AS2Sender Class

Properties   Methods   Events   Config Settings   Errors  

The AS2Sender class implements an AS2 / EDI-INT client.

Syntax

AS2Sender

Remarks

The AS2Sender component may be used to send EDI or other messages over HTTP/S, using the AS2 protocol. It may also be used to verify synchronous or asynchronous server responses.

A typical AS2 transaction is as follows:

(1) The sender sends an EDI document to the receiver using HTTP or HTTPS. Typically the document will be signed and encrypted (particularly if SSL is not used). A signed receipt will also be requested.

(2) The receiver decrypts the message and verifies the signature.

(3) The receiver sends a signed receipt back to the client. The signature is over the hash of an MDN, which contains a hash of the received message.

When sending an EDI message, the client should specify, at a minimum, AS2From and AS2To, URL, and EDIData. The Post method should then be invoked.

To secure the EDI transmission, the message may be signed and/or encrypted by setting the appropriate certificates. By default, the class will apply message security if the appropriate certificates are specified. To sign the data, set SigningCert. To encrypt, set RecipientCerts. If the recipient uses different certificates for signing and encryption it will also be necessary to set ReceiptSignerCert.

SSL will also be used if the scheme in URL is "https". If your trading partner is using a self-signed certificate, it will be necessary to set SSLAcceptServerCert or trap the SSLServerAuthentication event to accept the certificate.

The message may also be compressed by setting CompressionFormat.

To request a receipt, or Message Disposition Notification (MDN), simply set the MDNTo property. The MDNOptions property may be used to customize the request. By default, the class will request a signed MDN over an SHA1 hash.

The class supports both synchronous and asynchronous MDN receipt delivery. By default, the class requests synchronous MDN receipt delivery, and the MDN will be returned in the HTTP reply. To request asynchronous MDN delivery, set the MDNDeliveryOption to the URL where MDN's are to be delivered.

The HTTP reply will automatically be processed by the class. If an MDN was requested, Post will validate the MDN and (if signed) establish non-repudiation of receipt. Any errors or warnings will cause the class to throw an exception.

In either case, after the EDI transaction is processed successfully, the MDNReceipt will be populated with the appropriate values.

Validating Asynchronous MDNs

The class may also be used to process and verify asynchronous MDNs. To do this, you should invoke ReadAsyncReceipt. This will read the receipt from the current HTTP context (or from MDNReceipt, if set manually), and allow you to determine your trading partner's identity and the message ID. You should then set ReceiptSignerCert and OriginalContentMIC, and finally invoke VerifyReceipt.

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

AS2FromThe AS2 Identifier of the sending system.
AS2ToThe AS2 Identifier of the receiving system.
AS2VersionThe version of AS2 being used.
AsyncMDNInfoDirPath to a directory to store data used in verifying AsyncMDNs.
AttachmentsCollection of files attached to the current message.
CEMDetailsA collection of Certificate Exchange Messaging (CEM) details.
CompressionFormatThe compression format (if any) to use.
CookiesA collection of cookies.
EDIDataThe EDI or other data to be sent.
EncryptionAlgorithmThe algorithm used to encrypt the EDI data.
EtagThe Etag of the file being sent.
FirewallA set of properties related to firewall access.
FromThe email address of the HTTP agent (optional).
LocalHostThe name of the local host or user-assigned IP interface through which connections are initiated or accepted.
LogDirectoryThe path to a directory for logging.
LogFileThe log file written.
MDNDeliveryOptionA URL indicating how the receipt is to be delivered.
MDNOptionsUsed to indicate the options requested for the MDN receipt.
MDNReceiptThe MDN receipt returned from the server.
MDNToUsed to indicate that a message disposition notification is requested.
MessageIdThe Id of the message.
OriginalContentMICThe Message Integrity Check(s) (one-way hash) of the outgoing message.
ProxyA set of properties related to proxy access.
ReceiptSignerCertThe public key certificate for the MDN receipt signature.
RecipientCertsThe public key certificates of the recipients for this message.
RestartDirectoryThe directory to log cached files when using AS2 restart functionality.
RolloverSigningCertContains the certificate to use when signing messages.
SignatureAlgorithmSignature algorithm to be used in outgoing messages.
SigningCertContains the certificate to use when signing messages.
SSLAcceptServerCertInstructs the class to unconditionally accept the server certificate that matches the supplied certificate.
SSLCertThe certificate to be used during Secure Sockets Layer (SSL) negotiation.
SSLProviderThe Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.
SSLServerCertThe server certificate for the last established connection.
SubjectThe subject of the message.
TimeoutThe timeout for the class.
URLThe URL to which the request is made.
UseOAEPThis property specifies whether or not to use Optimal Asymmetric Encryption Padding (OAEP).
UsePSSThis property specifies whether or not RSA-PSS will be used during signing and verification.
UserAgentInformation about the user agent.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

ConfigSets or retrieves a configuration setting.
DoEventsThis method processes events from the internal message queue.
InterruptThis method interrupts the current method.
PostPost data to the AS2 server, and check the receipt.
ReadAsyncReceiptReads an asynchronous MDN receipt from the current HTTP session.
ResetResets the state of the control.
RestartRestart sending of the file specified by the Etag property.
SendCEMRequestSends a Certificate Exchange Messaging (CEM) request.
SendCEMResponseSends a Certificate Exchange Messaging (CEM) response.
SetRequestHeaderAllows the user to set or add arbitrary HTTP request headers.
SetTPInfoA convenient way to set AS2 communication parameters using XML strings.
VerifyReceiptVerifies an asynchronous MDN receipt.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

ConnectedFired immediately after a connection completes (or fails).
DisconnectedFired when a connection is closed.
EndTransferFired when a document finishes transferring.
ErrorFired when information is available about errors during data delivery.
HeaderFired every time a header line comes in.
LogFired with log information while processing a message.
SetCookieFired for every cookie set by the server.
SSLServerAuthenticationFired after the server presents its certificate to the client.
SSLStatusFired when secure connection progress messages are available.
StartTransferFired when a document starts transferring (after the headers).
TransferFired while a document transfers (delivers document).

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

AllowMDNWarningsWhether to fail on MDN warnings.
AuthorizationThe Authorization string to be sent to the server.
AuthSchemeThe authorization scheme to be used when server authorization is to be performed.
EncodeToTempDirWhether to use temporary files when creating messages.
IgnoreLoggingErrorsWhether to ignore errors that occur when writing to the log.
IncludeHeadersWhether headers are included when posting to a file.
LogDebugWhether to log debug data.
LogFilenameThe base name of the log file.
LogOptionsThe information to be written to log files.
MDNDispositionReturns the Disposition header of the MDN.
MessageHeadersReturns the headers of the message.
NormalizeMICWhether to normalize line endings before calculating the MIC.
OAEPMGF1HashAlgorithmThe MGF1 hash algorithm used when encrypting a key.
OAEPParamsThe hex encoded OAEP parameters to be used when encrypting a key.
OAEPRSAHashAlgorithmThe RSA hash algorithm used when encrypting a key.
PasswordA password if authentication is to be used.
PostToFileCreates the message on disk.
RequiredSignatureAlgorithmsSpecifies a list of acceptable signature algorithms.
UserA user name if authentication is to be used.
AcceptEncodingUsed to tell the server which types of content encodings the client supports.
AllowHTTPCompressionThis property enables HTTP compression for receiving data.
AllowHTTPFallbackWhether HTTP/2 connections are permitted to fallback to HTTP/1.1.
AppendWhether to append data to LocalFile.
AuthorizationThe Authorization string to be sent to the server.
BytesTransferredContains the number of bytes transferred in the response data.
ChunkSizeSpecifies the chunk size in bytes when using chunked encoding.
CompressHTTPRequestSet to true to compress the body of a PUT or POST request.
EncodeURLIf set to True the URL will be encoded by the class.
FollowRedirectsDetermines what happens when the server issues a redirect.
GetOn302RedirectIf set to True the class will perform a GET on the new location.
HTTP2HeadersWithoutIndexingHTTP2 headers that should not update the dynamic header table with incremental indexing.
HTTPVersionThe version of HTTP used by the class.
IfModifiedSinceA date determining the maximum age of the desired document.
KeepAliveDetermines whether the HTTP connection is closed after completion of the request.
KerberosSPNThe Service Principal Name for the Kerberos Domain Controller.
LogLevelThe level of detail that is logged.
MaxRedirectAttemptsLimits the number of redirects that are followed in a request.
NegotiatedHTTPVersionThe negotiated HTTP version.
OtherHeadersOther headers as determined by the user (optional).
ProxyAuthorizationThe authorization string to be sent to the proxy server.
ProxyAuthSchemeThe authorization scheme to be used for the proxy.
ProxyPasswordA password if authentication is to be used for the proxy.
ProxyPortPort for the proxy server (default 80).
ProxyServerName or IP address of a proxy server (optional).
ProxyUserA user name if authentication is to be used for the proxy.
SentHeadersThe full set of headers as sent by the client.
StatusCodeThe status code of the last response from the server.
StatusLineThe first line of the last response from the server.
TransferredDataThe contents of the last response from the server.
TransferredDataLimitThe maximum number of incoming bytes to be stored by the class.
TransferredHeadersThe full set of headers as received from the server.
TransferredRequestThe full request as sent by the client.
UseChunkedEncodingEnables or Disables HTTP chunked encoding for transfers.
UseIDNsWhether to encode hostnames to internationalized domain names.
UsePlatformHTTPClientWhether or not to use the platform HTTP client.
UseProxyAutoConfigURLWhether to use a Proxy auto-config file when attempting a connection.
UserAgentInformation about the user agent (browser).
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the class whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveRetryCountThe number of keep-alive packets to be sent before the remotehost is considered disconnected.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the class binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
OpenSSLCADirThe path to a directory containing CA certificates.
OpenSSLCAFileName of the file containing the list of CA's trusted by your application.
OpenSSLCipherListA string that controls the ciphers to be used by SSL.
OpenSSLPrngSeedDataThe data to seed the pseudo random number generator (PRNG).
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertFilePathsThe paths to CA certificate files on Unix/Linux.
SSLCACertsA newline separated list of CA certificates to be included when performing an SSL handshake.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLClientCACertsA newline separated list of CA certificates to use during SSL client certificate validation.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificates to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
CodePageThe system code page used for Unicode to Multibyte translations.
LicenseInfoInformation about the current license.
MaskSensitiveDataWhether sensitive data is masked in log messages.
ProcessIdleEventsWhether the class uses its internal event loop to process events when the main thread is idle.
SelectWaitMillisThe length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.
UseFIPSCompliantAPITells the class whether or not to use FIPS certified APIs.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

AS2From Property (AS2Sender Class)

The AS2 Identifier of the sending system.

Syntax

ANSI (Cross Platform)
char* GetAS2From();
int SetAS2From(const char* lpszAS2From); Unicode (Windows) LPWSTR GetAS2From();
INT SetAS2From(LPCWSTR lpszAS2From);
char* ipworksedi_as2sender_getas2from(void* lpObj);
int ipworksedi_as2sender_setas2from(void* lpObj, const char* lpszAS2From);
QString GetAS2From();
int SetAS2From(QString qsAS2From);

Default Value

""

Remarks

May be company name, DUNS number, or anything agreed on by trading partners.

Required.

Data Type

String

AS2To Property (AS2Sender Class)

The AS2 Identifier of the receiving system.

Syntax

ANSI (Cross Platform)
char* GetAS2To();
int SetAS2To(const char* lpszAS2To); Unicode (Windows) LPWSTR GetAS2To();
INT SetAS2To(LPCWSTR lpszAS2To);
char* ipworksedi_as2sender_getas2to(void* lpObj);
int ipworksedi_as2sender_setas2to(void* lpObj, const char* lpszAS2To);
QString GetAS2To();
int SetAS2To(QString qsAS2To);

Default Value

""

Remarks

May be company name, DUNS number, or anything agreed on by trading partners.

Required.

Data Type

String

AS2Version Property (AS2Sender Class)

The version of AS2 being used.

Syntax

ANSI (Cross Platform)
char* GetAS2Version();

Unicode (Windows)
LPWSTR GetAS2Version();
char* ipworksedi_as2sender_getas2version(void* lpObj);
QString GetAS2Version();

Default Value

"1.2"

Remarks

The version of AS2 being used.

This property is read-only.

Data Type

String

AsyncMDNInfoDir Property (AS2Sender Class)

Path to a directory to store data used in verifying AsyncMDNs.

Syntax

ANSI (Cross Platform)
char* GetAsyncMDNInfoDir();
int SetAsyncMDNInfoDir(const char* lpszAsyncMDNInfoDir); Unicode (Windows) LPWSTR GetAsyncMDNInfoDir();
INT SetAsyncMDNInfoDir(LPCWSTR lpszAsyncMDNInfoDir);
char* ipworksedi_as2sender_getasyncmdninfodir(void* lpObj);
int ipworksedi_as2sender_setasyncmdninfodir(void* lpObj, const char* lpszAsyncMDNInfoDir);
QString GetAsyncMDNInfoDir();
int SetAsyncMDNInfoDir(QString qsAsyncMDNInfoDir);

Default Value

""

Remarks

If Post is invoked after setting AsyncMDNInfoDir and an asynchronous MDN is requested, the class stores the data required to verify AsyncMDNs in a file in the specified directory. The name of the file is the MessageId of the outgoing message.

AsyncMDNInfoDir is also used while verifying asynchronous MDNs using VerifyReceipt. The properties required to process AsyncMDNs, namely OriginalContentMIC and MDNOptions, are automatically read from the file saved at the time of sending the original message.

Data Type

String

Attachments Property (AS2Sender Class)

Collection of files attached to the current message.

Syntax

IPWorksEDIList<IPWorksEDIEDIAttachment>* GetAttachments();
int SetAttachments(IPWorksEDIList<IPWorksEDIEDIAttachment>* val);
int ipworksedi_as2sender_getattachmentcount(void* lpObj);
int ipworksedi_as2sender_setattachmentcount(void* lpObj, int iAttachmentCount);
char* ipworksedi_as2sender_getattachmentcontenttype(void* lpObj, int attachmentindex);
int ipworksedi_as2sender_setattachmentcontenttype(void* lpObj, int attachmentindex, const char* lpszAttachmentContentType);
int ipworksedi_as2sender_getattachmentdata(void* lpObj, int attachmentindex, char** lpAttachmentData, int* lenAttachmentData);
int ipworksedi_as2sender_setattachmentdata(void* lpObj, int attachmentindex, const char* lpAttachmentData, int lenAttachmentData);
char* ipworksedi_as2sender_getattachmentfilename(void* lpObj, int attachmentindex);
int ipworksedi_as2sender_setattachmentfilename(void* lpObj, int attachmentindex, const char* lpszAttachmentFileName);
char* ipworksedi_as2sender_getattachmentheaders(void* lpObj, int attachmentindex);
int ipworksedi_as2sender_setattachmentheaders(void* lpObj, int attachmentindex, const char* lpszAttachmentHeaders);
char* ipworksedi_as2sender_getattachmentname(void* lpObj, int attachmentindex);
int ipworksedi_as2sender_setattachmentname(void* lpObj, int attachmentindex, const char* lpszAttachmentName);
int GetAttachmentCount();
int SetAttachmentCount(int iAttachmentCount); QString GetAttachmentContentType(int iAttachmentIndex);
int SetAttachmentContentType(int iAttachmentIndex, QString qsAttachmentContentType); QByteArray GetAttachmentData(int iAttachmentIndex);
int SetAttachmentData(int iAttachmentIndex, QByteArray qbaAttachmentData); QString GetAttachmentFileName(int iAttachmentIndex);
int SetAttachmentFileName(int iAttachmentIndex, QString qsAttachmentFileName); QString GetAttachmentHeaders(int iAttachmentIndex);
int SetAttachmentHeaders(int iAttachmentIndex, QString qsAttachmentHeaders); QString GetAttachmentName(int iAttachmentIndex);
int SetAttachmentName(int iAttachmentIndex, QString qsAttachmentName);

Remarks

When a call to Send is made, the class will attach the files referenced by each EDIAttachment in this collection to the EDIData.

This property is not available at design time.

Data Type

IPWorksEDIEDIAttachment

CEMDetails Property (AS2Sender Class)

A collection of Certificate Exchange Messaging (CEM) details.

