CAdESSigner Component
Properties Methods Events Config Settings Errors
The CAdESSigner component creates CAdES- and CMS-compliant electronic signatures.
Syntax
TsbxCAdESSigner
Remarks
CAdESSigner can sign documents and files in compliance with CMS Advanced Electronic Signatures (CAdES) specification.
Originally developed by ETSI on the basis of PKCS#7 format and initially adopted in the European Union,
CAdES has quickly become a recognized international standard for signing all sorts of electronic documents.
CAdESSigner signer = new CAdESSigner();
signer.getNewSignature().setHashAlgorithm("SHA512"); // Default hashing algorithm SHA256
signer.getNewSignature().setLevel(CAdESSignature.aslBaselineT); // Set the level of the signature
// Select the file which will be signed
signer.setInputFile("MyExe.exe");
// Set the path where the signed file will be saved
signer.setOutputFile("signedFile.scs");
// Specify the certificate that shall be used for signing
signer.setSigningCertificate(new Certificate("cert.pfx","password"));
// Provide the address of the Time Stamping Authority (TSA) server to be used for timestamping the signature
signer.setTimestampServer("http://freetsa.org/tsr");
signer.sign(); // Sign
Besides being a signature standard in its own right, CAdES is used as part of other higher-level signature standards, such as PAdES or S/MIME. It provides a convenient framework for creating short-lived and long-term signatures over any kind of documents, and is now used by governments, healthcare providers, banks, and independent service providers all across the globe.
Standards and technologies supported
CAdESSigner offers the following signing capabilities:
- Create and upgrade CAdES signatures in accordance with the most recent CAdES specification (ETSI EN 319 122). Some features from older versions are also supported.
- All profiles are supported (BES, EPES, T, C, X, XL, A, including Baseline and Extended variants).
- Timestamping using external TSAs.
- All industry-standard cryptographic algorithms (RSA, ECDSA, SHA256-512, and many others).
Configuring the signature parameters
Configuring CAdESSigner to make it produce a signature of the right type is the main task you would need to perform in your code. Normally the service or software you will be communicating your signed documents to will provide you with the list of requirements that your signatures should match.
Typically, those will dictate the following key aspects of the signatures:
- The signature Level (such BES, T, XL, A, or XLong). This can be passed as the Level parameter of the Sign method.
- Whether the signature should be detached or enveloping: this can be adjusted via the Detached parameter of the Sign method.
- When creating a timestamped signature (such as T or A), provide the address of your online TSA service via TimestampServer property.
- When creating long-term signatures that include the signing chain and validation material, tune up validation parameters via RevocationCheck, OfflineMode, and IgnoreChainValidationErrors properties.
In some circumstances you will also need to adjust the following lower-level settings:
- Set ClaimedSigningTime to include the local signature creation time (not timestamped by a TTP).
- Specify EPES signature parameters via NewSigPolicyHash, NewSigPolicyHashAlgorithm, NewSigPolicyID, and NewSigPolicyURI properties.
- Provide the hash algorithm via the HashAlgorithm property.
Signing certificates
CAdESSigner can use certificates residing on different media. Besides generic certificates stored in PFX or PEM files (A1), it can operate with non-exportable certificates residing on hardware media (A3) or in the cloud.
Non-exportable certificates can be accessed transparently via a Windows CSP or a PKCS#11 driver, if supplied by the certificate issuer. Proprietary interfaces can be plugged in with the external signing feature (see below).
You can use CertificateManager and CertificateStorage components to access the signing certificate. Assign the certificate to SigningCertificate property, and optionally provide the remainder of its chain via SigningChain property.
Note: If signing with a non-exportable key (such as residing on a hardware device or in the cloud), please make sure you keep the original CertificateStorage object open until the signing is completed. This is because the storage component provides a 'bridge' to the private key. If the storage is closed prematurely, this bridge is destroyed, and the private key can't be used.
You don't need to provide a signing certificate or chain when timestamping and upgrading signatures, since this type of operation does not involve the signing private key.
Signing a file
Now that you have set up all signature properties and attached the signing certificate, it is time to proceed to signing. You can provide the input document in one of the following forms: as a file (assign the path to InputFile property), as a stream (assign to InputStream property), or as a byte array (assign to InputBytes). Similarly, the output can be collected in one of the same forms, either by passing the destination path or stream via OutputFile and OutputStream respectively, or by reading the resulting document bytes from the OutputBytes property after the signing completes.
Having set up the input and output (unless using OutputBytes, which should be read later), call the component's Sign method, passing the desired signature level and type as parameters. This will initiate the signing process. Depending on the settings, the signing may be as straightforward as calculating the document hash and signing it with the private key (e.g. in CAdES-BES or B-B variant), or it may involve advanced chain validation routines (CAdES-XL or -A). During the latter the component may contact a number of external revocation information sources (CRL and OCSP servers) to establish the validity of the signing certificate.
If a TSA server was provided via the TimestampServer property, the component will contact it too to timestamp the new signature.
During the signing CAdESSigner may fire events to let your code know of certain conditions. It may fire TLSCertValidate if one of the HTTP endpoints involved in the operation (which may be a CRL, OCSP, or TSA service) works over TLS and needs its certificate to be validated.
Apart from signing, CAdESSigner can perform operations on signatures of other kinds. Use Upgrade method to upgrade an existing CAdES signature to a higher level (e.g. BES to XL). Use Timestamp to add a generic or validation timestamp to an existing signature. Use the Countersign method to add a countersignature to an existing signature. For any of these operations the input should constitute a valid CAdES signature.
External signing and DCAuth
CAdESSigner, like many other components offered by the product, supports two methods of signing with external keys. These methods are fully independent of each other: you can choose the one that suits your usage scenario best.
Synchronous method: ExternalSign
This is a simpler method that basically lets you infiltrate into the heart of the signing routine by taking care of the hash signing operation. The component does the rest of the job (hash calculation, preparation of signature objects, CRL/OCSP retrieval).
To initiate this method, call SignExternal instead of Sign. When the hash is ready, it will be passed back to your code with ExternalSign event. Your event handler needs to sign the hash with the private key and return the created signature back to the component - which will embed it into the document.
You don't need your signing certificate to contain an associated private key when using this method. The certificate itself (its public copy) may be needed though, as it is often included in the hash calculation.
This method is synchronous, meaning SignExternal provides you the results immediately upon its completion.
Asynchronous method: DCAuth
DCAuth is a SecureBlackbox-own know-how technology. This protocol was designed to allow sharing of private keys across environments, allowing the signer and the private key to reside on different systems. It works in the following way:
- The signing party - such as CAdESSigner - initiates the operation using SignAsyncBegin call. This produces two outcomes: a pre-signed document (a document with a blank signature placeholder), and a request state (an object containing a hash that needs to be signed). At this point the CAdESSigner instance can be released, and the process itself terminated (which may be useful when run as part of a web page).
- The request state is passed to the private key holder party. The private key holder passes the request state to a DCAuth object, which parses the request state, extracts the hash, and signs it. The output of DCAuth processing is another object, response state, which contains the signature. The private key holder then sends the response state back to the signing party.
- The signing party re-creates the controls, and passes the response state, together with the pre-signed version of the document, to the signer's SignAsyncEnd method. SignAsyncEnd extracts the signature from the response state and incorporates it into the pre-signed document.
This method is asynchronous in that sense that, from the signing party's viewpoint, it splits the signing operation into the pre-signing and completion stages which can be performed independently from each other and in different execution contexts. This makes this method particularly helpful for use in web pages and other scenarios where the signing key is not available in real time.
Fine-grained chain validation setup
Chain validation is a sophisticated, multi-faceted procedure that involves a lot of variables. Depending on the configuration of your operating environment, the specifics of the PKI framework being used, and the validation policy you need to follow, you may want to tune up your chain validation parameters so they fit them best. A summary of such parameters is given below.
- RevocationCheck lets you choose between and/or prioritize revocation origins. OCSP sources are often preferred to CRL because of their real-time capability and the smaller size of validation tokens they produce.
- OfflineMode is a master switch that stops the component from looking for any validation tokens online. If this property is switched on, the component will only use the KnownCertificates, TrustedCertificates, KnownCRLs, and KnownOCSPs collections to look for the missing validation material.
- IgnoreChainValidationErrors makes the component ignore any major validation issues it encounters (such us an untrusted chain or missing CRL). This option is handy for debugging and for creating signatures in the environments where the signing certificate is not trusted.
- KnownCertificates, KnownCRLs, and KnownOCSPs let you provide your own validation material. This may be useful when working in OfflineMode, where the signer has no access to the validation sources, or where the validation material has already been collected.
- TrustedCertificates lets you provide a list of trust anchors, either as a complement to the system's or as an alternative to it.
- BlockedCertificates lets you provide a list of blocked/distrusted certificates. Any CA certificate contained in it will be deemed untrusted/invalid.
The following parameters are not directly related to chain validation, but may have an implicit effect on it.
- Proxy, SocketSettings, and TLSSettings let you tune up the connectivity and TLS options in accordance with local preferences.
- TLSClientChain lets you provide the client certificate and its chain for TLS client authentication.
- Subscribe to TLSCertValidate to validate any TLS certificates of the services involved in chain validation.
The results of the chain validation procedure, upon its completion, are published in the following properties:
- ChainValidationResult contains the primary result of the chain validation routine: valid, valid but untrusted, invalid, or undefined.
- ChainValidationDetails provides the details of the factors that contributed to the chain validation result, such as an outdated certificate, a missing CRL, or a missing CA certificate.
- ValidationLog contains the detailed chain validation log. The log can often be very helpful in nailing down various validation issues.
Property List
The following is the full list of the properties of the component with short descriptions. Click on the links for further details.
AutoValidateSignatures | Specifies whether CAdESSigner should validate any present signatures when the document is opened. |
BlockedCertCount | The number of records in the BlockedCert arrays. |
BlockedCertBytes | Returns the raw certificate data in DER format. |
BlockedCertHandle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
CertCount | The number of records in the Cert arrays. |
CertBytes | Returns the raw certificate data in DER format. |
CertCA | Indicates whether the certificate has a CA capability. |
CertCAKeyID | A unique identifier (fingerprint) of the CA certificate's cryptographic key. |
CertCertType | Returns the type of the entity contained in the Certificate object. |
CertCRLDistributionPoints | Contains a list of locations of CRL distribution points used to check this certificate's validity. |
CertCurve | Specifies the elliptic curve associated with the certificate's public key. |
CertFingerprint | Contains the fingerprint (a hash imprint) of this certificate. |
CertFriendlyName | Contains an associated alias (friendly name) of the certificate. |
CertHandle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
CertHashAlgorithm | Provides means to set the hash algorithm to be used in the subsequent operation on the certificate (such as generation or key signing). |
CertIssuer | The common name of the certificate issuer (CA), typically a company name. |
CertIssuerRDN | A list of Property=Value pairs that uniquely identify the certificate issuer. |
CertKeyAlgorithm | Specifies the public key algorithm of this certificate. |
CertKeyBits | Returns the length of the public key in bits. |
CertKeyFingerprint | Returns a SHA1 fingerprint of the public key contained in the certificate. |
CertKeyUsage | Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set. |
CertKeyValid | Returns True if the certificate's key is cryptographically valid, and False otherwise. |
CertOCSPLocations | Locations of OCSP services that can be used to check this certificate's validity in real time, as recorded by the CA. |
CertOCSPNoCheck | Accessor to the value of the certificate's ocsp-no-check extension. |
CertOrigin | Returns the location that the certificate was taken or loaded from. |
CertPolicyIDs | Contains identifiers (OIDs) of the applicable certificate policies. |
CertPrivateKeyBytes | Returns the certificate's private key in DER-encoded format. |
CertPrivateKeyExists | Indicates whether the certificate has a usable private key associated with it. |
CertPrivateKeyExtractable | Indicates whether the private key is extractable (exportable). |
CertPublicKeyBytes | Contains the certificate's public key in DER format. |
CertQualified | Indicates whether the certificate is qualified. |
CertQualifiedStatements | Returns a simplified qualified status of the certificate. |
CertQualifiers | A list of qualifiers. |
CertSelfSigned | Indicates whether the certificate is self-signed (root) or signed by an external CA. |
CertSerialNumber | Returns the certificate's serial number. |
CertSigAlgorithm | Indicates the algorithm that was used by the CA to sign this certificate. |
CertSource | Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response. |
CertSubject | The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name. |
CertSubjectAlternativeName | Returns or sets the value of the Subject Alternative Name extension of the certificate. |
CertSubjectKeyID | Contains a unique identifier of the certificate's cryptographic key. |
CertSubjectRDN | A list of Property=Value pairs that uniquely identify the certificate holder (subject). |
CertValid | Indicates whether or not the signature over the certificate or the request is valid and matches the public key contained in the CA certificate/request. |
CertValidFrom | The time point at which the certificate becomes valid, in UTC. |
CertValidTo | The time point at which the certificate expires, in UTC. |
CheckTrustedLists | Specifies whether the component should attempt to validate chain trust via a known Trusted List. |
CRLCount | The number of records in the CRL arrays. |
CRLBytes | Returns the raw CRL data in DER format. |
CRLCAKeyID | A unique identifier (fingerprint) of the CA certificate's private key, if present in the CRL. |
CRLEntryCount | Returns the number of certificate status entries in the CRL. |
CRLHandle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
CRLIssuer | The common name of the CRL issuer (CA), typically a company name. |
CRLIssuerRDN | A collection of information, in the form of [OID, Value] pairs, uniquely identifying the CRL issuer. |
CRLLocation | The URL that the CRL was downloaded from. |
CRLNextUpdate | The planned time and date of the next version of this CRL to be published. |
CRLSigAlgorithm | The public key algorithm that was used by the CA to sign this CRL. |
CRLSource | Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response. |
CRLTBS | The to-be-signed part of the CRL (the CRL without the signature part). |
CRLThisUpdate | The date and time at which this version of the CRL was published. |
DataBytes | A byte array containing the external data source. |
DataFile | A path to a file containing an external data source. |
DataIsHash | Specifies whether the data source contains the hash of the data or the actual data. |
Detached | Specifies whether a detached signature should be produced or verified. |
ExternalCryptoAsyncDocumentID | Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls. |
ExternalCryptoCustomParams | Custom parameters to be passed to the signing service (uninterpreted). |
ExternalCryptoData | Additional data to be included in the async state and mirrored back by the requestor. |
ExternalCryptoExternalHashCalculation | Specifies whether the message hash is to be calculated at the external endpoint. |
ExternalCryptoHashAlgorithm | Specifies the request's signature hash algorithm. |
ExternalCryptoKeyID | The ID of the pre-shared key used for DC request authentication. |
ExternalCryptoKeySecret | The pre-shared key used for DC request authentication. |
ExternalCryptoMethod | Specifies the asynchronous signing method. |
ExternalCryptoMode | Specifies the external cryptography mode. |
ExternalCryptoPublicKeyAlgorithm | Provide the public key algorithm here if the certificate is not available on the pre-signing stage. |
ExtractContent | Specifies whether a message content should be extracted. |
FIPSMode | Reserved. |
IgnoreChainValidationErrors | Makes the component tolerant to chain validation errors. |
InputBytes | Use this property to pass the input to component in byte array form. |
InputFile | A path to a file containing the data to be signed or updated. |
KnownCertCount | The number of records in the KnownCert arrays. |
KnownCertBytes | Returns the raw certificate data in DER format. |
KnownCertHandle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
KnownCRLCount | The number of records in the KnownCRL arrays. |
KnownCRLBytes | Returns the raw CRL data in DER format. |
KnownCRLHandle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
KnownOCSPCount | The number of records in the KnownOCSP arrays. |
KnownOCSPBytes | A buffer containing the raw OCSP response data. |
KnownOCSPHandle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
NewSigChainValidationDetails | The details of a certificate chain validation outcome. |
NewSigChainValidationResult | The outcome of a certificate chain validation routine. |
NewSigClaimedSigningTime | The signing time from the signer's computer. |
NewSigCompatibilityErrors | Returns compatibility errors encountered during validation. |
NewSigContainsLongTermInfo | Returns true if the signature was found to contain long-term validation details (certificates, CRLs, and OCSP response). |
NewSigContentType | The signature content type. |
NewSigCountersigned | Indicates if the signature is countersigned. |
NewSigEntityLabel | Use this property to get the signature entity label. |
NewSigHandle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
NewSigHashAlgorithm | Set or returns the hash algorithm used to generate the signature. |
NewSigIssuerRDN | The Relative Distinguished Name of the signing certificate's issuer. |
NewSigLastArchivalTime | Indicates the most recent archival time of an archived signature This property returns the time of the most recent archival timestamp applied to the signature. |
NewSigLevel | Specifies the CAdES signature level. |
NewSigMessageDigest | The binary of the signature's message digest. |
NewSigParentEntity | Use this property to get the parent signature label. |
NewSigPolicyHash | The signature policy hash value. |
NewSigPolicyHashAlgorithm | The algorithm that was used to calculate the signature policy hash Use this property to get or set the hash algorithm used to calculate the signature policy hash. |
NewSigPolicyID | The policy ID that was included or to be included into the signature. |
NewSigPolicyURI | The signature policy URI that was included in the signature. |
NewSigPublicKeyAlgorithm | Returns the public key algorithm that was used to create the signature. |
NewSigScope | Returns the type of the entity that this signature corresponds to. |
NewSigSerialNumber | The serial number of the signing certificate. |
NewSigSignatureBytes | Returns the binary representation of the CAdES signature. |
NewSigSignatureValidationResult | The outcome of the cryptographic signature validation. |
NewSigSubjectKeyID | Contains the subject key identifier of the signing certificate. |
NewSigSubjectRDN | Contains the RDN of the owner of the signing certificate. |
NewSigTimestamped | Use this property to establish whether the signature contains an embedded timestamp. |
NewSigValidatedSigningTime | Contains the certified signing time. |
NewSigValidationLog | Contains the signing certificate's chain validation log. |
OCSPCount | The number of records in the OCSP arrays. |
OCSPBytes | A buffer containing the raw OCSP response data. |
OCSPEntryCount | The number of SingleResponse elements contained in this OCSP response. |
OCSPHandle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
OCSPIssuer | Indicates the issuer of this response (a CA or its authorized representative). |
OCSPIssuerRDN | Indicates the RDN of the issuer of this response (a CA or its authorized representative). |
OCSPLocation | The location of the OCSP responder. |
OCSPProducedAt | Specifies the time when the response was produced, in UTC. |
OCSPSigAlgorithm | The public key algorithm that was used by the CA to sign this OCSP response. |
OCSPSource | Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response. |
OfflineMode | Switches the component to offline mode. |
OutputBytes | Use this property to read the output the component object has produced. |
OutputFile | A file where the signed data is to be saved. |
Profile | Specifies a pre-defined profile to apply when creating the signature. |
ProxyAddress | The IP address of the proxy server. |
ProxyAuthentication | The authentication type used by the proxy server. |
ProxyPassword | The password to authenticate to the proxy server. |
ProxyPort | The port on the proxy server to connect to. |
ProxyProxyType | The type of the proxy server. |
ProxyRequestHeaders | Contains HTTP request headers for WebTunnel and HTTP proxy. |
ProxyResponseBody | Contains the HTTP or HTTPS (WebTunnel) proxy response body. |
ProxyResponseHeaders | Contains response headers received from an HTTP or HTTPS (WebTunnel) proxy server. |
ProxyUseIPv6 | Specifies whether IPv6 should be used when connecting through the proxy. |
ProxyUsername | Specifies the username credential for proxy authentication. |
RevocationCheck | Specifies the kind(s) of revocation check to perform for all chain certificates. |
SignatureCount | The number of records in the Signature arrays. |
SignatureChainValidationDetails | The details of a certificate chain validation outcome. |
SignatureChainValidationResult | The outcome of a certificate chain validation routine. |
SignatureClaimedSigningTime | The signing time from the signer's computer. |
SignatureCompatibilityErrors | Returns compatibility errors encountered during validation. |
SignatureContainsLongTermInfo | Returns true if the signature was found to contain long-term validation details (certificates, CRLs, and OCSP response). |
SignatureContentType | The signature content type. |
SignatureCountersigned | Indicates if the signature is countersigned. |
SignatureEntityLabel | Use this property to get the signature entity label. |
SignatureHandle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
SignatureHashAlgorithm | Set or returns the hash algorithm used to generate the signature. |
SignatureIssuerRDN | The Relative Distinguished Name of the signing certificate's issuer. |
SignatureLastArchivalTime | Indicates the most recent archival time of an archived signature This property returns the time of the most recent archival timestamp applied to the signature. |
SignatureLevel | Specifies the CAdES signature level. |
SignatureMessageDigest | The binary of the signature's message digest. |
SignatureParentEntity | Use this property to get the parent signature label. |
SignaturePolicyHash | The signature policy hash value. |
SignaturePolicyHashAlgorithm | The algorithm that was used to calculate the signature policy hash Use this property to get or set the hash algorithm used to calculate the signature policy hash. |
SignaturePolicyID | The policy ID that was included or to be included into the signature. |
SignaturePolicyURI | The signature policy URI that was included in the signature. |
SignaturePublicKeyAlgorithm | Returns the public key algorithm that was used to create the signature. |
SignatureScope | Returns the type of the entity that this signature corresponds to. |
SignatureSerialNumber | The serial number of the signing certificate. |
SignatureSignatureBytes | Returns the binary representation of the CAdES signature. |
SignatureSignatureValidationResult | The outcome of the cryptographic signature validation. |
SignatureSubjectKeyID | Contains the subject key identifier of the signing certificate. |
SignatureSubjectRDN | Contains the RDN of the owner of the signing certificate. |
SignatureTimestamped | Use this property to establish whether the signature contains an embedded timestamp. |
SignatureValidatedSigningTime | Contains the certified signing time. |
SignatureValidationLog | Contains the signing certificate's chain validation log. |
SignedAttributeCount | The number of records in the SignedAttribute arrays. |
SignedAttributeOID | The object identifier of the attribute. |
SignedAttributeValue | The value of the attribute. |
SigningCertBytes | Returns the raw certificate data in DER format. |
SigningCertHandle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
SigningChainCount | The number of records in the SigningChain arrays. |
SigningChainBytes | Returns the raw certificate data in DER format. |
SigningChainHandle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
SocketDNSMode | Selects the DNS resolver to use: the component's (secure) built-in one, or the one provided by the system. |
SocketDNSPort | Specifies the port number to be used for sending queries to the DNS server. |
SocketDNSQueryTimeout | The timeout (in milliseconds) for each DNS query. |
SocketDNSServers | The addresses of DNS servers to use for address resolution, separated by commas or semicolons. |
SocketDNSTotalTimeout | The timeout (in milliseconds) for the whole resolution process. |
SocketIncomingSpeedLimit | The maximum number of bytes to read from the socket, per second. |
SocketLocalAddress | The local network interface to bind the socket to. |
SocketLocalPort | The local port number to bind the socket to. |
SocketOutgoingSpeedLimit | The maximum number of bytes to write to the socket, per second. |
SocketTimeout | The maximum period of waiting, in milliseconds, after which the socket operation is considered unsuccessful. |
SocketUseIPv6 | Enables or disables IP protocol version 6. |
TimestampCount | The number of records in the Timestamp arrays. |
TimestampAccuracy | This property indicates the accuracy of the included time mark, in microseconds. |
TimestampBytes | Returns the raw timestamp data in DER format. |
TimestampCertificateIndex | Returns the index of the TSA certificate in the Certificates collection. |
TimestampChainValidationDetails | The details of a certificate chain validation outcome. |
TimestampChainValidationResult | The outcome of a certificate chain validation routine. |
TimestampContainsLongTermInfo | Returns true if the signature was found to contain long-term validation details (certificates, CRLs, and OCSP response). |
TimestampEntityLabel | Use this property to get the timestamp entity label. |
TimestampHashAlgorithm | Returns the timestamp's hash algorithm. |
TimestampParentEntity | Use this property to get the label of the timestamp's parent entity. |
TimestampSerialNumber | Returns the timestamp's serial number. |
TimestampTime | The time point incorporated into the timestamp. |
TimestampTimestampType | Returns the type of the timestamp. |
TimestampTSAName | This value uniquely identifies the Timestamp Authority (TSA). |
TimestampValidationLog | Contains the TSA certificate chain validation log. |
TimestampValidationResult | Contains the timestamp validation outcome. |
TimestampServer | The address of the timestamping server. |
TLSClientCertCount | The number of records in the TLSClientCert arrays. |
TLSClientCertBytes | Returns the raw certificate data in DER format. |
TLSClientCertHandle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
TLSServerCertCount | The number of records in the TLSServerCert arrays. |
TLSServerCertBytes | Returns the raw certificate data in DER format. |
TLSServerCertFingerprint | Contains the fingerprint (a hash imprint) of this certificate. |
TLSServerCertHandle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
TLSServerCertIssuer | The common name of the certificate issuer (CA), typically a company name. |
TLSServerCertIssuerRDN | A list of Property=Value pairs that uniquely identify the certificate issuer. |
TLSServerCertKeyAlgorithm | Specifies the public key algorithm of this certificate. |
TLSServerCertKeyBits | Returns the length of the public key in bits. |
TLSServerCertKeyUsage | Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set. |
TLSServerCertSelfSigned | Indicates whether the certificate is self-signed (root) or signed by an external CA. |
TLSServerCertSerialNumber | Returns the certificate's serial number. |
TLSServerCertSigAlgorithm | Indicates the algorithm that was used by the CA to sign this certificate. |
TLSServerCertSubject | The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name. |
TLSServerCertSubjectRDN | A list of Property=Value pairs that uniquely identify the certificate holder (subject). |
TLSServerCertValidFrom | The time point at which the certificate becomes valid, in UTC. |
TLSServerCertValidTo | The time point at which the certificate expires, in UTC. |
TLSAutoValidateCertificates | Specifies whether server-side TLS certificates should be validated automatically using internal validation rules. |
TLSBaseConfiguration | Selects the base configuration for the TLS settings. |
TLSCiphersuites | A list of ciphersuites separated with commas or semicolons. |
TLSClientAuth | Enables or disables certificate-based client authentication. |
TLSECCurves | Defines the elliptic curves to enable. |
TLSExtensions | Provides access to TLS extensions. |
TLSForceResumeIfDestinationChanges | Whether to force TLS session resumption when the destination address changes. |
TLSPreSharedIdentity | Defines the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated. |
TLSPreSharedKey | Contains the pre-shared key for the PSK (Pre-Shared Key) key-exchange mechanism, encoded with base16. |
TLSPreSharedKeyCiphersuite | Defines the ciphersuite used for PSK (Pre-Shared Key) negotiation. |
TLSRenegotiationAttackPreventionMode | Selects the renegotiation attack prevention mechanism. |
TLSRevocationCheck | Specifies the kind(s) of revocation check to perform. |
TLSSSLOptions | Various SSL (TLS) protocol options, set of cssloExpectShutdownMessage 0x001 Wait for the close-notify message when shutting down the connection cssloOpenSSLDTLSWorkaround 0x002 (DEPRECATED) Use a DTLS version workaround when talking to very old OpenSSL versions cssloDisableKexLengthAlignment 0x004 Do not align the client-side PMS by the RSA modulus size. |
TLSTLSMode | Specifies the TLS mode to use. |
TLSUseExtendedMasterSecret | Enables the Extended Master Secret Extension, as defined in RFC 7627. |
TLSUseSessionResumption | Enables or disables the TLS session resumption capability. |
TLSVersions | The SSL/TLS versions to enable by default. |
TrustedCertCount | The number of records in the TrustedCert arrays. |
TrustedCertBytes | Returns the raw certificate data in DER format. |
TrustedCertHandle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
UnsignedAttributeCount | The number of records in the UnsignedAttribute arrays. |
UnsignedAttributeOID | The object identifier of the attribute. |
UnsignedAttributeValue | The value of the attribute. |
ValidationMoment | The time point at which signature validity is to be established. |
Method List
The following is the full list of the methods of the component with short descriptions. Click on the links for further details.
AddAttribute | Adds an attribute to the signature. |
Archive | Archives the signature. |
Close | Closes an opened container. |
Config | Sets or retrieves a configuration setting. |
CreateNew | Create a new CAdES signature. |
DoAction | Performs an additional action. |
ExtractAsyncData | Extracts user data from the DC signing service response. |
Open | Opens an existing container for signing or updating. |
Reset | Resets the component settings. |
Revalidate | Revalidates a signature in accordance with current settings. |
SelectInfo | Select signature information for a specific entity. |
Sign | Creates a new CAdES signature over the provided data. |
SignAsyncBegin | Initiates the asynchronous signing operation. |
SignAsyncEnd | Completes the asynchronous signing operation. |
SignExternal | Signs the document using an external signing facility. |
Timestamp | Use this method to add timestamp. |
Upgrade | Upgrades existing CAdES to a new level. |
Event List
The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.
ChainElementDownload | Fires when there is a need to download a chain element from an online source. |
ChainElementNeeded | Fires when an element required to validate the chain was not located. |
ChainValidated | Reports the completion of a certificate chain validation. |
ChainValidationProgress | This event is fired multiple times during chain validation to report various stages of the validation procedure. |
Error | Information about errors during CAdES signing. |
ExternalSign | Handles remote or external signing initiated by the SignExternal method or other source. |
Loaded | This event is fired when the CAdES signature has been loaded into memory. |
Notification | This event notifies the application about an underlying control flow event. |
SignatureFound | Signifies the start of signature validation. |
SignatureValidated | Marks the completion of the signature validation routine. |
TimestampFound | Signifies the start of a timestamp validation routine. |
TimestampRequest | Fires when the component is ready to request a timestamp from an external TSA. |
TimestampValidated | Reports the completion of the timestamp validation routine. |
TLSCertNeeded | Fires when a remote TLS party requests a client certificate. |
TLSCertValidate | This event is fired upon receipt of the TLS server's certificate, allowing the user to control its acceptance. |
TLSEstablished | Fires when a TLS handshake with Host successfully completes. |
TLSHandshake | Fires when a new TLS handshake is initiated, before the handshake commences. |
TLSShutdown | Reports the graceful closure of a TLS connection. |
Config Settings
The following is a list of config settings for the component with short descriptions. Click on the links for further details.
