MLLPClient Class
Properties Methods Events Config Settings Errors
The MLLPClient class implements the client side of the Minimal Lower Layer Protocol.
Syntax
MLLPClient
Remarks
The MLLPClient class is used to exchange HL7 data with an MLLP server.
Connecting
To begin using the MLLPClient class, connect to an MLLP server. Connecting is simple, start by setting the SSLEnabled property to True if desired. Then either set the RemoteHost and RemotePort properties before setting the Connected property to True; or simply call the Connect method, passing it the remote host and port values directly.
When the MLLPClient first connects to the server, the Connected event fires. Additional information about the status of the connection can be accessed through the ConnectionStatus event. If the SSLEnabled property is True the SSLServerAuthentication and SSLStatus events will also fire.
Connecting Example
mllpClient.RemoteHost = "MyHostNameOrIP";
mllpClient.RemotePort = 777;
mllpClient.SSLEnabled = true;
mllpClient.Connected = true;
Sending Data
Once connected, specify the HL7 data to send by doing one of the following:
- Set the InputFileName property to the path of a file with HL7 data.
- Set the HL7 data directly to the InputData property.
Once the data has been specified, simply call the Send method to send the HL7 data to the server. Once the server has received the data, it will respond with an acknowledgement, causing the class's AckIn event to fire.
Sending Data Example
mllpClient.InputData = "HL7Data";
mllpClient.Send();
Receiving Data
The MLLPClient class will automatically receive HL7 data sent from the server, and will automatically send an acknowledgement back.
When the MLLPClient class is receiving data, immediately before data transfer begins the StartTransfer event fires. During data transfer, one or more Transfer events will fire. When data transfer is complete, the EndTransfer event fires. Any errors during data delivery will cause the Error event to fire.
Immediately before the client acknowledgement is sent the AckOut event fires. The Accept parameter of this event is used to determine the type of acknowledgement (ACK or NAK) to send back to the server.
HL7 data received by the MLLPClient class will be stored in one of the following ways:
- If an output file path has been set to the OutputFileName property, the data is written to that file.
- Otherwise, the data is stored in the OutputData property.
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
Connected | This property indicates whether the class is connected. |
Firewall | A set of properties related to firewall access. |
InputData | The raw HL7 data to send. |
InputFileName | The path of a file containing HL7 data to send. |
KeepAlive | When True, KEEPALIVE packets are enabled (for long connections). |
LocalHost | The name of the local host or user-assigned IP interface through which connections are initiated or accepted. |
LocalPort | The TCP port in the local host where the class binds. |
OutputData | The raw HL7 data received. |
OutputFileName | The path of a file in which to store received HL7 data. |
RemoteHost | This property includes the address of the remote host. Domain names are resolved to IP addresses. |
RemotePort | This property includes the Transmission Control Protocol (TCP) port in the remote host. |
SSLAcceptServerCert | Instructs the class to unconditionally accept the server certificate that matches the supplied certificate. |
SSLCert | The certificate to be used during Secure Sockets Layer (SSL) negotiation. |
SSLEnabled | This property indicates whether Transport Layer Security/Secure Sockets Layer (TLS/SSL) is enabled. |
SSLServerCert | The server certificate for the last established connection. |
Timeout | This property includes the timeout for the class. |
Version | The MLLP version to use. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
Connect | This method connects to a remote host. |
Disconnect | This method disconnects from the remote host. |
DoEvents | This method processes events from the internal message queue. |
Interrupt | This method interrupts the current action. |
Reset | This method will reset the class. |
Send | Sends HL7 data to the MLLP server. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
AckIn | Fires immediately after receiving an acknowledgement from the server. |
AckOut | Fires immediately before sending an acknowledgement to the server. |
Connected | Fired immediately after a connection completes (or fails). |
ConnectionStatus | Fired to indicate changes in the connection state. |
Disconnected | Fired when a connection is closed. |
EndTransfer | Fires after incoming HL7 data finishes transferring. |
Error | Fired when information is available about errors during data delivery. |
Log | Provides logging information. |
SSLServerAuthentication | Fired after the server presents its certificate to the client. |
SSLStatus | Fired when secure connection progress messages are available. |
StartTransfer | Fires before incoming HL7 data begins transferring. |
Transfer | Fires during incoming data transfer. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
ACKChar | The positive acknowledgement character. |
EndBlockChar | The character that denotes the end of HL7 data. |
EOLChar | The character that denotes the end of a message block. |
LogLevel | The level of detail that is logged. |
NAKChar | The negative acknowledgement character. |
ReceiveTimeout | Maximum number of seconds to wait after receiving a StartBlockChar. |
StartBlockChar | The character that denotes the beginning of HL7 data. |
ConnectionTimeout | Sets a separate timeout value for establishing a connection. |
FirewallAutoDetect | Tells the class whether or not to automatically detect and use firewall system settings, if available. |
FirewallHost | Name or IP address of firewall (optional). |
FirewallPassword | Password to be used if authentication is to be used when connecting through the firewall. |
FirewallPort | The TCP port for the FirewallHost;. |
FirewallType | Determines the type of firewall to connect through. |
FirewallUser | A user name if authentication is to be used connecting through a firewall. |
KeepAliveInterval | The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received. |
KeepAliveRetryCount | The number of keep-alive packets to be sent before the remotehost is considered disconnected. |
KeepAliveTime | The inactivity time in milliseconds before a TCP keep-alive packet is sent. |
Linger | When set to True, connections are terminated gracefully. |
LingerTime | Time in seconds to have the connection linger. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalPort | The port in the local host where the class binds. |
MaxLineLength | The maximum amount of data to accumulate when no EOL is found. |
MaxTransferRate | The transfer rate limit in bytes per second. |
ProxyExceptionsList | A semicolon separated list of hosts and IPs to bypass when using a proxy. |
TCPKeepAlive | Determines whether or not the keep alive socket option is enabled. |
TcpNoDelay | Whether or not to delay when sending packets. |
UseIPv6 | Whether to use IPv6. |
LogSSLPackets | Controls whether SSL packets are logged when using the internal security API. |
OpenSSLCADir | The path to a directory containing CA certificates. |
OpenSSLCAFile | Name of the file containing the list of CA's trusted by your application. |
OpenSSLCipherList | A string that controls the ciphers to be used by SSL. |
OpenSSLPrngSeedData | The data to seed the pseudo random number generator (PRNG). |
ReuseSSLSession | Determines if the SSL session is reused. |
SSLCACertFilePaths | The paths to CA certificate files on Unix/Linux. |
SSLCACerts | A newline separated list of CA certificates to be included when performing an SSL handshake. |
SSLCipherStrength | The minimum cipher strength used for bulk encryption. |
SSLClientCACerts | A newline separated list of CA certificates to use during SSL client certificate validation. |
SSLEnabledCipherSuites | The cipher suite to be used in an SSL negotiation. |
SSLEnabledProtocols | Used to enable/disable the supported security protocols. |
SSLEnableRenegotiation | Whether the renegotiation_info SSL extension is supported. |
SSLIncludeCertChain | Whether the entire certificate chain is included in the SSLServerAuthentication event. |
SSLKeyLogFile | The location of a file where per-session secrets are written for debugging purposes. |
SSLNegotiatedCipher | Returns the negotiated cipher suite. |
SSLNegotiatedCipherStrength | Returns the negotiated cipher suite strength. |
SSLNegotiatedCipherSuite | Returns the negotiated cipher suite. |
SSLNegotiatedKeyExchange | Returns the negotiated key exchange algorithm. |
SSLNegotiatedKeyExchangeStrength | Returns the negotiated key exchange algorithm strength. |
SSLNegotiatedVersion | Returns the negotiated protocol version. |
SSLSecurityFlags | Flags that control certificate verification. |
SSLServerCACerts | A newline separated list of CA certificates to use during SSL server certificate validation. |
TLS12SignatureAlgorithms | Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal. |
TLS12SupportedGroups | The supported groups for ECC. |
TLS13KeyShareGroups | The groups for which to pregenerate key shares. |
TLS13SignatureAlgorithms | The allowed certificate signature algorithms. |
TLS13SupportedGroups | The supported groups for (EC)DHE key exchange. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
FirewallData | Used to send extra data to the firewall. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitiveData | Whether sensitive data is masked in log messages. |
ProcessIdleEvents | Whether the class uses its internal event loop to process events when the main thread is idle. |
SelectWaitMillis | The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process. |
UseFIPSCompliantAPI | Tells the class whether or not to use FIPS certified APIs. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
Connected Property (MLLPClient Class)
This property indicates whether the class is connected.
