KMIPClient Component

Properties   Methods   Events   Config Settings   Errors  

The KMIPClient component provides client-side functionality for KMIP protocol.

Syntax

TsbxKMIPClient

Remarks

The KMIPClient component implements the client-side counterpart of the KMIP environment. KMIP, or the Key Management Interoperability Protocol, is an OASIS standard of communication between applications that need to use or manage cryptographic keys over the network. A typical example of a KMIP client is an application that needs to access a remotely stored cryptographic key (shared by a KMIP server) - for example, to solicit a digital signature or decrypt an encrypted document.

Capabilities

KMIPClient supports the majority of the features defined by the KMIP specification, both on the key management and cryptographic operations fronts. While the KMIP version implemented in KMIPClient is 1.3, the KMIP approach to version sequencing allows KMIPClient to communicate equally efficiently with implementations supporting earlier and newer protocol versions. All the three encoding types (TTLV, JSON, and XML) are supported, which can be used over TCP, TLS, or HTTP(S) transports.

Working with KMIPClient

Setting up the component

KMIP servers can come in a variety of configurations, many of which cannot be detected or applied automatically. That's why the first stage is about configuring the component in such way that it knows how to talk to a specific server that you need to work with. Below are the key settings that you need to tune up. You can get most or all of this information from the administrator of the KMIP server:

Network access parameters

This is the network address and port that the KMIP server is listening on - for example, 10.0.1.110:5696 or kmip.server.com:25696.

The transport type

This could be one of TCP (unencrypted low-level connection), TLS (encrypted low-level connection), HTTP (unencrypted HTTP), HTTPS (encrypted HTTP). Transport type is not negotiable: the client must use exactly the same transport as the server expects. You specify the transport by applying the appropriate transport-specific prefix to the server address that you are passing to BaseURL:

  • kmip:// for plain TCP (e.g. kmip://10.0.1.110:5696)
  • kmips:// for TLS (e.g. kmips://kmip.server.com:25696)
  • http:// for HTTP (e.g. http://kmip.server.com:80)
  • https:// for HTTPS (e.g. https://10.0.1.110:5697)

KMIP servers accessible over HTTP(S) may reside either at a root (/) or a deeper-level web server endpoint (for example, /services/kmip). Append this path to the network parameters as you would normally do when working with HTTP endpoints. Having done that, combine the transport prefix, the network parameters, and the HTTP path (if used) together to obtain the value to assign to BaseURL:

client.BaseURL = "https://kmip.server.com:25696/services/kmip"; // TLS-secured HTTP connection to kmip.server.com running on port 25696

The encoding type

KMIP offers three encoding types: TTLV ("tag, type, length, value"), JSON, and XML. Depending on configuration and scenarios used installation may prefer one over the others. Plain TCP and TLS KMIP setups normally use TTLV encoding. The client and server must use the same encoding to understand each other.

TLS configuration

TLS-protected connections require additional setup of the TLS parameters. Those are not part of KMIP, but, rather, are intended to supply expected security configuration. The principal security setting here concerns the way the server's TLS certificate is validated. You will find more details about configuring TLS on the client side in the Validating TLS Certificates article.

Once the connection and protocol parameters are configured, you can go ahead and start making requests to the KMIP server. A KMIP server can serve requests which generally fall into one of the two categories:

  • Key management requests - such as importing a certificate, generating a keypair, or obtaining a list of keys stored on the server.
  • Cryptographic operation requests - such as signing or encrypting data.
Depending on your specific setup, the server may support a subset of operations from one or both categories.

Managing keys and certificates

The common key management operations are:

Importing a keypair or certificate to the server

Use AddKey to import an asymmetric keypair or its part, or a secret symmetric key, to the KMIP server. Use Add to import a certificate. Both methods return a unique object identifier that you can use to identify the object on the server.

Listing server objects

Use List to request a criteria-based list of objects from the server. The objects returned by the server will be published in the Objects collection.

Reading object properties

KMIPClient offers a few methods to read object properties. You can choose the method that fits your scenario best. Use Read and ReadKey methods to read certificates and keys directly into the Certificate and Key properties. You can then pass the received objects to other components that support them (such as CertificateManager). Use ReadObject to read the object into the Objects list. Use ReadAttribute to read a specific attribute of an object.

Generating server-side objects

KMIP supports server-side object generation, which allows for secure cryptographic material setup. Among objects you can generate are certificates (Generate) and generic keys (GenerateKey).

Making cryptographic calls

The common cryptographic calls are:

Signing data

Use the Sign method to sign the data using a server-side private key.

Encrypting and decrypting data

Use the Encrypt and Decrypt methods to encrypt or decrypt data using a server-side key. This method can be used with both symmetric and asymmetric keys.

Providing data for the operations

You can provide input for the cryptographic operations in one of the following forms:

  • as a byte array - use InputBytes property.
  • as a stream - use InputStream.
  • in a file - use InputFile.
The processed (e.g. signed) data can be retrieved from an equivalent set of output properties (OutputBytes, OutputStream, OutputFile). You can mix and match input and output data sources as you need: for example, you can provide the input in a file, but read the output as a byte array from OutputBytes.

Note that the OutputBytes is only populated if neither of OutputFile and OutputStream is set.

Referencing server objects

Every object residing on a KMIP server is referenced by its unique object identifier. Your code is expected to pass the identifier of the object that you want to use or read to the relevant method, such as Sign or ReadObject. If you do not know the identifier of the object that you need to use, use the List method to solicit the list of the server-side objects first. Locate the required object in the list and pass its unique identifier to the needed method.

Property List


The following is the full list of the properties of the component with short descriptions. Click on the links for further details.

AuthTypesDefines allowed HTTP authentication types.
AuxResultContains the auxiliary result of the last performed operation.
BaseURLSpecifies the url of the KMIP server.
BlockedCertCountThe number of records in the BlockedCert arrays.
BlockedCertBytesReturns the raw certificate data in DER format.
BlockedCertHandleAllows to get or set a 'handle', a unique identifier of the underlying property object.
CertificateBytesReturns the raw certificate data in DER format.
CertificateHandleAllows to get or set a 'handle', a unique identifier of the underlying property object.
ConnInfoAEADCipherIndicates whether the encryption algorithm used is an AEAD cipher.
ConnInfoChainValidationDetailsThe details of a certificate chain validation outcome.
ConnInfoChainValidationResultThe outcome of a certificate chain validation routine.
ConnInfoCiphersuiteThe cipher suite employed by this connection.
ConnInfoClientAuthenticatedSpecifies whether client authentication was performed during this connection.
ConnInfoClientAuthRequestedSpecifies whether client authentication was requested during this connection.
ConnInfoConnectionEstablishedIndicates whether the connection has been established fully.
ConnInfoConnectionIDThe unique identifier assigned to this connection.
ConnInfoDigestAlgorithmThe digest algorithm used in a TLS-enabled connection.
ConnInfoEncryptionAlgorithmThe symmetric encryption algorithm used in a TLS-enabled connection.
ConnInfoExportableIndicates whether a TLS connection uses a reduced-strength exportable cipher.
ConnInfoIDThe client connection's unique identifier.
ConnInfoKeyExchangeAlgorithmThe key exchange algorithm used in a TLS-enabled connection.
ConnInfoKeyExchangeKeyBitsThe length of the key exchange key of a TLS-enabled connection.
ConnInfoNamedECCurveThe elliptic curve used in this connection.
ConnInfoPFSCipherIndicates whether the chosen ciphersuite provides perfect forward secrecy (PFS).
ConnInfoPreSharedIdentitySpecifies the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.
ConnInfoPreSharedIdentityHintA hint professed by the server to help the client select the PSK identity to use.
ConnInfoPublicKeyBitsThe length of the public key.
ConnInfoRemoteAddressThe client's IP address.
ConnInfoRemotePortThe remote port of the client connection.
ConnInfoResumedSessionIndicates whether a TLS-enabled connection was spawned from another TLS connection.
ConnInfoSecureConnectionIndicates whether TLS or SSL is enabled for this connection.
ConnInfoServerAuthenticatedIndicates whether server authentication was performed during a TLS-enabled connection.
ConnInfoSignatureAlgorithmThe signature algorithm used in a TLS handshake.
ConnInfoSymmetricBlockSizeThe block size of the symmetric algorithm used.
ConnInfoSymmetricKeyBitsThe key length of the symmetric algorithm used.
ConnInfoTotalBytesReceivedThe total number of bytes received over this connection.
ConnInfoTotalBytesSentThe total number of bytes sent over this connection.
ConnInfoValidationLogContains the server certificate's chain validation log.
ConnInfoVersionIndicates the version of SSL/TLS protocol negotiated during this connection.
DataBytesUse this property to pass the secondary input to the component in the byte array form.
DataFileUse this property to pass the secondary input to the component from a file.
EncodingSpecifies the KMIP encoding type.
ExternalCryptoAsyncDocumentIDSpecifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.
ExternalCryptoCustomParamsCustom parameters to be passed to the signing service (uninterpreted).
ExternalCryptoDataAdditional data to be included in the async state and mirrored back by the requestor.
ExternalCryptoExternalHashCalculationSpecifies whether the message hash is to be calculated at the external endpoint.
ExternalCryptoHashAlgorithmSpecifies the request's signature hash algorithm.
ExternalCryptoKeyIDThe ID of the pre-shared key used for DC request authentication.
ExternalCryptoKeySecretThe pre-shared key used for DC request authentication.
ExternalCryptoMethodSpecifies the asynchronous signing method.
ExternalCryptoModeSpecifies the external cryptography mode.
ExternalCryptoPublicKeyAlgorithmProvide the public key algorithm here if the certificate is not available on the pre-signing stage.
FIPSModeReserved.
InputBytesUse this property to pass the input to component in byte array form.
InputFileA path to the file containing the data to be passed as input to a cryptographic operation.
KeyAlgorithmThe algorithm of the cryptographic key.
KeyBitsThe length of the key in bits.
KeyHandleAllows to get or set a 'handle', a unique identifier of the underlying property object.
KeySubjectReturns the key subject.
KnownCertCountThe number of records in the KnownCert arrays.
KnownCertBytesReturns the raw certificate data in DER format.
KnownCertHandleAllows to get or set a 'handle', a unique identifier of the underlying property object.
KnownCRLCountThe number of records in the KnownCRL arrays.
KnownCRLBytesReturns the raw CRL data in DER format.
KnownCRLHandleAllows to get or set a 'handle', a unique identifier of the underlying property object.
KnownOCSPCountThe number of records in the KnownOCSP arrays.
KnownOCSPBytesA buffer containing the raw OCSP response data.
KnownOCSPHandleAllows to get or set a 'handle', a unique identifier of the underlying property object.
ObjectCountThe number of records in the Object arrays.
ObjectBytesThis property is an accessor to the object's binary representation (the certificate body, the key data, the data object contents).
ObjectExtractableSpecifies the extractable attribute of the object.
ObjectFingerprintReturns or sets the fingerprint attribute of the object.
ObjectKeyAlgorithmSpecifies the cryptographic algorithm of the object.
ObjectKeyBitsReturns or sets the length of the cryptographic key, in bits.
ObjectKeyUsageReturns or sets the key usage flags of the certificate or key object.
ObjectObjectGroupSpecifies the object group identifier.
ObjectObjectIdObjectId is a unique identifier of the object assigned by the server-side key management system.
ObjectObjectTypeThe type of this object.
ObjectSensitiveContains the Sensitive attribute of this object.
ObjectSizeReturns the amount of memory or space that this object occupies on the server.
ObjectSubjectSpecifies the subject attribute of the object.
ObjectTimestampReturns the time value associated with this object.
OutputBytesUse this property to read the output the component object has produced.
OutputFileSpecifies the file where the signed, encrypted, or decrypted data should be saved.
PasswordSpecifies a password to authenticate to the KMIP server.
ProxyAddressThe IP address of the proxy server.
ProxyAuthenticationThe authentication type used by the proxy server.
ProxyPasswordThe password to authenticate to the proxy server.
ProxyPortThe port on the proxy server to connect to.
ProxyProxyTypeThe type of the proxy server.
ProxyRequestHeadersContains HTTP request headers for WebTunnel and HTTP proxy.
ProxyResponseBodyContains the HTTP or HTTPS (WebTunnel) proxy response body.
ProxyResponseHeadersContains response headers received from an HTTP or HTTPS (WebTunnel) proxy server.
ProxyUseIPv6Specifies whether IPv6 should be used when connecting through the proxy.
ProxyUsernameSpecifies the username credential for proxy authentication.
SignatureValidationResultThe signature validation result.
SocketDNSModeSelects the DNS resolver to use: the component's (secure) built-in one, or the one provided by the system.
SocketDNSPortSpecifies the port number to be used for sending queries to the DNS server.
SocketDNSQueryTimeoutThe timeout (in milliseconds) for each DNS query.
SocketDNSServersThe addresses of DNS servers to use for address resolution, separated by commas or semicolons.
SocketDNSTotalTimeoutThe timeout (in milliseconds) for the whole resolution process.
SocketIncomingSpeedLimitThe maximum number of bytes to read from the socket, per second.
SocketLocalAddressThe local network interface to bind the socket to.
SocketLocalPortThe local port number to bind the socket to.
SocketOutgoingSpeedLimitThe maximum number of bytes to write to the socket, per second.
SocketTimeoutThe maximum period of waiting, in milliseconds, after which the socket operation is considered unsuccessful.
SocketUseIPv6Enables or disables IP protocol version 6.
TLSClientCertCountThe number of records in the TLSClientCert arrays.
TLSClientCertBytesReturns the raw certificate data in DER format.
TLSClientCertHandleAllows to get or set a 'handle', a unique identifier of the underlying property object.
TLSServerCertCountThe number of records in the TLSServerCert arrays.
TLSServerCertBytesReturns the raw certificate data in DER format.
TLSServerCertFingerprintContains the fingerprint (a hash imprint) of this certificate.
TLSServerCertHandleAllows to get or set a 'handle', a unique identifier of the underlying property object.
TLSServerCertIssuerThe common name of the certificate issuer (CA), typically a company name.
TLSServerCertIssuerRDNA list of Property=Value pairs that uniquely identify the certificate issuer.
TLSServerCertKeyAlgorithmSpecifies the public key algorithm of this certificate.
TLSServerCertKeyBitsReturns the length of the public key in bits.
TLSServerCertKeyUsageIndicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.
TLSServerCertSelfSignedIndicates whether the certificate is self-signed (root) or signed by an external CA.
TLSServerCertSerialNumberReturns the certificate's serial number.
TLSServerCertSigAlgorithmIndicates the algorithm that was used by the CA to sign this certificate.
TLSServerCertSubjectThe common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name.
TLSServerCertSubjectRDNA list of Property=Value pairs that uniquely identify the certificate holder (subject).
TLSServerCertValidFromThe time point at which the certificate becomes valid, in UTC.
TLSServerCertValidToThe time point at which the certificate expires, in UTC.
TLSAutoValidateCertificatesSpecifies whether server-side TLS certificates should be validated automatically using internal validation rules.
TLSBaseConfigurationSelects the base configuration for the TLS settings.
TLSCiphersuitesA list of ciphersuites separated with commas or semicolons.
TLSClientAuthEnables or disables certificate-based client authentication.
TLSECCurvesDefines the elliptic curves to enable.
TLSExtensionsProvides access to TLS extensions.
TLSForceResumeIfDestinationChangesWhether to force TLS session resumption when the destination address changes.
TLSPreSharedIdentityDefines the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.
TLSPreSharedKeyContains the pre-shared key for the PSK (Pre-Shared Key) key-exchange mechanism, encoded with base16.
TLSPreSharedKeyCiphersuiteDefines the ciphersuite used for PSK (Pre-Shared Key) negotiation.
TLSRenegotiationAttackPreventionModeSelects the renegotiation attack prevention mechanism.
TLSRevocationCheckSpecifies the kind(s) of revocation check to perform.
TLSSSLOptionsVarious SSL (TLS) protocol options, set of cssloExpectShutdownMessage 0x001 Wait for the close-notify message when shutting down the connection cssloOpenSSLDTLSWorkaround 0x002 (DEPRECATED) Use a DTLS version workaround when talking to very old OpenSSL versions cssloDisableKexLengthAlignment 0x004 Do not align the client-side PMS by the RSA modulus size.
TLSTLSModeSpecifies the TLS mode to use.
TLSUseExtendedMasterSecretEnables the Extended Master Secret Extension, as defined in RFC 7627.
TLSUseSessionResumptionEnables or disables the TLS session resumption capability.
TLSVersionsThe SSL/TLS versions to enable by default.
TrustedCertCountThe number of records in the TrustedCert arrays.
TrustedCertBytesReturns the raw certificate data in DER format.
TrustedCertHandleAllows to get or set a 'handle', a unique identifier of the underlying property object.
UsernameThe username to authenticate to the KMIP server.

Method List


The following is the full list of the methods of the component with short descriptions. Click on the links for further details.

ActivateActivates the specified server object.
AddImports a certificate to the KMIP server.
AddKeyImports a key or keypair to the KMIP server.
ConfigSets or retrieves a configuration setting.
CustomRequestPerforms a custom request to the server.
DeactivateDeactivates the specified server object.
DecryptDecrypts the provided data using a key stored on the KMIP server.
DoActionPerforms an additional action.
EncryptEncrypts the provided data using a key stored on the KMIP server.
GenerateGenerates a new certificate on the KMIP server.
GenerateKeyGenerates a symmetric key or an asymmetric key pair on the KMIP server.
ListRetrieves the list of objects of selected types from the server.
ReadDownloads a certificate from the KMIP server.
ReadAttributeRequests an attribute from an object.
ReadKeyDownloads a key object from the KMIP server.
ReadObjectRequests object information from the KMIP server.
RemoveRemoves the specified object from the server.
ResetResets the component settings.
SetAttributeSets an attribute of an existing server-side object.
SetRequestBytesReplaces the data that has been prepared for sending out.
SetResponseBytesAlters the data received from the server in a response.
SignSigns the data using a key on the KMIP server.
VerifyVerifies digitally signed data.

Event List


The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.

ErrorProvides information about errors during KMIP operations.
ExternalSignHandles remote or external signing initiated by the SignExternal method or other source.
NotificationThis event notifies the application about an underlying control flow event.
RequestKMIPClient fires this event to notify the user about the request being sent to the KMIP server.
ResponseKMIPClient uses this event to notify the user about the response being received.
TLSCertNeededFires when a remote TLS party requests a client certificate.
TLSCertValidateThis event is fired upon receipt of the TLS server's certificate, allowing the user to control its acceptance.
TLSEstablishedFires when a TLS handshake with Host successfully completes.
TLSHandshakeFires when a new TLS handshake is initiated, before the handshake commences.
TLSPSKNotifies the application about the PSK key exchange.
TLSShutdownReports the graceful closure of a TLS connection.

Config Settings


The following is a list of config settings for the component with short descriptions. Click on the links for further details.