AddReferencesToAllUsedCertsAndRevInfo | Whether to include all certificates and revocation references in CompleteCertificateRefs attribute. |
AddReferencesToIrrevocableCerts | Whether references to irrevocable certificates should be included in CompleteCertificateRefs attribute. |
AddReferenceToSigningCert | Whether a reference to the signing certificate should be included in CompleteCertificateRefs attribute. |
AllowPartialValidationInfo | Whether to allow for missing validation info. |
AsyncDocumentID | Specifies the document ID for SignAsyncEnd() call. |
ChainCurrentCACert | Returns the current CA certificate. |
ChainCurrentCert | Returns the certificate that is currently being validated. |
ChainCurrentCRL | Returns the current CRL. |
ChainCurrentCRLSize | Returns the size of the current CRL. |
ChainCurrentOCSP | Returns the current OCSP response. |
ChainCurrentOCSPSigner | Returns the signer of the current OCSP object. |
ChainInterimDetails | Returns the current interim validation details. |
ChainInterimResult | Returns the current interim validation result. |
CheckValidityPeriodForTrusted | Whether to check validity period for trusted certificates. |
CmsOptAnnexKArchiveTimestampV2Mode | Toggles use of Annex K method of calculating validation timestamp hashes. |
CmsOptCheckATSHashIndexElements | Enables extra checks when processing ATSHashIndex attribute. |
CmsOptCompareRDNAsStrings | Enforces comparison of RDN elements as text strings, rather than their byte encodings. |
CmsOptDEREncodeContentForATSv2 | Enables DER encoding for ATSv2 hashed content. |
CmsOptDigitPADSSCompatibility | Enables Digit PADSS compatibility mode. |
CmsOptForceSigningCertificateV2Usage | Enforces use of signing-certificate-v2 attribute. |
CmsOptIgnoreDERReqInArchiveTimestamps | Switches off DER encoding requirement for archival timestamps. |
CmsOptImzagerMIMCompatibility | Enables Imzager MIM compatibility mode. |
CmsOptIncludeCertToAttributes | Regulates whether to include the signing certificate to the signature as the signing-certificate attribute. |
CmsOptIncludeCertToMessage | Regulates whether to include the signing certificate and its chain to the CMS. |
CmsOptInsertContentType | Regulates whether the content-type time attribute should be included in the signature structure. |
CmsOptInsertMessageDigests | Regulates whether the message-digest signed attribute should be included in the signature structure. |
CmsOptInsertSigningTime | Regulates whether the signing-time attribute should be included in the signature structure. |
CmsOptSkipEnvContentInfoOnSigArchival | Excludes hashing of enveloped content when calculating an archival timestamp. |
CmsOptUseATSHashIndexV1 | Enables use of ATSHashIndexV1 attribute. |
CmsOptUseATSHashIndexV3 | Enables the use of the third version of archival timestamps. |
CmsOptUseGeneralizedTimeFormat | Enables or disables encoding of the signing-time attribute using ASN.1 GENERALIZEDTIME type. |
CmsOptUseGenericSigAlgorithmOIDs | Enables use of generic signature algorithm OIDs in the signature. |
CmsOptUsePlainContentForTimestampHashes | Makes CAdESSigner ignore ASN.1 content formatting when calculating timestamp hashes. |
ContentType | The content type of the CMS message. |
CustomTrustedLists | Specifies the custom TrustedLists. |
CustomTSLs | Specifies the custom TrustedLists. |
DeepCountersignatureValidation | Whether to validate countersignatures. |
DeepTimestampValidation | Whether to perform deep validation of all timestamps. |
DislikeOpenEndedOCSPs | Tells the component to discourage OCSP responses without an explicit NextUpdate parameter. |
ForceCompleteChainValidation | Whether to check the CA certificates when the signing certificate is invalid. |
ForceCompleteChainValidationForTrusted | Whether to continue with the full validation up to the root CA certificate for mid-level trust anchors. |
GracePeriod | Specifies a grace period to apply during revocation information checks. |
IgnoreChainLoops | Whether chain loops should be ignored. |
IgnoreChainValidationErrors | Whether to ignore any certificate chain validation issues. |
IgnoreOCSPNoCheckExtension | Whether the OCSP NoCheck extension should be ignored. |
IgnoreSystemTrust | Whether trusted Windows Certificate Stores should be treated as trusted. |
ImplicitlyTrustSelfSignedCertificates | Whether to trust self-signed certificates. |
PolicyDescription | signature policy description. |
PolicyDescription | signature policy description. |
PolicyExplicitText | The explicit text of the user notice. |
PolicyExplicitText | The explicit text of the user notice. |
PolicyUNNumbers | The noticeNumbers part of the NoticeReference CAdES attribute. |
PolicyUNNumbers | The noticeNumbers part of the NoticeReference CAdES attribute. |
PolicyUNOrganization | The organization part of the NoticeReference qualifier. |
PolicyUNOrganization | The organization part of the NoticeReference qualifier. |
ProductionPlace | Identifies the place of the signature production. |
ProductionPlace | Identifies the place of the signature production. |
PromoteLongOCSPResponses | Whether long OCSP responses are requested. |
PSSUsed | Whether to use RSASSA-PSS algorithm. |
PSSUsed | Whether to use RSASSA-PSS algorithm. |
ReportInvalidTimestamps | Whether to raise errors for invalid timestamps. |
SchemeParams | The algorithm scheme parameters to employ. |
SigPolicyDescription | signature policy description. |
SigPolicyDescription | signature policy description. |
SigPolicyExplicitText | The explicit text of the user notice. |
SigPolicyExplicitText | The explicit text of the user notice. |
SigPolicyHash | The EPES policy hash. |
SigPolicyHash | The EPES policy hash. |
SigPolicyHashAlgorithm | The hash algorithm that was used to generate the EPES policy hash. |
SigPolicyHashAlgorithm | The hash algorithm that was used to generate the EPES policy hash. |
SigPolicyID | The EPES policy ID. |
SigPolicyID | The EPES policy ID. |
SigPolicyNoticeNumbers | The noticeNumbers part of the NoticeReference CAdES attribute. |
SigPolicyNoticeNumbers | The noticeNumbers part of the NoticeReference CAdES attribute. |
SigPolicyNoticeOrganization | The organization part of the NoticeReference qualifier. |
SigPolicyNoticeOrganization | The organization part of the NoticeReference qualifier. |
SigPolicyURI | The EPES policy URI. |
SigPolicyURI | The EPES policy URI. |
SkipValidationTimestampedSignatures | Whether to validate signatures with validation timestamps. |
SuppressValuesInC | Makes CAdESSigner not add certificate and revocation values to its C-level signatures. |
TempPath | Path for storing temporary files. |
TimestampResponse | A base16-encoded timestamp response received from a TSA. |
TLSChainValidationDetails | Contains the advanced details of the TLS server certificate validation. |
TLSChainValidationResult | Contains the result of the TLS server certificate validation. |
TLSClientAuthRequested | Indicates whether the TLS server requests client authentication. |
TLSValidationLog | Contains the log of the TLS server certificate validation. |
TolerateMinorChainIssues | Whether to tolerate minor chain issues. |
TspAttemptCount | Specifies the number of timestamping request attempts. |
TspHashAlgorithm | Sets a specific hash algorithm for use with the timestamping service. |
TspReqPolicy | Sets a request policy ID to include in the timestamping request. |
UseArchivalTimestampV3 | Whether to stick to archival timestamp V3 in the new signatures. |
UseDefaultTrustedLists | Enables or disables the use of the default TrustedLists. |
UseDefaultTSLs | Enables or disables the use of the default TrustedLists. |
UseMicrosoftCTL | Enables or disables the automatic use of the Microsoft online certificate trust list. |
UsePSS | Whether to use RSASSA-PSS algorithm. |
UsePSS | Whether to use RSASSA-PSS algorithm. |
UseSystemCertificates | Enables or disables the use of the system certificates. |
UseUndefSize | Toggles the use of indefinite/definite ASN.1 tag length encoding. |
UseValidationCache | Enables or disable the use of the product-wide certificate chain validation cache. |
UseValidatorSettingsForTLSValidation | Whether to employ the primary chain validator setup for auxiliary TLS chain validations. |
ASN1UseGlobalTagCache | Controls whether ASN.1 module should use a global object cache. |
AssignSystemSmartCardPins | Specifies whether CSP-level PINs should be assigned to CNG keys. |
CheckKeyIntegrityBeforeUse | Enables or disable private key integrity check before use. |
CookieCaching | Specifies whether a cookie cache should be used for HTTP(S) transports. |
Cookies | Gets or sets local cookies for the component. |
DefDeriveKeyIterations | Specifies the default key derivation algorithm iteration count. |
DNSLocalSuffix | The suffix to assign for TLD names. |
EnableClientSideSSLFFDHE | Enables or disables finite field DHE key exchange support in TLS clients. |
GlobalCookies | Gets or sets global cookies for all the HTTP transports. |
HardwareCryptoUsePolicy | The hardware crypto usage policy. |
HttpUserAgent | Specifies the user agent name to be used by all HTTP clients. |
HttpVersion | The HTTP version to use in any inner HTTP client components created. |
IgnoreExpiredMSCTLSigningCert | Whether to tolerate the expired Windows Update signing certificate. |
ListDelimiter | The delimiter character for multi-element lists. |
LogDestination | Specifies the debug log destination. |
LogDetails | Specifies the debug log details to dump. |
LogFile | Specifies the debug log filename. |
LogFilters | Specifies the debug log filters. |
LogFlushMode | Specifies the log flush mode. |
LogLevel | Specifies the debug log level. |
LogMaxEventCount | Specifies the maximum number of events to cache before further action is taken. |
LogRotationMode | Specifies the log rotation mode. |
MaxASN1BufferLength | Specifies the maximal allowed length for ASN.1 primitive tag data. |
MaxASN1TreeDepth | Specifies the maximal depth for processed ASN.1 trees. |
OCSPHashAlgorithm | Specifies the hash algorithm to be used to identify certificates in OCSP requests. |
OldClientSideRSAFallback | Specifies whether the SSH client should use a SHA1 fallback. |
ProductVersion | Returns the version of the SecureBlackbox library. |
ServerSSLDHKeyLength | Sets the size of the TLS DHE key exchange group. |
StaticDNS | Specifies whether static DNS rules should be used. |
StaticIPAddress[domain] | Gets or sets an IP address for the specified domain name. |
StaticIPAddresses | Gets or sets all the static DNS rules. |
Tag | Allows to store any custom data. |
TLSSessionGroup | Specifies the group name of TLS sessions to be used for session resumption. |
TLSSessionLifetime | Specifies lifetime in seconds of the cached TLS session. |
TLSSessionPurgeInterval | Specifies how often the session cache should remove the expired TLS sessions. |
UseInternalRandom | Switches between SecureBlackbox-own and platform PRNGs. |
UseLegacyAdESValidation | Enables legacy AdES validation mode. |
UseOwnDNSResolver | Specifies whether the client components should use own DNS resolver. |
UseSharedSystemStorages | Specifies whether the validation engine should use a global per-process copy of the system certificate stores. |
UseSystemNativeSizeCalculation | An internal CryptoAPI access tweak. |
UseSystemOAEPAndPSS | Enforces or disables the use of system-driven RSA OAEP and PSS computations. |
UseSystemRandom | Enables or disables the use of the OS PRNG. |
AutoValidateSignatures Property (CAdESSigner Component)
Specifies whether CAdESSigner should validate any present signatures when the document is opened.
Syntax
__property bool AutoValidateSignatures = { read=FAutoValidateSignatures, write=FSetAutoValidateSignatures };
Default Value
false
Remarks
This setting is switched off by default to speed up document processing. Even if the document is loaded with this property set to false, you can validate the signatures manually on a later stage using the Revalidate method.
Data Type
Boolean
BlockedCertCount Property (CAdESSigner Component)
The number of records in the BlockedCert arrays.
Syntax
__property int BlockedCertCount = { read=FBlockedCertCount, write=FSetBlockedCertCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at BlockedCertCount - 1.This property is not available at design time.
Data Type
Integer
BlockedCertBytes Property (CAdESSigner Component)
Returns the raw certificate data in DER format.
Syntax
__property DynamicArrayBlockedCertBytes[int BlockedCertIndex] = { read=FBlockedCertBytes };
Remarks
Returns the raw certificate data in DER format.
The BlockedCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlockedCertCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
BlockedCertHandle Property (CAdESSigner Component)
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
__property __int64 BlockedCertHandle[int BlockedCertIndex] = { read=FBlockedCertHandle, write=FSetBlockedCertHandle };
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The BlockedCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlockedCertCount property.
This property is not available at design time.
Data Type
Long64
CertCount Property (CAdESSigner Component)
The number of records in the Cert arrays.
Syntax
__property int CertCount = { read=FCertCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
- CertBytes
- CertCA
- CertCAKeyID
- CertCertType
- CertCRLDistributionPoints
- CertCurve
- CertFingerprint
- CertFriendlyName
- CertHandle
- CertHashAlgorithm
- CertIssuer
- CertIssuerRDN
- CertKeyAlgorithm
- CertKeyBits
- CertKeyFingerprint
- CertKeyUsage
- CertKeyValid
- CertOCSPLocations
- CertOCSPNoCheck
- CertOrigin
- CertPolicyIDs
- CertPrivateKeyBytes
- CertPrivateKeyExists
- CertPrivateKeyExtractable
- CertPublicKeyBytes
- CertQualified
- CertQualifiedStatements
- CertQualifiers
- CertSelfSigned
- CertSerialNumber
- CertSigAlgorithm
- CertSource
- CertSubject
- CertSubjectAlternativeName
- CertSubjectKeyID
- CertSubjectRDN
- CertValid
- CertValidFrom
- CertValidTo
This property is read-only and not available at design time.
Data Type
Integer
CertBytes Property (CAdESSigner Component)
Returns the raw certificate data in DER format.
Syntax
__property DynamicArrayCertBytes[int CertIndex] = { read=FCertBytes };
Remarks
Returns the raw certificate data in DER format.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
CertCA Property (CAdESSigner Component)
Indicates whether the certificate has a CA capability.
Syntax
__property bool CertCA[int CertIndex] = { read=FCertCA };
Default Value
false
Remarks
Indicates whether the certificate has a CA capability. For the certificate to be considered a CA, it must have its Basic Constraints extension set with the CA indicator enabled.
Set this property when generating a new certificate to have its Basic Constraints extension generated automatically.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Boolean
CertCAKeyID Property (CAdESSigner Component)
A unique identifier (fingerprint) of the CA certificate's cryptographic key.
Syntax
__property DynamicArrayCertCAKeyID[int CertIndex] = { read=FCertCAKeyID };
Remarks
A unique identifier (fingerprint) of the CA certificate's cryptographic key.
Authority Key Identifier is a certificate extension which allows identification of certificates belonging to the same issuer, but with different public keys. It is a de-facto standard to include this extension in all certificates to facilitate chain building.
This setting cannot be set when generating a certificate as it always derives from another certificate property. CertificateManager generates this setting automatically if enough information is available to it: for self-signed certificates, this value is copied from the CertSubjectKeyID setting, and for lower-level certificates, from the parent certificate's subject key ID extension.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
CertCertType Property (CAdESSigner Component)
Returns the type of the entity contained in the Certificate object.
Syntax
__property TsbxCAdESSignerCertCertTypes CertCertType[int CertIndex] = { read=FCertCertType };
enum TsbxCAdESSignerCertCertTypes { ctUnknown=0, ctX509Certificate=1, ctX509CertificateRequest=2 };
Default Value
ctUnknown
Remarks
Returns the type of the entity contained in the Certificate object.
A Certificate object can contain two types of cryptographic objects: a ready-to-use X.509 certificate, or a certificate request ("an unsigned certificate"). Certificate requests can be upgraded to full certificates by signing them with a CA certificate.
Use the CertificateManager component to load or create new certificate and certificate requests objects.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Integer
CertCRLDistributionPoints Property (CAdESSigner Component)
Contains a list of locations of CRL distribution points used to check this certificate's validity.
Syntax
__property String CertCRLDistributionPoints[int CertIndex] = { read=FCertCRLDistributionPoints };
Default Value
""
Remarks
Contains a list of locations of CRL distribution points used to check this certificate's validity. The list is taken from the respective certificate extension.
Use this property when generating a certificate to provide a list of CRL endpoints that should be made part of the new certificate.
The endpoints are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertCurve Property (CAdESSigner Component)
Specifies the elliptic curve associated with the certificate's public key.
Syntax
__property String CertCurve[int CertIndex] = { read=FCertCurve };
Default Value
""
Remarks
Specifies the elliptic curve associated with the certificate's public key. This setting only applies to certificates containing EC keys.
SB_EC_SECP112R1 | SECP112R1 | |
SB_EC_SECP112R2 | SECP112R2 | |
SB_EC_SECP128R1 | SECP128R1 | |
SB_EC_SECP128R2 | SECP128R2 | |
SB_EC_SECP160K1 | SECP160K1 | |
SB_EC_SECP160R1 | SECP160R1 | |
SB_EC_SECP160R2 | SECP160R2 | |
SB_EC_SECP192K1 | SECP192K1 | |
SB_EC_SECP192R1 | SECP192R1 | |
SB_EC_SECP224K1 | SECP224K1 | |
SB_EC_SECP224R1 | SECP224R1 | |
SB_EC_SECP256K1 | SECP256K1 | |
SB_EC_SECP256R1 | SECP256R1 | |
SB_EC_SECP384R1 | SECP384R1 | |
SB_EC_SECP521R1 | SECP521R1 | |
SB_EC_SECT113R1 | SECT113R1 | |
SB_EC_SECT113R2 | SECT113R2 | |
SB_EC_SECT131R1 | SECT131R1 | |
SB_EC_SECT131R2 | SECT131R2 | |
SB_EC_SECT163K1 | SECT163K1 | |
SB_EC_SECT163R1 | SECT163R1 | |
SB_EC_SECT163R2 | SECT163R2 | |
SB_EC_SECT193R1 | SECT193R1 | |
SB_EC_SECT193R2 | SECT193R2 | |
SB_EC_SECT233K1 | SECT233K1 | |
SB_EC_SECT233R1 | SECT233R1 | |
SB_EC_SECT239K1 | SECT239K1 | |
SB_EC_SECT283K1 | SECT283K1 | |
SB_EC_SECT283R1 | SECT283R1 | |
SB_EC_SECT409K1 | SECT409K1 | |
SB_EC_SECT409R1 | SECT409R1 | |
SB_EC_SECT571K1 | SECT571K1 | |
SB_EC_SECT571R1 | SECT571R1 | |
SB_EC_PRIME192V1 | PRIME192V1 | |
SB_EC_PRIME192V2 | PRIME192V2 | |
SB_EC_PRIME192V3 | PRIME192V3 | |
SB_EC_PRIME239V1 | PRIME239V1 | |
SB_EC_PRIME239V2 | PRIME239V2 | |
SB_EC_PRIME239V3 | PRIME239V3 | |
SB_EC_PRIME256V1 | PRIME256V1 | |
SB_EC_C2PNB163V1 | C2PNB163V1 | |
SB_EC_C2PNB163V2 | C2PNB163V2 | |
SB_EC_C2PNB163V3 | C2PNB163V3 | |
SB_EC_C2PNB176W1 | C2PNB176W1 | |
SB_EC_C2TNB191V1 | C2TNB191V1 | |
SB_EC_C2TNB191V2 | C2TNB191V2 | |
SB_EC_C2TNB191V3 | C2TNB191V3 | |
SB_EC_C2ONB191V4 | C2ONB191V4 | |
SB_EC_C2ONB191V5 | C2ONB191V5 | |
SB_EC_C2PNB208W1 | C2PNB208W1 | |
SB_EC_C2TNB239V1 | C2TNB239V1 | |
SB_EC_C2TNB239V2 | C2TNB239V2 | |
SB_EC_C2TNB239V3 | C2TNB239V3 | |
SB_EC_C2ONB239V4 | C2ONB239V4 | |
SB_EC_C2ONB239V5 | C2ONB239V5 | |
SB_EC_C2PNB272W1 | C2PNB272W1 | |
SB_EC_C2PNB304W1 | C2PNB304W1 | |
SB_EC_C2TNB359V1 | C2TNB359V1 | |
SB_EC_C2PNB368W1 | C2PNB368W1 | |
SB_EC_C2TNB431R1 | C2TNB431R1 | |
SB_EC_NISTP192 | NISTP192 | |
SB_EC_NISTP224 | NISTP224 | |
SB_EC_NISTP256 | NISTP256 | |
SB_EC_NISTP384 | NISTP384 | |
SB_EC_NISTP521 | NISTP521 | |
SB_EC_NISTB163 | NISTB163 | |
SB_EC_NISTB233 | NISTB233 | |
SB_EC_NISTB283 | NISTB283 | |
SB_EC_NISTB409 | NISTB409 | |
SB_EC_NISTB571 | NISTB571 | |
SB_EC_NISTK163 | NISTK163 | |
SB_EC_NISTK233 | NISTK233 | |
SB_EC_NISTK283 | NISTK283 | |
SB_EC_NISTK409 | NISTK409 | |
SB_EC_NISTK571 | NISTK571 | |
SB_EC_GOSTCPTEST | GOSTCPTEST | |
SB_EC_GOSTCPA | GOSTCPA | |
SB_EC_GOSTCPB | GOSTCPB | |
SB_EC_GOSTCPC | GOSTCPC | |
SB_EC_GOSTCPXCHA | GOSTCPXCHA | |
SB_EC_GOSTCPXCHB | GOSTCPXCHB | |
SB_EC_BRAINPOOLP160R1 | BRAINPOOLP160R1 | |
SB_EC_BRAINPOOLP160T1 | BRAINPOOLP160T1 | |
SB_EC_BRAINPOOLP192R1 | BRAINPOOLP192R1 | |
SB_EC_BRAINPOOLP192T1 | BRAINPOOLP192T1 | |
SB_EC_BRAINPOOLP224R1 | BRAINPOOLP224R1 | |
SB_EC_BRAINPOOLP224T1 | BRAINPOOLP224T1 | |
SB_EC_BRAINPOOLP256R1 | BRAINPOOLP256R1 | |
SB_EC_BRAINPOOLP256T1 | BRAINPOOLP256T1 | |
SB_EC_BRAINPOOLP320R1 | BRAINPOOLP320R1 | |
SB_EC_BRAINPOOLP320T1 | BRAINPOOLP320T1 | |
SB_EC_BRAINPOOLP384R1 | BRAINPOOLP384R1 | |
SB_EC_BRAINPOOLP384T1 | BRAINPOOLP384T1 | |
SB_EC_BRAINPOOLP512R1 | BRAINPOOLP512R1 | |
SB_EC_BRAINPOOLP512T1 | BRAINPOOLP512T1 | |
SB_EC_CURVE25519 | CURVE25519 | |
SB_EC_CURVE448 | CURVE448 |
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertFingerprint Property (CAdESSigner Component)
Contains the fingerprint (a hash imprint) of this certificate.
Syntax
__property String CertFingerprint[int CertIndex] = { read=FCertFingerprint };
Default Value
""
Remarks
Contains the fingerprint (a hash imprint) of this certificate.
While there is no formal standard defining what a fingerprint is, a SHA1 hash of the certificate's DER-encoded body is typically used.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertFriendlyName Property (CAdESSigner Component)
Contains an associated alias (friendly name) of the certificate.
Syntax
__property String CertFriendlyName[int CertIndex] = { read=FCertFriendlyName };
Default Value
""
Remarks
Contains an associated alias (friendly name) of the certificate. The friendly name is not a property of a certificate: it is maintained by the certificate media rather than being included in its DER representation. Windows certificate stores are one example of media that does support friendly names.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertHandle Property (CAdESSigner Component)
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
__property __int64 CertHandle[int CertIndex] = { read=FCertHandle };
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Long64
CertHashAlgorithm Property (CAdESSigner Component)
Provides means to set the hash algorithm to be used in the subsequent operation on the certificate (such as generation or key signing).
Syntax
__property String CertHashAlgorithm[int CertIndex] = { read=FCertHashAlgorithm };
Default Value
""
Remarks
Provides means to set the hash algorithm to be used in the subsequent operation on the certificate (such as generation or key signing). It is not a property of a certificate; use CertSigAlgorithm to find out the hash algorithm that is part of the certificate signature.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertIssuer Property (CAdESSigner Component)
The common name of the certificate issuer (CA), typically a company name.
Syntax
__property String CertIssuer[int CertIndex] = { read=FCertIssuer };
Default Value
""
Remarks
The common name of the certificate issuer (CA), typically a company name. This is part of a larger set of credentials available via CertIssuerRDN.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertIssuerRDN Property (CAdESSigner Component)
A list of Property=Value pairs that uniquely identify the certificate issuer.
Syntax
__property String CertIssuerRDN[int CertIndex] = { read=FCertIssuerRDN };
Default Value
""
Remarks
A list of Property=Value pairs that uniquely identify the certificate issuer.
Example: /C=US/O=Nationwide CA/CN=Web Certification Authority
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertKeyAlgorithm Property (CAdESSigner Component)
Specifies the public key algorithm of this certificate.
Syntax
__property String CertKeyAlgorithm[int CertIndex] = { read=FCertKeyAlgorithm };
Default Value
"0"
Remarks
Specifies the public key algorithm of this certificate.
SB_CERT_ALGORITHM_ID_RSA_ENCRYPTION | rsaEncryption | |
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTION | md2withRSAEncryption | |
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTION | md5withRSAEncryption | |
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTION | sha1withRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA | id-dsa | |
SB_CERT_ALGORITHM_ID_DSA_SHA1 | id-dsa-with-sha1 | |
SB_CERT_ALGORITHM_DH_PUBLIC | dhpublicnumber | |
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTION | sha224WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTION | sha256WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTION | sha384WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTION | sha512WithRSAEncryption | |
SB_CERT_ALGORITHM_ID_RSAPSS | id-RSASSA-PSS | |
SB_CERT_ALGORITHM_ID_RSAOAEP | id-RSAES-OAEP | |
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160 | ripemd160withRSA | |
SB_CERT_ALGORITHM_ID_ELGAMAL | elGamal | |
SB_CERT_ALGORITHM_SHA1_ECDSA | ecdsa-with-SHA1 | |
SB_CERT_ALGORITHM_RECOMMENDED_ECDSA | ecdsa-recommended | |
SB_CERT_ALGORITHM_SHA224_ECDSA | ecdsa-with-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA | ecdsa-with-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA | ecdsa-with-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA | ecdsa-with-SHA512 | |
SB_CERT_ALGORITHM_EC | id-ecPublicKey | |
SB_CERT_ALGORITHM_SPECIFIED_ECDSA | ecdsa-specified | |
SB_CERT_ALGORITHM_GOST_R3410_1994 | id-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3410_2001 | id-GostR3410-2001 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994 | id-GostR3411-94-with-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001 | id-GostR3411-94-with-GostR3410-2001 | |
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAIN | ecdsa-plain-SHA1 | |
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAIN | ecdsa-plain-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAIN | ecdsa-plain-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAIN | ecdsa-plain-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAIN | ecdsa-plain-SHA512 | |
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAIN | ecdsa-plain-RIPEMD160 | |
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTION | whirlpoolWithRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA_SHA224 | id-dsa-with-sha224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA256 | id-dsa-with-sha256 | |
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA | id-ecdsa-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA | id-ecdsa-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA | id-ecdsa-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA | id-ecdsa-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-512 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_224 | id-dsa-with-sha3-224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_256 | id-dsa-with-sha3-256 | |
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA | id-ecdsa-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA | id-ecdsa-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA | id-ecdsa-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA | id-ecdsa-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA | id-ecdsa-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA | id-ecdsa-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA | id-ecdsa-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA | id-ecdsa-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b512 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224 | id-dsa-with-blake2s224 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256 | id-dsa-with-blake2s256 | |
SB_CERT_ALGORITHM_EDDSA_ED25519 | id-Ed25519 | |
SB_CERT_ALGORITHM_EDDSA_ED448 | id-Ed448 | |
SB_CERT_ALGORITHM_EDDSA_ED25519_PH | id-Ed25519ph | |
SB_CERT_ALGORITHM_EDDSA_ED448_PH | id-Ed448ph | |
SB_CERT_ALGORITHM_EDDSA | id-EdDSA | |
SB_CERT_ALGORITHM_EDDSA_SIGNATURE | id-EdDSA-sig |
Use the CertKeyBits, CertCurve, and CertPublicKeyBytes properties to get more details about the key the certificate contains.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertKeyBits Property (CAdESSigner Component)
Returns the length of the public key in bits.
Syntax
__property int CertKeyBits[int CertIndex] = { read=FCertKeyBits };
Default Value
0
Remarks
Returns the length of the public key in bits.
This value indicates the length of the principal cryptographic parameter of the key, such as the length of the RSA modulus or ECDSA field. The key data returned by the CertPublicKeyBytes or CertPrivateKeyBytes property would typically contain auxiliary values, and therefore be longer.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Integer
CertKeyFingerprint Property (CAdESSigner Component)
Returns a SHA1 fingerprint of the public key contained in the certificate.
Syntax
__property String CertKeyFingerprint[int CertIndex] = { read=FCertKeyFingerprint };
Default Value
""
Remarks
Returns a SHA1 fingerprint of the public key contained in the certificate.
Note that the key fingerprint is different from the certificate fingerprint accessible via the CertFingerprint property. The key fingeprint uniquely identifies the public key, and so can be the same for multiple certificates containing the same key.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertKeyUsage Property (CAdESSigner Component)
Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.
Syntax
__property int CertKeyUsage[int CertIndex] = { read=FCertKeyUsage };
Default Value
0
Remarks
Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.
This value is a bit mask of the following values:
ckuUnknown | 0x00000 | Unknown key usage |
ckuDigitalSignature | 0x00001 | Digital signature |
ckuNonRepudiation | 0x00002 | Non-repudiation |
ckuKeyEncipherment | 0x00004 | Key encipherment |
ckuDataEncipherment | 0x00008 | Data encipherment |
ckuKeyAgreement | 0x00010 | Key agreement |
ckuKeyCertSign | 0x00020 | Certificate signing |
ckuCRLSign | 0x00040 | Revocation signing |
ckuEncipherOnly | 0x00080 | Encipher only |
ckuDecipherOnly | 0x00100 | Decipher only |
ckuServerAuthentication | 0x00200 | Server authentication |
ckuClientAuthentication | 0x00400 | Client authentication |
ckuCodeSigning | 0x00800 | Code signing |
ckuEmailProtection | 0x01000 | Email protection |
ckuTimeStamping | 0x02000 | Timestamping |
ckuOCSPSigning | 0x04000 | OCSP signing |
ckuSmartCardLogon | 0x08000 | Smartcard logon |
ckuKeyPurposeClientAuth | 0x10000 | Kerberos - client authentication |
ckuKeyPurposeKDC | 0x20000 | Kerberos - KDC |
Set this property before generating the certificate to propagate the key usage flags to the new certificate.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Integer
CertKeyValid Property (CAdESSigner Component)
Returns True if the certificate's key is cryptographically valid, and False otherwise.
Syntax
__property bool CertKeyValid[int CertIndex] = { read=FCertKeyValid };
Default Value
false
Remarks
Returns True if the certificate's key is cryptographically valid, and False otherwise.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Boolean
CertOCSPLocations Property (CAdESSigner Component)
Locations of OCSP services that can be used to check this certificate's validity in real time, as recorded by the CA.
Syntax
__property String CertOCSPLocations[int CertIndex] = { read=FCertOCSPLocations };
Default Value
""
Remarks
Locations of OCSP services that can be used to check this certificate's validity in real time, as recorded by the CA.
Set this property before calling the certificate manager's Generate method to propagate it to the new certificate.
The OCSP locations are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertOCSPNoCheck Property (CAdESSigner Component)
Accessor to the value of the certificate's ocsp-no-check extension.
