AS4Server Class
Properties Methods Events Config Settings Errors
The AS4Server class implements an AS4 / ebHandler.
Syntax
AS4Server
Remarks
The AS4Server class implements server-side processing of AS4 messages. It may be used to receive files form a client (push), respond to a client's request for files (pull), and also handles generating and verifying receipts.
The class is designed to be easily integrated into a HTTP server, such as ASP.NET, but may also be used outside of a web server. The examples below assume the class is used within an environment where there is an HTTP context.
To begin, when a request is received first call ReadRequest. This reads the AS4 request from the content of the Request (and optionally the RequestHeadersString) property. Alternatively the request data may be passed directly to the class by specifying calling SetRequestStream. After calling ReadRequest the following properties may be checked:
- AgreementRef
- AS4From
- AS4To
- ConversationId
- EDIData
- Errors
- IncomingReceipt
- MessageId
- MessageProperties
- MPC
- Service
- ServiceAction
- ServiceType
The first step after calling ReadRequest is to determine if the client is sending files (push) or requesting files (pull).
To determine this check the value of AgreementRef and MPC. For instance:
if (server.AgreementRef == "" && server.MPC != "")
{
//The client is requesting files from the specified MPC
//No other relevant properties are populated
}
else //AgreementRef is not empty, and MPC is empty
{
//The client is sending files. AgreementRef is populated with the agreement reference.
//AS4From, AS4To, ConversationId, etc are populated
}
Determining if the request contains an asynchronous receipt from a previous transmission may also be done at this time by checking the IncomingReceipt property's Content field. If it is populated a receipt is present. To verify the receipt set AsyncReceiptInfoDir to the directory where information about the message was originally stored and call VerifyReceipt. If the receipt is signed SignerCert must also be set. See the section below and also SendFiles for more details.
Once information about the request is determined the class may then be configured to respond appropriately depending on the operation.
Receiving Files and Sending a Receipt
When receiving files first check the AgreementRef, AS4From, and AS4To properties to determine
who is sending the files and with what previously agreed upon configuration. Once this is known, if the request
is signed and encrypted set Certificate to the decryption certificate and SignerCert to the public
certificate used for signature verification. IncomingDirectory may optionally be set to automatically
store the incoming files.
//Process incoming files and send a signed receipt
server.ReadRequest();
//Inspect values from the request in order to load appropriate certificates etc.
//Console.WriteLine(server.AgreementRef);
//Console.WriteLine(server.AS4From.Id);
//Console.WriteLine(server.AS4To.Id);)
server.IncomingDirectory = "..\\MyFiles";
//Our private certificate. Used to decrypt the incoming file
server.Certificate = new Certificate(CertStoreTypes.cstPFXFile, Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyB.pfx"), "password", "*");
//Partner's public certificate. Used to verify the signature on the incoming message and files.
server.SignerCert = new Certificate(Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyA.cer"));
server.ParseRequest();
server.ReceiptReplyMode = As4serverReceiptReplyModes.rrmSync;
//Our private certificate. Used to sign the receipt.
server.SigningCert = new Certificate(CertStoreTypes.cstPFXFile, Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyB.pfx"), "password", "*");
server.SendResponse(); //Sends the receipt
Receiving Files and Sending an Asynchronous Receipt
Receipts may be sent in the response (synchronous) or at a later time (asynchronous). If the agreement specifies that the receipt be sent asynchronously the following steps may be taken to send the receipt.
After calling ReadRequest the ReceiptReplyMode may be set to indicate the receipt will be returned asynchronously. After calling ParseRequest call SendAckResponse to send back a HTTP 200 OK to the client. The receipt may then be returned later.
To send an asynchronous receipt AS4Client may be used. This can be sent to the partner's web site, or bundled with a later response (depending on the agreement made between the parties). In the example below AS4Client is used to send the receipt to the other party's web site.
//Process incoming files and send an asynchronous receipt
server.ReadRequest();
//Inspect values from the request in order to load appropriate certificates etc.
//Console.WriteLine(server.AgreementRef);
//Console.WriteLine(server.AS4From.Id);
//Console.WriteLine(server.AS4To.Id);)
server.IncomingDirectory = "..\\MyFiles";
//Our private certificate. Used to decrypt the incoming file
server.Certificate = new Certificate(CertStoreTypes.cstPFXFile, Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyB.pfx"), "password", "*");
//Partner's public certificate. Used to verify the signature on the incoming message and files.
server.SignerCert = new Certificate(Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyA.cer"));
server.ParseRequest();
server.ReceiptReplyMode = As4serverReceiptReplyModes.rrmAsync;
//Our private certificate. Used to sign the receipt.
server.SigningCert = new Certificate(CertStoreTypes.cstPFXFile, Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyB.pfx"), "password", "*");
server.SendAckResponse(); //Sends an ack, but not the receipt
At this point Receipt is populated with the receipt to be sent. Store the Receipt's Content and
RefToMessageId values for use when sending the receipt later. Sending a receipt can be done
with AS4Client.
//Send an asynchronous receipt
client.URL = ""http://www.company.com:9090/msh"";
client.Receipt = new EBReceipt(server.Receipt.RefToMessageId, server.Receipt.Content);
client.ReceiptReplyMode = As4clientReceiptReplyModes.rrmAsync;
client.SendReceipt();
Sending Files
To process a request to send files first check the MPC property. This holds the Message Partition Channel (MPC) from which the client would like to receive files. Next, set AgreementRef, AS4From, AS4To. Check IncomingReceipt to determine if the request has a bundled receipt. If it does VerifyReceipt can be called to verify the receipt.
Note: If the client requests files from the default MPC then MPC may be empty. See MessageType for details.
If the client makes use of UsernameToken authentication the TokenAuthentication event will fire when processing the request.
To send files back to the client simply set EDIData to the files you wish to send. When SendResponse is called the files will be sent back to the client.
//Process a request to send files (pull)
//Holds information from the original send so that receipts can be verified later
server.AsyncReceiptInfoDir = Path.Combine(Request.PhysicalApplicationPath, "..\\temp\\ReceiptInfoDir")
server.Profile = As4serverProfiles.ebpfENTSOG;
server.ReadRequest();
//The receipt may be signed depending upon the AgreementRef
server.SignerCert = new Certificate(Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyA.cer"));
//If the request has a bundled receipt verify it first
if (!string.IsNullOrEmpty(server.IncomingReceipt.Content))
{
server.VerifyReceipt();
}
//If the request is a pull request (MPC is set)
if (server.AgreementRef == "" && server.MPC != "")
{
server.AgreementRef = "http://agreements.company.com/pull_files";
server.AS4From.Id = "org:holodeckb2b:example:company:B";
server.AS4From.Role = "Sender";
server.AS4To.Id = "org:holodeckb2b:example:company:A";
server.AS4To.Role = "Receiver";
server.ReceiptReplyMode = As4serverReceiptReplyModes.rrmAsync;
//Our private certificate. Used to sign the message and files.
server.SigningCert = new Certificate(CertStoreTypes.cstPFXFile, Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyB.pfx"), "password", "*");
//Partner's public certificate. Used to encrypt files.
server.RecipientCerts.Add(new Certificate(Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyA.cer")));
EBData data = new EBData();
data.EDIType = "text/xml";
data.Data = "<test>Hello AS4 World!</test>";
server.EDIData.Add(data);
server.SendResponse();
}
Processing Receipts
Any incoming request may potentially include a receipt. The request may be a receipt by itself, or it may be bundled with another type of request (send/receive). When initially sending files AsyncReceiptInfoDir may be set to store data about the original message on disk for use when verifying the receipt. If this is not desired manually store the OriginalSOAPMessage and OriginalSOAPMessageId instead.
To detect if an incoming request contains a receipt simply check the IncomingReceipt property's Content field. If it is populated the request includes a receipt. Set AsyncReceiptInfoDir to the same location as when the file was originally sent. Or alternatively set OriginalSOAPMessage and OriginalSOAPMessageId properties to the original values.
If the receipt is signed set SignerCert to the public certificate which will be used to verify the signature. Lastly call VerifyReceipt. This will perform any signature verification and verify the receipt content as well, matching it to the original message values.
server.ReadRequest();
//The receipt may be signed depending upon the AgreementRef
server.SignerCert = new Certificate(Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyA.cer"));
//If the request contains a receipt verify it
if (!string.IsNullOrEmpty(server.IncomingReceipt.Content))
{
server.VerifyReceipt();
}
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
AgreementRef | The agreement reference. |
AS4From | Defines information about the originating party. |
AS4To | Defines information about the responding party. |
AsyncReceiptInfoDir | A directory to hold information used for asynchronous receipt verification. |
Certificate | The certificate with private key used for decryption. |
ConversationId | The Conversation Id of the message. |
EDIData | The EDI data. |
EncryptionAlgorithm | The algorithm used to encrypt the EDI data. |
Errors | A collection of errors. |
IncomingDirectory | The directory to which incoming files are saved. |
IncomingReceipt | The receipt included with the request. |
LogDirectory | The path to a directory for logging. |
LogFile | The log file written. |
MessageId | The unique Id of the message. |
MessageProperties | A collection of message properties. |
MPC | The MPC (Message Partition Channel) from which files are requested. |
OriginalSOAPMessage | The original SOAP message used to verify the receipt. |
OriginalSOAPMessageId | The original SOAP message Id used to verify the receipt. |
Profile | The AS4 profile. |
Receipt | The receipt of a message. |
ReceiptReplyMode | The expected receipt reply mode. |
RecipientCerts | The public certificate used to encrypt files when sending. |
RefToMessageId | Specifies the RefToMessageId in the message. |
Request | The HTTP request to be processed. |
RequestHeaders | The HTTP headers in the AS4 request. |
RequestHeadersString | The HTTP headers in the AS4 request. |
RolloverCertificate | The rollover decryption certificate. |
RolloverSigningCert | Contains the certificate to use when signing messages. |
Service | The service which acts on the message. |
ServiceAction | The action within a service that acts on the message. |
ServiceType | The type of service. |
SignatureAlgorithm | Signature algorithm to be used in the message. |
SignerCert | The public certificate used to verify signatures. |
SigningCert | The certificate with private key used to sign messages and files. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
DoEvents | This method processes events from the internal message queue. |
Interrupt | This method interrupts the current method. |
ParseRequest | Parses and processes the message. |
ReadRequest | Reads the AS4 request. |
Reset | Resets the state of the control. |
SendAckResponse | Sends an acknowledgement of the request only. |
SendResponse | This method sends the response over the current HTTP context. |
VerifyReceipt | Verifies a received receipt. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
Error | Fired when information is available about errors during data delivery. |
Log | Fired with log information while processing a message. |
RecipientInfo | Fired for each recipient certificate of the encrypted message. |
SignerCertInfo | This event is fired during verification of the signed message. |
TokenAuthentication | Fired when the client makes use of UsernameToken authentication. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
AgreementRefPMode | AgreementRef PMode of message. |
AgreementRefType | The type of AgreementRef. |
AllowWarnings | Whether warnings are interpreted as fatal errors. |
AttachXMLFiles | Whether to send XML files as attachments or within the SOAP body. |
CloseStreamAfterProcessing | Whether to close the input or output stream after processing. |
CompressXMLPayloads | Whether to compress XML data. |
ContentTransferEncoding | The content encoding of the payload data. |
DetectDuplicates | Whether to detect duplicate messages when receiving. |
EBPrefix | Specifies the prefix to use for messaging. |
EDIDataPartId[i] | Specified the part Id at the given index. |
EnableTokenReferenceTokenType | Whether to include the TokenType attribute in a SecurityTokenReference element. |
EncryptionSecurityTokenFormat | The format to use for the security token when encryption. |
FilenameProperty | Defines a part property to hold the filename. |
ForceSigningCert | Whether to force only the SigningCert to be used for signing. |
FromId[i] | The Id of the party specified by AS4From. |
FromIdCount | The number of Ids for the party specified by AS4From. |
FromIdType[i] | The Id type of the party specified by AS4From. |
IdRight | A custom Id for the right side of the MessageId. |
KeyAgreementMethod | The agreement method used for KeyWrap encryption algorithms. |
KeyDerivationConcatKDFDigestMethod | The digest method used for the ConcatKDF key derivation method. |
KeyDerivationMethod | The key derivation method used for KeyWrap encryption algorithms. |
KeyEncryptionAlgorithm | The algorithm used to encrypt the key. |
LogLevel | The level of information to log. |
LogOptions | The information to be written to log files. |
MessageType | Indicates the type of message received. |
NormalizeIssuerSubject | Whether to normalize the certificate subject within the X509Data element. |
OAEPMGF1HashAlgorithm | The MGF1 hash algorithm used when encrypting a key. |
OAEPParams | The hex encoded OAEP parameters to be used when encrypting a key. |
OAEPRSAHashAlgorithm | The RSA hash algorithm used when encrypting a key. |
ReferenceHashAlgorithm | The hash algorithm used to hash the data specified in the reference of a signature. |
RequireEncryption | Whether encryption is required when processing received messages. |
RequireSignature | Whether a signature is required when processing received messages. |
ResponseBody | The body for the AS4 response message. |
ResponseFile | A file from which to read the response. |
ResponseHeaders | The headers for the AS4 response message. |
ResponseToFile | Creates the AS4 response message on disk. |
ResponseToString | Creates the AS4 response message in memory. |
RolloverCertStore | The certificate store for the rollover certificate. |
RolloverCertStorePassword | The certificate store for the rollover certificate. |
RolloverCertStoreType | The certificate store for the rollover certificate. |
RolloverCertSubject | The certificate store for the rollover certificate. |
SignatureHash | The hash algorithm used to hash the data specified in signature. |
SignerCACert | The CA certificates that issued the signer certificate. |
SigningSecurityTokenFormat | The format to use for the security token when signing. |
TempPath | Where temporary files are optionally written. |
ToId[i] | The Id of the party specified by AS4To. |
ToIdCount | The number of Ids for the party specified by AS4To. |
ToIdType[i] | The Id type of the party specified by AS4To. |
TransformReceipt | Whether to canonicalize the received receipt. |
UseTransformedXMLAttachment | Whether to send the canonicalized XML. |
AcceptEncoding | Used to tell the server which types of content encodings the client supports. |
AllowHTTPCompression | This property enables HTTP compression for receiving data. |
AllowHTTPFallback | Whether HTTP/2 connections are permitted to fallback to HTTP/1.1. |
Append | Whether to append data to LocalFile. |
Authorization | The Authorization string to be sent to the server. |
BytesTransferred | Contains the number of bytes transferred in the response data. |
ChunkSize | Specifies the chunk size in bytes when using chunked encoding. |
CompressHTTPRequest | Set to true to compress the body of a PUT or POST request. |
EncodeURL | If set to True the URL will be encoded by the class. |
FollowRedirects | Determines what happens when the server issues a redirect. |
GetOn302Redirect | If set to True the class will perform a GET on the new location. |
HTTP2HeadersWithoutIndexing | HTTP2 headers that should not update the dynamic header table with incremental indexing. |
HTTPVersion | The version of HTTP used by the class. |
IfModifiedSince | A date determining the maximum age of the desired document. |
KeepAlive | Determines whether the HTTP connection is closed after completion of the request. |
KerberosSPN | The Service Principal Name for the Kerberos Domain Controller. |
LogLevel | The level of detail that is logged. |
MaxRedirectAttempts | Limits the number of redirects that are followed in a request. |
NegotiatedHTTPVersion | The negotiated HTTP version. |
OtherHeaders | Other headers as determined by the user (optional). |
ProxyAuthorization | The authorization string to be sent to the proxy server. |
ProxyAuthScheme | The authorization scheme to be used for the proxy. |
ProxyPassword | A password if authentication is to be used for the proxy. |
ProxyPort | Port for the proxy server (default 80). |
ProxyServer | Name or IP address of a proxy server (optional). |
ProxyUser | A user name if authentication is to be used for the proxy. |
SentHeaders | The full set of headers as sent by the client. |
StatusCode | The status code of the last response from the server. |
StatusLine | The first line of the last response from the server. |
TransferredData | The contents of the last response from the server. |
TransferredDataLimit | The maximum number of incoming bytes to be stored by the class. |
TransferredHeaders | The full set of headers as received from the server. |
TransferredRequest | The full request as sent by the client. |
UseChunkedEncoding | Enables or Disables HTTP chunked encoding for transfers. |
UseIDNs | Whether to encode hostnames to internationalized domain names. |
UsePlatformHTTPClient | Whether or not to use the platform HTTP client. |
UseProxyAutoConfigURL | Whether to use a Proxy auto-config file when attempting a connection. |
UserAgent | Information about the user agent (browser). |
ConnectionTimeout | Sets a separate timeout value for establishing a connection. |
FirewallAutoDetect | Tells the class whether or not to automatically detect and use firewall system settings, if available. |
FirewallHost | Name or IP address of firewall (optional). |
FirewallPassword | Password to be used if authentication is to be used when connecting through the firewall. |
FirewallPort | The TCP port for the FirewallHost;. |
FirewallType | Determines the type of firewall to connect through. |
FirewallUser | A user name if authentication is to be used connecting through a firewall. |
KeepAliveInterval | The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received. |
KeepAliveRetryCount | The number of keep-alive packets to be sent before the remotehost is considered disconnected. |
KeepAliveTime | The inactivity time in milliseconds before a TCP keep-alive packet is sent. |
Linger | When set to True, connections are terminated gracefully. |
LingerTime | Time in seconds to have the connection linger. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalPort | The port in the local host where the class binds. |
MaxLineLength | The maximum amount of data to accumulate when no EOL is found. |
MaxTransferRate | The transfer rate limit in bytes per second. |
ProxyExceptionsList | A semicolon separated list of hosts and IPs to bypass when using a proxy. |
TCPKeepAlive | Determines whether or not the keep alive socket option is enabled. |
TcpNoDelay | Whether or not to delay when sending packets. |
UseIPv6 | Whether to use IPv6. |
LogSSLPackets | Controls whether SSL packets are logged when using the internal security API. |
OpenSSLCADir | The path to a directory containing CA certificates. |
OpenSSLCAFile | Name of the file containing the list of CA's trusted by your application. |
OpenSSLCipherList | A string that controls the ciphers to be used by SSL. |
OpenSSLPrngSeedData | The data to seed the pseudo random number generator (PRNG). |
ReuseSSLSession | Determines if the SSL session is reused. |
SSLCACertFilePaths | The paths to CA certificate files on Unix/Linux. |
SSLCACerts | A newline separated list of CA certificates to be included when performing an SSL handshake. |
SSLCipherStrength | The minimum cipher strength used for bulk encryption. |
SSLClientCACerts | A newline separated list of CA certificates to use during SSL client certificate validation. |
SSLEnabledCipherSuites | The cipher suite to be used in an SSL negotiation. |
SSLEnabledProtocols | Used to enable/disable the supported security protocols. |
SSLEnableRenegotiation | Whether the renegotiation_info SSL extension is supported. |
SSLIncludeCertChain | Whether the entire certificate chain is included in the SSLServerAuthentication event. |
SSLKeyLogFile | The location of a file where per-session secrets are written for debugging purposes. |
SSLNegotiatedCipher | Returns the negotiated cipher suite. |
SSLNegotiatedCipherStrength | Returns the negotiated cipher suite strength. |
SSLNegotiatedCipherSuite | Returns the negotiated cipher suite. |
SSLNegotiatedKeyExchange | Returns the negotiated key exchange algorithm. |
SSLNegotiatedKeyExchangeStrength | Returns the negotiated key exchange algorithm strength. |
SSLNegotiatedVersion | Returns the negotiated protocol version. |
SSLSecurityFlags | Flags that control certificate verification. |
SSLServerCACerts | A newline separated list of CA certificates to use during SSL server certificate validation. |
TLS12SignatureAlgorithms | Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal. |
TLS12SupportedGroups | The supported groups for ECC. |
TLS13KeyShareGroups | The groups for which to pregenerate key shares. |
TLS13SignatureAlgorithms | The allowed certificate signature algorithms. |
TLS13SupportedGroups | The supported groups for (EC)DHE key exchange. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
FirewallData | Used to send extra data to the firewall. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitiveData | Whether sensitive data is masked in log messages. |
ProcessIdleEvents | Whether the class uses its internal event loop to process events when the main thread is idle. |
SelectWaitMillis | The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process. |
UseFIPSCompliantAPI | Tells the class whether or not to use FIPS certified APIs. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
AgreementRef Property (AS4Server Class)
The agreement reference.