Syntax
ANSI (Cross Platform) int GetConnected(); Unicode (Windows) BOOL GetConnected();
int ipworksedi_mllpclient_getconnected(void* lpObj);
bool GetConnected();
Default Value
FALSE
Remarks
This property indicates whether the class is connected to the remote host. Use the Connect and Disconnect methods to manage the connection.
This property is read-only and not available at design time.
Data Type
Boolean
Firewall Property (MLLPClient Class)
A set of properties related to firewall access.
Syntax
IPWorksEDIFirewall* GetFirewall(); int SetFirewall(IPWorksEDIFirewall* val);
int ipworksedi_mllpclient_getfirewallautodetect(void* lpObj);
int ipworksedi_mllpclient_setfirewallautodetect(void* lpObj, int bFirewallAutoDetect);
int ipworksedi_mllpclient_getfirewalltype(void* lpObj);
int ipworksedi_mllpclient_setfirewalltype(void* lpObj, int iFirewallType);
char* ipworksedi_mllpclient_getfirewallhost(void* lpObj);
int ipworksedi_mllpclient_setfirewallhost(void* lpObj, const char* lpszFirewallHost);
char* ipworksedi_mllpclient_getfirewallpassword(void* lpObj);
int ipworksedi_mllpclient_setfirewallpassword(void* lpObj, const char* lpszFirewallPassword);
int ipworksedi_mllpclient_getfirewallport(void* lpObj);
int ipworksedi_mllpclient_setfirewallport(void* lpObj, int iFirewallPort);
char* ipworksedi_mllpclient_getfirewalluser(void* lpObj);
int ipworksedi_mllpclient_setfirewalluser(void* lpObj, const char* lpszFirewallUser);
bool GetFirewallAutoDetect();
int SetFirewallAutoDetect(bool bFirewallAutoDetect); int GetFirewallType();
int SetFirewallType(int iFirewallType); QString GetFirewallHost();
int SetFirewallHost(QString qsFirewallHost); QString GetFirewallPassword();
int SetFirewallPassword(QString qsFirewallPassword); int GetFirewallPort();
int SetFirewallPort(int iFirewallPort); QString GetFirewallUser();
int SetFirewallUser(QString qsFirewallUser);
Remarks
This is a Firewall-type property, which contains fields describing the firewall through which the class will attempt to connect.
Data Type
InputData Property (MLLPClient Class)
The raw HL7 data to send.
Syntax
ANSI (Cross Platform) int GetInputData(char* &lpInputData, int &lenInputData);
int SetInputData(const char* lpInputData, int lenInputData); Unicode (Windows) INT GetInputData(LPSTR &lpInputData, INT &lenInputData);
INT SetInputData(LPCSTR lpInputData, INT lenInputData);
int ipworksedi_mllpclient_getinputdata(void* lpObj, char** lpInputData, int* lenInputData);
int ipworksedi_mllpclient_setinputdata(void* lpObj, const char* lpInputData, int lenInputData);
QByteArray GetInputData();
int SetInputData(QByteArray qbaInputData);
Default Value
""
Remarks
This property is used to specify the HL7 data to send when the Send method is called.
Note that the class checks the following places for input data, in order, when Send is called. Input data is sent from the first place it is found:
- The contents of a file whose path has been set to the InputFileName property.
- The data set to the InputData property.
This property is not available at design time.
Data Type
Binary String
InputFileName Property (MLLPClient Class)
The path of a file containing HL7 data to send.
Syntax
ANSI (Cross Platform) char* GetInputFileName();
int SetInputFileName(const char* lpszInputFileName); Unicode (Windows) LPWSTR GetInputFileName();
INT SetInputFileName(LPCWSTR lpszInputFileName);
char* ipworksedi_mllpclient_getinputfilename(void* lpObj);
int ipworksedi_mllpclient_setinputfilename(void* lpObj, const char* lpszInputFileName);
QString GetInputFileName();
int SetInputFileName(QString qsInputFileName);
Default Value
""
Remarks
This property is used to specify a path to a file whose contents will be sent when the Send method is called.
Note that the class checks the following places for input data, in order, when Send is called. Input data is sent from the first place it is found:
- The contents of a file whose path has been set to the InputFileName property.
- The data set to the InputData property.
This property is not available at design time.
Data Type
String
KeepAlive Property (MLLPClient Class)
When True, KEEPALIVE packets are enabled (for long connections).
Syntax
ANSI (Cross Platform) int GetKeepAlive();
int SetKeepAlive(int bKeepAlive); Unicode (Windows) BOOL GetKeepAlive();
INT SetKeepAlive(BOOL bKeepAlive);
int ipworksedi_mllpclient_getkeepalive(void* lpObj);
int ipworksedi_mllpclient_setkeepalive(void* lpObj, int bKeepAlive);
bool GetKeepAlive();
int SetKeepAlive(bool bKeepAlive);
Default Value
FALSE
Remarks
The KeepAlive enables the SO_KEEPALIVE option on the socket. This option prevents long connections from timing out in case of inactivity.
Note: System Transmission Control Protocol (TCP)/IP stack implementations are not required to support SO_KEEPALIVE.
Data Type
Boolean
LocalHost Property (MLLPClient Class)
The name of the local host or user-assigned IP interface through which connections are initiated or accepted.
Syntax
ANSI (Cross Platform) char* GetLocalHost();
int SetLocalHost(const char* lpszLocalHost); Unicode (Windows) LPWSTR GetLocalHost();
INT SetLocalHost(LPCWSTR lpszLocalHost);
char* ipworksedi_mllpclient_getlocalhost(void* lpObj);
int ipworksedi_mllpclient_setlocalhost(void* lpObj, const char* lpszLocalHost);
QString GetLocalHost();
int SetLocalHost(QString qsLocalHost);
Default Value
""
Remarks
This property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.
In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.
If the class is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).
Note: LocalHost is not persistent. You must always set it in code, and never in the property window.
Data Type
String
LocalPort Property (MLLPClient Class)
The TCP port in the local host where the class binds.
Syntax
ANSI (Cross Platform) int GetLocalPort();
int SetLocalPort(int iLocalPort); Unicode (Windows) INT GetLocalPort();
INT SetLocalPort(INT iLocalPort);
int ipworksedi_mllpclient_getlocalport(void* lpObj);
int ipworksedi_mllpclient_setlocalport(void* lpObj, int iLocalPort);
int GetLocalPort();
int SetLocalPort(int iLocalPort);
Default Value
0
Remarks
This property must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.
Setting this property to 0 (default) enables the system to choose an open port at random. The chosen port will be returned by the LocalPort property after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this property when a connection is active will generate an error.
This property is useful when trying to connect to services that require a trusted port on the client side.
Data Type
Integer
OutputData Property (MLLPClient Class)
The raw HL7 data received.
Syntax
ANSI (Cross Platform) int GetOutputData(char* &lpOutputData, int &lenOutputData); Unicode (Windows) INT GetOutputData(LPSTR &lpOutputData, INT &lenOutputData);
int ipworksedi_mllpclient_getoutputdata(void* lpObj, char** lpOutputData, int* lenOutputData);
QByteArray GetOutputData();
Default Value
""
Remarks
This property holds the raw HL7 data received from the MLLP server.
Note that the class will store output data in one of the following places, choosing the first one that is valid:
- A file whose path has been set to the OutputFileName property.
- The OutputData property.
This property is read-only and not available at design time.
Data Type
Binary String
OutputFileName Property (MLLPClient Class)
The path of a file in which to store received HL7 data.