Syntax
__property bool CertOCSPNoCheck[int CertIndex] = { read=FCertOCSPNoCheck };
Default Value
false
Remarks
Accessor to the value of the certificate's ocsp-no-check extension.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Boolean
CertOrigin Property (CAdESSigner Component)
Returns the location that the certificate was taken or loaded from.
Syntax
__property int CertOrigin[int CertIndex] = { read=FCertOrigin };
Default Value
0
Remarks
Returns the location that the certificate was taken or loaded from.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Integer
CertPolicyIDs Property (CAdESSigner Component)
Contains identifiers (OIDs) of the applicable certificate policies.
Syntax
__property String CertPolicyIDs[int CertIndex] = { read=FCertPolicyIDs };
Default Value
""
Remarks
Contains identifiers (OIDs) of the applicable certificate policies.
The Certificate Policies extension identifies a sequence of policies under which the certificate has been issued, and which regulate its usage.
Set this property when generating a certificate to propagate the policies information to the new certificate.
The policies are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the policy element separator.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertPrivateKeyBytes Property (CAdESSigner Component)
Returns the certificate's private key in DER-encoded format.
Syntax
__property DynamicArrayCertPrivateKeyBytes[int CertIndex] = { read=FCertPrivateKeyBytes };
Remarks
Returns the certificate's private key in DER-encoded format. It is normal for this property to be empty if the private key is non-exportable, which, for example, is typical for certificates originating from hardware security devices.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
CertPrivateKeyExists Property (CAdESSigner Component)
Indicates whether the certificate has a usable private key associated with it.
Syntax
__property bool CertPrivateKeyExists[int CertIndex] = { read=FCertPrivateKeyExists };
Default Value
false
Remarks
Indicates whether the certificate has a usable private key associated with it. If it is set to True, the certificate can be used for private key operations, such as signing or decryption.
This property is independent from CertPrivateKeyBytes, and can be set to True even if the former is empty. This would imply that the private key is non-exportable, but still can be used for cryptographic operations.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Boolean
CertPrivateKeyExtractable Property (CAdESSigner Component)
Indicates whether the private key is extractable (exportable).
Syntax
__property bool CertPrivateKeyExtractable[int CertIndex] = { read=FCertPrivateKeyExtractable };
Default Value
false
Remarks
Indicates whether the private key is extractable (exportable).
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Boolean
CertPublicKeyBytes Property (CAdESSigner Component)
Contains the certificate's public key in DER format.
Syntax
__property DynamicArrayCertPublicKeyBytes[int CertIndex] = { read=FCertPublicKeyBytes };
Remarks
Contains the certificate's public key in DER format.
This typically would contain an ASN.1-encoded public key value. The exact format depends on the type of the public key contained in the certificate.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
CertQualified Property (CAdESSigner Component)
Indicates whether the certificate is qualified.
Syntax
__property bool CertQualified[int CertIndex] = { read=FCertQualified };
Default Value
false
Remarks
Indicates whether the certificate is qualified.
This property is set to True if the certificate is confirmed by a Trusted List to be qualified.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Boolean
CertQualifiedStatements Property (CAdESSigner Component)
Returns a simplified qualified status of the certificate.
Syntax
__property TsbxCAdESSignerCertQualifiedStatements CertQualifiedStatements[int CertIndex] = { read=FCertQualifiedStatements };
enum TsbxCAdESSignerCertQualifiedStatements { qstNonQualified=0, qstQualifiedHardware=1, qstQualifiedSoftware=2 };
Default Value
qstNonQualified
Remarks
Returns a simplified qualified status of the certificate.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Integer
CertQualifiers Property (CAdESSigner Component)
A list of qualifiers.
Syntax
__property String CertQualifiers[int CertIndex] = { read=FCertQualifiers };
Default Value
""
Remarks
A list of qualifiers.
Contains a comma-separated list of qualifier aliases for the certificate, for example QCP-n-qscd,QCWithSSCD.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertSelfSigned Property (CAdESSigner Component)
Indicates whether the certificate is self-signed (root) or signed by an external CA.
Syntax
__property bool CertSelfSigned[int CertIndex] = { read=FCertSelfSigned };
Default Value
false
Remarks
Indicates whether the certificate is self-signed (root) or signed by an external CA.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Boolean
CertSerialNumber Property (CAdESSigner Component)
Returns the certificate's serial number.
Syntax
__property DynamicArrayCertSerialNumber[int CertIndex] = { read=FCertSerialNumber };
Remarks
Returns the certificate's serial number.
The serial number is a binary string that uniquely identifies a certificate among others issued by the same CA. According to the X.509 standard, the (issuer, serial number) pair should be globally unique to facilitate chain building.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
CertSigAlgorithm Property (CAdESSigner Component)
Indicates the algorithm that was used by the CA to sign this certificate.
Syntax
__property String CertSigAlgorithm[int CertIndex] = { read=FCertSigAlgorithm };
Default Value
""
Remarks
Indicates the algorithm that was used by the CA to sign this certificate.
A signature algorithm typically combines hash and public key algorithms together, such as sha256WithRSAEncryption or ecdsa-with-SHA256.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertSource Property (CAdESSigner Component)
Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.
Syntax
__property TsbxCAdESSignerCertSources CertSource[int CertIndex] = { read=FCertSource };
enum TsbxCAdESSignerCertSources { pksUnknown=0, pksSignature=1, pksDocument=2, pksUser=3, pksLocal=4, pksOnline=5 };
Default Value
pksUnknown
Remarks
Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Integer
CertSubject Property (CAdESSigner Component)
The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name.
Syntax
__property String CertSubject[int CertIndex] = { read=FCertSubject };
Default Value
""
Remarks
The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name. This is part of a larger set of credentials available via CertSubjectRDN.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertSubjectAlternativeName Property (CAdESSigner Component)
Returns or sets the value of the Subject Alternative Name extension of the certificate.
Syntax
__property String CertSubjectAlternativeName[int CertIndex] = { read=FCertSubjectAlternativeName };
Default Value
""
Remarks
Returns or sets the value of the Subject Alternative Name extension of the certificate.
Subject alternative names are used to provide additional names that are impractical to store in the main CertSubjectRDN field. For example, it is often used to store all the domain names that a TLS certificate is authorized to protect.
The alternative names are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the element separator.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertSubjectKeyID Property (CAdESSigner Component)
Contains a unique identifier of the certificate's cryptographic key.
Syntax
__property DynamicArrayCertSubjectKeyID[int CertIndex] = { read=FCertSubjectKeyID };
Remarks
Contains a unique identifier of the certificate's cryptographic key.
Subject Key Identifier is a certificate extension which allows a specific public key to be associated with a certificate holder. Typically, subject key identifiers of CA certificates are recorded as respective CA key identifiers in the subordinate certificates that they issue, which facilitates chain building.
The CertSubjectKeyID and CertCAKeyID properties of self-signed certificates typically contain identical values, as in that specific case, the issuer and the subject are the same entity.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
CertSubjectRDN Property (CAdESSigner Component)
A list of Property=Value pairs that uniquely identify the certificate holder (subject).
Syntax
__property String CertSubjectRDN[int CertIndex] = { read=FCertSubjectRDN };
Default Value
""
Remarks
A list of Property=Value pairs that uniquely identify the certificate holder (subject).
Depending on the purpose of the certificate and the policies of the CA that issued it, the values included in the subject record may differ drastically and contain business or personal names, web URLs, email addresses, and other data.
Example: /C=US/O=Oranges and Apples, Inc./OU=Accounts Receivable/1.2.3.4.5=Value with unknown OID/CN=Margaret Watkins.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertValid Property (CAdESSigner Component)
Indicates whether or not the signature over the certificate or the request is valid and matches the public key contained in the CA certificate/request.
Syntax
__property bool CertValid[int CertIndex] = { read=FCertValid };
Default Value
false
Remarks
Indicates whether or not the signature over the certificate or the request is valid and matches the public key contained in the CA certificate/request.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
Boolean
CertValidFrom Property (CAdESSigner Component)
The time point at which the certificate becomes valid, in UTC.
Syntax
__property String CertValidFrom[int CertIndex] = { read=FCertValidFrom };
Default Value
""
Remarks
The time point at which the certificate becomes valid, in UTC.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CertValidTo Property (CAdESSigner Component)
The time point at which the certificate expires, in UTC.
Syntax
__property String CertValidTo[int CertIndex] = { read=FCertValidTo };
Default Value
""
Remarks
The time point at which the certificate expires, in UTC.
The CertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CertCount property.
This property is read-only and not available at design time.
Data Type
String
CheckTrustedLists Property (CAdESSigner Component)
Specifies whether the component should attempt to validate chain trust via a known Trusted List.
Syntax
__property bool CheckTrustedLists = { read=FCheckTrustedLists, write=FSetCheckTrustedLists };
Default Value
false
Remarks
Set this property to true to enable the component to validate chain trust against an internal list of known Trusted Lists (such as EUTL).
Data Type
Boolean
CRLCount Property (CAdESSigner Component)
The number of records in the CRL arrays.
Syntax
__property int CRLCount = { read=FCRLCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
- CRLBytes
- CRLCAKeyID
- CRLEntryCount
- CRLHandle
- CRLIssuer
- CRLIssuerRDN
- CRLLocation
- CRLNextUpdate
- CRLSigAlgorithm
- CRLSource
- CRLTBS
- CRLThisUpdate
This property is read-only and not available at design time.
Data Type
Integer
CRLBytes Property (CAdESSigner Component)
Returns the raw CRL data in DER format.
Syntax
__property DynamicArrayCRLBytes[int CRLIndex] = { read=FCRLBytes };
Remarks
Returns the raw CRL data in DER format.
The CRLIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CRLCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
CRLCAKeyID Property (CAdESSigner Component)
A unique identifier (fingerprint) of the CA certificate's private key, if present in the CRL.
Syntax
__property DynamicArrayCRLCAKeyID[int CRLIndex] = { read=FCRLCAKeyID };
Remarks
A unique identifier (fingerprint) of the CA certificate's private key, if present in the CRL.
The CRLIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CRLCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
CRLEntryCount Property (CAdESSigner Component)
Returns the number of certificate status entries in the CRL.
Syntax
__property int CRLEntryCount[int CRLIndex] = { read=FCRLEntryCount };
Default Value
0
Remarks
Returns the number of certificate status entries in the CRL.
The CRLIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CRLCount property.
This property is read-only and not available at design time.
Data Type
Integer
CRLHandle Property (CAdESSigner Component)
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
__property __int64 CRLHandle[int CRLIndex] = { read=FCRLHandle };
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The CRLIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CRLCount property.
This property is read-only and not available at design time.
Data Type
Long64
CRLIssuer Property (CAdESSigner Component)
The common name of the CRL issuer (CA), typically a company name.
Syntax
__property String CRLIssuer[int CRLIndex] = { read=FCRLIssuer };
Default Value
""
Remarks
The common name of the CRL issuer (CA), typically a company name.
The CRLIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CRLCount property.
This property is read-only and not available at design time.
Data Type
String
CRLIssuerRDN Property (CAdESSigner Component)
A collection of information, in the form of [OID, Value] pairs, uniquely identifying the CRL issuer.
Syntax
__property String CRLIssuerRDN[int CRLIndex] = { read=FCRLIssuerRDN };
Default Value
""
Remarks
A collection of information, in the form of [OID, Value] pairs, uniquely identifying the CRL issuer.
The CRLIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CRLCount property.
This property is read-only and not available at design time.
Data Type
String
CRLLocation Property (CAdESSigner Component)
The URL that the CRL was downloaded from.
Syntax
__property String CRLLocation[int CRLIndex] = { read=FCRLLocation };
Default Value
""
Remarks
The URL that the CRL was downloaded from.
The CRLIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CRLCount property.
This property is read-only and not available at design time.
Data Type
String
CRLNextUpdate Property (CAdESSigner Component)
The planned time and date of the next version of this CRL to be published.
Syntax
__property String CRLNextUpdate[int CRLIndex] = { read=FCRLNextUpdate };
Default Value
""
Remarks
The planned time and date of the next version of this CRL to be published.
The CRLIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CRLCount property.
This property is read-only and not available at design time.
Data Type
String
CRLSigAlgorithm Property (CAdESSigner Component)
The public key algorithm that was used by the CA to sign this CRL.
Syntax
__property String CRLSigAlgorithm[int CRLIndex] = { read=FCRLSigAlgorithm };
Default Value
"0"
Remarks
The public key algorithm that was used by the CA to sign this CRL.
The CRLIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CRLCount property.
This property is read-only and not available at design time.
Data Type
String
CRLSource Property (CAdESSigner Component)
Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.
Syntax
__property TsbxCAdESSignerCRLSources CRLSource[int CRLIndex] = { read=FCRLSource };
enum TsbxCAdESSignerCRLSources { pksUnknown=0, pksSignature=1, pksDocument=2, pksUser=3, pksLocal=4, pksOnline=5 };
Default Value
pksUnknown
Remarks
Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.
The CRLIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CRLCount property.
This property is read-only and not available at design time.
Data Type
Integer
CRLTBS Property (CAdESSigner Component)
The to-be-signed part of the CRL (the CRL without the signature part).
Syntax
__property DynamicArrayCRLTBS[int CRLIndex] = { read=FCRLTBS };
Remarks
The to-be-signed part of the CRL (the CRL without the signature part).
The CRLIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CRLCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
CRLThisUpdate Property (CAdESSigner Component)
The date and time at which this version of the CRL was published.
Syntax
__property String CRLThisUpdate[int CRLIndex] = { read=FCRLThisUpdate };
Default Value
""
Remarks
The date and time at which this version of the CRL was published.
The CRLIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CRLCount property.
This property is read-only and not available at design time.
Data Type
String
DataBytes Property (CAdESSigner Component)
A byte array containing the external data source.
Syntax
__property DynamicArrayDataBytes = { read=FDataBytes, write=FSetDataBytes };
Remarks
Use this property to provide external data source for detached signatures in the form of a byte array.
This property is not available at design time.
Data Type
Byte Array
DataFile Property (CAdESSigner Component)
A path to a file containing an external data source.
Syntax
__property String DataFile = { read=FDataFile, write=FSetDataFile };
Default Value
""
Remarks
Use this property to provide an external data source for detached signatures. This property should only be assigned when countersigning or timestamping existing detached signatures. In this case the detached signature should be provided via InputFile, and the corresponding detached data via this property.
Data Type
String
DataIsHash Property (CAdESSigner Component)
Specifies whether the data source contains the hash of the data or the actual data.
Syntax
__property bool DataIsHash = { read=FDataIsHash, write=FSetDataIsHash };
Default Value
false
Remarks
Use this property to tell the component whether the data source contains the actual data or its hash.
This property is not available at design time.
Data Type
Boolean
Detached Property (CAdESSigner Component)
Specifies whether a detached signature should be produced or verified.
Syntax
__property bool Detached = { read=FDetached, write=FSetDetached };
Default Value
false
Remarks
Use this property to specify whether a detached signature should be produced or verified.
When this property is set to "true" value, the data will be detached from the signature.
If this property is set to "true" value, the user must provide the detached content via the DataFile or DataStream or DataBytes properties.
When Detached is set to "false" value, the data is included with the signature.
Data Type
Boolean
ExternalCryptoAsyncDocumentID Property (CAdESSigner Component)
Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.
Syntax
__property String ExternalCryptoAsyncDocumentID = { read=FExternalCryptoAsyncDocumentID, write=FSetExternalCryptoAsyncDocumentID };
Default Value
""
Remarks
Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.
Use this property when working with multi-signature DCAuth requests and responses to uniquely identify documents signed within a larger batch. On the completion stage, this value helps the signing component identify the correct signature in the returned batch of responses.
If using batched requests, make sure to set this property to the same value on both the pre-signing (SignAsyncBegin) and completion (SignAsyncEnd) stages.
Data Type
String
ExternalCryptoCustomParams Property (CAdESSigner Component)
Custom parameters to be passed to the signing service (uninterpreted).
Syntax
__property String ExternalCryptoCustomParams = { read=FExternalCryptoCustomParams, write=FSetExternalCryptoCustomParams };
Default Value
""
Remarks
Custom parameters to be passed to the signing service (uninterpreted).
This property is not available at design time.
Data Type
String
ExternalCryptoData Property (CAdESSigner Component)
Additional data to be included in the async state and mirrored back by the requestor.
Syntax
__property String ExternalCryptoData = { read=FExternalCryptoData, write=FSetExternalCryptoData };
Default Value
""
Remarks
Additional data to be included in the async state and mirrored back by the requestor.
This property is not available at design time.
Data Type
String
ExternalCryptoExternalHashCalculation Property (CAdESSigner Component)
Specifies whether the message hash is to be calculated at the external endpoint.
Syntax
__property bool ExternalCryptoExternalHashCalculation = { read=FExternalCryptoExternalHashCalculation, write=FSetExternalCryptoExternalHashCalculation };
Default Value
false
Remarks
Specifies whether the message hash is to be calculated at the external endpoint. Please note that this mode is not supported by the DCAuth component.
If set to true, the component will pass a few kilobytes of to-be-signed data from the document to the OnExternalSign event. This only applies when SignExternal() is called.
Data Type
Boolean
ExternalCryptoHashAlgorithm Property (CAdESSigner Component)
Specifies the request's signature hash algorithm.
Syntax
__property String ExternalCryptoHashAlgorithm = { read=FExternalCryptoHashAlgorithm, write=FSetExternalCryptoHashAlgorithm };
Default Value
"SHA256"
Remarks
Specifies the request's signature hash algorithm.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
Data Type
String
ExternalCryptoKeyID Property (CAdESSigner Component)
The ID of the pre-shared key used for DC request authentication.
Syntax
__property String ExternalCryptoKeyID = { read=FExternalCryptoKeyID, write=FSetExternalCryptoKeyID };
Default Value
""
Remarks
The ID of the pre-shared key used for DC request authentication.
Asynchronous DCAuth-driven communication requires that parties authenticate each other with a secret pre-shared cryptographic key. This provides an extra protection layer for the protocol and diminishes the risk of the private key becoming abused by foreign parties. Use this property to provide the pre-shared key identifier, and use ExternalCryptoKeySecret to pass the key itself.
The same KeyID/KeySecret pair should be used on the DCAuth side for the signing requests to be accepted.
Note: The KeyID/KeySecret scheme is very similar to the AuthKey scheme used in various Cloud service providers to authenticate users.
Example:
signer.ExternalCrypto.KeyID = "MainSigningKey";
signer.ExternalCrypto.KeySecret = "abcdef0123456789";
Data Type
String
ExternalCryptoKeySecret Property (CAdESSigner Component)
The pre-shared key used for DC request authentication.
Syntax
__property String ExternalCryptoKeySecret = { read=FExternalCryptoKeySecret, write=FSetExternalCryptoKeySecret };
Default Value
""
Remarks
The pre-shared key used for DC request authentication. This key must be set and match the key used by the DCAuth counterpart for the scheme to work.
Read more about configuring authentication in the ExternalCryptoKeyID topic.
Data Type
String
ExternalCryptoMethod Property (CAdESSigner Component)
Specifies the asynchronous signing method.
Syntax
__property TsbxCAdESSignerExternalCryptoMethods ExternalCryptoMethod = { read=FExternalCryptoMethod, write=FSetExternalCryptoMethod };
enum TsbxCAdESSignerExternalCryptoMethods { asmdPKCS1=0, asmdPKCS7=1 };
Default Value
asmdPKCS1
Remarks
Specifies the asynchronous signing method. This is typically defined by the DC server capabilities and setup.
Available options:
asmdPKCS1 | 0 |
asmdPKCS7 | 1 |
Data Type
Integer
ExternalCryptoMode Property (CAdESSigner Component)
Specifies the external cryptography mode.
Syntax
__property TsbxCAdESSignerExternalCryptoModes ExternalCryptoMode = { read=FExternalCryptoMode, write=FSetExternalCryptoMode };
enum TsbxCAdESSignerExternalCryptoModes { ecmDefault=0, ecmDisabled=1, ecmGeneric=2, ecmDCAuth=3, ecmDCAuthJSON=4 };
Default Value
ecmDefault
Remarks
Specifies the external cryptography mode.
Available options:
ecmDefault | The default value (0) |
ecmDisabled | Do not use DC or external signing (1) |
ecmGeneric | Generic external signing with the OnExternalSign event (2) |
ecmDCAuth | DCAuth signing (3) |
ecmDCAuthJSON | DCAuth signing in JSON format (4) |
This property is not available at design time.
Data Type
Integer
ExternalCryptoPublicKeyAlgorithm Property (CAdESSigner Component)
Provide the public key algorithm here if the certificate is not available on the pre-signing stage.
Syntax
__property String ExternalCryptoPublicKeyAlgorithm = { read=FExternalCryptoPublicKeyAlgorithm, write=FSetExternalCryptoPublicKeyAlgorithm };
Default Value
""
Remarks
Provide the public key algorithm here if the certificate is not available on the pre-signing stage.
SB_CERT_ALGORITHM_ID_RSA_ENCRYPTION | rsaEncryption | |
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTION | md2withRSAEncryption | |
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTION | md5withRSAEncryption | |
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTION | sha1withRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA | id-dsa | |
SB_CERT_ALGORITHM_ID_DSA_SHA1 | id-dsa-with-sha1 | |
SB_CERT_ALGORITHM_DH_PUBLIC | dhpublicnumber | |
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTION | sha224WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTION | sha256WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTION | sha384WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTION | sha512WithRSAEncryption | |
SB_CERT_ALGORITHM_ID_RSAPSS | id-RSASSA-PSS | |
SB_CERT_ALGORITHM_ID_RSAOAEP | id-RSAES-OAEP | |
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160 | ripemd160withRSA | |
SB_CERT_ALGORITHM_ID_ELGAMAL | elGamal | |
SB_CERT_ALGORITHM_SHA1_ECDSA | ecdsa-with-SHA1 | |
SB_CERT_ALGORITHM_RECOMMENDED_ECDSA | ecdsa-recommended | |
SB_CERT_ALGORITHM_SHA224_ECDSA | ecdsa-with-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA | ecdsa-with-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA | ecdsa-with-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA | ecdsa-with-SHA512 | |
SB_CERT_ALGORITHM_EC | id-ecPublicKey | |
SB_CERT_ALGORITHM_SPECIFIED_ECDSA | ecdsa-specified | |
SB_CERT_ALGORITHM_GOST_R3410_1994 | id-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3410_2001 | id-GostR3410-2001 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994 | id-GostR3411-94-with-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001 | id-GostR3411-94-with-GostR3410-2001 | |
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAIN | ecdsa-plain-SHA1 | |
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAIN | ecdsa-plain-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAIN | ecdsa-plain-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAIN | ecdsa-plain-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAIN | ecdsa-plain-SHA512 | |
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAIN | ecdsa-plain-RIPEMD160 | |
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTION | whirlpoolWithRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA_SHA224 | id-dsa-with-sha224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA256 | id-dsa-with-sha256 | |
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA | id-ecdsa-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA | id-ecdsa-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA | id-ecdsa-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA | id-ecdsa-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-512 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_224 | id-dsa-with-sha3-224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_256 | id-dsa-with-sha3-256 | |
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA | id-ecdsa-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA | id-ecdsa-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA | id-ecdsa-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA | id-ecdsa-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA | id-ecdsa-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA | id-ecdsa-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA | id-ecdsa-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA | id-ecdsa-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b512 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224 | id-dsa-with-blake2s224 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256 | id-dsa-with-blake2s256 | |
SB_CERT_ALGORITHM_EDDSA_ED25519 | id-Ed25519 | |
SB_CERT_ALGORITHM_EDDSA_ED448 | id-Ed448 | |
SB_CERT_ALGORITHM_EDDSA_ED25519_PH | id-Ed25519ph | |
SB_CERT_ALGORITHM_EDDSA_ED448_PH | id-Ed448ph | |
SB_CERT_ALGORITHM_EDDSA | id-EdDSA | |
SB_CERT_ALGORITHM_EDDSA_SIGNATURE | id-EdDSA-sig |
Data Type
String
ExtractContent Property (CAdESSigner Component)
Specifies whether a message content should be extracted.
Syntax
__property bool ExtractContent = { read=FExtractContent, write=FSetExtractContent };
Default Value
false
Remarks
Use this property to specify whether a message content should be extracted when a signature is loaded. This applies only to non-detached signatures with embedded data.
When this property is set to "true" value, the message content will be extracted from the signature.
The user must provide the OutputFile or OutputStream properties with a filename or stream where to save the message content, if none is provided then message content is returned via OutputBytes property.
Data Type
Boolean
FIPSMode Property (CAdESSigner Component)
Reserved.
Syntax
__property bool FIPSMode = { read=FFIPSMode, write=FSetFIPSMode };
Default Value
false
Remarks
This property is reserved for future use.
Data Type
Boolean
IgnoreChainValidationErrors Property (CAdESSigner Component)
Makes the component tolerant to chain validation errors.
Syntax
__property bool IgnoreChainValidationErrors = { read=FIgnoreChainValidationErrors, write=FSetIgnoreChainValidationErrors };
Default Value
false
Remarks
If this property is set to True, any errors emerging during certificate chain validation will be ignored. This setting may be handy if the purpose of validation is the creation of an LTV signature, and the validation is performed in an environment that doesn't trust the signer's certificate chain.
Data Type
Boolean
InputBytes Property (CAdESSigner Component)
Use this property to pass the input to component in byte array form.
Syntax
__property DynamicArrayInputBytes = { read=FInputBytes, write=FSetInputBytes };
Remarks
Assign a byte array containing the data to be processed to this property.
This property is not available at design time.
Data Type
Byte Array
InputFile Property (CAdESSigner Component)
A path to a file containing the data to be signed or updated.
Syntax
__property String InputFile = { read=FInputFile, write=FSetInputFile };
Default Value
""
Remarks
Use this property to provide the data to work on. In case of the first-time signing, point this property to your data file. If countersigning, upgrading, or timestamping an existing signature, provide your existing signature file.
If updating a detached signature, you might need to provide the original data via DataFile property.
The data provided via this property can alternatively be provided from memory via InputStream property.
Data Type
String
KnownCertCount Property (CAdESSigner Component)
The number of records in the KnownCert arrays.
Syntax
__property int KnownCertCount = { read=FKnownCertCount, write=FSetKnownCertCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at KnownCertCount - 1.This property is not available at design time.
Data Type
Integer
KnownCertBytes Property (CAdESSigner Component)
Returns the raw certificate data in DER format.
Syntax
__property DynamicArrayKnownCertBytes[int KnownCertIndex] = { read=FKnownCertBytes };
Remarks
Returns the raw certificate data in DER format.
The KnownCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KnownCertCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
KnownCertHandle Property (CAdESSigner Component)
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
__property __int64 KnownCertHandle[int KnownCertIndex] = { read=FKnownCertHandle, write=FSetKnownCertHandle };
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The KnownCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KnownCertCount property.
This property is not available at design time.
Data Type
Long64
KnownCRLCount Property (CAdESSigner Component)
The number of records in the KnownCRL arrays.
Syntax
__property int KnownCRLCount = { read=FKnownCRLCount, write=FSetKnownCRLCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at KnownCRLCount - 1.This property is not available at design time.
Data Type
Integer
KnownCRLBytes Property (CAdESSigner Component)
Returns the raw CRL data in DER format.
Syntax
__property DynamicArrayKnownCRLBytes[int KnownCRLIndex] = { read=FKnownCRLBytes };
Remarks
Returns the raw CRL data in DER format.
The KnownCRLIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KnownCRLCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
KnownCRLHandle Property (CAdESSigner Component)
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
__property __int64 KnownCRLHandle[int KnownCRLIndex] = { read=FKnownCRLHandle, write=FSetKnownCRLHandle };
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The KnownCRLIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KnownCRLCount property.
This property is not available at design time.
Data Type
Long64
KnownOCSPCount Property (CAdESSigner Component)
The number of records in the KnownOCSP arrays.
Syntax
__property int KnownOCSPCount = { read=FKnownOCSPCount, write=FSetKnownOCSPCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at KnownOCSPCount - 1.This property is not available at design time.
Data Type
Integer
KnownOCSPBytes Property (CAdESSigner Component)
A buffer containing the raw OCSP response data.
Syntax
__property DynamicArrayKnownOCSPBytes[int KnownOCSPIndex] = { read=FKnownOCSPBytes };
Remarks
A buffer containing the raw OCSP response data.
The KnownOCSPIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KnownOCSPCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
KnownOCSPHandle Property (CAdESSigner Component)
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
__property __int64 KnownOCSPHandle[int KnownOCSPIndex] = { read=FKnownOCSPHandle, write=FSetKnownOCSPHandle };
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The KnownOCSPIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KnownOCSPCount property.
This property is not available at design time.
Data Type
Long64
NewSigChainValidationDetails Property (CAdESSigner Component)
The details of a certificate chain validation outcome.
Syntax
__property int NewSigChainValidationDetails = { read=FNewSigChainValidationDetails };
Default Value
0
Remarks
The details of a certificate chain validation outcome. They may often suggest the reasons that contributed to the overall validation result.
Returns a bit mask of the following options:
cvrBadData | 0x0001 | One or more certificates in the validation path are malformed |
cvrRevoked | 0x0002 | One or more certificates are revoked |
cvrNotYetValid | 0x0004 | One or more certificates are not yet valid |
cvrExpired | 0x0008 | One or more certificates are expired |
cvrInvalidSignature | 0x0010 | A certificate contains a non-valid digital signature |
cvrUnknownCA | 0x0020 | A CA certificate for one or more certificates has not been found (chain incomplete) |
cvrCAUnauthorized | 0x0040 | One of the CA certificates are not authorized to act as CA |
cvrCRLNotVerified | 0x0080 | One or more CRLs could not be verified |
cvrOCSPNotVerified | 0x0100 | One or more OCSP responses could not be verified |
cvrIdentityMismatch | 0x0200 | The identity protected by the certificate (a TLS endpoint or an e-mail addressee) does not match what is recorded in the certificate |
cvrNoKeyUsage | 0x0400 | A mandatory key usage is not enabled in one of the chain certificates |
cvrBlocked | 0x0800 | One or more certificates are blocked |
cvrFailure | 0x1000 | General validation failure |
cvrChainLoop | 0x2000 | Chain loop: one of the CA certificates recursively signs itself |
cvrWeakAlgorithm | 0x4000 | A weak algorithm is used in one of certificates or revocation elements |
cvrUserEnforced | 0x8000 | The chain was considered invalid following intervention from a user code |
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is read-only and not available at design time.
Data Type
Integer
NewSigChainValidationResult Property (CAdESSigner Component)
The outcome of a certificate chain validation routine.
Syntax
__property TsbxCAdESSignerNewSigChainValidationResults NewSigChainValidationResult = { read=FNewSigChainValidationResult };
enum TsbxCAdESSignerNewSigChainValidationResults { cvtValid=0, cvtValidButUntrusted=1, cvtInvalid=2, cvtCantBeEstablished=3 };
Default Value
cvtValid
Remarks
The outcome of a certificate chain validation routine.