Syntax
ANSI (Cross Platform) char* GetAgreementRef();
int SetAgreementRef(const char* lpszAgreementRef); Unicode (Windows) LPWSTR GetAgreementRef();
INT SetAgreementRef(LPCWSTR lpszAgreementRef);
char* ipworksedi_as4server_getagreementref(void* lpObj);
int ipworksedi_as4server_setagreementref(void* lpObj, const char* lpszAgreementRef);
QString GetAgreementRef();
int SetAgreementRef(QString qsAgreementRef);
Default Value
""
Remarks
This property holds a value identifying the agreement between the two parties. The agreement is made outside the scope of the request and response and governs details about the interaction including reply mode, signing and encryption options, etc.
The value of this property should be set to a mutually agreed upon identifier. Both parties will use this value know what the expected requirements are for a particular request or response.
The format of this value is typically a URI, such as "http://mycompany.com/agreement_01" but can be any unique string that both parties are configured to accept. Another common format is the concatenation of the AS4From and AS4To values.
This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:CollaborationInfo/eb:AgreementRef"
Data Type
String
AS4From Property (AS4Server Class)
Defines information about the originating party.
Syntax
IPWorksEDIEBPartyInfo* GetAS4From(); int SetAS4From(IPWorksEDIEBPartyInfo* val);
char* ipworksedi_as4server_getas4fromid(void* lpObj);
int ipworksedi_as4server_setas4fromid(void* lpObj, const char* lpszAS4FromId);
char* ipworksedi_as4server_getas4fromidtype(void* lpObj);
int ipworksedi_as4server_setas4fromidtype(void* lpObj, const char* lpszAS4FromIdType);
char* ipworksedi_as4server_getas4fromrole(void* lpObj);
int ipworksedi_as4server_setas4fromrole(void* lpObj, const char* lpszAS4FromRole);
QString GetAS4FromId();
int SetAS4FromId(QString qsAS4FromId); QString GetAS4FromIdType();
int SetAS4FromIdType(QString qsAS4FromIdType); QString GetAS4FromRole();
int SetAS4FromRole(QString qsAS4FromRole);
Remarks
This property defines information about the party that originates the message.
Data Type
AS4To Property (AS4Server Class)
Defines information about the responding party.
Syntax
IPWorksEDIEBPartyInfo* GetAS4To(); int SetAS4To(IPWorksEDIEBPartyInfo* val);
char* ipworksedi_as4server_getas4toid(void* lpObj);
int ipworksedi_as4server_setas4toid(void* lpObj, const char* lpszAS4ToId);
char* ipworksedi_as4server_getas4toidtype(void* lpObj);
int ipworksedi_as4server_setas4toidtype(void* lpObj, const char* lpszAS4ToIdType);
char* ipworksedi_as4server_getas4torole(void* lpObj);
int ipworksedi_as4server_setas4torole(void* lpObj, const char* lpszAS4ToRole);
QString GetAS4ToId();
int SetAS4ToId(QString qsAS4ToId); QString GetAS4ToIdType();
int SetAS4ToIdType(QString qsAS4ToIdType); QString GetAS4ToRole();
int SetAS4ToRole(QString qsAS4ToRole);
Remarks
This property defines information about the party that receives the message.
Data Type
AsyncReceiptInfoDir Property (AS4Server Class)
A directory to hold information used for asynchronous receipt verification.
Syntax
ANSI (Cross Platform) char* GetAsyncReceiptInfoDir();
int SetAsyncReceiptInfoDir(const char* lpszAsyncReceiptInfoDir); Unicode (Windows) LPWSTR GetAsyncReceiptInfoDir();
INT SetAsyncReceiptInfoDir(LPCWSTR lpszAsyncReceiptInfoDir);
char* ipworksedi_as4server_getasyncreceiptinfodir(void* lpObj);
int ipworksedi_as4server_setasyncreceiptinfodir(void* lpObj, const char* lpszAsyncReceiptInfoDir);
QString GetAsyncReceiptInfoDir();
int SetAsyncReceiptInfoDir(QString qsAsyncReceiptInfoDir);
Default Value
""
Remarks
This setting specifies a directory which holds information about the original message that was sent.
When sending files and requesting asynchronous receipts set this directory to a location where data can be stored. When the receipt is later received this property should be set so original message information can be read in order to verify the receipt.
As an alternative the original message information may be manually stored by saving the values of OriginalSOAPMessage and OriginalSOAPMessageId after sending a file. In this case OriginalSOAPMessage and OriginalSOAPMessageId should be populated before verifying the receipt.
See the VerifyReceipt method of AS4Server for more details about verifying asynchronous receipts.
Data Type
String
Certificate Property (AS4Server Class)
The certificate with private key used for decryption.
Syntax
IPWorksEDICertificate* GetCertificate(); int SetCertificate(IPWorksEDICertificate* val);
int ipworksedi_as4server_getcertstore(void* lpObj, char** lpCertStore, int* lenCertStore);
int ipworksedi_as4server_setcertstore(void* lpObj, const char* lpCertStore, int lenCertStore);
char* ipworksedi_as4server_getcertstorepassword(void* lpObj);
int ipworksedi_as4server_setcertstorepassword(void* lpObj, const char* lpszCertStorePassword);
int ipworksedi_as4server_getcertstoretype(void* lpObj);
int ipworksedi_as4server_setcertstoretype(void* lpObj, int iCertStoreType);
char* ipworksedi_as4server_getcertsubject(void* lpObj);
int ipworksedi_as4server_setcertsubject(void* lpObj, const char* lpszCertSubject);
int ipworksedi_as4server_getcertencoded(void* lpObj, char** lpCertEncoded, int* lenCertEncoded);
int ipworksedi_as4server_setcertencoded(void* lpObj, const char* lpCertEncoded, int lenCertEncoded);
QByteArray GetCertStore();
int SetCertStore(QByteArray qbaCertStore); QString GetCertStorePassword();
int SetCertStorePassword(QString qsCertStorePassword); int GetCertStoreType();
int SetCertStoreType(int iCertStoreType); QString GetCertSubject();
int SetCertSubject(QString qsCertSubject); QByteArray GetCertEncoded();
int SetCertEncoded(QByteArray qbaCertEncoded);
Remarks
This property specifies a certificate with private key. It is used to decrypt received files.
Data Type
ConversationId Property (AS4Server Class)
The Conversation Id of the message.
Syntax
ANSI (Cross Platform) char* GetConversationId();
int SetConversationId(const char* lpszConversationId); Unicode (Windows) LPWSTR GetConversationId();
INT SetConversationId(LPCWSTR lpszConversationId);
char* ipworksedi_as4server_getconversationid(void* lpObj);
int ipworksedi_as4server_setconversationid(void* lpObj, const char* lpszConversationId);
QString GetConversationId();
int SetConversationId(QString qsConversationId);
Default Value
""
Remarks
This property specifies an Id that may be used to identify a set of related messages. This is required and if a value is not specified one will automatically be created.
Note: When Profile is set to ebpfENTSOG this value will always be empty.
This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:CollaborationInfo/eb:ConversationId"
Data Type
String
EDIData Property (AS4Server Class)
The EDI data.
Syntax
IPWorksEDIList<IPWorksEDIEBData>* GetEDIData(); int SetEDIData(IPWorksEDIList<IPWorksEDIEBData>* val);
int ipworksedi_as4server_getedidatacount(void* lpObj);
int ipworksedi_as4server_setedidatacount(void* lpObj, int iEDIDataCount);
int ipworksedi_as4server_getedidata(void* lpObj, int edidataindex, char** lpEDIData, int* lenEDIData);
int ipworksedi_as4server_setedidata(void* lpObj, int edidataindex, const char* lpEDIData, int lenEDIData);
char* ipworksedi_as4server_getedieditype(void* lpObj, int edidataindex);
int ipworksedi_as4server_setedieditype(void* lpObj, int edidataindex, const char* lpszEDIEDIType);
char* ipworksedi_as4server_getedifilename(void* lpObj, int edidataindex);
int ipworksedi_as4server_setedifilename(void* lpObj, int edidataindex, const char* lpszEDIFileName);
char* ipworksedi_as4server_getediname(void* lpObj, int edidataindex);
int ipworksedi_as4server_setediname(void* lpObj, int edidataindex, const char* lpszEDIName);
int ipworksedi_as4server_getedipropertycount(void* lpObj, int edidataindex);
int ipworksedi_as4server_setedipropertycount(void* lpObj, int edidataindex, int iEDIPropertyCount);
int ipworksedi_as4server_getedipropertyindex(void* lpObj, int edidataindex);
int ipworksedi_as4server_setedipropertyindex(void* lpObj, int edidataindex, int iEDIPropertyIndex);
char* ipworksedi_as4server_getedipropertyname(void* lpObj, int edidataindex);
int ipworksedi_as4server_setedipropertyname(void* lpObj, int edidataindex, const char* lpszEDIPropertyName);
char* ipworksedi_as4server_getedipropertyvalue(void* lpObj, int edidataindex);
int ipworksedi_as4server_setedipropertyvalue(void* lpObj, int edidataindex, const char* lpszEDIPropertyValue);
char* ipworksedi_as4server_getedischemalocation(void* lpObj, int edidataindex);
int ipworksedi_as4server_setedischemalocation(void* lpObj, int edidataindex, const char* lpszEDISchemaLocation);
char* ipworksedi_as4server_getedischemanamespace(void* lpObj, int edidataindex);
int ipworksedi_as4server_setedischemanamespace(void* lpObj, int edidataindex, const char* lpszEDISchemaNamespace);
char* ipworksedi_as4server_getedischemaversion(void* lpObj, int edidataindex);
int ipworksedi_as4server_setedischemaversion(void* lpObj, int edidataindex, const char* lpszEDISchemaVersion);
int GetEDIDataCount();
int SetEDIDataCount(int iEDIDataCount); QByteArray GetEDIData(int iEDIDataIndex);
int SetEDIData(int iEDIDataIndex, QByteArray qbaEDIData); QString GetEDIEDIType(int iEDIDataIndex);
int SetEDIEDIType(int iEDIDataIndex, QString qsEDIEDIType); QString GetEDIFileName(int iEDIDataIndex);
int SetEDIFileName(int iEDIDataIndex, QString qsEDIFileName); QString GetEDIName(int iEDIDataIndex);
int SetEDIName(int iEDIDataIndex, QString qsEDIName); int GetEDIPropertyCount(int iEDIDataIndex);
int SetEDIPropertyCount(int iEDIDataIndex, int iEDIPropertyCount); int GetEDIPropertyIndex(int iEDIDataIndex);
int SetEDIPropertyIndex(int iEDIDataIndex, int iEDIPropertyIndex); QString GetEDIPropertyName(int iEDIDataIndex);
int SetEDIPropertyName(int iEDIDataIndex, QString qsEDIPropertyName); QString GetEDIPropertyValue(int iEDIDataIndex);
int SetEDIPropertyValue(int iEDIDataIndex, QString qsEDIPropertyValue); QString GetEDISchemaLocation(int iEDIDataIndex);
int SetEDISchemaLocation(int iEDIDataIndex, QString qsEDISchemaLocation); QString GetEDISchemaNamespace(int iEDIDataIndex);
int SetEDISchemaNamespace(int iEDIDataIndex, QString qsEDISchemaNamespace); QString GetEDISchemaVersion(int iEDIDataIndex);
int SetEDISchemaVersion(int iEDIDataIndex, QString qsEDISchemaVersion);
Remarks
This property defines the EDI data to be sent. This may include multiple files.
This property is not available at design time.
Data Type
EncryptionAlgorithm Property (AS4Server Class)
The algorithm used to encrypt the EDI data.