BlockSizeBlock size of data for encrypting, decrypting or signing.
IgnoreSystemTrustWhether trusted Windows Certificate Stores should be treated as trusted.
MajorProtocolVersionMajor protocol version of the KMIP server.
MinorProtocolVersionMinor protocol version of the KMIP server.
StaticDNSSpecifies whether static DNS rules should be used.
StaticIPAddress[domain]Gets or sets an IP address for the specified domain name.
StaticIPAddressesGets or sets all the static DNS rules.
TempPathPath for storing temporary files.
TLSExtensionsTBD.
TLSPeerExtensionsTBD.
TLSSessionGroupSpecifies the group name of TLS sessions to be used for session resumption.
TLSSessionLifetimeSpecifies lifetime in seconds of the cached TLS session.
TLSSessionPurgeIntervalSpecifies how often the session cache should remove the expired TLS sessions.
TolerateMinorChainIssuesWhether to tolerate minor chain issues.
UseMicrosoftCTLEnables or disables the automatic use of the Microsoft online certificate trust list.
UseSystemCertificatesEnables or disables the use of the system certificates.
ASN1UseGlobalTagCacheControls whether ASN.1 module should use a global object cache.
AssignSystemSmartCardPinsSpecifies whether CSP-level PINs should be assigned to CNG keys.
CheckKeyIntegrityBeforeUseEnables or disable private key integrity check before use.
CookieCachingSpecifies whether a cookie cache should be used for HTTP(S) transports.
CookiesGets or sets local cookies for the component.
DefDeriveKeyIterationsSpecifies the default key derivation algorithm iteration count.
DNSLocalSuffixThe suffix to assign for TLD names.
EnableClientSideSSLFFDHEEnables or disables finite field DHE key exchange support in TLS clients.
GlobalCookiesGets or sets global cookies for all the HTTP transports.
HardwareCryptoUsePolicyThe hardware crypto usage policy.
HttpUserAgentSpecifies the user agent name to be used by all HTTP clients.
HttpVersionThe HTTP version to use in any inner HTTP client components created.
IgnoreExpiredMSCTLSigningCertWhether to tolerate the expired Windows Update signing certificate.
ListDelimiterThe delimiter character for multi-element lists.
LogDestinationSpecifies the debug log destination.
LogDetailsSpecifies the debug log details to dump.
LogFileSpecifies the debug log filename.
LogFiltersSpecifies the debug log filters.
LogFlushModeSpecifies the log flush mode.
LogLevelSpecifies the debug log level.
LogMaxEventCountSpecifies the maximum number of events to cache before further action is taken.
LogRotationModeSpecifies the log rotation mode.
MaxASN1BufferLengthSpecifies the maximal allowed length for ASN.1 primitive tag data.
MaxASN1TreeDepthSpecifies the maximal depth for processed ASN.1 trees.
OCSPHashAlgorithmSpecifies the hash algorithm to be used to identify certificates in OCSP requests.
OldClientSideRSAFallbackSpecifies whether the SSH client should use a SHA1 fallback.
PKICacheSpecifies which PKI elements (certificates, CRLs, OCSP responses) should be cached.
PKICachePathSpecifies the file system path where cached PKI data is stored.
ProductVersionReturns the version of the SecureBlackbox library.
ServerSSLDHKeyLengthSets the size of the TLS DHE key exchange group.
StaticDNSSpecifies whether static DNS rules should be used.
StaticIPAddress[domain]Gets or sets an IP address for the specified domain name.
StaticIPAddressesGets or sets all the static DNS rules.
TagAllows to store any custom data.
TLSSessionGroupSpecifies the group name of TLS sessions to be used for session resumption.
TLSSessionLifetimeSpecifies lifetime in seconds of the cached TLS session.
TLSSessionPurgeIntervalSpecifies how often the session cache should remove the expired TLS sessions.
UseCRLObjectCachingSpecifies whether reuse of loaded CRL objects is enabled.
UseInternalRandomSwitches between SecureBlackbox-own and platform PRNGs.
UseLegacyAdESValidationEnables legacy AdES validation mode.
UseOCSPResponseObjectCachingSpecifies whether reuse of loaded OCSP response objects is enabled.
UseOwnDNSResolverSpecifies whether the client components should use own DNS resolver.
UseSharedSystemStoragesSpecifies whether the validation engine should use a global per-process copy of the system certificate stores.
UseSystemNativeSizeCalculationAn internal CryptoAPI access tweak.
UseSystemOAEPAndPSSEnforces or disables the use of system-driven RSA OAEP and PSS computations.
UseSystemRandomEnables or disables the use of the OS PRNG.
XMLRDNDescriptorName[OID]Defines an OID mapping to descriptor names for the certificate's IssuerRDN or SubjectRDN.
XMLRDNDescriptorPriority[OID]Specifies the priority of descriptor names associated with a specific OID.
XMLRDNDescriptorReverseOrderSpecifies whether to reverse the order of descriptors in RDN.
XMLRDNDescriptorSeparatorSpecifies the separator used between descriptors in RDN.

AuthTypes Property (KMIPClient Component)

Defines allowed HTTP authentication types.

Syntax

__property int AuthTypes = { read=FAuthTypes, write=FSetAuthTypes };

Default Value

0

Remarks

Use this property to define which authentication types the component should support or attempt to use by enabling the relevant bitmask flags:

haBasic0x01Basic authentication

haDigest0x02Digest authentication (RFC 2617)

haNTLM0x04Windows NTLM authentication

haKerberos0x08Kerberos (Negotiate) authentication

haOAuth20x10OAuth2 authentication

Data Type

Integer

AuxResult Property (KMIPClient Component)

Contains the auxiliary result of the last performed operation.

Syntax

__property String AuxResult = { read=FAuxResult };

Default Value

""

Remarks

Use this property to obtain an auxiliary result of the last performed operation. One of such results is the new Counter/Nonce value after an encryption operation.

This property is read-only.

Data Type

String

BaseURL Property (KMIPClient Component)

Specifies the url of the KMIP server.

Syntax

__property String BaseURL = { read=FBaseURL, write=FSetBaseURL };

Default Value

""

Remarks

Use this property to specify the address of the KMIP server.

The address to assign to this property needs to be in the standard URI-like notation:

protocol://username:password@address:port/path

The protocol token must be based on the transport that you want to use (which is largely defined by the server setup) and can be one of the following:

  • kmip:// - KMIP over TCP (unencrypted)
  • kmips:// - KMIP over TLS (encrypted)
  • http:// - KMIP over HTTP (unencrypted)
  • https:// - KMIP over HTTPS (encrypted)

The address and port are network credentials that the server can be accessed at, such as 192.168.5.101:5696 for a server residing in a local network, or kmip.server.com:25696 for a server residing on the Internet. The path part can be used for KMIP servers accessible via HTTP(S) endpoints.

Examples

  • kmip://10.25.0.61:5696
  • kmips://10.0.1.10:11111
  • kmips://kmip.server.com:11111
  • http://user:password123@www.server.com:3128/services/kmip
  • https://kmip.server.com:19991

Note that you need to take extra steps to prepare the component for secure connections when using TLS-enabled endpoints. One factor to be considered is the need to validate the server's TLS certificates. This article provides insights into the validation routine: Validating TLS Certificates.

The credentials used within the HTTP and HTTPS values are used for HTTP basic or digest authentication only. If your KMIP server expects you to use KMIP-level authentication, use Username and Password properties to provide your credentials.

Data Type

String

BlockedCertCount Property (KMIPClient Component)

The number of records in the BlockedCert arrays.

Syntax

__property int BlockedCertCount = { read=FBlockedCertCount, write=FSetBlockedCertCount };

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at BlockedCertCount - 1.

This property is not available at design time.

Data Type

Integer

BlockedCertBytes Property (KMIPClient Component)

Returns the raw certificate data in DER format.

Syntax

__property DynamicArray BlockedCertBytes[int BlockedCertIndex] = { read=FBlockedCertBytes };

Remarks

Returns the raw certificate data in DER format.

The BlockedCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlockedCertCount property.

This property is read-only and not available at design time.

Data Type

Byte Array

BlockedCertHandle Property (KMIPClient Component)

Allows to get or set a 'handle', a unique identifier of the underlying property object.

Syntax

__property __int64 BlockedCertHandle[int BlockedCertIndex] = { read=FBlockedCertHandle, write=FSetBlockedCertHandle };

Default Value

0

Remarks

Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.

When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object after such operation. pdfSigner.setSigningCertHandle(certMgr.getCertHandle());

The BlockedCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlockedCertCount property.

This property is not available at design time.

Data Type

Long64

CertificateBytes Property (KMIPClient Component)

Returns the raw certificate data in DER format.

Syntax

__property DynamicArray CertificateBytes = { read=FCertificateBytes };

Remarks

Returns the raw certificate data in DER format.

This property is read-only and not available at design time.

Data Type

Byte Array

CertificateHandle Property (KMIPClient Component)

Allows to get or set a 'handle', a unique identifier of the underlying property object.

Syntax

__property __int64 CertificateHandle = { read=FCertificateHandle, write=FSetCertificateHandle };

Default Value

0

Remarks

Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.

When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object after such operation. pdfSigner.setSigningCertHandle(certMgr.getCertHandle());

This property is not available at design time.

Data Type

Long64

ConnInfoAEADCipher Property (KMIPClient Component)

Indicates whether the encryption algorithm used is an AEAD cipher.

Syntax

__property bool ConnInfoAEADCipher = { read=FConnInfoAEADCipher };

Default Value

false

Remarks

Indicates whether the encryption algorithm used is an AEAD cipher.

This property is read-only and not available at design time.

Data Type

Boolean

ConnInfoChainValidationDetails Property (KMIPClient Component)

The details of a certificate chain validation outcome.

Syntax

__property int ConnInfoChainValidationDetails = { read=FConnInfoChainValidationDetails };

Default Value

0

Remarks

The details of a certificate chain validation outcome. They may often suggest the reasons that contributed to the overall validation result.

Returns a bit mask of the following options:

cvrBadData0x0001One or more certificates in the validation path are malformed

cvrRevoked0x0002One or more certificates are revoked

cvrNotYetValid0x0004One or more certificates are not yet valid

cvrExpired0x0008One or more certificates are expired

cvrInvalidSignature0x0010A certificate contains a non-valid digital signature

cvrUnknownCA0x0020A CA certificate for one or more certificates has not been found (chain incomplete)

cvrCAUnauthorized0x0040One of the CA certificates are not authorized to act as CA

cvrCRLNotVerified0x0080One or more CRLs could not be verified

cvrOCSPNotVerified0x0100One or more OCSP responses could not be verified

cvrIdentityMismatch0x0200The identity protected by the certificate (a TLS endpoint or an e-mail addressee) does not match what is recorded in the certificate

cvrNoKeyUsage0x0400A mandatory key usage is not enabled in one of the chain certificates

cvrBlocked0x0800One or more certificates are blocked

cvrFailure0x1000General validation failure

cvrChainLoop0x2000Chain loop: one of the CA certificates recursively signs itself

cvrWeakAlgorithm0x4000A weak algorithm is used in one of certificates or revocation elements

cvrUserEnforced0x8000The chain was considered invalid following intervention from a user code

This property is read-only and not available at design time.

Data Type

Integer

ConnInfoChainValidationResult Property (KMIPClient Component)

The outcome of a certificate chain validation routine.

Syntax

__property TsbxKMIPClientConnInfoChainValidationResults ConnInfoChainValidationResult = { read=FConnInfoChainValidationResult };
enum TsbxKMIPClientConnInfoChainValidationResults { cvtValid=0, cvtValidButUntrusted=1, cvtInvalid=2, cvtCantBeEstablished=3 };

Default Value

cvtValid

Remarks

The outcome of a certificate chain validation routine.

Available options:

cvtValid0The chain is valid

cvtValidButUntrusted1The chain is valid, but the root certificate is not trusted

cvtInvalid2The chain is not valid (some of certificates are revoked, expired, or contain an invalid signature)

cvtCantBeEstablished3The validity of the chain cannot be established because of missing or unavailable validation information (certificates, CRLs, or OCSP responses)

Use the ValidationLog property to access the detailed validation log.

This property is read-only and not available at design time.

Data Type

Integer

ConnInfoCiphersuite Property (KMIPClient Component)

The cipher suite employed by this connection.

Syntax

__property String ConnInfoCiphersuite = { read=FConnInfoCiphersuite };

Default Value

""

Remarks

The cipher suite employed by this connection.

For TLS connections, this property returns the ciphersuite that was/is employed by the connection.

This property is read-only and not available at design time.

Data Type

String

ConnInfoClientAuthenticated Property (KMIPClient Component)

Specifies whether client authentication was performed during this connection.

Syntax

__property bool ConnInfoClientAuthenticated = { read=FConnInfoClientAuthenticated };

Default Value

false

Remarks

Specifies whether client authentication was performed during this connection.

This property is read-only and not available at design time.

Data Type

Boolean

ConnInfoClientAuthRequested Property (KMIPClient Component)

Specifies whether client authentication was requested during this connection.

Syntax

__property bool ConnInfoClientAuthRequested = { read=FConnInfoClientAuthRequested };

Default Value

false

Remarks

Specifies whether client authentication was requested during this connection.

This property is read-only and not available at design time.

Data Type

Boolean

ConnInfoConnectionEstablished Property (KMIPClient Component)

Indicates whether the connection has been established fully.

Syntax

__property bool ConnInfoConnectionEstablished = { read=FConnInfoConnectionEstablished };

Default Value

false

Remarks

Indicates whether the connection has been established fully.

This property is read-only and not available at design time.

Data Type

Boolean

ConnInfoConnectionID Property (KMIPClient Component)

The unique identifier assigned to this connection.

Syntax

__property DynamicArray ConnInfoConnectionID = { read=FConnInfoConnectionID };

Remarks

The unique identifier assigned to this connection.

This property is read-only and not available at design time.

Data Type

Byte Array

ConnInfoDigestAlgorithm Property (KMIPClient Component)

The digest algorithm used in a TLS-enabled connection.

Syntax

__property String ConnInfoDigestAlgorithm = { read=FConnInfoDigestAlgorithm };

Default Value

""

Remarks

The digest algorithm used in a TLS-enabled connection.

This property is read-only and not available at design time.

Data Type

String

ConnInfoEncryptionAlgorithm Property (KMIPClient Component)

The symmetric encryption algorithm used in a TLS-enabled connection.

Syntax

__property String ConnInfoEncryptionAlgorithm = { read=FConnInfoEncryptionAlgorithm };

Default Value

""

Remarks

The symmetric encryption algorithm used in a TLS-enabled connection.

This property is read-only and not available at design time.

Data Type

String

ConnInfoExportable Property (KMIPClient Component)

Indicates whether a TLS connection uses a reduced-strength exportable cipher.

Syntax

__property bool ConnInfoExportable = { read=FConnInfoExportable };

Default Value

false

Remarks

Indicates whether a TLS connection uses a reduced-strength exportable cipher.

This property is read-only and not available at design time.

Data Type

Boolean

ConnInfoID Property (KMIPClient Component)

The client connection's unique identifier.

Syntax

__property __int64 ConnInfoID = { read=FConnInfoID };

Default Value

-1

Remarks

The client connection's unique identifier. This value is used throughout to refer to a particular client connection.

This property is read-only and not available at design time.

Data Type

Long64

ConnInfoKeyExchangeAlgorithm Property (KMIPClient Component)

The key exchange algorithm used in a TLS-enabled connection.

Syntax

__property String ConnInfoKeyExchangeAlgorithm = { read=FConnInfoKeyExchangeAlgorithm };

Default Value

""

Remarks

The key exchange algorithm used in a TLS-enabled connection.

This property is read-only and not available at design time.

Data Type

String

ConnInfoKeyExchangeKeyBits Property (KMIPClient Component)

The length of the key exchange key of a TLS-enabled connection.

Syntax

__property int ConnInfoKeyExchangeKeyBits = { read=FConnInfoKeyExchangeKeyBits };

Default Value

0

Remarks

The length of the key exchange key of a TLS-enabled connection.

This property is read-only and not available at design time.

Data Type

Integer

ConnInfoNamedECCurve Property (KMIPClient Component)

The elliptic curve used in this connection.

Syntax

__property String ConnInfoNamedECCurve = { read=FConnInfoNamedECCurve };

Default Value

""

Remarks

The elliptic curve used in this connection.

This property is read-only and not available at design time.

Data Type

String

ConnInfoPFSCipher Property (KMIPClient Component)

Indicates whether the chosen ciphersuite provides perfect forward secrecy (PFS).

Syntax

__property bool ConnInfoPFSCipher = { read=FConnInfoPFSCipher };

Default Value

false

Remarks

Indicates whether the chosen ciphersuite provides perfect forward secrecy (PFS).

This property is read-only and not available at design time.

Data Type

Boolean

ConnInfoPreSharedIdentity Property (KMIPClient Component)

Specifies the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.

Syntax

__property String ConnInfoPreSharedIdentity = { read=FConnInfoPreSharedIdentity };

Default Value

""

Remarks

Specifies the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.

This property is read-only and not available at design time.

Data Type

String

ConnInfoPreSharedIdentityHint Property (KMIPClient Component)

A hint professed by the server to help the client select the PSK identity to use.

Syntax

__property String ConnInfoPreSharedIdentityHint = { read=FConnInfoPreSharedIdentityHint };

Default Value

""

Remarks

A hint professed by the server to help the client select the PSK identity to use.

This property is read-only and not available at design time.

Data Type

String

ConnInfoPublicKeyBits Property (KMIPClient Component)

The length of the public key.

Syntax

__property int ConnInfoPublicKeyBits = { read=FConnInfoPublicKeyBits };

Default Value

0

Remarks

The length of the public key.

This property is read-only and not available at design time.

Data Type

Integer

ConnInfoRemoteAddress Property (KMIPClient Component)

The client's IP address.

Syntax

__property String ConnInfoRemoteAddress = { read=FConnInfoRemoteAddress };

Default Value

""

Remarks

The client's IP address.

This property is read-only and not available at design time.

Data Type

String

ConnInfoRemotePort Property (KMIPClient Component)

The remote port of the client connection.

Syntax

__property int ConnInfoRemotePort = { read=FConnInfoRemotePort };

Default Value

0

Remarks

The remote port of the client connection.

This property is read-only and not available at design time.

Data Type

Integer

ConnInfoResumedSession Property (KMIPClient Component)

Indicates whether a TLS-enabled connection was spawned from another TLS connection.

Syntax

__property bool ConnInfoResumedSession = { read=FConnInfoResumedSession };

Default Value

false

Remarks

Indicates whether a TLS-enabled connection was spawned from another TLS connection

This property is read-only and not available at design time.

Data Type

Boolean

ConnInfoSecureConnection Property (KMIPClient Component)

Indicates whether TLS or SSL is enabled for this connection.

Syntax

__property bool ConnInfoSecureConnection = { read=FConnInfoSecureConnection };

Default Value

false

Remarks

Indicates whether TLS or SSL is enabled for this connection.

This property is read-only and not available at design time.

Data Type

Boolean

ConnInfoServerAuthenticated Property (KMIPClient Component)

Indicates whether server authentication was performed during a TLS-enabled connection.

Syntax

__property bool ConnInfoServerAuthenticated = { read=FConnInfoServerAuthenticated };

Default Value

false

Remarks

Indicates whether server authentication was performed during a TLS-enabled connection.

This property is read-only and not available at design time.

Data Type

Boolean

ConnInfoSignatureAlgorithm Property (KMIPClient Component)

The signature algorithm used in a TLS handshake.

Syntax

__property String ConnInfoSignatureAlgorithm = { read=FConnInfoSignatureAlgorithm };

Default Value

""

Remarks

The signature algorithm used in a TLS handshake.

This property is read-only and not available at design time.

Data Type

String

ConnInfoSymmetricBlockSize Property (KMIPClient Component)

The block size of the symmetric algorithm used.

Syntax

__property int ConnInfoSymmetricBlockSize = { read=FConnInfoSymmetricBlockSize };

Default Value

0

Remarks

The block size of the symmetric algorithm used.

This property is read-only and not available at design time.

Data Type

Integer

ConnInfoSymmetricKeyBits Property (KMIPClient Component)

The key length of the symmetric algorithm used.

Syntax

__property int ConnInfoSymmetricKeyBits = { read=FConnInfoSymmetricKeyBits };

Default Value

0

Remarks

The key length of the symmetric algorithm used.

This property is read-only and not available at design time.

Data Type

Integer

ConnInfoTotalBytesReceived Property (KMIPClient Component)

The total number of bytes received over this connection.

Syntax

__property __int64 ConnInfoTotalBytesReceived = { read=FConnInfoTotalBytesReceived };

Default Value

0

Remarks

The total number of bytes received over this connection.

This property is read-only and not available at design time.