Syntax

IPWorksEDIList<IPWorksEDICEMDetail>* GetCEMDetails();
int SetCEMDetails(IPWorksEDIList<IPWorksEDICEMDetail>* val);
int ipworksedi_as2sender_getcemcount(void* lpObj);
int ipworksedi_as2sender_setcemcount(void* lpObj, int iCEMCount);
int ipworksedi_as2sender_getcemaccepted(void* lpObj, int cemindex);
int ipworksedi_as2sender_setcemaccepted(void* lpObj, int cemindex, int bCEMAccepted);
char* ipworksedi_as2sender_getcemcertid(void* lpObj, int cemindex);
int ipworksedi_as2sender_setcemcertid(void* lpObj, int cemindex, const char* lpszCEMCertId);
char* ipworksedi_as2sender_getcemcertissuer(void* lpObj, int cemindex);
int ipworksedi_as2sender_setcemcertissuer(void* lpObj, int cemindex, const char* lpszCEMCertIssuer);
char* ipworksedi_as2sender_getcemcertserialnumber(void* lpObj, int cemindex);
int ipworksedi_as2sender_setcemcertserialnumber(void* lpObj, int cemindex, const char* lpszCEMCertSerialNumber);
int ipworksedi_as2sender_getcemcertstore(void* lpObj, int cemindex, char** lpCEMCertStore, int* lenCEMCertStore);
int ipworksedi_as2sender_setcemcertstore(void* lpObj, int cemindex, const char* lpCEMCertStore, int lenCEMCertStore);
char* ipworksedi_as2sender_getcemcertstorepassword(void* lpObj, int cemindex);
int ipworksedi_as2sender_setcemcertstorepassword(void* lpObj, int cemindex, const char* lpszCEMCertStorePassword);
int ipworksedi_as2sender_getcemcertstoretype(void* lpObj, int cemindex);
int ipworksedi_as2sender_setcemcertstoretype(void* lpObj, int cemindex, int iCEMCertStoreType);
char* ipworksedi_as2sender_getcemcertsubject(void* lpObj, int cemindex);
int ipworksedi_as2sender_setcemcertsubject(void* lpObj, int cemindex, const char* lpszCEMCertSubject);
int ipworksedi_as2sender_getcemcertusage(void* lpObj, int cemindex);
int ipworksedi_as2sender_setcemcertusage(void* lpObj, int cemindex, int iCEMCertUsage);
char* ipworksedi_as2sender_getcemrejectionreason(void* lpObj, int cemindex);
int ipworksedi_as2sender_setcemrejectionreason(void* lpObj, int cemindex, const char* lpszCEMRejectionReason);
char* ipworksedi_as2sender_getcemrespondbydate(void* lpObj, int cemindex);
int ipworksedi_as2sender_setcemrespondbydate(void* lpObj, int cemindex, const char* lpszCEMRespondByDate);
char* ipworksedi_as2sender_getcemresponseurl(void* lpObj, int cemindex);
int ipworksedi_as2sender_setcemresponseurl(void* lpObj, int cemindex, const char* lpszCEMResponseURL);
int GetCEMCount();
int SetCEMCount(int iCEMCount); bool GetCEMAccepted(int iCEMIndex);
int SetCEMAccepted(int iCEMIndex, bool bCEMAccepted); QString GetCEMCertId(int iCEMIndex);
int SetCEMCertId(int iCEMIndex, QString qsCEMCertId); QString GetCEMCertIssuer(int iCEMIndex);
int SetCEMCertIssuer(int iCEMIndex, QString qsCEMCertIssuer); QString GetCEMCertSerialNumber(int iCEMIndex);
int SetCEMCertSerialNumber(int iCEMIndex, QString qsCEMCertSerialNumber); QByteArray GetCEMCertStore(int iCEMIndex);
int SetCEMCertStore(int iCEMIndex, QByteArray qbaCEMCertStore); QString GetCEMCertStorePassword(int iCEMIndex);
int SetCEMCertStorePassword(int iCEMIndex, QString qsCEMCertStorePassword); int GetCEMCertStoreType(int iCEMIndex);
int SetCEMCertStoreType(int iCEMIndex, int iCEMCertStoreType); QString GetCEMCertSubject(int iCEMIndex);
int SetCEMCertSubject(int iCEMIndex, QString qsCEMCertSubject); int GetCEMCertUsage(int iCEMIndex);
int SetCEMCertUsage(int iCEMIndex, int iCEMCertUsage); QString GetCEMRejectionReason(int iCEMIndex);
int SetCEMRejectionReason(int iCEMIndex, QString qsCEMRejectionReason); QString GetCEMRespondByDate(int iCEMIndex);
int SetCEMRespondByDate(int iCEMIndex, QString qsCEMRespondByDate); QString GetCEMResponseURL(int iCEMIndex);
int SetCEMResponseURL(int iCEMIndex, QString qsCEMResponseURL);

Remarks

This collection holds Certificate Exchange Messaging (CEM) details. The details define the certificate, respond-by-date, and more.

When using AS2Sender see SendCEMResponse and SendCEMRequest for more information.

When using AS2Receiver see CEMRequest and CEMResponse for more information.

This property is not available at design time.

Data Type

IPWorksEDICEMDetail

CompressionFormat Property (AS2Sender Class)

The compression format (if any) to use.

Syntax

ANSI (Cross Platform)
int GetCompressionFormat();
int SetCompressionFormat(int iCompressionFormat); Unicode (Windows) INT GetCompressionFormat();
INT SetCompressionFormat(INT iCompressionFormat);

Possible Values

CF_NONE(0), 
CF_ZLIB(1)
int ipworksedi_as2sender_getcompressionformat(void* lpObj);
int ipworksedi_as2sender_setcompressionformat(void* lpObj, int iCompressionFormat);
int GetCompressionFormat();
int SetCompressionFormat(int iCompressionFormat);

Default Value

0

Remarks

By default, outgoing data will not be compressed. Setting this property will instruct the class to compress the outgoing data using the indicated format.

Compression is highly recommended for large messages, as it will reduce network bandwidth and processing time required.

The compression algorithm used is Zlib, as required by RFC 3274 and defined in RFCs 1950 and 1951.

Data Type

Integer

Cookies Property (AS2Sender Class)

A collection of cookies.

Syntax

int ipworksedi_as2sender_getcookiecount(void* lpObj);
int ipworksedi_as2sender_setcookiecount(void* lpObj, int iCookieCount);
char* ipworksedi_as2sender_getcookiedomain(void* lpObj, int cookieindex);
char* ipworksedi_as2sender_getcookieexpiration(void* lpObj, int cookieindex);
char* ipworksedi_as2sender_getcookiename(void* lpObj, int cookieindex);
int ipworksedi_as2sender_setcookiename(void* lpObj, int cookieindex, const char* lpszCookieName);
char* ipworksedi_as2sender_getcookiepath(void* lpObj, int cookieindex);
int ipworksedi_as2sender_getcookiesecure(void* lpObj, int cookieindex);
char* ipworksedi_as2sender_getcookievalue(void* lpObj, int cookieindex);
int ipworksedi_as2sender_setcookievalue(void* lpObj, int cookieindex, const char* lpszCookieValue);
int GetCookieCount();
int SetCookieCount(int iCookieCount); QString GetCookieDomain(int iCookieIndex); QString GetCookieExpiration(int iCookieIndex); QString GetCookieName(int iCookieIndex);
int SetCookieName(int iCookieIndex, QString qsCookieName); QString GetCookiePath(int iCookieIndex); bool GetCookieSecure(int iCookieIndex); QString GetCookieValue(int iCookieIndex);
int SetCookieValue(int iCookieIndex, QString qsCookieValue);

Remarks

This property contains a collection of cookies. To add cookies to outgoing HTTP requests, add cookies (of type HTTPCookie) to this collection.

To see cookies that are set by the server, use the SetCookie event, which displays the cookies and their properties as set by the server. Those cookies also are added to Cookies.

MaxHTTPCookies can be used to control the maximum number of cookies saved.

This property is not available at design time.

Data Type

IPWorksEDIHTTPCookie

EDIData Property (AS2Sender Class)

The EDI or other data to be sent.

Syntax

IPWorksEDIEDIData* GetEDIData();
int SetEDIData(IPWorksEDIEDIData* val);
int ipworksedi_as2sender_getedidata(void* lpObj, char** lpEDIData, int* lenEDIData);
int ipworksedi_as2sender_setedidata(void* lpObj, const char* lpEDIData, int lenEDIData);
char* ipworksedi_as2sender_geteditype(void* lpObj);
int ipworksedi_as2sender_seteditype(void* lpObj, const char* lpszEDIType);
char* ipworksedi_as2sender_getediname(void* lpObj);
int ipworksedi_as2sender_setediname(void* lpObj, const char* lpszEDIName);
char* ipworksedi_as2sender_getedifilename(void* lpObj);
int ipworksedi_as2sender_setedifilename(void* lpObj, const char* lpszEDIFileName);
QByteArray GetEDIData();
int SetEDIData(QByteArray qbaEDIData); QString GetEDIType();
int SetEDIType(QString qsEDIType); QString GetEDIName();
int SetEDIName(QString qsEDIName); QString GetEDIFileName();
int SetEDIFileName(QString qsEDIFileName);

Remarks

The EDI message to send.

This property is not available at design time.

Data Type

IPWorksEDIEDIData

EncryptionAlgorithm Property (AS2Sender Class)

The algorithm used to encrypt the EDI data.

Syntax

ANSI (Cross Platform)
char* GetEncryptionAlgorithm();
int SetEncryptionAlgorithm(const char* lpszEncryptionAlgorithm); Unicode (Windows) LPWSTR GetEncryptionAlgorithm();
INT SetEncryptionAlgorithm(LPCWSTR lpszEncryptionAlgorithm);
char* ipworksedi_as2sender_getencryptionalgorithm(void* lpObj);
int ipworksedi_as2sender_setencryptionalgorithm(void* lpObj, const char* lpszEncryptionAlgorithm);
QString GetEncryptionAlgorithm();
int SetEncryptionAlgorithm(QString qsEncryptionAlgorithm);

Default Value

"3DES"

Remarks

If RecipientCerts contains a valid certificate, the data will be encrypted using this certificate and the algorithm specified in EncryptionAlgorithm. If EncryptionAlgorithm is set to the empty string, the data will not be encrypted.

The class supports "3DES", or industry-standard 168-bit Triple-DES encryption.

The class supports "AES" encryption with a default keysize of 128 bits. You may also set "AESCBC192" or "AESCBC256" for 192- and 256-bit keysizes.

Possible values are:

  • 3DES (default)
  • DES
  • AESCBC128
  • AESCBC192
  • AESCBC256
  • AESGCM128
  • AESGCM192
  • AESGCM256

Data Type

String

Etag Property (AS2Sender Class)

The Etag of the file being sent.

Syntax

ANSI (Cross Platform)
char* GetEtag();
int SetEtag(const char* lpszEtag); Unicode (Windows) LPWSTR GetEtag();
INT SetEtag(LPCWSTR lpszEtag);
char* ipworksedi_as2sender_getetag(void* lpObj);
int ipworksedi_as2sender_setetag(void* lpObj, const char* lpszEtag);
QString GetEtag();
int SetEtag(QString qsEtag);

Default Value

""

Remarks

This specifies the Etag for the file. This value should be set to an empty string the first time a file is sent using the Restart command. The class will generate a unique Etag based on the processed contents of the file and set this property when sending begins.

If a file is interrupted, this value must be set when Restart is called to resume transfer of the already processed file.

Data Type

String

Firewall Property (AS2Sender Class)

A set of properties related to firewall access.

Syntax

IPWorksEDIFirewall* GetFirewall();
int SetFirewall(IPWorksEDIFirewall* val);
int ipworksedi_as2sender_getfirewallautodetect(void* lpObj);
int ipworksedi_as2sender_setfirewallautodetect(void* lpObj, int bFirewallAutoDetect);
int ipworksedi_as2sender_getfirewalltype(void* lpObj);
int ipworksedi_as2sender_setfirewalltype(void* lpObj, int iFirewallType);
char* ipworksedi_as2sender_getfirewallhost(void* lpObj);
int ipworksedi_as2sender_setfirewallhost(void* lpObj, const char* lpszFirewallHost);
char* ipworksedi_as2sender_getfirewallpassword(void* lpObj);
int ipworksedi_as2sender_setfirewallpassword(void* lpObj, const char* lpszFirewallPassword);
int ipworksedi_as2sender_getfirewallport(void* lpObj);
int ipworksedi_as2sender_setfirewallport(void* lpObj, int iFirewallPort);
char* ipworksedi_as2sender_getfirewalluser(void* lpObj);
int ipworksedi_as2sender_setfirewalluser(void* lpObj, const char* lpszFirewallUser);
bool GetFirewallAutoDetect();
int SetFirewallAutoDetect(bool bFirewallAutoDetect); int GetFirewallType();
int SetFirewallType(int iFirewallType); QString GetFirewallHost();
int SetFirewallHost(QString qsFirewallHost); QString GetFirewallPassword();
int SetFirewallPassword(QString qsFirewallPassword); int GetFirewallPort();
int SetFirewallPort(int iFirewallPort); QString GetFirewallUser();
int SetFirewallUser(QString qsFirewallUser);

Remarks

This is a Firewall-type property, which contains fields describing the firewall through which the class will attempt to connect.

Data Type

IPWorksEDIFirewall

From Property (AS2Sender Class)

The email address of the HTTP agent (optional).

Syntax

ANSI (Cross Platform)
char* GetFrom();
int SetFrom(const char* lpszFrom); Unicode (Windows) LPWSTR GetFrom();
INT SetFrom(LPCWSTR lpszFrom);
char* ipworksedi_as2sender_getfrom(void* lpObj);
int ipworksedi_as2sender_setfrom(void* lpObj, const char* lpszFrom);
QString GetFrom();
int SetFrom(QString qsFrom);

Default Value

""

Remarks

If the From property contains a non-empty string, an HTTP From: header is added to the request. This header generally gives the email address of the requester of the document.

This property is not available at design time.

Data Type

String

LocalHost Property (AS2Sender Class)

The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

ANSI (Cross Platform)
char* GetLocalHost();
int SetLocalHost(const char* lpszLocalHost); Unicode (Windows) LPWSTR GetLocalHost();
INT SetLocalHost(LPCWSTR lpszLocalHost);
char* ipworksedi_as2sender_getlocalhost(void* lpObj);
int ipworksedi_as2sender_setlocalhost(void* lpObj, const char* lpszLocalHost);
QString GetLocalHost();
int SetLocalHost(QString qsLocalHost);

Default Value

""

Remarks

This property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.

If the class is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

Note: LocalHost is not persistent. You must always set it in code, and never in the property window.

This property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.

If the class is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

Note: LocalHost is not persistent. You must always set it in code, and never in the property window.

Data Type

String

LogDirectory Property (AS2Sender Class)

The path to a directory for logging.

Syntax

ANSI (Cross Platform)
char* GetLogDirectory();
int SetLogDirectory(const char* lpszLogDirectory); Unicode (Windows) LPWSTR GetLogDirectory();
INT SetLogDirectory(LPCWSTR lpszLogDirectory);
char* ipworksedi_as2sender_getlogdirectory(void* lpObj);
int ipworksedi_as2sender_setlogdirectory(void* lpObj, const char* lpszLogDirectory);
QString GetLogDirectory();
int SetLogDirectory(QString qsLogDirectory);

Default Value

""

Remarks

Setting LogDirectory will instruct the component to log the details of each transmission to unique files in the specified directory. For each request processed, the class will log the complete text of the outgoing request and the incoming response.

The class will write multiple log file for each transmission, with separate extensions for each type of data:

Status (.log)Contains information on applied security options and pass/fail status of transmission
Request (.req)Contains the outgoing request, after security options have been applied
Payload (.dat)Contains log of unsecured payload prior to transmission
MDN Receipt (.mdn)For synchronous requests or asynchronous receipts verified with VerifyReceipt, contains MDN receipt.
Error (.err)This is only written in an error is encountered, containing the error.

One or more of these logs may be disabled by setting the LogOptions configuration setting.

LogDirectory supports several macros that can be used to specify a unique directory path. If the path specified does not already exist, the class will attempt to create the directory. The following macros are supported:

%MessageID%The MessageID of the AS2 transmission, after it is generated.
%AS2From%The AS2-From field in the transmission
%OriginalMessageID%In MDN Receipts, the MessageID of the transmission that the receipt is for. You can use this to pair asynchronous MDN receipt logs with their transmissions
%date:format%%Format% is a platform-specific date/time formatting string. For example:

The filenames will be chosen automatically by the class. Each filename will be the system time, in the format YYYY-MM-DD-HH-MM-SS-MMMM, with extensions "-2", "-3", used in case files of those names already exist. After each transaction is processed LogFile will contain the name of the files just written, minus the extension.

If logs cannot be written an exception will be thrown.

Data Type

String

LogFile Property (AS2Sender Class)

The log file written.

Syntax

ANSI (Cross Platform)
char* GetLogFile();

Unicode (Windows)
LPWSTR GetLogFile();
char* ipworksedi_as2sender_getlogfile(void* lpObj);
QString GetLogFile();

Default Value

""

Remarks

If LogDirectory is specified a log file will be written in the specified directory and LogFile will contain the full path and name of the files written, minus the extension.

The class will write multiple log files for each transmission, with separate extensions for each type of data:

Status (.log)Contains information on applied security options and pass/fail status of transmission
Request (.req)Contains the outgoing request, after security options have been applied
Payload (.dat)Contains the unsecured payload data prior to transmission
MDN Receipt (.mdn)For synchronous requests or asynchronous receipts verified with VerifyReceipt. This contains the MDN receipt.
Error (.err)This is only written if an error is encountered and will contain the error.

This property is read-only.

Data Type

String

MDNDeliveryOption Property (AS2Sender Class)

A URL indicating how the receipt is to be delivered.

Syntax

ANSI (Cross Platform)
char* GetMDNDeliveryOption();
int SetMDNDeliveryOption(const char* lpszMDNDeliveryOption); Unicode (Windows) LPWSTR GetMDNDeliveryOption();
INT SetMDNDeliveryOption(LPCWSTR lpszMDNDeliveryOption);
char* ipworksedi_as2sender_getmdndeliveryoption(void* lpObj);
int ipworksedi_as2sender_setmdndeliveryoption(void* lpObj, const char* lpszMDNDeliveryOption);
QString GetMDNDeliveryOption();
int SetMDNDeliveryOption(QString qsMDNDeliveryOption);

Default Value

""

Remarks

The default mode of operation is for the receipt to be returned synchronously within the HTTP reply. By specifying a valid URL, the user may request asynchronous delivery instead. The URL indicates the destination for the reply, and may use any appropriate protocol, such as "http", "https", or "mailto".

If MDNDeliveryOption is set to an empty string, the receipt will be returned synchronously, and will be processed automatically by the class. Clients requesting asynchronous delivery should provide their own processing for reading receipts.

Data Type

String

MDNOptions Property (AS2Sender Class)

Used to indicate the options requested for the MDN receipt.

Syntax

ANSI (Cross Platform)
char* GetMDNOptions();
int SetMDNOptions(const char* lpszMDNOptions); Unicode (Windows) LPWSTR GetMDNOptions();
INT SetMDNOptions(LPCWSTR lpszMDNOptions);
char* ipworksedi_as2sender_getmdnoptions(void* lpObj);
int ipworksedi_as2sender_setmdnoptions(void* lpObj, const char* lpszMDNOptions);
QString GetMDNOptions();
int SetMDNOptions(QString qsMDNOptions);

Default Value

"signed-receipt-protocol=optional, pkcs7-signature; signed-receipt-micalg=optional, sha-256"

Remarks

By default, the class will request that the MDN be signed with a PKCS#7 signature over a SHA-256 hash, which is the industry standard.

Set MDNOptions to an empty string to request an unsigned receipt.

This property will automatically be updated when SignatureAlgorithm is set. Normally you will not need to set this property, however you can set a value here to override the automatically generated value.

The string format is that of the Disposition-Notification-Options HTTP header, as specified in RFC 3335. As a form of shorthand, you may set this property to "sha1", "sha-256", or "md5" to request the indicated hash algorithm.

Data Type

String

MDNReceipt Property (AS2Sender Class)

The MDN receipt returned from the server.