Syntax
ANSI (Cross Platform) char* GetEncryptionAlgorithm();
int SetEncryptionAlgorithm(const char* lpszEncryptionAlgorithm); Unicode (Windows) LPWSTR GetEncryptionAlgorithm();
INT SetEncryptionAlgorithm(LPCWSTR lpszEncryptionAlgorithm);
char* ipworksedi_as4server_getencryptionalgorithm(void* lpObj);
int ipworksedi_as4server_setencryptionalgorithm(void* lpObj, const char* lpszEncryptionAlgorithm);
QString GetEncryptionAlgorithm();
int SetEncryptionAlgorithm(QString qsEncryptionAlgorithm);
Default Value
"AES128GCM"
Remarks
If RecipientCerts contains a valid certificate, the data will be encrypted using this certificate and the algorithm specified in EncryptionAlgorithm. If EncryptionAlgorithm is set to the empty string, the data will not be encrypted.
The class supports "3DES", or industry-standard 168-bit Triple-DES encryption.
The class supports "AES" encryption with a default keysize of 128 bits. You may also set "AESCBC192" or "AESCBC256" for 192- and 256-bit keysizes.
Possible values are:
- 3DES
- DES
- AESCBC128
- AESCBC192
- AESCBC256
- AES128GCM (default)
- AES192GCM
- AES256GCM
Data Type
String
Errors Property (AS4Server Class)
A collection of errors.
Syntax
IPWorksEDIList<IPWorksEDIEBError>* GetErrors(); int SetErrors(IPWorksEDIList<IPWorksEDIEBError>* val);
int ipworksedi_as4server_geterrorcount(void* lpObj);
int ipworksedi_as4server_seterrorcount(void* lpObj, int iErrorCount);
char* ipworksedi_as4server_geterrorcategory(void* lpObj, int errorindex);
int ipworksedi_as4server_seterrorcategory(void* lpObj, int errorindex, const char* lpszErrorCategory);
char* ipworksedi_as4server_geterrorcode(void* lpObj, int errorindex);
int ipworksedi_as4server_seterrorcode(void* lpObj, int errorindex, const char* lpszErrorCode);
char* ipworksedi_as4server_geterrordescription(void* lpObj, int errorindex);
int ipworksedi_as4server_seterrordescription(void* lpObj, int errorindex, const char* lpszErrorDescription);
char* ipworksedi_as4server_geterrordetail(void* lpObj, int errorindex);
int ipworksedi_as4server_seterrordetail(void* lpObj, int errorindex, const char* lpszErrorDetail);
char* ipworksedi_as4server_geterrororigin(void* lpObj, int errorindex);
int ipworksedi_as4server_seterrororigin(void* lpObj, int errorindex, const char* lpszErrorOrigin);
char* ipworksedi_as4server_geterrorrefmessageid(void* lpObj, int errorindex);
int ipworksedi_as4server_seterrorrefmessageid(void* lpObj, int errorindex, const char* lpszErrorRefMessageId);
int ipworksedi_as4server_geterrorseverity(void* lpObj, int errorindex);
int ipworksedi_as4server_seterrorseverity(void* lpObj, int errorindex, int iErrorSeverity);
char* ipworksedi_as4server_geterrorshortdescription(void* lpObj, int errorindex);
int ipworksedi_as4server_seterrorshortdescription(void* lpObj, int errorindex, const char* lpszErrorShortDescription);
int GetErrorCount();
int SetErrorCount(int iErrorCount); QString GetErrorCategory(int iErrorIndex);
int SetErrorCategory(int iErrorIndex, QString qsErrorCategory); QString GetErrorCode(int iErrorIndex);
int SetErrorCode(int iErrorIndex, QString qsErrorCode); QString GetErrorDescription(int iErrorIndex);
int SetErrorDescription(int iErrorIndex, QString qsErrorDescription); QString GetErrorDetail(int iErrorIndex);
int SetErrorDetail(int iErrorIndex, QString qsErrorDetail); QString GetErrorOrigin(int iErrorIndex);
int SetErrorOrigin(int iErrorIndex, QString qsErrorOrigin); QString GetErrorRefMessageId(int iErrorIndex);
int SetErrorRefMessageId(int iErrorIndex, QString qsErrorRefMessageId); int GetErrorSeverity(int iErrorIndex);
int SetErrorSeverity(int iErrorIndex, int iErrorSeverity); QString GetErrorShortDescription(int iErrorIndex);
int SetErrorShortDescription(int iErrorIndex, QString qsErrorShortDescription);
Remarks
This property is populated with error information. There may be one or more errors.
Common errors defined in the ebMS specifications are listed below for reference.
Error Code | Short Description | Severity | Category | Description |
EBMS:0001 | ValueNotRecognized | failure | Content | Although the message document is well formed and schema valid, some element/attribute contains a value that could not be recognized and therefore could not be used by the MSH |
EBMS:0002 | FeatureNotSupported | warning | Content | Although the message document is well formed and schema valid, some element/attribute value cannot be processed as expected because the related feature is not supported by the MSH. |
EBMS:0003 | ValueInconsistent | failure | Content | Although the message document is well formed and schema valid, some element/attribute value is inconsistent either with the content of other element/attribute, or with the processing mode of the MSH, or with the normative requirements of the ebMS specification. |
EBMS:0004 | Other | failure | Content | |
EBMS:0005 | ConnectionFailure | failure | Communication | The MSH is experiencing temporary or permanent failure in trying to open a transport connection with a remote MSH. |
EBMS:0006 | EmptyMessagePartitionChannel | warning | Communication | There is no message available for pulling from this MPC at this moment. |
EBMS:0007 | MimeInconsistency | failure | Unpackaging | The use of MIME is not consistent with the required usage in this specification. |
EBMS:0008 | FeatureNotSupported | failure | Unpackaging | Although the message document is well formed and schema valid, the presence or absence of some element/ attribute is not consistent with the capability of the MSH, with respect to supported features. |
EBMS:0009 | InvalidHeader | failure | Unpackaging | The ebMS header is either not well formed as an XML document, or does not conform to the ebMS packaging rules |
EBMS:0010 | ProcessingModeMismatch | failure | Processing | The ebMS header or another header (e.g. reliability, security) expected by the MSH is not compatible with the expected content, based on the associated P-Mode. |
EBMS:0011 | ExternalPayloadError | failure | Content | The MSH is unable to resolve an external payload reference (i.e. a Part that is not contained within the ebMS Message, as identified by a PartInfo/href URI). |
EBMS:0101 | FailedAuthentication | failure | Processing | The signature in the Security header intended for the "ebms" SOAP actor, could not be validated by the Security module. |
EBMS:0102 | FailedDecryption | failure | Processing | The encrypted data reference the Security header intended for the "ebms" SOAP actor could not be decrypted by the Security Module. |
EBMS:0103 | PolicyNoncompliance | failure | Processing | The processor determined that the message's security methods, parameters, scope or other security policy-level requirements or agreements were not satisfied. |
EBMS:0201 | DysfunctionalReliability | failure | Processing | Some reliability function as implemented by the Reliability module, is not operational, or the reliability state associated with this message sequence is not valid |
EBMS:0202 | DeliveryFailure | failure | Communication | Although the message was sent under Guaranteed delivery requirement, the Reliability module could not get assurance that the message was properly delivered, in spite of resending efforts. |
EBMS:0301 | MissingReceipt | failure | Communication | A Receipt has not been received for a message that was previously sent by the MSH generating this error. |
EBMS:0302 | InvalidReceipt | failure | Communication | A Receipt has been received for a message that was previously sent by the MSH generating this error, but the content does not match the message content (e.g. some part has not been acknowledged, or the digest associated does not match the signature digest, for NRR). |
EBMS:0303 | Decompression-Failure | failure | Communication | An error occurred during the decompression. |
Data Type
IncomingDirectory Property (AS4Server Class)
The directory to which incoming files are saved.
Syntax
ANSI (Cross Platform) char* GetIncomingDirectory();
int SetIncomingDirectory(const char* lpszIncomingDirectory); Unicode (Windows) LPWSTR GetIncomingDirectory();
INT SetIncomingDirectory(LPCWSTR lpszIncomingDirectory);
char* ipworksedi_as4server_getincomingdirectory(void* lpObj);
int ipworksedi_as4server_setincomingdirectory(void* lpObj, const char* lpszIncomingDirectory);
QString GetIncomingDirectory();
int SetIncomingDirectory(QString qsIncomingDirectory);
Default Value
""
Remarks
If IncomingDirectory is set, the received files will be stored in the specified directory. If a filename is specified in the EDI message, the component will write to the specified filename, otherwise, a filename will be automatically generated based on a timestamp of the incoming transmission. In either case, if the filename exists on disk, the data will be written to the same name with a "-duplicate?" appended to the filename, where "?" is the number of duplicates.
This property is optional, if not set file data will be stored in EDIData.
Data Type
String
IncomingReceipt Property (AS4Server Class)
The receipt included with the request.
Syntax
IPWorksEDIEBReceipt* GetIncomingReceipt();
char* ipworksedi_as4server_getincomingreceiptcontent(void* lpObj);
char* ipworksedi_as4server_getincomingreceiptreftomessageid(void* lpObj);
QString GetIncomingReceiptContent(); QString GetIncomingReceiptRefToMessageId();
Remarks
This property is populated by ReadRequest if the incoming request contains a receipt. Receipts received in this manner are always asynchronous and must be verified by calling VerifyReceipt.
Processing Receipts
Any incoming request may potentially include a receipt. The request may be a receipt by itself, or it may be bundled with another type of request (send/receive). When initially sending files AsyncReceiptInfoDir may be set to store data about the original message on disk for use when verifying the receipt. If this is not desired manually store the OriginalSOAPMessage and OriginalSOAPMessageId instead.
To detect if an incoming request contains a receipt simply check the IncomingReceipt property's Content field. If it is populated the request includes a receipt. Set AsyncReceiptInfoDir to the same location as when the file was originally sent. Or alternatively set OriginalSOAPMessage and OriginalSOAPMessageId properties to the original values.
If the receipt is signed set SignerCert to the public certificate which will be used to verify the signature. Lastly call VerifyReceipt. This will perform any signature verification and verify the receipt content as well, matching it to the original message values.
server.ReadRequest();
//The receipt may be signed depending upon the AgreementRef
server.SignerCert = new Certificate(Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyA.cer"));
//If the request contains a receipt verify it
if (!string.IsNullOrEmpty(server.IncomingReceipt.Content))
{
server.VerifyReceipt();
}
This property is read-only.
Data Type
LogDirectory Property (AS4Server Class)
The path to a directory for logging.
Syntax
ANSI (Cross Platform) char* GetLogDirectory();
int SetLogDirectory(const char* lpszLogDirectory); Unicode (Windows) LPWSTR GetLogDirectory();
INT SetLogDirectory(LPCWSTR lpszLogDirectory);
char* ipworksedi_as4server_getlogdirectory(void* lpObj);
int ipworksedi_as4server_setlogdirectory(void* lpObj, const char* lpszLogDirectory);
QString GetLogDirectory();
int SetLogDirectory(QString qsLogDirectory);
Default Value
""
Remarks
Setting LogDirectory will instruct the component to log the details of each transmission to unique files in the specified directory. For each request processed, the class will log the complete text of the outgoing request and the incoming response.
The class will write multiple log files for each transmission, with separate extensions for each type of data:
Status (.log) | Contains information about the steps taken during processing. |
Request (.out) | Contains the raw request/response that is sent by the class. |
Response (.in) | Contains the raw request/response that is received by the class. |
Incoming ebXML (.ieb) | Contains the incoming ebXML message. |
Outgoing ebXML (.oeb) | Contains the outgoing ebXML message. |
One or more of these log files may be disabled by setting the LogOptions configuration setting. LogDirectory supports several macros that can be used to specify a unique directory path. If the path specified does not already exist, the class will attempt to create the directory. The following macros are supported:
%AS4From% | The AS4From value in the message. Note that invalid filename characters will be replaced with the _ character. |
%MessageId% | The MessageId of the transmission, after it is generated. |
%Date:format% | Format is a platform-specific date/time formatting string. For example: |
The filenames will be chosen automatically by the class. Each filename will be the system time, in the format YYYY-MM-DD-HH-MM-SS-MMMM, with extensions "-2", "-3", used in case files of those names already exist. After each transaction is processed LogFile will contain the name of the files just written, minus the extension.
If logs cannot be written an exception will be thrown.
Data Type
String
LogFile Property (AS4Server Class)
The log file written.
Syntax
ANSI (Cross Platform) char* GetLogFile(); Unicode (Windows) LPWSTR GetLogFile();
char* ipworksedi_as4server_getlogfile(void* lpObj);
QString GetLogFile();
Default Value
""
Remarks
If LogDirectory is specified a log file will be written in the specified directory and LogFile will contain the full path and name of the files written, minus the extension.
The class will write multiple log files for each transmission, with separate extensions for each type of data:
Status (.log) | Contains information about the steps taken during processing. |
Request (.out) | Contains the raw request/response that is sent by the class. |
Response (.in) | Contains the raw request/response that is received by the class. |
Incoming ebXML (.ieb) | Contains the incoming ebXML message. |
Outgoing ebXML (.oeb) | Contains the outgoing ebXML message. |
One or more of these log files may be disabled by setting the LogOptions configuration setting. LogDirectory supports several macros that can be used to specify a unique directory path. If the path specified does not already exist, the class will attempt to create the directory. The following macros are supported:
%AS4From% | The AS4From value in the message. Note that invalid filename characters will be replaced with the _ character. |
%MessageId% | The MessageId of the transmission, after it is generated. |
%Date:format% | Format is a platform-specific date/time formatting string. For example: |
The filenames will be chosen automatically by the class. Each filename will be the system time, in the format YYYY-MM-DD-HH-MM-SS-MMMM, with extensions "-2", "-3", used in case files of those names already exist. After each transaction is processed LogFile will contain the name of the files just written, minus the extension.
If logs cannot be written an exception will be thrown.
This property is read-only.
Data Type
String
MessageId Property (AS4Server Class)
The unique Id of the message.
Syntax
ANSI (Cross Platform) char* GetMessageId();
int SetMessageId(const char* lpszMessageId); Unicode (Windows) LPWSTR GetMessageId();
INT SetMessageId(LPCWSTR lpszMessageId);
char* ipworksedi_as4server_getmessageid(void* lpObj);
int ipworksedi_as4server_setmessageid(void* lpObj, const char* lpszMessageId);
QString GetMessageId();
int SetMessageId(QString qsMessageId);
Default Value
""
Remarks
This property defines the unique Id of the message. When sending files the class will automatically generate a value in the format "GUID@nsoftware". When receiving files the Id will be populated with the value read from the message.
In most cases there is no need to set this value, however if a file needs to be retransmitted using the same message Id for reliability this may be set. In AS4Client this may be set before calling SendFiles. In AS4Server this may be set after calling ReadRequest and before calling SendResponse.
This property is not available at design time.
Data Type
String
MessageProperties Property (AS4Server Class)
A collection of message properties.
Syntax
IPWorksEDIList<IPWorksEDIEBProperty>* GetMessageProperties(); int SetMessageProperties(IPWorksEDIList<IPWorksEDIEBProperty>* val);
int ipworksedi_as4server_getmessagepropertycount(void* lpObj);
int ipworksedi_as4server_setmessagepropertycount(void* lpObj, int iMessagePropertyCount);
char* ipworksedi_as4server_getmessagepropertyname(void* lpObj, int messagepropertyindex);
int ipworksedi_as4server_setmessagepropertyname(void* lpObj, int messagepropertyindex, const char* lpszMessagePropertyName);
char* ipworksedi_as4server_getmessagepropertypropertytype(void* lpObj, int messagepropertyindex);
int ipworksedi_as4server_setmessagepropertypropertytype(void* lpObj, int messagepropertyindex, const char* lpszMessagePropertyPropertyType);
char* ipworksedi_as4server_getmessagepropertyvalue(void* lpObj, int messagepropertyindex);
int ipworksedi_as4server_setmessagepropertyvalue(void* lpObj, int messagepropertyindex, const char* lpszMessagePropertyValue);
int GetMessagePropertyCount();
int SetMessagePropertyCount(int iMessagePropertyCount); QString GetMessagePropertyName(int iMessagePropertyIndex);
int SetMessagePropertyName(int iMessagePropertyIndex, QString qsMessagePropertyName); QString GetMessagePropertyPropertyType(int iMessagePropertyIndex);
int SetMessagePropertyPropertyType(int iMessagePropertyIndex, QString qsMessagePropertyPropertyType); QString GetMessagePropertyValue(int iMessagePropertyIndex);
int SetMessagePropertyValue(int iMessagePropertyIndex, QString qsMessagePropertyValue);
Remarks
This collection specifies the message level properties that are sent with the message. This may be used to add additional values. The semantics of the values are beyond the scope of AS4, but this may be used for values that assist with processing, or other user-defined use cases.