Data Type

Long64

ConnInfoTotalBytesSent Property (KMIPClient Component)

The total number of bytes sent over this connection.

Syntax

__property __int64 ConnInfoTotalBytesSent = { read=FConnInfoTotalBytesSent };

Default Value

0

Remarks

The total number of bytes sent over this connection.

This property is read-only and not available at design time.

Data Type

Long64

ConnInfoValidationLog Property (KMIPClient Component)

Contains the server certificate's chain validation log.

Syntax

__property String ConnInfoValidationLog = { read=FConnInfoValidationLog };

Default Value

""

Remarks

Contains the server certificate's chain validation log. This information may be very useful in investigating chain validation failures.

This property is read-only and not available at design time.

Data Type

String

ConnInfoVersion Property (KMIPClient Component)

Indicates the version of SSL/TLS protocol negotiated during this connection.

Syntax

__property String ConnInfoVersion = { read=FConnInfoVersion };

Default Value

""

Remarks

Indicates the version of SSL/TLS protocol negotiated during this connection.

This property is read-only and not available at design time.

Data Type

String

DataBytes Property (KMIPClient Component)

Use this property to pass the secondary input to the component in the byte array form.

Syntax

__property DynamicArray DataBytes = { read=FDataBytes, write=FSetDataBytes };

Remarks

Some cryptographic operations require more than one inputs. One example is the Verify operation, which expects you to provide the signature and the data being authenticated as separate data pieces. This property lets you provide that secondary data piece (the data being authenticated). The primary data piece (the signature in this case) should be provided via one of the Input* properties, such as InputBytes.

This property is one of three ways in which you can provide the data to the component. The other two are DataFile and DataStream. Choose the data source type that fits your circumstances best.

This property is not available at design time.

Data Type

Byte Array

DataFile Property (KMIPClient Component)

Use this property to pass the secondary input to the component from a file.

Syntax

__property String DataFile = { read=FDataFile, write=FSetDataFile };

Default Value

""

Remarks

Some cryptographic operations require more than one inputs. One example is the Verify operation, which expects you to provide the signature and the data being authenticated as separate data pieces. This property lets you provide that secondary data piece (the data being authenticated). The primary data piece (the signature in this case) should be provided via one of the Input* properties, such as InputFile.

This property is one of three ways in which you can provide the data to the component. The other two are DataBytes and DataStream. Choose the data source type that fits your circumstances best.

Data Type

String

Encoding Property (KMIPClient Component)

Specifies the KMIP encoding type.

Syntax

__property TsbxKMIPClientEncodings Encoding = { read=FEncoding, write=FSetEncoding };
enum TsbxKMIPClientEncodings { etTTLV=0, etXML=1, etJSON=2 };

Default Value

etTTLV

Remarks

Use this property to specify the KMIP message encoding to be used in the communications with the server.

The following encodings are available:

etTTLV0
etXML1
etJSON2

You need to know the right encoding for your KMIP server before accessing it. This is something you can get from the administrator of the server. KMIP servers accessible via plain TCP or TLS transports typically use the TTLV encoding.

Data Type

Integer

ExternalCryptoAsyncDocumentID Property (KMIPClient Component)

Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.

Syntax

__property String ExternalCryptoAsyncDocumentID = { read=FExternalCryptoAsyncDocumentID, write=FSetExternalCryptoAsyncDocumentID };

Default Value

""

Remarks

Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.

Use this property when working with multi-signature DCAuth requests and responses to uniquely identify documents signed within a larger batch. On the completion stage, this value helps the signing component identify the correct signature in the returned batch of responses.

If using batched requests, make sure to set this property to the same value on both the pre-signing (SignAsyncBegin) and completion (SignAsyncEnd) stages.

Data Type

String

ExternalCryptoCustomParams Property (KMIPClient Component)

Custom parameters to be passed to the signing service (uninterpreted).

Syntax

__property String ExternalCryptoCustomParams = { read=FExternalCryptoCustomParams, write=FSetExternalCryptoCustomParams };

Default Value

""

Remarks

Custom parameters to be passed to the signing service (uninterpreted).

This property is not available at design time.

Data Type

String

ExternalCryptoData Property (KMIPClient Component)

Additional data to be included in the async state and mirrored back by the requestor.

Syntax

__property String ExternalCryptoData = { read=FExternalCryptoData, write=FSetExternalCryptoData };

Default Value

""

Remarks

Additional data to be included in the async state and mirrored back by the requestor.

This property is not available at design time.

Data Type

String

ExternalCryptoExternalHashCalculation Property (KMIPClient Component)

Specifies whether the message hash is to be calculated at the external endpoint.

Syntax

__property bool ExternalCryptoExternalHashCalculation = { read=FExternalCryptoExternalHashCalculation, write=FSetExternalCryptoExternalHashCalculation };

Default Value

false

Remarks

Specifies whether the message hash is to be calculated at the external endpoint. Please note that this mode is not supported by the DCAuth component.

If set to true, the component will pass a few kilobytes of to-be-signed data from the document to the OnExternalSign event. This only applies when SignExternal() is called.

Data Type

Boolean

ExternalCryptoHashAlgorithm Property (KMIPClient Component)

Specifies the request's signature hash algorithm.

Syntax

__property String ExternalCryptoHashAlgorithm = { read=FExternalCryptoHashAlgorithm, write=FSetExternalCryptoHashAlgorithm };

Default Value

"SHA256"

Remarks

Specifies the request's signature hash algorithm.

SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_MD2MD2
SB_HASH_ALGORITHM_MD4MD4
SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_CRC32CRC32
SB_HASH_ALGORITHM_SSL3SSL3
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_POLY1305POLY1305
SB_HASH_ALGORITHM_SHA3_224SHA3_224
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512
SB_HASH_ALGORITHM_BLAKE2S_128BLAKE2S_128
SB_HASH_ALGORITHM_BLAKE2S_160BLAKE2S_160
SB_HASH_ALGORITHM_BLAKE2S_224BLAKE2S_224
SB_HASH_ALGORITHM_BLAKE2S_256BLAKE2S_256
SB_HASH_ALGORITHM_BLAKE2B_160BLAKE2B_160
SB_HASH_ALGORITHM_BLAKE2B_256BLAKE2B_256
SB_HASH_ALGORITHM_BLAKE2B_384BLAKE2B_384
SB_HASH_ALGORITHM_BLAKE2B_512BLAKE2B_512
SB_HASH_ALGORITHM_SHAKE_128SHAKE_128
SB_HASH_ALGORITHM_SHAKE_256SHAKE_256
SB_HASH_ALGORITHM_SHAKE_128_LENSHAKE_128_LEN
SB_HASH_ALGORITHM_SHAKE_256_LENSHAKE_256_LEN

Data Type

String

ExternalCryptoKeyID Property (KMIPClient Component)

The ID of the pre-shared key used for DC request authentication.

Syntax

__property String ExternalCryptoKeyID = { read=FExternalCryptoKeyID, write=FSetExternalCryptoKeyID };

Default Value

""

Remarks

The ID of the pre-shared key used for DC request authentication.

Asynchronous DCAuth-driven communication requires that parties authenticate each other with a secret pre-shared cryptographic key. This provides an extra protection layer for the protocol and diminishes the risk of the private key becoming abused by foreign parties. Use this property to provide the pre-shared key identifier, and use ExternalCryptoKeySecret to pass the key itself.

The same KeyID/KeySecret pair should be used on the DCAuth side for the signing requests to be accepted.

Note: The KeyID/KeySecret scheme is very similar to the AuthKey scheme used in various Cloud service providers to authenticate users.

Example: signer.ExternalCrypto.KeyID = "MainSigningKey"; signer.ExternalCrypto.KeySecret = "abcdef0123456789";

Data Type

String

ExternalCryptoKeySecret Property (KMIPClient Component)

The pre-shared key used for DC request authentication.

Syntax

__property String ExternalCryptoKeySecret = { read=FExternalCryptoKeySecret, write=FSetExternalCryptoKeySecret };

Default Value

""

Remarks

The pre-shared key used for DC request authentication. This key must be set and match the key used by the DCAuth counterpart for the scheme to work.

Read more about configuring authentication in the ExternalCryptoKeyID topic.

Data Type

String

ExternalCryptoMethod Property (KMIPClient Component)

Specifies the asynchronous signing method.

Syntax

__property TsbxKMIPClientExternalCryptoMethods ExternalCryptoMethod = { read=FExternalCryptoMethod, write=FSetExternalCryptoMethod };
enum TsbxKMIPClientExternalCryptoMethods { asmdPKCS1=0, asmdPKCS7=1 };

Default Value

asmdPKCS1

Remarks

Specifies the asynchronous signing method. This is typically defined by the DC server capabilities and setup.

Available options:

asmdPKCS10
asmdPKCS71

Data Type

Integer

ExternalCryptoMode Property (KMIPClient Component)

Specifies the external cryptography mode.

Syntax

__property TsbxKMIPClientExternalCryptoModes ExternalCryptoMode = { read=FExternalCryptoMode, write=FSetExternalCryptoMode };
enum TsbxKMIPClientExternalCryptoModes { ecmDefault=0, ecmDisabled=1, ecmGeneric=2, ecmDCAuth=3, ecmDCAuthJSON=4 };

Default Value

ecmDefault

Remarks

Specifies the external cryptography mode.

Available options:

ecmDefaultThe default value (0)
ecmDisabledDo not use DC or external signing (1)
ecmGenericGeneric external signing with the OnExternalSign event (2)
ecmDCAuthDCAuth signing (3)
ecmDCAuthJSONDCAuth signing in JSON format (4)

This property is not available at design time.

Data Type

Integer

ExternalCryptoPublicKeyAlgorithm Property (KMIPClient Component)

Provide the public key algorithm here if the certificate is not available on the pre-signing stage.

Syntax

__property String ExternalCryptoPublicKeyAlgorithm = { read=FExternalCryptoPublicKeyAlgorithm, write=FSetExternalCryptoPublicKeyAlgorithm };

Default Value

""

Remarks

Provide the public key algorithm here if the certificate is not available on the pre-signing stage.

SB_CERT_ALGORITHM_ID_RSA_ENCRYPTIONrsaEncryption
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTIONmd2withRSAEncryption
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTIONmd5withRSAEncryption
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTIONsha1withRSAEncryption
SB_CERT_ALGORITHM_ID_DSAid-dsa
SB_CERT_ALGORITHM_ID_DSA_SHA1id-dsa-with-sha1
SB_CERT_ALGORITHM_DH_PUBLICdhpublicnumber
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTIONsha224WithRSAEncryption
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTIONsha256WithRSAEncryption
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTIONsha384WithRSAEncryption
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTIONsha512WithRSAEncryption
SB_CERT_ALGORITHM_ID_RSAPSSid-RSASSA-PSS
SB_CERT_ALGORITHM_ID_RSAOAEPid-RSAES-OAEP
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160ripemd160withRSA
SB_CERT_ALGORITHM_ID_ELGAMALelGamal
SB_CERT_ALGORITHM_SHA1_ECDSAecdsa-with-SHA1
SB_CERT_ALGORITHM_RECOMMENDED_ECDSAecdsa-recommended
SB_CERT_ALGORITHM_SHA224_ECDSAecdsa-with-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSAecdsa-with-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSAecdsa-with-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSAecdsa-with-SHA512
SB_CERT_ALGORITHM_ECid-ecPublicKey
SB_CERT_ALGORITHM_SPECIFIED_ECDSAecdsa-specified
SB_CERT_ALGORITHM_GOST_R3410_1994id-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3410_2001id-GostR3410-2001
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994id-GostR3411-94-with-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001id-GostR3411-94-with-GostR3410-2001
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAINecdsa-plain-SHA1
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAINecdsa-plain-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAINecdsa-plain-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAINecdsa-plain-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAINecdsa-plain-SHA512
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAINecdsa-plain-RIPEMD160
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTIONwhirlpoolWithRSAEncryption
SB_CERT_ALGORITHM_ID_DSA_SHA224id-dsa-with-sha224
SB_CERT_ALGORITHM_ID_DSA_SHA256id-dsa-with-sha256
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSAid-ecdsa-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSAid-ecdsa-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSAid-ecdsa-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSAid-ecdsa-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAINid-ecdsa-plain-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAINid-ecdsa-plain-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAINid-ecdsa-plain-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAINid-ecdsa-plain-with-sha3-512
SB_CERT_ALGORITHM_ID_DSA_SHA3_224id-dsa-with-sha3-224
SB_CERT_ALGORITHM_ID_DSA_SHA3_256id-dsa-with-sha3-256
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSAid-ecdsa-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSAid-ecdsa-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSAid-ecdsa-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSAid-ecdsa-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSAid-ecdsa-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSAid-ecdsa-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSAid-ecdsa-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSAid-ecdsa-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAINid-ecdsa-plain-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAINid-ecdsa-plain-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAINid-ecdsa-plain-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAINid-ecdsa-plain-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAINid-ecdsa-plain-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAINid-ecdsa-plain-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAINid-ecdsa-plain-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAINid-ecdsa-plain-with-blake2b512
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224id-dsa-with-blake2s224
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256id-dsa-with-blake2s256
SB_CERT_ALGORITHM_EDDSA_ED25519id-Ed25519
SB_CERT_ALGORITHM_EDDSA_ED448id-Ed448
SB_CERT_ALGORITHM_EDDSA_ED25519_PHid-Ed25519ph
SB_CERT_ALGORITHM_EDDSA_ED448_PHid-Ed448ph
SB_CERT_ALGORITHM_EDDSAid-EdDSA
SB_CERT_ALGORITHM_EDDSA_SIGNATUREid-EdDSA-sig

Data Type

String

FIPSMode Property (KMIPClient Component)

Reserved.

Syntax

__property bool FIPSMode = { read=FFIPSMode, write=FSetFIPSMode };

Default Value

false

Remarks

This property is reserved for future use.

Data Type

Boolean

InputBytes Property (KMIPClient Component)

Use this property to pass the input to component in byte array form.

Syntax

__property DynamicArray InputBytes = { read=FInputBytes, write=FSetInputBytes };

Remarks

Assign a byte array containing the data to be processed to this property.

This property is not available at design time.

Data Type

Byte Array

InputFile Property (KMIPClient Component)

A path to the file containing the data to be passed as input to a cryptographic operation.

Syntax

__property String InputFile = { read=FInputFile, write=FSetInputFile };

Default Value

""

Remarks

Provide the full path to the file containing data to be signed, verified, encrypted or decrypted.

This property is one of the three ways that you can provide the input data to KMIPClient, with InputBytes and InputStream being the other two.

Data Type

String

KeyAlgorithm Property (KMIPClient Component)

The algorithm of the cryptographic key.

Syntax

__property String KeyAlgorithm = { read=FKeyAlgorithm, write=FSetKeyAlgorithm };

Default Value

""

Remarks

The algorithm of the cryptographic key. A cryptokey object may hold either symmetric, MAC, or public key. Public key algorithms: RSA, ECDSA, Elgamal, DH.

SB_SYMMETRIC_ALGORITHM_RC4RC4
SB_SYMMETRIC_ALGORITHM_DESDES
SB_SYMMETRIC_ALGORITHM_3DES3DES
SB_SYMMETRIC_ALGORITHM_RC2RC2
SB_SYMMETRIC_ALGORITHM_AES128AES128
SB_SYMMETRIC_ALGORITHM_AES192AES192
SB_SYMMETRIC_ALGORITHM_AES256AES256
SB_SYMMETRIC_ALGORITHM_IDENTITYIdentity
SB_SYMMETRIC_ALGORITHM_BLOWFISHBlowfish
SB_SYMMETRIC_ALGORITHM_CAST128CAST128
SB_SYMMETRIC_ALGORITHM_IDEAIDEA
SB_SYMMETRIC_ALGORITHM_TWOFISHTwofish
SB_SYMMETRIC_ALGORITHM_TWOFISH128Twofish128
SB_SYMMETRIC_ALGORITHM_TWOFISH192Twofish192
SB_SYMMETRIC_ALGORITHM_TWOFISH256Twofish256
SB_SYMMETRIC_ALGORITHM_CAMELLIACamellia
SB_SYMMETRIC_ALGORITHM_CAMELLIA128Camellia128
SB_SYMMETRIC_ALGORITHM_CAMELLIA192Camellia192
SB_SYMMETRIC_ALGORITHM_CAMELLIA256Camellia256
SB_SYMMETRIC_ALGORITHM_SERPENTSerpent
SB_SYMMETRIC_ALGORITHM_SERPENT128Serpent128
SB_SYMMETRIC_ALGORITHM_SERPENT192Serpent192
SB_SYMMETRIC_ALGORITHM_SERPENT256Serpent256
SB_SYMMETRIC_ALGORITHM_SEEDSEED
SB_SYMMETRIC_ALGORITHM_RABBITRabbit
SB_SYMMETRIC_ALGORITHM_SYMMETRICGeneric
SB_SYMMETRIC_ALGORITHM_GOST_28147_1989GOST-28147-1989
SB_SYMMETRIC_ALGORITHM_CHACHA20ChaCha20
SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_MD2MD2
SB_HASH_ALGORITHM_MD4MD4
SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_CRC32CRC32
SB_HASH_ALGORITHM_SSL3SSL3
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_POLY1305POLY1305
SB_HASH_ALGORITHM_SHA3_224SHA3_224
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512
SB_HASH_ALGORITHM_BLAKE2S_128BLAKE2S_128
SB_HASH_ALGORITHM_BLAKE2S_160BLAKE2S_160
SB_HASH_ALGORITHM_BLAKE2S_224BLAKE2S_224
SB_HASH_ALGORITHM_BLAKE2S_256BLAKE2S_256
SB_HASH_ALGORITHM_BLAKE2B_160BLAKE2B_160
SB_HASH_ALGORITHM_BLAKE2B_256BLAKE2B_256
SB_HASH_ALGORITHM_BLAKE2B_384BLAKE2B_384
SB_HASH_ALGORITHM_BLAKE2B_512BLAKE2B_512
SB_HASH_ALGORITHM_SHAKE_128SHAKE_128
SB_HASH_ALGORITHM_SHAKE_256SHAKE_256
SB_HASH_ALGORITHM_SHAKE_128_LENSHAKE_128_LEN
SB_HASH_ALGORITHM_SHAKE_256_LENSHAKE_256_LEN

This property is not available at design time.

Data Type

String

KeyBits Property (KMIPClient Component)

The length of the key in bits.

Syntax

__property int KeyBits = { read=FKeyBits };

Default Value

0

Remarks

The length of the key in bits.

This property is read-only and not available at design time.

Data Type

Integer

KeyHandle Property (KMIPClient Component)

Allows to get or set a 'handle', a unique identifier of the underlying property object.

Syntax

__property __int64 KeyHandle = { read=FKeyHandle, write=FSetKeyHandle };

Default Value

0

Remarks

Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.

When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object after such operation. pdfSigner.setSigningCertHandle(certMgr.getCertHandle());

This property is not available at design time.

Data Type

Long64

KeySubject Property (KMIPClient Component)

Returns the key subject.

Syntax

__property DynamicArray KeySubject = { read=FKeySubject, write=FSetKeySubject };

Remarks

Returns the key subject. This is a cryptoprovider-dependent value, which normally aims to provide some user-friendly insight into the key owner.

This property is not available at design time.

Data Type

Byte Array

KnownCertCount Property (KMIPClient Component)

The number of records in the KnownCert arrays.

Syntax

__property int KnownCertCount = { read=FKnownCertCount, write=FSetKnownCertCount };

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at KnownCertCount - 1.

This property is not available at design time.

Data Type

Integer

KnownCertBytes Property (KMIPClient Component)

Returns the raw certificate data in DER format.

Syntax

__property DynamicArray KnownCertBytes[int KnownCertIndex] = { read=FKnownCertBytes };

Remarks

Returns the raw certificate data in DER format.

The KnownCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KnownCertCount property.

This property is read-only and not available at design time.

Data Type

Byte Array

KnownCertHandle Property (KMIPClient Component)

Allows to get or set a 'handle', a unique identifier of the underlying property object.

Syntax

__property __int64 KnownCertHandle[int KnownCertIndex] = { read=FKnownCertHandle, write=FSetKnownCertHandle };

Default Value

0

Remarks

Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.

When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object after such operation. pdfSigner.setSigningCertHandle(certMgr.getCertHandle());

The KnownCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KnownCertCount property.

This property is not available at design time.

Data Type

Long64

KnownCRLCount Property (KMIPClient Component)

The number of records in the KnownCRL arrays.

Syntax

__property int KnownCRLCount = { read=FKnownCRLCount, write=FSetKnownCRLCount };

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at KnownCRLCount - 1.

This property is not available at design time.

Data Type

Integer

KnownCRLBytes Property (KMIPClient Component)

Returns the raw CRL data in DER format.

Syntax

__property DynamicArray KnownCRLBytes[int KnownCRLIndex] = { read=FKnownCRLBytes };

Remarks

Returns the raw CRL data in DER format.

The KnownCRLIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KnownCRLCount property.

This property is read-only and not available at design time.

Data Type

Byte Array

KnownCRLHandle Property (KMIPClient Component)

Allows to get or set a 'handle', a unique identifier of the underlying property object.

Syntax

__property __int64 KnownCRLHandle[int KnownCRLIndex] = { read=FKnownCRLHandle, write=FSetKnownCRLHandle };

Default Value

0

Remarks

Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.

When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object after such operation. pdfSigner.setSigningCertHandle(certMgr.getCertHandle());

The KnownCRLIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KnownCRLCount property.

This property is not available at design time.

Data Type

Long64

KnownOCSPCount Property (KMIPClient Component)

The number of records in the KnownOCSP arrays.

Syntax

__property int KnownOCSPCount = { read=FKnownOCSPCount, write=FSetKnownOCSPCount };

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at KnownOCSPCount - 1.

This property is not available at design time.

Data Type

Integer

KnownOCSPBytes Property (KMIPClient Component)

A buffer containing the raw OCSP response data.

Syntax

__property DynamicArray KnownOCSPBytes[int KnownOCSPIndex] = { read=FKnownOCSPBytes };

Remarks

A buffer containing the raw OCSP response data.

The KnownOCSPIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KnownOCSPCount property.

This property is read-only and not available at design time.

Data Type

Byte Array

KnownOCSPHandle Property (KMIPClient Component)

Allows to get or set a 'handle', a unique identifier of the underlying property object.

Syntax

__property __int64 KnownOCSPHandle[int KnownOCSPIndex] = { read=FKnownOCSPHandle, write=FSetKnownOCSPHandle };

Default Value

0

Remarks

Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.

When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object after such operation. pdfSigner.setSigningCertHandle(certMgr.getCertHandle());

The KnownOCSPIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KnownOCSPCount property.

This property is not available at design time.

Data Type

Long64

ObjectCount Property (KMIPClient Component)

The number of records in the Object arrays.

Syntax

__property int ObjectCount = { read=FObjectCount };

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at ObjectCount - 1.

This property is read-only and not available at design time.

Data Type

Integer

ObjectBytes Property (KMIPClient Component)

This property is an accessor to the object's binary representation (the certificate body, the key data, the data object contents).

Syntax

__property DynamicArray ObjectBytes[int ObjectIndex] = { read=FObjectBytes };

Remarks

This property is an accessor to the object's binary representation (the certificate body, the key data, the data object contents).

Use this setting to access the object data after reading it from the server or set it before committing the object to the server.

The ObjectIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjectCount property.

This property is read-only and not available at design time.

Data Type

Byte Array

ObjectExtractable Property (KMIPClient Component)

Specifies the extractable attribute of the object.

Syntax

__property bool ObjectExtractable[int ObjectIndex] = { read=FObjectExtractable };

Default Value

false

Remarks

Specifies the extractable attribute of the object.

Check this property after retrieving an object from the server or before committing an object to the server.

The ObjectIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjectCount property.

This property is read-only and not available at design time.

Data Type

Boolean

ObjectFingerprint Property (KMIPClient Component)

Returns or sets the fingerprint attribute of the object.

Syntax

__property DynamicArray ObjectFingerprint[int ObjectIndex] = { read=FObjectFingerprint };

Remarks

Returns or sets the fingerprint attribute of the object.

Check this property after retrieving an object from the KMIP server or before sending it to the server.

The ObjectIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjectCount property.

This property is read-only and not available at design time.

Data Type

Byte Array

ObjectKeyAlgorithm Property (KMIPClient Component)

Specifies the cryptographic algorithm of the object.

Syntax

__property String ObjectKeyAlgorithm[int ObjectIndex] = { read=FObjectKeyAlgorithm };

Default Value

""

Remarks

Specifies the cryptographic algorithm of the object.

Check or set the algorithm after receiving the object from the server or before uploading it.

The following algorithms are supported: RSA, DSA, EC, ECDSA, DH, ECDH, DES, 3DES, AES, RC2, RC4, Idea, Blowfish, Camellia, Twofish. Note that only key objects support this attribute.

The ObjectIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjectCount property.

This property is read-only and not available at design time.

Data Type

String

ObjectKeyBits Property (KMIPClient Component)

Returns or sets the length of the cryptographic key, in bits.

Syntax

__property int ObjectKeyBits[int ObjectIndex] = { read=FObjectKeyBits };

Default Value

0

Remarks

Returns or sets the length of the cryptographic key, in bits.

Please note that not all types of objects support this attribute.

The ObjectIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjectCount property.

This property is read-only and not available at design time.

Data Type

Integer

ObjectKeyUsage Property (KMIPClient Component)

Returns or sets the key usage flags of the certificate or key object.

Syntax

__property int ObjectKeyUsage[int ObjectIndex] = { read=FObjectKeyUsage };

Default Value

0

Remarks

Returns or sets the key usage flags of the certificate or key object. Please note only certain objects support this attribute.

Key usage flags

kuSign0x00001The object can be used for signing

kuVerify0x00002The object can be used for verifying signatures

kuEncrypt0x00004The object has an encryption capability

kuDecrypt0x00008The object has a decryption capability

kuWrapKey0x00010The object supports key wrapping

kuUnwrapKey0x00020The object supports key unwrapping

kuExport0x00040The object supports exports

kuMacGenerate0x00080The object can be used for generating MAC imprints

kuMacVerify0x00100The object can be used for verifying MAC imprints

kuDeriveKey0x00200The object supports key derivation

kuContentCommitment0x00400The object has content commitment capability

kuKeyAgreement0x00800The object can be used for key agreement

kuCertificateSign0x01000The object can be used for signing certificates

kuCrlSign0x02000The object can be used for signing CRLs

kuGenerateCryptogram0x04000The object can be used for generating cryptograms

kuValidateCryptogram0x08000The object can be used for validation of cryptograms

kuTranslateEncrypt0x10000The object supports encryption key translation

kuTranslateDecrypt0x20000The object supports decryption key translation

kuTranslateWrap0x40000The object supports wrapping key translation

kuTranslateUnwrap0x80000The object supports unwrapping key translation

The ObjectIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjectCount property.

This property is read-only and not available at design time.

Data Type

Integer

ObjectObjectGroup Property (KMIPClient Component)

Specifies the object group identifier.

Syntax

__property String ObjectObjectGroup[int ObjectIndex] = { read=FObjectObjectGroup };

Default Value

""

Remarks

Specifies the object group identifier. Object groups are used to match related objects, such as certificates and their public and private key, to each other.

The ObjectIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjectCount property.

This property is read-only and not available at design time.

Data Type

String

ObjectObjectId Property (KMIPClient Component)

ObjectId is a unique identifier of the object assigned by the server-side key management system.

Syntax

__property String ObjectObjectId[int ObjectIndex] = { read=FObjectObjectId };

Default Value

""

Remarks

ObjectId is a unique identifier of the object assigned by the server-side key management system.

KMIP objects are addressed and accessed by their IDs. The identifier is required to be unique within the specific server.

The ObjectIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjectCount property.

This property is read-only and not available at design time.

Data Type

String

ObjectObjectType Property (KMIPClient Component)

The type of this object.

Syntax

__property TsbxKMIPClientObjectObjectTypes ObjectObjectType[int ObjectIndex] = { read=FObjectObjectType };
enum TsbxKMIPClientObjectObjectTypes { otUnknown=0, otCertificate=1, otSymmetricKey=2, otPublicKey=4, otPrivateKey=8 };

Default Value

otUnknown

Remarks

The type of this object.

otUnknown0x00
otCertificate0x01
otSymmetricKey0x02
otPublicKey0x04
otPrivateKey0x08

The ObjectIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjectCount property.

This property is read-only and not available at design time.

Data Type

Integer

ObjectSensitive Property (KMIPClient Component)

Contains the Sensitive attribute of this object.

Syntax

__property bool ObjectSensitive[int ObjectIndex] = { read=FObjectSensitive };

Default Value

false

Remarks

Contains the Sensitive attribute of this object.

Check or set this property to learn or apply the value to the Sensitive attribute.

The ObjectIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjectCount property.

This property is read-only and not available at design time.

Data Type

Boolean

ObjectSize Property (KMIPClient Component)

Returns the amount of memory or space that this object occupies on the server.

Syntax

__property int ObjectSize[int ObjectIndex] = { read=FObjectSize };

Default Value

0

Remarks

Returns the amount of memory or space that this object occupies on the server.

Check this property to find out the amount of bytes this object consumes.

The ObjectIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjectCount property.

This property is read-only and not available at design time.

Data Type

Integer

ObjectSubject Property (KMIPClient Component)

Specifies the subject attribute of the object.

Syntax

__property String ObjectSubject[int ObjectIndex] = { read=FObjectSubject };

Default Value

""

Remarks

Specifies the subject attribute of the object.

Use this object to get or set the subject (owner) attribute of a KMIP object.

The ObjectIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjectCount property.

This property is read-only and not available at design time.

Data Type

String

ObjectTimestamp Property (KMIPClient Component)

Returns the time value associated with this object.

Syntax

__property String ObjectTimestamp[int ObjectIndex] = { read=FObjectTimestamp };

Default Value

""

Remarks

Returns the time value associated with this object.

Use this setting to learn the time value associated with this object.

The ObjectIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjectCount property.

This property is read-only and not available at design time.

Data Type

String

OutputBytes Property (KMIPClient Component)

Use this property to read the output the component object has produced.

Syntax

__property DynamicArray OutputBytes = { read=FOutputBytes };

Remarks

Read the contents of this property after the operation has completed to read the produced output. This property will only be set if the OutputFile and OutputStream properties had not been assigned.

This property is read-only and not available at design time.

Data Type

Byte Array

OutputFile Property (KMIPClient Component)

Specifies the file where the signed, encrypted, or decrypted data should be saved.

Syntax

__property String OutputFile = { read=FOutputFile, write=FSetOutputFile };

Default Value

""

Remarks

Provide a full path to the file where the signed, encrypted, or decrypted data should be saved.

This property is one of the three ways that you can receive the output data from KMIPClient, with OutputBytes and OutputStream being the other two.

Data Type

String

Password Property (KMIPClient Component)

Specifies a password to authenticate to the KMIP server.

Syntax

__property String Password = { read=FPassword, write=FSetPassword };

Default Value

""

Remarks

Use this property to provide a password for authentication on the KMIP server.

The value assigned to this property is used for built-in user authentication provided by KMIP. If the KMIP server you are connecting to expects you to use HTTP basic or digest authentication, provide the credentials via the BaseURL property.

Data Type

String

ProxyAddress Property (KMIPClient Component)

The IP address of the proxy server.

Syntax

__property String ProxyAddress = { read=FProxyAddress, write=FSetProxyAddress };

Default Value

""

Remarks

The IP address of the proxy server.

Data Type

String

ProxyAuthentication Property (KMIPClient Component)

The authentication type used by the proxy server.

Syntax

__property TsbxKMIPClientProxyAuthentications ProxyAuthentication = { read=FProxyAuthentication, write=FSetProxyAuthentication };
enum TsbxKMIPClientProxyAuthentications { patNoAuthentication=0, patBasic=1, patDigest=2, patNTLM=3 };

Default Value

patNoAuthentication

Remarks

The authentication type used by the proxy server.

patNoAuthentication0
patBasic1
patDigest2
patNTLM3

Data Type

Integer

ProxyPassword Property (KMIPClient Component)

The password to authenticate to the proxy server.

Syntax

__property String ProxyPassword = { read=FProxyPassword, write=FSetProxyPassword };

Default Value

""

Remarks

The password to authenticate to the proxy server.

Data Type

String

ProxyPort Property (KMIPClient Component)

The port on the proxy server to connect to.

Syntax

__property int ProxyPort = { read=FProxyPort, write=FSetProxyPort };

Default Value

0

Remarks

The port on the proxy server to connect to.

Data Type

Integer

ProxyProxyType Property (KMIPClient Component)

The type of the proxy server.

Syntax

__property TsbxKMIPClientProxyProxyTypes ProxyProxyType = { read=FProxyProxyType, write=FSetProxyProxyType };
enum TsbxKMIPClientProxyProxyTypes { cptNone=0, cptSocks4=1, cptSocks5=2, cptWebTunnel=3, cptHTTP=4 };

Default Value

cptNone

Remarks

The type of the proxy server.

cptNone0
cptSocks41
cptSocks52
cptWebTunnel3
cptHTTP4

Data Type

Integer

ProxyRequestHeaders Property (KMIPClient Component)

Contains HTTP request headers for WebTunnel and HTTP proxy.

Syntax

__property String ProxyRequestHeaders = { read=FProxyRequestHeaders, write=FSetProxyRequestHeaders };

Default Value

""

Remarks

Contains HTTP request headers for WebTunnel and HTTP proxy.

Data Type

String

ProxyResponseBody Property (KMIPClient Component)

Contains the HTTP or HTTPS (WebTunnel) proxy response body.

Syntax

__property String ProxyResponseBody = { read=FProxyResponseBody, write=FSetProxyResponseBody };

Default Value

""

Remarks

Contains the HTTP or HTTPS (WebTunnel) proxy response body.

Data Type

String

ProxyResponseHeaders Property (KMIPClient Component)

Contains response headers received from an HTTP or HTTPS (WebTunnel) proxy server.

Syntax

__property String ProxyResponseHeaders = { read=FProxyResponseHeaders, write=FSetProxyResponseHeaders };

Default Value

""

Remarks

Contains response headers received from an HTTP or HTTPS (WebTunnel) proxy server.

Data Type

String

ProxyUseIPv6 Property (KMIPClient Component)

Specifies whether IPv6 should be used when connecting through the proxy.

Syntax

__property bool ProxyUseIPv6 = { read=FProxyUseIPv6, write=FSetProxyUseIPv6 };

Default Value

false

Remarks

Specifies whether IPv6 should be used when connecting through the proxy.

Data Type

Boolean

ProxyUsername Property (KMIPClient Component)

Specifies the username credential for proxy authentication.

Syntax

__property String ProxyUsername = { read=FProxyUsername, write=FSetProxyUsername };

Default Value

""

Remarks

Specifies the username credential for proxy authentication.

Data Type

String

SignatureValidationResult Property (KMIPClient Component)

The signature validation result.

Syntax

__property TsbxKMIPClientSignatureValidationResults SignatureValidationResult = { read=FSignatureValidationResult };
enum TsbxKMIPClientSignatureValidationResults { svtValid=0, svtUnknown=1, svtCorrupted=2, svtSignerNotFound=3, svtFailure=4, svtReferenceCorrupted=5 };

Default Value

svtValid

Remarks

Use this property to check the result of the most recent signature validation.

svtValid0The signature is valid

svtUnknown1Signature validity is unknown

svtCorrupted2The signature is corrupted

svtSignerNotFound3Failed to acquire the signing certificate. The signature cannot be validated.

svtFailure4General failure

svtReferenceCorrupted5Reference corrupted (XML-based signatures only)

This property is read-only and not available at design time.

Data Type

Integer

SocketDNSMode Property (KMIPClient Component)

Selects the DNS resolver to use: the component's (secure) built-in one, or the one provided by the system.

Syntax

__property TsbxKMIPClientSocketDNSModes SocketDNSMode = { read=FSocketDNSMode, write=FSetSocketDNSMode };
enum TsbxKMIPClientSocketDNSModes { dmAuto=0, dmPlatform=1, dmOwn=2, dmOwnSecure=3 };

Default Value

dmAuto

Remarks

Selects the DNS resolver to use: the component's (secure) built-in one, or the one provided by the system.

dmAuto0
dmPlatform1
dmOwn2
dmOwnSecure3

Data Type

Integer

SocketDNSPort Property (KMIPClient Component)

Specifies the port number to be used for sending queries to the DNS server.

Syntax

__property int SocketDNSPort = { read=FSocketDNSPort, write=FSetSocketDNSPort };

Default Value

0

Remarks

Specifies the port number to be used for sending queries to the DNS server.

Data Type

Integer

SocketDNSQueryTimeout Property (KMIPClient Component)

The timeout (in milliseconds) for each DNS query.

Syntax

__property int SocketDNSQueryTimeout = { read=FSocketDNSQueryTimeout, write=FSetSocketDNSQueryTimeout };

Default Value

0

Remarks

The timeout (in milliseconds) for each DNS query. The value of 0 indicates an infinite timeout.

Data Type

Integer

SocketDNSServers Property (KMIPClient Component)

The addresses of DNS servers to use for address resolution, separated by commas or semicolons.

Syntax

__property String SocketDNSServers = { read=FSocketDNSServers, write=FSetSocketDNSServers };

Default Value

""

Remarks

The addresses of DNS servers to use for address resolution, separated by commas or semicolons.

Data Type

String

SocketDNSTotalTimeout Property (KMIPClient Component)

The timeout (in milliseconds) for the whole resolution process.

Syntax

__property int SocketDNSTotalTimeout = { read=FSocketDNSTotalTimeout, write=FSetSocketDNSTotalTimeout };

Default Value

0

Remarks

The timeout (in milliseconds) for the whole resolution process. The value of 0 indicates an infinite timeout.

Data Type

Integer

SocketIncomingSpeedLimit Property (KMIPClient Component)

The maximum number of bytes to read from the socket, per second.

Syntax

__property int SocketIncomingSpeedLimit = { read=FSocketIncomingSpeedLimit, write=FSetSocketIncomingSpeedLimit };

Default Value

0

Remarks

The maximum number of bytes to read from the socket, per second.

Data Type

Integer

SocketLocalAddress Property (KMIPClient Component)

The local network interface to bind the socket to.

Syntax

__property String SocketLocalAddress = { read=FSocketLocalAddress, write=FSetSocketLocalAddress };

Default Value

""

Remarks

The local network interface to bind the socket to.

Data Type

String

SocketLocalPort Property (KMIPClient Component)

The local port number to bind the socket to.

Syntax

__property int SocketLocalPort = { read=FSocketLocalPort, write=FSetSocketLocalPort };

Default Value

0

Remarks

The local port number to bind the socket to.

Data Type

Integer

SocketOutgoingSpeedLimit Property (KMIPClient Component)

The maximum number of bytes to write to the socket, per second.

Syntax

__property int SocketOutgoingSpeedLimit = { read=FSocketOutgoingSpeedLimit, write=FSetSocketOutgoingSpeedLimit };

Default Value

0

Remarks

The maximum number of bytes to write to the socket, per second.

Data Type

Integer

SocketTimeout Property (KMIPClient Component)

The maximum period of waiting, in milliseconds, after which the socket operation is considered unsuccessful.

Syntax

__property int SocketTimeout = { read=FSocketTimeout, write=FSetSocketTimeout };

Default Value

60000

Remarks

The maximum period of waiting, in milliseconds, after which the socket operation is considered unsuccessful.