Syntax

IPWorksEDIMDNReceipt* GetMDNReceipt();
int SetMDNReceipt(IPWorksEDIMDNReceipt* val);
int ipworksedi_as2sender_getmdnreceiptcontent(void* lpObj, char** lpMDNReceiptContent, int* lenMDNReceiptContent);
int ipworksedi_as2sender_setmdnreceiptcontent(void* lpObj, const char* lpMDNReceiptContent, int lenMDNReceiptContent);
int ipworksedi_as2sender_getmdnreceiptheadercount(void* lpObj);
char* ipworksedi_as2sender_getmdnreceiptheaderfield(void* lpObj);
int ipworksedi_as2sender_getmdnreceiptheaderindex(void* lpObj);
int ipworksedi_as2sender_setmdnreceiptheaderindex(void* lpObj, int iMDNReceiptHeaderIndex);
char* ipworksedi_as2sender_getmdnreceiptheaders(void* lpObj);
int ipworksedi_as2sender_setmdnreceiptheaders(void* lpObj, const char* lpszMDNReceiptHeaders);
char* ipworksedi_as2sender_getmdnreceiptheadervalue(void* lpObj);
char* ipworksedi_as2sender_getmdnreceiptmdn(void* lpObj);
char* ipworksedi_as2sender_getmdnreceiptmessage(void* lpObj);
char* ipworksedi_as2sender_getmdnreceiptmicvalue(void* lpObj);
char* ipworksedi_as2sender_getmdnreceiptsigningprotocol(void* lpObj);
QByteArray GetMDNReceiptContent();
int SetMDNReceiptContent(QByteArray qbaMDNReceiptContent); int GetMDNReceiptHeaderCount(); QString GetMDNReceiptHeaderField(); int GetMDNReceiptHeaderIndex();
int SetMDNReceiptHeaderIndex(int iMDNReceiptHeaderIndex); QString GetMDNReceiptHeaders();
int SetMDNReceiptHeaders(QString qsMDNReceiptHeaders); QString GetMDNReceiptHeaderValue(); QString GetMDNReceiptMDN(); QString GetMDNReceiptMessage(); QString GetMDNReceiptMICValue(); QString GetMDNReceiptSigningProtocol();

Remarks

This property will contain an instance of MDNReceipt with the complete MDN receipt returned from the AS2 receiver. The receipt will be a signed or unsigned multipart/report in MIME format. For synchronous MDN requests, this property is populated automatically after the call to Post. If an asynchronous MDN is sent over HTTP, it may be read from the HTTP context by calling ReadAsyncReceipt, or it may be set manually.

When MDNReceipt is set to a valid MDN receipt, the originator of the receipt will be stored in AS2To, the intended recipient (presumably your system) will be stored in AS2From, and the original message ID will be stored in MessageId.

If you are processing a MDN receipt asynchronously, you can use the values to look up the original message and validate the receipt. Set the OriginalContentMIC, MDNOptions, and ReceiptSignerCert to the values originally computed when the message was sent (if you are requesting async MDNs you must save this information externally.). You can then validate the asynchronous receipt by invoking VerifyReceipt.

Alternatively, AsyncMDNInfoDir may be set in place of OriginalContentMIC, MessageId, and MDNOptions (provided it was set to the same value when the message was sent). If AsyncMDNInfoDir was specified when the message was sent, the class would have saved OriginalContentMIC and MDNOptions to a file identified by the MessageId for the transmission. These properties are read from the file matching the MessageId in the MDNReceipt automatically if AsyncMDNInfoDir is specified.

Note: MDNReceipt must be populated prior to calling VerifyReceipt.

Data Type

IPWorksEDIMDNReceipt

MDNTo Property (AS2Sender Class)

Used to indicate that a message disposition notification is requested.

Syntax

ANSI (Cross Platform)
char* GetMDNTo();
int SetMDNTo(const char* lpszMDNTo); Unicode (Windows) LPWSTR GetMDNTo();
INT SetMDNTo(LPCWSTR lpszMDNTo);
char* ipworksedi_as2sender_getmdnto(void* lpObj);
int ipworksedi_as2sender_setmdnto(void* lpObj, const char* lpszMDNTo);
QString GetMDNTo();
int SetMDNTo(QString qsMDNTo);

Default Value

""

Remarks

If this property is set, a Disposition-Notification-To header will be added to the request, and an MDN will be requested. The value may be an email address, URL, etc., and while its presence is used to determine whether or not an MDN is sent, the value itself will typically be ignored by the server.

By default, the class will request a PKCS#7 signature and synchronous delivery. You may set MDNDeliveryOption to request an asynchronous MDN, and you may set MDNOptions to request a different type of signature, or no signature at all.

Data Type

String

MessageId Property (AS2Sender Class)

The Id of the message.

Syntax

ANSI (Cross Platform)
char* GetMessageId();
int SetMessageId(const char* lpszMessageId); Unicode (Windows) LPWSTR GetMessageId();
INT SetMessageId(LPCWSTR lpszMessageId);
char* ipworksedi_as2sender_getmessageid(void* lpObj);
int ipworksedi_as2sender_setmessageid(void* lpObj, const char* lpszMessageId);
QString GetMessageId();
int SetMessageId(QString qsMessageId);

Default Value

""

Remarks

The Id format is as in RFC 2822: id-left@id-right .

A unique Id will automatically be generated on startup. Sending a message will reset id-left if the MessageId has been used in the previous message.

If you set MessageId to a string of the form "@(id-right)" a unique id-left will be generated. If you set MessageId to an empty string, a new MessageId will be generated with the same id-right.

After an MDNReceipt is returned or set, MessageId will contain the Original-Message-ID found in the MDN Receipt.

This property is not available at design time.

Data Type

String

OriginalContentMIC Property (AS2Sender Class)

The Message Integrity Check(s) (one-way hash) of the outgoing message.

Syntax

ANSI (Cross Platform)
char* GetOriginalContentMIC();
int SetOriginalContentMIC(const char* lpszOriginalContentMIC); Unicode (Windows) LPWSTR GetOriginalContentMIC();
INT SetOriginalContentMIC(LPCWSTR lpszOriginalContentMIC);
char* ipworksedi_as2sender_getoriginalcontentmic(void* lpObj);
int ipworksedi_as2sender_setoriginalcontentmic(void* lpObj, const char* lpszOriginalContentMIC);
QString GetOriginalContentMIC();
int SetOriginalContentMIC(QString qsOriginalContentMIC);

Default Value

""

Remarks

A MIC will be calculated over the outgoing message using the same algorithm in the SignatureAlgorithm configuration used to sign the message. The property will be set when Post (in AS3, Send) is invoked, and the MIC will automatically be checked against the Original-Content-MIC in the MDN for synchronous MDNs.

The format is in RFC 3335, i.e. "w7AguNJEmhF/qIjJw6LnnA==, md5", with a newline at the end.

If you are requesting an asynchronous MDN, you must save this value externally so that it can be loaded when the MDN is received (you may also use AsyncMDNInfoDir).

Data Type

String

Proxy Property (AS2Sender Class)

A set of properties related to proxy access.

Syntax

IPWorksEDIProxy* GetProxy();
int SetProxy(IPWorksEDIProxy* val);
int ipworksedi_as2sender_getproxyauthscheme(void* lpObj);
int ipworksedi_as2sender_setproxyauthscheme(void* lpObj, int iProxyAuthScheme);
int ipworksedi_as2sender_getproxyautodetect(void* lpObj);
int ipworksedi_as2sender_setproxyautodetect(void* lpObj, int bProxyAutoDetect);
char* ipworksedi_as2sender_getproxypassword(void* lpObj);
int ipworksedi_as2sender_setproxypassword(void* lpObj, const char* lpszProxyPassword);
int ipworksedi_as2sender_getproxyport(void* lpObj);
int ipworksedi_as2sender_setproxyport(void* lpObj, int iProxyPort);
char* ipworksedi_as2sender_getproxyserver(void* lpObj);
int ipworksedi_as2sender_setproxyserver(void* lpObj, const char* lpszProxyServer);
int ipworksedi_as2sender_getproxyssl(void* lpObj);
int ipworksedi_as2sender_setproxyssl(void* lpObj, int iProxySSL);
char* ipworksedi_as2sender_getproxyuser(void* lpObj);
int ipworksedi_as2sender_setproxyuser(void* lpObj, const char* lpszProxyUser);
int GetProxyAuthScheme();
int SetProxyAuthScheme(int iProxyAuthScheme); bool GetProxyAutoDetect();
int SetProxyAutoDetect(bool bProxyAutoDetect); QString GetProxyPassword();
int SetProxyPassword(QString qsProxyPassword); int GetProxyPort();
int SetProxyPort(int iProxyPort); QString GetProxyServer();
int SetProxyServer(QString qsProxyServer); int GetProxySSL();
int SetProxySSL(int iProxySSL); QString GetProxyUser();
int SetProxyUser(QString qsProxyUser);

Remarks

This property contains fields describing the proxy through which the class will attempt to connect.

Data Type

IPWorksEDIProxy

ReceiptSignerCert Property (AS2Sender Class)

The public key certificate for the MDN receipt signature.

Syntax

IPWorksEDICertificate* GetReceiptSignerCert();
int SetReceiptSignerCert(IPWorksEDICertificate* val);
int ipworksedi_as2sender_getreceiptsignercertstore(void* lpObj, char** lpReceiptSignerCertStore, int* lenReceiptSignerCertStore);
int ipworksedi_as2sender_setreceiptsignercertstore(void* lpObj, const char* lpReceiptSignerCertStore, int lenReceiptSignerCertStore);
char* ipworksedi_as2sender_getreceiptsignercertstorepassword(void* lpObj);
int ipworksedi_as2sender_setreceiptsignercertstorepassword(void* lpObj, const char* lpszReceiptSignerCertStorePassword);
int ipworksedi_as2sender_getreceiptsignercertstoretype(void* lpObj);
int ipworksedi_as2sender_setreceiptsignercertstoretype(void* lpObj, int iReceiptSignerCertStoreType);
char* ipworksedi_as2sender_getreceiptsignercertsubject(void* lpObj);
int ipworksedi_as2sender_setreceiptsignercertsubject(void* lpObj, const char* lpszReceiptSignerCertSubject);
int ipworksedi_as2sender_getreceiptsignercertencoded(void* lpObj, char** lpReceiptSignerCertEncoded, int* lenReceiptSignerCertEncoded);
int ipworksedi_as2sender_setreceiptsignercertencoded(void* lpObj, const char* lpReceiptSignerCertEncoded, int lenReceiptSignerCertEncoded);
QByteArray GetReceiptSignerCertStore();
int SetReceiptSignerCertStore(QByteArray qbaReceiptSignerCertStore); QString GetReceiptSignerCertStorePassword();
int SetReceiptSignerCertStorePassword(QString qsReceiptSignerCertStorePassword); int GetReceiptSignerCertStoreType();
int SetReceiptSignerCertStoreType(int iReceiptSignerCertStoreType); QString GetReceiptSignerCertSubject();
int SetReceiptSignerCertSubject(QString qsReceiptSignerCertSubject); QByteArray GetReceiptSignerCertEncoded();
int SetReceiptSignerCertEncoded(QByteArray qbaReceiptSignerCertEncoded);

Remarks

Ordinarily, if your trading partner uses the same certificate for both signing and encryption, the certificate specified in RecipientCert is used for both encryption and verifying the receipt signature.

If your trading partner uses different certificates for signing and encryption, you must set this property to the public key for you partner's signing certificate before invoking Post.

After invoking Post or VerifyReceipt, this will contain the certificate used to sign the receipt, if the receipt is signed.

If set, this property should be a public key instance of Certificate.

Data Type

IPWorksEDICertificate

RecipientCerts Property (AS2Sender Class)

The public key certificates of the recipients for this message.

Syntax

IPWorksEDIList<IPWorksEDICertificate>* GetRecipientCerts();
int SetRecipientCerts(IPWorksEDIList<IPWorksEDICertificate>* val);
int ipworksedi_as2sender_getrecipientcertcount(void* lpObj);
int ipworksedi_as2sender_setrecipientcertcount(void* lpObj, int iRecipientCertCount);
int ipworksedi_as2sender_getrecipientcertstore(void* lpObj, int recipientcertindex, char** lpRecipientCertStore, int* lenRecipientCertStore);
int ipworksedi_as2sender_setrecipientcertstore(void* lpObj, int recipientcertindex, const char* lpRecipientCertStore, int lenRecipientCertStore);
char* ipworksedi_as2sender_getrecipientcertstorepassword(void* lpObj, int recipientcertindex);
int ipworksedi_as2sender_setrecipientcertstorepassword(void* lpObj, int recipientcertindex, const char* lpszRecipientCertStorePassword);
int ipworksedi_as2sender_getrecipientcertstoretype(void* lpObj, int recipientcertindex);
int ipworksedi_as2sender_setrecipientcertstoretype(void* lpObj, int recipientcertindex, int iRecipientCertStoreType);
char* ipworksedi_as2sender_getrecipientcertsubject(void* lpObj, int recipientcertindex);
int ipworksedi_as2sender_setrecipientcertsubject(void* lpObj, int recipientcertindex, const char* lpszRecipientCertSubject);
int ipworksedi_as2sender_getrecipientcertencoded(void* lpObj, int recipientcertindex, char** lpRecipientCertEncoded, int* lenRecipientCertEncoded);
int ipworksedi_as2sender_setrecipientcertencoded(void* lpObj, int recipientcertindex, const char* lpRecipientCertEncoded, int lenRecipientCertEncoded);
int GetRecipientCertCount();
int SetRecipientCertCount(int iRecipientCertCount); QByteArray GetRecipientCertStore(int iRecipientCertIndex);
int SetRecipientCertStore(int iRecipientCertIndex, QByteArray qbaRecipientCertStore); QString GetRecipientCertStorePassword(int iRecipientCertIndex);
int SetRecipientCertStorePassword(int iRecipientCertIndex, QString qsRecipientCertStorePassword); int GetRecipientCertStoreType(int iRecipientCertIndex);
int SetRecipientCertStoreType(int iRecipientCertIndex, int iRecipientCertStoreType); QString GetRecipientCertSubject(int iRecipientCertIndex);
int SetRecipientCertSubject(int iRecipientCertIndex, QString qsRecipientCertSubject); QByteArray GetRecipientCertEncoded(int iRecipientCertIndex);
int SetRecipientCertEncoded(int iRecipientCertIndex, QByteArray qbaRecipientCertEncoded);

Remarks

The encryption certificates of the recipients. If this property is specified, the message content will be encrypted using the algorithm given by EncryptionAlgorithm.

This property will also be used to verify signed receipts if ReceiptSignerCert is not specified. In this case, it will use the first certificate found in the collection, if one exists. If your trading partner uses different certificates for signing and encryption, you should set RecipientCerts to the encryption certificate(s) and ReceiptSignerCert to the signing certificate.

If the class is unable to verify a signature make sure RecipientCerts are set appropriately.

If set, this property should could contain public key instances of Certificate.

This property is not available at design time.

Data Type

IPWorksEDICertificate

RestartDirectory Property (AS2Sender Class)

The directory to log cached files when using AS2 restart functionality.

Syntax

ANSI (Cross Platform)
char* GetRestartDirectory();
int SetRestartDirectory(const char* lpszRestartDirectory); Unicode (Windows) LPWSTR GetRestartDirectory();
INT SetRestartDirectory(LPCWSTR lpszRestartDirectory);
char* ipworksedi_as2sender_getrestartdirectory(void* lpObj);
int ipworksedi_as2sender_setrestartdirectory(void* lpObj, const char* lpszRestartDirectory);
QString GetRestartDirectory();
int SetRestartDirectory(QString qsRestartDirectory);

Default Value

""

Remarks

If this property is set, the class will cache all data to the RestartDirectory. Thus, when sending a file is interrupted, the class can restart the transmission of the file starting where it was interrupted.

To use this functionality, simply set the RestartDirectory and call Restart.

When using restart functionality, the data is completely processed to the RestartDirectory before sending begins.

NOTE: This directory will not automatically be cleaned up.

Data Type

String

RolloverSigningCert Property (AS2Sender Class)

Contains the certificate to use when signing messages.

Syntax

IPWorksEDICertificate* GetRolloverSigningCert();
int SetRolloverSigningCert(IPWorksEDICertificate* val);
int ipworksedi_as2sender_getrolloversigningcertstore(void* lpObj, char** lpRolloverSigningCertStore, int* lenRolloverSigningCertStore);
int ipworksedi_as2sender_setrolloversigningcertstore(void* lpObj, const char* lpRolloverSigningCertStore, int lenRolloverSigningCertStore);
char* ipworksedi_as2sender_getrolloversigningcertstorepassword(void* lpObj);
int ipworksedi_as2sender_setrolloversigningcertstorepassword(void* lpObj, const char* lpszRolloverSigningCertStorePassword);
int ipworksedi_as2sender_getrolloversigningcertstoretype(void* lpObj);
int ipworksedi_as2sender_setrolloversigningcertstoretype(void* lpObj, int iRolloverSigningCertStoreType);
char* ipworksedi_as2sender_getrolloversigningcertsubject(void* lpObj);
int ipworksedi_as2sender_setrolloversigningcertsubject(void* lpObj, const char* lpszRolloverSigningCertSubject);
int ipworksedi_as2sender_getrolloversigningcertencoded(void* lpObj, char** lpRolloverSigningCertEncoded, int* lenRolloverSigningCertEncoded);
int ipworksedi_as2sender_setrolloversigningcertencoded(void* lpObj, const char* lpRolloverSigningCertEncoded, int lenRolloverSigningCertEncoded);
QByteArray GetRolloverSigningCertStore();
int SetRolloverSigningCertStore(QByteArray qbaRolloverSigningCertStore); QString GetRolloverSigningCertStorePassword();
int SetRolloverSigningCertStorePassword(QString qsRolloverSigningCertStorePassword); int GetRolloverSigningCertStoreType();
int SetRolloverSigningCertStoreType(int iRolloverSigningCertStoreType); QString GetRolloverSigningCertSubject();
int SetRolloverSigningCertSubject(QString qsRolloverSigningCertSubject); QByteArray GetRolloverSigningCertEncoded();
int SetRolloverSigningCertEncoded(QByteArray qbaRolloverSigningCertEncoded);

Remarks

This is your rollover signing certificate. This may be used to specify an additional signing certificate during a period of transition between private certificates in the application.

If this property is specified, the message content will be signed using both SigningCert and RolloverSigningCert. The recipient will be able to verify the signature with either corresponding public certificate.

If set, this property should be a private key instance of Certificate.

Data Type

IPWorksEDICertificate

SignatureAlgorithm Property (AS2Sender Class)

Signature algorithm to be used in outgoing messages.

Syntax

ANSI (Cross Platform)
char* GetSignatureAlgorithm();
int SetSignatureAlgorithm(const char* lpszSignatureAlgorithm); Unicode (Windows) LPWSTR GetSignatureAlgorithm();
INT SetSignatureAlgorithm(LPCWSTR lpszSignatureAlgorithm);
char* ipworksedi_as2sender_getsignaturealgorithm(void* lpObj);
int ipworksedi_as2sender_setsignaturealgorithm(void* lpObj, const char* lpszSignatureAlgorithm);
QString GetSignatureAlgorithm();
int SetSignatureAlgorithm(QString qsSignatureAlgorithm);

Default Value

"sha-256"

Remarks

Signature Algorithm can be set to indicate the preferred signing algorithm. Possible values are:

  • sha1
  • md5
  • sha-256 (or sha256) (default)
  • sha-384 (or sha384)
  • sha-512 (or sha512)
  • sha-224 (or sha224)

The default value is "sha-256". When this property is set the MDNOptions property is automatically updated to request the MDN receipt be signed with the same algorithm.