These properties may be populated before sending a message, and are populated after parsing an incoming message.
Sending
When sending a message any number of properties may be added. The PropertyType field is optional.
For instance:
//using fields
client.MessageProperties.Add(new EBProperty());
client.MessageProperties[0].Name = "name1";
client.MessageProperties[0].Value = "value1";
client.MessageProperties[0].PropertyType = "string"; //optional
//using constructor
client.MessageProperties.Add(new EBProperty("name2", "value2"));
Receiving
When receiving a message the properties may be read from this collection. For instance:
for (int i = 0; i < server.MessageProperties.Count; i++)
{
Console.WriteLine(server.MessageProperties[i].Name + ": " + server.MessageProperties[i].Value);
}
This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:MessageProperties""
Data Type
MPC Property (AS4Server Class)
The MPC (Message Partition Channel) from which files are requested.
Syntax
ANSI (Cross Platform) char* GetMPC();
int SetMPC(const char* lpszMPC); Unicode (Windows) LPWSTR GetMPC();
INT SetMPC(LPCWSTR lpszMPC);
char* ipworksedi_as4server_getmpc(void* lpObj);
int ipworksedi_as4server_setmpc(void* lpObj, const char* lpszMPC);
QString GetMPC();
int SetMPC(QString qsMPC);
Default Value
""
Remarks
This property specifies the MPC (Message Partition Channel) from which to receive files. This must be set before calling ReceiveFiles. The value specified here must be known to the other party.
When left unspecified this indicates the default MPC.
This value corresponds to the ebMS element "eb:Messaging/eb:SignalMessage/eb:PullRequest/@mpc"
This property defines the MPC (Message Partition Channel) from which the client requests files. This is populated after calling ReadRequest and is used to determine from which channel to provide files to the client.
This value corresponds to the ebMS element "eb:Messaging/eb:SignalMessage/eb:PullRequest/@mpc"
Data Type
String
OriginalSOAPMessage Property (AS4Server Class)
The original SOAP message used to verify the receipt.
Syntax
ANSI (Cross Platform) char* GetOriginalSOAPMessage();
int SetOriginalSOAPMessage(const char* lpszOriginalSOAPMessage); Unicode (Windows) LPWSTR GetOriginalSOAPMessage();
INT SetOriginalSOAPMessage(LPCWSTR lpszOriginalSOAPMessage);
char* ipworksedi_as4server_getoriginalsoapmessage(void* lpObj);
int ipworksedi_as4server_setoriginalsoapmessage(void* lpObj, const char* lpszOriginalSOAPMessage);
QString GetOriginalSOAPMessage();
int SetOriginalSOAPMessage(QString qsOriginalSOAPMessage);
Default Value
""
Remarks
OriginalSOAPMessage and OriginalSOAPMessageId may be used as an alternative to AsyncReceiptInfoDir when verifying receipts.
If AsyncReceiptInfoDir is not set when the original message is sent, these values will be populated after the send and the values should be saved.
Before verifying the receipt set these properties to their original values.
This property is not available at design time.
Data Type
String
OriginalSOAPMessageId Property (AS4Server Class)
The original SOAP message Id used to verify the receipt.
Syntax
ANSI (Cross Platform) char* GetOriginalSOAPMessageId();
int SetOriginalSOAPMessageId(const char* lpszOriginalSOAPMessageId); Unicode (Windows) LPWSTR GetOriginalSOAPMessageId();
INT SetOriginalSOAPMessageId(LPCWSTR lpszOriginalSOAPMessageId);
char* ipworksedi_as4server_getoriginalsoapmessageid(void* lpObj);
int ipworksedi_as4server_setoriginalsoapmessageid(void* lpObj, const char* lpszOriginalSOAPMessageId);
QString GetOriginalSOAPMessageId();
int SetOriginalSOAPMessageId(QString qsOriginalSOAPMessageId);
Default Value
""
Remarks
OriginalSOAPMessage and OriginalSOAPMessageId may be used as an alternative to AsyncReceiptInfoDir when verifying receipts.
If AsyncReceiptInfoDir is not set when the original message is sent, these values will be populated after the send and the values should be saved.
Before verifying the receipt set these properties to their original values.
This property is not available at design time.
Data Type
String
Profile Property (AS4Server Class)
The AS4 profile.
Syntax
ANSI (Cross Platform) int GetProfile();
int SetProfile(int iProfile); Unicode (Windows) INT GetProfile();
INT SetProfile(INT iProfile);
Possible Values
EBPF_STANDARD(0),
EBPF_ENTSOG(1),
EBPF_EDELIVERY(2),
EBPF_BDEW(3),
EBPF_ENTSOG_V4(4),
EBPF_EDELIVERY_V2(5)
int ipworksedi_as4server_getprofile(void* lpObj);
int ipworksedi_as4server_setprofile(void* lpObj, int iProfile);
int GetProfile();
int SetProfile(int iProfile);
Default Value
0
Remarks
This property specifies the AS4 profile to use. Different profiles may have different requirements and default options. Setting this property to the correct value ensures that the right options are selected in order to conform to the profile. Possible values are:
0 (ebpfStandard - default) | The AS4 Profile of ebMS 3.0 Version 1.0 OASIS Standard |
1 (ebpfENTSOG) | The ENTSOG AS4 Profile |
2 (ebpfEDelivery) | The eDelivery AS4 Profile |
3 (ebpfBDEW) | The BDEW AS4 Profile |
4 (ebpfENTSOG_V4) | The ENTSOG Version 4 AS4 Profile |
5 (ebpfEDelivery) | The eDelivery Version 2 AS4 Profile |
When Profile is set to ebpfENTSOG the following settings are automatically applied:
Property | Value |
CompressionFormat | ebcfGZIP |
EncryptionAlgorithm | "AES128GCM" |
ConversationId | Remains empty |
SignatureAlgorithm | "SHA256" |
AttachXMLFiles | true |
DetectDuplicates | true |
OAEPRSAHashAlgorithm | "SHA256" |
OAEPMGF1HashAlgorithm | "SHA256" |
ReferenceHashAlgorithm | "SHA256" |
When Profile is set to ebpfENTSOG_V4, version 4 of the ENTSOG profile is used and the following settings are automatically applied:
Property | Value |
CompressionFormat | ebcfGZIP |
EncryptionAlgorithm | "AES128GCM" |
SignatureAlgorithm | "EDDSA-ED25519" |
AttachXMLFiles | true |
DetectDuplicates | true |
ReferenceHashAlgorithm | "SHA256" |
SignatureHash | "SHA256" |
KeyAgreementMethod | "X25519" |
KeyDerivationMethod | "HKDF" |
KeyEncryptionAlgorithm | "KW-AES128" |
SSLEnabledProtocols | "0x3C00" (TLS 1.2 and TLS 1.3) |
When Profile is set to ebpfEDelivery the following settings are automatically applied:
Property | Value |
CompressionFormat | ebcfGZIP |
EncryptionAlgorithm | "AES128GCM" |
RequireEncryption | true |
RequireSignature | true |
SignatureAlgorithm | "SHA256" |
OAEPRSAHashAlgorithm | "SHA256" |
OAEPMGF1HashAlgorithm | "SHA256" |
EncryptionSecurityTokenFormat | 1 (Binary) |
SigningSecurityTokenFormat | 1 (Binary) |
When Profile is set to ebpfEDelivery_V2, version 2 of the eDelivery profile is used and the following settings are automatically applied:
Property | Value |
CompressionFormat | ebcfGZIP |
EncryptionAlgorithm | "AES128GCM" |
SignatureAlgorithm | "EDDSA-ED25519" |
AttachXMLFiles | true |
DetectDuplicates | true |
ReferenceHashAlgorithm | "SHA256" |
SignatureHash | "SHA256" |
KeyAgreementMethod | "X25519" |
KeyDerivationMethod | "HKDF" |
KeyEncryptionAlgorithm | "KW-AES128" |
SSLEnabledProtocols | "0x3C00" (TLS 1.2 and TLS 1.3) |
When Profile is set to ebpfBDEW the following settings are automatically applied:
Property | Value |
CompressionFormat | ebcfGZIP |
EncryptionAlgorithm | "AES128GCM" |
RequireEncryption | true |
RequireSignature | true |
SignatureAlgorithm | "ECDSASHA256" |
EncryptionSecurityTokenFormat | 0 (X509) |
SigningSecurityTokenFormat | 3 (X509PKIPathv1) |
ForceSigningCert | true |
KeyEncryptionAlgorithm | KW-AES128 |
KeyAgreementMethod | ECDH-ES |
KeyDerivationMethod | ConcatKDF |
KeyDerivationConcatKDFDigestMethod | SHA256 |
Data Type
Integer
Receipt Property (AS4Server Class)
The receipt of a message.
Syntax
IPWorksEDIEBReceipt* GetReceipt(); int SetReceipt(IPWorksEDIEBReceipt* val);
char* ipworksedi_as4server_getreceiptcontent(void* lpObj);
int ipworksedi_as4server_setreceiptcontent(void* lpObj, const char* lpszReceiptContent);
char* ipworksedi_as4server_getreceiptreftomessageid(void* lpObj);
int ipworksedi_as4server_setreceiptreftomessageid(void* lpObj, const char* lpszReceiptRefToMessageId);
QString GetReceiptContent();
int SetReceiptContent(QString qsReceiptContent); QString GetReceiptRefToMessageId();
int SetReceiptRefToMessageId(QString qsReceiptRefToMessageId);
Remarks
This property holds the receipt of a message. When receiving files from a client this property is populated with the receipt to be sent back after calling ParseRequest.
To deliver the receipt in the same connection (synchronously) call SendResponse. To deliver the receipt asynchronously use the SendReceipt method of AS4Client.
Note: This property is only applicable for receipts generated in response to received files. For information on processing incoming asynchronous receipts see IncomingReceipt and VerifyReceipt.
Data Type
ReceiptReplyMode Property (AS4Server Class)
The expected receipt reply mode.
Syntax
ANSI (Cross Platform) int GetReceiptReplyMode();
int SetReceiptReplyMode(int iReceiptReplyMode); Unicode (Windows) INT GetReceiptReplyMode();
INT SetReceiptReplyMode(INT iReceiptReplyMode);
Possible Values
RRM_SYNC(0),
RRM_ASYNC(1),
RRM_NONE(2)
int ipworksedi_as4server_getreceiptreplymode(void* lpObj);
int ipworksedi_as4server_setreceiptreplymode(void* lpObj, int iReceiptReplyMode);
int GetReceiptReplyMode();
int SetReceiptReplyMode(int iReceiptReplyMode);
Default Value
0
Remarks
This setting tells the class how to expect or deliver a receipt. Possible values are:
0 (rrmSync - default) | The receipt is expected in the response to the request. This is only valid when sending files from a client to a server (push). This is a synchronous receipt (the receipt is returned in the same HTTP connection). |
1 (rrmAsync) | The receipt is returned at a later time. The receipt may be returned by itself in a separate connection, or may be bundled with a subsequent request. This is the only available mode when receiving files from a server (pull). |
2 (rrmNone) | No receipt is expected. |
It is important to always set this property to the correct value in both AS4Client and AS4Server, whether sending or receiving, so the class can build a valid message. This should be set to the previously agreed upon value between the parties in the agreement identified by AgreementRef
Data Type
Integer
RecipientCerts Property (AS4Server Class)
The public certificate used to encrypt files when sending.
Syntax
IPWorksEDIList<IPWorksEDICertificate>* GetRecipientCerts(); int SetRecipientCerts(IPWorksEDIList<IPWorksEDICertificate>* val);
int ipworksedi_as4server_getrecipientcertcount(void* lpObj);
int ipworksedi_as4server_setrecipientcertcount(void* lpObj, int iRecipientCertCount);
int ipworksedi_as4server_getrecipientcertencoded(void* lpObj, int recipientcertindex, char** lpRecipientCertEncoded, int* lenRecipientCertEncoded);
int ipworksedi_as4server_setrecipientcertencoded(void* lpObj, int recipientcertindex, const char* lpRecipientCertEncoded, int lenRecipientCertEncoded);
int GetRecipientCertCount();
int SetRecipientCertCount(int iRecipientCertCount); QByteArray GetRecipientCertEncoded(int iRecipientCertIndex);
int SetRecipientCertEncoded(int iRecipientCertIndex, QByteArray qbaRecipientCertEncoded);
Remarks
The encryption certificates of the recipients. If this property is specified, the files being sent will be encrypted using the algorithm given by EncryptionAlgorithm.
This property is not available at design time.
Data Type
RefToMessageId Property (AS4Server Class)
Specifies the RefToMessageId in the message.
Syntax
ANSI (Cross Platform) char* GetRefToMessageId();
int SetRefToMessageId(const char* lpszRefToMessageId); Unicode (Windows) LPWSTR GetRefToMessageId();
INT SetRefToMessageId(LPCWSTR lpszRefToMessageId);
char* ipworksedi_as4server_getreftomessageid(void* lpObj);
int ipworksedi_as4server_setreftomessageid(void* lpObj, const char* lpszRefToMessageId);
QString GetRefToMessageId();
int SetRefToMessageId(QString qsRefToMessageId);
Default Value
""
Remarks
This property specifies the RefToMessageId value in the message being sent.
This property is only applicable when Profile is set to ebpfEDelivery. The eDelivery profile supports the Two-Way/Push-and-Push MEP (Message Exchange Pattern), where sending a file can be in reference to a previously received file. In this case RefToMessageId specifies the Id of the previously received message to which this send is in reference.
When sending with AS4Client this should only be set when using the eDelivery profile and need to explicitly specify the RefToMessageId value as per the Two-Way/Push-And-Push MEP.
When receiving with AS4Server this may be read after receiving a message.
Data Type
String
Request Property (AS4Server Class)
The HTTP request to be processed.
Syntax
ANSI (Cross Platform) int GetRequest(char* &lpRequest, int &lenRequest);
int SetRequest(const char* lpRequest, int lenRequest); Unicode (Windows) INT GetRequest(LPSTR &lpRequest, INT &lenRequest);
INT SetRequest(LPCSTR lpRequest, INT lenRequest);
int ipworksedi_as4server_getrequest(void* lpObj, char** lpRequest, int* lenRequest);
int ipworksedi_as4server_setrequest(void* lpObj, const char* lpRequest, int lenRequest);
QByteArray GetRequest();
int SetRequest(QByteArray qbaRequest);
Default Value
""
Remarks
The body of the request to be processed. The HTTP headers may be set separately in RequestHeadersString. If they are included, a double CRLF pair should be used to separate the headers from the body.
This property is not available at design time.
Data Type
Binary String
RequestHeaders Property (AS4Server Class)
The HTTP headers in the AS4 request.
Syntax
IPWorksEDIList<IPWorksEDIHeader>* GetRequestHeaders(); int SetRequestHeaders(IPWorksEDIList<IPWorksEDIHeader>* val);
int ipworksedi_as4server_getrequestheadercount(void* lpObj);
int ipworksedi_as4server_setrequestheadercount(void* lpObj, int iRequestHeaderCount);
char* ipworksedi_as4server_getrequestheaderfield(void* lpObj, int requestheaderindex);
int ipworksedi_as4server_setrequestheaderfield(void* lpObj, int requestheaderindex, const char* lpszRequestHeaderField);
char* ipworksedi_as4server_getrequestheadervalue(void* lpObj, int requestheaderindex);
int ipworksedi_as4server_setrequestheadervalue(void* lpObj, int requestheaderindex, const char* lpszRequestHeaderValue);
int GetRequestHeaderCount();
int SetRequestHeaderCount(int iRequestHeaderCount); QString GetRequestHeaderField(int iRequestHeaderIndex);
int SetRequestHeaderField(int iRequestHeaderIndex, QString qsRequestHeaderField); QString GetRequestHeaderValue(int iRequestHeaderIndex);
int SetRequestHeaderValue(int iRequestHeaderIndex, QString qsRequestHeaderValue);
Remarks
A collection of headers. These will include all HTTP headers.