Available options:
cvtValid | 0 | The chain is valid |
cvtValidButUntrusted | 1 | The chain is valid, but the root certificate is not trusted |
cvtInvalid | 2 | The chain is not valid (some of certificates are revoked, expired, or contain an invalid signature) |
cvtCantBeEstablished | 3 | The validity of the chain cannot be established because of missing or unavailable validation information (certificates, CRLs, or OCSP responses) |
Use the ValidationLog property to access the detailed validation log.
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is read-only and not available at design time.
Data Type
Integer
NewSigClaimedSigningTime Property (CAdESSigner Component)
The signing time from the signer's computer.
Syntax
__property String NewSigClaimedSigningTime = { read=FNewSigClaimedSigningTime, write=FSetNewSigClaimedSigningTime };
Default Value
""
Remarks
The signing time from the signer's computer.
Use this property to provide the signature production time. The claimed time is not supported by a trusted source; it may be inaccurate, forfeited, or wrong, and as such is usually taken for informational purposes only by verifiers. Use timestamp servers to embed verifiable trusted timestamps. The time is in UTC.
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is not available at design time.
Data Type
String
NewSigCompatibilityErrors Property (CAdESSigner Component)
Returns compatibility errors encountered during validation.
Syntax
__property int NewSigCompatibilityErrors = { read=FNewSigCompatibilityErrors };
Default Value
0
Remarks
Returns compatibility errors encountered during validation.
Use this property to get specific compatibility errors encountered during validation. Unlike chain validation details, compatibility errors indicate violations by the signature of the assumed signature level/profile. For example, BES signatures are required to contain the signing time attribute. A prospective BES signature without such attribute will invoke a compatibility error.
Supported values:
cerrUnknown | 0x00001 | Unknown validation error |
cerrNoMessageDigest | 0x00002 | No message digest attribute included in the signature |
cerrNoContentType | 0x00004 | No mandatory content-type attribute is included in the signature |
cerrNoSigningCertificate | 0x00008 | No mandatory signing-certificate (-v2) attribute is included in the signature |
cerrNoSignaturePolicy | 0x00010 | No signature policy information is included in the signature |
cerrNoSignatureTimestamp | 0x00020 | The signature is not timestamped |
cerrNoCertificateReferences | 0x00040 | No certificate-references attribute was found in the signature |
cerrNoRevocationReferences | 0x00080 | No revocation-references attribute was found in the signature |
cerrNoCertificateValues | 0x00100 | No certificate-values attribute was found in the signature |
cerrNoRevocationValues | 0x00200 | No revocation-values attribute was found in the signature |
cerrNoTimestampedValidationData | 0x00400 | No timestamped validation data was found in the signature |
cerrNoArchivalTimestamp | 0x00800 | No archival timestamp was found in the signature |
cerrUnexpectedValidationElements | 0x01000 | Unexpected validation elements were found in the signature |
cerrMissingValidationElements | 0x02000 | Some mandatory validation elements are missing from the signature |
cerrInvalidATSHashIndex | 0x04000 | ATS Hash Index attribute is invalid |
cerrNoSigningTime | 0x08000 | No mandatory signing-time attribute was found in the signature |
cerrMisplacedSigPolicyStore | 0x10000 | Signature policy store attribute is misplaced |
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is read-only and not available at design time.
Data Type
Integer
NewSigContainsLongTermInfo Property (CAdESSigner Component)
Returns true if the signature was found to contain long-term validation details (certificates, CRLs, and OCSP response).
Syntax
__property bool NewSigContainsLongTermInfo = { read=FNewSigContainsLongTermInfo };
Default Value
false
Remarks
Returns true if the signature was found to contain long-term validation details (certificates, CRLs, and OCSP response).
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is read-only and not available at design time.
Data Type
Boolean
NewSigContentType Property (CAdESSigner Component)
The signature content type.
Syntax
__property String NewSigContentType = { read=FNewSigContentType, write=FSetNewSigContentType };
Default Value
""
Remarks
The signature content type.
Use this property to check the content type attribute of the message record in it by the signer.
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is not available at design time.
Data Type
String
NewSigCountersigned Property (CAdESSigner Component)
Indicates if the signature is countersigned.
Syntax
__property bool NewSigCountersigned = { read=FNewSigCountersigned };
Default Value
false
Remarks
Indicates if the signature is countersigned.
Use this property to find out whether the signed message contains any countersignatures over the main signature(s).
You can track countersignatures during the validating by subscribing to SignatureValidated event.
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is read-only and not available at design time.
Data Type
Boolean
NewSigEntityLabel Property (CAdESSigner Component)
Use this property to get the signature entity label.
Syntax
__property String NewSigEntityLabel = { read=FNewSigEntityLabel };
Default Value
""
Remarks
Use this property to get the signature entity label.
This property returns a string label that uniquely identifies the signature. The label can be used to establish the signature target in the SignatureFound event or to select the signing chain via the SelectInfo method.
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is read-only and not available at design time.
Data Type
String
NewSigHandle Property (CAdESSigner Component)
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
__property __int64 NewSigHandle = { read=FNewSigHandle, write=FSetNewSigHandle };
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is not available at design time.
Data Type
Long64
NewSigHashAlgorithm Property (CAdESSigner Component)
Set or returns the hash algorithm used to generate the signature.
Syntax
__property String NewSigHashAlgorithm = { read=FNewSigHashAlgorithm, write=FSetNewSigHashAlgorithm };
Default Value
""
Remarks
Set or returns the hash algorithm used to generate the signature.
Check this property after verifying the signature to get the hash algorithm which was used to calculate it. When creating a signed file, use this property to specify the hash algorithm to use.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is not available at design time.
Data Type
String
NewSigIssuerRDN Property (CAdESSigner Component)
The Relative Distinguished Name of the signing certificate's issuer.
Syntax
__property String NewSigIssuerRDN = { read=FNewSigIssuerRDN };
Default Value
""
Remarks
The Relative Distinguished Name of the signing certificate's issuer.
A collection of information, in the form of [OID, Value] pairs, about the company that issued the signing certificate.
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is read-only and not available at design time.
Data Type
String
NewSigLastArchivalTime Property (CAdESSigner Component)
Indicates the most recent archival time of an archived signature This property returns the time of the most recent archival timestamp applied to the signature.
Syntax
__property String NewSigLastArchivalTime = { read=FNewSigLastArchivalTime };
Default Value
""
Remarks
Indicates the most recent archival time of an archived signature
This property returns the time of the most recent archival timestamp applied to the signature. This property only makes sense for 'archived' (e.g. CAdES-A) signatures. Time is in UTC.
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is read-only and not available at design time.
Data Type
String
NewSigLevel Property (CAdESSigner Component)
Specifies the CAdES signature level.
Syntax
__property TsbxCAdESSignerNewSigLevels NewSigLevel = { read=FNewSigLevel, write=FSetNewSigLevel };
enum TsbxCAdESSignerNewSigLevels { aslUnknown=0, aslGeneric=1, aslBaselineB=2, aslBaselineT=3, aslBaselineLT=4, aslBaselineLTA=5, aslBES=6, aslEPES=7, aslT=8, aslC=9, aslX=10, aslXType1=11, aslXType2=12, aslXL=13, aslXLType1=14, aslXLType2=15, aslA=16, aslExtendedBES=17, aslExtendedEPES=18, aslExtendedT=19, aslExtendedC=20, aslExtendedX=21, aslExtendedXType1=22, aslExtendedXType2=23, aslExtendedXLong=24, aslExtendedXL=25, aslExtendedXLType1=26, aslExtendedXLType2=27, aslExtendedA=28 };
Default Value
aslBaselineB
Remarks
Specifies the CAdES signature level.
CMS Advanced Electronic Signatures (CAdES) standard defines a number of different 'levels' of signatures which can be used for different purposes.
The supported levels are:
aslUnknown | 0 | Unknown signature level |
aslGeneric | 1 | Generic (this value applicable to XAdES signature only and corresponds to XML-DSIG signature) |
aslBaselineB | 2 | Baseline B (B-B, basic) |
aslBaselineT | 3 | Baseline T (B-T, timestamped) |
aslBaselineLT | 4 | Baseline LT (B-LT, long-term) |
aslBaselineLTA | 5 | Baseline LTA (B-LTA, long-term with archived timestamp) |
aslBES | 6 | BES (Basic Electronic Signature) |
aslEPES | 7 | EPES (Electronic Signature with an Explicit Policy) |
aslT | 8 | T (Timestamped) |
aslC | 9 | C (T with revocation references) |
aslX | 10 | X (C with SigAndRefs timestamp or RefsOnly timestamp) (this value applicable to XAdES signature only) |
aslXType1 | 11 | X Type 1 (C with an ES-C timestamp) (this value applicable to CAdES signature only) |
aslXType2 | 12 | X Type 2 (C with a CertsAndCRLs timestamp) (this value applicable to CAdES signature only) |
aslXL | 13 | X-L (X with revocation values) (this value applicable to XAdES signature only) |
aslXLType1 | 14 | X-L Type 1 (C with revocation values and an ES-C timestamp) (this value applicable to CAdES signature only) |
aslXLType2 | 15 | X-L Type 2 (C with revocation values and a CertsAndCRLs timestamp) (this value applicable to CAdES signature only) |
aslA | 16 | A (archived) |
aslExtendedBES | 17 | Extended BES |
aslExtendedEPES | 18 | Extended EPES |
aslExtendedT | 19 | Extended T |
aslExtendedC | 20 | Extended C |
aslExtendedX | 21 | Extended X (this value applicable to XAdES signature only) |
aslExtendedXType1 | 22 | Extended X (type 1) (this value applicable to CAdES signature only) |
aslExtendedXType2 | 23 | Extended X (type 2) (this value applicable to CAdES signature only) |
aslExtendedXLong | 24 | Extended X-Long (this value applicable to XAdES signature only) |
aslExtendedXL | 25 | Extended X-L (this value applicable to XAdES signature only) |
aslExtendedXLType1 | 26 | Extended XL (type 1) (this value applicable to CAdES signature only) |
aslExtendedXLType2 | 27 | Extended XL (type 2) (this value applicable to CAdES signature only) |
aslExtendedA | 28 | Extended A |
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is not available at design time.
Data Type
Integer
NewSigMessageDigest Property (CAdESSigner Component)
The binary of the signature's message digest.
Syntax
__property String NewSigMessageDigest = { read=FNewSigMessageDigest };
Default Value
""
Remarks
The binary of the signature's message digest.
Use this property to access the 'main' message digest of the CMS blob (the digest included as a message-digest signed attribute).
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is read-only and not available at design time.
Data Type
String
NewSigParentEntity Property (CAdESSigner Component)
Use this property to get the parent signature label.
Syntax
__property String NewSigParentEntity = { read=FNewSigParentEntity, write=FSetNewSigParentEntity };
Default Value
""
Remarks
Use this property to get the parent signature label.
This property contains the unique entity label of the current signature's parent object - typically a higher-level signature or a timestamp.
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is not available at design time.
Data Type
String
NewSigPolicyHash Property (CAdESSigner Component)
The signature policy hash value.
Syntax
__property String NewSigPolicyHash = { read=FNewSigPolicyHash, write=FSetNewSigPolicyHash };
Default Value
""
Remarks
The signature policy hash value.
Use this property to get the signature policy hash from EPES signatures
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is not available at design time.
Data Type
String
NewSigPolicyHashAlgorithm Property (CAdESSigner Component)
The algorithm that was used to calculate the signature policy hash Use this property to get or set the hash algorithm used to calculate the signature policy hash.
Syntax
__property String NewSigPolicyHashAlgorithm = { read=FNewSigPolicyHashAlgorithm, write=FSetNewSigPolicyHashAlgorithm };
Default Value
""
Remarks
The algorithm that was used to calculate the signature policy hash
Use this property to get or set the hash algorithm used to calculate the signature policy hash. Read the actual hash value from NewSigPolicyHash.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is not available at design time.
Data Type
String
NewSigPolicyID Property (CAdESSigner Component)
The policy ID that was included or to be included into the signature.
Syntax
__property String NewSigPolicyID = { read=FNewSigPolicyID, write=FSetNewSigPolicyID };
Default Value
""
Remarks
The policy ID that was included or to be included into the signature.
Use this property to retrieve the signature policy identifier from EPES signatures.
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is not available at design time.
Data Type
String
NewSigPolicyURI Property (CAdESSigner Component)
The signature policy URI that was included in the signature.
Syntax
__property String NewSigPolicyURI = { read=FNewSigPolicyURI, write=FSetNewSigPolicyURI };
Default Value
""
Remarks
The signature policy URI that was included in the signature.
Use this property to set or retrieve the URI of the signature policy from EPES signatures.
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is not available at design time.
Data Type
String
NewSigPublicKeyAlgorithm Property (CAdESSigner Component)
Returns the public key algorithm that was used to create the signature.
Syntax
__property String NewSigPublicKeyAlgorithm = { read=FNewSigPublicKeyAlgorithm };
Default Value
""
Remarks
Returns the public key algorithm that was used to create the signature.
This property specifies the public key algorithm that was used to create the signature. This typically matches the algorithm of the signing certificate.
SB_CERT_ALGORITHM_ID_RSA_ENCRYPTION | rsaEncryption | |
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTION | md2withRSAEncryption | |
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTION | md5withRSAEncryption | |
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTION | sha1withRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA | id-dsa | |
SB_CERT_ALGORITHM_ID_DSA_SHA1 | id-dsa-with-sha1 | |
SB_CERT_ALGORITHM_DH_PUBLIC | dhpublicnumber | |
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTION | sha224WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTION | sha256WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTION | sha384WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTION | sha512WithRSAEncryption | |
SB_CERT_ALGORITHM_ID_RSAPSS | id-RSASSA-PSS | |
SB_CERT_ALGORITHM_ID_RSAOAEP | id-RSAES-OAEP | |
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160 | ripemd160withRSA | |
SB_CERT_ALGORITHM_ID_ELGAMAL | elGamal | |
SB_CERT_ALGORITHM_SHA1_ECDSA | ecdsa-with-SHA1 | |
SB_CERT_ALGORITHM_RECOMMENDED_ECDSA | ecdsa-recommended | |
SB_CERT_ALGORITHM_SHA224_ECDSA | ecdsa-with-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA | ecdsa-with-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA | ecdsa-with-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA | ecdsa-with-SHA512 | |
SB_CERT_ALGORITHM_EC | id-ecPublicKey | |
SB_CERT_ALGORITHM_SPECIFIED_ECDSA | ecdsa-specified | |
SB_CERT_ALGORITHM_GOST_R3410_1994 | id-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3410_2001 | id-GostR3410-2001 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994 | id-GostR3411-94-with-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001 | id-GostR3411-94-with-GostR3410-2001 | |
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAIN | ecdsa-plain-SHA1 | |
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAIN | ecdsa-plain-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAIN | ecdsa-plain-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAIN | ecdsa-plain-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAIN | ecdsa-plain-SHA512 | |
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAIN | ecdsa-plain-RIPEMD160 | |
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTION | whirlpoolWithRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA_SHA224 | id-dsa-with-sha224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA256 | id-dsa-with-sha256 | |
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA | id-ecdsa-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA | id-ecdsa-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA | id-ecdsa-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA | id-ecdsa-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-512 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_224 | id-dsa-with-sha3-224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_256 | id-dsa-with-sha3-256 | |
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA | id-ecdsa-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA | id-ecdsa-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA | id-ecdsa-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA | id-ecdsa-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA | id-ecdsa-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA | id-ecdsa-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA | id-ecdsa-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA | id-ecdsa-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b512 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224 | id-dsa-with-blake2s224 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256 | id-dsa-with-blake2s256 | |
SB_CERT_ALGORITHM_EDDSA_ED25519 | id-Ed25519 | |
SB_CERT_ALGORITHM_EDDSA_ED448 | id-Ed448 | |
SB_CERT_ALGORITHM_EDDSA_ED25519_PH | id-Ed25519ph | |
SB_CERT_ALGORITHM_EDDSA_ED448_PH | id-Ed448ph | |
SB_CERT_ALGORITHM_EDDSA | id-EdDSA | |
SB_CERT_ALGORITHM_EDDSA_SIGNATURE | id-EdDSA-sig |
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is read-only and not available at design time.
Data Type
String
NewSigScope Property (CAdESSigner Component)
Returns the type of the entity that this signature corresponds to.
Syntax
__property int NewSigScope = { read=FNewSigScope };
Default Value
0
Remarks
Returns the type of the entity that this signature corresponds to.
A CAdES signature may cover several kinds of entities: the signed data itself (a top-level signature - something you create when you sign documents), a timestamp, or a countersignature.
cssUnknown | 0 | The scope of signature is unknown |
cssData | 1 | The signature is a top-level signature over the data |
cssSignature | 2 | The signature is a countersignature, and is made over another signature |
cssTimestamp | 3 | The signature is made over a timestamp |
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is read-only and not available at design time.
Data Type
Integer
NewSigSerialNumber Property (CAdESSigner Component)
The serial number of the signing certificate.
Syntax
__property DynamicArrayNewSigSerialNumber = { read=FNewSigSerialNumber };
Remarks
The serial number of the signing certificate.
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
NewSigSignatureBytes Property (CAdESSigner Component)
Returns the binary representation of the CAdES signature.
Syntax
__property DynamicArrayNewSigSignatureBytes = { read=FNewSigSignatureBytes };
Remarks
Returns the binary representation of the CAdES signature.
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
NewSigSignatureValidationResult Property (CAdESSigner Component)
The outcome of the cryptographic signature validation.
Syntax
__property TsbxCAdESSignerNewSigSignatureValidationResults NewSigSignatureValidationResult = { read=FNewSigSignatureValidationResult };
enum TsbxCAdESSignerNewSigSignatureValidationResults { svtValid=0, svtUnknown=1, svtCorrupted=2, svtSignerNotFound=3, svtFailure=4, svtReferenceCorrupted=5 };
Default Value
svtValid
Remarks
The outcome of the cryptographic signature validation.
The following signature validity values are supported:
svtValid | 0 | The signature is valid |
svtUnknown | 1 | Signature validity is unknown |
svtCorrupted | 2 | The signature is corrupted |
svtSignerNotFound | 3 | Failed to acquire the signing certificate. The signature cannot be validated. |
svtFailure | 4 | General failure |
svtReferenceCorrupted | 5 | Reference corrupted (XML-based signatures only) |
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is read-only and not available at design time.
Data Type
Integer
NewSigSubjectKeyID Property (CAdESSigner Component)
Contains the subject key identifier of the signing certificate.
Syntax
__property DynamicArrayNewSigSubjectKeyID = { read=FNewSigSubjectKeyID };
Remarks
Contains the subject key identifier of the signing certificate.
Subject Key Identifier is a (non-critical) X.509 certificate extension which allows the identification of certificates containing a particular public key. In SecureBlackbox, the unique identifier is represented by a SHA-1 hash of the bit string of the subject public key.
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
NewSigSubjectRDN Property (CAdESSigner Component)
Contains the RDN of the owner of the signing certificate.
Syntax
__property String NewSigSubjectRDN = { read=FNewSigSubjectRDN };
Default Value
""
Remarks
Contains the RDN of the owner of the signing certificate.
RDN is a number of OID=Value pairs declared in the certificate and providing the owner's details.
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is read-only and not available at design time.
Data Type
String
NewSigTimestamped Property (CAdESSigner Component)
Use this property to establish whether the signature contains an embedded timestamp.
Syntax
__property bool NewSigTimestamped = { read=FNewSigTimestamped };
Default Value
false
Remarks
Use this property to establish whether the signature contains an embedded timestamp.
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is read-only and not available at design time.
Data Type
Boolean
NewSigValidatedSigningTime Property (CAdESSigner Component)
Contains the certified signing time.
Syntax
__property String NewSigValidatedSigningTime = { read=FNewSigValidatedSigningTime };
Default Value
""
Remarks
Contains the certified signing time.
Use this property to obtain the signing time as certified by a timestamp from a trusted timestamping authority. This property is only non-empty if there was a valid timestamp included in the signature.
NewSigClaimedSigningTime returns a non-trusted signing time from the signer's computer.
Both times are in UTC.
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is read-only and not available at design time.
Data Type
String
NewSigValidationLog Property (CAdESSigner Component)
Contains the signing certificate's chain validation log.
Syntax
__property String NewSigValidationLog = { read=FNewSigValidationLog };
Default Value
""
Remarks
Contains the signing certificate's chain validation log. This information may be very useful in investigating chain validation failures.
The parameter specifies the index of the item in the array. The size of the array is controlled by the NewSigCount property.
This property is read-only and not available at design time.
Data Type
String
OCSPCount Property (CAdESSigner Component)
The number of records in the OCSP arrays.
Syntax
__property int OCSPCount = { read=FOCSPCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
- OCSPBytes
- OCSPEntryCount
- OCSPHandle
- OCSPIssuer
- OCSPIssuerRDN
- OCSPLocation
- OCSPProducedAt
- OCSPSigAlgorithm
- OCSPSource
This property is read-only and not available at design time.
Data Type
Integer
OCSPBytes Property (CAdESSigner Component)
A buffer containing the raw OCSP response data.
Syntax
__property DynamicArrayOCSPBytes[int OCSPIndex] = { read=FOCSPBytes };
Remarks
A buffer containing the raw OCSP response data.
The OCSPIndex parameter specifies the index of the item in the array. The size of the array is controlled by the OCSPCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
OCSPEntryCount Property (CAdESSigner Component)
The number of SingleResponse elements contained in this OCSP response.
Syntax
__property int OCSPEntryCount[int OCSPIndex] = { read=FOCSPEntryCount };
Default Value
0
Remarks
The number of SingleResponse elements contained in this OCSP response. Each SingleResponse element corresponds to a certificate status.
The OCSPIndex parameter specifies the index of the item in the array. The size of the array is controlled by the OCSPCount property.
This property is read-only and not available at design time.
Data Type
Integer
OCSPHandle Property (CAdESSigner Component)
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
__property __int64 OCSPHandle[int OCSPIndex] = { read=FOCSPHandle };
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The OCSPIndex parameter specifies the index of the item in the array. The size of the array is controlled by the OCSPCount property.
This property is read-only and not available at design time.
Data Type
Long64
OCSPIssuer Property (CAdESSigner Component)
Indicates the issuer of this response (a CA or its authorized representative).
Syntax
__property String OCSPIssuer[int OCSPIndex] = { read=FOCSPIssuer };
Default Value
""
Remarks
Indicates the issuer of this response (a CA or its authorized representative).
The OCSPIndex parameter specifies the index of the item in the array. The size of the array is controlled by the OCSPCount property.
This property is read-only and not available at design time.
Data Type
String
OCSPIssuerRDN Property (CAdESSigner Component)
Indicates the RDN of the issuer of this response (a CA or its authorized representative).
Syntax
__property String OCSPIssuerRDN[int OCSPIndex] = { read=FOCSPIssuerRDN };
Default Value
""
Remarks
Indicates the RDN of the issuer of this response (a CA or its authorized representative).
The OCSPIndex parameter specifies the index of the item in the array. The size of the array is controlled by the OCSPCount property.
This property is read-only and not available at design time.
Data Type
String
OCSPLocation Property (CAdESSigner Component)
The location of the OCSP responder.
Syntax
__property String OCSPLocation[int OCSPIndex] = { read=FOCSPLocation };
Default Value
""
Remarks
The location of the OCSP responder.
The OCSPIndex parameter specifies the index of the item in the array. The size of the array is controlled by the OCSPCount property.
This property is read-only and not available at design time.
Data Type
String
OCSPProducedAt Property (CAdESSigner Component)
Specifies the time when the response was produced, in UTC.
Syntax
__property String OCSPProducedAt[int OCSPIndex] = { read=FOCSPProducedAt };
Default Value
""
Remarks
Specifies the time when the response was produced, in UTC.
The OCSPIndex parameter specifies the index of the item in the array. The size of the array is controlled by the OCSPCount property.
This property is read-only and not available at design time.
Data Type
String
OCSPSigAlgorithm Property (CAdESSigner Component)
The public key algorithm that was used by the CA to sign this OCSP response.
Syntax
__property String OCSPSigAlgorithm[int OCSPIndex] = { read=FOCSPSigAlgorithm };
Default Value
"0"
Remarks
The public key algorithm that was used by the CA to sign this OCSP response.
The OCSPIndex parameter specifies the index of the item in the array. The size of the array is controlled by the OCSPCount property.
This property is read-only and not available at design time.
Data Type
String
OCSPSource Property (CAdESSigner Component)
Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.
Syntax
__property TsbxCAdESSignerOCSPSources OCSPSource[int OCSPIndex] = { read=FOCSPSource };
enum TsbxCAdESSignerOCSPSources { pksUnknown=0, pksSignature=1, pksDocument=2, pksUser=3, pksLocal=4, pksOnline=5 };
Default Value
pksUnknown
Remarks
Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.
The OCSPIndex parameter specifies the index of the item in the array. The size of the array is controlled by the OCSPCount property.
This property is read-only and not available at design time.
Data Type
Integer
OfflineMode Property (CAdESSigner Component)
Switches the component to offline mode.
Syntax
__property bool OfflineMode = { read=FOfflineMode, write=FSetOfflineMode };
Default Value
false
Remarks
When working in offline mode, the component restricts itself from using any online revocation information sources, such as CRL or OCSP responders.
Offline mode may be useful if there is a need to verify the completeness of the validation information included within the signature or provided via KnownCertificates, KnownCRLs, and other related properties.
Data Type
Boolean
OutputBytes Property (CAdESSigner Component)
Use this property to read the output the component object has produced.
Syntax
__property DynamicArrayOutputBytes = { read=FOutputBytes };
Remarks
Read the contents of this property after the operation has completed to read the produced output. This property will only be set if the OutputFile and OutputStream properties had not been assigned.
This property is read-only and not available at design time.
Data Type
Byte Array
OutputFile Property (CAdESSigner Component)
A file where the signed data is to be saved.
Syntax
__property String OutputFile = { read=FOutputFile, write=FSetOutputFile };
Default Value
""
Remarks
Use this property to provide a path to the file where to save the resulting signed message.
Data Type
String
Profile Property (CAdESSigner Component)
Specifies a pre-defined profile to apply when creating the signature.
Syntax
__property String Profile = { read=FProfile, write=FSetProfile };
Default Value
""
Remarks
Advanced signatures come in many variants, which are often defined by parties that needs to process them or by local standards. SecureBlackbox profiles are sets of pre-defined configurations which correspond to particular signature variants. By specifying a profile, you are pre-configuring the component to make it produce the signature that matches the configuration corresponding to that profile.
Data Type
String
ProxyAddress Property (CAdESSigner Component)
The IP address of the proxy server.
Syntax
__property String ProxyAddress = { read=FProxyAddress, write=FSetProxyAddress };
Default Value
""
Remarks
The IP address of the proxy server.
Data Type
String
ProxyAuthentication Property (CAdESSigner Component)
The authentication type used by the proxy server.
Syntax
__property TsbxCAdESSignerProxyAuthentications ProxyAuthentication = { read=FProxyAuthentication, write=FSetProxyAuthentication };
enum TsbxCAdESSignerProxyAuthentications { patNoAuthentication=0, patBasic=1, patDigest=2, patNTLM=3 };
Default Value
patNoAuthentication
Remarks
The authentication type used by the proxy server.
patNoAuthentication | 0 |
patBasic | 1 |
patDigest | 2 |
patNTLM | 3 |
Data Type
Integer
ProxyPassword Property (CAdESSigner Component)
The password to authenticate to the proxy server.
Syntax
__property String ProxyPassword = { read=FProxyPassword, write=FSetProxyPassword };
Default Value
""
Remarks
The password to authenticate to the proxy server.
Data Type
String
ProxyPort Property (CAdESSigner Component)
The port on the proxy server to connect to.
Syntax
__property int ProxyPort = { read=FProxyPort, write=FSetProxyPort };
Default Value
0
Remarks
The port on the proxy server to connect to.
Data Type
Integer
ProxyProxyType Property (CAdESSigner Component)
The type of the proxy server.
Syntax
__property TsbxCAdESSignerProxyProxyTypes ProxyProxyType = { read=FProxyProxyType, write=FSetProxyProxyType };
enum TsbxCAdESSignerProxyProxyTypes { cptNone=0, cptSocks4=1, cptSocks5=2, cptWebTunnel=3, cptHTTP=4 };
Default Value
cptNone
Remarks
The type of the proxy server.
cptNone | 0 |
cptSocks4 | 1 |
cptSocks5 | 2 |
cptWebTunnel | 3 |
cptHTTP | 4 |
Data Type
Integer
ProxyRequestHeaders Property (CAdESSigner Component)
Contains HTTP request headers for WebTunnel and HTTP proxy.
Syntax
__property String ProxyRequestHeaders = { read=FProxyRequestHeaders, write=FSetProxyRequestHeaders };
Default Value
""
Remarks
Contains HTTP request headers for WebTunnel and HTTP proxy.
Data Type
String
ProxyResponseBody Property (CAdESSigner Component)
Contains the HTTP or HTTPS (WebTunnel) proxy response body.
Syntax
__property String ProxyResponseBody = { read=FProxyResponseBody, write=FSetProxyResponseBody };
Default Value
""
Remarks
Contains the HTTP or HTTPS (WebTunnel) proxy response body.
Data Type
String
ProxyResponseHeaders Property (CAdESSigner Component)
Contains response headers received from an HTTP or HTTPS (WebTunnel) proxy server.
Syntax
__property String ProxyResponseHeaders = { read=FProxyResponseHeaders, write=FSetProxyResponseHeaders };
Default Value
""
Remarks
Contains response headers received from an HTTP or HTTPS (WebTunnel) proxy server.
Data Type
String
ProxyUseIPv6 Property (CAdESSigner Component)
Specifies whether IPv6 should be used when connecting through the proxy.
Syntax
__property bool ProxyUseIPv6 = { read=FProxyUseIPv6, write=FSetProxyUseIPv6 };
Default Value
false
Remarks
Specifies whether IPv6 should be used when connecting through the proxy.
Data Type
Boolean
ProxyUsername Property (CAdESSigner Component)
Specifies the username credential for proxy authentication.
Syntax
__property String ProxyUsername = { read=FProxyUsername, write=FSetProxyUsername };
Default Value
""
Remarks
Specifies the username credential for proxy authentication.
Data Type
String
RevocationCheck Property (CAdESSigner Component)
Specifies the kind(s) of revocation check to perform for all chain certificates.
Syntax
__property TsbxCAdESSignerRevocationChecks RevocationCheck = { read=FRevocationCheck, write=FSetRevocationCheck };
enum TsbxCAdESSignerRevocationChecks { crcNone=0, crcAuto=1, crcAllCRL=2, crcAllOCSP=3, crcAllCRLAndOCSP=4, crcAnyCRL=5, crcAnyOCSP=6, crcAnyCRLOrOCSP=7, crcAnyOCSPOrCRL=8 };
Default Value
crcAuto
Remarks
Revocation checking is necessary to ensure the integrity of the chain and obtain up-to-date certificate validity and trustworthiness information.