Data Type

String

SigningCert Property (AS2Sender Class)

Contains the certificate to use when signing messages.

Syntax

IPWorksEDICertificate* GetSigningCert();
int SetSigningCert(IPWorksEDICertificate* val);
int ipworksedi_as2sender_getsigningcertstore(void* lpObj, char** lpSigningCertStore, int* lenSigningCertStore);
int ipworksedi_as2sender_setsigningcertstore(void* lpObj, const char* lpSigningCertStore, int lenSigningCertStore);
char* ipworksedi_as2sender_getsigningcertstorepassword(void* lpObj);
int ipworksedi_as2sender_setsigningcertstorepassword(void* lpObj, const char* lpszSigningCertStorePassword);
int ipworksedi_as2sender_getsigningcertstoretype(void* lpObj);
int ipworksedi_as2sender_setsigningcertstoretype(void* lpObj, int iSigningCertStoreType);
char* ipworksedi_as2sender_getsigningcertsubject(void* lpObj);
int ipworksedi_as2sender_setsigningcertsubject(void* lpObj, const char* lpszSigningCertSubject);
int ipworksedi_as2sender_getsigningcertencoded(void* lpObj, char** lpSigningCertEncoded, int* lenSigningCertEncoded);
int ipworksedi_as2sender_setsigningcertencoded(void* lpObj, const char* lpSigningCertEncoded, int lenSigningCertEncoded);
QByteArray GetSigningCertStore();
int SetSigningCertStore(QByteArray qbaSigningCertStore); QString GetSigningCertStorePassword();
int SetSigningCertStorePassword(QString qsSigningCertStorePassword); int GetSigningCertStoreType();
int SetSigningCertStoreType(int iSigningCertStoreType); QString GetSigningCertSubject();
int SetSigningCertSubject(QString qsSigningCertSubject); QByteArray GetSigningCertEncoded();
int SetSigningCertEncoded(QByteArray qbaSigningCertEncoded);

Remarks

This is your signing certificate. If this property is specified, the message content will be signed using the algorithm given by SignatureAlgorithm.

If set, this property should be a private key instance of Certificate.

Data Type

IPWorksEDICertificate

SSLAcceptServerCert Property (AS2Sender Class)

Instructs the class to unconditionally accept the server certificate that matches the supplied certificate.

Syntax

IPWorksEDICertificate* GetSSLAcceptServerCert();
int SetSSLAcceptServerCert(IPWorksEDICertificate* val);
char* ipworksedi_as2sender_getsslacceptservercerteffectivedate(void* lpObj);
char* ipworksedi_as2sender_getsslacceptservercertexpirationdate(void* lpObj);
char* ipworksedi_as2sender_getsslacceptservercertextendedkeyusage(void* lpObj);
char* ipworksedi_as2sender_getsslacceptservercertfingerprint(void* lpObj);
char* ipworksedi_as2sender_getsslacceptservercertfingerprintsha1(void* lpObj);
char* ipworksedi_as2sender_getsslacceptservercertfingerprintsha256(void* lpObj);
char* ipworksedi_as2sender_getsslacceptservercertissuer(void* lpObj);
char* ipworksedi_as2sender_getsslacceptservercertprivatekey(void* lpObj);
int ipworksedi_as2sender_getsslacceptservercertprivatekeyavailable(void* lpObj);
char* ipworksedi_as2sender_getsslacceptservercertprivatekeycontainer(void* lpObj);
char* ipworksedi_as2sender_getsslacceptservercertpublickey(void* lpObj);
char* ipworksedi_as2sender_getsslacceptservercertpublickeyalgorithm(void* lpObj);
int ipworksedi_as2sender_getsslacceptservercertpublickeylength(void* lpObj);
char* ipworksedi_as2sender_getsslacceptservercertserialnumber(void* lpObj);
char* ipworksedi_as2sender_getsslacceptservercertsignaturealgorithm(void* lpObj);
int ipworksedi_as2sender_getsslacceptservercertstore(void* lpObj, char** lpSSLAcceptServerCertStore, int* lenSSLAcceptServerCertStore);
int ipworksedi_as2sender_setsslacceptservercertstore(void* lpObj, const char* lpSSLAcceptServerCertStore, int lenSSLAcceptServerCertStore);
char* ipworksedi_as2sender_getsslacceptservercertstorepassword(void* lpObj);
int ipworksedi_as2sender_setsslacceptservercertstorepassword(void* lpObj, const char* lpszSSLAcceptServerCertStorePassword);
int ipworksedi_as2sender_getsslacceptservercertstoretype(void* lpObj);
int ipworksedi_as2sender_setsslacceptservercertstoretype(void* lpObj, int iSSLAcceptServerCertStoreType);
char* ipworksedi_as2sender_getsslacceptservercertsubjectaltnames(void* lpObj);
char* ipworksedi_as2sender_getsslacceptservercertthumbprintmd5(void* lpObj);
char* ipworksedi_as2sender_getsslacceptservercertthumbprintsha1(void* lpObj);
char* ipworksedi_as2sender_getsslacceptservercertthumbprintsha256(void* lpObj);
char* ipworksedi_as2sender_getsslacceptservercertusage(void* lpObj);
int ipworksedi_as2sender_getsslacceptservercertusageflags(void* lpObj);
char* ipworksedi_as2sender_getsslacceptservercertversion(void* lpObj);
char* ipworksedi_as2sender_getsslacceptservercertsubject(void* lpObj);
int ipworksedi_as2sender_setsslacceptservercertsubject(void* lpObj, const char* lpszSSLAcceptServerCertSubject);
int ipworksedi_as2sender_getsslacceptservercertencoded(void* lpObj, char** lpSSLAcceptServerCertEncoded, int* lenSSLAcceptServerCertEncoded);
int ipworksedi_as2sender_setsslacceptservercertencoded(void* lpObj, const char* lpSSLAcceptServerCertEncoded, int lenSSLAcceptServerCertEncoded);
QString GetSSLAcceptServerCertEffectiveDate();

QString GetSSLAcceptServerCertExpirationDate();

QString GetSSLAcceptServerCertExtendedKeyUsage();

QString GetSSLAcceptServerCertFingerprint();

QString GetSSLAcceptServerCertFingerprintSHA1();

QString GetSSLAcceptServerCertFingerprintSHA256();

QString GetSSLAcceptServerCertIssuer();

QString GetSSLAcceptServerCertPrivateKey();

bool GetSSLAcceptServerCertPrivateKeyAvailable();

QString GetSSLAcceptServerCertPrivateKeyContainer();

QString GetSSLAcceptServerCertPublicKey();

QString GetSSLAcceptServerCertPublicKeyAlgorithm();

int GetSSLAcceptServerCertPublicKeyLength();

QString GetSSLAcceptServerCertSerialNumber();

QString GetSSLAcceptServerCertSignatureAlgorithm();

QByteArray GetSSLAcceptServerCertStore();
int SetSSLAcceptServerCertStore(QByteArray qbaSSLAcceptServerCertStore); QString GetSSLAcceptServerCertStorePassword();
int SetSSLAcceptServerCertStorePassword(QString qsSSLAcceptServerCertStorePassword); int GetSSLAcceptServerCertStoreType();
int SetSSLAcceptServerCertStoreType(int iSSLAcceptServerCertStoreType); QString GetSSLAcceptServerCertSubjectAltNames(); QString GetSSLAcceptServerCertThumbprintMD5(); QString GetSSLAcceptServerCertThumbprintSHA1(); QString GetSSLAcceptServerCertThumbprintSHA256(); QString GetSSLAcceptServerCertUsage(); int GetSSLAcceptServerCertUsageFlags(); QString GetSSLAcceptServerCertVersion(); QString GetSSLAcceptServerCertSubject();
int SetSSLAcceptServerCertSubject(QString qsSSLAcceptServerCertSubject); QByteArray GetSSLAcceptServerCertEncoded();
int SetSSLAcceptServerCertEncoded(QByteArray qbaSSLAcceptServerCertEncoded);

Remarks

If it finds any issues with the certificate presented by the server, the class will normally terminate the connection with an error.

You may override this behavior by supplying a value for SSLAcceptServerCert. If the certificate supplied in SSLAcceptServerCert is the same as the certificate presented by the server, then the server certificate is accepted unconditionally, and the connection will continue normally.

Note: This functionality is provided only for cases in which you otherwise know that you are communicating with the right server. If used improperly, this property may create a security breach. Use it at your own risk.

Data Type

IPWorksEDICertificate

SSLCert Property (AS2Sender Class)

The certificate to be used during Secure Sockets Layer (SSL) negotiation.

Syntax

IPWorksEDICertificate* GetSSLCert();
int SetSSLCert(IPWorksEDICertificate* val);
char* ipworksedi_as2sender_getsslcerteffectivedate(void* lpObj);
char* ipworksedi_as2sender_getsslcertexpirationdate(void* lpObj);
char* ipworksedi_as2sender_getsslcertextendedkeyusage(void* lpObj);
char* ipworksedi_as2sender_getsslcertfingerprint(void* lpObj);
char* ipworksedi_as2sender_getsslcertfingerprintsha1(void* lpObj);
char* ipworksedi_as2sender_getsslcertfingerprintsha256(void* lpObj);
char* ipworksedi_as2sender_getsslcertissuer(void* lpObj);
char* ipworksedi_as2sender_getsslcertprivatekey(void* lpObj);
int ipworksedi_as2sender_getsslcertprivatekeyavailable(void* lpObj);
char* ipworksedi_as2sender_getsslcertprivatekeycontainer(void* lpObj);
char* ipworksedi_as2sender_getsslcertpublickey(void* lpObj);
char* ipworksedi_as2sender_getsslcertpublickeyalgorithm(void* lpObj);
int ipworksedi_as2sender_getsslcertpublickeylength(void* lpObj);
char* ipworksedi_as2sender_getsslcertserialnumber(void* lpObj);
char* ipworksedi_as2sender_getsslcertsignaturealgorithm(void* lpObj);
int ipworksedi_as2sender_getsslcertstore(void* lpObj, char** lpSSLCertStore, int* lenSSLCertStore);
int ipworksedi_as2sender_setsslcertstore(void* lpObj, const char* lpSSLCertStore, int lenSSLCertStore);
char* ipworksedi_as2sender_getsslcertstorepassword(void* lpObj);
int ipworksedi_as2sender_setsslcertstorepassword(void* lpObj, const char* lpszSSLCertStorePassword);
int ipworksedi_as2sender_getsslcertstoretype(void* lpObj);
int ipworksedi_as2sender_setsslcertstoretype(void* lpObj, int iSSLCertStoreType);
char* ipworksedi_as2sender_getsslcertsubjectaltnames(void* lpObj);
char* ipworksedi_as2sender_getsslcertthumbprintmd5(void* lpObj);
char* ipworksedi_as2sender_getsslcertthumbprintsha1(void* lpObj);
char* ipworksedi_as2sender_getsslcertthumbprintsha256(void* lpObj);
char* ipworksedi_as2sender_getsslcertusage(void* lpObj);
int ipworksedi_as2sender_getsslcertusageflags(void* lpObj);
char* ipworksedi_as2sender_getsslcertversion(void* lpObj);
char* ipworksedi_as2sender_getsslcertsubject(void* lpObj);
int ipworksedi_as2sender_setsslcertsubject(void* lpObj, const char* lpszSSLCertSubject);
int ipworksedi_as2sender_getsslcertencoded(void* lpObj, char** lpSSLCertEncoded, int* lenSSLCertEncoded);
int ipworksedi_as2sender_setsslcertencoded(void* lpObj, const char* lpSSLCertEncoded, int lenSSLCertEncoded);
QString GetSSLCertEffectiveDate();

QString GetSSLCertExpirationDate();

QString GetSSLCertExtendedKeyUsage();

QString GetSSLCertFingerprint();

QString GetSSLCertFingerprintSHA1();

QString GetSSLCertFingerprintSHA256();

QString GetSSLCertIssuer();

QString GetSSLCertPrivateKey();

bool GetSSLCertPrivateKeyAvailable();

QString GetSSLCertPrivateKeyContainer();

QString GetSSLCertPublicKey();

QString GetSSLCertPublicKeyAlgorithm();

int GetSSLCertPublicKeyLength();

QString GetSSLCertSerialNumber();

QString GetSSLCertSignatureAlgorithm();

QByteArray GetSSLCertStore();
int SetSSLCertStore(QByteArray qbaSSLCertStore); QString GetSSLCertStorePassword();
int SetSSLCertStorePassword(QString qsSSLCertStorePassword); int GetSSLCertStoreType();
int SetSSLCertStoreType(int iSSLCertStoreType); QString GetSSLCertSubjectAltNames(); QString GetSSLCertThumbprintMD5(); QString GetSSLCertThumbprintSHA1(); QString GetSSLCertThumbprintSHA256(); QString GetSSLCertUsage(); int GetSSLCertUsageFlags(); QString GetSSLCertVersion(); QString GetSSLCertSubject();
int SetSSLCertSubject(QString qsSSLCertSubject); QByteArray GetSSLCertEncoded();
int SetSSLCertEncoded(QByteArray qbaSSLCertEncoded);

Remarks

This property includes the digital certificate that the class will use during SSL negotiation. Set this property to a valid certificate before starting SSL negotiation. To set a certificate, you may set the Encoded field to the encoded certificate. To select a certificate, use the store and subject fields.

Data Type

IPWorksEDICertificate

SSLProvider Property (AS2Sender Class)

The Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.

Syntax

ANSI (Cross Platform)
int GetSSLProvider();
int SetSSLProvider(int iSSLProvider); Unicode (Windows) INT GetSSLProvider();
INT SetSSLProvider(INT iSSLProvider);

Possible Values

SSLP_AUTOMATIC(0), 
SSLP_PLATFORM(1),
SSLP_INTERNAL(2)
int ipworksedi_as2sender_getsslprovider(void* lpObj);
int ipworksedi_as2sender_setsslprovider(void* lpObj, int iSSLProvider);
int GetSSLProvider();
int SetSSLProvider(int iSSLProvider);

Default Value

0

Remarks

This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic), the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.

Possible values are as follows:

0 (sslpAutomatic - default)Automatically selects the appropriate implementation.
1 (sslpPlatform) Uses the platform/system implementation.
2 (sslpInternal) Uses the internal implementation.
Additional Notes

In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.

When Automatic is selected, on Windows, the class will use the platform implementation. On Linux/macOS, the class will use the internal implementation. When TLS 1.3 is enabled via SSLEnabledProtocols, the internal implementation is used on all platforms.

Data Type

Integer

SSLServerCert Property (AS2Sender Class)

The server certificate for the last established connection.

Syntax

IPWorksEDICertificate* GetSSLServerCert();

char* ipworksedi_as2sender_getsslservercerteffectivedate(void* lpObj);
char* ipworksedi_as2sender_getsslservercertexpirationdate(void* lpObj);
char* ipworksedi_as2sender_getsslservercertextendedkeyusage(void* lpObj);
char* ipworksedi_as2sender_getsslservercertfingerprint(void* lpObj);
char* ipworksedi_as2sender_getsslservercertfingerprintsha1(void* lpObj);
char* ipworksedi_as2sender_getsslservercertfingerprintsha256(void* lpObj);
char* ipworksedi_as2sender_getsslservercertissuer(void* lpObj);
char* ipworksedi_as2sender_getsslservercertprivatekey(void* lpObj);
int ipworksedi_as2sender_getsslservercertprivatekeyavailable(void* lpObj);
char* ipworksedi_as2sender_getsslservercertprivatekeycontainer(void* lpObj);
char* ipworksedi_as2sender_getsslservercertpublickey(void* lpObj);
char* ipworksedi_as2sender_getsslservercertpublickeyalgorithm(void* lpObj);
int ipworksedi_as2sender_getsslservercertpublickeylength(void* lpObj);
char* ipworksedi_as2sender_getsslservercertserialnumber(void* lpObj);
char* ipworksedi_as2sender_getsslservercertsignaturealgorithm(void* lpObj);
int ipworksedi_as2sender_getsslservercertstore(void* lpObj, char** lpSSLServerCertStore, int* lenSSLServerCertStore);
char* ipworksedi_as2sender_getsslservercertstorepassword(void* lpObj);
int ipworksedi_as2sender_getsslservercertstoretype(void* lpObj);
char* ipworksedi_as2sender_getsslservercertsubjectaltnames(void* lpObj);
char* ipworksedi_as2sender_getsslservercertthumbprintmd5(void* lpObj);
char* ipworksedi_as2sender_getsslservercertthumbprintsha1(void* lpObj);
char* ipworksedi_as2sender_getsslservercertthumbprintsha256(void* lpObj);
char* ipworksedi_as2sender_getsslservercertusage(void* lpObj);
int ipworksedi_as2sender_getsslservercertusageflags(void* lpObj);
char* ipworksedi_as2sender_getsslservercertversion(void* lpObj);
char* ipworksedi_as2sender_getsslservercertsubject(void* lpObj);
int ipworksedi_as2sender_getsslservercertencoded(void* lpObj, char** lpSSLServerCertEncoded, int* lenSSLServerCertEncoded);
QString GetSSLServerCertEffectiveDate();

QString GetSSLServerCertExpirationDate();

QString GetSSLServerCertExtendedKeyUsage();

QString GetSSLServerCertFingerprint();

QString GetSSLServerCertFingerprintSHA1();

QString GetSSLServerCertFingerprintSHA256();

QString GetSSLServerCertIssuer();

QString GetSSLServerCertPrivateKey();

bool GetSSLServerCertPrivateKeyAvailable();

QString GetSSLServerCertPrivateKeyContainer();

QString GetSSLServerCertPublicKey();

QString GetSSLServerCertPublicKeyAlgorithm();

int GetSSLServerCertPublicKeyLength();

QString GetSSLServerCertSerialNumber();

QString GetSSLServerCertSignatureAlgorithm();

QByteArray GetSSLServerCertStore();

QString GetSSLServerCertStorePassword();

int GetSSLServerCertStoreType();

QString GetSSLServerCertSubjectAltNames();

QString GetSSLServerCertThumbprintMD5();

QString GetSSLServerCertThumbprintSHA1();

QString GetSSLServerCertThumbprintSHA256();

QString GetSSLServerCertUsage();

int GetSSLServerCertUsageFlags();

QString GetSSLServerCertVersion();

QString GetSSLServerCertSubject();

QByteArray GetSSLServerCertEncoded();

Remarks

This property contains the server certificate for the last established connection.