When assigning an AS4 request to the class, the headers may be included specified in RequestHeaders or RequestHeadersString.
Data Type
RequestHeadersString Property (AS4Server Class)
The HTTP headers in the AS4 request.
Syntax
ANSI (Cross Platform) char* GetRequestHeadersString();
int SetRequestHeadersString(const char* lpszRequestHeadersString); Unicode (Windows) LPWSTR GetRequestHeadersString();
INT SetRequestHeadersString(LPCWSTR lpszRequestHeadersString);
char* ipworksedi_as4server_getrequestheadersstring(void* lpObj);
int ipworksedi_as4server_setrequestheadersstring(void* lpObj, const char* lpszRequestHeadersString);
QString GetRequestHeadersString();
int SetRequestHeadersString(QString qsRequestHeadersString);
Default Value
""
Remarks
The entire list of headers, concatenated into a single string. These will include all HTTP headers. Specific headers may be accessed through RequestHeaders.
Data Type
String
RolloverCertificate Property (AS4Server Class)
The rollover decryption certificate.
Syntax
IPWorksEDICertificate* GetRolloverCertificate(); int SetRolloverCertificate(IPWorksEDICertificate* val);
int ipworksedi_as4server_getrollovercertstore(void* lpObj, char** lpRolloverCertStore, int* lenRolloverCertStore);
int ipworksedi_as4server_setrollovercertstore(void* lpObj, const char* lpRolloverCertStore, int lenRolloverCertStore);
char* ipworksedi_as4server_getrollovercertstorepassword(void* lpObj);
int ipworksedi_as4server_setrollovercertstorepassword(void* lpObj, const char* lpszRolloverCertStorePassword);
int ipworksedi_as4server_getrollovercertstoretype(void* lpObj);
int ipworksedi_as4server_setrollovercertstoretype(void* lpObj, int iRolloverCertStoreType);
char* ipworksedi_as4server_getrollovercertsubject(void* lpObj);
int ipworksedi_as4server_setrollovercertsubject(void* lpObj, const char* lpszRolloverCertSubject);
int ipworksedi_as4server_getrollovercertencoded(void* lpObj, char** lpRolloverCertEncoded, int* lenRolloverCertEncoded);
int ipworksedi_as4server_setrollovercertencoded(void* lpObj, const char* lpRolloverCertEncoded, int lenRolloverCertEncoded);
QByteArray GetRolloverCertStore();
int SetRolloverCertStore(QByteArray qbaRolloverCertStore); QString GetRolloverCertStorePassword();
int SetRolloverCertStorePassword(QString qsRolloverCertStorePassword); int GetRolloverCertStoreType();
int SetRolloverCertStoreType(int iRolloverCertStoreType); QString GetRolloverCertSubject();
int SetRolloverCertSubject(QString qsRolloverCertSubject); QByteArray GetRolloverCertEncoded();
int SetRolloverCertEncoded(QByteArray qbaRolloverCertEncoded);
Remarks
The rollover digital certificate that the class will use to decrypt incoming transmissions. This may be used to specify an additional decryption certificate during a period of transition between private certificates in the application.
When specified the class will be able to decrypt messages that were encrypted with the corresponding public certificate of either Certificate or RolloverCertificate.
RolloverCertificate must be set to a private key certificate.
Data Type
RolloverSigningCert Property (AS4Server Class)
Contains the certificate to use when signing messages.
Syntax
IPWorksEDICertificate* GetRolloverSigningCert(); int SetRolloverSigningCert(IPWorksEDICertificate* val);
int ipworksedi_as4server_getrolloversigningcertstore(void* lpObj, char** lpRolloverSigningCertStore, int* lenRolloverSigningCertStore);
int ipworksedi_as4server_setrolloversigningcertstore(void* lpObj, const char* lpRolloverSigningCertStore, int lenRolloverSigningCertStore);
char* ipworksedi_as4server_getrolloversigningcertstorepassword(void* lpObj);
int ipworksedi_as4server_setrolloversigningcertstorepassword(void* lpObj, const char* lpszRolloverSigningCertStorePassword);
int ipworksedi_as4server_getrolloversigningcertstoretype(void* lpObj);
int ipworksedi_as4server_setrolloversigningcertstoretype(void* lpObj, int iRolloverSigningCertStoreType);
char* ipworksedi_as4server_getrolloversigningcertsubject(void* lpObj);
int ipworksedi_as4server_setrolloversigningcertsubject(void* lpObj, const char* lpszRolloverSigningCertSubject);
int ipworksedi_as4server_getrolloversigningcertencoded(void* lpObj, char** lpRolloverSigningCertEncoded, int* lenRolloverSigningCertEncoded);
int ipworksedi_as4server_setrolloversigningcertencoded(void* lpObj, const char* lpRolloverSigningCertEncoded, int lenRolloverSigningCertEncoded);
QByteArray GetRolloverSigningCertStore();
int SetRolloverSigningCertStore(QByteArray qbaRolloverSigningCertStore); QString GetRolloverSigningCertStorePassword();
int SetRolloverSigningCertStorePassword(QString qsRolloverSigningCertStorePassword); int GetRolloverSigningCertStoreType();
int SetRolloverSigningCertStoreType(int iRolloverSigningCertStoreType); QString GetRolloverSigningCertSubject();
int SetRolloverSigningCertSubject(QString qsRolloverSigningCertSubject); QByteArray GetRolloverSigningCertEncoded();
int SetRolloverSigningCertEncoded(QByteArray qbaRolloverSigningCertEncoded);
Remarks
This is your rollover signing certificate. This may be used to specify an additional signing certificate during a period of transition between private certificates in the application.
If this property is specified, the message content will be signed using both SigningCert and RolloverSigningCert. The recipient will be able to verify the signature with either corresponding public certificate.
If set, this property should be a private key instance of Certificate.
Data Type
Service Property (AS4Server Class)
The service which acts on the message.
Syntax
ANSI (Cross Platform) char* GetService();
int SetService(const char* lpszService); Unicode (Windows) LPWSTR GetService();
INT SetService(LPCWSTR lpszService);
char* ipworksedi_as4server_getservice(void* lpObj);
int ipworksedi_as4server_setservice(void* lpObj, const char* lpszService);
QString GetService();
int SetService(QString qsService);
Default Value
"http://docs.oasis-open.org/ebxml-msg/as4/200902/service"
Remarks
This property specifies the service which acts on the message. This should only be changed from the default value if there is a specific reason to do so.
This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:CollaborationInfo/eb:Service"
Data Type
String
ServiceAction Property (AS4Server Class)
The action within a service that acts on the message.
Syntax
ANSI (Cross Platform) char* GetServiceAction();
int SetServiceAction(const char* lpszServiceAction); Unicode (Windows) LPWSTR GetServiceAction();
INT SetServiceAction(LPCWSTR lpszServiceAction);
char* ipworksedi_as4server_getserviceaction(void* lpObj);
int ipworksedi_as4server_setserviceaction(void* lpObj, const char* lpszServiceAction);
QString GetServiceAction();
int SetServiceAction(QString qsServiceAction);
Default Value
"http://docs.oasis-open.org/ebxml-msg/as4/200902/action"
Remarks
This property defines the action within a service that acts upon a message. This should only be changed from the default value if there is a specific reason to do so.
This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:CollaborationInfo/eb:Action".
Data Type
String
ServiceType Property (AS4Server Class)
The type of service.
Syntax
ANSI (Cross Platform) char* GetServiceType();
int SetServiceType(const char* lpszServiceType); Unicode (Windows) LPWSTR GetServiceType();
INT SetServiceType(LPCWSTR lpszServiceType);
char* ipworksedi_as4server_getservicetype(void* lpObj);
int ipworksedi_as4server_setservicetype(void* lpObj, const char* lpszServiceType);
QString GetServiceType();
int SetServiceType(QString qsServiceType);
Default Value
""
Remarks
This optionally specifies the type of the service. The semantics of this value should be agreed upon by both parties ahead of time. It may be used to tell the other party how to interpret the Service value.
This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:CollaborationInfo/eb:Service@type"
Data Type
String
SignatureAlgorithm Property (AS4Server Class)
Signature algorithm to be used in the message.
Syntax
ANSI (Cross Platform) char* GetSignatureAlgorithm();
int SetSignatureAlgorithm(const char* lpszSignatureAlgorithm); Unicode (Windows) LPWSTR GetSignatureAlgorithm();
INT SetSignatureAlgorithm(LPCWSTR lpszSignatureAlgorithm);
char* ipworksedi_as4server_getsignaturealgorithm(void* lpObj);
int ipworksedi_as4server_setsignaturealgorithm(void* lpObj, const char* lpszSignatureAlgorithm);
QString GetSignatureAlgorithm();
int SetSignatureAlgorithm(QString qsSignatureAlgorithm);
Default Value
"sha-256"
Remarks
Signature Algorithm can be set to indicate the preferred signing algorithm. Possible values are:
- SHA1
- MD5
- SHA-256 (or SHA256) (default)
- SHA-384 (or SHA384)
- SHA-512 (or SHA512)
- SHA-224 (or SHA224)
- ECDSA-SHA1
- ECDSA-SHA224
- ECDSA-SHA256
- ECDSA-SHA384
- ECDSA-SHA512
- EDDSA-ED25519
- EDDSA-ED448
The default value is "SHA-256".
Data Type
String
SignerCert Property (AS4Server Class)
The public certificate used to verify signatures.
Syntax
IPWorksEDICertificate* GetSignerCert(); int SetSignerCert(IPWorksEDICertificate* val);
int ipworksedi_as4server_getsignercertstore(void* lpObj, char** lpSignerCertStore, int* lenSignerCertStore);
int ipworksedi_as4server_setsignercertstore(void* lpObj, const char* lpSignerCertStore, int lenSignerCertStore);
char* ipworksedi_as4server_getsignercertstorepassword(void* lpObj);
int ipworksedi_as4server_setsignercertstorepassword(void* lpObj, const char* lpszSignerCertStorePassword);
int ipworksedi_as4server_getsignercertstoretype(void* lpObj);
int ipworksedi_as4server_setsignercertstoretype(void* lpObj, int iSignerCertStoreType);
char* ipworksedi_as4server_getsignercertsubject(void* lpObj);
int ipworksedi_as4server_setsignercertsubject(void* lpObj, const char* lpszSignerCertSubject);
int ipworksedi_as4server_getsignercertencoded(void* lpObj, char** lpSignerCertEncoded, int* lenSignerCertEncoded);
int ipworksedi_as4server_setsignercertencoded(void* lpObj, const char* lpSignerCertEncoded, int lenSignerCertEncoded);
QByteArray GetSignerCertStore();
int SetSignerCertStore(QByteArray qbaSignerCertStore); QString GetSignerCertStorePassword();
int SetSignerCertStorePassword(QString qsSignerCertStorePassword); int GetSignerCertStoreType();
int SetSignerCertStoreType(int iSignerCertStoreType); QString GetSignerCertSubject();
int SetSignerCertSubject(QString qsSignerCertSubject); QByteArray GetSignerCertEncoded();
int SetSignerCertEncoded(QByteArray qbaSignerCertEncoded);
Remarks
This property specifies a public certificate used to verify signatures on received messages, receipts, and files. If the content is signed by the other party, it is verified using this certificate.
Data Type
SigningCert Property (AS4Server Class)
The certificate with private key used to sign messages and files.
Syntax
IPWorksEDICertificate* GetSigningCert(); int SetSigningCert(IPWorksEDICertificate* val);
int ipworksedi_as4server_getsigningcertstore(void* lpObj, char** lpSigningCertStore, int* lenSigningCertStore);
int ipworksedi_as4server_setsigningcertstore(void* lpObj, const char* lpSigningCertStore, int lenSigningCertStore);
char* ipworksedi_as4server_getsigningcertstorepassword(void* lpObj);
int ipworksedi_as4server_setsigningcertstorepassword(void* lpObj, const char* lpszSigningCertStorePassword);
int ipworksedi_as4server_getsigningcertstoretype(void* lpObj);
int ipworksedi_as4server_setsigningcertstoretype(void* lpObj, int iSigningCertStoreType);
char* ipworksedi_as4server_getsigningcertsubject(void* lpObj);
int ipworksedi_as4server_setsigningcertsubject(void* lpObj, const char* lpszSigningCertSubject);
int ipworksedi_as4server_getsigningcertencoded(void* lpObj, char** lpSigningCertEncoded, int* lenSigningCertEncoded);
int ipworksedi_as4server_setsigningcertencoded(void* lpObj, const char* lpSigningCertEncoded, int lenSigningCertEncoded);
QByteArray GetSigningCertStore();
int SetSigningCertStore(QByteArray qbaSigningCertStore); QString GetSigningCertStorePassword();
int SetSigningCertStorePassword(QString qsSigningCertStorePassword); int GetSigningCertStoreType();
int SetSigningCertStoreType(int iSigningCertStoreType); QString GetSigningCertSubject();
int SetSigningCertSubject(QString qsSigningCertSubject); QByteArray GetSigningCertEncoded();
int SetSigningCertEncoded(QByteArray qbaSigningCertEncoded);
Remarks
This property specifies a certificate with private key used to sign outgoing messages and files. If this property is specified, the message content will be signed using the algorithm given by SignatureAlgorithm.
Used to sign any outgoing message. This applies to requests made when calling SendFiles and ReceiveFiles.
Data Type
Config Method (AS4Server Class)
Sets or retrieves a configuration setting.
Syntax
ANSI (Cross Platform) char* Config(const char* lpszConfigurationString); Unicode (Windows) LPWSTR Config(LPCWSTR lpszConfigurationString);
char* ipworksedi_as4server_config(void* lpObj, const char* lpszConfigurationString);
QString Config(const QString& qsConfigurationString);
Remarks
Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
DoEvents Method (AS4Server Class)
This method processes events from the internal message queue.
Syntax
ANSI (Cross Platform) int DoEvents(); Unicode (Windows) INT DoEvents();
int ipworksedi_as4server_doevents(void* lpObj);
int DoEvents();
Remarks
When DoEvents is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Interrupt Method (AS4Server Class)
This method interrupts the current method.
Syntax
ANSI (Cross Platform) int Interrupt(); Unicode (Windows) INT Interrupt();
int ipworksedi_as4server_interrupt(void* lpObj);
int Interrupt();
Remarks
If there is no method in progress, Interrupt simply returns, doing nothing.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
ParseRequest Method (AS4Server Class)
Parses and processes the message.
Syntax
ANSI (Cross Platform) int ParseRequest(); Unicode (Windows) INT ParseRequest();
int ipworksedi_as4server_parserequest(void* lpObj);
int ParseRequest();
Remarks
This method processes the message in the request. If the message is encrypted, it will be decrypted. If the message is signed, the signature will be verified. This method should be called after calling ReadRequest and specifying any necessary certificates for the operation to complete successfully.
Receiving Files and Sending a Receipt
When receiving files first check the AgreementRef, AS4From, and AS4To properties to determine
who is sending the files and with what previously agreed upon configuration. Once this is known, if the request
is signed and encrypted set Certificate to the decryption certificate and SignerCert to the public
certificate used for signature verification. IncomingDirectory may optionally be set to automatically
store the incoming files.
//Process incoming files and send a signed receipt
server.ReadRequest();
//Inspect values from the request in order to load appropriate certificates etc.
//Console.WriteLine(server.AgreementRef);
//Console.WriteLine(server.AS4From.Id);
//Console.WriteLine(server.AS4To.Id);)
server.IncomingDirectory = "..\\MyFiles";
//Our private certificate. Used to decrypt the incoming file
server.Certificate = new Certificate(CertStoreTypes.cstPFXFile, Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyB.pfx"), "password", "*");
//Partner's public certificate. Used to verify the signature on the incoming message and files.
server.SignerCert = new Certificate(Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyA.cer"));
server.ParseRequest();
server.ReceiptReplyMode = As4serverReceiptReplyModes.rrmSync;
//Our private certificate. Used to sign the receipt.
server.SigningCert = new Certificate(CertStoreTypes.cstPFXFile, Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyB.pfx"), "password", "*");
server.SendResponse(); //Sends the receipt
Receiving Files and Sending an Asynchronous Receipt
Receipts may be sent in the response (synchronous) or at a later time (asynchronous). If the agreement specifies that the receipt be sent asynchronously the following steps may be taken to send the receipt.