Certificate Revocation Lists (CRLs) and Online Certificate Status Protocol (OCSP) responses serve the same purpose of ensuring that the certificate had not been revoked by the Certificate Authority (CA) at the time of use. Depending on your circumstances and security policy requirements, you may want to use either one or both of the revocation information source types.
crcNone | 0 | No revocation checking. |
crcAuto | 1 | Automatic mode selection. Currently this maps to crcAnyOCSPOrCRL, but it may change in the future. |
crcAllCRL | 2 | All provided CRL endpoints will be checked, and all checks must succeed. |
crcAllOCSP | 3 | All provided OCSP endpoints will be checked, and all checks must succeed. |
crcAllCRLAndOCSP | 4 | All provided CRL and OCSP endpoints will be checked, and all checks must succeed. |
crcAnyCRL | 5 | All provided CRL endpoints will be checked, and at least one check must succeed. |
crcAnyOCSP | 6 | All provided OCSP endpoints will be checked, and at least one check must succeed. |
crcAnyCRLOrOCSP | 7 | All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. CRL endpoints are checked first. |
crcAnyOCSPOrCRL | 8 | All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. OCSP endpoints are checked first. |
This setting controls the way the revocation checks are performed for every certificate in the chain. Typically certificates come with two types of revocation information sources: CRL (certificate revocation lists) and OCSP responders. CRLs are static objects periodically published by the CA at some online location. OCSP responders are active online services maintained by the CA that can provide up-to-date information on certificate statuses in near real time.
There are some conceptual differences between the two. CRLs are normally larger in size. Their use involves some latency because there is normally some delay between the time when a certificate was revoked and the time the subsequent CRL mentioning that is published. The benefits of CRL is that the same object can provide statuses for all certificates issued by a particular CA, and that the whole technology is much simpler than OCSP (and thus is supported by more CAs).
This setting lets you adjust the validation course by including or excluding certain types of revocation sources from the validation process. The crcAnyOCSPOrCRL setting (give preference to the faster OCSP route and only demand one source to succeed) is a good choice for most typical validation environments. The "crcAll*" modes are much stricter, and may be used in scenarios where bulletproof validity information is essential.
Note: If no CRL or OCSP endpoints are provided by the CA, the revocation check will be considered successful. This is because the CA chose not to supply revocation information for its certificates, meaning they are considered irrevocable.
Note: Within each of the above settings, if any retrieved CRL or OCSP response indicates that the certificate has been revoked, the revocation check fails.
Data Type
Integer
SignatureCount Property (CAdESSigner Component)
The number of records in the Signature arrays.
Syntax
__property int SignatureCount = { read=FSignatureCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
- SignatureChainValidationDetails
- SignatureChainValidationResult
- SignatureClaimedSigningTime
- SignatureCompatibilityErrors
- SignatureContainsLongTermInfo
- SignatureContentType
- SignatureCountersigned
- SignatureEntityLabel
- SignatureHandle
- SignatureHashAlgorithm
- SignatureIssuerRDN
- SignatureLastArchivalTime
- SignatureLevel
- SignatureMessageDigest
- SignatureParentEntity
- SignaturePolicyHash
- SignaturePolicyHashAlgorithm
- SignaturePolicyID
- SignaturePolicyURI
- SignaturePublicKeyAlgorithm
- SignatureScope
- SignatureSerialNumber
- SignatureSignatureBytes
- SignatureSignatureValidationResult
- SignatureSubjectKeyID
- SignatureSubjectRDN
- SignatureTimestamped
- SignatureValidatedSigningTime
- SignatureValidationLog
This property is read-only and not available at design time.
Data Type
Integer
SignatureChainValidationDetails Property (CAdESSigner Component)
The details of a certificate chain validation outcome.
Syntax
__property int SignatureChainValidationDetails[int SignatureIndex] = { read=FSignatureChainValidationDetails };
Default Value
0
Remarks
The details of a certificate chain validation outcome. They may often suggest the reasons that contributed to the overall validation result.
Returns a bit mask of the following options:
cvrBadData | 0x0001 | One or more certificates in the validation path are malformed |
cvrRevoked | 0x0002 | One or more certificates are revoked |
cvrNotYetValid | 0x0004 | One or more certificates are not yet valid |
cvrExpired | 0x0008 | One or more certificates are expired |
cvrInvalidSignature | 0x0010 | A certificate contains a non-valid digital signature |
cvrUnknownCA | 0x0020 | A CA certificate for one or more certificates has not been found (chain incomplete) |
cvrCAUnauthorized | 0x0040 | One of the CA certificates are not authorized to act as CA |
cvrCRLNotVerified | 0x0080 | One or more CRLs could not be verified |
cvrOCSPNotVerified | 0x0100 | One or more OCSP responses could not be verified |
cvrIdentityMismatch | 0x0200 | The identity protected by the certificate (a TLS endpoint or an e-mail addressee) does not match what is recorded in the certificate |
cvrNoKeyUsage | 0x0400 | A mandatory key usage is not enabled in one of the chain certificates |
cvrBlocked | 0x0800 | One or more certificates are blocked |
cvrFailure | 0x1000 | General validation failure |
cvrChainLoop | 0x2000 | Chain loop: one of the CA certificates recursively signs itself |
cvrWeakAlgorithm | 0x4000 | A weak algorithm is used in one of certificates or revocation elements |
cvrUserEnforced | 0x8000 | The chain was considered invalid following intervention from a user code |
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
Integer
SignatureChainValidationResult Property (CAdESSigner Component)
The outcome of a certificate chain validation routine.
Syntax
__property TsbxCAdESSignerSignatureChainValidationResults SignatureChainValidationResult[int SignatureIndex] = { read=FSignatureChainValidationResult };
enum TsbxCAdESSignerSignatureChainValidationResults { cvtValid=0, cvtValidButUntrusted=1, cvtInvalid=2, cvtCantBeEstablished=3 };
Default Value
cvtValid
Remarks
The outcome of a certificate chain validation routine.
Available options:
cvtValid | 0 | The chain is valid |
cvtValidButUntrusted | 1 | The chain is valid, but the root certificate is not trusted |
cvtInvalid | 2 | The chain is not valid (some of certificates are revoked, expired, or contain an invalid signature) |
cvtCantBeEstablished | 3 | The validity of the chain cannot be established because of missing or unavailable validation information (certificates, CRLs, or OCSP responses) |
Use the ValidationLog property to access the detailed validation log.
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
Integer
SignatureClaimedSigningTime Property (CAdESSigner Component)
The signing time from the signer's computer.
Syntax
__property String SignatureClaimedSigningTime[int SignatureIndex] = { read=FSignatureClaimedSigningTime };
Default Value
""
Remarks
The signing time from the signer's computer.
Use this property to provide the signature production time. The claimed time is not supported by a trusted source; it may be inaccurate, forfeited, or wrong, and as such is usually taken for informational purposes only by verifiers. Use timestamp servers to embed verifiable trusted timestamps. The time is in UTC.
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
String
SignatureCompatibilityErrors Property (CAdESSigner Component)
Returns compatibility errors encountered during validation.
Syntax
__property int SignatureCompatibilityErrors[int SignatureIndex] = { read=FSignatureCompatibilityErrors };
Default Value
0
Remarks
Returns compatibility errors encountered during validation.
Use this property to get specific compatibility errors encountered during validation. Unlike chain validation details, compatibility errors indicate violations by the signature of the assumed signature level/profile. For example, BES signatures are required to contain the signing time attribute. A prospective BES signature without such attribute will invoke a compatibility error.
Supported values:
cerrUnknown | 0x00001 | Unknown validation error |
cerrNoMessageDigest | 0x00002 | No message digest attribute included in the signature |
cerrNoContentType | 0x00004 | No mandatory content-type attribute is included in the signature |
cerrNoSigningCertificate | 0x00008 | No mandatory signing-certificate (-v2) attribute is included in the signature |
cerrNoSignaturePolicy | 0x00010 | No signature policy information is included in the signature |
cerrNoSignatureTimestamp | 0x00020 | The signature is not timestamped |
cerrNoCertificateReferences | 0x00040 | No certificate-references attribute was found in the signature |
cerrNoRevocationReferences | 0x00080 | No revocation-references attribute was found in the signature |
cerrNoCertificateValues | 0x00100 | No certificate-values attribute was found in the signature |
cerrNoRevocationValues | 0x00200 | No revocation-values attribute was found in the signature |
cerrNoTimestampedValidationData | 0x00400 | No timestamped validation data was found in the signature |
cerrNoArchivalTimestamp | 0x00800 | No archival timestamp was found in the signature |
cerrUnexpectedValidationElements | 0x01000 | Unexpected validation elements were found in the signature |
cerrMissingValidationElements | 0x02000 | Some mandatory validation elements are missing from the signature |
cerrInvalidATSHashIndex | 0x04000 | ATS Hash Index attribute is invalid |
cerrNoSigningTime | 0x08000 | No mandatory signing-time attribute was found in the signature |
cerrMisplacedSigPolicyStore | 0x10000 | Signature policy store attribute is misplaced |
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
Integer
SignatureContainsLongTermInfo Property (CAdESSigner Component)
Returns true if the signature was found to contain long-term validation details (certificates, CRLs, and OCSP response).
Syntax
__property bool SignatureContainsLongTermInfo[int SignatureIndex] = { read=FSignatureContainsLongTermInfo };
Default Value
false
Remarks
Returns true if the signature was found to contain long-term validation details (certificates, CRLs, and OCSP response).
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
Boolean
SignatureContentType Property (CAdESSigner Component)
The signature content type.
Syntax
__property String SignatureContentType[int SignatureIndex] = { read=FSignatureContentType };
Default Value
""
Remarks
The signature content type.
Use this property to check the content type attribute of the message record in it by the signer.
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
String
SignatureCountersigned Property (CAdESSigner Component)
Indicates if the signature is countersigned.
Syntax
__property bool SignatureCountersigned[int SignatureIndex] = { read=FSignatureCountersigned };
Default Value
false
Remarks
Indicates if the signature is countersigned.
Use this property to find out whether the signed message contains any countersignatures over the main signature(s).
You can track countersignatures during the validating by subscribing to SignatureValidated event.
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
Boolean
SignatureEntityLabel Property (CAdESSigner Component)
Use this property to get the signature entity label.
Syntax
__property String SignatureEntityLabel[int SignatureIndex] = { read=FSignatureEntityLabel };
Default Value
""
Remarks
Use this property to get the signature entity label.
This property returns a string label that uniquely identifies the signature. The label can be used to establish the signature target in the SignatureFound event or to select the signing chain via the SelectInfo method.
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
String
SignatureHandle Property (CAdESSigner Component)
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
__property __int64 SignatureHandle[int SignatureIndex] = { read=FSignatureHandle };
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
Long64
SignatureHashAlgorithm Property (CAdESSigner Component)
Set or returns the hash algorithm used to generate the signature.
Syntax
__property String SignatureHashAlgorithm[int SignatureIndex] = { read=FSignatureHashAlgorithm };
Default Value
""
Remarks
Set or returns the hash algorithm used to generate the signature.
Check this property after verifying the signature to get the hash algorithm which was used to calculate it. When creating a signed file, use this property to specify the hash algorithm to use.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
String
SignatureIssuerRDN Property (CAdESSigner Component)
The Relative Distinguished Name of the signing certificate's issuer.
Syntax
__property String SignatureIssuerRDN[int SignatureIndex] = { read=FSignatureIssuerRDN };
Default Value
""
Remarks
The Relative Distinguished Name of the signing certificate's issuer.
A collection of information, in the form of [OID, Value] pairs, about the company that issued the signing certificate.
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
String
SignatureLastArchivalTime Property (CAdESSigner Component)
Indicates the most recent archival time of an archived signature This property returns the time of the most recent archival timestamp applied to the signature.
Syntax
__property String SignatureLastArchivalTime[int SignatureIndex] = { read=FSignatureLastArchivalTime };
Default Value
""
Remarks
Indicates the most recent archival time of an archived signature
This property returns the time of the most recent archival timestamp applied to the signature. This property only makes sense for 'archived' (e.g. CAdES-A) signatures. Time is in UTC.
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
String
SignatureLevel Property (CAdESSigner Component)
Specifies the CAdES signature level.
Syntax
__property TsbxCAdESSignerSignatureLevels SignatureLevel[int SignatureIndex] = { read=FSignatureLevel };
enum TsbxCAdESSignerSignatureLevels { aslUnknown=0, aslGeneric=1, aslBaselineB=2, aslBaselineT=3, aslBaselineLT=4, aslBaselineLTA=5, aslBES=6, aslEPES=7, aslT=8, aslC=9, aslX=10, aslXType1=11, aslXType2=12, aslXL=13, aslXLType1=14, aslXLType2=15, aslA=16, aslExtendedBES=17, aslExtendedEPES=18, aslExtendedT=19, aslExtendedC=20, aslExtendedX=21, aslExtendedXType1=22, aslExtendedXType2=23, aslExtendedXLong=24, aslExtendedXL=25, aslExtendedXLType1=26, aslExtendedXLType2=27, aslExtendedA=28 };
Default Value
aslBaselineB
Remarks
Specifies the CAdES signature level.
CMS Advanced Electronic Signatures (CAdES) standard defines a number of different 'levels' of signatures which can be used for different purposes.
The supported levels are:
aslUnknown | 0 | Unknown signature level |
aslGeneric | 1 | Generic (this value applicable to XAdES signature only and corresponds to XML-DSIG signature) |
aslBaselineB | 2 | Baseline B (B-B, basic) |
aslBaselineT | 3 | Baseline T (B-T, timestamped) |
aslBaselineLT | 4 | Baseline LT (B-LT, long-term) |
aslBaselineLTA | 5 | Baseline LTA (B-LTA, long-term with archived timestamp) |
aslBES | 6 | BES (Basic Electronic Signature) |
aslEPES | 7 | EPES (Electronic Signature with an Explicit Policy) |
aslT | 8 | T (Timestamped) |
aslC | 9 | C (T with revocation references) |
aslX | 10 | X (C with SigAndRefs timestamp or RefsOnly timestamp) (this value applicable to XAdES signature only) |
aslXType1 | 11 | X Type 1 (C with an ES-C timestamp) (this value applicable to CAdES signature only) |
aslXType2 | 12 | X Type 2 (C with a CertsAndCRLs timestamp) (this value applicable to CAdES signature only) |
aslXL | 13 | X-L (X with revocation values) (this value applicable to XAdES signature only) |
aslXLType1 | 14 | X-L Type 1 (C with revocation values and an ES-C timestamp) (this value applicable to CAdES signature only) |
aslXLType2 | 15 | X-L Type 2 (C with revocation values and a CertsAndCRLs timestamp) (this value applicable to CAdES signature only) |
aslA | 16 | A (archived) |
aslExtendedBES | 17 | Extended BES |
aslExtendedEPES | 18 | Extended EPES |
aslExtendedT | 19 | Extended T |
aslExtendedC | 20 | Extended C |
aslExtendedX | 21 | Extended X (this value applicable to XAdES signature only) |
aslExtendedXType1 | 22 | Extended X (type 1) (this value applicable to CAdES signature only) |
aslExtendedXType2 | 23 | Extended X (type 2) (this value applicable to CAdES signature only) |
aslExtendedXLong | 24 | Extended X-Long (this value applicable to XAdES signature only) |
aslExtendedXL | 25 | Extended X-L (this value applicable to XAdES signature only) |
aslExtendedXLType1 | 26 | Extended XL (type 1) (this value applicable to CAdES signature only) |
aslExtendedXLType2 | 27 | Extended XL (type 2) (this value applicable to CAdES signature only) |
aslExtendedA | 28 | Extended A |
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
Integer
SignatureMessageDigest Property (CAdESSigner Component)
The binary of the signature's message digest.
Syntax
__property String SignatureMessageDigest[int SignatureIndex] = { read=FSignatureMessageDigest };
Default Value
""
Remarks
The binary of the signature's message digest.
Use this property to access the 'main' message digest of the CMS blob (the digest included as a message-digest signed attribute).
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
String
SignatureParentEntity Property (CAdESSigner Component)
Use this property to get the parent signature label.
Syntax
__property String SignatureParentEntity[int SignatureIndex] = { read=FSignatureParentEntity };
Default Value
""
Remarks
Use this property to get the parent signature label.
This property contains the unique entity label of the current signature's parent object - typically a higher-level signature or a timestamp.
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
String
SignaturePolicyHash Property (CAdESSigner Component)
The signature policy hash value.
Syntax
__property String SignaturePolicyHash[int SignatureIndex] = { read=FSignaturePolicyHash };
Default Value
""
Remarks
The signature policy hash value.
Use this property to get the signature policy hash from EPES signatures
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
String
SignaturePolicyHashAlgorithm Property (CAdESSigner Component)
The algorithm that was used to calculate the signature policy hash Use this property to get or set the hash algorithm used to calculate the signature policy hash.
Syntax
__property String SignaturePolicyHashAlgorithm[int SignatureIndex] = { read=FSignaturePolicyHashAlgorithm };
Default Value
""
Remarks
The algorithm that was used to calculate the signature policy hash
Use this property to get or set the hash algorithm used to calculate the signature policy hash. Read the actual hash value from SignaturePolicyHash.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
String
SignaturePolicyID Property (CAdESSigner Component)
The policy ID that was included or to be included into the signature.
Syntax
__property String SignaturePolicyID[int SignatureIndex] = { read=FSignaturePolicyID };
Default Value
""
Remarks
The policy ID that was included or to be included into the signature.
Use this property to retrieve the signature policy identifier from EPES signatures.
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
String
SignaturePolicyURI Property (CAdESSigner Component)
The signature policy URI that was included in the signature.
Syntax
__property String SignaturePolicyURI[int SignatureIndex] = { read=FSignaturePolicyURI };
Default Value
""
Remarks
The signature policy URI that was included in the signature.
Use this property to set or retrieve the URI of the signature policy from EPES signatures.
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
String
SignaturePublicKeyAlgorithm Property (CAdESSigner Component)
Returns the public key algorithm that was used to create the signature.
Syntax
__property String SignaturePublicKeyAlgorithm[int SignatureIndex] = { read=FSignaturePublicKeyAlgorithm };
Default Value
""
Remarks
Returns the public key algorithm that was used to create the signature.
This property specifies the public key algorithm that was used to create the signature. This typically matches the algorithm of the signing certificate.
SB_CERT_ALGORITHM_ID_RSA_ENCRYPTION | rsaEncryption | |
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTION | md2withRSAEncryption | |
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTION | md5withRSAEncryption | |
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTION | sha1withRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA | id-dsa | |
SB_CERT_ALGORITHM_ID_DSA_SHA1 | id-dsa-with-sha1 | |
SB_CERT_ALGORITHM_DH_PUBLIC | dhpublicnumber | |
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTION | sha224WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTION | sha256WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTION | sha384WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTION | sha512WithRSAEncryption | |
SB_CERT_ALGORITHM_ID_RSAPSS | id-RSASSA-PSS | |
SB_CERT_ALGORITHM_ID_RSAOAEP | id-RSAES-OAEP | |
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160 | ripemd160withRSA | |
SB_CERT_ALGORITHM_ID_ELGAMAL | elGamal | |
SB_CERT_ALGORITHM_SHA1_ECDSA | ecdsa-with-SHA1 | |
SB_CERT_ALGORITHM_RECOMMENDED_ECDSA | ecdsa-recommended | |
SB_CERT_ALGORITHM_SHA224_ECDSA | ecdsa-with-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA | ecdsa-with-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA | ecdsa-with-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA | ecdsa-with-SHA512 | |
SB_CERT_ALGORITHM_EC | id-ecPublicKey | |
SB_CERT_ALGORITHM_SPECIFIED_ECDSA | ecdsa-specified | |
SB_CERT_ALGORITHM_GOST_R3410_1994 | id-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3410_2001 | id-GostR3410-2001 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994 | id-GostR3411-94-with-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001 | id-GostR3411-94-with-GostR3410-2001 | |
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAIN | ecdsa-plain-SHA1 | |
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAIN | ecdsa-plain-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAIN | ecdsa-plain-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAIN | ecdsa-plain-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAIN | ecdsa-plain-SHA512 | |
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAIN | ecdsa-plain-RIPEMD160 | |
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTION | whirlpoolWithRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA_SHA224 | id-dsa-with-sha224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA256 | id-dsa-with-sha256 | |
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA | id-ecdsa-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA | id-ecdsa-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA | id-ecdsa-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA | id-ecdsa-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-512 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_224 | id-dsa-with-sha3-224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_256 | id-dsa-with-sha3-256 | |
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA | id-ecdsa-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA | id-ecdsa-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA | id-ecdsa-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA | id-ecdsa-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA | id-ecdsa-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA | id-ecdsa-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA | id-ecdsa-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA | id-ecdsa-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b512 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224 | id-dsa-with-blake2s224 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256 | id-dsa-with-blake2s256 | |
SB_CERT_ALGORITHM_EDDSA_ED25519 | id-Ed25519 | |
SB_CERT_ALGORITHM_EDDSA_ED448 | id-Ed448 | |
SB_CERT_ALGORITHM_EDDSA_ED25519_PH | id-Ed25519ph | |
SB_CERT_ALGORITHM_EDDSA_ED448_PH | id-Ed448ph | |
SB_CERT_ALGORITHM_EDDSA | id-EdDSA | |
SB_CERT_ALGORITHM_EDDSA_SIGNATURE | id-EdDSA-sig |
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
String
SignatureScope Property (CAdESSigner Component)
Returns the type of the entity that this signature corresponds to.
Syntax
__property int SignatureScope[int SignatureIndex] = { read=FSignatureScope };
Default Value
0
Remarks
Returns the type of the entity that this signature corresponds to.
A CAdES signature may cover several kinds of entities: the signed data itself (a top-level signature - something you create when you sign documents), a timestamp, or a countersignature.
cssUnknown | 0 | The scope of signature is unknown |
cssData | 1 | The signature is a top-level signature over the data |
cssSignature | 2 | The signature is a countersignature, and is made over another signature |
cssTimestamp | 3 | The signature is made over a timestamp |
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
Integer
SignatureSerialNumber Property (CAdESSigner Component)
The serial number of the signing certificate.
Syntax
__property DynamicArraySignatureSerialNumber[int SignatureIndex] = { read=FSignatureSerialNumber };
Remarks
The serial number of the signing certificate.
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
SignatureSignatureBytes Property (CAdESSigner Component)
Returns the binary representation of the CAdES signature.
Syntax
__property DynamicArraySignatureSignatureBytes[int SignatureIndex] = { read=FSignatureSignatureBytes };
Remarks
Returns the binary representation of the CAdES signature.
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
SignatureSignatureValidationResult Property (CAdESSigner Component)
The outcome of the cryptographic signature validation.
Syntax
__property TsbxCAdESSignerSignatureSignatureValidationResults SignatureSignatureValidationResult[int SignatureIndex] = { read=FSignatureSignatureValidationResult };
enum TsbxCAdESSignerSignatureSignatureValidationResults { svtValid=0, svtUnknown=1, svtCorrupted=2, svtSignerNotFound=3, svtFailure=4, svtReferenceCorrupted=5 };
Default Value
svtValid
Remarks
The outcome of the cryptographic signature validation.
The following signature validity values are supported:
svtValid | 0 | The signature is valid |
svtUnknown | 1 | Signature validity is unknown |
svtCorrupted | 2 | The signature is corrupted |
svtSignerNotFound | 3 | Failed to acquire the signing certificate. The signature cannot be validated. |
svtFailure | 4 | General failure |
svtReferenceCorrupted | 5 | Reference corrupted (XML-based signatures only) |
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
Integer
SignatureSubjectKeyID Property (CAdESSigner Component)
Contains the subject key identifier of the signing certificate.
Syntax
__property DynamicArraySignatureSubjectKeyID[int SignatureIndex] = { read=FSignatureSubjectKeyID };
Remarks
Contains the subject key identifier of the signing certificate.
Subject Key Identifier is a (non-critical) X.509 certificate extension which allows the identification of certificates containing a particular public key. In SecureBlackbox, the unique identifier is represented by a SHA-1 hash of the bit string of the subject public key.
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
SignatureSubjectRDN Property (CAdESSigner Component)
Contains the RDN of the owner of the signing certificate.
Syntax
__property String SignatureSubjectRDN[int SignatureIndex] = { read=FSignatureSubjectRDN };
Default Value
""
Remarks
Contains the RDN of the owner of the signing certificate.
RDN is a number of OID=Value pairs declared in the certificate and providing the owner's details.
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
String
SignatureTimestamped Property (CAdESSigner Component)
Use this property to establish whether the signature contains an embedded timestamp.
Syntax
__property bool SignatureTimestamped[int SignatureIndex] = { read=FSignatureTimestamped };
Default Value
false
Remarks
Use this property to establish whether the signature contains an embedded timestamp.
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
Boolean
SignatureValidatedSigningTime Property (CAdESSigner Component)
Contains the certified signing time.
Syntax
__property String SignatureValidatedSigningTime[int SignatureIndex] = { read=FSignatureValidatedSigningTime };
Default Value
""
Remarks
Contains the certified signing time.
Use this property to obtain the signing time as certified by a timestamp from a trusted timestamping authority. This property is only non-empty if there was a valid timestamp included in the signature.
SignatureClaimedSigningTime returns a non-trusted signing time from the signer's computer.
Both times are in UTC.
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
String
SignatureValidationLog Property (CAdESSigner Component)
Contains the signing certificate's chain validation log.
Syntax
__property String SignatureValidationLog[int SignatureIndex] = { read=FSignatureValidationLog };
Default Value
""
Remarks
Contains the signing certificate's chain validation log. This information may be very useful in investigating chain validation failures.
The SignatureIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignatureCount property.
This property is read-only and not available at design time.
Data Type
String
SignedAttributeCount Property (CAdESSigner Component)
The number of records in the SignedAttribute arrays.
Syntax
__property int SignedAttributeCount = { read=FSignedAttributeCount, write=FSetSignedAttributeCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at SignedAttributeCount - 1.This property is not available at design time.
Data Type
Integer
SignedAttributeOID Property (CAdESSigner Component)
The object identifier of the attribute.
Syntax
__property String SignedAttributeOID[int SignedAttributeIndex] = { read=FSignedAttributeOID, write=FSetSignedAttributeOID };
Default Value
""
Remarks
The object identifier of the attribute.
The SignedAttributeIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignedAttributeCount property.
This property is not available at design time.
Data Type
String
SignedAttributeValue Property (CAdESSigner Component)
The value of the attribute.
Syntax
__property DynamicArraySignedAttributeValue[int SignedAttributeIndex] = { read=FSignedAttributeValue, write=FSetSignedAttributeValue };
Remarks
The value of the attribute.
The SignedAttributeIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SignedAttributeCount property.
This property is not available at design time.
Data Type
Byte Array
SigningCertBytes Property (CAdESSigner Component)
Returns the raw certificate data in DER format.
Syntax
__property DynamicArraySigningCertBytes = { read=FSigningCertBytes };
Remarks
Returns the raw certificate data in DER format.
This property is read-only and not available at design time.
Data Type
Byte Array
SigningCertHandle Property (CAdESSigner Component)
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
__property __int64 SigningCertHandle = { read=FSigningCertHandle, write=FSetSigningCertHandle };
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
This property is not available at design time.
Data Type
Long64
SigningChainCount Property (CAdESSigner Component)
The number of records in the SigningChain arrays.
Syntax
__property int SigningChainCount = { read=FSigningChainCount, write=FSetSigningChainCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at SigningChainCount - 1.This property is not available at design time.
Data Type
Integer
SigningChainBytes Property (CAdESSigner Component)
Returns the raw certificate data in DER format.
Syntax
__property DynamicArraySigningChainBytes[int SigningChainIndex] = { read=FSigningChainBytes };
Remarks
Returns the raw certificate data in DER format.
The SigningChainIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SigningChainCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
SigningChainHandle Property (CAdESSigner Component)
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
__property __int64 SigningChainHandle[int SigningChainIndex] = { read=FSigningChainHandle, write=FSetSigningChainHandle };
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The SigningChainIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SigningChainCount property.
This property is not available at design time.
Data Type
Long64
SocketDNSMode Property (CAdESSigner Component)
Selects the DNS resolver to use: the component's (secure) built-in one, or the one provided by the system.
Syntax
__property TsbxCAdESSignerSocketDNSModes SocketDNSMode = { read=FSocketDNSMode, write=FSetSocketDNSMode };
enum TsbxCAdESSignerSocketDNSModes { dmAuto=0, dmPlatform=1, dmOwn=2, dmOwnSecure=3 };
Default Value
dmAuto
Remarks
Selects the DNS resolver to use: the component's (secure) built-in one, or the one provided by the system.
dmAuto | 0 |
dmPlatform | 1 |
dmOwn | 2 |
dmOwnSecure | 3 |
Data Type
Integer
SocketDNSPort Property (CAdESSigner Component)
Specifies the port number to be used for sending queries to the DNS server.
Syntax
__property int SocketDNSPort = { read=FSocketDNSPort, write=FSetSocketDNSPort };
Default Value
0
Remarks
Specifies the port number to be used for sending queries to the DNS server.
Data Type
Integer
SocketDNSQueryTimeout Property (CAdESSigner Component)
The timeout (in milliseconds) for each DNS query.
Syntax
__property int SocketDNSQueryTimeout = { read=FSocketDNSQueryTimeout, write=FSetSocketDNSQueryTimeout };
Default Value
0
Remarks
The timeout (in milliseconds) for each DNS query. The value of 0 indicates an infinite timeout.
Data Type
Integer
SocketDNSServers Property (CAdESSigner Component)
The addresses of DNS servers to use for address resolution, separated by commas or semicolons.
Syntax
__property String SocketDNSServers = { read=FSocketDNSServers, write=FSetSocketDNSServers };
Default Value
""
Remarks
The addresses of DNS servers to use for address resolution, separated by commas or semicolons.
Data Type
String
SocketDNSTotalTimeout Property (CAdESSigner Component)
The timeout (in milliseconds) for the whole resolution process.
Syntax
__property int SocketDNSTotalTimeout = { read=FSocketDNSTotalTimeout, write=FSetSocketDNSTotalTimeout };
Default Value
0
Remarks
The timeout (in milliseconds) for the whole resolution process. The value of 0 indicates an infinite timeout.
Data Type
Integer
SocketIncomingSpeedLimit Property (CAdESSigner Component)
The maximum number of bytes to read from the socket, per second.
Syntax
__property int SocketIncomingSpeedLimit = { read=FSocketIncomingSpeedLimit, write=FSetSocketIncomingSpeedLimit };
Default Value
0
Remarks
The maximum number of bytes to read from the socket, per second.
Data Type
Integer
SocketLocalAddress Property (CAdESSigner Component)
The local network interface to bind the socket to.
Syntax
__property String SocketLocalAddress = { read=FSocketLocalAddress, write=FSetSocketLocalAddress };
Default Value
""
Remarks
The local network interface to bind the socket to.
Data Type
String
SocketLocalPort Property (CAdESSigner Component)
The local port number to bind the socket to.
Syntax
__property int SocketLocalPort = { read=FSocketLocalPort, write=FSetSocketLocalPort };
Default Value
0
Remarks
The local port number to bind the socket to.