SSLServerCert is reset every time a new connection is attempted.

This property is read-only.

Data Type

IPWorksEDICertificate

Subject Property (AS2Sender Class)

The subject of the message.

Syntax

ANSI (Cross Platform)
char* GetSubject();
int SetSubject(const char* lpszSubject); Unicode (Windows) LPWSTR GetSubject();
INT SetSubject(LPCWSTR lpszSubject);
char* ipworksedi_as2sender_getsubject(void* lpObj);
int ipworksedi_as2sender_setsubject(void* lpObj, const char* lpszSubject);
QString GetSubject();
int SetSubject(QString qsSubject);

Default Value

""

Remarks

The optional human-readable subject of the message. Some AS2 partners will use this field to send additional information about the transmission at the transport layer.

Data Type

String

Timeout Property (AS2Sender Class)

The timeout for the class.

Syntax

ANSI (Cross Platform)
int GetTimeout();
int SetTimeout(int iTimeout); Unicode (Windows) INT GetTimeout();
INT SetTimeout(INT iTimeout);
int ipworksedi_as2sender_gettimeout(void* lpObj);
int ipworksedi_as2sender_settimeout(void* lpObj, int iTimeout);
int GetTimeout();
int SetTimeout(int iTimeout);

Default Value

60

Remarks

If the Timeout property is set to 0, all operations will run uninterrupted until successful completion or an error condition is encountered.

If Timeout is set to a positive value, the class will wait for the operation to complete before returning control.

The class will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not freeze and remains responsive.

If Timeout expires, and the operation is not yet complete, the class fails with an error.

Note: By default, all timeouts are inactivity timeouts, that is, the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.

The default value for the Timeout property is 60 seconds.

Data Type

Integer

URL Property (AS2Sender Class)

The URL to which the request is made.

Syntax

ANSI (Cross Platform)
char* GetURL();
int SetURL(const char* lpszURL); Unicode (Windows) LPWSTR GetURL();
INT SetURL(LPCWSTR lpszURL);
char* ipworksedi_as2sender_geturl(void* lpObj);
int ipworksedi_as2sender_seturl(void* lpObj, const char* lpszURL);
QString GetURL();
int SetURL(QString qsURL);

Default Value

""

Remarks

This property specifies the URL to which the request is made. SSL will be used if and only if the URL scheme is "https".

Data Type

String

UseOAEP Property (AS2Sender Class)

This property specifies whether or not to use Optimal Asymmetric Encryption Padding (OAEP).

Syntax

ANSI (Cross Platform)
int GetUseOAEP();
int SetUseOAEP(int bUseOAEP); Unicode (Windows) BOOL GetUseOAEP();
INT SetUseOAEP(BOOL bUseOAEP);
int ipworksedi_as2sender_getuseoaep(void* lpObj);
int ipworksedi_as2sender_setuseoaep(void* lpObj, int bUseOAEP);
bool GetUseOAEP();
int SetUseOAEP(bool bUseOAEP);

Default Value

FALSE

Remarks

This property specifies whether or not to use Optimal Asymmetric Encryption Padding (OAEP). By default, this value is False and the class will use PKCS1.

To specify nondefault OAEP options, please see OAEPRSAHashAlgorithm, OAEPMGF1HashAlgorithm, and OAEPParams

Data Type

Boolean

UsePSS Property (AS2Sender Class)

This property specifies whether or not RSA-PSS will be used during signing and verification.

Syntax

ANSI (Cross Platform)
int GetUsePSS();
int SetUsePSS(int bUsePSS); Unicode (Windows) BOOL GetUsePSS();
INT SetUsePSS(BOOL bUsePSS);
int ipworksedi_as2sender_getusepss(void* lpObj);
int ipworksedi_as2sender_setusepss(void* lpObj, int bUsePSS);
bool GetUsePSS();
int SetUsePSS(bool bUsePSS);

Default Value

FALSE

Remarks

This property specifies whether or not RSA-PSS will be used when signing and verifying messages. The default value is False.

Data Type

Boolean

UserAgent Property (AS2Sender Class)

Information about the user agent.

Syntax

ANSI (Cross Platform)
char* GetUserAgent();
int SetUserAgent(const char* lpszUserAgent); Unicode (Windows) LPWSTR GetUserAgent();
INT SetUserAgent(LPCWSTR lpszUserAgent);
char* ipworksedi_as2sender_getuseragent(void* lpObj);
int ipworksedi_as2sender_setuseragent(void* lpObj, const char* lpszUserAgent);
QString GetUserAgent();
int SetUserAgent(QString qsUserAgent);

Default Value

"IPWorks EDI AS2Sender Component - www.nsoftware.com"

Remarks

You may override the default with the name and version of your software.

Data Type

String

Config Method (AS2Sender Class)

Sets or retrieves a configuration setting.

Syntax

ANSI (Cross Platform)
char* Config(const char* lpszConfigurationString);

Unicode (Windows)
LPWSTR Config(LPCWSTR lpszConfigurationString);
char* ipworksedi_as2sender_config(void* lpObj, const char* lpszConfigurationString);
QString Config(const QString& qsConfigurationString);

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

DoEvents Method (AS2Sender Class)

This method processes events from the internal message queue.

Syntax

ANSI (Cross Platform)
int DoEvents();

Unicode (Windows)
INT DoEvents();
int ipworksedi_as2sender_doevents(void* lpObj);
int DoEvents();

Remarks

When DoEvents is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Interrupt Method (AS2Sender Class)

This method interrupts the current method.

Syntax

ANSI (Cross Platform)
int Interrupt();

Unicode (Windows)
INT Interrupt();
int ipworksedi_as2sender_interrupt(void* lpObj);
int Interrupt();

Remarks

If there is no method in progress, Interrupt simply returns, doing nothing.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Post Method (AS2Sender Class)

Post data to the AS2 server, and check the receipt.

Syntax

ANSI (Cross Platform)
int Post();

Unicode (Windows)
INT Post();
int ipworksedi_as2sender_post(void* lpObj);
int Post();

Remarks

Post data to the server. The reply will also be checked, and if a synchronous MDN was requested (i.e., MDNTo is not empty), it will be validated. After the method finishes, the MDNReceipt, ReceiptSigningProtocol, and ReceiptSignerCert properties will be populated with the appropriate values.

The method operates synchronously, and will throw an exception if any errors or warnings occur. Errors might include a failure to decrypt or authenticate the receipt, the absence of an MDN when one was requested, TCP/IP errors, or any errors reported by the server in the MDN. Warnings might include the return of an unsigned receipt when a signed receipt was requested, or other warnings reported by the server in the MDN.

If an exception is thrown the error code will correspond to the severity of the warning or error, allowing client software to determine whether or not to accept the reply. If multiple errors occur, the exception will return a special error code, and the error message will contain a line for each error's code and description; i.e. "423: Failed to authenticate sender". If the error(s) is/are not fatal processing will not be interrupted, and the relevant properties will be populated as normal.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

ReadAsyncReceipt Method (AS2Sender Class)

Reads an asynchronous MDN receipt from the current HTTP session.

Syntax

ANSI (Cross Platform)
int ReadAsyncReceipt();

Unicode (Windows)
INT ReadAsyncReceipt();
int ipworksedi_as2sender_readasyncreceipt(void* lpObj);
int ReadAsyncReceipt();

Remarks

ReadAsyncReceipt is used to read an asynchronous MDN receipt from the . The class will fetch the request stream from the HTTP session. MDNReceipt will be populated with a new instance of MDNReceipt.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Reset Method (AS2Sender Class)

Resets the state of the control.

Syntax

ANSI (Cross Platform)
int Reset();

Unicode (Windows)
INT Reset();
int ipworksedi_as2sender_reset(void* lpObj);
int Reset();

Remarks

Resets all HTTP headers as well as EDIData, etc. After invoking this method the class may be reused as if it were newly created.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Restart Method (AS2Sender Class)

Restart sending of the file specified by the Etag property.

Syntax

ANSI (Cross Platform)
int Restart();

Unicode (Windows)
INT Restart();
int ipworksedi_as2sender_restart(void* lpObj);
int Restart();

Remarks

This method should be called when using the AS2 restart functionality. When called, the class will process the file and cache the processed contents to the RestartDirectory. Before sending, the Etag property will be populated with a unique Etag which identifies the processed file.

If sending is interrupted or fails, this method should be called to restart sending of the previously processed file starting where the interruption occurred. In order to restart from the last transfer, the Etag must be populated with the value from the last connection.

NOTE: When using restart functionality, the data is completely processed to the RestartDirectory before sending begins.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

SendCEMRequest Method (AS2Sender Class)

Sends a Certificate Exchange Messaging (CEM) request.

Syntax

ANSI (Cross Platform)
int SendCEMRequest(const char* lpszRequestId);

Unicode (Windows)
INT SendCEMRequest(LPCWSTR lpszRequestId);
int ipworksedi_as2sender_sendcemrequest(void* lpObj, const char* lpszRequestId);
int SendCEMRequest(const QString& qsRequestId);

Remarks

This method send the Certificate Exchange Messaging (CEM) request with the details specified in CEMDetails.

Certificate Exchange Messaging (CEM) allows for new certificates to be sent to a recipient and be automatically updated. This removes the requirement to manually send new certificates to a partner via email or other means. When both sides support this functionality updating certificates can be accomplished in a short period of time.

To prepare a CEM request populate the CEMDetails collection with at least one certificate. For instance if the certificate of the application will be updated soon, the CEMDetails may be populated with the corresponding public certificate to be sent to your partner. CEMDetails should only contain public certificates.

Set RespondByDate to the date by which you expect a response. The format is of the XML standard dateTime type expressed in local time with UTC offset. For instance: "2005-08-31T00:21:00-05:00".

Optionally set CertId to a friendly identifier that the partner may use to help understand the purpose of the new certificate. For instance "New.Encryption.Cert.2014".

Set ResponseURL to the publicly accessible URL where the CEM response will be sent after the partner processes it.

The RequestId parameter uniquely identifies this CEM request and must be saved for use later when receiving the CEM response.

When calling this method the applicable CEMDetails fields are:

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

SendCEMResponse Method (AS2Sender Class)

Sends a Certificate Exchange Messaging (CEM) response.

Syntax

ANSI (Cross Platform)
int SendCEMResponse(const char* lpszRequestId);

Unicode (Windows)
INT SendCEMResponse(LPCWSTR lpszRequestId);
int ipworksedi_as2sender_sendcemresponse(void* lpObj, const char* lpszRequestId);
int SendCEMResponse(const QString& qsRequestId);

Remarks

This method send the Certificate Exchange Messaging (CEM) request with the details specified in CEMDetails.

A CEM request must have previously been received using AS2Receiver. To send the CEM response, populate CEMDetails with the certificate information and decide whether to accept or reject the request. The following fields may be set to specify the certificate:

Alternatively, the certificate information may be set:

After specifying the certificate information choose whether to accept or reject the request. To accept the request set Accepted to True. To reject the request set Accepted to False and specify a reason in RejectionReason.

Call SendCEMResponse and pass the CEM request Id that was retrieved from the request.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

SetRequestHeader Method (AS2Sender Class)

Allows the user to set or add arbitrary HTTP request headers.

Syntax

ANSI (Cross Platform)
int SetRequestHeader(const char* lpszHeaderName, const char* lpszHeaderValue);

Unicode (Windows)
INT SetRequestHeader(LPCWSTR lpszHeaderName, LPCWSTR lpszHeaderValue);
int ipworksedi_as2sender_setrequestheader(void* lpObj, const char* lpszHeaderName, const char* lpszHeaderValue);
int SetRequestHeader(const QString& qsHeaderName, const QString& qsHeaderValue);

Remarks

HeaderName should contain the header name, and HeaderValue should contain its value. Use this to set headers such as To, Date, etc. Note that a default value for Date will automatically be determined and this method may be used to override the default.

SetRequestHeader may be used to set any header except for the following: AS2-To, AS2-From, AS2-Version, Subject, Message-Id, Disposition-Notification-To, Disposition-Notification-Options, Receipt-Delivery-Option, Host, Content-Length.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

SetTPInfo Method (AS2Sender Class)

A convenient way to set AS2 communication parameters using XML strings.

Syntax

ANSI (Cross Platform)
int SetTPInfo(const char* lpszProfile);

Unicode (Windows)
INT SetTPInfo(LPCWSTR lpszProfile);
int ipworksedi_as2sender_settpinfo(void* lpObj, const char* lpszProfile);
int SetTPInfo(const QString& qsProfile);

Remarks

SetTPInfo offers a convenient way to set AS2 communication parameters using XML strings. The format of the XML is the same as provided by the method GetTPInfo of AS2ProfileMgr.

The "self" information should always precede the partner information as shown below. AS2Sender as2sender = new AS2Sender(); AS2Profilemgr mgr = new AS2Profilemgr(); mgr.DataDir = @"C:\as2data"; as2sender.SetTPInfo(mgr.GetTPInfo("self")); as2sender.SetTPInfo(mgr.GetTPInfo("partnerOrg")); as2sender.EDIFile = @"C:\as2Data.x12"; as2sender.Post();

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

VerifyReceipt Method (AS2Sender Class)

Verifies an asynchronous MDN receipt.

Syntax

ANSI (Cross Platform)
int VerifyReceipt();

Unicode (Windows)
INT VerifyReceipt();
int ipworksedi_as2sender_verifyreceipt(void* lpObj);
int VerifyReceipt();

Remarks

VerifyReceipt verifies the receipt in MDNReceipt against OriginalContentMIC, MessageId and the preferences specified in MDNOptions. The method operates similarly to Post: After the method finishes, the MDNReceipt, ReceiptSigningProtocol, and ReceiptSignerCert properties will be populated with the appropriate values.

The method operates synchronously, and will throw an exception if any errors or warnings occur. Errors might include a failure to decrypt or authenticate the receipt, the absence of an MDN when one was requested, TCP/IP errors, or any errors reported by the server in the MDN. Warnings might include the return of an unsigned receipt when a signed receipt was requested, or other warnings reported by the server in the MDN.

If an exception is thrown the error code will correspond to the severity of the warning or error, allowing client software to determine whether or not to accept the reply. If multiple errors occur, the exception will return a special error code, and the error message will contain a line for each error's code and description; i.e. "423: Failed to authenticate sender". If the error(s) is/are not fatal processing will not be interrupted, and the relevant properties will be populated as normal.

This method should be used to verify receipts received asynchronously; i.e., not in the HTTP reply to a POST. When posting, asynchronous MDN delivery may be requested by setting MDNDeliveryOption.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Connected Event (AS2Sender Class)

Fired immediately after a connection completes (or fails).

Syntax

ANSI (Cross Platform)
virtual int FireConnected(AS2SenderConnectedEventParams *e);
typedef struct {
int StatusCode;
const char *Description; int reserved; } AS2SenderConnectedEventParams;
Unicode (Windows) virtual INT FireConnected(AS2SenderConnectedEventParams *e);
typedef struct {
INT StatusCode;
LPCWSTR Description; INT reserved; } AS2SenderConnectedEventParams;
#define EID_AS2SENDER_CONNECTED 1

virtual INT IPWORKSEDI_CALL FireConnected(INT &iStatusCode, LPSTR &lpszDescription);
class AS2SenderConnectedEventParams {
public:
  int StatusCode();

  const QString &Description();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Connected(AS2SenderConnectedEventParams *e);
// Or, subclass AS2Sender and override this emitter function. virtual int FireConnected(AS2SenderConnectedEventParams *e) {...}

Remarks

If the connection is made normally, StatusCode is 0 and Description is "OK".

If the connection fails, StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

Please refer to the Error Codes section for more information.

Disconnected Event (AS2Sender Class)

Fired when a connection is closed.

Syntax

ANSI (Cross Platform)
virtual int FireDisconnected(AS2SenderDisconnectedEventParams *e);
typedef struct {
int StatusCode;
const char *Description; int reserved; } AS2SenderDisconnectedEventParams;
Unicode (Windows) virtual INT FireDisconnected(AS2SenderDisconnectedEventParams *e);
typedef struct {
INT StatusCode;
LPCWSTR Description; INT reserved; } AS2SenderDisconnectedEventParams;
#define EID_AS2SENDER_DISCONNECTED 2

virtual INT IPWORKSEDI_CALL FireDisconnected(INT &iStatusCode, LPSTR &lpszDescription);
class AS2SenderDisconnectedEventParams {
public:
  int StatusCode();

  const QString &Description();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Disconnected(AS2SenderDisconnectedEventParams *e);
// Or, subclass AS2Sender and override this emitter function. virtual int FireDisconnected(AS2SenderDisconnectedEventParams *e) {...}

Remarks

If the connection is broken normally, StatusCode is 0 and Description is "OK".

If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.

Please refer to the Error Codes section for more information.

EndTransfer Event (AS2Sender Class)

Fired when a document finishes transferring.

Syntax

ANSI (Cross Platform)
virtual int FireEndTransfer(AS2SenderEndTransferEventParams *e);
typedef struct {
int Direction; int reserved; } AS2SenderEndTransferEventParams;
Unicode (Windows) virtual INT FireEndTransfer(AS2SenderEndTransferEventParams *e);
typedef struct {
INT Direction; INT reserved; } AS2SenderEndTransferEventParams;
#define EID_AS2SENDER_ENDTRANSFER 3

virtual INT IPWORKSEDI_CALL FireEndTransfer(INT &iDirection);
class AS2SenderEndTransferEventParams {
public:
  int Direction();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void EndTransfer(AS2SenderEndTransferEventParams *e);
// Or, subclass AS2Sender and override this emitter function. virtual int FireEndTransfer(AS2SenderEndTransferEventParams *e) {...}

Remarks

This event is fired first when the client finishes sending data to the server (in a POST or PUT request) and then when the document text finishes transferring from the server to the local host.

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

Error Event (AS2Sender Class)

Fired when information is available about errors during data delivery.

