component)
The SSL/TLS versions to enable by default.
Syntax
__property int TLSVersions = { read=FTLSVersions, write=FSetTLSVersions };
Default Value
16
Remarks
The SSL/TLS versions to enable by default.
csbSSL2 | 0x01 | SSL 2 |
csbSSL3 | 0x02 | SSL 3 |
csbTLS1 | 0x04 | TLS 1.0 |
csbTLS11 | 0x08 | TLS 1.1 |
csbTLS12 | 0x10 | TLS 1.2 |
csbTLS13 | 0x20 | TLS 1.3 |
Data Type
Integer
TrustedCertCount Property (Authenticator Component)
The number of records in the TrustedCert arrays.
Syntax
__property int TrustedCertCount = { read=FTrustedCertCount, write=FSetTrustedCertCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at TrustedCertCount - 1.This property is not available at design time.
Data Type
Integer
TrustedCertBytes Property (Authenticator Component)
Returns the raw certificate data in DER format.
Syntax
__property DynamicArrayTrustedCertBytes[int TrustedCertIndex] = { read=FTrustedCertBytes };
Remarks
Returns the raw certificate data in DER format.
The TrustedCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TrustedCertCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
TrustedCertHandle Property (Authenticator Component)
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
__property __int64 TrustedCertHandle[int TrustedCertIndex] = { read=FTrustedCertHandle, write=FSetTrustedCertHandle };
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The TrustedCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TrustedCertCount property.
This property is not available at design time.
Data Type
Long64
UserCount Property (Authenticator Component)
The number of records in the User arrays.
Syntax
__property int UserCount = { read=FUserCount, write=FSetUserCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
- UserAssociatedData
- UserBasePath
- UserCertificate
- UserData
- UserEmail
- UserHandle
- UserHashAlgorithm
- UserIncomingSpeedLimit
- UserOtpAlgorithm
- UserOTPLen
- UserOtpValue
- UserOutgoingSpeedLimit
- UserPassword
- UserSharedSecret
- UserSSHKey
- UserUsername
This property is not available at design time.
Data Type
Integer
UserAssociatedData Property (Authenticator Component)
Contains the user's Associated Data when SSH AEAD (Authenticated Encryption with Associated Data) algorithm is used.
Syntax
__property DynamicArrayUserAssociatedData[int UserIndex] = { read=FUserAssociatedData, write=FSetUserAssociatedData };
Remarks
Contains the user's Associated Data when SSH AEAD (Authenticated Encryption with Associated Data) algorithm is used.
The UserIndex parameter specifies the index of the item in the array. The size of the array is controlled by the UserCount property.
This property is not available at design time.
Data Type
Byte Array
UserBasePath Property (Authenticator Component)
Base path for this user in the server's file system.
Syntax
__property String UserBasePath[int UserIndex] = { read=FUserBasePath, write=FSetUserBasePath };
Default Value
""
Remarks
Base path for this user in the server's file system.
The UserIndex parameter specifies the index of the item in the array. The size of the array is controlled by the UserCount property.
This property is not available at design time.
Data Type
String
UserCertificate Property (Authenticator Component)
Contains the user's certificate.
Syntax
__property DynamicArrayUserCertificate[int UserIndex] = { read=FUserCertificate, write=FSetUserCertificate };
Remarks
Contains the user's certificate.
The UserIndex parameter specifies the index of the item in the array. The size of the array is controlled by the UserCount property.
This property is not available at design time.
Data Type
Byte Array
UserData Property (Authenticator Component)
Contains uninterpreted user-defined data that should be associated with the user account, such as comments or custom settings.
Syntax
__property String UserData[int UserIndex] = { read=FUserData, write=FSetUserData };
Default Value
""
Remarks
Contains uninterpreted user-defined data that should be associated with the user account, such as comments or custom settings.
The UserIndex parameter specifies the index of the item in the array. The size of the array is controlled by the UserCount property.
This property is not available at design time.
Data Type
String
UserEmail Property (Authenticator Component)
The user's email address.
Syntax
__property String UserEmail[int UserIndex] = { read=FUserEmail, write=FSetUserEmail };
Default Value
""
Remarks
The user's email address.
The UserIndex parameter specifies the index of the item in the array. The size of the array is controlled by the UserCount property.
This property is not available at design time.
Data Type
String
UserHandle Property (Authenticator Component)
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
__property __int64 UserHandle[int UserIndex] = { read=FUserHandle, write=FSetUserHandle };
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The UserIndex parameter specifies the index of the item in the array. The size of the array is controlled by the UserCount property.