Data Type
Integer
SocketOutgoingSpeedLimit Property (CAdESSigner Component)
The maximum number of bytes to write to the socket, per second.
Syntax
__property int SocketOutgoingSpeedLimit = { read=FSocketOutgoingSpeedLimit, write=FSetSocketOutgoingSpeedLimit };
Default Value
0
Remarks
The maximum number of bytes to write to the socket, per second.
Data Type
Integer
SocketTimeout Property (CAdESSigner Component)
The maximum period of waiting, in milliseconds, after which the socket operation is considered unsuccessful.
Syntax
__property int SocketTimeout = { read=FSocketTimeout, write=FSetSocketTimeout };
Default Value
60000
Remarks
The maximum period of waiting, in milliseconds, after which the socket operation is considered unsuccessful.
If Timeout is set to 0, a socket operation will expire after the system-default timeout (2 hrs 8 min for TCP stack).
Data Type
Integer
SocketUseIPv6 Property (CAdESSigner Component)
Enables or disables IP protocol version 6.
Syntax
__property bool SocketUseIPv6 = { read=FSocketUseIPv6, write=FSetSocketUseIPv6 };
Default Value
false
Remarks
Enables or disables IP protocol version 6.
Data Type
Boolean
TimestampCount Property (CAdESSigner Component)
The number of records in the Timestamp arrays.
Syntax
__property int TimestampCount = { read=FTimestampCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
- TimestampAccuracy
- TimestampBytes
- TimestampCertificateIndex
- TimestampChainValidationDetails
- TimestampChainValidationResult
- TimestampContainsLongTermInfo
- TimestampEntityLabel
- TimestampHashAlgorithm
- TimestampParentEntity
- TimestampSerialNumber
- TimestampTime
- TimestampTimestampType
- TimestampTSAName
- TimestampValidationLog
- TimestampValidationResult
This property is read-only and not available at design time.
Data Type
Integer
TimestampAccuracy Property (CAdESSigner Component)
This property indicates the accuracy of the included time mark, in microseconds.
Syntax
__property __int64 TimestampAccuracy[int TimestampIndex] = { read=FTimestampAccuracy };
Default Value
0
Remarks
This field indicates the accuracy of the included time mark, in microseconds.
The TimestampIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TimestampCount property.
This property is read-only and not available at design time.
Data Type
Long64
TimestampBytes Property (CAdESSigner Component)
Returns the raw timestamp data in DER format.
Syntax
__property DynamicArrayTimestampBytes[int TimestampIndex] = { read=FTimestampBytes };
Remarks
Returns the raw timestamp data in DER format.
The TimestampIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TimestampCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
TimestampCertificateIndex Property (CAdESSigner Component)
Returns the index of the TSA certificate in the Certificates collection.
Syntax
__property int TimestampCertificateIndex[int TimestampIndex] = { read=FTimestampCertificateIndex };
Default Value
-1
Remarks
Returns the index of the TSA certificate in the Certificates collection.
Use this property to look up the TSA certificate in the Certificates collection.
The TimestampIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TimestampCount property.
This property is read-only and not available at design time.
Data Type
Integer
TimestampChainValidationDetails Property (CAdESSigner Component)
The details of a certificate chain validation outcome.
Syntax
__property int TimestampChainValidationDetails[int TimestampIndex] = { read=FTimestampChainValidationDetails };
Default Value
0
Remarks
The details of a certificate chain validation outcome. They may often suggest the reasons that contributed to the overall validation result.
Returns a bit mask of the following options:
cvrBadData | 0x0001 | One or more certificates in the validation path are malformed |
cvrRevoked | 0x0002 | One or more certificates are revoked |
cvrNotYetValid | 0x0004 | One or more certificates are not yet valid |
cvrExpired | 0x0008 | One or more certificates are expired |
cvrInvalidSignature | 0x0010 | A certificate contains a non-valid digital signature |
cvrUnknownCA | 0x0020 | A CA certificate for one or more certificates has not been found (chain incomplete) |
cvrCAUnauthorized | 0x0040 | One of the CA certificates are not authorized to act as CA |
cvrCRLNotVerified | 0x0080 | One or more CRLs could not be verified |
cvrOCSPNotVerified | 0x0100 | One or more OCSP responses could not be verified |
cvrIdentityMismatch | 0x0200 | The identity protected by the certificate (a TLS endpoint or an e-mail addressee) does not match what is recorded in the certificate |
cvrNoKeyUsage | 0x0400 | A mandatory key usage is not enabled in one of the chain certificates |
cvrBlocked | 0x0800 | One or more certificates are blocked |
cvrFailure | 0x1000 | General validation failure |
cvrChainLoop | 0x2000 | Chain loop: one of the CA certificates recursively signs itself |
cvrWeakAlgorithm | 0x4000 | A weak algorithm is used in one of certificates or revocation elements |
cvrUserEnforced | 0x8000 | The chain was considered invalid following intervention from a user code |
The TimestampIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TimestampCount property.
This property is read-only and not available at design time.
Data Type
Integer
TimestampChainValidationResult Property (CAdESSigner Component)
The outcome of a certificate chain validation routine.
Syntax
__property TsbxCAdESSignerTimestampChainValidationResults TimestampChainValidationResult[int TimestampIndex] = { read=FTimestampChainValidationResult };
enum TsbxCAdESSignerTimestampChainValidationResults { cvtValid=0, cvtValidButUntrusted=1, cvtInvalid=2, cvtCantBeEstablished=3 };
Default Value
cvtValid
Remarks
The outcome of a certificate chain validation routine.
Available options:
cvtValid | 0 | The chain is valid |
cvtValidButUntrusted | 1 | The chain is valid, but the root certificate is not trusted |
cvtInvalid | 2 | The chain is not valid (some of certificates are revoked, expired, or contain an invalid signature) |
cvtCantBeEstablished | 3 | The validity of the chain cannot be established because of missing or unavailable validation information (certificates, CRLs, or OCSP responses) |
Use the ValidationLog property to access the detailed validation log.
The TimestampIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TimestampCount property.
This property is read-only and not available at design time.
Data Type
Integer
TimestampContainsLongTermInfo Property (CAdESSigner Component)
Returns true if the signature was found to contain long-term validation details (certificates, CRLs, and OCSP response).
Syntax
__property bool TimestampContainsLongTermInfo[int TimestampIndex] = { read=FTimestampContainsLongTermInfo };
Default Value
false
Remarks
Returns true if the signature was found to contain long-term validation details (certificates, CRLs, and OCSP response).
The TimestampIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TimestampCount property.
This property is read-only and not available at design time.
Data Type
Boolean
TimestampEntityLabel Property (CAdESSigner Component)
Use this property to get the timestamp entity label.
Syntax
__property String TimestampEntityLabel[int TimestampIndex] = { read=FTimestampEntityLabel };
Default Value
""
Remarks
Use this property to get the timestamp entity label.
This property returns a string label that uniquely identifies the timestamp. The label can be used to establish the signature target in the SignatureFound event or to select the signing chain via the SelectInfo method.
The TimestampIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TimestampCount property.
This property is read-only and not available at design time.
Data Type
String
TimestampHashAlgorithm Property (CAdESSigner Component)
Returns the timestamp's hash algorithm.
Syntax
__property String TimestampHashAlgorithm[int TimestampIndex] = { read=FTimestampHashAlgorithm };
Default Value
""
Remarks
Returns the timestamp's hash algorithm.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
The TimestampIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TimestampCount property.
This property is read-only and not available at design time.
Data Type
String
TimestampParentEntity Property (CAdESSigner Component)
Use this property to get the label of the timestamp's parent entity.
Syntax
__property String TimestampParentEntity[int TimestampIndex] = { read=FTimestampParentEntity };
Default Value
""
Remarks
Use this property to get the label of the timestamp's parent entity.
This property references the EntityLabel of the object that the timestamp covers, typically a signature.
The TimestampIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TimestampCount property.
This property is read-only and not available at design time.
Data Type
String
TimestampSerialNumber Property (CAdESSigner Component)
Returns the timestamp's serial number.
Syntax
__property DynamicArrayTimestampSerialNumber[int TimestampIndex] = { read=FTimestampSerialNumber };
Remarks
Returns the timestamp's serial number.
The TimestampIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TimestampCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
TimestampTime Property (CAdESSigner Component)
The time point incorporated into the timestamp.
Syntax
__property String TimestampTime[int TimestampIndex] = { read=FTimestampTime };
Default Value
""
Remarks
The time point incorporated into the timestamp.
The TimestampIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TimestampCount property.
This property is read-only and not available at design time.
Data Type
String
TimestampTimestampType Property (CAdESSigner Component)
Returns the type of the timestamp.
Syntax
__property int TimestampTimestampType[int TimestampIndex] = { read=FTimestampTimestampType };
Default Value
0
Remarks
Returns the type of the timestamp.
Available options:
tstUnknown | 0 | |
tstLegacy | 1 | Supported by: Authenticode components |
tstTrusted | 2 | Supported by: Authenticode components |
tstGeneric | 3 | Supported by: CAdES components |
tstESC | 4 | Supported by: CAdES components |
tstContent | 5 | Supported by: CAdES components |
tstCertsAndCRLs | 6 | Supported by: CAdES components |
tstArchive | 7 | Archive timestamp. Supported by: ASiC, CAdES, JAdES, Office, SOAP, XAdES components |
tstArchive2 | 8 | Archive v2 timestamp. Supported by: ASiC, CAdES components |
tstArchive3 | 9 | Archive v3 timestamp. Supported by: ASiC, CAdES components |
tstIndividualDataObjects | 10 | Individual data objects timetamp. Supported by: ASiC, Office, SOAP, XAdES components |
tstAllDataObjects | 11 | All data objects timestamp. Supported by: ASiC, Office, SOAP, XAdES components |
tstSignature | 12 | Signature timestamp. Supported by: ASiC, JAdES, Office, SOAP, XAdES components |
tstRefsOnly | 13 | RefsOnly timestamp. Supported by: ASiC, JAdES, Office, SOAP, XAdES components |
tstSigAndRefs | 14 | SigAndRefs timestamp. Supported by: ASiC, JAdES, Office, SOAP, XAdES components |
tstSignedData | 15 | SignedData timestamp. Supported by: JAdES components |
tstArchive141 | 16 | Archive timestamp v1.4.1. Supported by: ASiC, Office, SOAP, XAdES components |
Not all of the above timestamp types can be supported by a specific signature technology used (CAdES, PDF, XAdES).
The TimestampIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TimestampCount property.
This property is read-only and not available at design time.
Data Type
Integer
TimestampTSAName Property (CAdESSigner Component)
This value uniquely identifies the Timestamp Authority (TSA).
Syntax
__property String TimestampTSAName[int TimestampIndex] = { read=FTimestampTSAName };
Default Value
""
Remarks
This value uniquely identifies the Timestamp Authority (TSA).
This property provides information about the entity that manages the TSA.
The TimestampIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TimestampCount property.
This property is read-only and not available at design time.
Data Type
String
TimestampValidationLog Property (CAdESSigner Component)
Contains the TSA certificate chain validation log.
Syntax
__property String TimestampValidationLog[int TimestampIndex] = { read=FTimestampValidationLog };
Default Value
""
Remarks
Contains the TSA certificate chain validation log. This information is extremely useful if the timestamp validation fails.
The TimestampIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TimestampCount property.
This property is read-only and not available at design time.
Data Type
String
TimestampValidationResult Property (CAdESSigner Component)
Contains the timestamp validation outcome.
Syntax
__property TsbxCAdESSignerTimestampValidationResults TimestampValidationResult[int TimestampIndex] = { read=FTimestampValidationResult };
enum TsbxCAdESSignerTimestampValidationResults { svtValid=0, svtUnknown=1, svtCorrupted=2, svtSignerNotFound=3, svtFailure=4, svtReferenceCorrupted=5 };
Default Value
svtValid
Remarks
Contains the timestamp validation outcome.
Use this property to check the result of the most recent timestamp validation.
svtValid | 0 | The signature is valid |
svtUnknown | 1 | Signature validity is unknown |
svtCorrupted | 2 | The signature is corrupted |
svtSignerNotFound | 3 | Failed to acquire the signing certificate. The signature cannot be validated. |
svtFailure | 4 | General failure |
svtReferenceCorrupted | 5 | Reference corrupted (XML-based signatures only) |
The TimestampIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TimestampCount property.
This property is read-only and not available at design time.
Data Type
Integer
TimestampServer Property (CAdESSigner Component)
The address of the timestamping server.
Syntax
__property String TimestampServer = { read=FTimestampServer, write=FSetTimestampServer };
Default Value
""
Remarks
Use this property to provide the address of the Time Stamping Authority (TSA) server to be used for timestamping the signature.
SecureBlackbox supports RFC3161-compliant timestamping servers, available via HTTP or HTTPS.
If your timestamping service enforces credential-based user authentication (basic or digest), you can provide the credentials in the same URL:
http://user:password@timestamp.server.com/TsaService
For TSAs using certificate-based TLS authentication, provide the client certificate via the TLSClientChain property.
If this property is left empty, no timestamp will be added to the signature.
Starting from summer 2021 update (Vol. 2), the virtual timestamping service is supported, which allows you to intervene in the timestamping routine and provide your own handling for the TSA exchange. This may be handy if the service that you are requesting timestamps from uses a non-standard TSP protocol or requires special authentication option.
To employ the virtual service, assign an URI of the following format to this property:
virtual://localhost?hashonly=true&includecerts=true&reqpolicy=1.2.3.4.5&halg=SHA256&ignorenonce=true
Subscribe to Notification event to get notified about the virtualized timestamping event. The EventID of the timestamping event is TimestampRequest. Inside the event handler, read the base16-encoded request from the EventParam parameter and forward it to the timestamping authority. Upon receiving the response, pass it back to the component, encoded in base16, via the TimestampResponse config property:
component.Config("TimestampResponse=308208ab...");
Note that all the exchange with your custom TSA should take place within the same invocation of the Notification event.
The hashonly parameter of the virtual URI tells the component to only return the timestamp message imprint via the EventParam parameter. If set to false, EventParam will contain the complete RFC3161 timestamping request.
The includecerts parameter specifies that the requestCertificates parameter of the timestamping request should be set to true.
The reqpolicy parameter lets you specify the request policy, and the halg parameter specifies the hash algorithm to use for timestamping.
The ignorenonce parameter allows you to switch off client nonce verification to enable compatibility with TSA services that do not support nonce mirroring.
All the parameters are optional.
Data Type
String
TLSClientCertCount Property (CAdESSigner Component)
The number of records in the TLSClientCert arrays.
Syntax
__property int TLSClientCertCount = { read=FTLSClientCertCount, write=FSetTLSClientCertCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at TLSClientCertCount - 1.This property is not available at design time.
Data Type
Integer
TLSClientCertBytes Property (CAdESSigner Component)
Returns the raw certificate data in DER format.
Syntax
__property DynamicArrayTLSClientCertBytes[int TLSClientCertIndex] = { read=FTLSClientCertBytes };
Remarks
Returns the raw certificate data in DER format.
The TLSClientCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSClientCertCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
TLSClientCertHandle Property (CAdESSigner Component)
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
__property __int64 TLSClientCertHandle[int TLSClientCertIndex] = { read=FTLSClientCertHandle, write=FSetTLSClientCertHandle };
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The TLSClientCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSClientCertCount property.
This property is not available at design time.
Data Type
Long64
TLSServerCertCount Property (CAdESSigner Component)
The number of records in the TLSServerCert arrays.
Syntax
__property int TLSServerCertCount = { read=FTLSServerCertCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
- TLSServerCertBytes
- TLSServerCertFingerprint
- TLSServerCertHandle
- TLSServerCertIssuer
- TLSServerCertIssuerRDN
- TLSServerCertKeyAlgorithm
- TLSServerCertKeyBits
- TLSServerCertKeyUsage
- TLSServerCertSelfSigned
- TLSServerCertSerialNumber
- TLSServerCertSigAlgorithm
- TLSServerCertSubject
- TLSServerCertSubjectRDN
- TLSServerCertValidFrom
- TLSServerCertValidTo
This property is read-only and not available at design time.
Data Type
Integer
TLSServerCertBytes Property (CAdESSigner Component)
Returns the raw certificate data in DER format.
Syntax
__property DynamicArrayTLSServerCertBytes[int TLSServerCertIndex] = { read=FTLSServerCertBytes };
Remarks
Returns the raw certificate data in DER format.
The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
TLSServerCertFingerprint Property (CAdESSigner Component)
Contains the fingerprint (a hash imprint) of this certificate.
Syntax
__property String TLSServerCertFingerprint[int TLSServerCertIndex] = { read=FTLSServerCertFingerprint };
Default Value
""
Remarks
Contains the fingerprint (a hash imprint) of this certificate.
While there is no formal standard defining what a fingerprint is, a SHA1 hash of the certificate's DER-encoded body is typically used.
The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.
This property is read-only and not available at design time.
Data Type
String
TLSServerCertHandle Property (CAdESSigner Component)
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
__property __int64 TLSServerCertHandle[int TLSServerCertIndex] = { read=FTLSServerCertHandle };
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.
This property is read-only and not available at design time.
Data Type
Long64
TLSServerCertIssuer Property (CAdESSigner Component)
The common name of the certificate issuer (CA), typically a company name.
Syntax
__property String TLSServerCertIssuer[int TLSServerCertIndex] = { read=FTLSServerCertIssuer };
Default Value
""
Remarks
The common name of the certificate issuer (CA), typically a company name. This is part of a larger set of credentials available via TLSIssuerRDN.
The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.
This property is read-only and not available at design time.
Data Type
String
TLSServerCertIssuerRDN Property (CAdESSigner Component)
A list of Property=Value pairs that uniquely identify the certificate issuer.
Syntax
__property String TLSServerCertIssuerRDN[int TLSServerCertIndex] = { read=FTLSServerCertIssuerRDN };
Default Value
""
Remarks
A list of Property=Value pairs that uniquely identify the certificate issuer.
Example: /C=US/O=Nationwide CA/CN=Web Certification Authority
The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.
This property is read-only and not available at design time.
Data Type
String
TLSServerCertKeyAlgorithm Property (CAdESSigner Component)
Specifies the public key algorithm of this certificate.
Syntax
__property String TLSServerCertKeyAlgorithm[int TLSServerCertIndex] = { read=FTLSServerCertKeyAlgorithm };
Default Value
"0"
Remarks
Specifies the public key algorithm of this certificate.
SB_CERT_ALGORITHM_ID_RSA_ENCRYPTION | rsaEncryption | |
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTION | md2withRSAEncryption | |
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTION | md5withRSAEncryption | |
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTION | sha1withRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA | id-dsa | |
SB_CERT_ALGORITHM_ID_DSA_SHA1 | id-dsa-with-sha1 | |
SB_CERT_ALGORITHM_DH_PUBLIC | dhpublicnumber | |
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTION | sha224WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTION | sha256WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTION | sha384WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTION | sha512WithRSAEncryption | |
SB_CERT_ALGORITHM_ID_RSAPSS | id-RSASSA-PSS | |
SB_CERT_ALGORITHM_ID_RSAOAEP | id-RSAES-OAEP | |
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160 | ripemd160withRSA | |
SB_CERT_ALGORITHM_ID_ELGAMAL | elGamal | |
SB_CERT_ALGORITHM_SHA1_ECDSA | ecdsa-with-SHA1 | |
SB_CERT_ALGORITHM_RECOMMENDED_ECDSA | ecdsa-recommended | |
SB_CERT_ALGORITHM_SHA224_ECDSA | ecdsa-with-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA | ecdsa-with-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA | ecdsa-with-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA | ecdsa-with-SHA512 | |
SB_CERT_ALGORITHM_EC | id-ecPublicKey | |
SB_CERT_ALGORITHM_SPECIFIED_ECDSA | ecdsa-specified | |
SB_CERT_ALGORITHM_GOST_R3410_1994 | id-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3410_2001 | id-GostR3410-2001 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994 | id-GostR3411-94-with-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001 | id-GostR3411-94-with-GostR3410-2001 | |
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAIN | ecdsa-plain-SHA1 | |
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAIN | ecdsa-plain-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAIN | ecdsa-plain-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAIN | ecdsa-plain-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAIN | ecdsa-plain-SHA512 | |
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAIN | ecdsa-plain-RIPEMD160 | |
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTION | whirlpoolWithRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA_SHA224 | id-dsa-with-sha224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA256 | id-dsa-with-sha256 | |
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA | id-ecdsa-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA | id-ecdsa-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA | id-ecdsa-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA | id-ecdsa-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-512 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_224 | id-dsa-with-sha3-224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_256 | id-dsa-with-sha3-256 | |
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA | id-ecdsa-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA | id-ecdsa-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA | id-ecdsa-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA | id-ecdsa-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA | id-ecdsa-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA | id-ecdsa-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA | id-ecdsa-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA | id-ecdsa-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b512 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224 | id-dsa-with-blake2s224 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256 | id-dsa-with-blake2s256 | |
SB_CERT_ALGORITHM_EDDSA_ED25519 | id-Ed25519 | |
SB_CERT_ALGORITHM_EDDSA_ED448 | id-Ed448 | |
SB_CERT_ALGORITHM_EDDSA_ED25519_PH | id-Ed25519ph | |
SB_CERT_ALGORITHM_EDDSA_ED448_PH | id-Ed448ph | |
SB_CERT_ALGORITHM_EDDSA | id-EdDSA | |
SB_CERT_ALGORITHM_EDDSA_SIGNATURE | id-EdDSA-sig |
Use the TLSKeyBits, TLSCurve, and TLSPublicKeyBytes properties to get more details about the key the certificate contains.
The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.
This property is read-only and not available at design time.
Data Type
String
TLSServerCertKeyBits Property (CAdESSigner Component)
Returns the length of the public key in bits.
Syntax
__property int TLSServerCertKeyBits[int TLSServerCertIndex] = { read=FTLSServerCertKeyBits };
Default Value
0
Remarks
Returns the length of the public key in bits.
This value indicates the length of the principal cryptographic parameter of the key, such as the length of the RSA modulus or ECDSA field. The key data returned by the TLSPublicKeyBytes or TLSPrivateKeyBytes property would typically contain auxiliary values, and therefore be longer.
The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.
This property is read-only and not available at design time.
Data Type
Integer
TLSServerCertKeyUsage Property (CAdESSigner Component)
Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.
Syntax
__property int TLSServerCertKeyUsage[int TLSServerCertIndex] = { read=FTLSServerCertKeyUsage };
Default Value
0
Remarks
Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.
This value is a bit mask of the following values:
ckuUnknown | 0x00000 | Unknown key usage |
ckuDigitalSignature | 0x00001 | Digital signature |
ckuNonRepudiation | 0x00002 | Non-repudiation |
ckuKeyEncipherment | 0x00004 | Key encipherment |
ckuDataEncipherment | 0x00008 | Data encipherment |
ckuKeyAgreement | 0x00010 | Key agreement |
ckuKeyCertSign | 0x00020 | Certificate signing |
ckuCRLSign | 0x00040 | Revocation signing |
ckuEncipherOnly | 0x00080 | Encipher only |
ckuDecipherOnly | 0x00100 | Decipher only |
ckuServerAuthentication | 0x00200 | Server authentication |
ckuClientAuthentication | 0x00400 | Client authentication |
ckuCodeSigning | 0x00800 | Code signing |
ckuEmailProtection | 0x01000 | Email protection |
ckuTimeStamping | 0x02000 | Timestamping |
ckuOCSPSigning | 0x04000 | OCSP signing |
ckuSmartCardLogon | 0x08000 | Smartcard logon |
ckuKeyPurposeClientAuth | 0x10000 | Kerberos - client authentication |
ckuKeyPurposeKDC | 0x20000 | Kerberos - KDC |
Set this property before generating the certificate to propagate the key usage flags to the new certificate.
The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.
This property is read-only and not available at design time.
Data Type
Integer
TLSServerCertSelfSigned Property (CAdESSigner Component)
Indicates whether the certificate is self-signed (root) or signed by an external CA.
Syntax
__property bool TLSServerCertSelfSigned[int TLSServerCertIndex] = { read=FTLSServerCertSelfSigned };
Default Value
false
Remarks
Indicates whether the certificate is self-signed (root) or signed by an external CA.
The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.
This property is read-only and not available at design time.
Data Type
Boolean
TLSServerCertSerialNumber Property (CAdESSigner Component)
Returns the certificate's serial number.
Syntax
__property DynamicArrayTLSServerCertSerialNumber[int TLSServerCertIndex] = { read=FTLSServerCertSerialNumber };
Remarks
Returns the certificate's serial number.
The serial number is a binary string that uniquely identifies a certificate among others issued by the same CA. According to the X.509 standard, the (issuer, serial number) pair should be globally unique to facilitate chain building.
The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
TLSServerCertSigAlgorithm Property (CAdESSigner Component)
Indicates the algorithm that was used by the CA to sign this certificate.
Syntax
__property String TLSServerCertSigAlgorithm[int TLSServerCertIndex] = { read=FTLSServerCertSigAlgorithm };
Default Value
""
Remarks
Indicates the algorithm that was used by the CA to sign this certificate.
A signature algorithm typically combines hash and public key algorithms together, such as sha256WithRSAEncryption or ecdsa-with-SHA256.
The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.
This property is read-only and not available at design time.
Data Type
String
TLSServerCertSubject Property (CAdESSigner Component)
The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name.
Syntax
__property String TLSServerCertSubject[int TLSServerCertIndex] = { read=FTLSServerCertSubject };
Default Value
""
Remarks
The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name. This is part of a larger set of credentials available via TLSSubjectRDN.
The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.
This property is read-only and not available at design time.
Data Type
String
TLSServerCertSubjectRDN Property (CAdESSigner Component)
A list of Property=Value pairs that uniquely identify the certificate holder (subject).
Syntax
__property String TLSServerCertSubjectRDN[int TLSServerCertIndex] = { read=FTLSServerCertSubjectRDN };
Default Value
""
Remarks
A list of Property=Value pairs that uniquely identify the certificate holder (subject).
Depending on the purpose of the certificate and the policies of the CA that issued it, the values included in the subject record may differ drastically and contain business or personal names, web URLs, email addresses, and other data.
Example: /C=US/O=Oranges and Apples, Inc./OU=Accounts Receivable/1.2.3.4.5=Value with unknown OID/CN=Margaret Watkins.
The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.
This property is read-only and not available at design time.
Data Type
String
TLSServerCertValidFrom Property (CAdESSigner Component)
The time point at which the certificate becomes valid, in UTC.
Syntax
__property String TLSServerCertValidFrom[int TLSServerCertIndex] = { read=FTLSServerCertValidFrom };
Default Value
""
Remarks
The time point at which the certificate becomes valid, in UTC.
The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.
This property is read-only and not available at design time.
Data Type
String
TLSServerCertValidTo Property (CAdESSigner Component)
The time point at which the certificate expires, in UTC.
Syntax
__property String TLSServerCertValidTo[int TLSServerCertIndex] = { read=FTLSServerCertValidTo };
Default Value
""
Remarks
The time point at which the certificate expires, in UTC.
The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.
This property is read-only and not available at design time.
Data Type
String
TLSAutoValidateCertificates Property (CAdESSigner Component)
Specifies whether server-side TLS certificates should be validated automatically using internal validation rules.
Syntax
__property bool TLSAutoValidateCertificates = { read=FTLSAutoValidateCertificates, write=FSetTLSAutoValidateCertificates };
Default Value
true
Remarks
Specifies whether server-side TLS certificates should be validated automatically using internal validation rules.
Data Type
Boolean
TLSBaseConfiguration Property (CAdESSigner Component)
Selects the base configuration for the TLS settings.
Syntax
__property TsbxCAdESSignerTLSBaseConfigurations TLSBaseConfiguration = { read=FTLSBaseConfiguration, write=FSetTLSBaseConfiguration };
enum TsbxCAdESSignerTLSBaseConfigurations { stpcDefault=0, stpcCompatible=1, stpcComprehensiveInsecure=2, stpcHighlySecure=3 };
Default Value
stpcDefault
Remarks
Selects the base configuration for the TLS settings. Several profiles are offered and tuned up for different purposes, such as high security or higher compatibility.
stpcDefault | 0 | |
stpcCompatible | 1 | |
stpcComprehensiveInsecure | 2 | |
stpcHighlySecure | 3 |
Data Type
Integer
TLSCiphersuites Property (CAdESSigner Component)
A list of ciphersuites separated with commas or semicolons.
Syntax
__property String TLSCiphersuites = { read=FTLSCiphersuites, write=FSetTLSCiphersuites };
Default Value
""
Remarks
A list of ciphersuites separated with commas or semicolons. Each ciphersuite in the list may be prefixed with a minus sign (-) to indicate that the ciphersuite should be disabled rather than enabled. Besides the specific ciphersuite modifiers, this property supports the all (and -all) aliases, allowing all ciphersuites to be blanketly enabled or disabled at once.