Syntax
ANSI (Cross Platform) char* GetOutputFileName();
int SetOutputFileName(const char* lpszOutputFileName); Unicode (Windows) LPWSTR GetOutputFileName();
INT SetOutputFileName(LPCWSTR lpszOutputFileName);
char* ipworksedi_mllpclient_getoutputfilename(void* lpObj);
int ipworksedi_mllpclient_setoutputfilename(void* lpObj, const char* lpszOutputFileName);
QString GetOutputFileName();
int SetOutputFileName(QString qsOutputFileName);
Default Value
""
Remarks
This property is used to specify a path to a file in which to store HL7 data received from the MLLP server.
Note that the class will store output data in one of the following places, choosing the first one that is valid:
- A file whose path has been set to the OutputFileName property.
- The OutputData property.
This property is not available at design time.
Data Type
String
RemoteHost Property (MLLPClient Class)
This property includes the address of the remote host. Domain names are resolved to IP addresses.
Syntax
ANSI (Cross Platform) char* GetRemoteHost();
int SetRemoteHost(const char* lpszRemoteHost); Unicode (Windows) LPWSTR GetRemoteHost();
INT SetRemoteHost(LPCWSTR lpszRemoteHost);
char* ipworksedi_mllpclient_getremotehost(void* lpObj);
int ipworksedi_mllpclient_setremotehost(void* lpObj, const char* lpszRemoteHost);
QString GetRemoteHost();
int SetRemoteHost(QString qsRemoteHost);
Default Value
""
Remarks
This property specifies the IP address (IP number in dotted internet format) or the domain name of the remote host. It is set before a connection is attempted and cannot be changed once a connection is established.
If this property is set to a domain name, a DNS request is initiated, and upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, an error is returned.
If the class is configured to use a SOCKS firewall, the value assigned to this property may be preceded with an "*". If this is the case, the host name is passed to the firewall unresolved and the firewall performs the DNS resolution.
Example. Connecting:
TCPClientControl.RemoteHost = "MyHostNameOrIP"
TCPClientControl.RemotePort = 777
TCPClientControl.Connected = true
Data Type
String
RemotePort Property (MLLPClient Class)
This property includes the Transmission Control Protocol (TCP) port in the remote host.
Syntax
ANSI (Cross Platform) int GetRemotePort();
int SetRemotePort(int iRemotePort); Unicode (Windows) INT GetRemotePort();
INT SetRemotePort(INT iRemotePort);
int ipworksedi_mllpclient_getremoteport(void* lpObj);
int ipworksedi_mllpclient_setremoteport(void* lpObj, int iRemotePort);
int GetRemotePort();
int SetRemotePort(int iRemotePort);
Default Value
0
Remarks
This property specifies a service port on the remote host to connect to.
A valid port number (a value between 1 and 65535) is required for the connection to take place. The property must be set before a connection is attempted and cannot be changed once a connection is established. Any attempt to change this property while connected will fail with an error.
Data Type
Integer
SSLAcceptServerCert Property (MLLPClient Class)
Instructs the class to unconditionally accept the server certificate that matches the supplied certificate.
Syntax
IPWorksEDICertificate* GetSSLAcceptServerCert(); int SetSSLAcceptServerCert(IPWorksEDICertificate* val);
char* ipworksedi_mllpclient_getsslacceptservercerteffectivedate(void* lpObj);
char* ipworksedi_mllpclient_getsslacceptservercertexpirationdate(void* lpObj);
char* ipworksedi_mllpclient_getsslacceptservercertextendedkeyusage(void* lpObj);
char* ipworksedi_mllpclient_getsslacceptservercertfingerprint(void* lpObj);
char* ipworksedi_mllpclient_getsslacceptservercertfingerprintsha1(void* lpObj);
char* ipworksedi_mllpclient_getsslacceptservercertfingerprintsha256(void* lpObj);
char* ipworksedi_mllpclient_getsslacceptservercertissuer(void* lpObj);
char* ipworksedi_mllpclient_getsslacceptservercertprivatekey(void* lpObj);
int ipworksedi_mllpclient_getsslacceptservercertprivatekeyavailable(void* lpObj);
char* ipworksedi_mllpclient_getsslacceptservercertprivatekeycontainer(void* lpObj);
char* ipworksedi_mllpclient_getsslacceptservercertpublickey(void* lpObj);
char* ipworksedi_mllpclient_getsslacceptservercertpublickeyalgorithm(void* lpObj);
int ipworksedi_mllpclient_getsslacceptservercertpublickeylength(void* lpObj);
char* ipworksedi_mllpclient_getsslacceptservercertserialnumber(void* lpObj);
char* ipworksedi_mllpclient_getsslacceptservercertsignaturealgorithm(void* lpObj);
int ipworksedi_mllpclient_getsslacceptservercertstore(void* lpObj, char** lpSSLAcceptServerCertStore, int* lenSSLAcceptServerCertStore);
int ipworksedi_mllpclient_setsslacceptservercertstore(void* lpObj, const char* lpSSLAcceptServerCertStore, int lenSSLAcceptServerCertStore);
char* ipworksedi_mllpclient_getsslacceptservercertstorepassword(void* lpObj);
int ipworksedi_mllpclient_setsslacceptservercertstorepassword(void* lpObj, const char* lpszSSLAcceptServerCertStorePassword);
int ipworksedi_mllpclient_getsslacceptservercertstoretype(void* lpObj);
int ipworksedi_mllpclient_setsslacceptservercertstoretype(void* lpObj, int iSSLAcceptServerCertStoreType);
char* ipworksedi_mllpclient_getsslacceptservercertsubjectaltnames(void* lpObj);
char* ipworksedi_mllpclient_getsslacceptservercertthumbprintmd5(void* lpObj);
char* ipworksedi_mllpclient_getsslacceptservercertthumbprintsha1(void* lpObj);
char* ipworksedi_mllpclient_getsslacceptservercertthumbprintsha256(void* lpObj);
char* ipworksedi_mllpclient_getsslacceptservercertusage(void* lpObj);
int ipworksedi_mllpclient_getsslacceptservercertusageflags(void* lpObj);
char* ipworksedi_mllpclient_getsslacceptservercertversion(void* lpObj);
char* ipworksedi_mllpclient_getsslacceptservercertsubject(void* lpObj);
int ipworksedi_mllpclient_setsslacceptservercertsubject(void* lpObj, const char* lpszSSLAcceptServerCertSubject);
int ipworksedi_mllpclient_getsslacceptservercertencoded(void* lpObj, char** lpSSLAcceptServerCertEncoded, int* lenSSLAcceptServerCertEncoded);
int ipworksedi_mllpclient_setsslacceptservercertencoded(void* lpObj, const char* lpSSLAcceptServerCertEncoded, int lenSSLAcceptServerCertEncoded);
QString GetSSLAcceptServerCertEffectiveDate(); QString GetSSLAcceptServerCertExpirationDate(); QString GetSSLAcceptServerCertExtendedKeyUsage(); QString GetSSLAcceptServerCertFingerprint(); QString GetSSLAcceptServerCertFingerprintSHA1(); QString GetSSLAcceptServerCertFingerprintSHA256(); QString GetSSLAcceptServerCertIssuer(); QString GetSSLAcceptServerCertPrivateKey(); bool GetSSLAcceptServerCertPrivateKeyAvailable(); QString GetSSLAcceptServerCertPrivateKeyContainer(); QString GetSSLAcceptServerCertPublicKey(); QString GetSSLAcceptServerCertPublicKeyAlgorithm(); int GetSSLAcceptServerCertPublicKeyLength(); QString GetSSLAcceptServerCertSerialNumber(); QString GetSSLAcceptServerCertSignatureAlgorithm(); QByteArray GetSSLAcceptServerCertStore();
int SetSSLAcceptServerCertStore(QByteArray qbaSSLAcceptServerCertStore); QString GetSSLAcceptServerCertStorePassword();
int SetSSLAcceptServerCertStorePassword(QString qsSSLAcceptServerCertStorePassword); int GetSSLAcceptServerCertStoreType();
int SetSSLAcceptServerCertStoreType(int iSSLAcceptServerCertStoreType); QString GetSSLAcceptServerCertSubjectAltNames(); QString GetSSLAcceptServerCertThumbprintMD5(); QString GetSSLAcceptServerCertThumbprintSHA1(); QString GetSSLAcceptServerCertThumbprintSHA256(); QString GetSSLAcceptServerCertUsage(); int GetSSLAcceptServerCertUsageFlags(); QString GetSSLAcceptServerCertVersion(); QString GetSSLAcceptServerCertSubject();
int SetSSLAcceptServerCertSubject(QString qsSSLAcceptServerCertSubject); QByteArray GetSSLAcceptServerCertEncoded();
int SetSSLAcceptServerCertEncoded(QByteArray qbaSSLAcceptServerCertEncoded);
Remarks
If it finds any issues with the certificate presented by the server, the class will normally terminate the connection with an error.