This property is not available at design time.
Data Type
Long64
UserHashAlgorithm Property (Authenticator Component)
Specifies the hash algorithm used to generate TOTP (Time-based One-Time Passwords) passwords for this user.
Syntax
__property String UserHashAlgorithm[int UserIndex] = { read=FUserHashAlgorithm, write=FSetUserHashAlgorithm };
Default Value
""
Remarks
Specifies the hash algorithm used to generate TOTP (Time-based One-Time Passwords) passwords for this user. Three HMAC algorithms are supported, with SHA-1, SHA-256, and SHA-512 digests:
SB_MAC_ALGORITHM_HMAC_SHA1 | SHA1 | |
SB_MAC_ALGORITHM_HMAC_SHA256 | SHA256 | |
SB_MAC_ALGORITHM_HMAC_SHA512 | SHA512 |
The UserIndex parameter specifies the index of the item in the array. The size of the array is controlled by the UserCount property.
This property is not available at design time.
Data Type
String
UserIncomingSpeedLimit Property (Authenticator Component)
Specifies the incoming speed limit for this user.
Syntax
__property int UserIncomingSpeedLimit[int UserIndex] = { read=FUserIncomingSpeedLimit, write=FSetUserIncomingSpeedLimit };
Default Value
0
Remarks
Specifies the incoming speed limit for this user. The value of 0 (zero) means "no limitation".
The UserIndex parameter specifies the index of the item in the array. The size of the array is controlled by the UserCount property.
This property is not available at design time.
Data Type
Integer
UserOtpAlgorithm Property (Authenticator Component)
The algorithm used to generate one-time passwords (OTP) for this user, either HOTP (Hash-based OTP) or TOTP (Time-based OTP).
Syntax
__property TsbxAuthenticatorUserOtpAlgorithms UserOtpAlgorithm[int UserIndex] = { read=FUserOtpAlgorithm, write=FSetUserOtpAlgorithm };
enum TsbxAuthenticatorUserOtpAlgorithms { oaNone=0, oaHmac=1, oaTime=2 };
Default Value
oaNone
Remarks
The algorithm used to generate one-time passwords (OTP) for this user, either HOTP (Hash-based OTP) or TOTP (Time-based OTP). In the former case, a value of a dedicated counter is used to generate a unique password, while in the latter the password is generated on the basis of the current time value.
oaHmac | 0 | |
oaTime | 1 |
The UserIndex parameter specifies the index of the item in the array. The size of the array is controlled by the UserCount property.
This property is not available at design time.
Data Type
Integer
UserOTPLen Property (Authenticator Component)
Specifies the length of the user's OTP password.
Syntax
__property int UserOTPLen[int UserIndex] = { read=FUserOTPLen, write=FSetUserOTPLen };
Default Value
0
Remarks
Specifies the length of the user's OTP password.
The UserIndex parameter specifies the index of the item in the array. The size of the array is controlled by the UserCount property.
This property is not available at design time.
Data Type
Integer
UserOtpValue Property (Authenticator Component)
The user's time interval (TOTP) or Counter (HOTP).
Syntax
__property int UserOtpValue[int UserIndex] = { read=FUserOtpValue, write=FSetUserOtpValue };
Default Value
0
Remarks
The user's time interval (TOTP) or Counter (HOTP).
The UserIndex parameter specifies the index of the item in the array. The size of the array is controlled by the UserCount property.
This property is not available at design time.
Data Type
Integer
UserOutgoingSpeedLimit Property (Authenticator Component)
Specifies the outgoing speed limit for this user.
Syntax
__property int UserOutgoingSpeedLimit[int UserIndex] = { read=FUserOutgoingSpeedLimit, write=FSetUserOutgoingSpeedLimit };
Default Value
0
Remarks
Specifies the outgoing speed limit for this user. The value of 0 (zero) means "no limitation".
The UserIndex parameter specifies the index of the item in the array. The size of the array is controlled by the UserCount property.
This property is not available at design time.
Data Type
Integer
UserPassword Property (Authenticator Component)
The user's authentication password.
Syntax
__property String UserPassword[int UserIndex] = { read=FUserPassword, write=FSetUserPassword };
Default Value
""
Remarks
The user's authentication password.
The UserIndex parameter specifies the index of the item in the array. The size of the array is controlled by the UserCount property.
This property is not available at design time.
Data Type
String
UserSharedSecret Property (Authenticator Component)
Contains the user's secret key, which is essentially a shared secret between the client and server.