If Timeout is set to 0, a socket operation will expire after the system-default timeout (2 hrs 8 min for TCP stack).

Data Type

Integer

SocketUseIPv6 Property (KMIPClient Component)

Enables or disables IP protocol version 6.

Syntax

__property bool SocketUseIPv6 = { read=FSocketUseIPv6, write=FSetSocketUseIPv6 };

Default Value

false

Remarks

Enables or disables IP protocol version 6.

Data Type

Boolean

TLSClientCertCount Property (KMIPClient Component)

The number of records in the TLSClientCert arrays.

Syntax

__property int TLSClientCertCount = { read=FTLSClientCertCount, write=FSetTLSClientCertCount };

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at TLSClientCertCount - 1.

This property is not available at design time.

Data Type

Integer

TLSClientCertBytes Property (KMIPClient Component)

Returns the raw certificate data in DER format.

Syntax

__property DynamicArray TLSClientCertBytes[int TLSClientCertIndex] = { read=FTLSClientCertBytes };

Remarks

Returns the raw certificate data in DER format.

The TLSClientCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSClientCertCount property.

This property is read-only and not available at design time.

Data Type

Byte Array

TLSClientCertHandle Property (KMIPClient Component)

Allows to get or set a 'handle', a unique identifier of the underlying property object.

Syntax

__property __int64 TLSClientCertHandle[int TLSClientCertIndex] = { read=FTLSClientCertHandle, write=FSetTLSClientCertHandle };

Default Value

0

Remarks

Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.

When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object after such operation. pdfSigner.setSigningCertHandle(certMgr.getCertHandle());

The TLSClientCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSClientCertCount property.

This property is not available at design time.

Data Type

Long64

TLSServerCertCount Property (KMIPClient Component)

The number of records in the TLSServerCert arrays.

Syntax

__property int TLSServerCertCount = { read=FTLSServerCertCount };

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at TLSServerCertCount - 1.

This property is read-only and not available at design time.

Data Type

Integer

TLSServerCertBytes Property (KMIPClient Component)

Returns the raw certificate data in DER format.

Syntax

__property DynamicArray TLSServerCertBytes[int TLSServerCertIndex] = { read=FTLSServerCertBytes };

Remarks

Returns the raw certificate data in DER format.

The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.

This property is read-only and not available at design time.

Data Type

Byte Array

TLSServerCertFingerprint Property (KMIPClient Component)

Contains the fingerprint (a hash imprint) of this certificate.

Syntax

__property String TLSServerCertFingerprint[int TLSServerCertIndex] = { read=FTLSServerCertFingerprint };

Default Value

""

Remarks

Contains the fingerprint (a hash imprint) of this certificate.

While there is no formal standard defining what a fingerprint is, a SHA1 hash of the certificate's DER-encoded body is typically used.

The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.

This property is read-only and not available at design time.

Data Type

String

TLSServerCertHandle Property (KMIPClient Component)

Allows to get or set a 'handle', a unique identifier of the underlying property object.

Syntax

__property __int64 TLSServerCertHandle[int TLSServerCertIndex] = { read=FTLSServerCertHandle };

Default Value

0

Remarks

Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.

When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object after such operation. pdfSigner.setSigningCertHandle(certMgr.getCertHandle());

The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.

This property is read-only and not available at design time.

Data Type

Long64

TLSServerCertIssuer Property (KMIPClient Component)

The common name of the certificate issuer (CA), typically a company name.

Syntax

__property String TLSServerCertIssuer[int TLSServerCertIndex] = { read=FTLSServerCertIssuer };

Default Value

""

Remarks

The common name of the certificate issuer (CA), typically a company name. This is part of a larger set of credentials available via TLSIssuerRDN.

The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.

This property is read-only and not available at design time.

Data Type

String

TLSServerCertIssuerRDN Property (KMIPClient Component)

A list of Property=Value pairs that uniquely identify the certificate issuer.

Syntax

__property String TLSServerCertIssuerRDN[int TLSServerCertIndex] = { read=FTLSServerCertIssuerRDN };

Default Value

""

Remarks

A list of Property=Value pairs that uniquely identify the certificate issuer.

Example: /C=US/O=Nationwide CA/CN=Web Certification Authority

The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.

This property is read-only and not available at design time.

Data Type

String

TLSServerCertKeyAlgorithm Property (KMIPClient Component)

Specifies the public key algorithm of this certificate.

Syntax

__property String TLSServerCertKeyAlgorithm[int TLSServerCertIndex] = { read=FTLSServerCertKeyAlgorithm };

Default Value

"0"

Remarks

Specifies the public key algorithm of this certificate.

SB_CERT_ALGORITHM_ID_RSA_ENCRYPTIONrsaEncryption
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTIONmd2withRSAEncryption
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTIONmd5withRSAEncryption
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTIONsha1withRSAEncryption
SB_CERT_ALGORITHM_ID_DSAid-dsa
SB_CERT_ALGORITHM_ID_DSA_SHA1id-dsa-with-sha1
SB_CERT_ALGORITHM_DH_PUBLICdhpublicnumber
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTIONsha224WithRSAEncryption
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTIONsha256WithRSAEncryption
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTIONsha384WithRSAEncryption
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTIONsha512WithRSAEncryption
SB_CERT_ALGORITHM_ID_RSAPSSid-RSASSA-PSS
SB_CERT_ALGORITHM_ID_RSAOAEPid-RSAES-OAEP
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160ripemd160withRSA
SB_CERT_ALGORITHM_ID_ELGAMALelGamal
SB_CERT_ALGORITHM_SHA1_ECDSAecdsa-with-SHA1
SB_CERT_ALGORITHM_RECOMMENDED_ECDSAecdsa-recommended
SB_CERT_ALGORITHM_SHA224_ECDSAecdsa-with-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSAecdsa-with-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSAecdsa-with-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSAecdsa-with-SHA512
SB_CERT_ALGORITHM_ECid-ecPublicKey
SB_CERT_ALGORITHM_SPECIFIED_ECDSAecdsa-specified
SB_CERT_ALGORITHM_GOST_R3410_1994id-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3410_2001id-GostR3410-2001
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994id-GostR3411-94-with-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001id-GostR3411-94-with-GostR3410-2001
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAINecdsa-plain-SHA1
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAINecdsa-plain-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAINecdsa-plain-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAINecdsa-plain-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAINecdsa-plain-SHA512
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAINecdsa-plain-RIPEMD160
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTIONwhirlpoolWithRSAEncryption
SB_CERT_ALGORITHM_ID_DSA_SHA224id-dsa-with-sha224
SB_CERT_ALGORITHM_ID_DSA_SHA256id-dsa-with-sha256
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSAid-ecdsa-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSAid-ecdsa-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSAid-ecdsa-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSAid-ecdsa-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAINid-ecdsa-plain-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAINid-ecdsa-plain-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAINid-ecdsa-plain-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAINid-ecdsa-plain-with-sha3-512
SB_CERT_ALGORITHM_ID_DSA_SHA3_224id-dsa-with-sha3-224
SB_CERT_ALGORITHM_ID_DSA_SHA3_256id-dsa-with-sha3-256
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSAid-ecdsa-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSAid-ecdsa-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSAid-ecdsa-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSAid-ecdsa-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSAid-ecdsa-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSAid-ecdsa-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSAid-ecdsa-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSAid-ecdsa-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAINid-ecdsa-plain-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAINid-ecdsa-plain-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAINid-ecdsa-plain-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAINid-ecdsa-plain-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAINid-ecdsa-plain-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAINid-ecdsa-plain-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAINid-ecdsa-plain-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAINid-ecdsa-plain-with-blake2b512
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224id-dsa-with-blake2s224
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256id-dsa-with-blake2s256
SB_CERT_ALGORITHM_EDDSA_ED25519id-Ed25519
SB_CERT_ALGORITHM_EDDSA_ED448id-Ed448
SB_CERT_ALGORITHM_EDDSA_ED25519_PHid-Ed25519ph
SB_CERT_ALGORITHM_EDDSA_ED448_PHid-Ed448ph
SB_CERT_ALGORITHM_EDDSAid-EdDSA
SB_CERT_ALGORITHM_EDDSA_SIGNATUREid-EdDSA-sig

Use the TLSKeyBits, TLSCurve, and TLSPublicKeyBytes properties to get more details about the key the certificate contains.

The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.

This property is read-only and not available at design time.

Data Type

String

TLSServerCertKeyBits Property (KMIPClient Component)

Returns the length of the public key in bits.

Syntax

__property int TLSServerCertKeyBits[int TLSServerCertIndex] = { read=FTLSServerCertKeyBits };

Default Value

0

Remarks

Returns the length of the public key in bits.

This value indicates the length of the principal cryptographic parameter of the key, such as the length of the RSA modulus or ECDSA field. The key data returned by the TLSPublicKeyBytes or TLSPrivateKeyBytes property would typically contain auxiliary values, and therefore be longer.

The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.

This property is read-only and not available at design time.

Data Type

Integer

TLSServerCertKeyUsage Property (KMIPClient Component)

Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.

Syntax

__property int TLSServerCertKeyUsage[int TLSServerCertIndex] = { read=FTLSServerCertKeyUsage };

Default Value

0

Remarks

Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.

This value is a bit mask of the following values:

ckuUnknown0x00000Unknown key usage

ckuDigitalSignature0x00001Digital signature

ckuNonRepudiation0x00002Non-repudiation

ckuKeyEncipherment0x00004Key encipherment

ckuDataEncipherment0x00008Data encipherment

ckuKeyAgreement0x00010Key agreement

ckuKeyCertSign0x00020Certificate signing

ckuCRLSign0x00040Revocation signing

ckuEncipherOnly0x00080Encipher only

ckuDecipherOnly0x00100Decipher only

ckuServerAuthentication0x00200Server authentication

ckuClientAuthentication0x00400Client authentication

ckuCodeSigning0x00800Code signing

ckuEmailProtection0x01000Email protection

ckuTimeStamping0x02000Timestamping

ckuOCSPSigning0x04000OCSP signing

ckuSmartCardLogon0x08000Smartcard logon

ckuKeyPurposeClientAuth0x10000Kerberos - client authentication

ckuKeyPurposeKDC0x20000Kerberos - KDC

Set this property before generating the certificate to propagate the key usage flags to the new certificate.

The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.

This property is read-only and not available at design time.

Data Type

Integer

TLSServerCertSelfSigned Property (KMIPClient Component)

Indicates whether the certificate is self-signed (root) or signed by an external CA.

Syntax

__property bool TLSServerCertSelfSigned[int TLSServerCertIndex] = { read=FTLSServerCertSelfSigned };

Default Value

false

Remarks

Indicates whether the certificate is self-signed (root) or signed by an external CA.

The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.

This property is read-only and not available at design time.

Data Type

Boolean

TLSServerCertSerialNumber Property (KMIPClient Component)

Returns the certificate's serial number.

Syntax

__property DynamicArray TLSServerCertSerialNumber[int TLSServerCertIndex] = { read=FTLSServerCertSerialNumber };

Remarks

Returns the certificate's serial number.

The serial number is a binary string that uniquely identifies a certificate among others issued by the same CA. According to the X.509 standard, the (issuer, serial number) pair should be globally unique to facilitate chain building.

The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.

This property is read-only and not available at design time.

Data Type

Byte Array

TLSServerCertSigAlgorithm Property (KMIPClient Component)

Indicates the algorithm that was used by the CA to sign this certificate.

Syntax

__property String TLSServerCertSigAlgorithm[int TLSServerCertIndex] = { read=FTLSServerCertSigAlgorithm };

Default Value

""

Remarks

Indicates the algorithm that was used by the CA to sign this certificate.

A signature algorithm typically combines hash and public key algorithms together, such as sha256WithRSAEncryption or ecdsa-with-SHA256.

The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.

This property is read-only and not available at design time.

Data Type

String

TLSServerCertSubject Property (KMIPClient Component)

The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name.

Syntax

__property String TLSServerCertSubject[int TLSServerCertIndex] = { read=FTLSServerCertSubject };

Default Value

""

Remarks

The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name. This is part of a larger set of credentials available via TLSSubjectRDN.

The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.

This property is read-only and not available at design time.

Data Type

String

TLSServerCertSubjectRDN Property (KMIPClient Component)

A list of Property=Value pairs that uniquely identify the certificate holder (subject).

Syntax

__property String TLSServerCertSubjectRDN[int TLSServerCertIndex] = { read=FTLSServerCertSubjectRDN };

Default Value

""

Remarks

A list of Property=Value pairs that uniquely identify the certificate holder (subject).

Depending on the purpose of the certificate and the policies of the CA that issued it, the values included in the subject record may differ drastically and contain business or personal names, web URLs, email addresses, and other data.

Example: /C=US/O=Oranges and Apples, Inc./OU=Accounts Receivable/1.2.3.4.5=Value with unknown OID/CN=Margaret Watkins.

The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.

This property is read-only and not available at design time.

Data Type

String

TLSServerCertValidFrom Property (KMIPClient Component)

The time point at which the certificate becomes valid, in UTC.

Syntax

__property String TLSServerCertValidFrom[int TLSServerCertIndex] = { read=FTLSServerCertValidFrom };

Default Value

""

Remarks

The time point at which the certificate becomes valid, in UTC.

The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.

This property is read-only and not available at design time.

Data Type

String

TLSServerCertValidTo Property (KMIPClient Component)

The time point at which the certificate expires, in UTC.

Syntax

__property String TLSServerCertValidTo[int TLSServerCertIndex] = { read=FTLSServerCertValidTo };

Default Value

""

Remarks

The time point at which the certificate expires, in UTC.

The TLSServerCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TLSServerCertCount property.

This property is read-only and not available at design time.

Data Type

String

TLSAutoValidateCertificates Property (KMIPClient Component)

Specifies whether server-side TLS certificates should be validated automatically using internal validation rules.

Syntax

__property bool TLSAutoValidateCertificates = { read=FTLSAutoValidateCertificates, write=FSetTLSAutoValidateCertificates };

Default Value

true

Remarks

Specifies whether server-side TLS certificates should be validated automatically using internal validation rules.

Data Type

Boolean

TLSBaseConfiguration Property (KMIPClient Component)

Selects the base configuration for the TLS settings.

Syntax

__property TsbxKMIPClientTLSBaseConfigurations TLSBaseConfiguration = { read=FTLSBaseConfiguration, write=FSetTLSBaseConfiguration };
enum TsbxKMIPClientTLSBaseConfigurations { stpcDefault=0, stpcCompatible=1, stpcComprehensiveInsecure=2, stpcHighlySecure=3 };

Default Value

stpcDefault

Remarks

Selects the base configuration for the TLS settings. Several profiles are offered and tuned up for different purposes, such as high security or higher compatibility.

stpcDefault0
stpcCompatible1
stpcComprehensiveInsecure2
stpcHighlySecure3

Data Type

Integer

TLSCiphersuites Property (KMIPClient Component)

A list of ciphersuites separated with commas or semicolons.

Syntax

__property String TLSCiphersuites = { read=FTLSCiphersuites, write=FSetTLSCiphersuites };

Default Value

""

Remarks

A list of ciphersuites separated with commas or semicolons. Each ciphersuite in the list may be prefixed with a minus sign (-) to indicate that the ciphersuite should be disabled rather than enabled. Besides the specific ciphersuite modifiers, this property supports the all (and -all) aliases, allowing all ciphersuites to be blanketly enabled or disabled at once.

Note: the list of ciphersuites provided to this property alters the baseline list of ciphersuites as defined by TLSBaseConfiguration. Remember to start your ciphersuite string with -all; if you need to only enable a specific fixed set of ciphersuites. The list of supported ciphersuites is provided below:

  • NULL_NULL_NULL
  • RSA_NULL_MD5
  • RSA_NULL_SHA
  • RSA_RC4_MD5
  • RSA_RC4_SHA
  • RSA_RC2_MD5
  • RSA_IDEA_MD5
  • RSA_IDEA_SHA
  • RSA_DES_MD5
  • RSA_DES_SHA
  • RSA_3DES_MD5
  • RSA_3DES_SHA
  • RSA_AES128_SHA
  • RSA_AES256_SHA
  • DH_DSS_DES_SHA
  • DH_DSS_3DES_SHA
  • DH_DSS_AES128_SHA
  • DH_DSS_AES256_SHA
  • DH_RSA_DES_SHA
  • DH_RSA_3DES_SHA
  • DH_RSA_AES128_SHA
  • DH_RSA_AES256_SHA
  • DHE_DSS_DES_SHA
  • DHE_DSS_3DES_SHA
  • DHE_DSS_AES128_SHA
  • DHE_DSS_AES256_SHA
  • DHE_RSA_DES_SHA
  • DHE_RSA_3DES_SHA
  • DHE_RSA_AES128_SHA
  • DHE_RSA_AES256_SHA
  • DH_ANON_RC4_MD5
  • DH_ANON_DES_SHA
  • DH_ANON_3DES_SHA
  • DH_ANON_AES128_SHA
  • DH_ANON_AES256_SHA
  • RSA_RC2_MD5_EXPORT
  • RSA_RC4_MD5_EXPORT
  • RSA_DES_SHA_EXPORT
  • DH_DSS_DES_SHA_EXPORT
  • DH_RSA_DES_SHA_EXPORT
  • DHE_DSS_DES_SHA_EXPORT
  • DHE_RSA_DES_SHA_EXPORT
  • DH_ANON_RC4_MD5_EXPORT
  • DH_ANON_DES_SHA_EXPORT
  • RSA_CAMELLIA128_SHA
  • DH_DSS_CAMELLIA128_SHA
  • DH_RSA_CAMELLIA128_SHA
  • DHE_DSS_CAMELLIA128_SHA
  • DHE_RSA_CAMELLIA128_SHA
  • DH_ANON_CAMELLIA128_SHA
  • RSA_CAMELLIA256_SHA
  • DH_DSS_CAMELLIA256_SHA
  • DH_RSA_CAMELLIA256_SHA
  • DHE_DSS_CAMELLIA256_SHA
  • DHE_RSA_CAMELLIA256_SHA
  • DH_ANON_CAMELLIA256_SHA
  • PSK_RC4_SHA
  • PSK_3DES_SHA
  • PSK_AES128_SHA
  • PSK_AES256_SHA
  • DHE_PSK_RC4_SHA
  • DHE_PSK_3DES_SHA
  • DHE_PSK_AES128_SHA
  • DHE_PSK_AES256_SHA
  • RSA_PSK_RC4_SHA
  • RSA_PSK_3DES_SHA
  • RSA_PSK_AES128_SHA
  • RSA_PSK_AES256_SHA
  • RSA_SEED_SHA
  • DH_DSS_SEED_SHA
  • DH_RSA_SEED_SHA
  • DHE_DSS_SEED_SHA
  • DHE_RSA_SEED_SHA
  • DH_ANON_SEED_SHA
  • SRP_SHA_3DES_SHA
  • SRP_SHA_RSA_3DES_SHA
  • SRP_SHA_DSS_3DES_SHA
  • SRP_SHA_AES128_SHA
  • SRP_SHA_RSA_AES128_SHA
  • SRP_SHA_DSS_AES128_SHA
  • SRP_SHA_AES256_SHA
  • SRP_SHA_RSA_AES256_SHA
  • SRP_SHA_DSS_AES256_SHA
  • ECDH_ECDSA_NULL_SHA
  • ECDH_ECDSA_RC4_SHA
  • ECDH_ECDSA_3DES_SHA
  • ECDH_ECDSA_AES128_SHA
  • ECDH_ECDSA_AES256_SHA
  • ECDHE_ECDSA_NULL_SHA
  • ECDHE_ECDSA_RC4_SHA
  • ECDHE_ECDSA_3DES_SHA
  • ECDHE_ECDSA_AES128_SHA
  • ECDHE_ECDSA_AES256_SHA
  • ECDH_RSA_NULL_SHA
  • ECDH_RSA_RC4_SHA
  • ECDH_RSA_3DES_SHA
  • ECDH_RSA_AES128_SHA
  • ECDH_RSA_AES256_SHA
  • ECDHE_RSA_NULL_SHA
  • ECDHE_RSA_RC4_SHA
  • ECDHE_RSA_3DES_SHA
  • ECDHE_RSA_AES128_SHA
  • ECDHE_RSA_AES256_SHA
  • ECDH_ANON_NULL_SHA
  • ECDH_ANON_RC4_SHA
  • ECDH_ANON_3DES_SHA
  • ECDH_ANON_AES128_SHA
  • ECDH_ANON_AES256_SHA
  • RSA_NULL_SHA256
  • RSA_AES128_SHA256
  • RSA_AES256_SHA256
  • DH_DSS_AES128_SHA256
  • DH_RSA_AES128_SHA256
  • DHE_DSS_AES128_SHA256
  • DHE_RSA_AES128_SHA256
  • DH_DSS_AES256_SHA256
  • DH_RSA_AES256_SHA256
  • DHE_DSS_AES256_SHA256
  • DHE_RSA_AES256_SHA256
  • DH_ANON_AES128_SHA256
  • DH_ANON_AES256_SHA256
  • RSA_AES128_GCM_SHA256
  • RSA_AES256_GCM_SHA384
  • DHE_RSA_AES128_GCM_SHA256
  • DHE_RSA_AES256_GCM_SHA384
  • DH_RSA_AES128_GCM_SHA256
  • DH_RSA_AES256_GCM_SHA384
  • DHE_DSS_AES128_GCM_SHA256
  • DHE_DSS_AES256_GCM_SHA384
  • DH_DSS_AES128_GCM_SHA256
  • DH_DSS_AES256_GCM_SHA384
  • DH_ANON_AES128_GCM_SHA256
  • DH_ANON_AES256_GCM_SHA384
  • ECDHE_ECDSA_AES128_SHA256
  • ECDHE_ECDSA_AES256_SHA384
  • ECDH_ECDSA_AES128_SHA256
  • ECDH_ECDSA_AES256_SHA384
  • ECDHE_RSA_AES128_SHA256
  • ECDHE_RSA_AES256_SHA384
  • ECDH_RSA_AES128_SHA256
  • ECDH_RSA_AES256_SHA384
  • ECDHE_ECDSA_AES128_GCM_SHA256
  • ECDHE_ECDSA_AES256_GCM_SHA384
  • ECDH_ECDSA_AES128_GCM_SHA256
  • ECDH_ECDSA_AES256_GCM_SHA384
  • ECDHE_RSA_AES128_GCM_SHA256
  • ECDHE_RSA_AES256_GCM_SHA384
  • ECDH_RSA_AES128_GCM_SHA256
  • ECDH_RSA_AES256_GCM_SHA384
  • PSK_AES128_GCM_SHA256
  • PSK_AES256_GCM_SHA384
  • DHE_PSK_AES128_GCM_SHA256
  • DHE_PSK_AES256_GCM_SHA384
  • RSA_PSK_AES128_GCM_SHA256
  • RSA_PSK_AES256_GCM_SHA384
  • PSK_AES128_SHA256
  • PSK_AES256_SHA384
  • PSK_NULL_SHA256
  • PSK_NULL_SHA384
  • DHE_PSK_AES128_SHA256
  • DHE_PSK_AES256_SHA384
  • DHE_PSK_NULL_SHA256
  • DHE_PSK_NULL_SHA384
  • RSA_PSK_AES128_SHA256
  • RSA_PSK_AES256_SHA384
  • RSA_PSK_NULL_SHA256
  • RSA_PSK_NULL_SHA384
  • RSA_CAMELLIA128_SHA256
  • DH_DSS_CAMELLIA128_SHA256
  • DH_RSA_CAMELLIA128_SHA256
  • DHE_DSS_CAMELLIA128_SHA256
  • DHE_RSA_CAMELLIA128_SHA256
  • DH_ANON_CAMELLIA128_SHA256
  • RSA_CAMELLIA256_SHA256
  • DH_DSS_CAMELLIA256_SHA256
  • DH_RSA_CAMELLIA256_SHA256
  • DHE_DSS_CAMELLIA256_SHA256
  • DHE_RSA_CAMELLIA256_SHA256
  • DH_ANON_CAMELLIA256_SHA256
  • ECDHE_ECDSA_CAMELLIA128_SHA256
  • ECDHE_ECDSA_CAMELLIA256_SHA384
  • ECDH_ECDSA_CAMELLIA128_SHA256
  • ECDH_ECDSA_CAMELLIA256_SHA384
  • ECDHE_RSA_CAMELLIA128_SHA256
  • ECDHE_RSA_CAMELLIA256_SHA384
  • ECDH_RSA_CAMELLIA128_SHA256
  • ECDH_RSA_CAMELLIA256_SHA384
  • RSA_CAMELLIA128_GCM_SHA256
  • RSA_CAMELLIA256_GCM_SHA384
  • DHE_RSA_CAMELLIA128_GCM_SHA256
  • DHE_RSA_CAMELLIA256_GCM_SHA384
  • DH_RSA_CAMELLIA128_GCM_SHA256
  • DH_RSA_CAMELLIA256_GCM_SHA384
  • DHE_DSS_CAMELLIA128_GCM_SHA256
  • DHE_DSS_CAMELLIA256_GCM_SHA384
  • DH_DSS_CAMELLIA128_GCM_SHA256
  • DH_DSS_CAMELLIA256_GCM_SHA384
  • DH_anon_CAMELLIA128_GCM_SHA256
  • DH_anon_CAMELLIA256_GCM_SHA384
  • ECDHE_ECDSA_CAMELLIA128_GCM_SHA256
  • ECDHE_ECDSA_CAMELLIA256_GCM_SHA384
  • ECDH_ECDSA_CAMELLIA128_GCM_SHA256
  • ECDH_ECDSA_CAMELLIA256_GCM_SHA384
  • ECDHE_RSA_CAMELLIA128_GCM_SHA256
  • ECDHE_RSA_CAMELLIA256_GCM_SHA384
  • ECDH_RSA_CAMELLIA128_GCM_SHA256
  • ECDH_RSA_CAMELLIA256_GCM_SHA384
  • PSK_CAMELLIA128_GCM_SHA256
  • PSK_CAMELLIA256_GCM_SHA384
  • DHE_PSK_CAMELLIA128_GCM_SHA256
  • DHE_PSK_CAMELLIA256_GCM_SHA384
  • RSA_PSK_CAMELLIA128_GCM_SHA256
  • RSA_PSK_CAMELLIA256_GCM_SHA384
  • PSK_CAMELLIA128_SHA256
  • PSK_CAMELLIA256_SHA384
  • DHE_PSK_CAMELLIA128_SHA256
  • DHE_PSK_CAMELLIA256_SHA384
  • RSA_PSK_CAMELLIA128_SHA256
  • RSA_PSK_CAMELLIA256_SHA384
  • ECDHE_PSK_CAMELLIA128_SHA256
  • ECDHE_PSK_CAMELLIA256_SHA384
  • ECDHE_PSK_RC4_SHA
  • ECDHE_PSK_3DES_SHA
  • ECDHE_PSK_AES128_SHA
  • ECDHE_PSK_AES256_SHA
  • ECDHE_PSK_AES128_SHA256
  • ECDHE_PSK_AES256_SHA384
  • ECDHE_PSK_NULL_SHA
  • ECDHE_PSK_NULL_SHA256
  • ECDHE_PSK_NULL_SHA384
  • ECDHE_RSA_CHACHA20_POLY1305_SHA256
  • ECDHE_ECDSA_CHACHA20_POLY1305_SHA256
  • DHE_RSA_CHACHA20_POLY1305_SHA256
  • PSK_CHACHA20_POLY1305_SHA256
  • ECDHE_PSK_CHACHA20_POLY1305_SHA256
  • DHE_PSK_CHACHA20_POLY1305_SHA256
  • RSA_PSK_CHACHA20_POLY1305_SHA256
  • AES128_GCM_SHA256
  • AES256_GCM_SHA384
  • CHACHA20_POLY1305_SHA256
  • AES128_CCM_SHA256
  • AES128_CCM8_SHA256

Data Type

String

TLSClientAuth Property (KMIPClient Component)

Enables or disables certificate-based client authentication.

Syntax

__property TsbxKMIPClientTLSClientAuths TLSClientAuth = { read=FTLSClientAuth, write=FSetTLSClientAuth };
enum TsbxKMIPClientTLSClientAuths { ccatNoAuth=0, ccatRequestCert=1, ccatRequireCert=2 };

Default Value

ccatNoAuth

Remarks

Enables or disables certificate-based client authentication.

Set this property to true to tune up the client authentication type:

ccatNoAuth0
ccatRequestCert1
ccatRequireCert2

Data Type

Integer

TLSECCurves Property (KMIPClient Component)

Defines the elliptic curves to enable.

Syntax

__property String TLSECCurves = { read=FTLSECCurves, write=FSetTLSECCurves };

Default Value

""

Remarks

Defines the elliptic curves to enable.

Data Type

String

TLSExtensions Property (KMIPClient Component)

Provides access to TLS extensions.

Syntax

__property String TLSExtensions = { read=FTLSExtensions, write=FSetTLSExtensions };

Default Value

""

Remarks

Provides access to TLS extensions.

Data Type

String

TLSForceResumeIfDestinationChanges Property (KMIPClient Component)

Whether to force TLS session resumption when the destination address changes.

Syntax

__property bool TLSForceResumeIfDestinationChanges = { read=FTLSForceResumeIfDestinationChanges, write=FSetTLSForceResumeIfDestinationChanges };

Default Value

false

Remarks

Whether to force TLS session resumption when the destination address changes.

Data Type

Boolean

TLSPreSharedIdentity Property (KMIPClient Component)

Defines the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.

Syntax

__property String TLSPreSharedIdentity = { read=FTLSPreSharedIdentity, write=FSetTLSPreSharedIdentity };

Default Value

""

Remarks

Defines the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.

This property is not available at design time.

Data Type

String

TLSPreSharedKey Property (KMIPClient Component)

Contains the pre-shared key for the PSK (Pre-Shared Key) key-exchange mechanism, encoded with base16.

Syntax

__property String TLSPreSharedKey = { read=FTLSPreSharedKey, write=FSetTLSPreSharedKey };

Default Value

""

Remarks

Contains the pre-shared key for the PSK (Pre-Shared Key) key-exchange mechanism, encoded with base16.

This property is not available at design time.

Data Type

String

TLSPreSharedKeyCiphersuite Property (KMIPClient Component)

Defines the ciphersuite used for PSK (Pre-Shared Key) negotiation.

Syntax

__property String TLSPreSharedKeyCiphersuite = { read=FTLSPreSharedKeyCiphersuite, write=FSetTLSPreSharedKeyCiphersuite };

Default Value

""

Remarks

Defines the ciphersuite used for PSK (Pre-Shared Key) negotiation.

Data Type

String

TLSRenegotiationAttackPreventionMode Property (KMIPClient Component)

Selects the renegotiation attack prevention mechanism.

Syntax

__property TsbxKMIPClientTLSRenegotiationAttackPreventionModes TLSRenegotiationAttackPreventionMode = { read=FTLSRenegotiationAttackPreventionMode, write=FSetTLSRenegotiationAttackPreventionMode };
enum TsbxKMIPClientTLSRenegotiationAttackPreventionModes { crapmCompatible=0, crapmStrict=1, crapmAuto=2 };

Default Value

crapmAuto

Remarks

Selects the renegotiation attack prevention mechanism.

The following options are available:

crapmCompatible0TLS 1.0 and 1.1 compatibility mode (renegotiation indication extension is disabled).
crapmStrict1Renegotiation attack prevention is enabled and enforced.
crapmAuto2Automatically choose whether to enable or disable renegotiation attack prevention.

Data Type

Integer

TLSRevocationCheck Property (KMIPClient Component)

Specifies the kind(s) of revocation check to perform.

Syntax

__property TsbxKMIPClientTLSRevocationChecks TLSRevocationCheck = { read=FTLSRevocationCheck, write=FSetTLSRevocationCheck };
enum TsbxKMIPClientTLSRevocationChecks { crcNone=0, crcAuto=1, crcAllCRL=2, crcAllOCSP=3, crcAllCRLAndOCSP=4, crcAnyCRL=5, crcAnyOCSP=6, crcAnyCRLOrOCSP=7, crcAnyOCSPOrCRL=8 };

Default Value

crcAuto

Remarks

Specifies the kind(s) of revocation check to perform.

Revocation checking is necessary to ensure the integrity of the chain and obtain up-to-date certificate validity and trustworthiness information.

crcNone0No revocation checking.
crcAuto1Automatic mode selection. Currently this maps to crcAnyOCSPOrCRL, but it may change in the future.
crcAllCRL2All provided CRL endpoints will be checked, and all checks must succeed.
crcAllOCSP3All provided OCSP endpoints will be checked, and all checks must succeed.
crcAllCRLAndOCSP4All provided CRL and OCSP endpoints will be checked, and all checks must succeed.
crcAnyCRL5All provided CRL endpoints will be checked, and at least one check must succeed.
crcAnyOCSP6All provided OCSP endpoints will be checked, and at least one check must succeed.
crcAnyCRLOrOCSP7All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. CRL endpoints are checked first.
crcAnyOCSPOrCRL8All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. OCSP endpoints are checked first.

This setting controls the way the revocation checks are performed for every certificate in the chain. Typically certificates come with two types of revocation information sources: CRL (certificate revocation lists) and OCSP responders. CRLs are static objects periodically published by the CA at some online location. OCSP responders are active online services maintained by the CA that can provide up-to-date information on certificate statuses in near real time.

There are some conceptual differences between the two. CRLs are normally larger in size. Their use involves some latency because there is normally some delay between the time when a certificate was revoked and the time the subsequent CRL mentioning that is published. The benefits of CRL is that the same object can provide statuses for all certificates issued by a particular CA, and that the whole technology is much simpler than OCSP (and thus is supported by more CAs).

This setting lets you adjust the validation course by including or excluding certain types of revocation sources from the validation process. The crcAnyOCSPOrCRL setting (give preference to the faster OCSP route and only demand one source to succeed) is a good choice for most typical validation environments. The "crcAll*" modes are much stricter, and may be used in scenarios where bulletproof validity information is essential.

Note: If no CRL or OCSP endpoints are provided by the CA, the revocation check will be considered successful. This is because the CA chose not to supply revocation information for its certificates, meaning they are considered irrevocable.

Note: Within each of the above settings, if any retrieved CRL or OCSP response indicates that the certificate has been revoked, the revocation check fails.

This property is not available at design time.

Data Type

Integer

TLSSSLOptions Property (KMIPClient Component)

Various SSL (TLS) protocol options, set of cssloExpectShutdownMessage 0x001 Wait for the close-notify message when shutting down the connection cssloOpenSSLDTLSWorkaround 0x002 (DEPRECATED) Use a DTLS version workaround when talking to very old OpenSSL versions cssloDisableKexLengthAlignment 0x004 Do not align the client-side PMS by the RSA modulus size.

Syntax

__property int TLSSSLOptions = { read=FTLSSSLOptions, write=FSetTLSSSLOptions };

Default Value

16

Remarks

Various SSL (TLS) protocol options, set of

cssloExpectShutdownMessage0x001Wait for the close-notify message when shutting down the connection

cssloOpenSSLDTLSWorkaround0x002(DEPRECATED) Use a DTLS version workaround when talking to very old OpenSSL versions

cssloDisableKexLengthAlignment0x004Do not align the client-side PMS by the RSA modulus size. It is unlikely that you will ever need to adjust it.

cssloForceUseOfClientCertHashAlg0x008Enforce the use of the client certificate hash algorithm. It is unlikely that you will ever need to adjust it.

cssloAutoAddServerNameExtension0x010Automatically add the server name extension when known

cssloAcceptTrustedSRPPrimesOnly0x020Accept trusted SRP primes only

cssloDisableSignatureAlgorithmsExtension0x040Disable (do not send) the signature algorithms extension. It is unlikely that you will ever need to adjust it.

cssloIntolerateHigherProtocolVersions0x080(server option) Do not allow fallback from TLS versions higher than currently enabled

cssloStickToPrefCertHashAlg0x100Stick to preferred certificate hash algorithms

cssloNoImplicitTLS12Fallback0x200Disable implicit TLS 1.3 to 1.2 fallbacks

cssloUseHandshakeBatches0x400Send the handshake message as large batches rather than individually

Data Type

Integer

TLSTLSMode Property (KMIPClient Component)

Specifies the TLS mode to use.

Syntax

__property TsbxKMIPClientTLSTLSModes TLSTLSMode = { read=FTLSTLSMode, write=FSetTLSTLSMode };
enum TsbxKMIPClientTLSTLSModes { smDefault=0, smNoTLS=1, smExplicitTLS=2, smImplicitTLS=3, smMixedTLS=4 };

Default Value

smDefault

Remarks

Specifies the TLS mode to use.

smDefault0
smNoTLS1Do not use TLS
smExplicitTLS2Connect to the server without any encryption and then request an SSL session.
smImplicitTLS3Connect to the specified port, and establish the SSL session at once.
smMixedTLS4Connect to the specified port, and establish the SSL session at once, but allow plain data.

Data Type

Integer

TLSUseExtendedMasterSecret Property (KMIPClient Component)

Enables the Extended Master Secret Extension, as defined in RFC 7627.

Syntax

__property bool TLSUseExtendedMasterSecret = { read=FTLSUseExtendedMasterSecret, write=FSetTLSUseExtendedMasterSecret };

Default Value

false

Remarks

Enables the Extended Master Secret Extension, as defined in RFC 7627.

Data Type

Boolean

TLSUseSessionResumption Property (KMIPClient Component)

Enables or disables the TLS session resumption capability.

Syntax

__property bool TLSUseSessionResumption = { read=FTLSUseSessionResumption, write=FSetTLSUseSessionResumption };

Default Value

false

Remarks

Enables or disables the TLS session resumption capability.

Data Type

Boolean

TLSVersions Property (KMIPClient Component)

The SSL/TLS versions to enable by default.

Syntax

__property int TLSVersions = { read=FTLSVersions, write=FSetTLSVersions };

Default Value

16

Remarks

The SSL/TLS versions to enable by default.

csbSSL20x01SSL 2

csbSSL30x02SSL 3

csbTLS10x04TLS 1.0

csbTLS110x08TLS 1.1

csbTLS120x10TLS 1.2

csbTLS130x20TLS 1.3

Data Type

Integer

TrustedCertCount Property (KMIPClient Component)

The number of records in the TrustedCert arrays.

Syntax

__property int TrustedCertCount = { read=FTrustedCertCount, write=FSetTrustedCertCount };

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at TrustedCertCount - 1.

This property is not available at design time.

Data Type

Integer

TrustedCertBytes Property (KMIPClient Component)

Returns the raw certificate data in DER format.

Syntax

__property DynamicArray TrustedCertBytes[int TrustedCertIndex] = { read=FTrustedCertBytes };

Remarks

Returns the raw certificate data in DER format.

The TrustedCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TrustedCertCount property.

This property is read-only and not available at design time.

Data Type

Byte Array

TrustedCertHandle Property (KMIPClient Component)

Allows to get or set a 'handle', a unique identifier of the underlying property object.

Syntax

__property __int64 TrustedCertHandle[int TrustedCertIndex] = { read=FTrustedCertHandle, write=FSetTrustedCertHandle };

Default Value

0

Remarks

Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.

When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object after such operation. pdfSigner.setSigningCertHandle(certMgr.getCertHandle());

The TrustedCertIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TrustedCertCount property.

This property is not available at design time.

Data Type

Long64

Username Property (KMIPClient Component)

The username to authenticate to the KMIP server.