Syntax

ANSI (Cross Platform)
virtual int FireError(AS2SenderErrorEventParams *e);
typedef struct {
int ErrorCode;
const char *Description; int reserved; } AS2SenderErrorEventParams;
Unicode (Windows) virtual INT FireError(AS2SenderErrorEventParams *e);
typedef struct {
INT ErrorCode;
LPCWSTR Description; INT reserved; } AS2SenderErrorEventParams;
#define EID_AS2SENDER_ERROR 4

virtual INT IPWORKSEDI_CALL FireError(INT &iErrorCode, LPSTR &lpszDescription);
class AS2SenderErrorEventParams {
public:
  int ErrorCode();

  const QString &Description();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Error(AS2SenderErrorEventParams *e);
// Or, subclass AS2Sender and override this emitter function. virtual int FireError(AS2SenderErrorEventParams *e) {...}

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

Header Event (AS2Sender Class)

Fired every time a header line comes in.

Syntax

ANSI (Cross Platform)
virtual int FireHeader(AS2SenderHeaderEventParams *e);
typedef struct {
const char *Field;
const char *Value; int reserved; } AS2SenderHeaderEventParams;
Unicode (Windows) virtual INT FireHeader(AS2SenderHeaderEventParams *e);
typedef struct {
LPCWSTR Field;
LPCWSTR Value; INT reserved; } AS2SenderHeaderEventParams;
#define EID_AS2SENDER_HEADER 5

virtual INT IPWORKSEDI_CALL FireHeader(LPSTR &lpszField, LPSTR &lpszValue);
class AS2SenderHeaderEventParams {
public:
  const QString &Field();

  const QString &Value();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Header(AS2SenderHeaderEventParams *e);
// Or, subclass AS2Sender and override this emitter function. virtual int FireHeader(AS2SenderHeaderEventParams *e) {...}

Remarks

The Field parameter contains the name of the HTTP header (same case as it is delivered). The Value parameter contains the header contents.

If the header line being retrieved is a continuation header line, then the Field parameter contains an empty string.

Note that only the top-level headers will be returned through this event, and that they are available through the ReplyHeaders property.

The Field parameter contains the name of the HTTP header (which is the same as it is delivered). The Value parameter contains the header contents.

If the header line being retrieved is a continuation header line, then the Field parameter contains "" (empty string).

Log Event (AS2Sender Class)

Fired with log information while processing a message.

Syntax

ANSI (Cross Platform)
virtual int FireLog(AS2SenderLogEventParams *e);
typedef struct {
const char *LogType;
const char *LogMessage; int lenLogMessage; int reserved; } AS2SenderLogEventParams;
Unicode (Windows) virtual INT FireLog(AS2SenderLogEventParams *e);
typedef struct {
LPCWSTR LogType;
LPCSTR LogMessage; INT lenLogMessage; INT reserved; } AS2SenderLogEventParams;
#define EID_AS2SENDER_LOG 6

virtual INT IPWORKSEDI_CALL FireLog(LPSTR &lpszLogType, LPSTR &lpLogMessage, INT &lenLogMessage);
class AS2SenderLogEventParams {
public:
  const QString &LogType();

  const QByteArray &LogMessage();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Log(AS2SenderLogEventParams *e);
// Or, subclass AS2Sender and override this emitter function. virtual int FireLog(AS2SenderLogEventParams *e) {...}

Remarks

This event fires once for each log message generated by the class. The verbosity is controlled by the LogLevel setting.

Log messages available through this event correspond to log files written to LogDirectory. This event provides a way to obtain log messages without relying on files on disk. This event fires regardless of the value of LogDirectory (i.e. when LogDirectory is empty the event will still fire).

The LogMessage event parameter holds the raw log data.

The LogType event parameter indicates the type of log. Possible values are:

"LOG" Information about the status of the process.
"ERR" An error was encountered.
"DAT" The EDI payload.
"REQ" The raw request
"MDN" The MDN response.
"DEBUG" Debug information.
"DAT.INPUT" Debug information when processing payload. Only applicable when LogDebug is True.
"DAT.ENCRYPT" Debug information when processing payload. Only applicable when LogDebug is True.
"DAT.COMPRESS" Debug information when processing payload. Only applicable when LogDebug is True.
"DAT.SIGN" Debug information when processing payload. Only applicable when LogDebug is True.
"DAT.DECRYPT" Debug information when processing payload. Only applicable when LogDebug is True.
"DAT.DECOMPRESS" Debug information when processing payload. Only applicable when LogDebug is True.
"DAT.VERIFY" Debug information when processing payload. Only applicable when LogDebug is True.
"DAT.DEBUG" Debug information when processing payload. Only applicable when LogDebug is True.

SetCookie Event (AS2Sender Class)

Fired for every cookie set by the server.

Syntax

ANSI (Cross Platform)
virtual int FireSetCookie(AS2SenderSetCookieEventParams *e);
typedef struct {
const char *Name;
const char *Value;
const char *Expires;
const char *Domain;
const char *Path;
int Secure; int reserved; } AS2SenderSetCookieEventParams;
Unicode (Windows) virtual INT FireSetCookie(AS2SenderSetCookieEventParams *e);
typedef struct {
LPCWSTR Name;
LPCWSTR Value;
LPCWSTR Expires;
LPCWSTR Domain;
LPCWSTR Path;
BOOL Secure; INT reserved; } AS2SenderSetCookieEventParams;
#define EID_AS2SENDER_SETCOOKIE 7

virtual INT IPWORKSEDI_CALL FireSetCookie(LPSTR &lpszName, LPSTR &lpszValue, LPSTR &lpszExpires, LPSTR &lpszDomain, LPSTR &lpszPath, BOOL &bSecure);
class AS2SenderSetCookieEventParams {
public:
  const QString &Name();

  const QString &Value();

  const QString &Expires();

  const QString &Domain();

  const QString &Path();

  bool Secure();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void SetCookie(AS2SenderSetCookieEventParams *e);
// Or, subclass AS2Sender and override this emitter function. virtual int FireSetCookie(AS2SenderSetCookieEventParams *e) {...}

Remarks

This event is fired for every Set-Cookie: header received from the HTTP server.

The Name parameter contains the name of the cookie, with the corresponding value supplied in the Value parameter.

The Expires parameter contains an expiration time for the cookie (if provided by the server). The time format used is "Weekday, DD-Mon-YY HH:MM:SS GMT". If the server does not provide an expiration time, the Expires parameter will be an empty string. In this case, the convention is to drop the cookie at the end of the session.

The Domain parameter contains a domain name to limit the cookie to (if provided by the server). If the server does not provide a domain name, the Domain parameter will be an empty string. The convention in this case is to use the server specified in the URL (URLServer) as the cookie domain.

The Path parameter contains a path name to limit the cookie to (if provided by the server). If the server does not provide a cookie path, the Path parameter will be an empty string. The convention in this case is to use the path specified in the URL (URLPath) as the cookie path.

The Secure parameter specifies whether the cookie is secure. If the value of this parameter is True, the cookie value must be submitted only through a secure (HTTPS) connection.

SSLServerAuthentication Event (AS2Sender Class)

Fired after the server presents its certificate to the client.

Syntax

ANSI (Cross Platform)
virtual int FireSSLServerAuthentication(AS2SenderSSLServerAuthenticationEventParams *e);
typedef struct {
const char *CertEncoded; int lenCertEncoded;
const char *CertSubject;
const char *CertIssuer;
const char *Status;
int Accept; int reserved; } AS2SenderSSLServerAuthenticationEventParams;
Unicode (Windows) virtual INT FireSSLServerAuthentication(AS2SenderSSLServerAuthenticationEventParams *e);
typedef struct {
LPCSTR CertEncoded; INT lenCertEncoded;
LPCWSTR CertSubject;
LPCWSTR CertIssuer;
LPCWSTR Status;
BOOL Accept; INT reserved; } AS2SenderSSLServerAuthenticationEventParams;
#define EID_AS2SENDER_SSLSERVERAUTHENTICATION 8

virtual INT IPWORKSEDI_CALL FireSSLServerAuthentication(LPSTR &lpCertEncoded, INT &lenCertEncoded, LPSTR &lpszCertSubject, LPSTR &lpszCertIssuer, LPSTR &lpszStatus, BOOL &bAccept);
class AS2SenderSSLServerAuthenticationEventParams {
public:
  const QByteArray &CertEncoded();

  const QString &CertSubject();

  const QString &CertIssuer();

  const QString &Status();

  bool Accept();
  void SetAccept(bool bAccept);

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void SSLServerAuthentication(AS2SenderSSLServerAuthenticationEventParams *e);
// Or, subclass AS2Sender and override this emitter function. virtual int FireSSLServerAuthentication(AS2SenderSSLServerAuthenticationEventParams *e) {...}

Remarks

This event is where the client can decide whether to continue with the connection process or not. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether to continue or not.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string "OK").

SSLStatus Event (AS2Sender Class)

Fired when secure connection progress messages are available.

Syntax

ANSI (Cross Platform)
virtual int FireSSLStatus(AS2SenderSSLStatusEventParams *e);
typedef struct {
const char *Message; int reserved; } AS2SenderSSLStatusEventParams;
Unicode (Windows) virtual INT FireSSLStatus(AS2SenderSSLStatusEventParams *e);
typedef struct {
LPCWSTR Message; INT reserved; } AS2SenderSSLStatusEventParams;
#define EID_AS2SENDER_SSLSTATUS 9

virtual INT IPWORKSEDI_CALL FireSSLStatus(LPSTR &lpszMessage);
class AS2SenderSSLStatusEventParams {
public:
  const QString &Message();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void SSLStatus(AS2SenderSSLStatusEventParams *e);
// Or, subclass AS2Sender and override this emitter function. virtual int FireSSLStatus(AS2SenderSSLStatusEventParams *e) {...}

Remarks

The event is fired for informational and logging purposes only. This event tracks the progress of the connection.

StartTransfer Event (AS2Sender Class)

Fired when a document starts transferring (after the headers).

Syntax

ANSI (Cross Platform)
virtual int FireStartTransfer(AS2SenderStartTransferEventParams *e);
typedef struct {
int Direction; int reserved; } AS2SenderStartTransferEventParams;
Unicode (Windows) virtual INT FireStartTransfer(AS2SenderStartTransferEventParams *e);
typedef struct {
INT Direction; INT reserved; } AS2SenderStartTransferEventParams;
#define EID_AS2SENDER_STARTTRANSFER 10

virtual INT IPWORKSEDI_CALL FireStartTransfer(INT &iDirection);
class AS2SenderStartTransferEventParams {
public:
  int Direction();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void StartTransfer(AS2SenderStartTransferEventParams *e);
// Or, subclass AS2Sender and override this emitter function. virtual int FireStartTransfer(AS2SenderStartTransferEventParams *e) {...}

Remarks

This event is fired first when the client starts sending data to the server (in a POST or PUT request) and then when the document text starts transferring from the server to the local host.

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

Transfer Event (AS2Sender Class)

Fired while a document transfers (delivers document).

Syntax

ANSI (Cross Platform)
virtual int FireTransfer(AS2SenderTransferEventParams *e);
typedef struct {
int Direction;
int64 BytesTransferred;
int PercentDone;
const char *Text; int lenText; int reserved; } AS2SenderTransferEventParams;
Unicode (Windows) virtual INT FireTransfer(AS2SenderTransferEventParams *e);
typedef struct {
INT Direction;
LONG64 BytesTransferred;
INT PercentDone;
LPCSTR Text; INT lenText; INT reserved; } AS2SenderTransferEventParams;
#define EID_AS2SENDER_TRANSFER 11

virtual INT IPWORKSEDI_CALL FireTransfer(INT &iDirection, LONG64 &lBytesTransferred, INT &iPercentDone, LPSTR &lpText, INT &lenText);
class AS2SenderTransferEventParams {
public:
  int Direction();

  qint64 BytesTransferred();

  int PercentDone();

  const QByteArray &Text();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Transfer(AS2SenderTransferEventParams *e);
// Or, subclass AS2Sender and override this emitter function. virtual int FireTransfer(AS2SenderTransferEventParams *e) {...}

Remarks

The Text parameter contains the portion of the document text being received. It is empty if data are being posted to the server.

The BytesTransferred parameter contains the number of bytes transferred in this Direction since the beginning of the document text (excluding HTTP response headers).

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

The PercentDone parameter shows the progress of the transfer in the corresponding direction. If PercentDone can not be calculated the value will be -1.

Note: Events are not re-entrant. Performing time-consuming operations within this event will prevent it from firing again in a timely manner and may affect overall performance.

CEMDetail Type

This type defines details about the CEM request.

Syntax

IPWorksEDICEMDetail (declared in ipworksedi.h)

Remarks

This type defines details about the CEM request. Not all fields are applicable for all operations.

The following fields are available:

Fields

Accepted
int

Default Value: FALSE

Whether the CEM request is accepted.

Before calling SendCEMResponse set this to True to accept the CEM request.

When processing a CEM response check this field to determine if the request was accepted.

CertId
char*

Default Value: ""

A user defined identifier for the certificate.

This field defines a user specified identifier for the certificate. This may be set to a value which helps the recipient identify the certificate. For instance "CompanyA.Encryption.Cert.2014".

This field may be set before calling SendCEMRequest or SendCEMResponse from AS2Sender.

This field may be queried when received a CEM request or response with AS2Receiver.

CertIssuer
char*

Default Value: ""

This field holds the issuer of the certificate. This may be queried when receiving a CEM request with AS2Receiver. This may be set before calling SendCEMResponse with AS2Sender.

CertSerialNumber
char*

Default Value: ""

This field holds the serial number of the certificate. This may be queried when receiving a CEM request with AS2Receiver. This may be set before calling SendCEMResponse with AS2Sender.

CertStore
char*

Default Value: "MY"

The name of the certificate store for the certificate.

This field defines the store location for the type specified by CertStoreType.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

CertStorePassword
char*

Default Value: ""

If the certificate store is of a type that requires a password, this property is used to specify that password in order to open the certificate store.

CertStoreType
int

Default Value: 0

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This field can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

CertSubject
char*

Default Value: ""

The subject of the certificate.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the field is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

CertUsage
int

Default Value: 15

This field defines which usages are applicable to the certificate. This may be set to a binary 'OR' of one or more of the following values:

  • 1 (TLS Client)
  • 2 (TLS Server)
  • 4 (Encryption)
  • 8 (Signature)
The default value is "15", meaning all usages are allowed.

RejectionReason
char*

Default Value: ""

If Accepted is False this field specifies the reason a request was rejected.

When using AS2Sender this may be set to a string value which the recipient will see.

When using AS2Receiver query this field for details on why the request was rejected.

RespondByDate
char*

Default Value: ""

This field specifies the date by which the other party should respond. If the other party does not respond the new certificate may be used without any further notice. This field exists to assist the recipient in knowing when they should respond by. It does not guarantee a response by the specified date.

The format is of the XML standard dateTime type expressed in local time with UTC offset. For instance: "2005-08-31T00:21:00-05:00".

When using AS2Sender set this before calling SendCEMRequest.

When using AS2Receiver this field may be queried.

ResponseURL
char*

Default Value: ""

This field defines the URL to which the response should be sent.

When using AS2Sender set this field before calling SendCEMRequest. This tells the recipient where to send the response.

When using AS2Receiver query this field to determine the URL where the response should be sent.

Constructors

CEMDetail()

Certificate Type

This is the digital certificate being used.

Syntax

IPWorksEDICertificate (declared in ipworksedi.h)

Remarks

This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.

The following fields are available:

Fields

EffectiveDate
char* (read-only)

Default Value: ""

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

ExpirationDate
char* (read-only)

Default Value: ""

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

ExtendedKeyUsage
char* (read-only)

Default Value: ""

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

Fingerprint
char* (read-only)

Default Value: ""

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

FingerprintSHA1
char* (read-only)

Default Value: ""

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

FingerprintSHA256
char* (read-only)

Default Value: ""

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

Issuer
char* (read-only)

Default Value: ""

The issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.

PrivateKey
char* (read-only)

Default Value: ""

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.

PrivateKeyAvailable
int (read-only)

Default Value: FALSE

Whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).

PrivateKeyContainer
char* (read-only)

Default Value: ""

The name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.

PublicKey
char* (read-only)

Default Value: ""

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

PublicKeyAlgorithm
char* (read-only)

Default Value: ""

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

PublicKeyLength
int (read-only)

Default Value: 0

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

SerialNumber
char* (read-only)

Default Value: ""

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

SignatureAlgorithm
char* (read-only)

Default Value: ""

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

Store
char*

Default Value: "MY"

The name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password-protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StorePassword
char*

Default Value: ""

If the type of certificate store requires a password, this field is used to specify the password needed to open the certificate store.

StoreType
int

Default Value: 0

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This field can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

SubjectAltNames
char* (read-only)

Default Value: ""

Comma-separated lists of alternative subject names for the certificate.

ThumbprintMD5
char* (read-only)

Default Value: ""

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA1
char* (read-only)

Default Value: ""

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA256
char* (read-only)

Default Value: ""

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

Usage
char* (read-only)

Default Value: ""

The text description of UsageFlags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

UsageFlags
int (read-only)

Default Value: 0

The flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the Usage field for a text representation of UsageFlags.

This functionality currently is not available when the provider is OpenSSL.

Version
char* (read-only)

Default Value: ""

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

Subject
char*

Default Value: ""

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the field is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

Encoded
char*

Default Value: ""

The certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

Constructors

Certificate()

Creates a instance whose properties can be set. This is useful for use with when generating new certificates.

Certificate(const char* lpEncoded, int lenEncoded)

Parses Encoded as an X.509 public key.

Certificate(int iStoreType, const char* lpStore, int lenStore, const char* lpszStorePassword, const char* lpszSubject)

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.

After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

EDIAttachment Type

This describes the file being attached.

Syntax

IPWorksEDIEDIAttachment (declared in ipworksedi.h)

Remarks

Information about the file's location that is being attached to the message is contained here.

The following fields are available:

Fields

ContentType
char*

Default Value: ""

The MIME content-type of this EDIAttachment.

Data
char*

Default Value: ""

This field contains the attachment data.

In a receiver, the class decodes the attachment to the Data field when Data's value is first queried. This field will contain the full decrypted text of the attachment.

FileName
char*

Default Value: ""

The file name of the attachment. If IncomingDirectory has been specified, the attachment will be written to the specified directory and the name will be provided by this field. Otherwise, this will contain the name of the attachment as described in the Headers.

Headers
char*

Default Value: ""

The class fills out Headers each time any of the other fields for that EDIAttachment are changed. If additional headers are needed they should be appended after all the other fields for that EDIAttachment are set.

Name
char*

Default Value: ""

Name is the final name to be associated with the contents of either the Data or FileName fields. This corresponds to the filename attribute of the Content-Disposition header for this attachment.

Constructors

EDIAttachment()
EDIAttachment(const char* lpszFileName)
EDIAttachment(const char* lpszFileName, const char* lpszContentType)
EDIAttachment(const char* lpszFileName, const char* lpszContentType, const char* lpszHeaders)

EDIData Type

The EDI payload of the AS2 message.