Syntax
__property DynamicArrayUserSharedSecret[int UserIndex] = { read=FUserSharedSecret, write=FSetUserSharedSecret };
Remarks
Contains the user's secret key, which is essentially a shared secret between the client and server.
Shared secrets can be used in TLS-driven protocols, as well as in OTP (where it is called a 'key secret') for generating one-time passwords on one side, and validate them on the other.
The UserIndex parameter specifies the index of the item in the array. The size of the array is controlled by the UserCount property.
This property is not available at design time.
Data Type
Byte Array
UserSSHKey Property (Authenticator Component)
Contains the user's SSH key.
Syntax
__property DynamicArrayUserSSHKey[int UserIndex] = { read=FUserSSHKey, write=FSetUserSSHKey };
Remarks
Contains the user's SSH key.
The UserIndex parameter specifies the index of the item in the array. The size of the array is controlled by the UserCount property.
This property is not available at design time.
Data Type
Byte Array
UserUsername Property (Authenticator Component)
The registered name (login) of the user.
Syntax
__property String UserUsername[int UserIndex] = { read=FUserUsername, write=FSetUserUsername };
Default Value
""
Remarks
The registered name (login) of the user.
The UserIndex parameter specifies the index of the item in the array. The size of the array is controlled by the UserCount property.
This property is not available at design time.
Data Type
String
ValidationLog Property (Authenticator Component)
Contains the complete log of the certificate validation routine.
Syntax
__property String ValidationLog = { read=FValidationLog };
Default Value
""
Remarks
Use this property to access the chain validation log produced by the component. The log can be very useful when investigating issues with chain validation, as it contains a step-by-step trace of the entire validation procedure.
This property is read-only and not available at design time.
Data Type
String
ValidationMoment Property (Authenticator Component)
The time point at which signature validity is to be established.
Syntax
__property String ValidationMoment = { read=FValidationMoment, write=FSetValidationMoment };
Default Value
""
Remarks
Use this property to specify the moment in time at which signature validity should be established. The time is in UTC. Leave the setting empty to stick to the default moment (either the signature creation time or the current time).
The validity of the same signature may differ depending on the time point chosen due to temporal changes in chain validities, revocation statuses, and timestamp times.
Data Type
String
Config Method (Authenticator Component)
Sets or retrieves a configuration setting.
Syntax
String __fastcall Config(String ConfigurationString);
Remarks
Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
ContinueAuth Method (Authenticator Component)
Call this method to process an authentication token and proceed to the next authentication step.
Syntax
int __fastcall ContinueAuth(String State, String AuthToken);
Remarks
Call this method upon receiving an authentication token from the user to validate it and proceed to the next authentication step (or complete the authentication).
Pass the authentication state blob that you obtained at the beginning of the authentication step to the State parameter, and the authentication credential received from the user to the AuthToken parameter. The method will validate the token and return one of the following results:
arAuthFurtherAuthNeeded | 0 |
arAuthSucceeded | 1 |
arAuthFailed | 2 |
The further authentication needed result indicates that the user is expected to go through at least one more authentication step. Check AuthInfo property to find out which authentication method should be used on that step, and request the relevant authentication token from the user. Upon receiving that new token, call ContinueAuth again - and continue running this loop until authentication succeeded or authentication failed result is returned.
DoAction Method (Authenticator Component)
Performs an additional action.
Syntax
String __fastcall DoAction(String ActionID, String ActionParams);
Remarks
DoAction is a generic method available in every component. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.
The unique identifier (case insensitive) of the action is provided in the ActionID parameter.
ActionParams contains the value of a single parameter, or a list of multiple parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....
Reset Method (Authenticator Component)
Resets the component settings.
Syntax
void __fastcall Reset();
Remarks
Reset is a generic method available in every component.
StartAuth Method (Authenticator Component)
Initiates an authentication process.
Syntax
int __fastcall StartAuth(String UserID);
Remarks
Call this method to start an authentication process for UserID.
The authentication process may consist of multiple atomic steps. Each step represents a single authentication transaction, such as provision of a password, a PIN, or a one-time token. The exact authentication step sequence for the user is chosen according to the following rules:
- If the user is found in the Users database, all authentication methods specified for that user are activated;
- otherwise, the methods assigned to DefaultAuthMethods are activated;
- AuthStart event is thrown, allowing the application to tune up the selection of authentication methods if needed.
- the first method from the list is initiated.