You may override this behavior by supplying a value for SSLAcceptServerCert. If the certificate supplied in SSLAcceptServerCert is the same as the certificate presented by the server, then the server certificate is accepted unconditionally, and the connection will continue normally.
Note: This functionality is provided only for cases in which you otherwise know that you are communicating with the right server. If used improperly, this property may create a security breach. Use it at your own risk.
Data Type
SSLCert Property (MLLPClient Class)
The certificate to be used during Secure Sockets Layer (SSL) negotiation.
Syntax
IPWorksEDICertificate* GetSSLCert(); int SetSSLCert(IPWorksEDICertificate* val);
char* ipworksedi_mllpclient_getsslcerteffectivedate(void* lpObj);
char* ipworksedi_mllpclient_getsslcertexpirationdate(void* lpObj);
char* ipworksedi_mllpclient_getsslcertextendedkeyusage(void* lpObj);
char* ipworksedi_mllpclient_getsslcertfingerprint(void* lpObj);
char* ipworksedi_mllpclient_getsslcertfingerprintsha1(void* lpObj);
char* ipworksedi_mllpclient_getsslcertfingerprintsha256(void* lpObj);
char* ipworksedi_mllpclient_getsslcertissuer(void* lpObj);
char* ipworksedi_mllpclient_getsslcertprivatekey(void* lpObj);
int ipworksedi_mllpclient_getsslcertprivatekeyavailable(void* lpObj);
char* ipworksedi_mllpclient_getsslcertprivatekeycontainer(void* lpObj);
char* ipworksedi_mllpclient_getsslcertpublickey(void* lpObj);
char* ipworksedi_mllpclient_getsslcertpublickeyalgorithm(void* lpObj);
int ipworksedi_mllpclient_getsslcertpublickeylength(void* lpObj);
char* ipworksedi_mllpclient_getsslcertserialnumber(void* lpObj);
char* ipworksedi_mllpclient_getsslcertsignaturealgorithm(void* lpObj);
int ipworksedi_mllpclient_getsslcertstore(void* lpObj, char** lpSSLCertStore, int* lenSSLCertStore);
int ipworksedi_mllpclient_setsslcertstore(void* lpObj, const char* lpSSLCertStore, int lenSSLCertStore);
char* ipworksedi_mllpclient_getsslcertstorepassword(void* lpObj);
int ipworksedi_mllpclient_setsslcertstorepassword(void* lpObj, const char* lpszSSLCertStorePassword);
int ipworksedi_mllpclient_getsslcertstoretype(void* lpObj);
int ipworksedi_mllpclient_setsslcertstoretype(void* lpObj, int iSSLCertStoreType);
char* ipworksedi_mllpclient_getsslcertsubjectaltnames(void* lpObj);
char* ipworksedi_mllpclient_getsslcertthumbprintmd5(void* lpObj);
char* ipworksedi_mllpclient_getsslcertthumbprintsha1(void* lpObj);
char* ipworksedi_mllpclient_getsslcertthumbprintsha256(void* lpObj);
char* ipworksedi_mllpclient_getsslcertusage(void* lpObj);
int ipworksedi_mllpclient_getsslcertusageflags(void* lpObj);
char* ipworksedi_mllpclient_getsslcertversion(void* lpObj);
char* ipworksedi_mllpclient_getsslcertsubject(void* lpObj);
int ipworksedi_mllpclient_setsslcertsubject(void* lpObj, const char* lpszSSLCertSubject);
int ipworksedi_mllpclient_getsslcertencoded(void* lpObj, char** lpSSLCertEncoded, int* lenSSLCertEncoded);
int ipworksedi_mllpclient_setsslcertencoded(void* lpObj, const char* lpSSLCertEncoded, int lenSSLCertEncoded);
QString GetSSLCertEffectiveDate(); QString GetSSLCertExpirationDate(); QString GetSSLCertExtendedKeyUsage(); QString GetSSLCertFingerprint(); QString GetSSLCertFingerprintSHA1(); QString GetSSLCertFingerprintSHA256(); QString GetSSLCertIssuer(); QString GetSSLCertPrivateKey(); bool GetSSLCertPrivateKeyAvailable(); QString GetSSLCertPrivateKeyContainer(); QString GetSSLCertPublicKey(); QString GetSSLCertPublicKeyAlgorithm(); int GetSSLCertPublicKeyLength(); QString GetSSLCertSerialNumber(); QString GetSSLCertSignatureAlgorithm(); QByteArray GetSSLCertStore();
int SetSSLCertStore(QByteArray qbaSSLCertStore); QString GetSSLCertStorePassword();
int SetSSLCertStorePassword(QString qsSSLCertStorePassword); int GetSSLCertStoreType();
int SetSSLCertStoreType(int iSSLCertStoreType); QString GetSSLCertSubjectAltNames(); QString GetSSLCertThumbprintMD5(); QString GetSSLCertThumbprintSHA1(); QString GetSSLCertThumbprintSHA256(); QString GetSSLCertUsage(); int GetSSLCertUsageFlags(); QString GetSSLCertVersion(); QString GetSSLCertSubject();
int SetSSLCertSubject(QString qsSSLCertSubject); QByteArray GetSSLCertEncoded();
int SetSSLCertEncoded(QByteArray qbaSSLCertEncoded);
Remarks
This property includes the digital certificate that the class will use during SSL negotiation. Set this property to a valid certificate before starting SSL negotiation. To set a certificate, you may set the Encoded field to the encoded certificate. To select a certificate, use the store and subject fields.
Data Type
SSLEnabled Property (MLLPClient Class)
This property indicates whether Transport Layer Security/Secure Sockets Layer (TLS/SSL) is enabled.
Syntax
ANSI (Cross Platform) int GetSSLEnabled();
int SetSSLEnabled(int bSSLEnabled); Unicode (Windows) BOOL GetSSLEnabled();
INT SetSSLEnabled(BOOL bSSLEnabled);
int ipworksedi_mllpclient_getsslenabled(void* lpObj);
int ipworksedi_mllpclient_setsslenabled(void* lpObj, int bSSLEnabled);
bool GetSSLEnabled();
int SetSSLEnabled(bool bSSLEnabled);
Default Value
FALSE
Remarks
This property specifies whether TLS/SSL is enabled in the class. When False (default), the class operates in plaintext mode. When True, TLS/SSL is enabled.
TLS/SSL may also be enabled by setting SSLStartMode. Setting SSLStartMode will automatically update this property value.
This property is not available at design time.
Data Type
Boolean
SSLServerCert Property (MLLPClient Class)
The server certificate for the last established connection.