After calling ReadRequest the ReceiptReplyMode may be set to indicate the receipt will be returned asynchronously. After calling ParseRequest call SendAckResponse to send back a HTTP 200 OK to the client. The receipt may then be returned later.
To send an asynchronous receipt AS4Client may be used. This can be sent to the partner's web site, or bundled with a later response (depending on the agreement made between the parties). In the example below AS4Client is used to send the receipt to the other party's web site.
//Process incoming files and send an asynchronous receipt
server.ReadRequest();
//Inspect values from the request in order to load appropriate certificates etc.
//Console.WriteLine(server.AgreementRef);
//Console.WriteLine(server.AS4From.Id);
//Console.WriteLine(server.AS4To.Id);)
server.IncomingDirectory = "..\\MyFiles";
//Our private certificate. Used to decrypt the incoming file
server.Certificate = new Certificate(CertStoreTypes.cstPFXFile, Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyB.pfx"), "password", "*");
//Partner's public certificate. Used to verify the signature on the incoming message and files.
server.SignerCert = new Certificate(Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyA.cer"));
server.ParseRequest();
server.ReceiptReplyMode = As4serverReceiptReplyModes.rrmAsync;
//Our private certificate. Used to sign the receipt.
server.SigningCert = new Certificate(CertStoreTypes.cstPFXFile, Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyB.pfx"), "password", "*");
server.SendAckResponse(); //Sends an ack, but not the receipt
At this point Receipt is populated with the receipt to be sent. Store the Receipt's Content and
RefToMessageId values for use when sending the receipt later. Sending a receipt can be done
with AS4Client.
//Send an asynchronous receipt
client.URL = ""http://www.company.com:9090/msh"";
client.Receipt = new EBReceipt(server.Receipt.RefToMessageId, server.Receipt.Content);
client.ReceiptReplyMode = As4clientReceiptReplyModes.rrmAsync;
client.SendReceipt();
Sending Files
To process a request to send files first check the MPC property. This holds the Message Partition Channel (MPC) from which the client would like to receive files. Next, set AgreementRef, AS4From, AS4To. Check IncomingReceipt to determine if the request has a bundled receipt. If it does VerifyReceipt can be called to verify the receipt.
Note: If the client requests files from the default MPC then MPC may be empty. See MessageType for details.
If the client makes use of UsernameToken authentication the TokenAuthentication event will fire when processing the request.
To send files back to the client simply set EDIData to the files you wish to send. When SendResponse is called the files will be sent back to the client.
//Process a request to send files (pull)
//Holds information from the original send so that receipts can be verified later
server.AsyncReceiptInfoDir = Path.Combine(Request.PhysicalApplicationPath, "..\\temp\\ReceiptInfoDir")
server.Profile = As4serverProfiles.ebpfENTSOG;
server.ReadRequest();
//The receipt may be signed depending upon the AgreementRef
server.SignerCert = new Certificate(Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyA.cer"));
//If the request has a bundled receipt verify it first
if (!string.IsNullOrEmpty(server.IncomingReceipt.Content))
{
server.VerifyReceipt();
}
//If the request is a pull request (MPC is set)
if (server.AgreementRef == "" && server.MPC != "")
{
server.AgreementRef = "http://agreements.company.com/pull_files";
server.AS4From.Id = "org:holodeckb2b:example:company:B";
server.AS4From.Role = "Sender";
server.AS4To.Id = "org:holodeckb2b:example:company:A";
server.AS4To.Role = "Receiver";
server.ReceiptReplyMode = As4serverReceiptReplyModes.rrmAsync;
//Our private certificate. Used to sign the message and files.
server.SigningCert = new Certificate(CertStoreTypes.cstPFXFile, Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyB.pfx"), "password", "*");
//Partner's public certificate. Used to encrypt files.
server.RecipientCerts.Add(new Certificate(Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyA.cer")));
EBData data = new EBData();
data.EDIType = "text/xml";
data.Data = "<test>Hello AS4 World!</test>";
server.EDIData.Add(data);
server.SendResponse();
}
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
ReadRequest Method (AS4Server Class)
Reads the AS4 request.
Syntax
ANSI (Cross Platform) int ReadRequest(); Unicode (Windows) INT ReadRequest();
int ipworksedi_as4server_readrequest(void* lpObj);
int ReadRequest();
Remarks
To begin, when a request is received first call ReadRequest. This reads the AS4 request from the content of the Request (and optionally the RequestHeadersString) property. Alternatively the request data may be passed directly to the class by specifying calling SetRequestStream. After calling ReadRequest the following properties may be checked:
- AgreementRef
- AS4From
- AS4To
- ConversationId
- EDIData
- Errors
- IncomingReceipt
- MessageId
- MessageProperties
- MPC
- Service
- ServiceAction
- ServiceType
The first step after calling ReadRequest is to determine if the client is sending files (push) or requesting files (pull).
To determine this check the value of AgreementRef and MPC. For instance:
if (server.AgreementRef == "" && server.MPC != "")
{
//The client is requesting files from the specified MPC
//No other relevant properties are populated
}
else //AgreementRef is not empty, and MPC is empty
{
//The client is sending files. AgreementRef is populated with the agreement reference.
//AS4From, AS4To, ConversationId, etc are populated
}
Determining if the request contains an asynchronous receipt from a previous transmission may also be done at this time by checking the IncomingReceipt property's Content field. If it is populated a receipt is present. To verify the receipt set AsyncReceiptInfoDir to the directory where information about the message was originally stored and call VerifyReceipt. If the receipt is signed SignerCert must also be set. See the section below and also SendFiles for more details.
Once information about the request is determined the class may then be configured to respond appropriately depending on the operation.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Reset Method (AS4Server Class)
Resets the state of the control.
Syntax
ANSI (Cross Platform) int Reset(); Unicode (Windows) INT Reset();
int ipworksedi_as4server_reset(void* lpObj);
int Reset();
Remarks
Reset resets the state of the class. All properties will be set to their default values.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SendAckResponse Method (AS4Server Class)
Sends an acknowledgement of the request only.
Syntax
ANSI (Cross Platform) int SendAckResponse(); Unicode (Windows) INT SendAckResponse();
int ipworksedi_as4server_sendackresponse(void* lpObj);
int SendAckResponse();
Remarks
This method is used to respond to a client who sends a file and the agreement dictates that the receipt be returned asynchronously. In this case no receipt should be returned to the client. This method will send an acknowledgment only (no receipt) to the client to indicate that the request was received and processed.
This method is only applicable when ReceiptReplyMode is set to rrmAsync.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SendResponse Method (AS4Server Class)
This method sends the response over the current HTTP context.
Syntax
ANSI (Cross Platform) int SendResponse(); Unicode (Windows) INT SendResponse();
int ipworksedi_as4server_sendresponse(void* lpObj);
int SendResponse();
Remarks
This method sends the response. This should be called after ParseRequest to deliver the response to the client.
Receiving Files and Sending a Receipt
When receiving files first check the AgreementRef, AS4From, and AS4To properties to determine
who is sending the files and with what previously agreed upon configuration. Once this is known, if the request
is signed and encrypted set Certificate to the decryption certificate and SignerCert to the public
certificate used for signature verification. IncomingDirectory may optionally be set to automatically
store the incoming files.
//Process incoming files and send a signed receipt
server.ReadRequest();
//Inspect values from the request in order to load appropriate certificates etc.
//Console.WriteLine(server.AgreementRef);
//Console.WriteLine(server.AS4From.Id);
//Console.WriteLine(server.AS4To.Id);)
server.IncomingDirectory = "..\\MyFiles";
//Our private certificate. Used to decrypt the incoming file
server.Certificate = new Certificate(CertStoreTypes.cstPFXFile, Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyB.pfx"), "password", "*");
//Partner's public certificate. Used to verify the signature on the incoming message and files.
server.SignerCert = new Certificate(Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyA.cer"));
server.ParseRequest();
server.ReceiptReplyMode = As4serverReceiptReplyModes.rrmSync;
//Our private certificate. Used to sign the receipt.
server.SigningCert = new Certificate(CertStoreTypes.cstPFXFile, Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyB.pfx"), "password", "*");
server.SendResponse(); //Sends the receipt
Receiving Files and Sending an Asynchronous Receipt
Receipts may be sent in the response (synchronous) or at a later time (asynchronous). If the agreement specifies that the receipt be sent asynchronously the following steps may be taken to send the receipt.
After calling ReadRequest the ReceiptReplyMode may be set to indicate the receipt will be returned asynchronously. After calling ParseRequest call SendAckResponse to send back a HTTP 200 OK to the client. The receipt may then be returned later.
To send an asynchronous receipt AS4Client may be used. This can be sent to the partner's web site, or bundled with a later response (depending on the agreement made between the parties). In the example below AS4Client is used to send the receipt to the other party's web site.
//Process incoming files and send an asynchronous receipt
server.ReadRequest();
//Inspect values from the request in order to load appropriate certificates etc.
//Console.WriteLine(server.AgreementRef);
//Console.WriteLine(server.AS4From.Id);
//Console.WriteLine(server.AS4To.Id);)
server.IncomingDirectory = "..\\MyFiles";
//Our private certificate. Used to decrypt the incoming file
server.Certificate = new Certificate(CertStoreTypes.cstPFXFile, Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyB.pfx"), "password", "*");
//Partner's public certificate. Used to verify the signature on the incoming message and files.
server.SignerCert = new Certificate(Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyA.cer"));
server.ParseRequest();
server.ReceiptReplyMode = As4serverReceiptReplyModes.rrmAsync;
//Our private certificate. Used to sign the receipt.
server.SigningCert = new Certificate(CertStoreTypes.cstPFXFile, Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyB.pfx"), "password", "*");
server.SendAckResponse(); //Sends an ack, but not the receipt
At this point Receipt is populated with the receipt to be sent. Store the Receipt's Content and
RefToMessageId values for use when sending the receipt later. Sending a receipt can be done
with AS4Client.
//Send an asynchronous receipt
client.URL = ""http://www.company.com:9090/msh"";
client.Receipt = new EBReceipt(server.Receipt.RefToMessageId, server.Receipt.Content);
client.ReceiptReplyMode = As4clientReceiptReplyModes.rrmAsync;
client.SendReceipt();
Sending Files
To process a request to send files first check the MPC property. This holds the Message Partition Channel (MPC) from which the client would like to receive files. Next, set AgreementRef, AS4From, AS4To. Check IncomingReceipt to determine if the request has a bundled receipt. If it does VerifyReceipt can be called to verify the receipt.
Note: If the client requests files from the default MPC then MPC may be empty. See MessageType for details.
If the client makes use of UsernameToken authentication the TokenAuthentication event will fire when processing the request.
To send files back to the client simply set EDIData to the files you wish to send. When SendResponse is called the files will be sent back to the client.
//Process a request to send files (pull)
//Holds information from the original send so that receipts can be verified later
server.AsyncReceiptInfoDir = Path.Combine(Request.PhysicalApplicationPath, "..\\temp\\ReceiptInfoDir")
server.Profile = As4serverProfiles.ebpfENTSOG;
server.ReadRequest();
//The receipt may be signed depending upon the AgreementRef
server.SignerCert = new Certificate(Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyA.cer"));
//If the request has a bundled receipt verify it first
if (!string.IsNullOrEmpty(server.IncomingReceipt.Content))
{
server.VerifyReceipt();
}
//If the request is a pull request (MPC is set)
if (server.AgreementRef == "" && server.MPC != "")
{
server.AgreementRef = "http://agreements.company.com/pull_files";
server.AS4From.Id = "org:holodeckb2b:example:company:B";
server.AS4From.Role = "Sender";
server.AS4To.Id = "org:holodeckb2b:example:company:A";
server.AS4To.Role = "Receiver";
server.ReceiptReplyMode = As4serverReceiptReplyModes.rrmAsync;
//Our private certificate. Used to sign the message and files.
server.SigningCert = new Certificate(CertStoreTypes.cstPFXFile, Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyB.pfx"), "password", "*");
//Partner's public certificate. Used to encrypt files.
server.RecipientCerts.Add(new Certificate(Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyA.cer")));
EBData data = new EBData();
data.EDIType = "text/xml";
data.Data = "<test>Hello AS4 World!</test>";
server.EDIData.Add(data);
server.SendResponse();
}
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
VerifyReceipt Method (AS4Server Class)
Verifies a received receipt.
Syntax
ANSI (Cross Platform) int VerifyReceipt(); Unicode (Windows) INT VerifyReceipt();
int ipworksedi_as4server_verifyreceipt(void* lpObj);
int VerifyReceipt();
Remarks
This method is used to verify asynchronous receipts held in IncomingReceipt.
Processing Receipts
Any incoming request may potentially include a receipt. The request may be a receipt by itself, or it may be bundled with another type of request (send/receive). When initially sending files AsyncReceiptInfoDir may be set to store data about the original message on disk for use when verifying the receipt. If this is not desired manually store the OriginalSOAPMessage and OriginalSOAPMessageId instead.
To detect if an incoming request contains a receipt simply check the IncomingReceipt property's Content field. If it is populated the request includes a receipt. Set AsyncReceiptInfoDir to the same location as when the file was originally sent. Or alternatively set OriginalSOAPMessage and OriginalSOAPMessageId properties to the original values.
If the receipt is signed set SignerCert to the public certificate which will be used to verify the signature. Lastly call VerifyReceipt. This will perform any signature verification and verify the receipt content as well, matching it to the original message values.
server.ReadRequest();
//The receipt may be signed depending upon the AgreementRef
server.SignerCert = new Certificate(Path.Combine(Request.PhysicalApplicationPath, "..\\files\\CompanyA.cer"));
//If the request contains a receipt verify it
if (!string.IsNullOrEmpty(server.IncomingReceipt.Content))
{
server.VerifyReceipt();
}
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Error Event (AS4Server Class)
Fired when information is available about errors during data delivery.
Syntax
ANSI (Cross Platform) virtual int FireError(AS4ServerErrorEventParams *e);
typedef struct {
int ErrorCode;
const char *Description; int reserved; } AS4ServerErrorEventParams;
Unicode (Windows) virtual INT FireError(AS4ServerErrorEventParams *e);
typedef struct {
INT ErrorCode;
LPCWSTR Description; INT reserved; } AS4ServerErrorEventParams;
#define EID_AS4SERVER_ERROR 1 virtual INT IPWORKSEDI_CALL FireError(INT &iErrorCode, LPSTR &lpszDescription);
class AS4ServerErrorEventParams { public: int ErrorCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Error(AS4ServerErrorEventParams *e);
// Or, subclass AS4Server and override this emitter function. virtual int FireError(AS4ServerErrorEventParams *e) {...}
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
Log Event (AS4Server Class)
Fired with log information while processing a message.
Syntax
ANSI (Cross Platform) virtual int FireLog(AS4ServerLogEventParams *e);
typedef struct {
const char *LogType;
const char *LogMessage; int reserved; } AS4ServerLogEventParams;
Unicode (Windows) virtual INT FireLog(AS4ServerLogEventParams *e);
typedef struct {
LPCWSTR LogType;
LPCWSTR LogMessage; INT reserved; } AS4ServerLogEventParams;
#define EID_AS4SERVER_LOG 2 virtual INT IPWORKSEDI_CALL FireLog(LPSTR &lpszLogType, LPSTR &lpszLogMessage);
class AS4ServerLogEventParams { public: const QString &LogType(); const QString &LogMessage(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Log(AS4ServerLogEventParams *e);
// Or, subclass AS4Server and override this emitter function. virtual int FireLog(AS4ServerLogEventParams *e) {...}
Remarks
This event fires once for each log message generated by the class. The verbosity is controlled by the LogLevel setting.
Log messages available through this event correspond to log files written to LogDirectory. This event provides a way to obtain log messages without relying on files on disk. This event fires regardless of the value of LogDirectory (i.e. when LogDirectory is empty the event will still fire).
The LogMessage event parameter holds the raw log data.
The LogType event parameter indicates the type of log. Possible values are:
"INFO" | Information about the status of the process. |
"ERROR" | An error was encountered. |
"DEBUG" | Debug information. |
RecipientInfo Event (AS4Server Class)
Fired for each recipient certificate of the encrypted message.