This method may return one of the three results:
arAuthFurtherAuthNeeded | 0 |
arAuthSucceeded | 1 |
arAuthFailed | 2 |
The authentication succeeded result is returned if the authentication method selection procedure completed with an empty method list. A typical result of this method though is further authentication required, which indicates that the next authentication method has kicked off. Use rpAuthInfo; property to find out which authentication method should be used on this step, and solicit the relevant authentication token from the user. Pass the received token to the ContinueAuth method for validation.
AuthAttemptResult Event (Authenticator Component)
Reports the outcome of an authentication attempt.
Syntax
typedef struct { String UserID; String AuthMethod; int AuthRes; String RemainingAuthMethods; } TsbxAuthenticatorAuthAttemptResultEventParams; typedef void __fastcall (__closure *TsbxAuthenticatorAuthAttemptResultEvent)(System::TObject* Sender, TsbxAuthenticatorAuthAttemptResultEventParams *e); __property TsbxAuthenticatorAuthAttemptResultEvent OnAuthAttemptResult = { read=FOnAuthAttemptResult, write=FOnAuthAttemptResult };
Remarks
This event follows a call to ContinueAuth method and reports the user's updated authentication status following the token verification.
The updated status is reported via the AuthRes parameter, and can take one of the following values:
arAuthFurtherAuthNeeded | 0 |
arAuthSucceeded | 1 |
arAuthFailed | 2 |
The RemainingAuthMethods parameter lists the authentication methods that the user is yet to go through. The application can change either of AuthRes and RemainingAuthMethods in the event handler to alter the authentication flow.
AuthAttemptStart Event (Authenticator Component)
Signifies the start of an authentication attempt.
Syntax
typedef struct { String UserID; String AuthMethod; String RemainingAuthMethods; } TsbxAuthenticatorAuthAttemptStartEventParams; typedef void __fastcall (__closure *TsbxAuthenticatorAuthAttemptStartEvent)(System::TObject* Sender, TsbxAuthenticatorAuthAttemptStartEventParams *e); __property TsbxAuthenticatorAuthAttemptStartEvent OnAuthAttemptStart = { read=FOnAuthAttemptStart, write=FOnAuthAttemptStart };
Remarks
This event reports the start of an atomic authentication step. The AuthMethod parameter contains the authentication method that has started. The following authentication methods are currently supported, but the application may define its own methods in AuthStart, and tune them up in CustomAuthStart:
- password
- otp-h
- otp-t
- dcauth
This event is thrown from StartAuth and ContinueAuth methods.
AuthStart Event (Authenticator Component)
Signifies the start of an authentication process.
Syntax
typedef struct { String UserID; String AuthMethods; } TsbxAuthenticatorAuthStartEventParams; typedef void __fastcall (__closure *TsbxAuthenticatorAuthStartEvent)(System::TObject* Sender, TsbxAuthenticatorAuthStartEventParams *e); __property TsbxAuthenticatorAuthStartEvent OnAuthStart = { read=FOnAuthStart, write=FOnAuthStart };
Remarks
This event is fired in response to a StartAuth call, and signifies the start of a (potentially, multi-step) authentication process for UserID. The AuthMethods parameter list the methods to be performed for the user. The application may customize them as needed.
The following default authentication methods are supported:
- password
- otp-h
- otp-t
- dcauth
The application can define its own authentication methods if needed.
This event is only fired once per user authentication process, at the very start of it. See AuthAttemptStart for per-step notification.
AuthVerify Event (Authenticator Component)
Requests the application to validate an authentication token.
Syntax
typedef struct { String UserID; String AuthMethod; String AuthToken; String AuthMethodData; bool Valid; } TsbxAuthenticatorAuthVerifyEventParams; typedef void __fastcall (__closure *TsbxAuthenticatorAuthVerifyEvent)(System::TObject* Sender, TsbxAuthenticatorAuthVerifyEventParams *e); __property TsbxAuthenticatorAuthVerifyEvent OnAuthVerify = { read=FOnAuthVerify, write=FOnAuthVerify };
Remarks
Component fires this event to ask the application to validate an authentication token that it can't validate automatically. This can happen if UserID was not found in the user database or a custom authentication method is used.
AuthMethod and AuthToken specify the authentication method being used and the authentication token provided by the user. AuthMethodData contains an application-specific data provided by the application at the beginning of the authentication step.
An event handler subscribed to this event should validate the authentication token provided by the user and set the Valid parameter accordingly.
CustomAuthStart Event (Authenticator Component)
Reports the beginning of a custom authentication method.