Syntax

IPWorksEDIEDIData (declared in ipworksedi.h)

Remarks

The EDI payload of the AS2 message.

The following fields are available:

Fields

Data
char*

Default Value: ""

This field contains the EDI payload of the transmission.

In a receiver, this field will only be populated if IncomingDirectory and OutputStream have not been specified and ParseRequest finishes without an error, setting ScanResult to 0. If so, Data will contain the full decrypted text of the EDI message.

EDIType
char*

Default Value: ""

The Content-Type of the EDI message. Sample values might be "application/edi-x12", "application/edifact" or "application/xml".

Name
char*

Default Value: "rfc1767.edi"

Name is the final name to be associated with the contents of either the Data or FileName fields. This corresponds to the filename attribute of the Content-Disposition header for the EDI payload.

When constructing EDI data to be sent, Name will be set to the same value as FileName, but can be overridden after setting FileName to indicate that another name should be used in the outbound request's Content-Disposition MIME header.

When receiving EDI data, Name will be read out of the "filename" attribute of the inbound request's Content-Disposition MIME header.

FileName
char*

Default Value: ""

In a sender, if FileName is specified, the file specified will be used for the EDI payload of the transmission. Name will be populated with the name of the file.

In a receiver, when IncomingDirectory is set, this will be populated with the absolute path of the file which contains the processed message contents.

Note: When OutputStream is set, the data will be written to the stream and this field will not be populated.

Constructors

EDIData()
EDIData(const char* lpData, int lenData, const char* lpszEDIType)
EDIData(const char* lpszFileName, const char* lpszEDIType)

Firewall Type

The firewall the component will connect through.

Syntax

IPWorksEDIFirewall (declared in ipworksedi.h)

Remarks

When connecting through a firewall, this type is used to specify different properties of the firewall, such as the firewall Host and the FirewallType.

The following fields are available:

Fields

AutoDetect
int

Default Value: FALSE

Whether to automatically detect and use firewall system settings, if available.

FirewallType
int

Default Value: 0

The type of firewall to connect through. The applicable values are as follows:

fwNone (0)No firewall (default setting).
fwTunnel (1)Connect through a tunneling proxy. Port is set to 80.
fwSOCKS4 (2)Connect through a SOCKS4 Proxy. Port is set to 1080.
fwSOCKS5 (3)Connect through a SOCKS5 Proxy. Port is set to 1080.
fwSOCKS4A (10)Connect through a SOCKS4A Proxy. Port is set to 1080.

Host
char*

Default Value: ""

The name or IP address of the firewall (optional). If a Host is given, the requested connections will be authenticated through the specified firewall when connecting.

If this field is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this field is set to the corresponding address. If the search is not successful, the class fails with an error.

Password
char*

Default Value: ""

A password if authentication is to be used when connecting through the firewall. If Host is specified, the User and Password fields are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

Port
int

Default Value: 0

The Transmission Control Protocol (TCP) port for the firewall Host. See the description of the Host field for details.

Note: This field is set automatically when FirewallType is set to a valid value. See the description of the FirewallType field for details.

User
char*

Default Value: ""

A username if authentication is to be used when connecting through a firewall. If Host is specified, this field and the Password field are used to connect and authenticate to the given Firewall. If the authentication fails, the class fails with an error.

Constructors

Firewall()

HTTPCookie Type

An HTTP cookie can be either sent to or received from the server.

Syntax

IPWorksEDIHTTPCookie (declared in ipworksedi.h)

Remarks

An HTTP cookie can store the cookies that are to be sent to the server. It also may store the cookies sent by the server.

Cookies that are to be sent to the server must have the Name and Value fields supplied before submitting the URL. When the SetCookie event is fired, however, all of the fields of an HTTPCookie are filled out accordingly.

The following fields are available:

Fields

Domain
char* (read-only)

Default Value: ""

The domain of a received cookie. This field contains a domain name to limit the cookie to (if provided by the server). If the server does not provide a domain name, this field will contain an empty string. The convention in this case is to use the server name specified by URLServer as the cookie domain.

Expiration
char* (read-only)

Default Value: ""

An expiration time for the cookie (if provided by the server). The time format used is "Weekday, DD-Mon-YY HH:MM:SS GMT". If the server does not provide an expiration time, this field will contain an empty string. The convention is to drop the cookie at the end of the session.

Name
char*

Default Value: ""

The name of the cookie.

This field, along with Value, stores the cookie that is to be sent to the server. The SetCookie event displays the cookies sent by the server and their properties.

Path
char* (read-only)

Default Value: ""

A path name to limit the cookie to (if provided by the server). If the server does not provide a cookie path, the path field will be an empty string. The convention in this case is to use the path specified by URLPath as the cookie path.

Secure
int (read-only)

Default Value: FALSE

The security flag of the received cookie. This field specifies whether the cookie is secure. If the value of this field is True, the cookie value must be submitted only through a secure (HTTPS) connection.

Value
char*

Default Value: ""

The value of the cookie. A corresponding value is associated with the cookie specified by Name. This property holds that value.

The SetCookie event provides the cookies set by the server.

Constructors

HTTPCookie()
HTTPCookie(const char* lpszName, const char* lpszValue)

MDNReceipt Type

The complete MDN Receipt returned by the receiver.

Syntax

IPWorksEDIMDNReceipt (declared in ipworksedi.h)

Remarks

The complete MDN Receipt contains the Message Disposition Notification (MDN) and an optional signature.

The following fields are available:

Fields

Content
char*

Default Value: ""

This contains the entire content of the MDN Receipt. This is a multipart/report entity consisting of a machine readable MDN (Message Disposition Notification) and a human readable Message, which itself may be embedded in a multipart/signed entity if requested by the AS2 sender.

HeaderCount
int (read-only)

Default Value: 0

The number of headers in the MDN.

HeaderField
char* (read-only)

Default Value: ""

The field name of the MDN header currently selected by HeaderIndex.

HeaderIndex
int

Default Value: 0

Which MDN header is currently selected to populate HeaderField and HeaderValue.

Valid values are 0 to HeaderCount - 1.

Headers
char*

Default Value: ""

Headers contains all of the headers of the AS2 MDN Receipt as a single string. This will include headers such as AS2-From, AS2-To, Date, Content-Type, etc. In an AS2Sender, these will also contain the transport headers of the MDN Receipt (HTTP or SMTP headers, depending on the delivery option).

You can also use HeaderCount, HeaderIndex, HeaderField, and HeaderValue to easily iterate through each individual header.

HeaderValue
char* (read-only)

Default Value: ""

The value of the MDN header currently selected by HeaderIndex.

MDN
char* (read-only)

Default Value: ""

MDN will contain the entire machine readable text of the Message Disposition Notification in the receipt. It will report either success or failure depending on the processing status of the receiver. In either case, it will be RFC-compliant.

Message
char* (read-only)

Default Value: ""

The human-readable portion of the MDN receipt.

The human-readable portion of the MDN receipt that indicates the status of the message processing. This can be used to provide the user with a helpful message in the event that an error is encountered.

MICValue
char* (read-only)

Default Value: ""

The Message Integrity Check(s) (one-way hash) of the original EDI message.

An MDN Receipt contains a MIC calculated over the EDI message that the receipt is in response to, to be matched on the sender side against a saved value for the original request to ensure that the integrity of the data that the receiver reports is preserved. When a signed receipt is requested, the MIC is be calculated using the algorithm used on the incoming message's signature, or SHA-1 if the incoming message is not signed.

The MIC will be base64 encoded and reported with the algorithm name as specified in RFC 3335; e.g., "w7AguNJEmhF/qIjJw6LnnA==, md5".

SigningProtocol
char* (read-only)

Default Value: ""

This field contains the MIME type of the signature used, if any (i.e., "application/pkcs7-signature"), to create this MDNReceipt. It will contain an empty string if the receipt is unsigned.

Constructors

MDNReceipt()
MDNReceipt(const char* lpszHeaders, const char* lpContent, int lenContent)

Proxy Type

The proxy the component will connect to.

Syntax

IPWorksEDIProxy (declared in ipworksedi.h)

Remarks

When connecting through a proxy, this type is used to specify different properties of the proxy, such as the Server and the AuthScheme.

The following fields are available:

Fields

AuthScheme
int

Default Value: 0

The type of authorization to perform when connecting to the proxy. This is used only when the User and Password fields are set.

AuthScheme should be set to authNone (3) when no authentication is expected.

By default, AuthScheme is authBasic (0), and if the User and Password fields are set, the class will attempt basic authentication.

If AuthScheme is set to authDigest (1), digest authentication will be attempted instead.

If AuthScheme is set to authProprietary (2), then the authorization token will not be generated by the class. Look at the configuration file for the class being used to find more information about manually setting this token.

If AuthScheme is set to authNtlm (4), NTLM authentication will be used.

For security reasons, setting this field will clear the values of User and Password.

AutoDetect
int

Default Value: FALSE

Whether to automatically detect and use proxy system settings, if available. The default value is false.

Password
char*

Default Value: ""

A password if authentication is to be used for the proxy.

If AuthScheme is set to Basic Authentication, the User and Password fields are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If AuthScheme is set to Digest Authentication, the User and Password fields are used to respond to the Digest Authentication challenge from the server.

If AuthScheme is set to NTLM Authentication, the User and Password fields are used to authenticate through NTLM negotiation.

Port
int

Default Value: 80

The Transmission Control Protocol (TCP) port for the proxy Server (default 80). See the description of the Server field for details.

Server
char*

Default Value: ""

If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.

If the Server field is set to a domain name, a DNS request is initiated. Upon successful termination of the request, the Server field is set to the corresponding address. If the search is not successful, an error is returned.

SSL
int

Default Value: 0

When to use a Secure Sockets Layer (SSL) for the connection to the proxy. The applicable values are as follows:

psAutomatic (0)Default setting. If the URL is an https URL, the class will use the psTunnel option. If the URL is an http URL, the class will use the psNever option.
psAlways (1)The connection is always SSL-enabled.
psNever (2)The connection is not SSL-enabled.
psTunnel (3)The connection is made through a tunneling (HTTP) proxy.

User
char*

Default Value: ""

A username if authentication is to be used for the proxy.

If AuthScheme is set to Basic Authentication, the User and Password fields are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If AuthScheme is set to Digest Authentication, the User and Password fields are used to respond to the Digest Authentication challenge from the server.

If AuthScheme is set to NTLM Authentication, the User and Password fields are used to authenticate through NTLM negotiation.

Constructors

Proxy()
Proxy(const char* lpszServer, int iPort)
Proxy(const char* lpszServer, int iPort, const char* lpszUser, const char* lpszPassword)

IPWorksEDIList Type

Syntax

IPWorksEDIList<T> (declared in ipworksedi.h)

Remarks

IPWorksEDIList is a generic class that is used to hold a collection of objects of type T, where T is one of the custom types supported by the AS2Sender class.

Methods

GetCount This method returns the current size of the collection.

int GetCount() {}

SetCount This method sets the size of the collection. This method returns 0 if setting the size was successful; or -1 if the collection is ReadOnly. When adding additional objects to a collection call this method to specify the new size. Increasing the size of the collection preserves existing objects in the collection.

int SetCount(int count) {}

Get This method gets the item at the specified position. The index parameter specifies the index of the item in the collection. This method returns NULL if an invalid index is specified.

T* Get(int index) {}

Set This method sets the item at the specified position. The index parameter specifies the index of the item in the collection that is being set. This method returns -1 if an invalid index is specified. Note: Objects created using the new operator must be freed using the delete operator; they will not be automatically freed by the class.

T* Set(int index, T* value) {}

Config Settings (AS2Sender Class)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

AS2Sender Config Settings

AllowMDNWarnings:   Whether to fail on MDN warnings.

When processing MDNs this setting determines if the class throws an exception when a MDN warning is processed. By default this value is False and MDN warnings other than duplicate files warnings will result in an exception. If set to True all MDN warnings will be allowed and processing will continue as normal. Check MDNDisposition to process the warning manually in this case.

Authorization:   The Authorization string to be sent to the server.

If the Authorization setting contains a non-empty string, an Authorization HTTP request header is added to the request. This header conveys Authorization information to the server.

This setting is provided so that the class can be extended with other security schemes in addition to the authorization schemes already implemented by the class.

The AuthScheme; setting defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time User and Password are set, they are Base64 encoded, and the result is put in the Authorization setting in the form "Basic [encoded-user-password]".

AuthScheme:   The authorization scheme to be used when server authorization is to be performed.

Use the AuthScheme property to tell the component which type of authorization to perform when the User and Password properties are set. Possible values are:

0 (default)Basic
1Digest
2Proprietary
3None
4NTLM
5Negotiate
6OAuth
By default, AuthScheme is Basic (0), and if the User and Password configuration settings are set, the component will attempt basic authentication. If AuthScheme is set to Digest (1), digest authentication will be attempted instead.

For security reasons, setting this value will clear the values of User and Password.

EncodeToTempDir:   Whether to use temporary files when creating messages.

This setting determines if temporary files are used when creating messages. By default this value is not set and messages are created in memory before posting. When working with very large files this can cause substantial memory usage. To avoid memory overhead when working with large files set this to a relative or absolute path to a directory on disk. When Post is called the class will create a file in the specified directory during processing.

IgnoreLoggingErrors:   Whether to ignore errors that occur when writing to the log.

When this setting is enabled (default False), any errors that occur while writing to log files will be ignored, and no exception will be thrown. Note that this may cause logs to be incomplete or missing without any indication that an issue occurred.

IncludeHeaders:   Whether headers are included when posting to a file.

This setting determines if headers are included in the file when using PostToFile. By default this value is true. When set to False headers are not included in the content written to the file. When set to False this also allows data to be streamed directly to the file specified by PostToFile without any substantial memory overhead or the use of EncodeToTempDir. After posting to a file check the MessageHeaders to obtain the headers. This setting should only be used when PostToFile is set.

LogDebug:   Whether to log debug data.

This setting specifies whether to log debug data. When set to True the class will create additional files in the LogDirectory. The default value is False.

When sending, files with extensions ".input", ".sign", ".compress", and ".encrypt" may be created. When receiving, files with extensions ".input", ".verify", ".decompress", and ".decrypt" may be created.

LogFilename:   The base name of the log file.

If set, this will be used as for the filename of the log file.

Note that only the base name should be specified as the component will append the appropriate file extension.

LogOptions:   The information to be written to log files.

When LogDirectory is set, several pieces of information are written to log files in the specified directory. Set LogOptions to one or more of the following values to control what information is written to file. When specifying multiple values, include them in the same string (i.e. "LogOptions=Status, Response, Payload"):

StatusContains information on applied security options and pass/fail status of transmission
RequestContains outgoing transmission, with applied security options
PayloadContains log of unsecured payload prior to transmission
ResponseFor synchronous requests or asynchronous receipts verified with VerifyReceipt, contains MDN receipt, if sent. For asynchronous requests, contains server acknowledgement.
ErrorsA separate file with a .err extension is written when an error is encountered.
AllAll of the above

MDNDisposition:   Returns the Disposition header of the MDN.

This setting returns the Disposition header value from the MDN.

MessageHeaders:   Returns the headers of the message.

This setting returns the headers of the generated message when IncludeHeaders is False and PostToFile is set. It should not be used in any other cases.

NormalizeMIC:   Whether to normalize line endings before calculating the MIC.

This setting determines whether to normalize line endings before signature verification.

In most cases the signature is verified by calculating a Message Integrity Check (MIC) over the exact data that is received. In some cases other software such as Mendelson AS2 may calculate signatures over a version of the data with normalized line endings. During processing attempts to verify a signature that was created in this manner may lead to one of the following errors:

  • Unable to verify content integrity: Message digest mismatch in signature.
  • The receipt signature could not be verified: Message digest mismatch in signature.

If one of the errors above is encountered and the received data is expected to be otherwise correct setting this setting to True may resolve the issue by normalizing line endings before verifying the signature.

Note: This should only be set to True if there is a specific reason to do so.

OAEPMGF1HashAlgorithm:   The MGF1 hash algorithm used when encrypting a key.

When UseOAEP is True, this algorithm specifies the MGF1 hash algorithm used for the encryption key by RSA OAEP. Possible values are:

  • "SHA1"
  • "SHA224"
  • "SHA256" (default)
  • "SHA384"
  • "SHA512"

Note: An empty string value indicates that the algorithm specified by OAEPRSAHashAlgorithm is used as the RSA hash algorithm as well.

OAEPParams:   The hex encoded OAEP parameters to be used when encrypting a key.

This setting is optional and should only be specified if OAEP parameters need to be explicitly set. The value specified should be a hex string. By default this setting is unspecified.

OAEPRSAHashAlgorithm:   The RSA hash algorithm used when encrypting a key.

When UseOAEP is True, this algorithm specifies the RSA hash algorithm used for the encryption key. This may differ from the hash algorithm used to sign the AS4 message content. Possible values are:

  • "SHA1"
  • "SHA224"
  • "SHA256" (default)
  • "SHA384"
  • "SHA512"
Password:   A password if authentication is to be used.

If AuthScheme is set to Basic, the User and Password are Base64 encoded and the result is put in the Authorization configuration setting in the form "Basic [encoded-user-password]".

If AuthScheme is set to Digest, the User and Password properties are used to respond to the HTTP Digest Authentication challenge from the server.

The User and Password properties must be set only after the URL property is set. When the URL property is set, for security reasons, User and Password are immediately cleared.

PostToFile:   Creates the message on disk.

This setting allows for the message to be created on disk without actually being sent. This is useful in certain situations to prepare the message where it is sent by a different transport mechanism at a later time. This should be set to a relative or absolute file path including the filename. When this is set the class will immediately start processing the message and writing to the specified file.

RequiredSignatureAlgorithms:   Specifies a list of acceptable signature algorithms.

This setting specifies a comma separated list of allowed signature algorithms used in messages verified by the class. By default the setting is empty and any signature algorithm is supported. To restrict the algorithms to one or more values set this setting to a comma separated list. For instance sha1,sha256.

User:   A user name if authentication is to be used.

If AuthScheme is set to Basic, the User and Password are Base64 encoded and the result is put in the Authorization configuration setting in the form "Basic [encoded-user-password]".

If AuthScheme is set to Digest, the User and Password properties are used to respond to the HTTP Digest Authentication challenge from the server.

The User and Password properties must be set only after the URL property is set. When the URL property is set, for security reasons, User and Password are immediately cleared.

HTTP Config Settings

AcceptEncoding:   Used to tell the server which types of content encodings the client supports.