Note: the list of ciphersuites provided to this property alters the baseline list of ciphersuites as defined by TLSBaseConfiguration. Remember to start your ciphersuite string with -all; if you need to only enable a specific fixed set of ciphersuites. The list of supported ciphersuites is provided below:
- NULL_NULL_NULL
- RSA_NULL_MD5
- RSA_NULL_SHA
- RSA_RC4_MD5
- RSA_RC4_SHA
- RSA_RC2_MD5
- RSA_IDEA_MD5
- RSA_IDEA_SHA
- RSA_DES_MD5
- RSA_DES_SHA
- RSA_3DES_MD5
- RSA_3DES_SHA
- RSA_AES128_SHA
- RSA_AES256_SHA
- DH_DSS_DES_SHA
- DH_DSS_3DES_SHA
- DH_DSS_AES128_SHA
- DH_DSS_AES256_SHA
- DH_RSA_DES_SHA
- DH_RSA_3DES_SHA
- DH_RSA_AES128_SHA
- DH_RSA_AES256_SHA
- DHE_DSS_DES_SHA
- DHE_DSS_3DES_SHA
- DHE_DSS_AES128_SHA
- DHE_DSS_AES256_SHA
- DHE_RSA_DES_SHA
- DHE_RSA_3DES_SHA
- DHE_RSA_AES128_SHA
- DHE_RSA_AES256_SHA
- DH_ANON_RC4_MD5
- DH_ANON_DES_SHA
- DH_ANON_3DES_SHA
- DH_ANON_AES128_SHA
- DH_ANON_AES256_SHA
- RSA_RC2_MD5_EXPORT
- RSA_RC4_MD5_EXPORT
- RSA_DES_SHA_EXPORT
- DH_DSS_DES_SHA_EXPORT
- DH_RSA_DES_SHA_EXPORT
- DHE_DSS_DES_SHA_EXPORT
- DHE_RSA_DES_SHA_EXPORT
- DH_ANON_RC4_MD5_EXPORT
- DH_ANON_DES_SHA_EXPORT
- RSA_CAMELLIA128_SHA
- DH_DSS_CAMELLIA128_SHA
- DH_RSA_CAMELLIA128_SHA
- DHE_DSS_CAMELLIA128_SHA
- DHE_RSA_CAMELLIA128_SHA
- DH_ANON_CAMELLIA128_SHA
- RSA_CAMELLIA256_SHA
- DH_DSS_CAMELLIA256_SHA
- DH_RSA_CAMELLIA256_SHA
- DHE_DSS_CAMELLIA256_SHA
- DHE_RSA_CAMELLIA256_SHA
- DH_ANON_CAMELLIA256_SHA
- PSK_RC4_SHA
- PSK_3DES_SHA
- PSK_AES128_SHA
- PSK_AES256_SHA
- DHE_PSK_RC4_SHA
- DHE_PSK_3DES_SHA
- DHE_PSK_AES128_SHA
- DHE_PSK_AES256_SHA
- RSA_PSK_RC4_SHA
- RSA_PSK_3DES_SHA
- RSA_PSK_AES128_SHA
- RSA_PSK_AES256_SHA
- RSA_SEED_SHA
- DH_DSS_SEED_SHA
- DH_RSA_SEED_SHA
- DHE_DSS_SEED_SHA
- DHE_RSA_SEED_SHA
- DH_ANON_SEED_SHA
- SRP_SHA_3DES_SHA
- SRP_SHA_RSA_3DES_SHA
- SRP_SHA_DSS_3DES_SHA
- SRP_SHA_AES128_SHA
- SRP_SHA_RSA_AES128_SHA
- SRP_SHA_DSS_AES128_SHA
- SRP_SHA_AES256_SHA
- SRP_SHA_RSA_AES256_SHA
- SRP_SHA_DSS_AES256_SHA
- ECDH_ECDSA_NULL_SHA
- ECDH_ECDSA_RC4_SHA
- ECDH_ECDSA_3DES_SHA
- ECDH_ECDSA_AES128_SHA
- ECDH_ECDSA_AES256_SHA
- ECDHE_ECDSA_NULL_SHA
- ECDHE_ECDSA_RC4_SHA
- ECDHE_ECDSA_3DES_SHA
- ECDHE_ECDSA_AES128_SHA
- ECDHE_ECDSA_AES256_SHA
- ECDH_RSA_NULL_SHA
- ECDH_RSA_RC4_SHA
- ECDH_RSA_3DES_SHA
- ECDH_RSA_AES128_SHA
- ECDH_RSA_AES256_SHA
- ECDHE_RSA_NULL_SHA
- ECDHE_RSA_RC4_SHA
- ECDHE_RSA_3DES_SHA
- ECDHE_RSA_AES128_SHA
- ECDHE_RSA_AES256_SHA
- ECDH_ANON_NULL_SHA
- ECDH_ANON_RC4_SHA
- ECDH_ANON_3DES_SHA
- ECDH_ANON_AES128_SHA
- ECDH_ANON_AES256_SHA
- RSA_NULL_SHA256
- RSA_AES128_SHA256
- RSA_AES256_SHA256
- DH_DSS_AES128_SHA256
- DH_RSA_AES128_SHA256
- DHE_DSS_AES128_SHA256
- DHE_RSA_AES128_SHA256
- DH_DSS_AES256_SHA256
- DH_RSA_AES256_SHA256
- DHE_DSS_AES256_SHA256
- DHE_RSA_AES256_SHA256
- DH_ANON_AES128_SHA256
- DH_ANON_AES256_SHA256
- RSA_AES128_GCM_SHA256
- RSA_AES256_GCM_SHA384
- DHE_RSA_AES128_GCM_SHA256
- DHE_RSA_AES256_GCM_SHA384
- DH_RSA_AES128_GCM_SHA256
- DH_RSA_AES256_GCM_SHA384
- DHE_DSS_AES128_GCM_SHA256
- DHE_DSS_AES256_GCM_SHA384
- DH_DSS_AES128_GCM_SHA256
- DH_DSS_AES256_GCM_SHA384
- DH_ANON_AES128_GCM_SHA256
- DH_ANON_AES256_GCM_SHA384
- ECDHE_ECDSA_AES128_SHA256
- ECDHE_ECDSA_AES256_SHA384
- ECDH_ECDSA_AES128_SHA256
- ECDH_ECDSA_AES256_SHA384
- ECDHE_RSA_AES128_SHA256
- ECDHE_RSA_AES256_SHA384
- ECDH_RSA_AES128_SHA256
- ECDH_RSA_AES256_SHA384
- ECDHE_ECDSA_AES128_GCM_SHA256
- ECDHE_ECDSA_AES256_GCM_SHA384
- ECDH_ECDSA_AES128_GCM_SHA256
- ECDH_ECDSA_AES256_GCM_SHA384
- ECDHE_RSA_AES128_GCM_SHA256
- ECDHE_RSA_AES256_GCM_SHA384
- ECDH_RSA_AES128_GCM_SHA256
- ECDH_RSA_AES256_GCM_SHA384
- PSK_AES128_GCM_SHA256
- PSK_AES256_GCM_SHA384
- DHE_PSK_AES128_GCM_SHA256
- DHE_PSK_AES256_GCM_SHA384
- RSA_PSK_AES128_GCM_SHA256
- RSA_PSK_AES256_GCM_SHA384
- PSK_AES128_SHA256
- PSK_AES256_SHA384
- PSK_NULL_SHA256
- PSK_NULL_SHA384
- DHE_PSK_AES128_SHA256
- DHE_PSK_AES256_SHA384
- DHE_PSK_NULL_SHA256
- DHE_PSK_NULL_SHA384
- RSA_PSK_AES128_SHA256
- RSA_PSK_AES256_SHA384
- RSA_PSK_NULL_SHA256
- RSA_PSK_NULL_SHA384
- RSA_CAMELLIA128_SHA256
- DH_DSS_CAMELLIA128_SHA256
- DH_RSA_CAMELLIA128_SHA256
- DHE_DSS_CAMELLIA128_SHA256
- DHE_RSA_CAMELLIA128_SHA256
- DH_ANON_CAMELLIA128_SHA256
- RSA_CAMELLIA256_SHA256
- DH_DSS_CAMELLIA256_SHA256
- DH_RSA_CAMELLIA256_SHA256
- DHE_DSS_CAMELLIA256_SHA256
- DHE_RSA_CAMELLIA256_SHA256
- DH_ANON_CAMELLIA256_SHA256
- ECDHE_ECDSA_CAMELLIA128_SHA256
- ECDHE_ECDSA_CAMELLIA256_SHA384
- ECDH_ECDSA_CAMELLIA128_SHA256
- ECDH_ECDSA_CAMELLIA256_SHA384
- ECDHE_RSA_CAMELLIA128_SHA256
- ECDHE_RSA_CAMELLIA256_SHA384
- ECDH_RSA_CAMELLIA128_SHA256
- ECDH_RSA_CAMELLIA256_SHA384
- RSA_CAMELLIA128_GCM_SHA256
- RSA_CAMELLIA256_GCM_SHA384
- DHE_RSA_CAMELLIA128_GCM_SHA256
- DHE_RSA_CAMELLIA256_GCM_SHA384
- DH_RSA_CAMELLIA128_GCM_SHA256
- DH_RSA_CAMELLIA256_GCM_SHA384
- DHE_DSS_CAMELLIA128_GCM_SHA256
- DHE_DSS_CAMELLIA256_GCM_SHA384
- DH_DSS_CAMELLIA128_GCM_SHA256
- DH_DSS_CAMELLIA256_GCM_SHA384
- DH_anon_CAMELLIA128_GCM_SHA256
- DH_anon_CAMELLIA256_GCM_SHA384
- ECDHE_ECDSA_CAMELLIA128_GCM_SHA256
- ECDHE_ECDSA_CAMELLIA256_GCM_SHA384
- ECDH_ECDSA_CAMELLIA128_GCM_SHA256
- ECDH_ECDSA_CAMELLIA256_GCM_SHA384
- ECDHE_RSA_CAMELLIA128_GCM_SHA256
- ECDHE_RSA_CAMELLIA256_GCM_SHA384
- ECDH_RSA_CAMELLIA128_GCM_SHA256
- ECDH_RSA_CAMELLIA256_GCM_SHA384
- PSK_CAMELLIA128_GCM_SHA256
- PSK_CAMELLIA256_GCM_SHA384
- DHE_PSK_CAMELLIA128_GCM_SHA256
- DHE_PSK_CAMELLIA256_GCM_SHA384
- RSA_PSK_CAMELLIA128_GCM_SHA256
- RSA_PSK_CAMELLIA256_GCM_SHA384
- PSK_CAMELLIA128_SHA256
- PSK_CAMELLIA256_SHA384
- DHE_PSK_CAMELLIA128_SHA256
- DHE_PSK_CAMELLIA256_SHA384
- RSA_PSK_CAMELLIA128_SHA256
- RSA_PSK_CAMELLIA256_SHA384
- ECDHE_PSK_CAMELLIA128_SHA256
- ECDHE_PSK_CAMELLIA256_SHA384
- ECDHE_PSK_RC4_SHA
- ECDHE_PSK_3DES_SHA
- ECDHE_PSK_AES128_SHA
- ECDHE_PSK_AES256_SHA
- ECDHE_PSK_AES128_SHA256
- ECDHE_PSK_AES256_SHA384
- ECDHE_PSK_NULL_SHA
- ECDHE_PSK_NULL_SHA256
- ECDHE_PSK_NULL_SHA384
- ECDHE_RSA_CHACHA20_POLY1305_SHA256
- ECDHE_ECDSA_CHACHA20_POLY1305_SHA256
- DHE_RSA_CHACHA20_POLY1305_SHA256
- PSK_CHACHA20_POLY1305_SHA256
- ECDHE_PSK_CHACHA20_POLY1305_SHA256
- DHE_PSK_CHACHA20_POLY1305_SHA256
- RSA_PSK_CHACHA20_POLY1305_SHA256
- AES128_GCM_SHA256
- AES256_GCM_SHA384
- CHACHA20_POLY1305_SHA256
- AES128_CCM_SHA256
- AES128_CCM8_SHA256
Data Type
String
TLSClientAuth Property (CAdESSigner Component)
Enables or disables certificate-based client authentication.
Syntax
__property TsbxCAdESSignerTLSClientAuths TLSClientAuth = { read=FTLSClientAuth, write=FSetTLSClientAuth };
enum TsbxCAdESSignerTLSClientAuths { ccatNoAuth=0, ccatRequestCert=1, ccatRequireCert=2 };
Default Value
ccatNoAuth
Remarks
Enables or disables certificate-based client authentication.
Set this property to true to tune up the client authentication type:
ccatNoAuth | 0 | |
ccatRequestCert | 1 | |
ccatRequireCert | 2 |
Data Type
Integer
TLSECCurves Property (CAdESSigner Component)
Defines the elliptic curves to enable.
Syntax
__property String TLSECCurves = { read=FTLSECCurves, write=FSetTLSECCurves };
Default Value
""
Remarks
Defines the elliptic curves to enable.
Data Type
String
TLSExtensions Property (CAdESSigner Component)
Provides access to TLS extensions.
Syntax
__property String TLSExtensions = { read=FTLSExtensions, write=FSetTLSExtensions };
Default Value
""
Remarks
Provides access to TLS extensions.
Data Type
String
TLSForceResumeIfDestinationChanges Property (CAdESSigner Component)
Whether to force TLS session resumption when the destination address changes.
Syntax
__property bool TLSForceResumeIfDestinationChanges = { read=FTLSForceResumeIfDestinationChanges, write=FSetTLSForceResumeIfDestinationChanges };
Default Value
false
Remarks
Whether to force TLS session resumption when the destination address changes.
Data Type
Boolean
TLSPreSharedIdentity Property (CAdESSigner Component)
Defines the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.
Syntax
__property String TLSPreSharedIdentity = { read=FTLSPreSharedIdentity, write=FSetTLSPreSharedIdentity };
Default Value
""
Remarks
Defines the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.
This property is not available at design time.
Data Type
String
TLSPreSharedKey Property (CAdESSigner Component)
Contains the pre-shared key for the PSK (Pre-Shared Key) key-exchange mechanism, encoded with base16.
Syntax
__property String TLSPreSharedKey = { read=FTLSPreSharedKey, write=FSetTLSPreSharedKey };
Default Value
""
Remarks
Contains the pre-shared key for the PSK (Pre-Shared Key) key-exchange mechanism, encoded with base16.
This property is not available at design time.
Data Type
String
TLSPreSharedKeyCiphersuite Property (CAdESSigner Component)
Defines the ciphersuite used for PSK (Pre-Shared Key) negotiation.
Syntax
__property String TLSPreSharedKeyCiphersuite = { read=FTLSPreSharedKeyCiphersuite, write=FSetTLSPreSharedKeyCiphersuite };
Default Value
""
Remarks
Defines the ciphersuite used for PSK (Pre-Shared Key) negotiation.
Data Type
String
TLSRenegotiationAttackPreventionMode Property (CAdESSigner Component)
Selects the renegotiation attack prevention mechanism.
Syntax
__property TsbxCAdESSignerTLSRenegotiationAttackPreventionModes TLSRenegotiationAttackPreventionMode = { read=FTLSRenegotiationAttackPreventionMode, write=FSetTLSRenegotiationAttackPreventionMode };
enum TsbxCAdESSignerTLSRenegotiationAttackPreventionModes { crapmCompatible=0, crapmStrict=1, crapmAuto=2 };
Default Value
crapmAuto
Remarks
Selects the renegotiation attack prevention mechanism.
The following options are available:
crapmCompatible | 0 | TLS 1.0 and 1.1 compatibility mode (renegotiation indication extension is disabled). |
crapmStrict | 1 | Renegotiation attack prevention is enabled and enforced. |
crapmAuto | 2 | Automatically choose whether to enable or disable renegotiation attack prevention. |
Data Type
Integer
TLSRevocationCheck Property (CAdESSigner Component)
Specifies the kind(s) of revocation check to perform.
Syntax
__property TsbxCAdESSignerTLSRevocationChecks TLSRevocationCheck = { read=FTLSRevocationCheck, write=FSetTLSRevocationCheck };
enum TsbxCAdESSignerTLSRevocationChecks { crcNone=0, crcAuto=1, crcAllCRL=2, crcAllOCSP=3, crcAllCRLAndOCSP=4, crcAnyCRL=5, crcAnyOCSP=6, crcAnyCRLOrOCSP=7, crcAnyOCSPOrCRL=8 };
Default Value
crcAuto
Remarks
Specifies the kind(s) of revocation check to perform.
Revocation checking is necessary to ensure the integrity of the chain and obtain up-to-date certificate validity and trustworthiness information.
crcNone | 0 | No revocation checking. |
crcAuto | 1 | Automatic mode selection. Currently this maps to crcAnyOCSPOrCRL, but it may change in the future. |
crcAllCRL | 2 | All provided CRL endpoints will be checked, and all checks must succeed. |
crcAllOCSP | 3 | All provided OCSP endpoints will be checked, and all checks must succeed. |
crcAllCRLAndOCSP | 4 | All provided CRL and OCSP endpoints will be checked, and all checks must succeed. |
crcAnyCRL | 5 | All provided CRL endpoints will be checked, and at least one check must succeed. |
crcAnyOCSP | 6 | All provided OCSP endpoints will be checked, and at least one check must succeed. |
crcAnyCRLOrOCSP | 7 | All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. CRL endpoints are checked first. |
crcAnyOCSPOrCRL | 8 | All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. OCSP endpoints are checked first. |
This setting controls the way the revocation checks are performed for every certificate in the chain. Typically certificates come with two types of revocation information sources: CRL (certificate revocation lists) and OCSP responders. CRLs are static objects periodically published by the CA at some online location. OCSP responders are active online services maintained by the CA that can provide up-to-date information on certificate statuses in near real time.
There are some conceptual differences between the two. CRLs are normally larger in size. Their use involves some latency because there is normally some delay between the time when a certificate was revoked and the time the subsequent CRL mentioning that is published. The benefits of CRL is that the same object can provide statuses for all certificates issued by a particular CA, and that the whole technology is much simpler than OCSP (and thus is supported by more CAs).
This setting lets you adjust the validation course by including or excluding certain types of revocation sources from the validation process. The crcAnyOCSPOrCRL setting (give preference to the faster OCSP route and only demand one source to succeed) is a good choice for most typical validation environments. The "crcAll*" modes are much stricter, and may be used in scenarios where bulletproof validity information is essential.
Note: If no CRL or OCSP endpoints are provided by the CA, the revocation check will be considered successful. This is because the CA chose not to supply revocation information for its certificates, meaning they are considered irrevocable.
Note: Within each of the above settings, if any retrieved CRL or OCSP response indicates that the certificate has been revoked, the revocation check fails.
This property is not available at design time.
Data Type
Integer
TLSSSLOptions Property (CAdESSigner Component)
Various SSL (TLS) protocol options, set of cssloExpectShutdownMessage 0x001 Wait for the close-notify message when shutting down the connection cssloOpenSSLDTLSWorkaround 0x002 (DEPRECATED) Use a DTLS version workaround when talking to very old OpenSSL versions cssloDisableKexLengthAlignment 0x004 Do not align the client-side PMS by the RSA modulus size.
Syntax
__property int TLSSSLOptions = { read=FTLSSSLOptions, write=FSetTLSSSLOptions };
Default Value
16
Remarks
Various SSL (TLS) protocol options, set of
cssloExpectShutdownMessage | 0x001 | Wait for the close-notify message when shutting down the connection |
cssloOpenSSLDTLSWorkaround | 0x002 | (DEPRECATED) Use a DTLS version workaround when talking to very old OpenSSL versions |
cssloDisableKexLengthAlignment | 0x004 | Do not align the client-side PMS by the RSA modulus size. It is unlikely that you will ever need to adjust it. |
cssloForceUseOfClientCertHashAlg | 0x008 | Enforce the use of the client certificate hash algorithm. It is unlikely that you will ever need to adjust it. |
cssloAutoAddServerNameExtension | 0x010 | Automatically add the server name extension when known |
cssloAcceptTrustedSRPPrimesOnly | 0x020 | Accept trusted SRP primes only |
cssloDisableSignatureAlgorithmsExtension | 0x040 | Disable (do not send) the signature algorithms extension. It is unlikely that you will ever need to adjust it. |
cssloIntolerateHigherProtocolVersions | 0x080 | (server option) Do not allow fallback from TLS versions higher than currently enabled |
cssloStickToPrefCertHashAlg | 0x100 | Stick to preferred certificate hash algorithms |
cssloNoImplicitTLS12Fallback | 0x200 | Disable implicit TLS 1.3 to 1.2 fallbacks |
cssloUseHandshakeBatches | 0x400 | Send the handshake message as large batches rather than individually |
Data Type
Integer
TLSTLSMode Property (CAdESSigner Component)
Specifies the TLS mode to use.
Syntax
__property TsbxCAdESSignerTLSTLSModes TLSTLSMode = { read=FTLSTLSMode, write=FSetTLSTLSMode };
enum TsbxCAdESSignerTLSTLSModes { smDefault=0, smNoTLS=1, smExplicitTLS=2, smImplicitTLS=3, smMixedTLS=4 };
Default Value
smDefault
Remarks
Specifies the TLS mode to use.
smDefault | 0 | |
smNoTLS | 1 | Do not use TLS |
smExplicitTLS | 2 | Connect to the server without any encryption and then request an SSL session. |
smImplicitTLS | 3 | Connect to the specified port, and establish the SSL session at once. |
smMixedTLS | 4 | Connect to the specified port, and establish the SSL session at once, but allow plain data. |
Data Type
Integer
TLSUseExtendedMasterSecret Property (CAdESSigner Component)
Enables the Extended Master Secret Extension, as defined in RFC 7627.
Syntax
__property bool TLSUseExtendedMasterSecret = { read=FTLSUseExtendedMasterSecret, write=FSetTLSUseExtendedMasterSecret };
Default Value
false
Remarks
Enables the Extended Master Secret Extension, as defined in RFC 7627.
Data Type
Boolean
TLSUseSessionResumption Property (CAdESSigner Component)
Enables or disables the TLS session resumption capability.
Syntax
__property bool TLSUseSessionResumption = { read=FTLSUseSessionResumption, write=FSetTLSUseSessionResumption };
Default Value
false
Remarks
Enables or disables the TLS session resumption capability.
Data Type
Boolean
TLSVersions Property (CAdESSigner Component)
The SSL/TLS versions to enable by default.
Syntax
__property int TLSVersions = { read=FTLSVersions, write=FSetTLSVersions };
Default Value
16
Remarks
The SSL/TLS versions to enable by default.
csbSSL2 | 0x01 | SSL 2 |
csbSSL3 | 0x02 | SSL 3 |
csbTLS1 | 0x04 | TLS 1.0 |
csbTLS11 | 0x08 | TLS 1.1 |
csbTLS12 | 0x10 | TLS 1.2 |
csbTLS13 | 0x20 | TLS 1.3 |
Data Type
Integer
TrustedCertCount Property (CAdESSigner Component)
The number of records in the TrustedCert arrays.
Syntax
__property int TrustedCertCount = { read=FTrustedCertCount, write=FSetTrustedCertCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at TrustedCertCount - 1.This property is not available at design time.
Data Type
Integer
TrustedCertBytes Property (CAdESSigner Component)
Returns the raw certificate data in DER format.
Syntax
__property DynamicArrayTrustedCertBytes[int TrustedCertIndex] = { read=FTrustedCertBytes };
Remarks
Returns the raw certificate data in DER format.
The TrustedCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TrustedCertCount property.
This property is read-only and not available at design time.
Data Type
Byte Array
TrustedCertHandle Property (CAdESSigner Component)
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
__property __int64 TrustedCertHandle[int TrustedCertIndex] = { read=FTrustedCertHandle, write=FSetTrustedCertHandle };
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The TrustedCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TrustedCertCount property.
This property is not available at design time.
Data Type
Long64
UnsignedAttributeCount Property (CAdESSigner Component)
The number of records in the UnsignedAttribute arrays.
Syntax
__property int UnsignedAttributeCount = { read=FUnsignedAttributeCount, write=FSetUnsignedAttributeCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at UnsignedAttributeCount - 1.This property is not available at design time.
Data Type
Integer
UnsignedAttributeOID Property (CAdESSigner Component)
The object identifier of the attribute.
Syntax
__property String UnsignedAttributeOID[int UnsignedAttributeIndex] = { read=FUnsignedAttributeOID, write=FSetUnsignedAttributeOID };
Default Value
""
Remarks
The object identifier of the attribute.
The UnsignedAttributeIndex parameter specifies the index of the item in the array. The size of the array is controlled by the UnsignedAttributeCount property.
This property is not available at design time.
Data Type
String
UnsignedAttributeValue Property (CAdESSigner Component)
The value of the attribute.
Syntax
__property DynamicArrayUnsignedAttributeValue[int UnsignedAttributeIndex] = { read=FUnsignedAttributeValue, write=FSetUnsignedAttributeValue };
Remarks
The value of the attribute.
The UnsignedAttributeIndex parameter specifies the index of the item in the array. The size of the array is controlled by the UnsignedAttributeCount property.
This property is not available at design time.
Data Type
Byte Array
ValidationMoment Property (CAdESSigner Component)
The time point at which signature validity is to be established.
Syntax
__property String ValidationMoment = { read=FValidationMoment, write=FSetValidationMoment };
Default Value
""
Remarks
Use this property to specify the moment in time at which signature validity should be established. The time is in UTC. Leave the setting empty to stick to the default moment (either the signature creation time or the current time).
The validity of the same signature may differ depending on the time point chosen due to temporal changes in chain validities, revocation statuses, and timestamp times.
Data Type
String
AddAttribute Method (CAdESSigner Component)
Adds an attribute to the signature.
Syntax
int __fastcall AddAttribute(String OID, DynamicArray<Byte> Value, bool SignedAttribute);
Remarks
Use this method to add a signed or unsigned attribute to the collection of attributes included in the new signature.
Note that CAdESSigner creates certain mandatory and/or widely used attributes automatically in accordance with requirements for a specific signing profile. For example, attributes such as SigningCertificateV2 or SigningTime are always added. Policy attributes are added if specified via the PolicyID or PolicyURI properties of the signature object.
Use the OID parameter to provide the object identifier of the attribute, in string form. For example, the OID for the SigningCertificateV2 attribute is 1.2.840.113549.1.9.16.2.47. The Value parameter should contain a well-formed, DER-encoded representation of the attribute value, in accordance with its specification.
Archive Method (CAdESSigner Component)
Archives the signature.
Syntax
void __fastcall Archive(String SigLabel, bool Baseline);
Remarks
Call this method to produce an archival signature. Archival signature (CAdES-A) is built on top of CAdES-XL by certifying it with an archival timestamp.
Set Baseline to True to produce a baseline CAdES-A.
Close Method (CAdESSigner Component)
Closes an opened container.
Syntax
void __fastcall Close(bool SaveChanges);
Remarks
Use this method to close a previously opened container. Set SaveChanges to true to apply any changes made.
Config Method (CAdESSigner Component)
Sets or retrieves a configuration setting.
Syntax
String __fastcall Config(String ConfigurationString);
Remarks
Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
CreateNew Method (CAdESSigner Component)
Create a new CAdES signature.
Syntax
void __fastcall CreateNew();
Remarks
Use this method to create a new CAdES signature. When finished, call Close to complete or discard the operation.
DoAction Method (CAdESSigner Component)
Performs an additional action.
Syntax
String __fastcall DoAction(String ActionID, String ActionParams);
Remarks
DoAction is a generic method available in every component. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.
The unique identifier (case insensitive) of the action is provided in the ActionID parameter.
ActionParams contains the value of a single parameter, or a list of multiple parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....
ExtractAsyncData Method (CAdESSigner Component)
Extracts user data from the DC signing service response.
Syntax
String __fastcall ExtractAsyncData(String AsyncReply);
Remarks
Call this method before finalizing the asynchronous signing process to extract the data passed to the ExternalCrypto.Data property on the pre-signing stage.
The Data parameter can be used to pass some state or document identifier along with the signing request from the pre-signing to the completion async stage.
Open Method (CAdESSigner Component)
Opens an existing container for signing or updating.
Syntax
void __fastcall Open();
Remarks
Use this method to open a container for signing or updating. When finished, call Close to complete or discard the operation.
Reset Method (CAdESSigner Component)
Resets the component settings.
Syntax
void __fastcall Reset();
Remarks
Reset is a generic method available in every component.
Revalidate Method (CAdESSigner Component)
Revalidates a signature in accordance with current settings.
Syntax
void __fastcall Revalidate(String SigLabel);
Remarks
Use this method to re-validate a signature in the opened CAdES signature.
SelectInfo Method (CAdESSigner Component)
Select signature information for a specific entity.
Syntax
void __fastcall SelectInfo(String EntityLabel, int InfoType, bool ClearSelection);
Remarks
Use this method to select (or filter) signature-related information for a specific signature element.
Provide the unique label of the entity that you are interested in via the EntityLabel parameter. Use one of the following filters, or their combination, to specify what information you are interested in:
sitEntity | 1 | Select the current entity |
sitParentEntity | 2 | Select the parent entity of the current entity |
sitTimestamps | 4 | Select all timestamps covering the current entity |
sitSignatures | 8 | Select all signatures covering the current entity |
sitSigningChain | 16 | Select the signing chain of the current entity |
sitEmbeddedCertificates | 256 | Select all certificates embedded in the current entity |
sitEmbeddedCRLs | 512 | Select all CRLs embedded in the current entity |
sitEmbeddedOCSPs | 1024 | Select all OCSP responses embedded in the current entity |
sitEmbeddedRevInfo | 1792 | Select the whole pack of embedded revocation information (certificates, CRLs and OCSPs) |
sitUsedCertificates | 4096 | Select all the certificates used to validate this entity's chain |
sitUsedCRLs | 8192 | Select all the CRLs used to validate this entity's chain |
sitUsedOCSPs | 16384 | Select all the OCSP responses used to validate this entity's chain |
sitUsedRevInfo | 28672 | Select the whole pack of revocation information used to validate this entity's chain (certificates, CRLs, OCSP responses) |
sitAttributes | 65536 | Select this entity's CMS attributes |
sitReferences | 131072 | Select this entity's XML references |
sitSignedParts | 262144 | Select this entity's signed parts |
Following the call, the relevant pieces of information will be copied to the respective component properties (Certificates, CRLs, OCSPs). Note that you can accumulate information in the properties by making repeated calls to SelectInfo and keeping ClearSelection set to false.
This method is useful if you would like to read/display detailed information about a particular signature or timestamp.
Sign Method (CAdESSigner Component)
Creates a new CAdES signature over the provided data.
Syntax
void __fastcall Sign();
Remarks
Call this method to produce a new signature over the provided data.
SignAsyncBegin Method (CAdESSigner Component)
Initiates the asynchronous signing operation.
Syntax
String __fastcall SignAsyncBegin();
Remarks
When using the DC framework, call this method to initiate the asynchronous signing process. Upon completion, a pre-signed copy of the document will be saved in OutputFile (or OutputStream). Keep the pre-signed copy somewhere local, and pass the returned string ('the request state') to the DC processor for handling.
Upon receiving the response state from the DC processor, assign the path to the pre-signed copy to InputFile (or InputStream), and call SignAsyncEnd to finalize the signing.
Note that depending on the signing method and DC configuration used, you may still need to provide the public part of the signing certificate via the SigningCertificate property.
Use the ExternalCrypto.AsyncDocumentID property to supply a unique document ID to include in the request. This is helpful when creating batches of multiple async requests, as it allows you to pass the whole response batch to SignAsyncEnd and expect it to recover the correct response from the batch automatically.
AsyncState is a message of the distributed cryptography (DC) protocol. The DC protocol is based on the exchange of async states between a DC client (an application that wants to sign a PDF, XML, or Office document) and a DC server (an application that controls access to the private key). An async state can carry one or more signing requests, comprised of document hashes, or one or more signatures produced over those hashes.
In a typical scenario you get a client-side async state from the SignAsyncBegin method. This state contains document hashes to be signed on the DC server side. You then send the async state to the DC server (often represented by the DCAuth component), which processes it and produces a matching signature state. The async state produced by the server is then passed to the SignAsyncEnd method.
SignAsyncEnd Method (CAdESSigner Component)
Completes the asynchronous signing operation.
Syntax
void __fastcall SignAsyncEnd(String AsyncReply);
Remarks
When using the DC framework, call this method upon receiving the response state from the DC processor to complete the asynchronous signing process.
Before calling this method, assign the path to the pre-signed copy of the document obtained from the prior SignAsyncBegin call to InputFile (or InputStream). The method will embed the signature into the pre-signed document, and save the complete signed document to OutputFile (or OutputStream).
Note that depending on the signing method and DC configuration used, you may still need to provide the public part of the signing certificate via the SigningCertificate property.
Use the ExternalCrypto.AsyncDocumentID parameter to pass a specific document ID if using batched AsyncReply. If used, it should match the value provided on the pre-signing (SignAsyncBegin) stage.
AsyncState is a message of the distributed cryptography (DC) protocol. The DC protocol is based on the exchange of async states between a DC client (an application that wants to sign a PDF, XML, or Office document) and a DC server (an application that controls access to the private key). An async state can carry one or more signing requests, comprised of document hashes, or one or more signatures produced over those hashes.