Syntax
IPWorksEDICertificate* GetSSLServerCert();
char* ipworksedi_mllpclient_getsslservercerteffectivedate(void* lpObj);
char* ipworksedi_mllpclient_getsslservercertexpirationdate(void* lpObj);
char* ipworksedi_mllpclient_getsslservercertextendedkeyusage(void* lpObj);
char* ipworksedi_mllpclient_getsslservercertfingerprint(void* lpObj);
char* ipworksedi_mllpclient_getsslservercertfingerprintsha1(void* lpObj);
char* ipworksedi_mllpclient_getsslservercertfingerprintsha256(void* lpObj);
char* ipworksedi_mllpclient_getsslservercertissuer(void* lpObj);
char* ipworksedi_mllpclient_getsslservercertprivatekey(void* lpObj);
int ipworksedi_mllpclient_getsslservercertprivatekeyavailable(void* lpObj);
char* ipworksedi_mllpclient_getsslservercertprivatekeycontainer(void* lpObj);
char* ipworksedi_mllpclient_getsslservercertpublickey(void* lpObj);
char* ipworksedi_mllpclient_getsslservercertpublickeyalgorithm(void* lpObj);
int ipworksedi_mllpclient_getsslservercertpublickeylength(void* lpObj);
char* ipworksedi_mllpclient_getsslservercertserialnumber(void* lpObj);
char* ipworksedi_mllpclient_getsslservercertsignaturealgorithm(void* lpObj);
int ipworksedi_mllpclient_getsslservercertstore(void* lpObj, char** lpSSLServerCertStore, int* lenSSLServerCertStore);
char* ipworksedi_mllpclient_getsslservercertstorepassword(void* lpObj);
int ipworksedi_mllpclient_getsslservercertstoretype(void* lpObj);
char* ipworksedi_mllpclient_getsslservercertsubjectaltnames(void* lpObj);
char* ipworksedi_mllpclient_getsslservercertthumbprintmd5(void* lpObj);
char* ipworksedi_mllpclient_getsslservercertthumbprintsha1(void* lpObj);
char* ipworksedi_mllpclient_getsslservercertthumbprintsha256(void* lpObj);
char* ipworksedi_mllpclient_getsslservercertusage(void* lpObj);
int ipworksedi_mllpclient_getsslservercertusageflags(void* lpObj);
char* ipworksedi_mllpclient_getsslservercertversion(void* lpObj);
char* ipworksedi_mllpclient_getsslservercertsubject(void* lpObj);
int ipworksedi_mllpclient_getsslservercertencoded(void* lpObj, char** lpSSLServerCertEncoded, int* lenSSLServerCertEncoded);
QString GetSSLServerCertEffectiveDate(); QString GetSSLServerCertExpirationDate(); QString GetSSLServerCertExtendedKeyUsage(); QString GetSSLServerCertFingerprint(); QString GetSSLServerCertFingerprintSHA1(); QString GetSSLServerCertFingerprintSHA256(); QString GetSSLServerCertIssuer(); QString GetSSLServerCertPrivateKey(); bool GetSSLServerCertPrivateKeyAvailable(); QString GetSSLServerCertPrivateKeyContainer(); QString GetSSLServerCertPublicKey(); QString GetSSLServerCertPublicKeyAlgorithm(); int GetSSLServerCertPublicKeyLength(); QString GetSSLServerCertSerialNumber(); QString GetSSLServerCertSignatureAlgorithm(); QByteArray GetSSLServerCertStore(); QString GetSSLServerCertStorePassword(); int GetSSLServerCertStoreType(); QString GetSSLServerCertSubjectAltNames(); QString GetSSLServerCertThumbprintMD5(); QString GetSSLServerCertThumbprintSHA1(); QString GetSSLServerCertThumbprintSHA256(); QString GetSSLServerCertUsage(); int GetSSLServerCertUsageFlags(); QString GetSSLServerCertVersion(); QString GetSSLServerCertSubject(); QByteArray GetSSLServerCertEncoded();
Remarks
This property contains the server certificate for the last established connection.
SSLServerCert is reset every time a new connection is attempted.
This property is read-only.
Data Type
Timeout Property (MLLPClient Class)
This property includes the timeout for the class.
Syntax
ANSI (Cross Platform) int GetTimeout();
int SetTimeout(int iTimeout); Unicode (Windows) INT GetTimeout();
INT SetTimeout(INT iTimeout);
int ipworksedi_mllpclient_gettimeout(void* lpObj);
int ipworksedi_mllpclient_settimeout(void* lpObj, int iTimeout);
int GetTimeout();
int SetTimeout(int iTimeout);
Default Value
60
Remarks
If the Timeout property is set to 0, all operations return immediately, potentially failing with a WOULDBLOCK error if data cannot be sent immediately.
If Timeout is set to a positive value, data is sent in a blocking manner and the class will wait for the operation to complete before returning control. The class will handle any potential WOULDBLOCK errors internally and automatically retry the operation for a maximum of Timeout seconds.
The class will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not freeze and remains responsive.
If Timeout expires, and the operation is not yet complete, the class fails with an error.
Note: By default, all timeouts are inactivity timeouts, that is, the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.
The default value for the Timeout property is 60 seconds.
Data Type
Integer
Version Property (MLLPClient Class)
The MLLP version to use.
Syntax
ANSI (Cross Platform) int GetVersion();
int SetVersion(int iVersion); Unicode (Windows) INT GetVersion();
INT SetVersion(INT iVersion);
Possible Values
MV_VERSION_1(1),
MV_VERSION_2(2)
int ipworksedi_mllpclient_getversion(void* lpObj);
int ipworksedi_mllpclient_setversion(void* lpObj, int iVersion);
int GetVersion();
int SetVersion(int iVersion);
Default Value
2
Remarks
This property specifies the MLLP version the class should use. Valid values are:
- mvVersion1 (1) - MLLP Version 1
- mvVersion2 (2) - MLLP Version 2 (default)
When using MLLP version 1, there are no acknowledgements, so the AckIn and AckOut events will never fire.
This property is not available at design time.
Data Type
Integer
Config Method (MLLPClient Class)
Sets or retrieves a configuration setting.
Syntax
ANSI (Cross Platform) char* Config(const char* lpszConfigurationString); Unicode (Windows) LPWSTR Config(LPCWSTR lpszConfigurationString);
char* ipworksedi_mllpclient_config(void* lpObj, const char* lpszConfigurationString);
QString Config(const QString& qsConfigurationString);
Remarks
Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
Connect Method (MLLPClient Class)
This method connects to a remote host.
Syntax
ANSI (Cross Platform) int Connect(); Unicode (Windows) INT Connect();
int ipworksedi_mllpclient_connect(void* lpObj);
int Connect();
Remarks
This method connects to the remote host specified by RemoteHost and RemotePort.
For instance:
component.RemoteHost = "MyHostNameOrIP";
component.RemotePort = 7777;
component.Connect();
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Disconnect Method (MLLPClient Class)
This method disconnects from the remote host.
Syntax
ANSI (Cross Platform) int Disconnect(); Unicode (Windows) INT Disconnect();
int ipworksedi_mllpclient_disconnect(void* lpObj);
int Disconnect();
Remarks
This method disconnects from the remote host. Calling this method is equivalent to setting the Connected property to False.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
DoEvents Method (MLLPClient Class)
This method processes events from the internal message queue.
Syntax
ANSI (Cross Platform) int DoEvents(); Unicode (Windows) INT DoEvents();
int ipworksedi_mllpclient_doevents(void* lpObj);
int DoEvents();
Remarks
When DoEvents is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Interrupt Method (MLLPClient Class)
This method interrupts the current action.
Syntax
ANSI (Cross Platform) int Interrupt(); Unicode (Windows) INT Interrupt();
int ipworksedi_mllpclient_interrupt(void* lpObj);
int Interrupt();
Remarks
This method interrupts the current action. If you use SendFile to upload a file, the class will run synchronously until the upload is completed. This method will allow you to stop the file from uploading without disconnecting from the host.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Reset Method (MLLPClient Class)
This method will reset the class.
Syntax
ANSI (Cross Platform) int Reset(); Unicode (Windows) INT Reset();
int ipworksedi_mllpclient_reset(void* lpObj);
int Reset();
Remarks
This method will reset the class's properties to their default values.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Send Method (MLLPClient Class)
Sends HL7 data to the MLLP server.
Syntax
ANSI (Cross Platform) int Send(); Unicode (Windows) INT Send();
int ipworksedi_mllpclient_send(void* lpObj);
int Send();
Remarks
The Send method sends the string or byte array in InputData to the specified server. Alternatively, you can set InputFileName to the name of a file with HL7 contents.
Before calling this method, set the RemoteHost and RemotePort properties to the server credentials and Connect or set Connected to True.
Sending Data Example
mllpClient.InputData = "HL7Data";
mllpClient.Send();
If the data was received by the server, the class will receive a response and the AckIn event will fire.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
AckIn Event (MLLPClient Class)
Fires immediately after receiving an acknowledgement from the server.