Syntax

__property String Username = { read=FUsername, write=FSetUsername };

Default Value

""

Remarks

Use this property to provide a username for authentication on the KMIP server.

The value assigned to this property is used for built-in user authentication provided by KMIP. If the KMIP server you are connecting to expects you to use HTTP basic or digest authentication, provide the credentials via the BaseURL property.

Data Type

String

Activate Method (KMIPClient Component)

Activates the specified server object.

Syntax

void __fastcall Activate(String ObjectId);

Remarks

Use this method to activate the object using its ObjectId. Activating the object makes it available for cryptographic operations.

This method is complementary to Deactivate that can be used to disable server-side objects.

Add Method (KMIPClient Component)

Imports a certificate to the KMIP server.

Syntax

String __fastcall Add(bool AddPrivateKey, String Group, bool Activate);

Remarks

Call this method to import a certificate to the KMIP server. Provide the certificate via Certificate property.

Use the Group parameter to supply a unique identifier for objects associated with this certificate. A typical KMIP server would store two or three objects per certificate - the certificate, its public key, and, if provided, its private key. The shared group identifier will make it easy to establish correspondence between the objects.

Set the AddPrivateKey parameter to true to import the private key (and create a corresponding KMIP object) together with the certificate. Use the Activate parameter to instruct the server to activate the new certificate-related objects immediately.

The method returns the unique identifier of the created certificate object. Check the AuxResult property to read the ID of the associated key object.

AddKey Method (KMIPClient Component)

Imports a key or keypair to the KMIP server.

Syntax

String __fastcall AddKey(String Group, bool Activate);

Remarks

Use this method to import a key or an asymmetric keypair to the KMIP server. Provide the key via the Key property.

Use the Group parameter to supply a unique identifier for objects associated with this key. Import of an asymmetric keypair may result in two objects being created on the server - the public key and the private key. The shared group identifier will make it easy to establish correspondence between the objects.

Use the Activate parameter to instruct the server to activate the new key objects immediately.

The method returns the unique identifier of the created key object. Check the AuxResult property to read the ID of the second object key component object, if expected.

Config Method (KMIPClient Component)

Sets or retrieves a configuration setting.

Syntax

String __fastcall Config(String ConfigurationString);

Remarks

Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

CustomRequest Method (KMIPClient Component)

Performs a custom request to the server.

Syntax

DynamicArray<Byte> __fastcall CustomRequest(DynamicArray<Byte> Data);

Remarks

Use this method to send a custom request to the KMIP server. Pass the serialized KMIP request data to the Data parameter. Any response returned back by the server is passed back to the application via the result of this method.

This method can be handy if you need to make a request of the kind that KMIPClient does not support at the moment.

Deactivate Method (KMIPClient Component)

Deactivates the specified server object.

Syntax

void __fastcall Deactivate(String ObjectId);

Remarks

Use this method to deactivate the object using its ObjectId. Deactivated objects remain on the server but cannot be used for cryptographic operations. Use Remove method to delete objects from the server permanently.

This method is complementary to Activate that lets you enable ('activate') server objects.

Decrypt Method (KMIPClient Component)

Decrypts the provided data using a key stored on the KMIP server.

Syntax

void __fastcall Decrypt(String ObjectId, String Algorithm, DynamicArray<Byte> IV, String BlockMode, String PaddingMethod, int TagLength);

Remarks

Use this method to decrypt data using the key with the specified ObjectId.

Provide the encrypted data via one of the Input* properties (InputFile, InputStream, or InputBytes). The decrypted data will be saved to one of the output properties.

Use the Algorithm, IV, BlockMode, PaddingMethod, and TagLength parameters to provide adjustments to the decryption algorithm. Not every call will require all of the adjustments. Asymmetric decryption calls (such as RSA) do not typically require parameters.

DoAction Method (KMIPClient Component)

Performs an additional action.

Syntax

String __fastcall DoAction(String ActionID, String ActionParams);

Remarks

DoAction is a generic method available in every component. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.

The unique identifier (case insensitive) of the action is provided in the ActionID parameter.

ActionParams contains the value of a single parameter, or a list of multiple parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....

Common ActionIDs:

ActionParametersReturned valueDescription
ResetTrustedListCachenonenoneClears the cached list of trusted lists.
ResetCertificateCachenonenoneClears the cached certificates.
ResetCRLCachenonenoneClears the cached CRLs.
ResetOCSPResponseCachenonenoneClears the cached OCSP responses.

Encrypt Method (KMIPClient Component)

Encrypts the provided data using a key stored on the KMIP server.

Syntax

void __fastcall Encrypt(String ObjectId, String Algorithm, DynamicArray<Byte> IV, String BlockMode, String PaddingMethod, int TagLength);

Remarks

Use this method to encrypt data using the key with the specified ObjectId. Provide the data to be encrypted via InputFile or InputStream. The encrypted data will be saved to OutputFile (or OutputStream).

Use optional Algorithm, IV, BlockMode, Padding, and TagLength parameters to adjust encryption flow. The values to be passed as these parameters depend on the encryption algorithm being used. Public key algorithms typically do not require these parameters.

Generate Method (KMIPClient Component)

Generates a new certificate on the KMIP server.

Syntax

String __fastcall Generate(String PublicKeyId, bool Activate);

Remarks

Use this method to generate a new certificate on the server. Set up the needed parameters of the certificate in the Certificate property. This property may contain a prepared certificate request.

An optional PublicKeyId parameter specifies the ID of the server-side public key object to base the certificate on.

The method returns a unique ID assigned to the new certificate object. Note that the certificate itself is not populated in the Certificate property: use Read to request it from the server.

GenerateKey Method (KMIPClient Component)

Generates a symmetric key or an asymmetric key pair on the KMIP server.

Syntax

String __fastcall GenerateKey(String KeyAlgorithm, String Scheme, String SchemeParams, int KeyBits, String Group, bool Activate);

Remarks

Use KeyAlgorithm and KeyBits to indicate the desired algorithm and key length. Provide an group name of the new key via the Group parameter.

The method returns the ID assigned by the server to the new key object. This may differ from the one you supplied.

Note that the key itself is not populated in the Key property: use ReadKey to request it from the server.

List Method (KMIPClient Component)

Retrieves the list of objects of selected types from the server.

Syntax

void __fastcall List(int ObjectTypes, String Filter, int OffsetItems, int MaximumItems, bool FreshOnly);

Remarks

ObjectTypes is expected to contain a bit mask according to which objects of one or more types can be selected. The ObjectTypes of 0 implies that there is no mask, and all objects should be returned. Possible values:

otUnknown0x00
otCertificate0x01
otSymmetricKey0x02
otPublicKey0x04
otPrivateKey0x08

Use OffsetItems and MaximumItems to narrow down your search. Use Filter to specify the object properties that you would like to be requested: an empty value or an asterisk tells the client to request all the properties of the listed objects, whereas the objectid filter only results in the object IDs being returned.

Read Method (KMIPClient Component)

Downloads a certificate from the KMIP server.

Syntax

void __fastcall Read(String ObjectId);

Remarks

Use this method to download a certificate object from the server. Specify the ID of the certificate object via the ObjectId parameter.

Upon completion, the certificate is populated in the Certificate property.

ReadAttribute Method (KMIPClient Component)

Requests an attribute from an object.

Syntax

String __fastcall ReadAttribute(String ObjectId, String Name);

Remarks

Use this method to request an attribute defined by the Name parameter for a server-side object indicated by its ObjectId.

The list of attributes supported by KMIP is available here: KMIP v1.3, paragraph 3

ReadKey Method (KMIPClient Component)

Downloads a key object from the KMIP server.

Syntax

void __fastcall ReadKey(String ObjectId);

Remarks

Use this method to retrieve a key object from the server. Public, private, and secret key IDs can be passed to this method, but only non-sensitive parameters of the private and secret keys will be returned.

The key data is populated in the Key property.

ReadObject Method (KMIPClient Component)

Requests object information from the KMIP server.

Syntax

void __fastcall ReadObject(String ObjectId);

Remarks

Use this method to request information about a server-side object by its unique ObjectId.

If ObjectId represents a valid certificate or key, the details of the object are populated in Certificate or Key object respectively.

Remove Method (KMIPClient Component)

Removes the specified object from the server.

Syntax

void __fastcall Remove(String ObjectId);

Remarks

Use this method to delete the object specified by its ObjectId from the KMIP server permanently.

If you would like to disable the object but keep it on the server permanently, use Deactivate method instead.

Reset Method (KMIPClient Component)

Resets the component settings.

Syntax

void __fastcall Reset();

Remarks

Reset is a generic method available in every component.

SetAttribute Method (KMIPClient Component)

Sets an attribute of an existing server-side object.

Syntax

void __fastcall SetAttribute(String ObjectId, String Name, String Value, bool Delete);

Remarks

Use this method to set an attribute of a server-side object.

The list of attributes supported by KMIP is available here: KMIP v1.3, paragraph 3

Set Delete parameter to true to delete the attribute instead of setting it.

SetRequestBytes Method (KMIPClient Component)

Replaces the data that has been prepared for sending out.

Syntax

void __fastcall SetRequestBytes(DynamicArray<Byte> Value);

Remarks

Call this method from your Request event handler to alter the request data being sent to the server. This method method may be handy if you need to adjust the request data that the client has prepared manually before sending it out.

SetResponseBytes Method (KMIPClient Component)

Alters the data received from the server in a response.

Syntax

void __fastcall SetResponseBytes(DynamicArray<Byte> Value);

Remarks

Call this method from your Response event handler to alter the data received from the server before passing it for processing. This method may be handy if you would like to adjust data received from the server - for example, to fix an error in the server's response.

Sign Method (KMIPClient Component)

Signs the data using a key on the KMIP server.

Syntax

void __fastcall Sign(String ObjectId, String Algorithm, String PaddingMethod, String HashAlgorithm, bool InputIsHash);

Remarks

Use this method to sign the data using the key with the specified ObjectId. Pass the data to be signed via InputFile (or InputStream) property. The resulting signed data will be written to OutputFile (or OutputStream).

The Algorithm and HashAlgorithm parameters should specify the algorithms to be used for the cryptographic signing. Set InputIsHash to true to indicate that you are passing the hash of the data instead of the actual data.

If any of Algorithm or HashAlgorithm are omitted, the server will use the default algorithm associated with the key. Note that this is not always possible, so make sure your requests carry as much details as possible.

The following key algorithms are supported: RSA, EC, ECDSA, ECDH, EDDSA, DSA, ELGAMAL, DH, SRP.

The following hash algorithms are supported: SHA1, SHA256, SHA384, SHA512, SHA224, WHIRLPOOL, POLY1305, SHA3_224, SHA3_256, SHA3_384, SHA3_512. Note that servers may not support all of these algorithms.

Verify Method (KMIPClient Component)

Verifies digitally signed data.

Syntax

void __fastcall Verify(String ObjectId, String Algorithm, String PaddingMethod, String HashAlgorithm, bool InputIsHash);

Remarks

Use this method to verify the integrity of the signature using a server-side key.

Please provide the signature via InputFile (or InputStream / InputBytes) property. For detached signatures, please also provide the data that was signed via DataFile (or DataStream / DataBytes) property.

Provide additional parameters of the operation:

  • Algorithm: the signature algorithm (e.g. sha256WithRSAEncryption).
  • PaddingMethod: the padding method used (e.g. PSS).
  • HashAlgorithm: the hash algorithm to use for signature verification (e.g. SHA256).
  • InputIsHash: specifies whether the data provided via DataFile or similar property contains the data or its message digest.

Error Event (KMIPClient Component)

Provides information about errors during KMIP operations.

Syntax

typedef struct {
  int ErrorCode;
  String Description;
} TsbxKMIPClientErrorEventParams;
typedef void __fastcall (__closure *TsbxKMIPClientErrorEvent)(System::TObject* Sender, TsbxKMIPClientErrorEventParams *e);
__property TsbxKMIPClientErrorEvent OnError = { read=FOnError, write=FOnError };

Remarks

This event is fired in case of exceptional conditions occured during KMIP operations.

ErrorCode contains an error code and Description contains a textual description of the error.

ExternalSign Event (KMIPClient Component)

Handles remote or external signing initiated by the SignExternal method or other source.

Syntax

typedef struct {
  String OperationId;
  String HashAlgorithm;
  String Pars;
  String Data;
  String SignedData;
} TsbxKMIPClientExternalSignEventParams;
typedef void __fastcall (__closure *TsbxKMIPClientExternalSignEvent)(System::TObject* Sender, TsbxKMIPClientExternalSignEventParams *e);
__property TsbxKMIPClientExternalSignEvent OnExternalSign = { read=FOnExternalSign, write=FOnExternalSign };

Remarks

Assign a handler to this event if you need to delegate a low-level signing operation to an external, remote, or custom signing engine. Depending on the settings, the handler will receive a hashed or unhashed value to be signed.

The event handler must pass the value of Data to the signer, obtain the signature, and pass it back to the component via the SignedData parameter.

OperationId provides a comment about the operation and its origin. It depends on the exact component being used, and may be empty. HashAlgorithm specifies the hash algorithm being used for the operation, and Pars contains algorithm-dependent parameters.

The component uses base16 (hex) encoding for the Data, SignedData, and Pars parameters. If your signing engine uses a different input and output encoding, you may need to decode and/or encode the data before and/or after the signing.

A sample MD5 hash encoded in base16: a0dee2a0382afbb09120ffa7ccd8a152 - lower case base16 A0DEE2A0382AFBB09120FFA7CCD8A152 - upper case base16

A sample event handler that uses the .NET RSACryptoServiceProvider class may look like the following: signer.OnExternalSign += (s, e) => { var cert = new X509Certificate2("cert.pfx", "", X509KeyStorageFlags.Exportable); var key = (RSACryptoServiceProvider)cert.PrivateKey; var dataToSign = e.Data.FromBase16String(); var signedData = key.SignHash(dataToSign, "2.16.840.1.101.3.4.2.1"); e.SignedData = signedData.ToBase16String(); };

Notification Event (KMIPClient Component)

This event notifies the application about an underlying control flow event.

Syntax

typedef struct {
  String EventID;
  String EventParam;
} TsbxKMIPClientNotificationEventParams;
typedef void __fastcall (__closure *TsbxKMIPClientNotificationEvent)(System::TObject* Sender, TsbxKMIPClientNotificationEventParams *e);
__property TsbxKMIPClientNotificationEvent OnNotification = { read=FOnNotification, write=FOnNotification };

Remarks

The component fires this event to let the application know about some event, occurrence, or milestone in the component. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.

The unique identifier of the event is provided in the EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the component, the exact action it is performing, or the document being processed, one or both may be omitted.

This component can fire this event with the following EventID values:

TLSExtensions.CertificateStatusTBD
TLSExtensions.PreSharedIdentityHintTBD

Request Event (KMIPClient Component)

KMIPClient fires this event to notify the user about the request being sent to the KMIP server.

Syntax

typedef struct {
  DynamicArray RequestData;
} TsbxKMIPClientRequestEventParams;
typedef void __fastcall (__closure *TsbxKMIPClientRequestEvent)(System::TObject* Sender, TsbxKMIPClientRequestEventParams *e);
__property TsbxKMIPClientRequestEvent OnRequest = { read=FOnRequest, write=FOnRequest };

Remarks

Subscribe to this event to be notified about individual requests sent by the KMIP client to the server.

The RequestData parameter contains the encoded KMIP request. You can alter what is being sent by providing custom request bytes via the SetRequestBytes method.

Response Event (KMIPClient Component)

KMIPClient uses this event to notify the user about the response being received.

Syntax

typedef struct {
  DynamicArray ResponseData;
} TsbxKMIPClientResponseEventParams;
typedef void __fastcall (__closure *TsbxKMIPClientResponseEvent)(System::TObject* Sender, TsbxKMIPClientResponseEventParams *e);
__property TsbxKMIPClientResponseEvent OnResponse = { read=FOnResponse, write=FOnResponse };

Remarks

Subscribe to this event to be notified about KMIP protocol responses that the KMIP client receives from the server.

The ResponseData parameter contains the encoded body of the response. Use SetResponseBytes to alter the response data received before it is processed by the client.

TLSCertNeeded Event (KMIPClient Component)

Fires when a remote TLS party requests a client certificate.

Syntax

typedef struct {
  String Host;
  String CANames;
} TsbxKMIPClientTLSCertNeededEventParams;
typedef void __fastcall (__closure *TsbxKMIPClientTLSCertNeededEvent)(System::TObject* Sender, TsbxKMIPClientTLSCertNeededEventParams *e);
__property TsbxKMIPClientTLSCertNeededEvent OnTLSCertNeeded = { read=FOnTLSCertNeeded, write=FOnTLSCertNeeded };

Remarks

This event fires to notify the implementation that a remote TLS server has requested a client certificate. The Host parameter identifies the host that makes a request, and the CANames parameter (optional, according to the TLS spec) advises on the accepted issuing CAs.

Use the TLSClientChain property in response to this event to provide the requested certificate. Please make sure the client certificate includes the associated private key. Note that you may set the certificates before the connection without waiting for this event to fire.

This event is preceded by the TLSHandshake event for the given host and, if the certificate was accepted, succeeded by the TLSEstablished event.

TLSCertValidate Event (KMIPClient Component)

This event is fired upon receipt of the TLS server's certificate, allowing the user to control its acceptance.

Syntax

typedef struct {
  String ServerHost;
  String ServerIP;
  bool Accept;
} TsbxKMIPClientTLSCertValidateEventParams;
typedef void __fastcall (__closure *TsbxKMIPClientTLSCertValidateEvent)(System::TObject* Sender, TsbxKMIPClientTLSCertValidateEventParams *e);
__property TsbxKMIPClientTLSCertValidateEvent OnTLSCertValidate = { read=FOnTLSCertValidate, write=FOnTLSCertValidate };

Remarks

This event is fired during a TLS handshake. Use the TLSServerChain property to access the certificate chain. In general, components may contact a number of TLS endpoints during their work, depending on their configuration.

Accept is assigned in accordance with the outcome of the internal validation check performed by the component, and can be adjusted if needed.

TLSEstablished Event (KMIPClient Component)

Fires when a TLS handshake with Host successfully completes.

Syntax

typedef struct {
  String Host;
  String Version;
  String Ciphersuite;
  DynamicArray ConnectionId;
  bool Abort;
} TsbxKMIPClientTLSEstablishedEventParams;
typedef void __fastcall (__closure *TsbxKMIPClientTLSEstablishedEvent)(System::TObject* Sender, TsbxKMIPClientTLSEstablishedEventParams *e);
__property TsbxKMIPClientTLSEstablishedEvent OnTLSEstablished = { read=FOnTLSEstablished, write=FOnTLSEstablished };

Remarks

The component uses this event to notify the application about a successful completion of a TLS handshake.

The Version, Ciphersuite, and ConnectionId parameters indicate the security parameters of the new connection. Use the Abort parameter if you need to terminate the connection at this stage.

TLSHandshake Event (KMIPClient Component)

Fires when a new TLS handshake is initiated, before the handshake commences.

Syntax

typedef struct {
  String Host;
  bool Abort;
} TsbxKMIPClientTLSHandshakeEventParams;
typedef void __fastcall (__closure *TsbxKMIPClientTLSHandshakeEvent)(System::TObject* Sender, TsbxKMIPClientTLSHandshakeEventParams *e);
__property TsbxKMIPClientTLSHandshakeEvent OnTLSHandshake = { read=FOnTLSHandshake, write=FOnTLSHandshake };

Remarks

The component uses this event to notify the application about the start of a new TLS handshake to Host. If the handshake is successful, this event will be followed by the TLSEstablished event. If the server chooses to request a client certificate, the TLSCertNeeded event will also be fired.

TLSPSK Event (KMIPClient Component)

Notifies the application about the PSK key exchange.