Syntax
typedef struct { String UserID; String AuthMethod; String AuthMethodPars; String AuthMethodData; } TsbxAuthenticatorCustomAuthStartEventParams; typedef void __fastcall (__closure *TsbxAuthenticatorCustomAuthStartEvent)(System::TObject* Sender, TsbxAuthenticatorCustomAuthStartEventParams *e); __property TsbxAuthenticatorCustomAuthStartEvent OnCustomAuthStart = { read=FOnCustomAuthStart, write=FOnCustomAuthStart };
Remarks
This event marks the start of an authentication method not supported by component internally and requests authentication parameters from the application.
Component currently supports the following authentication methods:
- password
- otp-h
- otp-t
- dcauth
The application may also use any number of custom authentication method it wants. Each such method is identified by a unique string name (such as 'pin', 'fingerprint', or 'fingerprint-v2'). It may specify them in DefaultAuthMethods property, or provide on the fly via AuthStart event.
The event handler may return authentication parameters and application-specific data to be associated with the authentication attempt via AuthMethodPars and AuthMethodData parameters.
Error Event (Authenticator Component)
Reports information about errors during authentication.
Syntax
typedef struct { int ErrorCode; String Description; } TsbxAuthenticatorErrorEventParams; typedef void __fastcall (__closure *TsbxAuthenticatorErrorEvent)(System::TObject* Sender, TsbxAuthenticatorErrorEventParams *e); __property TsbxAuthenticatorErrorEvent OnError = { read=FOnError, write=FOnError };
Remarks
The event is fired in case of exceptional conditions during user authentication.
ErrorCode contains an error code and Description contains a textual description of the error.
Notification Event (Authenticator Component)
This event notifies the application about an underlying control flow event.
Syntax
typedef struct { String EventID; String EventParam; } TsbxAuthenticatorNotificationEventParams; typedef void __fastcall (__closure *TsbxAuthenticatorNotificationEvent)(System::TObject* Sender, TsbxAuthenticatorNotificationEventParams *e); __property TsbxAuthenticatorNotificationEvent OnNotification = { read=FOnNotification, write=FOnNotification };
Remarks
The component fires this event to let the application know about some event, occurrence, or milestone in the component. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.
The unique identifier of the event is provided in the EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the component, the exact action it is performing, or the document being processed, one or both may be omitted.
Config Settings (Authenticator Component)
The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.DCAuthenticator Config Settings
If IgnoreSystemTrust is True, certificates residing in the trusted root store are treated as if they are known, rather than trusted. Only certificates provided via other means (such as the TrustedCertificates property) are considered trusted.
- CA, revocation source, TLS key usage requirements are not mandated
- Violation of OCSP issuer requirements are ignored
- The AuthorityKeyID extension in CRL- and certificate-issuing CAs are ignored (helps with incorrectly renewed certificates)
- Basic constraints and name constraints of CA certificates are ignored
- Some weaker algorithms are tolerated
Base Config Settings
You can switch this property off to improve performance if your project only uses known, good private keys.
Supported values are:
off | No caching (default) | |
local | Local caching | |
global | Global caching |
This setting only applies to sessions negotiated with TLS version 1.3.
Supported values are:
file | File | |
console | Console | |
systemlog | System Log (supported for Android only) | |
debugger | Debugger (supported for VCL for Windows and .Net) |
Supported values are:
time | Current time | |
level | Level | |
package | Package name | |
module | Module name | |
class | Class name | |
method | Method name | |
threadid | Thread Id | |
contenttype | Content type | |
content | Content | |
all | All details |
Supported filter names are:
exclude-package | Exclude a package specified in the value | |
exclude-module | Exclude a module specified in the value | |
exclude-class | Exclude a class specified in the value | |
exclude-method | Exclude a method specified in the value | |
include-package | Include a package specified in the value | |
include-module | Include a module specified in the value | |
include-class | Include a class specified in the value | |
include-method | Include a method specified in the value |
none | No flush (caching only) | |
immediate | Immediate flush (real-time logging) | |
maxcount | Flush cached entries upon reaching LogMaxEventCount entries in the cache. |
Supported values are:
none | None (by default) | |
fatal | Severe errors that cause premature termination. | |
error | Other runtime errors or unexpected conditions. | |
warning | Use of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong". | |
info | Interesting runtime events (startup/shutdown). | |
debug | Detailed information on flow of through the system. | |
trace | More detailed information. |
The default value of this setting is 100.
none | No rotation | |
deleteolder | Delete older entries from the cache upon reaching LogMaxEventCount | |
keepolder | Keep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded) |
Supported values are:
none | No static DNS rules (default) | |
local | Local static DNS rules | |
global | Global static DNS rules |
This setting only applies to certificates originating from a Windows system store.