When AllowHTTPCompression is True, the class adds an Accept-Encoding header to the request being sent to the server. By default, this header's value is "gzip, deflate". This configuration setting allows you to change the value of the Accept-Encoding header. Note: The class only supports gzip and deflate decompression algorithms.

AllowHTTPCompression:   This property enables HTTP compression for receiving data.

This configuration setting enables HTTP compression for receiving data. When set to True (default), the class will accept compressed data. It then will uncompress the data it has received. The class will handle data compressed by both gzip and deflate compression algorithms.

When True, the class adds an Accept-Encoding header to the outgoing request. The value for this header can be controlled by the AcceptEncoding configuration setting. The default value for this header is "gzip, deflate".

The default value is True.

AllowHTTPFallback:   Whether HTTP/2 connections are permitted to fallback to HTTP/1.1.

This configuration setting controls whether HTTP/2 connections are permitted to fall back to HTTP/1.1 when the server does not support HTTP/2. This setting is applicable only when HTTPVersion is set to "2.0".

If set to True (default), the class will automatically use HTTP/1.1 if the server does not support HTTP/2. If set to False, the class fails with an error if the server does not support HTTP/2.

The default value is True.

Append:   Whether to append data to LocalFile.

This configuration setting determines whether data will be appended when writing to LocalFile. When set to True, downloaded data will be appended to LocalFile. This may be used in conjunction with Range to resume a failed download. This is applicable only when LocalFile is set. The default value is False.

Authorization:   The Authorization string to be sent to the server.

If the Authorization property contains a nonempty string, an Authorization HTTP request header is added to the request. This header conveys Authorization information to the server.

This property is provided so that the HTTP class can be extended with other security schemes in addition to the authorization schemes already implemented by the class.

The AuthScheme property defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time User and Password are set, they are Base64 encoded, and the result is put in the Authorization property in the form "Basic [encoded-user-password]".

BytesTransferred:   Contains the number of bytes transferred in the response data.

This configuration setting returns the raw number of bytes from the HTTP response data, before the component processes the data, whether it is chunked or compressed. This returns the same value as the Transfer event, by BytesTransferred.

ChunkSize:   Specifies the chunk size in bytes when using chunked encoding.

This is applicable only when UseChunkedEncoding is True. This setting specifies the chunk size in bytes to be used when posting data. The default value is 16384.

CompressHTTPRequest:   Set to true to compress the body of a PUT or POST request.

If set to True, the body of a PUT or POST request will be compressed into gzip format before sending the request. The "Content-Encoding" header is also added to the outgoing request.

The default value is False.

EncodeURL:   If set to True the URL will be encoded by the class.

If set to True, the URL passed to the class will be URL encoded. The default value is False.

FollowRedirects:   Determines what happens when the server issues a redirect.

This option determines what happens when the server issues a redirect. Normally, the class returns an error if the server responds with an "Object Moved" message. If this property is set to 1 (always), the new URL for the object is retrieved automatically every time.

If this property is set to 2 (Same Scheme), the new URL is retrieved automatically only if the URL Scheme is the same; otherwise, the class fails with an error.

Note: Following the HTTP specification, unless this option is set to 1 (Always), automatic redirects will be performed only for GET or HEAD requests. Other methods potentially could change the conditions of the initial request and create security vulnerabilities.

Furthermore, if either the new URL server or port are different from the existing one, User and Password are also reset to empty, unless this property is set to 1 (Always), in which case the same credentials are used to connect to the new server.

A Redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the Redirect event is a good place to set properties related to the new connection (e.g., new authentication parameters).

The default value is 0 (Never). In this case, redirects are never followed, and the class fails with an error instead.

Following are the valid options:

  • 0 - Never
  • 1 - Always
  • 2 - Same Scheme

GetOn302Redirect:   If set to True the class will perform a GET on the new location.

The default value is False. If set to True, the class will perform a GET on the new location. Otherwise, it will use the same HTTP method again.

HTTP2HeadersWithoutIndexing:   HTTP2 headers that should not update the dynamic header table with incremental indexing.

HTTP/2 servers maintain a dynamic table of headers and values seen over the course of a connection. Typically, these headers are inserted into the table through incremental indexing (also known as HPACK, defined in RFC 7541). To tell the component not to use incremental indexing for certain headers, and thus not update the dynamic table, set this configuration option to a comma-delimited list of the header names.

HTTPVersion:   The version of HTTP used by the class.

This property specifies the HTTP version used by the class. Possible values are as follows:

  • "1.0"
  • "1.1" (default)
  • "2.0"
  • "3.0"

When using HTTP/2 ("2.0"), additional restrictions apply. Please see the following notes for details.

HTTP/2 Notes

When using HTTP/2, a secure Secure Sockets Layer/Transport Layer Security (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/2 will result in an error.

If the server does not support HTTP/2, the class will automatically use HTTP/1.1 instead. This is done to provide compatibility without the need for any additional settings. To see which version was used, check NegotiatedHTTPVersion after calling a method. The AllowHTTPFallback setting controls whether this behavior is allowed (default) or disallowed.

HTTP/3 Notes

HTTP/3 is supported only in .NET and Java.

When using HTTP/3, a secure (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/3 will result in an error.

IfModifiedSince:   A date determining the maximum age of the desired document.

If this setting contains a nonempty string, an If-Modified-Since HTTP header is added to the request. The value of this header is used to make the HTTP request conditional: if the requested documented has not been modified since the time specified in the field, a copy of the document will not be returned from the server; instead, a 304 (not modified) response will be returned by the server and the component throws an exception

The format of the date value for IfModifiedSince is detailed in the HTTP specs. For example: Sat, 29 Oct 2017 19:43:31 GMT.

KeepAlive:   Determines whether the HTTP connection is closed after completion of the request.

If true, the component will not send the Connection: Close header. The absence of the Connection header indicates to the server that HTTP persistent connections should be used if supported. Note: Not all servers support persistent connections. If false, the connection will be closed immediately after the server response is received.

The default value for KeepAlive is false.

KerberosSPN:   The Service Principal Name for the Kerberos Domain Controller.

If the Service Principal Name on the Kerberos Domain Controller is not the same as the URL that you are authenticating to, the Service Principal Name should be set here.

LogLevel:   The level of detail that is logged.

This configuration setting controls the level of detail that is logged through the Log event. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.

The value 2 (Verbose) logs additional information about the request and response.

The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).

MaxRedirectAttempts:   Limits the number of redirects that are followed in a request.

When FollowRedirects is set to any value other than frNever, the class will follow redirects until this maximum number of redirect attempts are made. The default value is 20.

NegotiatedHTTPVersion:   The negotiated HTTP version.

This configuration setting may be queried after the request is complete to indicate the HTTP version used. When HTTPVersion is set to "2.0" (if the server does not support "2.0"), then the class will fall back to using "1.1" automatically. This setting will indicate which version was used.

OtherHeaders:   Other headers as determined by the user (optional).

This configuration setting can be set to a string of headers to be appended to the HTTP request headers.

The headers must follow the format "header: value" as described in the HTTP specifications. Header lines should be separated by CRLF ("\r\n") .

Use this configuration setting with caution. If this configuration setting contains invalid headers, HTTP requests may fail.

This configuration setting is useful for extending the functionality of the class beyond what is provided.

ProxyAuthorization:   The authorization string to be sent to the proxy server.

This is similar to the Authorization configuration setting, but is used for proxy authorization. If this configuration setting contains a nonempty string, a Proxy-Authorization HTTP request header is added to the request. This header conveys proxy Authorization information to the server. If User and Password are specified, this value is calculated using the algorithm specified by AuthScheme.

ProxyAuthScheme:   The authorization scheme to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyPassword:   A password if authentication is to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyPort:   Port for the proxy server (default 80).

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyServer:   Name or IP address of a proxy server (optional).

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyUser:   A user name if authentication is to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

SentHeaders:   The full set of headers as sent by the client.

This configuration setting returns the complete set of raw headers as sent by the client.

StatusCode:   The status code of the last response from the server.

This configuration setting contains the result code of the last response from the server.

StatusLine:   The first line of the last response from the server.

This setting contains the first line of the last response from the server. The format of the line will be [HTTP version] [Result Code] [Description].

TransferredData:   The contents of the last response from the server.

This configuration setting contains the contents of the last response from the server.

TransferredDataLimit:   The maximum number of incoming bytes to be stored by the class.

If TransferredDataLimit is set to 0 (default), no limits are imposed. Otherwise, this reflects the maximum number of incoming bytes that can be stored by the class.

TransferredHeaders:   The full set of headers as received from the server.

This configuration setting returns the complete set of raw headers as received from the server.

TransferredRequest:   The full request as sent by the client.

This configuration setting returns the full request as sent by the client. For performance reasons, the request is not normally saved. Set this configuration setting to ON before making a request to enable it. Following are examples of this request:

.NET Http http = new Http(); http.Config("TransferredRequest=on"); http.PostData = "body"; http.Post("http://someserver.com"); Console.WriteLine(http.Config("TransferredRequest")); C++ HTTP http; http.Config("TransferredRequest=on"); http.SetPostData("body", 5); http.Post("http://someserver.com"); printf("%s\r\n", http.Config("TransferredRequest"));

UseChunkedEncoding:   Enables or Disables HTTP chunked encoding for transfers.

If UseChunkedEncoding is set to True, the class will use HTTP-chunked encoding when posting, if possible. HTTP-chunked encoding allows large files to be sent in chunks instead of all at once. If set to False, the class will not use HTTP-chunked encoding. The default value is False.

Note: Some servers (such as the ASP.NET Development Server) may not support chunked encoding.

UseIDNs:   Whether to encode hostnames to internationalized domain names.

This configuration setting specifies whether hostnames containing non-ASCII characters are encoded to internationalized domain names. When set to True, if a hostname contains non-ASCII characters, it is encoded using Punycode to an IDN (internationalized domain name).

The default value is False and the hostname will always be used exactly as specified. Note: The CodePage setting must be set to a value capable of interpreting the specified host name. For instance, to specify UTF-8, set CodePage to 65001. In the C++ Edition for Windows, the *W version of the class must be used. For instance, DNSW or HTTPW.

UsePlatformHTTPClient:   Whether or not to use the platform HTTP client.

When using this configuration setting, if True, the component will use the default HTTP client for the platform (URLConnection in Java, WebRequest in .NET, or CFHTTPMessage in Mac/iOS) instead of the internal HTTP implementation. This is important for environments in which direct access to sockets is limited or not allowed (e.g., in the Google AppEngine).

Note: This setting is applicable only to Mac/iOS editions.

UseProxyAutoConfigURL:   Whether to use a Proxy auto-config file when attempting a connection.

This configuration specifies whether the class will attempt to use the Proxy auto-config URL when establishing a connection and AutoDetect is set to True.

When True (default), the class will check for the existence of a Proxy auto-config URL, and if found, will determine the appropriate proxy to use.

UserAgent:   Information about the user agent (browser).

This is the value supplied in the HTTP User-Agent header. The default setting is "IPWorks HTTP Component - www.nsoftware.com".

Override the default with the name and version of your software.

TCPClient Config Settings

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the class will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the class whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

Possible values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the class fails with an error.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveRetryCount:   The number of keep-alive packets to be sent before the remotehost is considered disconnected.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the number of times that the keep-alive packets will be sent before the remote host is considered disconnected. The system default if this value is not specified here is 9.

Note: This configuration setting is only available in the Unix platform. It is not supported in masOS or FreeBSD.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the class binds.

This configuration setting must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When set to True, the socket will send all data that are ready to send at once. When set to False, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this configuration setting is set to False.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the class will use IPv4 exclusively. When set to 1, the class will use IPv6 exclusively. To instruct the class to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are as follows:

0 IPv4 only
1 IPv6 only
2 IPv6 with IPv4 fallback

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this configuration setting controls whether Secure Sockets Layer (SSL) packets should be logged. By default, this configuration setting is False, as it is useful only for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this configuration setting has no effect if SSLProvider is set to Platform.

OpenSSLCADir:   The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g., 9d66eef0.0, 9d66eef0.1). OpenSSL recommends the use of the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCAFile:   Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by the following sequences:

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

Before, between, and after the certificate text is allowed, which can be used, for example, for descriptions of the certificates. Refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCipherList:   A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

OpenSSLPrngSeedData:   The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default, OpenSSL uses the device file "/dev/urandom" to seed the PRNG, and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to True, the class will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the class is the same.

SSLCACertFilePaths:   The paths to CA certificate files on Unix/Linux.

This configuration setting specifies the paths on disk to CA certificate files on Unix/Linux.

The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found, the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.

The default value is as follows:

/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem

SSLCACerts:   A newline separated list of CA certificates to be included when performing an SSL handshake.

When SSLProvider is set to Internal, this configuration setting specifies one or more CA certificates to be included with the SSLCert property. Some servers or clients require the entire chain, including CA certificates, to be presented when performing SSL authentication. The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength is largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.

SSLClientCACerts:   A newline separated list of CA certificates to use during SSL client certificate validation.

This configuration setting is only applicable to server components (e.g., TCPServer) see SSLServerCACerts for client components (e.g., TCPClient). This setting can be used to optionally specify one or more CA certificates to be used when verifying the client certificate that is presented by the client during the SSL handshake when SSLAuthenticateClients is enabled. When verifying the client's certificate, the certificates trusted by the system will be used as part of the verification process. If the client's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the client's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

This configuration setting enables the cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when SSLProvider is set to Platform include the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when SSLProvider is set to Platform include the following:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when SSLProvider is set to Internalinclude the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_ECDH_RSA_WITH_AES_128_CBC_SHA"); Possible values when SSLProvider is set to Internal include the following:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

This configuration setting is used to enable or disable the supported security protocols.

Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default - Client and Server)
TLS1.1768 (Hex 300) (Default - Client)
TLS1 192 (Hex C0) (Default - Client)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.

SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:

By default when TLS 1.3 is enabled, the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions that are designed to run on Windows, SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider), please be aware of the following notes:

  • The platform provider is available only on Windows 11/Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the class when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This configuration setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This configuration setting is false by default, but it can be set to true to enable the extension.

This configuration setting is applicable only when SSLProvider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This configuration setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True, all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This configuration setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the class will only append, it will not overwrite previous values.

Note: This configuration setting is applicable only when SSLProvider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

This configuration setting returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

This configuration setting returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

This configuration setting returns the strength of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

This configuration setting returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be ORed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown certificate authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown certificate authority revocation status.
0x00000800Ignore unknown root revocation status.
0x00008000Allow test root certificate.
0x00004000Trust test root certificate.
0x80000000Ignore non-matching CN (certificate CN non-matching server name).

This functionality is currently not available when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificates to use during SSL server certificate validation.

This configuration setting is only used by client components (e.g., TCPClient) see SSLClientCACerts for server components (e.g., TCPServer). This configuration setting can be used to optionally specify one or more CA certificates to be used when connecting to the server and verifying the server certificate. When verifying the server's certificate, the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This configuration setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the class will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the class fails with an error.

The format of this value is a comma-separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional roundtrip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.

In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This configuration setting holds a comma-separated list of allowed signature algorithms. Possible values include the following:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This configuration setting is applicable only when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. This configuration setting should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method that does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for User Datagram Protocol (UDP) ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g., headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the Transmission Control Protocol (TCP)/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. In some cases, increasing the value of the InBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. In some cases, increasing the value of the OutBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8
The following is a list of valid code page identifiers for Mac OS only:
IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitiveData:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.

This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

ProcessIdleEvents:   Whether the class uses its internal event loop to process events when the main thread is idle.

If set to False, the class will not fire internal idle events. Set this to False to use the class in a background thread on Mac OS. By default, this setting is True.

SelectWaitMillis:   The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.

If there are no events to process when DoEvents is called, the class will wait for the amount of time specified here before returning. The default value is 20.

UseFIPSCompliantAPI:   Tells the class whether or not to use FIPS certified APIs.

When set to true, the class will utilize the underlying operating system's certified APIs. Java editions, regardless of OS, utilize Bouncy Castle Federal Information Processing Standards (FIPS), while all other Windows editions make use of Microsoft security libraries.

FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting that applies to all instances of all classes of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.

For more details, please see the FIPS 140-2 Compliance article.

Note: This setting is applicable only on Windows.

Note: Enabling FIPS compliance requires a special license; please contact sales@nsoftware.com for details.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to false, the class will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.

On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.

To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.

Trappable Errors (AS2Sender Class)

Error Handling (C++)

Call the GetLastErrorCode() method to obtain the last called method's result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. Known error codes are listed below. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

AS2Sender Errors

118   Firewall Error. Error description contains detailed message.
143   Busy performing current action.
151   HTTP protocol error. The error message has the server response.
152   No server specified in URL
153   Specified URL scheme is invalid.
283   No MIME-boundary found.
501   Unable to parse the receipt.
502   The receipt is signed with an unsupported signature format (details follow).
511   Unsupported compression algorithm requested.
521   A Message Integrity Check was requested, but not provided in the MDN.
522   The Message Integrity Check returned in the MDN is incorrect.
523   Unable to parse Message Integrity Check.
524   Unrequested hashing algorithm used (check MDNOptions).
525   The Message ID returned in the MDN does not match.
531   The receipt was unsigned, and a signed receipt was expected.
532   The receipt signature could not be verified.
533   An MDN was expected in the HTTP reply, but was not returned.
600   Failure reported in MDN: Unsupported signing protocol.
601   Failure reported in MDN: Unsupported MIC algorithms.
602   Failure reported in MDN: Other (details follow).
611   Error reported in MDN: Decryption failed.
612   Error reported in MDN: Authentication failed.
613   Error reported in MDN: Could not verify content integrity.
614   Error reported in MDN: Unexpected processing error.
615   Error reported in MDN: Other (details follow).
621   Warning reported in MDN: Authentication failed, processing continued by receiver.
622   Warning reported in MDN: Other (details follow).
831   I/O Error (details follow).

SMIME Errors

10191   Invalid index (RecipientIndex).
10192   Message decoding error (code).
10193   Unexpected message type.
10194   Unsupported hashing/signing algorithm.
10195   The message does not have any signers.
10196   The message signature could not be verified.
10197   Could not locate a suitable decryption certificate.
10198   The signer certificate could not be found.
10199   No signing certificate was supplied for signing the message.
10201   The specified certificate was not the one required.
10202   The specified certificate could not be found.
10221   Could not acquire CSP.
10222   Type validation error.
10223   Unsupported key size.
10224   Unrecognized Content-Type object identifier.
10225   Unrecognized public key format.
10226   No choices specified.
10228   Must specify output stream.
10280   Invalid part index.
10281   Unknown MIME type.
10283   No MIME-boundary found.
10280   Error decoding certificate.