Syntax
ANSI (Cross Platform) virtual int FireRecipientInfo(AS4ServerRecipientInfoEventParams *e);
typedef struct {
const char *Issuer;
const char *SerialNumber;
const char *SubjectKeyIdentifier;
const char *EncryptionAlgorithm; int reserved; } AS4ServerRecipientInfoEventParams;
Unicode (Windows) virtual INT FireRecipientInfo(AS4ServerRecipientInfoEventParams *e);
typedef struct {
LPCWSTR Issuer;
LPCWSTR SerialNumber;
LPCWSTR SubjectKeyIdentifier;
LPCWSTR EncryptionAlgorithm; INT reserved; } AS4ServerRecipientInfoEventParams;
#define EID_AS4SERVER_RECIPIENTINFO 3 virtual INT IPWORKSEDI_CALL FireRecipientInfo(LPSTR &lpszIssuer, LPSTR &lpszSerialNumber, LPSTR &lpszSubjectKeyIdentifier, LPSTR &lpszEncryptionAlgorithm);
class AS4ServerRecipientInfoEventParams { public: const QString &Issuer(); const QString &SerialNumber(); const QString &SubjectKeyIdentifier(); const QString &EncryptionAlgorithm(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void RecipientInfo(AS4ServerRecipientInfoEventParams *e);
// Or, subclass AS4Server and override this emitter function. virtual int FireRecipientInfo(AS4ServerRecipientInfoEventParams *e) {...}
Remarks
When ParseRequest is called and the file is encrypted, this event will fire for each recipient certificate for which the file was encrypted.
Issuer is the subject of the issuer certificate.
SerialNumber is the serial number of the encryption certificate.
SubjectKeyIdentifier is the X.509 subjectKeyIdentifier extension value of the certificate used to sign the message encoded as a hex string.
EncryptionAlgorithm is the encryption algorithm used to encrypt the message. Possible values are as follows:
- "3DES"
- "DES"
- "RC2CBC40"
- "RC2CBC64"
- "RC2CBC128" or "RC2"
- "AESCBC128" or "AES"
- "AESCBC192"
- "AESCBC256"
- "AESGCM128" or "AESGCM"
- "AESGCM192"
- "AESGCM256"
SignerCertInfo Event (AS4Server Class)
This event is fired during verification of the signed message.
Syntax
ANSI (Cross Platform) virtual int FireSignerCertInfo(AS4ServerSignerCertInfoEventParams *e);
typedef struct {
const char *Issuer;
const char *SerialNumber;
const char *SubjectKeyIdentifier;
const char *CertEncoded; int lenCertEncoded; int reserved; } AS4ServerSignerCertInfoEventParams;
Unicode (Windows) virtual INT FireSignerCertInfo(AS4ServerSignerCertInfoEventParams *e);
typedef struct {
LPCWSTR Issuer;
LPCWSTR SerialNumber;
LPCWSTR SubjectKeyIdentifier;
LPCSTR CertEncoded; INT lenCertEncoded; INT reserved; } AS4ServerSignerCertInfoEventParams;
#define EID_AS4SERVER_SIGNERCERTINFO 4 virtual INT IPWORKSEDI_CALL FireSignerCertInfo(LPSTR &lpszIssuer, LPSTR &lpszSerialNumber, LPSTR &lpszSubjectKeyIdentifier, LPSTR &lpCertEncoded, INT &lenCertEncoded);
class AS4ServerSignerCertInfoEventParams { public: const QString &Issuer(); const QString &SerialNumber(); const QString &SubjectKeyIdentifier(); const QByteArray &CertEncoded(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void SignerCertInfo(AS4ServerSignerCertInfoEventParams *e);
// Or, subclass AS4Server and override this emitter function. virtual int FireSignerCertInfo(AS4ServerSignerCertInfoEventParams *e) {...}
Remarks
During verification, this event will be raised while parsing the signer's certificate information. The parameters that are populated depend on the options used when the message was originally signed. This information may be used to select the correct certificate for SignerCert to verify the signature. The following parameters may be populated:
Issuer specifies the subject of the issuer of the certificate used to sign the message.
SerialNumber is the serial number of the certificate used to sign the message.
SubjectKeyIdentifier is the X.509 subjectKeyIdentifier extension value of the certificate used to sign the message encoded as a hex string.
CertEncoded is the PEM (Base64 encoded) public certificate needed to verify the signature.
Note: When this value is present, the class will automatically use this value to perform signature verification.
The SignerCert property may be set from within this event. In this manner, the decision of which signer certificate to load may be delayed until the parameters of this event are inspected and the correct certificate can be located and loaded.
TokenAuthentication Event (AS4Server Class)
Fired when the client makes use of UsernameToken authentication.
Syntax
ANSI (Cross Platform) virtual int FireTokenAuthentication(AS4ServerTokenAuthenticationEventParams *e);
typedef struct {
const char *User;
char *Password;
const char *PasswordType;
int Accept; int reserved; } AS4ServerTokenAuthenticationEventParams;
Unicode (Windows) virtual INT FireTokenAuthentication(AS4ServerTokenAuthenticationEventParams *e);
typedef struct {
LPCWSTR User;
LPWSTR Password;
LPCWSTR PasswordType;
BOOL Accept; INT reserved; } AS4ServerTokenAuthenticationEventParams;
#define EID_AS4SERVER_TOKENAUTHENTICATION 5 virtual INT IPWORKSEDI_CALL FireTokenAuthentication(LPSTR &lpszUser, LPSTR &lpszPassword, LPSTR &lpszPasswordType, BOOL &bAccept);
class AS4ServerTokenAuthenticationEventParams { public: const QString &User(); const QString &Password(); void SetPassword(const QString &qsPassword); const QString &PasswordType(); bool Accept(); void SetAccept(bool bAccept); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void TokenAuthentication(AS4ServerTokenAuthenticationEventParams *e);
// Or, subclass AS4Server and override this emitter function. virtual int FireTokenAuthentication(AS4ServerTokenAuthenticationEventParams *e) {...}
Remarks
This event fires when a client sends a request that includes UsernameToken authentication. This is typically only used by clients initiating a pull request.
User identifies the user.
Password should be set from within the event if PasswordType is 0 (digest). This parameter can be read when PasswordType is 1 (text).
PasswordType specifies the type of password. Possible values are:
- 0 (Digest)
- 1 (Text)
Accept may be set to manually accept the request.
When PasswordType is 0 (Digest) set the Password parameter to the plaintext password. Do not set Accept The class will hash the provided password value and compare it to the value in the request. If it matched the class will accept the request. If it does not match the class will populate Errors with an error indicating authentication has failed.
When PasswordType is 1 (Text) the Password parameter will hold the exact value received in the request. Inspect Password and determine whether to accept the request. To accept the request set Accept to True.
After this event fires if authentication failed Errors will contain an appropriate error. Send the errors back to the client by calling SendResponse.
Certificate Type
This is the digital certificate being used.
Syntax
IPWorksEDICertificate (declared in ipworksedi.h)
Remarks
This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.
Fields
EffectiveDate
char* (read-only)
Default Value: ""
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
ExpirationDate
char* (read-only)
Default Value: ""
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
ExtendedKeyUsage
char* (read-only)
Default Value: ""
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
Fingerprint
char* (read-only)
Default Value: ""
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
FingerprintSHA1
char* (read-only)
Default Value: ""
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
FingerprintSHA256
char* (read-only)
Default Value: ""
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
Issuer
char* (read-only)
Default Value: ""
The issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.
PrivateKey
char* (read-only)
Default Value: ""
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.
PrivateKeyAvailable
int (read-only)
Default Value: FALSE
Whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).
PrivateKeyContainer
char* (read-only)
Default Value: ""
The name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.
PublicKey
char* (read-only)
Default Value: ""
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
PublicKeyAlgorithm
char* (read-only)
Default Value: ""
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
PublicKeyLength
int (read-only)
Default Value: 0
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
SerialNumber
char* (read-only)
Default Value: ""
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
SignatureAlgorithm
char* (read-only)
Default Value: ""
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
Store
char*
Default Value: "MY"
The name of the certificate store for the client certificate.
The StoreType field denotes the type of the certificate store specified by Store. If the store is password-protected, specify the password in StorePassword.
Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
StorePassword
char*
Default Value: ""
If the type of certificate store requires a password, this field is used to specify the password needed to open the certificate store.
StoreType
int
Default Value: 0
The type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This field can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
SubjectAltNames
char* (read-only)
Default Value: ""
Comma-separated lists of alternative subject names for the certificate.
ThumbprintMD5
char* (read-only)
Default Value: ""
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA1
char* (read-only)
Default Value: ""
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA256
char* (read-only)
Default Value: ""
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
Usage
char* (read-only)
Default Value: ""
The text description of UsageFlags.
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
UsageFlags
int (read-only)
Default Value: 0
The flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the Usage field for a text representation of UsageFlags.
This functionality currently is not available when the provider is OpenSSL.
Version
char* (read-only)
Default Value: ""
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
Subject
char*
Default Value: ""
The subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the field is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Encoded
char*
Default Value: ""
The certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.
When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.
Constructors
Certificate()
Creates a instance whose properties can be set. This is useful for use with when generating new certificates.
Certificate(const char* lpEncoded, int lenEncoded)
Parses Encoded as an X.509 public key.
Certificate(int iStoreType, const char* lpStore, int lenStore, const char* lpszStorePassword, const char* lpszSubject)
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.
After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.
EBData Type
The EDI payload of the AS4 message.
Syntax
IPWorksEDIEBData (declared in ipworksedi.h)
Remarks
The EDI payload of the AS4 message.
Fields
Data
char*
Default Value: ""
This field contains the EDI payload of the transmission.
When sending files this may be specified to the data to be sent. This can be used as an alternative to setting FileName.
When receiving files this will only be populated if IncomingDirectory and OutputStream have not been specified and ParseRequest finishes without an error. If so, Data will contain the full decrypted text of the EDI message.
EDIType
char*
Default Value: ""
The Content-Type of the EDI message. Sample values are "application/edi-x12", "application/edifact" or "application/xml".
FileName
char*
Default Value: ""
When sending, if FileName is specified, the file specified will be used for the EDI payload of the transmission. Name will be populated with the name of the file.
When receiving, if IncomingDirectory is set, this will be populated with the name of the file which contains the processed message contents.
Note: When OutputStream is set, the data will be written to the stream and this field will not be populated.
Name
char*
Default Value: "rfc1767.edi"
Name is the final name to be associated with the contents of either the Data or FileName fields. This corresponds to the filename attribute of the Content-Disposition header for the EDI payload.
When constructing EDI data to be sent, Name will be set to the same value as FileName, but can be overridden after setting FileName to indicate that another name should be used in the outbound request's Content-Disposition MIME header.
When receiving EDI data, Name will be read out of the "filename" attribute of the inbound request's Content-Disposition MIME header.
PropertyCount
int
Default Value: 0
The number of properties for this file.
Each file may contain zero or more properties associated with it. This property, in conjunction with PropertyIndex, PropertyName, and PropertyValue can be used to specify properties when sending and read properties when receiving.
Sending
When sending files to add properties set PropertyCount to specify the number of properties. Then set
PropertyIndex to select the property. Set PropertyName and PropertyValue to define the values
for the property at PropertyIndex. For instance:
data = new EBData();
data.EDIType = "image/jpeg";
data.FileName = "..\\1.jpg";
data.Name = "1.jpg";
data.PropertyCount = 2; //Define two properties
data.PropertyIndex = 0; //Select the first property
data.PropertyName = "name1";
data.PropertyValue = "value1";
data.PropertyIndex = 1; //Select the second property
data.PropertyName = "name2";
data.PropertyValue = "value2";
Receiving
When receiving files these properties may be queried to retrieve the values set by the sender. Inspect PropertyCount to obtain the number of properties. Next set PropertyIndex to select a property and query PropertyName and PropertyValue. For instance:
for (int i = 0; i < server.EDIData[0].PropertyCount;i++)
{
server.EDIData[0].PropertyIndex = i;
Console.WriteLine(server.EDIData[0].PropertyName + ": " + server.EDIData[0].PropertyValue);
}
PropertyIndex
int
Default Value: 0
Selects a property at the specified index.
PropertyName
char*
Default Value: ""
The name of the property.
PropertyValue
char*
Default Value: ""
The value of the property.
SchemaLocation
char*
Default Value: ""
The SchemaLocation, SchemaNamespace, and SchemaVersion optionally define the schema that applies to this particular file. This may be used by the receiving party to properly interpret the file data.
Schema information is not required, but if schema information is included SchemaLocation is required and must be set to the URI of the schema.
This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:PayloadInfo/eb:PartInfo/eb:Schema@location"
SchemaNamespace
char*
Default Value: ""
The namespace of the schema. This field is optional. Refer to SchemaLocation for details.
This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:PayloadInfo/eb:PartInfo/eb:Schema@namespace"
SchemaVersion
char*
Default Value: ""
The version of the schema. This field is optional. Refer to SchemaLocation for details.
This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:PayloadInfo/eb:PartInfo/eb:Schema@namespace"
Constructors
EBData()
EBData(const char* lpData, int lenData, const char* lpszEDIType)
EBData(const char* lpszFileName, const char* lpszEDIType)
EBError Type
This type defines details of the error.
Syntax
IPWorksEDIEBError (declared in ipworksedi.h)
Remarks
The fields below provide various information about the error.
Fields
Category
char*
Default Value: ""
The category of error. Typical values include "Content", "Packaging", "UnPackaging", "Communication", and "InternalProcess". This value is optional.
Code
char*
Default Value: ""
The error code. This value is required. The standard format is "EBMS:0001", where "0001" is the numeric code portion.
Description
char*
Default Value: ""
The description of the error. This value is optional.
Detail
char*
Default Value: ""
Additional details about the error. This may include other helpful information such as a stack trace. This value is optional.
Origin
char*
Default Value: ""
The module within which the error occurred. Typical values include "ebMS", "reliability", and "security". This value is optional.
RefMessageId
char*
Default Value: ""
The MessageId to which the error applies. This is optional but should be supplied if possible.
Severity
int
Default Value: 0
The severity of the error. Possible values are:
- 0 (ebstWarning - default)
- 1 (ebstFailure)
ShortDescription
char*
Default Value: ""
A short description of the error. This may be helpful for logging or readability. This value is optional.
Constructors
EBError()
EBError(const char* lpszCode, int iSeverity)
EBError(const char* lpszCode, int iSeverity, const char* lpszDetail, const char* lpszShortDescription)
EBPartyInfo Type
This type defines information about the party.
Syntax
IPWorksEDIEBPartyInfo (declared in ipworksedi.h)
Remarks
The fields define information about the respective party. This is used to define both sending and receiving party information.
Fields
Id
char*
Default Value: ""
The Id of the party. This value is required.
This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:PartyInfo/eb:From/eb:PartyId"
IdType
char*
Default Value: ""
The optional type of the Id. If specified this value should be the domain to which the Id belongs.
This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:PartyInfo/eb:From/eb:PartyId@type"
Role
char*
Default Value: ""
This field specifies the role of the party. This may be any value agreed upon by the trading partners.
In AS4From this specified the role of the party sending the document. The default value is "http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/initiator".
In AS4To this specifies the role of the party receiving the document. The default value is "http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/responder".
This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:PartyInfo/eb:From/eb:Role"
Constructors
EBPartyInfo()
EBPartyInfo(const char* lpszId, const char* lpszRole)
EBPartyInfo(const char* lpszId, const char* lpszRole, const char* lpszIdType)
EBProperty Type
A property of the message.
Syntax
IPWorksEDIEBProperty (declared in ipworksedi.h)
Remarks
This type holds details about the property of the message.
Fields
Name
char*
Default Value: ""
This field defines the name of the message property. This is required.
This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:MessageProperties/eb:Property/@Name"
PropertyType
char*
Default Value: ""
The optional type of the message property.
This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:MessageProperties/eb:Property/@Type"
Value
char*
Default Value: ""
The value of the message property.
This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:MessageProperties/eb:Property/"
Constructors
EBProperty()
EBProperty(const char* lpszName, const char* lpszValue)
EBProperty(const char* lpszName, const char* lpszValue, const char* lpszPropertyType)
EBReceipt Type
The receipt.