Syntax

typedef struct {
  String Host;
  String Hint;
} TsbxKMIPClientTLSPSKEventParams;
typedef void __fastcall (__closure *TsbxKMIPClientTLSPSKEvent)(System::TObject* Sender, TsbxKMIPClientTLSPSKEventParams *e);
__property TsbxKMIPClientTLSPSKEvent OnTLSPSK = { read=FOnTLSPSK, write=FOnTLSPSK };

Remarks

The component fires this event to notify the application about the beginning of TLS-PSK key exchange with Host. The Hint parameter may be used by the server to identify the key or service to use. Use the PreSharedKey field of TLSSettings to provide the pre-shared key to the component.

TLSShutdown Event (KMIPClient Component)

Reports the graceful closure of a TLS connection.

Syntax

typedef struct {
  String Host;
} TsbxKMIPClientTLSShutdownEventParams;
typedef void __fastcall (__closure *TsbxKMIPClientTLSShutdownEvent)(System::TObject* Sender, TsbxKMIPClientTLSShutdownEventParams *e);
__property TsbxKMIPClientTLSShutdownEvent OnTLSShutdown = { read=FOnTLSShutdown, write=FOnTLSShutdown };

Remarks

This event notifies the application about the closure of an earlier established TLS connection. Note that only graceful connection closures are reported.

Config Settings (KMIPClient Component)

The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

KMIPClient Config Settings

BlockSize:   Block size of data for encrypting, decrypting or signing.

Use this property to specify the Block size in bytes of data to use for send on encrypting, decrypting or signing.

IgnoreSystemTrust:   Whether trusted Windows Certificate Stores should be treated as trusted.

Specifies whether, during chain validation, the component should respect the trust to CA certificates as configured in the operating system. In Windows this effectively defines whether the component should trust the certificates residing in the Trusted Root Certification Authorities store.

If IgnoreSystemTrust is True, certificates residing in the trusted root store are treated as if they are known, rather than trusted. Only certificates provided via other means (such as the TrustedCertificates property) are considered trusted.

MajorProtocolVersion:   Major protocol version of the KMIP server.

Use this property to specify the major protocol version of the KMIP server.

MinorProtocolVersion:   Minor protocol version of the KMIP server.

Use this property to specify the minor protocol version of the KMIP server.

StaticDNS:   Specifies whether static DNS rules should be used.

Set this property to enable or disable static DNS rules for the component. Works only if UseOwnDNSResolver is set to true.

Supported values are:

noneNo static DNS rules (default)
localLocal static DNS rules
globalGlobal static DNS rules

StaticIPAddress[domain]:   Gets or sets an IP address for the specified domain name.

Use this property to get or set an IP address for the specified domain name in the internal (of the component) or global DNS rules storage depending on the StaticDNS value. The type of the IP address (IPv4 or IPv6) is determined automatically. If both addresses are available, they are devided by the | (pipe) character.

StaticIPAddresses:   Gets or sets all the static DNS rules.

Use this property to get static DNS rules from the current rules storage or restore them back between application sessions. If StaticDNS of the component is set to "local", the property returns/restores the rules from/to the internal storage of the component. If StaticDNS of the component is set to "global", the property returns/restores the rules from/to the GLOBAL storage. The rules list is returned and accepted in JSON format.

TempPath:   Path for storing temporary files.

This setting specifies an absolute path to the location on disk where temporary files are stored.

TLSExtensions:   TBD.

TBD

TLSPeerExtensions:   TBD.

TBD

TLSSessionGroup:   Specifies the group name of TLS sessions to be used for session resumption.

Use this property to limit the search of chached TLS sessions to the specified group. Sessions from other groups will be ignored. By default, all sessions are cached with an empty group name and available to all the components.

TLSSessionLifetime:   Specifies lifetime in seconds of the cached TLS session.

Use this property to specify how much time the TLS session should be kept in the session cache. After this time, the session expires and will be automatically removed from the cache. Default value is 300 seconds (5 minutes).

TLSSessionPurgeInterval:   Specifies how often the session cache should remove the expired TLS sessions.

Use this property to specify the time interval of purging the expired TLS sessions from the session cache. Default value is 60 seconds (1 minute).

TolerateMinorChainIssues:   Whether to tolerate minor chain issues.

This parameter controls whether the chain validator should tolerate minor technical issues when validating the chain. Those are:

  • CA, revocation source, TLS key usage requirements are not mandated
  • Violation of OCSP issuer requirements are ignored
  • The AuthorityKeyID extension in CRL- and certificate-issuing CAs are ignored (helps with incorrectly renewed certificates)
  • Basic constraints and name constraints of CA certificates are ignored
  • Some weaker algorithms are tolerated
UseMicrosoftCTL:   Enables or disables the automatic use of the Microsoft online certificate trust list.

Enable this property to make the chain validation module automatically look up missing CA certificates in the public Windows Update repository.

UseSystemCertificates:   Enables or disables the use of the system certificates.

Use this property to tell the chain validation module to automatically look up missing CA certificates in the system certificates. In many cases it is beneficial to switch this property on, as the operating system certificate configuration provides a representative trust framework.

Base Config Settings

ASN1UseGlobalTagCache:   Controls whether ASN.1 module should use a global object cache.

This is a performance setting. It is unlikely that you will ever need to adjust it.

AssignSystemSmartCardPins:   Specifies whether CSP-level PINs should be assigned to CNG keys.

This is a low-level tweak for certain cryptographic providers. It is unlikely that you will ever need to adjust it.

CheckKeyIntegrityBeforeUse:   Enables or disable private key integrity check before use.

This global property enables or disables private key material check before each signing operation. This slows down performance a bit, but prevents a selection of attacks on RSA keys where keys with unknown origins are used.

You can switch this property off to improve performance if your project only uses known, good private keys.

CookieCaching:   Specifies whether a cookie cache should be used for HTTP(S) transports.

Set this property to enable or disable cookies caching for the component.

Supported values are:

offNo caching (default)
localLocal caching
globalGlobal caching

Cookies:   Gets or sets local cookies for the component.

Use this property to get cookies from the internal cookie storage of the component and/or restore them back between application sessions.

DefDeriveKeyIterations:   Specifies the default key derivation algorithm iteration count.

This global property sets the default number of iterations for all supported key derivation algorithms. Note that you can provide the required number of iterations by using properties of the relevant key generation component; this global setting is used in scenarios where specific iteration count is not or cannot be provided.

DNSLocalSuffix:   The suffix to assign for TLD names.

Use this global setting to adjust the default suffix to assign to top-level domain names. The default is .local.

EnableClientSideSSLFFDHE:   Enables or disables finite field DHE key exchange support in TLS clients.

This global property enables or disables support for finite field DHE key exchange methods in TLS clients. FF DHE is a slower algorithm if compared to EC DHE; enabling it may result in slower connections.

This setting only applies to sessions negotiated with TLS version 1.3.

GlobalCookies:   Gets or sets global cookies for all the HTTP transports.

Use this property to get cookies from the GLOBAL cookie storage or restore them back between application sessions. These cookies will be used by all the components that have its CookieCaching property set to "global".

HardwareCryptoUsePolicy:   The hardware crypto usage policy.

This global setting controls the hardware cryptography usage policy: auto, enable, or disable.

HttpUserAgent:   Specifies the user agent name to be used by all HTTP clients.

This global setting defines the User-Agent field of the HTTP request provides information about the software that initiates the request. This value will be used by all the HTTP clients including the ones used internally in other components.

HttpVersion:   The HTTP version to use in any inner HTTP client components created.

Set this property to 1.0 or 1.1 to indicate the HTTP version that any internal HTTP clients should use.

IgnoreExpiredMSCTLSigningCert:   Whether to tolerate the expired Windows Update signing certificate.

It is not uncommon for Microsoft Windows Update Certificate Trust List to be signed with an expired Microsoft certificate. Setting this global property to true makes SBB ignore the expired factor and take the Trust List into account.

ListDelimiter:   The delimiter character for multi-element lists.

Allows to set the delimiter for any multi-entry values returned by the component as a string object, such as file lists. For most of the components, this property is set to a newline sequence.

LogDestination:   Specifies the debug log destination.

Contains a comma-separated list of values that specifies where debug log should be dumped.

Supported values are:

fileFile
consoleConsole
systemlogSystem Log (supported for Android only)
debuggerDebugger (supported for VCL for Windows and .Net)

LogDetails:   Specifies the debug log details to dump.

Contains a comma-separated list of values that specifies which debug log details to dump.

Supported values are:

timeCurrent time
levelLevel
packagePackage name
moduleModule name
classClass name
methodMethod name
threadidThread Id
contenttypeContent type
contentContent
allAll details

LogFile:   Specifies the debug log filename.

Use this property to provide a path to the log file.

LogFilters:   Specifies the debug log filters.

Contains a comma-separated list of value pairs ("name:value") that describe filters.

Supported filter names are:

exclude-packageExclude a package specified in the value
exclude-moduleExclude a module specified in the value
exclude-classExclude a class specified in the value
exclude-methodExclude a method specified in the value
include-packageInclude a package specified in the value
include-moduleInclude a module specified in the value
include-classInclude a class specified in the value
include-methodInclude a method specified in the value

LogFlushMode:   Specifies the log flush mode.

Use this property to set the log flush mode. The following values are defined:

noneNo flush (caching only)
immediateImmediate flush (real-time logging)
maxcountFlush cached entries upon reaching LogMaxEventCount entries in the cache.

LogLevel:   Specifies the debug log level.

Use this property to provide the desired debug log level.

Supported values are:

noneNone (by default)
fatalSevere errors that cause premature termination.
errorOther runtime errors or unexpected conditions.
warningUse of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong".
infoInteresting runtime events (startup/shutdown).
debugDetailed information on flow of through the system.
traceMore detailed information.

LogMaxEventCount:   Specifies the maximum number of events to cache before further action is taken.

Use this property to specify the log event number threshold. This threshold may have different effects, depending on the rotation setting and/or the flush mode.

The default value of this setting is 100.

LogRotationMode:   Specifies the log rotation mode.

Use this property to set the log rotation mode. The following values are defined:

noneNo rotation
deleteolderDelete older entries from the cache upon reaching LogMaxEventCount
keepolderKeep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded)

MaxASN1BufferLength:   Specifies the maximal allowed length for ASN.1 primitive tag data.

This global property limits the maximal allowed length for ASN.1 tag data for non-content-carrying structures, such as certificates, CRLs, or timestamps. It does not affect structures that can carry content, such as CMS/CAdES messages. This is a security property aiming at preventing DoS attacks.

MaxASN1TreeDepth:   Specifies the maximal depth for processed ASN.1 trees.

This global property limits the maximal depth of ASN.1 trees that the component can handle without throwing an error. This is a security property aiming at preventing DoS attacks.

OCSPHashAlgorithm:   Specifies the hash algorithm to be used to identify certificates in OCSP requests.

This global setting defines the hash algorithm to use in OCSP requests during chain validation. Some OCSP responders can only use older algorithms, in which case setting this property to SHA1 may be helpful.

OldClientSideRSAFallback:   Specifies whether the SSH client should use a SHA1 fallback.

Tells the SSH client to use a legacy ssh-rsa authentication even if the server indicates support for newer algorithms, such as rsa-sha-256. This is a backward-compatibility tweak.

PKICache:   Specifies which PKI elements (certificates, CRLs, OCSP responses) should be cached.

The PKICache setting specifies which Public Key Infrastructure (PKI) elements should be cached to optimize performance and reduce retrieval times. It supports comma-separated values to indicate the specific types of PKI data that should be cached.

Supported Values:

certificateEnables caching of certificates.
crlEnables caching of Certificate Revocation Lists (CRLs).
ocspEnables caching of OCSP (Online Certificate Status Protocol) responses.

Example (default value): PKICache=certificate,crl,ocsp In this example, the component caches certificates, CRLs, and OCSP responses.

PKICachePath:   Specifies the file system path where cached PKI data is stored.

The PKICachePath setting defines the file system path where cached PKI data (e.g., certificates, CRLs, OCSP responses and Trusted Lists) will be stored. This allows the system to persistently save and retrieve PKI cache data, even across application restarts.

The default value is an empty string - no cached PKI data is stored on disk.

Example: PKICachePath=C:\Temp\cache In this example, the cached PKI data is stored in the C:\Temp\cache directory.

ProductVersion:   Returns the version of the SecureBlackbox library.

This property returns the long version string of the SecureBlackbox library being used (major.minor.build.revision).

ServerSSLDHKeyLength:   Sets the size of the TLS DHE key exchange group.

Use this property to adjust the length, in bits, of the DHE prime to be used by the TLS server.

StaticDNS:   Specifies whether static DNS rules should be used.

Set this property to enable or disable static DNS rules for the component. Works only if UseOwnDNSResolver is set to true.

Supported values are:

noneNo static DNS rules (default)
localLocal static DNS rules
globalGlobal static DNS rules

StaticIPAddress[domain]:   Gets or sets an IP address for the specified domain name.

Use this property to get or set an IP address for the specified domain name in the internal (of the component) or global DNS rules storage depending on the StaticDNS value. The type of the IP address (IPv4 or IPv6) is determined automatically. If both addresses are available, they are devided by the | (pipe) character.

StaticIPAddresses:   Gets or sets all the static DNS rules.

Use this property to get static DNS rules from the current rules storage or restore them back between application sessions. If StaticDNS of the component is set to "local", the property returns/restores the rules from/to the internal storage of the component. If StaticDNS of the component is set to "global", the property returns/restores the rules from/to the GLOBAL storage. The rules list is returned and accepted in JSON format.

Tag:   Allows to store any custom data.

Use this config property to store any custom data.

TLSSessionGroup:   Specifies the group name of TLS sessions to be used for session resumption.

Use this property to limit the search of chached TLS sessions to the specified group. Sessions from other groups will be ignored. By default, all sessions are cached with an empty group name and available to all the components.

TLSSessionLifetime:   Specifies lifetime in seconds of the cached TLS session.

Use this property to specify how much time the TLS session should be kept in the session cache. After this time, the session expires and will be automatically removed from the cache. Default value is 300 seconds (5 minutes).

TLSSessionPurgeInterval:   Specifies how often the session cache should remove the expired TLS sessions.

Use this property to specify the time interval of purging the expired TLS sessions from the session cache. Default value is 60 seconds (1 minute).

UseCRLObjectCaching:   Specifies whether reuse of loaded CRL objects is enabled.

This setting enables or disables the caching of CRL objects. When set to true (the default value), the system checks if a CRL object is already loaded in memory before attempting to load a new instance. If the object is found, the existing instance is reused, and its reference count is incremented to track its usage. When the reference count reaches zero, indicating that no references to the object remain, the system will free the object from memory. This setting enhances performance by minimizing unnecessary object instantiation and promotes efficient memory management, particularly in scenarios where CRL objects are frequently used.

UseInternalRandom:   Switches between SecureBlackbox-own and platform PRNGs.

Allows to switch between internal/native PRNG implementation and the one provided by the platform.

UseLegacyAdESValidation:   Enables legacy AdES validation mode.

Use this setting to switch the AdES component to the validation approach that was used in SBB 2020/SBB 2022 (less attention to temporal details).

UseOCSPResponseObjectCaching:   Specifies whether reuse of loaded OCSP response objects is enabled.

This setting enables or disables the caching of OCSP response objects. When set to true (the default value), the system checks if a OCSP response object is already loaded in memory before attempting to load a new instance. If the object is found, the existing instance is reused, and its reference count is incremented to track its usage. When the reference count reaches zero, indicating that no references to the object remain, the system will free the object from memory. This setting enhances performance by minimizing unnecessary object instantiation and promotes efficient memory management, particularly in scenarios where OCSP response objects are frequently used.

UseOwnDNSResolver:   Specifies whether the client components should use own DNS resolver.

Set this global property to false to force all the client components to use the DNS resolver provided by the target OS instead of using own one.

UseSharedSystemStorages:   Specifies whether the validation engine should use a global per-process copy of the system certificate stores.

Set this global property to false to make each validation run use its own copy of system certificate stores.

UseSystemNativeSizeCalculation:   An internal CryptoAPI access tweak.

This is an internal setting. Please do not use it unless instructed by the support team.

UseSystemOAEPAndPSS:   Enforces or disables the use of system-driven RSA OAEP and PSS computations.

This global setting defines who is responsible for performing RSA-OAEP and RSA-PSS computations where the private key is stored in a Windows system store and is exportable. If set to true, SBB will delegate the computations to Windows via a CryptoAPI call. Otherwise, it will export the key material and perform the computations using its own OAEP/PSS implementation.

This setting only applies to certificates originating from a Windows system store.

UseSystemRandom:   Enables or disables the use of the OS PRNG.

Use this global property to enable or disable the use of operating system-driven pseudorandom number generation.

XMLRDNDescriptorName[OID]:   Defines an OID mapping to descriptor names for the certificate's IssuerRDN or SubjectRDN.

This property defines custom mappings between Object Identifiers (OIDs) and descriptor names. This mapping specifies how the certificate's issuer and subject information (ds:IssuerRDN and ds:SubjectRDN elements respectively) are represented in XML signatures.

The property accepts comma-separated values where the first descriptor name is used when the OID is mapped, and subsequent values act as aliases for parsing.

Syntax: Config("XMLRDNDescriptorName[OID]=PrimaryName,Alias1,Alias2");

Where:

OID: The Object Identifier from the certificate's IssuerRDN or SubjectRDN that you want to map.

PrimaryName: The main descriptor name used in the XML signature when the OID is encountered.

Alias1, Alias2, ...: Optional alternative names recognized during parsing.

Usage Examples:

Map OID 2.5.4.5 to SERIALNUMBER: Config("XMLRDNDescriptorName[2.5.4.5]=SERIALNUMBER");

Map OID 1.2.840.113549.1.9.1 to E, with aliases EMAIL and EMAILADDRESS: Config("XMLRDNDescriptorName[1.2.840.113549.1.9.1]=E,EMAIL,EMAILADDRESS");

XMLRDNDescriptorPriority[OID]:   Specifies the priority of descriptor names associated with a specific OID.

This property specifies the priority of descriptor names associated with a specific OID that allows to reorder descriptors in the ds:IssuerRDN and ds:SubjectRDN elements during signing.

XMLRDNDescriptorReverseOrder:   Specifies whether to reverse the order of descriptors in RDN.

Specifies whether to reverse the order of descriptors in the ds:IssuerRDN and ds:SubjectRDN elements during XML signing. By default, this property is set to true (as specified in RFC 2253, 2.1).

XMLRDNDescriptorSeparator:   Specifies the separator used between descriptors in RDN.

Specifies the separator used between descriptors in the ds:IssuerRDN and ds:SubjectRDN elements during XML signing. By default, this property is set to ", " value.

Trappable Errors (KMIPClient Component)

KMIPClient Errors

1048577   Invalid parameter (SB_ERROR_INVALID_PARAMETER)
1048578   Invalid configuration (SB_ERROR_INVALID_SETUP)
1048579   Invalid state (SB_ERROR_INVALID_STATE)
1048580   Invalid value (SB_ERROR_INVALID_VALUE)
1048581   Private key not found (SB_ERROR_NO_PRIVATE_KEY)
1048582   Cancelled by the user (SB_ERROR_CANCELLED_BY_USER)
1048583   The file was not found (SB_ERROR_NO_SUCH_FILE)
1048584   Unsupported feature or operation (SB_ERROR_UNSUPPORTED_FEATURE)
1048585   General error (SB_ERROR_GENERAL_ERROR)
20971521   KMIP request failed (SB_ERROR_KMIP_REQUEST_FAILED)
20971522   The input file does not exist (SB_ERROR_KMIP_INPUTFILE_NOT_EXISTS)
20971523   Unsupported key algorithm (SB_ERROR_KMIP_UNSUPPORTED_KEY_ALGORITHM)
20971524   Invalid key (SB_ERROR_KMIP_INVALID_KEY)