In a typical scenario you get a client-side async state from the SignAsyncBegin method. This state contains document hashes to be signed on the DC server side. You then send the async state to the DC server (often represented by the DCAuth component), which processes it and produces a matching signature state. The async state produced by the server is then passed to the SignAsyncEnd method.
SignExternal Method (CAdESSigner Component)
Signs the document using an external signing facility.
Syntax
void __fastcall SignExternal();
Remarks
Use this method to create a CAdES signature using an external signing facility for the cryptographic computations. SignRemote delegates the low-level signing operation to an external, remote, or custom signing engine. This method is useful if the signature has to be made by a device accessible through a custom or non-standard signing interface.
When all preparations are done and hash is computed, the component fires ExternalSign event which allows to pass the hash value for signing.
Timestamp Method (CAdESSigner Component)
Use this method to add timestamp.
Syntax
void __fastcall Timestamp(String SigLabel, int TimestampType);
Remarks
Call this method to add a timestamp to the signature. Use the TimestampServer property to provide the address of the TSA (Time Stamping Authority) server which should be used for timestamping. Use the TimestampType parameter to specify the type of timestamp to create
Supported timestamp types:
tstUnknown | 0 | |
tstLegacy | 1 | Supported by: Authenticode components |
tstTrusted | 2 | Supported by: Authenticode components |
tstGeneric | 3 | Supported by: CAdES components |
tstESC | 4 | Supported by: CAdES components |
tstContent | 5 | Supported by: CAdES components |
tstCertsAndCRLs | 6 | Supported by: CAdES components |
tstArchive | 7 | Archive timestamp. Supported by: ASiC, CAdES, JAdES, Office, SOAP, XAdES components |
tstArchive2 | 8 | Archive v2 timestamp. Supported by: ASiC, CAdES components |
tstArchive3 | 9 | Archive v3 timestamp. Supported by: ASiC, CAdES components |
tstIndividualDataObjects | 10 | Individual data objects timetamp. Supported by: ASiC, Office, SOAP, XAdES components |
tstAllDataObjects | 11 | All data objects timestamp. Supported by: ASiC, Office, SOAP, XAdES components |
tstSignature | 12 | Signature timestamp. Supported by: ASiC, JAdES, Office, SOAP, XAdES components |
tstRefsOnly | 13 | RefsOnly timestamp. Supported by: ASiC, JAdES, Office, SOAP, XAdES components |
tstSigAndRefs | 14 | SigAndRefs timestamp. Supported by: ASiC, JAdES, Office, SOAP, XAdES components |
tstSignedData | 15 | SignedData timestamp. Supported by: JAdES components |
tstArchive141 | 16 | Archive timestamp v1.4.1. Supported by: ASiC, Office, SOAP, XAdES components |
Upgrade Method (CAdESSigner Component)
Upgrades existing CAdES to a new level.
Syntax
void __fastcall Upgrade(String SigLabel, int UpgradeKind);
Remarks
CMS Advanced Electronic Signatures (CAdES) standard defines a number of different 'levels' of signatures which can be used for different purposes. Use this method to upgrade CAdES to a new level specified by UpgradeKind. Signatures can normally be upgraded from less sophisticated levels (BES, EPES) to more sophisticated (T, XL, A).
Supported levels:
aslUnknown | 0 | Unknown signature level |
aslGeneric | 1 | Generic (this value applicable to XAdES signature only and corresponds to XML-DSIG signature) |
aslBaselineB | 2 | Baseline B (B-B, basic) |
aslBaselineT | 3 | Baseline T (B-T, timestamped) |
aslBaselineLT | 4 | Baseline LT (B-LT, long-term) |
aslBaselineLTA | 5 | Baseline LTA (B-LTA, long-term with archived timestamp) |
aslBES | 6 | BES (Basic Electronic Signature) |
aslEPES | 7 | EPES (Electronic Signature with an Explicit Policy) |
aslT | 8 | T (Timestamped) |
aslC | 9 | C (T with revocation references) |
aslX | 10 | X (C with SigAndRefs timestamp or RefsOnly timestamp) (this value applicable to XAdES signature only) |
aslXType1 | 11 | X Type 1 (C with an ES-C timestamp) (this value applicable to CAdES signature only) |
aslXType2 | 12 | X Type 2 (C with a CertsAndCRLs timestamp) (this value applicable to CAdES signature only) |
aslXL | 13 | X-L (X with revocation values) (this value applicable to XAdES signature only) |
aslXLType1 | 14 | X-L Type 1 (C with revocation values and an ES-C timestamp) (this value applicable to CAdES signature only) |
aslXLType2 | 15 | X-L Type 2 (C with revocation values and a CertsAndCRLs timestamp) (this value applicable to CAdES signature only) |
aslA | 16 | A (archived) |
aslExtendedBES | 17 | Extended BES |
aslExtendedEPES | 18 | Extended EPES |
aslExtendedT | 19 | Extended T |
aslExtendedC | 20 | Extended C |
aslExtendedX | 21 | Extended X (this value applicable to XAdES signature only) |
aslExtendedXType1 | 22 | Extended X (type 1) (this value applicable to CAdES signature only) |
aslExtendedXType2 | 23 | Extended X (type 2) (this value applicable to CAdES signature only) |
aslExtendedXLong | 24 | Extended X-Long (this value applicable to XAdES signature only) |
aslExtendedXL | 25 | Extended X-L (this value applicable to XAdES signature only) |
aslExtendedXLType1 | 26 | Extended XL (type 1) (this value applicable to CAdES signature only) |
aslExtendedXLType2 | 27 | Extended XL (type 2) (this value applicable to CAdES signature only) |
aslExtendedA | 28 | Extended A |
The supported additional upgrade kinds are:
cukAddAttributes | 256 | Add attributes |
cukUpdateAttributes | 512 | Update attributes |
ChainElementDownload Event (CAdESSigner Component)
Fires when there is a need to download a chain element from an online source.
Syntax
typedef struct { int Kind; String CertRDN; String CACertRDN; String Location; int Action; } TsbxCAdESSignerChainElementDownloadEventParams; typedef void __fastcall (__closure *TsbxCAdESSignerChainElementDownloadEvent)(System::TObject* Sender, TsbxCAdESSignerChainElementDownloadEventParams *e); __property TsbxCAdESSignerChainElementDownloadEvent OnChainElementDownload = { read=FOnChainElementDownload, write=FOnChainElementDownload };
Remarks
Subscribe to this event to be notified about validation element retrievals. Use the Action parameter to suppress the download if required.
veaAuto | 0 | Handle the action automatically (the default behaviour) |
veaContinue | 1 | Accept the request implied by the event (accept the certificate, allow the object retrieval) |
veaReject | 2 | Reject the request implied by the event (reject the certificate, disallow the object retrieval) |
veaAcceptNow | 3 | Accept the validated certificate immediately |
veaAbortNow | 4 | Abort the validation, reject the certificate |
cekUnknown | 0 | Unknown or unsupported element type |
cekCertificate | 1 | An X.509 certificate |
cekCRL | 2 | A CRL |
cekOCSP | 3 | An OCSP response |
ChainElementNeeded Event (CAdESSigner Component)
Fires when an element required to validate the chain was not located.
Syntax
typedef struct { int Kind; String CertRDN; String CACertRDN; } TsbxCAdESSignerChainElementNeededEventParams; typedef void __fastcall (__closure *TsbxCAdESSignerChainElementNeededEvent)(System::TObject* Sender, TsbxCAdESSignerChainElementNeededEventParams *e); __property TsbxCAdESSignerChainElementNeededEvent OnChainElementNeeded = { read=FOnChainElementNeeded, write=FOnChainElementNeeded };
Remarks
Subscribe to this event to be notified about missing validation elements. Use the KnownCRLs, KnownCertificates, and KnownOCSPs properties in the event handler to provide the missing piece.
cekUnknown | 0 | Unknown or unsupported element type |
cekCertificate | 1 | An X.509 certificate |
cekCRL | 2 | A CRL |
cekOCSP | 3 | An OCSP response |
ChainValidated Event (CAdESSigner Component)
Reports the completion of a certificate chain validation.
Syntax
typedef struct { int Index; String EntityLabel; String SubjectRDN; int ValidationResult; int ValidationDetails; bool Cancel; } TsbxCAdESSignerChainValidatedEventParams; typedef void __fastcall (__closure *TsbxCAdESSignerChainValidatedEvent)(System::TObject* Sender, TsbxCAdESSignerChainValidatedEventParams *e); __property TsbxCAdESSignerChainValidatedEvent OnChainValidated = { read=FOnChainValidated, write=FOnChainValidated };
Remarks
This event is fired when a certificate chain validation routine completes. SubjectRDN identifies the owner of the validated certificate.
ValidationResult set to 0 (zero) indicates successful chain validation.
cvtValid | 0 | The chain is valid |
cvtValidButUntrusted | 1 | The chain is valid, but the root certificate is not trusted |
cvtInvalid | 2 | The chain is not valid (some of certificates are revoked, expired, or contain an invalid signature) |
cvtCantBeEstablished | 3 | The validity of the chain cannot be established because of missing or unavailable validation information (certificates, CRLs, or OCSP responses) |
cvrBadData | 0x0001 | One or more certificates in the validation path are malformed |
cvrRevoked | 0x0002 | One or more certificates are revoked |
cvrNotYetValid | 0x0004 | One or more certificates are not yet valid |
cvrExpired | 0x0008 | One or more certificates are expired |
cvrInvalidSignature | 0x0010 | A certificate contains a non-valid digital signature |
cvrUnknownCA | 0x0020 | A CA certificate for one or more certificates has not been found (chain incomplete) |
cvrCAUnauthorized | 0x0040 | One of the CA certificates are not authorized to act as CA |
cvrCRLNotVerified | 0x0080 | One or more CRLs could not be verified |
cvrOCSPNotVerified | 0x0100 | One or more OCSP responses could not be verified |
cvrIdentityMismatch | 0x0200 | The identity protected by the certificate (a TLS endpoint or an e-mail addressee) does not match what is recorded in the certificate |
cvrNoKeyUsage | 0x0400 | A mandatory key usage is not enabled in one of the chain certificates |
cvrBlocked | 0x0800 | One or more certificates are blocked |
cvrFailure | 0x1000 | General validation failure |
cvrChainLoop | 0x2000 | Chain loop: one of the CA certificates recursively signs itself |
cvrWeakAlgorithm | 0x4000 | A weak algorithm is used in one of certificates or revocation elements |
cvrUserEnforced | 0x8000 | The chain was considered invalid following intervention from a user code |
ChainValidationProgress Event (CAdESSigner Component)
This event is fired multiple times during chain validation to report various stages of the validation procedure.
Syntax
typedef struct { String EventKind; String CertRDN; String CACertRDN; int Action; } TsbxCAdESSignerChainValidationProgressEventParams; typedef void __fastcall (__closure *TsbxCAdESSignerChainValidationProgressEvent)(System::TObject* Sender, TsbxCAdESSignerChainValidationProgressEventParams *e); __property TsbxCAdESSignerChainValidationProgressEvent OnChainValidationProgress = { read=FOnChainValidationProgress, write=FOnChainValidationProgress };
Remarks
Subscribe to this event to be notified about chain validation progress. Use the Action parameter to alter the validation flow.
The EventKind parameter reports the nature of the event being reported. The CertRDN and CACertRDN parameters report the distinguished names of the certificates that are relevant for the event invocation (one or both can be empty, depending on EventKind). Use the Action parameter to adjust the validation flow.
veaAuto | 0 | Handle the action automatically (the default behaviour) |
veaContinue | 1 | Accept the request implied by the event (accept the certificate, allow the object retrieval) |
veaReject | 2 | Reject the request implied by the event (reject the certificate, disallow the object retrieval) |
veaAcceptNow | 3 | Accept the validated certificate immediately |
veaAbortNow | 4 | Abort the validation, reject the certificate |
Error Event (CAdESSigner Component)
Information about errors during CAdES signing.
Syntax
typedef struct { int ErrorCode; String Description; } TsbxCAdESSignerErrorEventParams; typedef void __fastcall (__closure *TsbxCAdESSignerErrorEvent)(System::TObject* Sender, TsbxCAdESSignerErrorEventParams *e); __property TsbxCAdESSignerErrorEvent OnError = { read=FOnError, write=FOnError };
Remarks
The event is fired in case of exceptional conditions during message processing.
ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Messages section.
ExternalSign Event (CAdESSigner Component)
Handles remote or external signing initiated by the SignExternal method or other source.
Syntax
typedef struct { String OperationId; String HashAlgorithm; String Pars; String Data; String SignedData; } TsbxCAdESSignerExternalSignEventParams; typedef void __fastcall (__closure *TsbxCAdESSignerExternalSignEvent)(System::TObject* Sender, TsbxCAdESSignerExternalSignEventParams *e); __property TsbxCAdESSignerExternalSignEvent OnExternalSign = { read=FOnExternalSign, write=FOnExternalSign };
Remarks
Assign a handler to this event if you need to delegate a low-level signing operation to an external, remote, or custom signing engine. Depending on the settings, the handler will receive a hashed or unhashed value to be signed.
The event handler must pass the value of Data to the signer, obtain the signature, and pass it back to the component via the SignedData parameter.
OperationId provides a comment about the operation and its origin. It depends on the exact component being used, and may be empty. HashAlgorithm specifies the hash algorithm being used for the operation, and Pars contains algorithm-dependent parameters.
The component uses base16 (hex) encoding for the Data, SignedData, and Pars parameters. If your signing engine uses a different input and output encoding, you may need to decode and/or encode the data before and/or after the signing.
A sample MD5 hash encoded in base16: a0dee2a0382afbb09120ffa7ccd8a152 - lower case base16 A0DEE2A0382AFBB09120FFA7CCD8A152 - upper case base16
A sample event handler that uses the .NET RSACryptoServiceProvider class may look like the following:
signer.OnExternalSign += (s, e) =>
{
var cert = new X509Certificate2("cert.pfx", "", X509KeyStorageFlags.Exportable);
var key = (RSACryptoServiceProvider)cert.PrivateKey;
var dataToSign = e.Data.FromBase16String();
var signedData = key.SignHash(dataToSign, "2.16.840.1.101.3.4.2.1");
e.SignedData = signedData.ToBase16String();
};
Loaded Event (CAdESSigner Component)
This event is fired when the CAdES signature has been loaded into memory.
Syntax
typedef struct { bool Cancel; } TsbxCAdESSignerLoadedEventParams; typedef void __fastcall (__closure *TsbxCAdESSignerLoadedEvent)(System::TObject* Sender, TsbxCAdESSignerLoadedEventParams *e); __property TsbxCAdESSignerLoadedEvent OnLoaded = { read=FOnLoaded, write=FOnLoaded };
Remarks
The handler for this event is a good place to check CAdES signature properties, which may be useful when preparing the signature.
Set Cancel to true to terminate CAdES signature processing on this stage.
Notification Event (CAdESSigner Component)
This event notifies the application about an underlying control flow event.
Syntax
typedef struct { String EventID; String EventParam; } TsbxCAdESSignerNotificationEventParams; typedef void __fastcall (__closure *TsbxCAdESSignerNotificationEvent)(System::TObject* Sender, TsbxCAdESSignerNotificationEventParams *e); __property TsbxCAdESSignerNotificationEvent OnNotification = { read=FOnNotification, write=FOnNotification };
Remarks
The component fires this event to let the application know about some event, occurrence, or milestone in the component. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.
The unique identifier of the event is provided in the EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the component, the exact action it is performing, or the document being processed, one or both may be omitted.
This component can fire this event with the following EventID values:
Loaded | Reports the completion of signature processing by the component. Use the event handler to access signature-related information. The EventParam value passed with this EventID is empty. |
ContentExtracted | Reports the completion of message content extraction by the component if ExtractContent property is enabled. Use the event handler to access message content. The EventParam value passed with this EventID is empty. |
SignaturesLoaded | Notifies the application that the component has finished loading signatures. |
BeforeTimestamp | This event is fired before a timestamp is requested from the timestamping authority. Use the event handler to modify TSA and HTTP settings. |
TimestampError | This event is only fired if the component failed to obtain a timestamp from the timestamping authority. The EventParam parameter contains extended error info. |
TimestampRequest | A timestamp is requested from the custom timestamping
authority. This event is only fired if TimestampServer was set to a
virtual:// URI. The EventParam parameter contains the
TSP request (or the plain hash, depending on the value provided to
TimestampServer), in base16, that needs to be sent to the TSA.
Use the event handler to send the request to the TSA. Upon receiving the response, assign it, in base16, to the TimestampResponse configuration property. |
SignatureFound Event (CAdESSigner Component)
Signifies the start of signature validation.
Syntax
typedef struct { int Index; String EntityLabel; String IssuerRDN; DynamicArraySerialNumber; DynamicArray SubjectKeyID; bool CertFound; bool ValidateSignature; bool ValidateChain; } TsbxCAdESSignerSignatureFoundEventParams; typedef void __fastcall (__closure *TsbxCAdESSignerSignatureFoundEvent)(System::TObject* Sender, TsbxCAdESSignerSignatureFoundEventParams *e); __property TsbxCAdESSignerSignatureFoundEvent OnSignatureFound = { read=FOnSignatureFound, write=FOnSignatureFound };
Remarks
This event tells the application that signature validation is about to start, and provides the details about the signer's certificate via its IssuerRDN, SerialNumber, and SubjectKeyID parameters. It fires for every signature located in the verified document or message.
The CertFound parameter is set to True if the component has found the needed certificate in one of the known locations, and to False otherwise, in which case you must provide it manually via the KnownCertificates property.
Signature validation consists of two independent stages: cryptographic signature validation and chain validation. Separate validation results are reported for each, with the and properties respectively.
Use the ValidateSignature and ValidateChain parameters to tell the verifier which stages to include in the validation.
SignatureValidated Event (CAdESSigner Component)
Marks the completion of the signature validation routine.
Syntax
typedef struct { int Index; String EntityLabel; String IssuerRDN; DynamicArraySerialNumber; DynamicArray SubjectKeyID; int ValidationResult; bool Cancel; } TsbxCAdESSignerSignatureValidatedEventParams; typedef void __fastcall (__closure *TsbxCAdESSignerSignatureValidatedEvent)(System::TObject* Sender, TsbxCAdESSignerSignatureValidatedEventParams *e); __property TsbxCAdESSignerSignatureValidatedEvent OnSignatureValidated = { read=FOnSignatureValidated, write=FOnSignatureValidated };
Remarks
This event is fired upon the completion of the signature validation routine, and reports the respective validation result.
Use the IssuerRDN, SerialNumber, and/or SubjectKeyID parameters to identify the signing certificate.
ValidationResult is set to 0 if the validation has been successful, or to a non-zero value in case of a validation failure.
svtValid | 0 | The signature is valid |
svtUnknown | 1 | Signature validity is unknown |
svtCorrupted | 2 | The signature is corrupted |
svtSignerNotFound | 3 | Failed to acquire the signing certificate. The signature cannot be validated. |
svtFailure | 4 | General failure |
svtReferenceCorrupted | 5 | Reference corrupted (XML-based signatures only) |
TimestampFound Event (CAdESSigner Component)
Signifies the start of a timestamp validation routine.
Syntax
typedef struct { int Index; String EntityLabel; String IssuerRDN; DynamicArraySerialNumber; DynamicArray SubjectKeyID; bool CertFound; bool ValidateTimestamp; bool ValidateChain; } TsbxCAdESSignerTimestampFoundEventParams; typedef void __fastcall (__closure *TsbxCAdESSignerTimestampFoundEvent)(System::TObject* Sender, TsbxCAdESSignerTimestampFoundEventParams *e); __property TsbxCAdESSignerTimestampFoundEvent OnTimestampFound = { read=FOnTimestampFound, write=FOnTimestampFound };
Remarks
This event fires for every timestamp identified during signature processing, and reports the details about the signer's certificate via its IssuerRDN, SerialNumber, and SubjectKeyID parameters.
The CertFound parameter is set to True if the component has found the needed certificate in one of the known locations, and to False otherwise, in which case you must provide it manually via the KnownCertificates property.
Just like with signature validation, timestamp validation consists of two independent stages: cryptographic signature validation and chain validation. Separate validation results are reported for each, with the and properties respectively.
Use the ValidateSignature and ValidateChain parameters to tell the verifier which stages to include in the validation.
TimestampRequest Event (CAdESSigner Component)
Fires when the component is ready to request a timestamp from an external TSA.
Syntax
typedef struct { String TSA; String TimestampRequest; String TimestampResponse; bool SuppressDefault; } TsbxCAdESSignerTimestampRequestEventParams; typedef void __fastcall (__closure *TsbxCAdESSignerTimestampRequestEvent)(System::TObject* Sender, TsbxCAdESSignerTimestampRequestEventParams *e); __property TsbxCAdESSignerTimestampRequestEvent OnTimestampRequest = { read=FOnTimestampRequest, write=FOnTimestampRequest };
Remarks
Subscribe to this event to intercept timestamp requests. You can use it to override timestamping requests and perform them in your code.
The TSA parameter indicates the timestamping service being used. It matches the value passed to the TimestampServer property. Set the SuppressDefault parameter to false if you would like to stop the built-in TSA request from going ahead. The built-in TSA request is also not performed if the returned TimestampResponse parameter is not empty.
TimestampValidated Event (CAdESSigner Component)
Reports the completion of the timestamp validation routine.
Syntax
typedef struct { int Index; String EntityLabel; String IssuerRDN; DynamicArraySerialNumber; DynamicArray SubjectKeyID; String Time; int ValidationResult; int ChainValidationResult; int ChainValidationDetails; bool Cancel; } TsbxCAdESSignerTimestampValidatedEventParams; typedef void __fastcall (__closure *TsbxCAdESSignerTimestampValidatedEvent)(System::TObject* Sender, TsbxCAdESSignerTimestampValidatedEventParams *e); __property TsbxCAdESSignerTimestampValidatedEvent OnTimestampValidated = { read=FOnTimestampValidated, write=FOnTimestampValidated };
Remarks
This event is fired upon the completion of the timestamp validation routine, and reports the respective validation result.
ValidationResult is set to 0 if the validation has been successful, or to a non-zero value in case of a failure.
svtValid | 0 | The signature is valid |
svtUnknown | 1 | Signature validity is unknown |
svtCorrupted | 2 | The signature is corrupted |
svtSignerNotFound | 3 | Failed to acquire the signing certificate. The signature cannot be validated. |
svtFailure | 4 | General failure |
svtReferenceCorrupted | 5 | Reference corrupted (XML-based signatures only) |
TLSCertNeeded Event (CAdESSigner Component)
Fires when a remote TLS party requests a client certificate.
Syntax
typedef struct { String Host; String CANames; } TsbxCAdESSignerTLSCertNeededEventParams; typedef void __fastcall (__closure *TsbxCAdESSignerTLSCertNeededEvent)(System::TObject* Sender, TsbxCAdESSignerTLSCertNeededEventParams *e); __property TsbxCAdESSignerTLSCertNeededEvent OnTLSCertNeeded = { read=FOnTLSCertNeeded, write=FOnTLSCertNeeded };
Remarks
This event fires to notify the implementation that a remote TLS server has requested a client certificate. The Host parameter identifies the host that makes a request, and the CANames parameter (optional, according to the TLS spec) advises on the accepted issuing CAs.
Use the TLSClientChain property in response to this event to provide the requested certificate. Please make sure the client certificate includes the associated private key. Note that you may set the certificates before the connection without waiting for this event to fire.
This event is preceded by the TLSHandshake event for the given host and, if the certificate was accepted, succeeded by the TLSEstablished event.
TLSCertValidate Event (CAdESSigner Component)
This event is fired upon receipt of the TLS server's certificate, allowing the user to control its acceptance.
Syntax
typedef struct { String ServerHost; String ServerIP; bool Accept; } TsbxCAdESSignerTLSCertValidateEventParams; typedef void __fastcall (__closure *TsbxCAdESSignerTLSCertValidateEvent)(System::TObject* Sender, TsbxCAdESSignerTLSCertValidateEventParams *e); __property TsbxCAdESSignerTLSCertValidateEvent OnTLSCertValidate = { read=FOnTLSCertValidate, write=FOnTLSCertValidate };
Remarks
This event is fired during a TLS handshake. Use the TLSServerChain property to access the certificate chain. In general, components may contact a number of TLS endpoints during their work, depending on their configuration.
Accept is assigned in accordance with the outcome of the internal validation check performed by the component, and can be adjusted if needed.
TLSEstablished Event (CAdESSigner Component)
Fires when a TLS handshake with Host successfully completes.
Syntax
typedef struct { String Host; String Version; String Ciphersuite; DynamicArrayConnectionId; bool Abort; } TsbxCAdESSignerTLSEstablishedEventParams; typedef void __fastcall (__closure *TsbxCAdESSignerTLSEstablishedEvent)(System::TObject* Sender, TsbxCAdESSignerTLSEstablishedEventParams *e); __property TsbxCAdESSignerTLSEstablishedEvent OnTLSEstablished = { read=FOnTLSEstablished, write=FOnTLSEstablished };
Remarks
The component uses this event to notify the application about a successful completion of a TLS handshake.
The Version, Ciphersuite, and ConnectionId parameters indicate the security parameters of the new connection. Use the Abort parameter if you need to terminate the connection at this stage.
TLSHandshake Event (CAdESSigner Component)
Fires when a new TLS handshake is initiated, before the handshake commences.
Syntax
typedef struct { String Host; bool Abort; } TsbxCAdESSignerTLSHandshakeEventParams; typedef void __fastcall (__closure *TsbxCAdESSignerTLSHandshakeEvent)(System::TObject* Sender, TsbxCAdESSignerTLSHandshakeEventParams *e); __property TsbxCAdESSignerTLSHandshakeEvent OnTLSHandshake = { read=FOnTLSHandshake, write=FOnTLSHandshake };
Remarks
The component uses this event to notify the application about the start of a new TLS handshake to Host. If the handshake is successful, this event will be followed by the TLSEstablished event. If the server chooses to request a client certificate, the TLSCertNeeded event will also be fired.
TLSShutdown Event (CAdESSigner Component)
Reports the graceful closure of a TLS connection.
Syntax
typedef struct { String Host; } TsbxCAdESSignerTLSShutdownEventParams; typedef void __fastcall (__closure *TsbxCAdESSignerTLSShutdownEvent)(System::TObject* Sender, TsbxCAdESSignerTLSShutdownEventParams *e); __property TsbxCAdESSignerTLSShutdownEvent OnTLSShutdown = { read=FOnTLSShutdown, write=FOnTLSShutdown };
Remarks
This event notifies the application about the closure of an earlier established TLS connection. Note that only graceful connection closures are reported.
Config Settings (CAdESSigner Component)
The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.CAdESSigner Config Settings
If IgnoreSystemTrust is True, certificates residing in the trusted root store are treated as if they are known, rather than trusted. Only certificates provided via other means (such as the TrustedCertificates property) are considered trusted.
Sample value: '{"addressCountry": "UK", "addressLocality": "London", "postalCode": "N1 7GU", "streetAddress": "20-22 Wenlock Road"}'
Identifies the place of the signature production.The signature production place in JSON format that was included or to be included into the signature.Sample value: '{"addressCountry": "UK", "addressLocality": "London", "postalCode": "N1 7GU", "streetAddress": "20-22 Wenlock Road"}'
Sample value: '{"addressCountry": "UK", "addressLocality": "London", "postalCode": "N1 7GU", "streetAddress": "20-22 Wenlock Road"}'
Identifies the place of the signature production.The signature production place in JSON format that was included or to be included into the signature.Sample value: '{"addressCountry": "UK", "addressLocality": "London", "postalCode": "N1 7GU", "streetAddress": "20-22 Wenlock Road"}'
This setting is used to provide parameters for some cryptographic schemes. Use the Name1=Value1;Name2=Value2;... syntax to encode the parameters. For example: Scheme=PSS;SaltSize=32;TrailerField=1.
- CA, revocation source, TLS key usage requirements are not mandated
- Violation of OCSP issuer requirements are ignored
- The AuthorityKeyID extension in CRL- and certificate-issuing CAs are ignored (helps with incorrectly renewed certificates)
- Basic constraints and name constraints of CA certificates are ignored
- Some weaker algorithms are tolerated
In case of a timestamping failure, provide new TSA and HTTP settings inside the Notification event handler ('BeforeTimestamp' and 'TimestampError' event IDs).
The following default TSLs are used: EU (European Union) LOTL (list of trusted lists).
The following default TSLs are used: EU (European Union) LOTL (list of trusted lists).
Base Config Settings
You can switch this property off to improve performance if your project only uses known, good private keys.
Supported values are:
off | No caching (default) | |
local | Local caching | |
global | Global caching |
This setting only applies to sessions negotiated with TLS version 1.3.
Supported values are:
file | File | |
console | Console | |
systemlog | System Log (supported for Android only) | |
debugger | Debugger (supported for VCL for Windows and .Net) |
Supported values are:
time | Current time | |
level | Level | |
package | Package name | |
module | Module name | |
class | Class name | |
method | Method name | |
threadid | Thread Id | |
contenttype | Content type | |
content | Content | |
all | All details |
Supported filter names are:
exclude-package | Exclude a package specified in the value | |
exclude-module | Exclude a module specified in the value | |
exclude-class | Exclude a class specified in the value | |
exclude-method | Exclude a method specified in the value | |
include-package | Include a package specified in the value | |
include-module | Include a module specified in the value | |
include-class | Include a class specified in the value | |
include-method | Include a method specified in the value |
none | No flush (caching only) | |
immediate | Immediate flush (real-time logging) | |
maxcount | Flush cached entries upon reaching LogMaxEventCount entries in the cache. |
Supported values are:
none | None (by default) | |
fatal | Severe errors that cause premature termination. | |
error | Other runtime errors or unexpected conditions. | |
warning | Use of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong". | |
info | Interesting runtime events (startup/shutdown). | |
debug | Detailed information on flow of through the system. | |
trace | More detailed information. |
The default value of this setting is 100.
none | No rotation | |
deleteolder | Delete older entries from the cache upon reaching LogMaxEventCount | |
keepolder | Keep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded) |
Supported values are:
none | No static DNS rules (default) | |
local | Local static DNS rules | |
global | Global static DNS rules |
This setting only applies to certificates originating from a Windows system store.
Trappable Errors (CAdESSigner Component)
CAdESSigner Errors
1048577 | Invalid parameter (SB_ERROR_INVALID_PARAMETER) |
1048578 | Invalid configuration (SB_ERROR_INVALID_SETUP) |
1048579 | Invalid state (SB_ERROR_INVALID_STATE) |
1048580 | Invalid value (SB_ERROR_INVALID_VALUE) |
1048581 | Private key not found (SB_ERROR_NO_PRIVATE_KEY) |
1048582 | Cancelled by the user (SB_ERROR_CANCELLED_BY_USER) |
1048583 | The file was not found (SB_ERROR_NO_SUCH_FILE) |
1048584 | Unsupported feature or operation (SB_ERROR_UNSUPPORTED_FEATURE) |
1048585 | General error (SB_ERROR_GENERAL_ERROR) |