Syntax
ANSI (Cross Platform) virtual int FireAckIn(MLLPClientAckInEventParams *e);
typedef struct {
int Accepted; int reserved; } MLLPClientAckInEventParams;
Unicode (Windows) virtual INT FireAckIn(MLLPClientAckInEventParams *e);
typedef struct {
BOOL Accepted; INT reserved; } MLLPClientAckInEventParams;
#define EID_MLLPCLIENT_ACKIN 1 virtual INT IPWORKSEDI_CALL FireAckIn(BOOL &bAccepted);
class MLLPClientAckInEventParams { public: bool Accepted(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AckIn(MLLPClientAckInEventParams *e);
// Or, subclass MLLPClient and override this emitter function. virtual int FireAckIn(MLLPClientAckInEventParams *e) {...}
Remarks
This event fires immediately after receiving an acknowledgement (positive or negative) from the MLLP server.
The Accepted parameter reflects whether the acknowledgement is positive (ACK - True) or negative (NAK - False).
Anytime a negative acknowledgement is received, the class will report an error with code 670.
AckOut Event (MLLPClient Class)
Fires immediately before sending an acknowledgement to the server.
Syntax
ANSI (Cross Platform) virtual int FireAckOut(MLLPClientAckOutEventParams *e);
typedef struct {
int Accept; int reserved; } MLLPClientAckOutEventParams;
Unicode (Windows) virtual INT FireAckOut(MLLPClientAckOutEventParams *e);
typedef struct {
BOOL Accept; INT reserved; } MLLPClientAckOutEventParams;
#define EID_MLLPCLIENT_ACKOUT 2 virtual INT IPWORKSEDI_CALL FireAckOut(BOOL &bAccept);
class MLLPClientAckOutEventParams { public: bool Accept(); void SetAccept(bool bAccept); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AckOut(MLLPClientAckOutEventParams *e);
// Or, subclass MLLPClient and override this emitter function. virtual int FireAckOut(MLLPClientAckOutEventParams *e) {...}
Remarks
This event fires immediately before the class sends an acknowledgement to the MLLP server.
The Accept parameter should be set to indicate whether the class should send a positive (ACK - True) or negative (NAK - False) acknowledgement. The default is True.
Connected Event (MLLPClient Class)
Fired immediately after a connection completes (or fails).
Syntax
ANSI (Cross Platform) virtual int FireConnected(MLLPClientConnectedEventParams *e);
typedef struct {
int StatusCode;
const char *Description; int reserved; } MLLPClientConnectedEventParams;
Unicode (Windows) virtual INT FireConnected(MLLPClientConnectedEventParams *e);
typedef struct {
INT StatusCode;
LPCWSTR Description; INT reserved; } MLLPClientConnectedEventParams;
#define EID_MLLPCLIENT_CONNECTED 3 virtual INT IPWORKSEDI_CALL FireConnected(INT &iStatusCode, LPSTR &lpszDescription);
class MLLPClientConnectedEventParams { public: int StatusCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Connected(MLLPClientConnectedEventParams *e);
// Or, subclass MLLPClient and override this emitter function. virtual int FireConnected(MLLPClientConnectedEventParams *e) {...}
Remarks
If the connection is made normally, StatusCode is 0 and Description is "OK".
If the connection fails, StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.
Please refer to the Error Codes section for more information.
ConnectionStatus Event (MLLPClient Class)
Fired to indicate changes in the connection state.
Syntax
ANSI (Cross Platform) virtual int FireConnectionStatus(MLLPClientConnectionStatusEventParams *e);
typedef struct {
const char *ConnectionEvent;
int StatusCode;
const char *Description; int reserved; } MLLPClientConnectionStatusEventParams;
Unicode (Windows) virtual INT FireConnectionStatus(MLLPClientConnectionStatusEventParams *e);
typedef struct {
LPCWSTR ConnectionEvent;
INT StatusCode;
LPCWSTR Description; INT reserved; } MLLPClientConnectionStatusEventParams;
#define EID_MLLPCLIENT_CONNECTIONSTATUS 4 virtual INT IPWORKSEDI_CALL FireConnectionStatus(LPSTR &lpszConnectionEvent, INT &iStatusCode, LPSTR &lpszDescription);
class MLLPClientConnectionStatusEventParams { public: const QString &ConnectionEvent(); int StatusCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void ConnectionStatus(MLLPClientConnectionStatusEventParams *e);
// Or, subclass MLLPClient and override this emitter function. virtual int FireConnectionStatus(MLLPClientConnectionStatusEventParams *e) {...}
Remarks
This event is fired when the connection state changes: for example, completion of a firewall or proxy connection or completion of a security handshake.
The ConnectionEvent parameter indicates the type of connection event. Values may include the following:
Firewall connection complete. | |
Secure Sockets Layer (SSL) or S/Shell handshake complete (where applicable). | |
Remote host connection complete. | |
Remote host disconnected. | |
SSL or S/Shell connection broken. | |
Firewall host disconnected. |
Disconnected Event (MLLPClient Class)
Fired when a connection is closed.
Syntax
ANSI (Cross Platform) virtual int FireDisconnected(MLLPClientDisconnectedEventParams *e);
typedef struct {
int StatusCode;
const char *Description; int reserved; } MLLPClientDisconnectedEventParams;
Unicode (Windows) virtual INT FireDisconnected(MLLPClientDisconnectedEventParams *e);
typedef struct {
INT StatusCode;
LPCWSTR Description; INT reserved; } MLLPClientDisconnectedEventParams;
#define EID_MLLPCLIENT_DISCONNECTED 5 virtual INT IPWORKSEDI_CALL FireDisconnected(INT &iStatusCode, LPSTR &lpszDescription);
class MLLPClientDisconnectedEventParams { public: int StatusCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Disconnected(MLLPClientDisconnectedEventParams *e);
// Or, subclass MLLPClient and override this emitter function. virtual int FireDisconnected(MLLPClientDisconnectedEventParams *e) {...}
Remarks
If the connection is broken normally, StatusCode is 0 and Description is "OK".
If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.
Please refer to the Error Codes section for more information.
EndTransfer Event (MLLPClient Class)
Fires after incoming HL7 data finishes transferring.
Syntax
ANSI (Cross Platform) virtual int FireEndTransfer(MLLPClientEndTransferEventParams *e);
typedef struct { int reserved; } MLLPClientEndTransferEventParams;
Unicode (Windows) virtual INT FireEndTransfer(MLLPClientEndTransferEventParams *e);
typedef struct { INT reserved; } MLLPClientEndTransferEventParams;
#define EID_MLLPCLIENT_ENDTRANSFER 6 virtual INT IPWORKSEDI_CALL FireEndTransfer();
class MLLPClientEndTransferEventParams { public: int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void EndTransfer(MLLPClientEndTransferEventParams *e);
// Or, subclass MLLPClient and override this emitter function. virtual int FireEndTransfer(MLLPClientEndTransferEventParams *e) {...}
Remarks
This event fires after incoming HL7 data finishes transferring, immediately before the AckOut event is fired.
Error Event (MLLPClient Class)
Fired when information is available about errors during data delivery.
Syntax
ANSI (Cross Platform) virtual int FireError(MLLPClientErrorEventParams *e);
typedef struct {
int ErrorCode;
const char *Description; int reserved; } MLLPClientErrorEventParams;
Unicode (Windows) virtual INT FireError(MLLPClientErrorEventParams *e);
typedef struct {
INT ErrorCode;
LPCWSTR Description; INT reserved; } MLLPClientErrorEventParams;
#define EID_MLLPCLIENT_ERROR 7 virtual INT IPWORKSEDI_CALL FireError(INT &iErrorCode, LPSTR &lpszDescription);
class MLLPClientErrorEventParams { public: int ErrorCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Error(MLLPClientErrorEventParams *e);
// Or, subclass MLLPClient and override this emitter function. virtual int FireError(MLLPClientErrorEventParams *e) {...}
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
Log Event (MLLPClient Class)
Provides logging information.
Syntax
ANSI (Cross Platform) virtual int FireLog(MLLPClientLogEventParams *e);
typedef struct {
int LogLevel;
const char *Message;
const char *LogType; int reserved; } MLLPClientLogEventParams;
Unicode (Windows) virtual INT FireLog(MLLPClientLogEventParams *e);
typedef struct {
INT LogLevel;
LPCWSTR Message;
LPCWSTR LogType; INT reserved; } MLLPClientLogEventParams;
#define EID_MLLPCLIENT_LOG 8 virtual INT IPWORKSEDI_CALL FireLog(INT &iLogLevel, LPSTR &lpszMessage, LPSTR &lpszLogType);
class MLLPClientLogEventParams { public: int LogLevel(); const QString &Message(); const QString &LogType(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Log(MLLPClientLogEventParams *e);
// Or, subclass MLLPClient and override this emitter function. virtual int FireLog(MLLPClientLogEventParams *e) {...}
Remarks
This event fires when processing messages and provides logging information. The LogLevel configuration setting specifies the level of detail that is logged.
LogType specifies the type of log message. Possible values are:
- INFO
- VERBOSE
- DEBUG
LogMessage is the log message.
SSLServerAuthentication Event (MLLPClient Class)
Fired after the server presents its certificate to the client.
Syntax
ANSI (Cross Platform) virtual int FireSSLServerAuthentication(MLLPClientSSLServerAuthenticationEventParams *e);
typedef struct {
const char *CertEncoded; int lenCertEncoded;
const char *CertSubject;
const char *CertIssuer;
const char *Status;
int Accept; int reserved; } MLLPClientSSLServerAuthenticationEventParams;
Unicode (Windows) virtual INT FireSSLServerAuthentication(MLLPClientSSLServerAuthenticationEventParams *e);
typedef struct {
LPCSTR CertEncoded; INT lenCertEncoded;
LPCWSTR CertSubject;
LPCWSTR CertIssuer;
LPCWSTR Status;
BOOL Accept; INT reserved; } MLLPClientSSLServerAuthenticationEventParams;
#define EID_MLLPCLIENT_SSLSERVERAUTHENTICATION 9 virtual INT IPWORKSEDI_CALL FireSSLServerAuthentication(LPSTR &lpCertEncoded, INT &lenCertEncoded, LPSTR &lpszCertSubject, LPSTR &lpszCertIssuer, LPSTR &lpszStatus, BOOL &bAccept);
class MLLPClientSSLServerAuthenticationEventParams { public: const QByteArray &CertEncoded(); const QString &CertSubject(); const QString &CertIssuer(); const QString &Status(); bool Accept(); void SetAccept(bool bAccept); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void SSLServerAuthentication(MLLPClientSSLServerAuthenticationEventParams *e);
// Or, subclass MLLPClient and override this emitter function. virtual int FireSSLServerAuthentication(MLLPClientSSLServerAuthenticationEventParams *e) {...}
Remarks
During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.
When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.
SSLStatus Event (MLLPClient Class)
Fired when secure connection progress messages are available.
Syntax
ANSI (Cross Platform) virtual int FireSSLStatus(MLLPClientSSLStatusEventParams *e);
typedef struct {
const char *Message; int reserved; } MLLPClientSSLStatusEventParams;
Unicode (Windows) virtual INT FireSSLStatus(MLLPClientSSLStatusEventParams *e);
typedef struct {
LPCWSTR Message; INT reserved; } MLLPClientSSLStatusEventParams;
#define EID_MLLPCLIENT_SSLSTATUS 10 virtual INT IPWORKSEDI_CALL FireSSLStatus(LPSTR &lpszMessage);
class MLLPClientSSLStatusEventParams { public: const QString &Message(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void SSLStatus(MLLPClientSSLStatusEventParams *e);
// Or, subclass MLLPClient and override this emitter function. virtual int FireSSLStatus(MLLPClientSSLStatusEventParams *e) {...}
Remarks
The event is fired for informational and logging purposes only. This event tracks the progress of the connection.
StartTransfer Event (MLLPClient Class)
Fires before incoming HL7 data begins transferring.
Syntax
ANSI (Cross Platform) virtual int FireStartTransfer(MLLPClientStartTransferEventParams *e);
typedef struct { int reserved; } MLLPClientStartTransferEventParams;
Unicode (Windows) virtual INT FireStartTransfer(MLLPClientStartTransferEventParams *e);
typedef struct { INT reserved; } MLLPClientStartTransferEventParams;
#define EID_MLLPCLIENT_STARTTRANSFER 11 virtual INT IPWORKSEDI_CALL FireStartTransfer();
class MLLPClientStartTransferEventParams { public: int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void StartTransfer(MLLPClientStartTransferEventParams *e);
// Or, subclass MLLPClient and override this emitter function. virtual int FireStartTransfer(MLLPClientStartTransferEventParams *e) {...}
Remarks
This event fires before incoming HL7 data begins transferring.
Transfer Event (MLLPClient Class)
Fires during incoming data transfer.
Syntax
ANSI (Cross Platform) virtual int FireTransfer(MLLPClientTransferEventParams *e);
typedef struct {
int64 BytesTransferred;
const char *Data; int lenData; int reserved; } MLLPClientTransferEventParams;
Unicode (Windows) virtual INT FireTransfer(MLLPClientTransferEventParams *e);
typedef struct {
LONG64 BytesTransferred;
LPCSTR Data; INT lenData; INT reserved; } MLLPClientTransferEventParams;
#define EID_MLLPCLIENT_TRANSFER 12 virtual INT IPWORKSEDI_CALL FireTransfer(LONG64 &lBytesTransferred, LPSTR &lpData, INT &lenData);
class MLLPClientTransferEventParams { public: qint64 BytesTransferred(); const QByteArray &Data(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Transfer(MLLPClientTransferEventParams *e);
// Or, subclass MLLPClient and override this emitter function. virtual int FireTransfer(MLLPClientTransferEventParams *e) {...}
Remarks
This event fires one or more times while incoming data is being transferred.
The BytesTransferred parameter reflects the number of bytes transferred since the beginning of the transfer.
The Data parameter contains the portion of the data being delivered currently.
Certificate Type
This is the digital certificate being used.
Syntax
IPWorksEDICertificate (declared in ipworksedi.h)
Remarks
This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.
Fields
EffectiveDate
char* (read-only)
Default Value: ""
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
ExpirationDate
char* (read-only)
Default Value: ""
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
ExtendedKeyUsage
char* (read-only)
Default Value: ""
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
Fingerprint
char* (read-only)
Default Value: ""
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
FingerprintSHA1
char* (read-only)
Default Value: ""
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
FingerprintSHA256
char* (read-only)
Default Value: ""
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
Issuer
char* (read-only)
Default Value: ""
The issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.
PrivateKey
char* (read-only)
Default Value: ""
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.
PrivateKeyAvailable
int (read-only)
Default Value: FALSE
Whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).
PrivateKeyContainer
char* (read-only)
Default Value: ""
The name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.
PublicKey
char* (read-only)
Default Value: ""
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
PublicKeyAlgorithm
char* (read-only)
Default Value: ""
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
PublicKeyLength
int (read-only)
Default Value: 0
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
SerialNumber
char* (read-only)
Default Value: ""
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
SignatureAlgorithm
char* (read-only)
Default Value: ""
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
Store
char*
Default Value: "MY"
The name of the certificate store for the client certificate.
The StoreType field denotes the type of the certificate store specified by Store. If the store is password-protected, specify the password in StorePassword.
Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
StorePassword
char*
Default Value: ""
If the type of certificate store requires a password, this field is used to specify the password needed to open the certificate store.
StoreType
int
Default Value: 0
The type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This field can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
SubjectAltNames
char* (read-only)
Default Value: ""
Comma-separated lists of alternative subject names for the certificate.
ThumbprintMD5
char* (read-only)
Default Value: ""
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA1
char* (read-only)
Default Value: ""
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA256
char* (read-only)
Default Value: ""
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
Usage
char* (read-only)
Default Value: ""
The text description of UsageFlags.
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
UsageFlags
int (read-only)
Default Value: 0
The flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the Usage field for a text representation of UsageFlags.
This functionality currently is not available when the provider is OpenSSL.
Version
char* (read-only)
Default Value: ""
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
Subject
char*
Default Value: ""
The subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the field is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Encoded
char*
Default Value: ""
The certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.
When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.
Constructors
Certificate()
Creates a instance whose properties can be set. This is useful for use with when generating new certificates.
Certificate(const char* lpEncoded, int lenEncoded)
Parses Encoded as an X.509 public key.
Certificate(int iStoreType, const char* lpStore, int lenStore, const char* lpszStorePassword, const char* lpszSubject)
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.
After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.
Firewall Type
The firewall the component will connect through.
Syntax
IPWorksEDIFirewall (declared in ipworksedi.h)
Remarks
When connecting through a firewall, this type is used to specify different properties of the firewall, such as the firewall Host and the FirewallType.
Fields
AutoDetect
int
Default Value: FALSE
Whether to automatically detect and use firewall system settings, if available.
FirewallType
int
Default Value: 0
The type of firewall to connect through. The applicable values are as follows:
fwNone (0) | No firewall (default setting). |
fwTunnel (1) | Connect through a tunneling proxy. Port is set to 80. |
fwSOCKS4 (2) | Connect through a SOCKS4 Proxy. Port is set to 1080. |
fwSOCKS5 (3) | Connect through a SOCKS5 Proxy. Port is set to 1080. |
fwSOCKS4A (10) | Connect through a SOCKS4A Proxy. Port is set to 1080. |
Host
char*
Default Value: ""
The name or IP address of the firewall (optional). If a Host is given, the requested connections will be authenticated through the specified firewall when connecting.
If this field is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this field is set to the corresponding address. If the search is not successful, the class fails with an error.
Password
char*
Default Value: ""
A password if authentication is to be used when connecting through the firewall. If Host is specified, the User and Password fields are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.
Port
int
Default Value: 0
The Transmission Control Protocol (TCP) port for the firewall Host. See the description of the Host field for details.
Note: This field is set automatically when FirewallType is set to a valid value. See the description of the FirewallType field for details.
User
char*
Default Value: ""
A username if authentication is to be used when connecting through a firewall. If Host is specified, this field and the Password field are used to connect and authenticate to the given Firewall. If the authentication fails, the class fails with an error.
Constructors
Firewall()
Config Settings (MLLPClient Class)
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.MLLPCLIENT Config Settings
0 (None) | No events are logged. |
1 (Info - default) | Informational events are logged. |
2 (Verbose) | Detailed data is logged. |
3 (Debug) | Debug data is logged. |
If the class considers a transmission to have timed out, it will ignore all data received until the next StartBlockChar is received.
TCPClient Config Settings
If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.
0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This value is not applicable in macOS.
Note: This configuration setting is only available in the Unix platform. It is not supported in masOS or FreeBSD.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.
If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.
If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
www.google.com;www.nsoftware.com
Note: This value is not applicable in Java.
By default, this configuration setting is set to False.
0 | IPv4 only |
1 | IPv6 only |
2 | IPv6 with IPv4 fallback |
SSL Config Settings
When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this configuration setting has no effect if SSLProvider is set to Platform.
The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g., 9d66eef0.0, 9d66eef0.1). OpenSSL recommends the use of the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by the following sequences:
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
Before, between, and after the certificate text is allowed, which can be used, for example, for descriptions of the certificates. Refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
By default, OpenSSL uses the device file "/dev/urandom" to seed the PRNG, and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
If set to True, the class will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the class is the same.
The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found, the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.
The default value is as follows:
/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when SSLProvider is set to Platform include the following:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include the following:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_ECDH_RSA_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include the following:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default - Client and Server) |
TLS1.1 | 768 (Hex 300) (Default - Client) |
TLS1 | 192 (Hex C0) (Default - Client) |
SSL3 | 48 (Hex 30) |
SSL2 | 12 (Hex 0C) |
Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.
SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:
By default when TLS 1.3 is enabled, the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions that are designed to run on Windows, SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider), please be aware of the following notes:
- The platform provider is available only on Windows 11/Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the class when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
This configuration setting is applicable only when SSLProvider is set to Internal.
If set to True, all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the class will only append, it will not overwrite previous values.
Note: This configuration setting is applicable only when SSLProvider is set to Internal.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown certificate authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown certificate authority revocation status. |
0x00000800 | Ignore unknown root revocation status. |
0x00008000 | Allow test root certificate. |
0x00004000 | Trust test root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN non-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When specified the class will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the class fails with an error.
The format of this value is a comma-separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.
In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
Socket Config Settings
Note: This option is not valid for User Datagram Protocol (UDP) ports.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting that applies to all instances of all classes of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.
For more details, please see the FIPS 140-2 Compliance article.
Note: This setting is applicable only on Windows.
Note: Enabling FIPS compliance requires a special license; please contact sales@nsoftware.com for details.
Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.
On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.
To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.
Trappable Errors (MLLPClient Class)
Error Handling (C++)
Call the GetLastErrorCode() method to obtain the last called method's result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. Known error codes are listed below. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
MLLPClient Errors
670 | Received a negative acknowledgement. The other party received the message but could not commit the HL7 content to storage. |
671 | Data was invalid. A timeout occurred or the message block was improperly formatted. |
672 | Connection interrupted. A party disconnected while transferring data and the file stream had to be forcibly closed. |
TCPClient Errors
100 | You cannot change the RemotePort at this time. A connection is in progress. |
101 | You cannot change the RemoteHost (Server) at this time. A connection is in progress. |
102 | The RemoteHost address is invalid (0.0.0.0). |
104 | Already connected. If you want to reconnect, close the current connection first. |
106 | You cannot change the LocalPort at this time. A connection is in progress. |
107 | You cannot change the LocalHost at this time. A connection is in progress. |
112 | You cannot change MaxLineLength at this time. A connection is in progress. |
116 | RemotePort cannot be zero. Please specify a valid service port number. |
117 | You cannot change the UseConnection option while the class is active. |
135 | Operation would block. |
201 | Timeout. |
211 | Action impossible in control's present state. |
212 | Action impossible while not connected. |
213 | Action impossible while listening. |
301 | Timeout. |
302 | Could not open file. |
434 | Unable to convert string to selected CodePage. |
1105 | Already connecting. If you want to reconnect, close the current connection first. |
1117 | You need to connect first. |
1119 | You cannot change the LocalHost at this time. A connection is in progress. |
1120 | Connection dropped by remote host. |
TCP/IP Errors
10004 | [10004] Interrupted system call. |
10009 | [10009] Bad file number. |
10013 | [10013] Access denied. |
10014 | [10014] Bad address. |
10022 | [10022] Invalid argument. |
10024 | [10024] Too many open files. |
10035 | [10035] Operation would block. |
10036 | [10036] Operation now in progress. |
10037 | [10037] Operation already in progress. |
10038 | [10038] Socket operation on nonsocket. |
10039 | [10039] Destination address required. |
10040 | [10040] Message is too long. |
10041 | [10041] Protocol wrong type for socket. |
10042 | [10042] Bad protocol option. |
10043 | [10043] Protocol is not supported. |
10044 | [10044] Socket type is not supported. |
10045 | [10045] Operation is not supported on socket. |
10046 | [10046] Protocol family is not supported. |
10047 | [10047] Address family is not supported by protocol family. |
10048 | [10048] Address already in use. |
10049 | [10049] Cannot assign requested address. |
10050 | [10050] Network is down. |
10051 | [10051] Network is unreachable. |
10052 | [10052] Net dropped connection or reset. |
10053 | [10053] Software caused connection abort. |
10054 | [10054] Connection reset by peer. |
10055 | [10055] No buffer space available. |
10056 | [10056] Socket is already connected. |
10057 | [10057] Socket is not connected. |
10058 | [10058] Cannot send after socket shutdown. |
10059 | [10059] Too many references, cannot splice. |
10060 | [10060] Connection timed out. |
10061 | [10061] Connection refused. |
10062 | [10062] Too many levels of symbolic links. |
10063 | [10063] File name is too long. |
10064 | [10064] Host is down. |
10065 | [10065] No route to host. |
10066 | [10066] Directory is not empty |
10067 | [10067] Too many processes. |
10068 | [10068] Too many users. |
10069 | [10069] Disc Quota Exceeded. |
10070 | [10070] Stale NFS file handle. |
10071 | [10071] Too many levels of remote in path. |
10091 | [10091] Network subsystem is unavailable. |
10092 | [10092] WINSOCK DLL Version out of range. |
10093 | [10093] Winsock is not loaded yet. |
11001 | [11001] Host not found. |
11002 | [11002] Nonauthoritative 'Host not found' (try again or check DNS setup). |
11003 | [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP. |
11004 | [11004] Valid name, no data record (check DNS setup). |