Syntax
IPWorksEDIEBReceipt (declared in ipworksedi.h)
Remarks
This type contains fields that comprise the receipt.
Fields
Content
char*
Default Value: ""
The content of the receipt. This is the raw XML of the receipt.
The class will automatically create the receipt, and verify the receipt, depending on the method called. In most cases this is simply informational and may be stored for logging purposes if desired.
RefToMessageId
char*
Default Value: ""
The Message Id to which this receipt applies. This is the original Message Id from the initial transmission of the file. This allows the receipt to be correlated with the original transmission.
The class will automatically create the receipt, and verify the receipt, depending on the method called. In most cases this is simply informational and may be stored for logging purposes if desired.
Constructors
EBReceipt()
EBReceipt(const char* lpszRefToMessageId, const char* lpszContent)
Header Type
This is an HTTP header as it is received from the server.
Syntax
IPWorksEDIHeader (declared in ipworksedi.h)
Remarks
When a header is received through a Header event, it is parsed into a Header type. This type contains a Field, and its corresponding Value.
Fields
Field
char*
Default Value: ""
This field contains the name of the HTTP Header (this is the same case as it is delivered).
Value
char*
Default Value: ""
This field contains the Header contents.
Constructors
Header()
Header(const char* lpszField, const char* lpszValue)
IPWorksEDIList Type
Syntax
IPWorksEDIList<T> (declared in ipworksedi.h)
Remarks
IPWorksEDIList is a generic class that is used to hold a collection of objects of type T, where T is one of the custom types supported by the AS4Server class.
Methods | |
GetCount |
This method returns the current size of the collection.
int GetCount() {}
|
SetCount |
This method sets the size of the collection. This method returns 0 if setting the size was successful; or -1 if the collection is ReadOnly. When adding additional objects to a collection call this method to specify the new size. Increasing the size of the collection preserves existing objects in the collection.
int SetCount(int count) {}
|
Get |
This method gets the item at the specified position. The index parameter specifies the index of the item in the collection. This method returns NULL if an invalid index is specified.
T* Get(int index) {}
|
Set |
This method sets the item at the specified position. The index parameter specifies the index of the item in the collection that is being set. This method returns -1 if an invalid index is specified. Note: Objects created using the new operator must be freed using the delete operator; they will not be automatically freed by the class.
T* Set(int index, T* value) {}
|
Config Settings (AS4Server Class)
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.AS4Server Config Settings
This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:CollaborationInfo/eb:AgreementRef/@pmode"
This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:CollaborationInfo/eb:AgreementRef/@type"
This setting is only applicable when the first file specified in EDIData is of type "text/xml" or "application/xml". In addition this is only applicable when Profile is set to Standard.
If set to True (default), the file will be sent as an attachment. This allows the filename to be preserved and the file is sent as a separate MIME part. If set to False and the criteria above are met then the file will be sent within the SOAP body. In this case the filename cannot be preserved normally.
The default value is True.
Note: When Profile is set to Standard the first EDIData part will be included in the SOAP body if the EDIType is "text/xml" or "application/xml". In that case since the data is included in the SOAP body it will not be compressed. When Profile is set to ENTSOG all EDIData parts are compressed.
Base64 (2) | Base64 encoding of binary data. |
Binary (4) | Binary data without any encoding. |
The default value depends on the Profile. For the Standard profile the default value is False. When Profile is set to ENTSOG this value is set to True.
<eb3:PartInfo href="cid:_de48eece-d1d8-4823-8a63-d3a8d14dc1a8@nsoftware">In some cases it may be desired or necessary to specify a user-defined value. For instance:
<eb3:PartInfo href="cid:mypart@myhost">After adding the part to EDIData the Id may be specified by setting:
AS4Component.Config("EDIDataPartId[0]=mypart@myhost");This setting is also populated with the parsed Ids after receiving a message.
0 (X509 - default) | X509 data including the certificate's issuer name and issuer serial number is included in the X509Data element. |
1 (Binary) | A binary security token holds the base64 encoded contents of the public certificate and is referenced from within the Reference element. |
2 (Subject Key Identifier) | The X509 subject key identifier is included in the KeyIdentifier element. |
3 (X509PKIPathv1) | A binary security token holds the base64 encoded ordered list of X509 public certificates and is referenced from within the Reference element. |
The default value is 0 (X509) and should not be changed unless there is a specific reason to do so.
Note: The default value when Profile is set to eDelivery is 1 (Binary).
This is helpful in the case where Profile is set to ebpfStandard and the first file being sent is of type "text/xml" or "application/xml". In that case the file content is included in the SOAP body and there is no standard mechanism for preserving the filename.
When set the class will automatically populate the property when sending files and will read the filename from this property when receiving files.
By default this is not specified.
Note: The filenames will always be preserved within the MIME header attributes whenever possible regardless of whether this setting is specified.
If set to True (default) the class will only attempt to use the certificate specified by SigningCert. If SigningCert is not specified signing will not be attempted.
component.Config("FromIdCount=2");
component.Config("FromId[0]=id1");
component.Config("FromIdType[0]=mytype");
component.Config("FromId[1]=id2");
When receiving a message with multiple Ids, query these settings to read the values.
By default this value is unspecified and only a single Id is used as specified in the Id field of AS4From.
Value | Algorithm | Notes |
DH | http://www.w3.org/2009/xmlenc11#dh | Not currently implemented. |
DH-ES | http://www.w3.org/2009/xmlenc11#dh-es | Not currently implemented. |
ECDH-ES | http://www.w3.org/2009/xmlenc11#ECDH-ES | Default when Profile is ebpfBDEW. |
X25519 | http://www.w3.org/2001/04/xmldsig-more#x25519 | Default when Profile is ebpfENTSOG_V4 or ebpgEDelivery_V24. |
X448 | http://www.w3.org/2001/04/xmldsig-more#x448 |
- SHA512
- SHA384
- SHA256 (Default)
- SHA224
- SHA1
Value | Algorithm |
ConcatKDF (Default) | http://www.w3.org/2009/xmlenc11#ConcatKDF |
PBKDF2 | http://www.w3.org/2009/xmlenc11#pbkdf2 |
HKDF | http://www.w3.org/2021/04/xmldsig-more#hkdf |
Value | Algorithm | Notes |
RSA-OAEP-XMLENC11 | http://www.w3.org/2009/xmlenc11#rsa-oaep | This is used in the default configuration. Additionally if RSA-OAEP is specified this will be automatically used instead if OAEPMGF1HashAlgorithm is set to any value except SHA1 or OAEPRSAHashAlgorithm is set to SHA384 or SHA512. |
RSA-v1.5 | http://www.w3.org/2001/04/xmlenc#rsa-1_5 | There are no conditions for the use of this algorithm. If specified it will be used regardless of other settings. |
RSA-OAEP | http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p | This is used by default when OAEPMGF1HashAlgorithm is set to SHA1 and OAEPRSAHashAlgorithm is set to SHA1 or SHA256. This is only applicable under these conditions, it cannot override when RSA-OAEP-XMLENC11 is used based on the OAEPMGF1HashAlgorithm and OAEPRSAHashAlgorithm values. |
KW-AES128 | http://www.w3.org/2001/04/xmlenc#kw-aes128 | This is used by default if Profile is set to ebpfBDEW. |
KW-AES192 | http://www.w3.org/2001/04/xmlenc#kw-aes192 | |
KW-AES256 | http://www.w3.org/2001/04/xmlenc#kw-aes256 |
0 (Error) | Only errors are logged. |
1 (Info - default) | Informational and errors are logged. |
2 (Debug) | All information is logged including debug info. |
Log | Contains information about the steps taken during processing. Also see LogLevel. |
Incoming | Contains the raw request/response that is received by the class. |
Outgoing | Contains the raw request/response that is sent by the class. |
IncomingMessage | Contains the incoming ebXML message. |
OutgoingMessage | Contains the outgoing ebXML message. |
All (default) | All of the above |
1 | Pull Request (Receive Files) |
2 | User Message (Send Files) |
4 | Receipt |
8 | Error Message |
int requestType = Int32.Parse(AS4Server.Config("MessageType"));
if((requestType & 1) != 0)
//The request contains a pull request
The default value is True to maximize interoperability with other AS4 software.
- "SHA1"
- "SHA224"
- "SHA256" (default)
- "SHA384"
- "SHA512"
Note: If Profile is set to ENTSOG the MGF1HashAlgorithm will be set to "SHA256" by default.
- "SHA1"
- "SHA224"
- "SHA256" (default)
- "SHA384"
- "SHA512"
- "SHA1"
- "SHA224"
- "SHA256" (default)
- "SHA384"
- "SHA512"
This setting may also be used in conjunction with ResponseFile to provide the request to the class. See ResponseFile for details.
When specified the class will be able to decrypt messages that were encrypted with the corresponding public certificate of either Certificate or the RolloverCert* configuration settings.
When specified the class will be able to decrypt messages that were encrypted with the corresponding public certificate of either Certificate or the RolloverCert* configuration settings.
When specified the class will be able to decrypt messages that were encrypted with the corresponding public certificate of either Certificate or the RolloverCert* configuration settings.
When specified the class will be able to decrypt messages that were encrypted with the corresponding public certificate of either Certificate or the RolloverCert* configuration settings.
The certificate will be loaded after this setting is set, so it should be set after the other RolloverCert* settings.
- "SHA256" (default)
If this setting is specified, the class will verify the chain of the signer certificate against the CA
list set in this setting. To specify one or more CA certificate prior to signature verification set
this to the base64 encoded public certificate of each CA certificate. Each additional certificate can be
added by prepending the data with a + character. If the value begins with a + the class
will add the following value to an internal store of CA certificates. For instance:
//Add the first CA certificate
as4.Config("SignerCACert=MIICFDCCAX2g...");
//Add another CA certificate (Note the leading '+')
as4.Config("SignerCACert=+MIICHDCCAYW...");
If the chain validation fails during signature verification the class fails with an error. If this setting is not specified no chain validation is performed.
0 (X509 - default) | X509 data including the certificate's issuer name and issuer serial number is included in the X509Data element. |
1 (Binary) | A binary security token holds the base64 encoded contents of the public certificate and is referenced from within the Reference element. |
2 (Subject Key Identifier) | The X509 subject key identifier is included in the KeyIdentifier element. |
3 (X509PKIPathv1) | A binary security token holds the base64 encoded ordered list of X509 public certificates and is referenced from within the Reference element. |
The default value is 0 (X509) and should not be changed unless there is a specific reason to do so.
Note: The default value when Profile is set to eDelivery is 1 (Binary).
component.Config("ToIdCount=2");
component.Config("ToId[0]=id1");
component.Config("ToIdType[0]=mytype");
component.Config("ToId[1]=id2");
When receiving a message with multiple Ids, query these settings to read the values.
By default this value is unspecified and only a single Id is used as specified in the Id field of AS4To.
When set to True (default) the class will perform canonicalize the receipt when it is received. This may be helpful if the value of Content is to be used in a later process where a valid XML document is required. When set to true (false by default), the component will transform the receipt content made available in the component using Exclusive XML Canonicalization.
If False the class will not alter the received receipt. The value of Content will not itself be a well formed XML document.
HTTP Config Settings
When True, the class adds an Accept-Encoding header to the outgoing request. The value for this header can be controlled by the AcceptEncoding configuration setting. The default value for this header is "gzip, deflate".
The default value is True.
If set to True (default), the class will automatically use HTTP/1.1 if the server does not support HTTP/2. If set to False, the class fails with an error if the server does not support HTTP/2.
The default value is True.
This property is provided so that the HTTP class can be extended with other security schemes in addition to the authorization schemes already implemented by the class.
The AuthScheme property defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time User and Password are set, they are Base64 encoded, and the result is put in the Authorization property in the form "Basic [encoded-user-password]".
The default value is False.
If this property is set to 2 (Same Scheme), the new URL is retrieved automatically only if the URL Scheme is the same; otherwise, the class fails with an error.
Note: Following the HTTP specification, unless this option is set to 1 (Always), automatic redirects will be performed only for GET or HEAD requests. Other methods potentially could change the conditions of the initial request and create security vulnerabilities.
Furthermore, if either the new URL server or port are different from the existing one, User and Password are also reset to empty, unless this property is set to 1 (Always), in which case the same credentials are used to connect to the new server.
A Redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the Redirect event is a good place to set properties related to the new connection (e.g., new authentication parameters).
The default value is 0 (Never). In this case, redirects are never followed, and the class fails with an error instead.
Following are the valid options:
- 0 - Never
- 1 - Always
- 2 - Same Scheme
- "1.0"
- "1.1" (default)
- "2.0"
- "3.0"
When using HTTP/2 ("2.0"), additional restrictions apply. Please see the following notes for details.
HTTP/2 Notes
When using HTTP/2, a secure Secure Sockets Layer/Transport Layer Security (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/2 will result in an error.
If the server does not support HTTP/2, the class will automatically use HTTP/1.1 instead. This is done to provide compatibility without the need for any additional settings. To see which version was used, check NegotiatedHTTPVersion after calling a method. The AllowHTTPFallback setting controls whether this behavior is allowed (default) or disallowed.
HTTP/3 Notes
HTTP/3 is supported only in .NET and Java.
When using HTTP/3, a secure (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/3 will result in an error.
The format of the date value for IfModifiedSince is detailed in the HTTP specs. For example:
Sat, 29 Oct 2017 19:43:31 GMT.
The default value for KeepAlive is false.
0 (None) | No events are logged. |
1 (Info - default) | Informational events are logged. |
2 (Verbose) | Detailed data are logged. |
3 (Debug) | Debug data are logged. |
The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.
The value 2 (Verbose) logs additional information about the request and response.
The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).
The headers must follow the format "header: value" as described in the HTTP specifications. Header lines should be separated by CRLF ("\r\n") .
Use this configuration setting with caution. If this configuration setting contains invalid headers, HTTP requests may fail.
This configuration setting is useful for extending the functionality of the class beyond what is provided.
.NET
Http http = new Http();
http.Config("TransferredRequest=on");
http.PostData = "body";
http.Post("http://someserver.com");
Console.WriteLine(http.Config("TransferredRequest"));
C++
HTTP http;
http.Config("TransferredRequest=on");
http.SetPostData("body", 5);
http.Post("http://someserver.com");
printf("%s\r\n", http.Config("TransferredRequest"));
Note: Some servers (such as the ASP.NET Development Server) may not support chunked encoding.
The default value is False and the hostname will always be used exactly as specified. Note: The CodePage setting must be set to a value capable of interpreting the specified host name. For instance, to specify UTF-8, set CodePage to 65001. In the C++ Edition for Windows, the *W version of the class must be used. For instance, DNSW or HTTPW.
Note: This setting is applicable only to Mac/iOS editions.
When True (default), the class will check for the existence of a Proxy auto-config URL, and if found, will determine the appropriate proxy to use.
Override the default with the name and version of your software.
TCPClient Config Settings
If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.
0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This value is not applicable in macOS.
Note: This configuration setting is only available in the Unix platform. It is not supported in masOS or FreeBSD.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.
If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.
If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
www.google.com;www.nsoftware.com
Note: This value is not applicable in Java.
By default, this configuration setting is set to False.
0 | IPv4 only |
1 | IPv6 only |
2 | IPv6 with IPv4 fallback |
SSL Config Settings
When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this configuration setting has no effect if SSLProvider is set to Platform.
The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g., 9d66eef0.0, 9d66eef0.1). OpenSSL recommends the use of the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by the following sequences:
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
Before, between, and after the certificate text is allowed, which can be used, for example, for descriptions of the certificates. Refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
By default, OpenSSL uses the device file "/dev/urandom" to seed the PRNG, and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
If set to True, the class will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the class is the same.
The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found, the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.
The default value is as follows:
/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when SSLProvider is set to Platform include the following:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include the following:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_ECDH_RSA_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include the following:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default - Client and Server) |
TLS1.1 | 768 (Hex 300) (Default - Client) |
TLS1 | 192 (Hex C0) (Default - Client) |
SSL3 | 48 (Hex 30) |
SSL2 | 12 (Hex 0C) |
Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.
SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:
By default when TLS 1.3 is enabled, the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions that are designed to run on Windows, SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider), please be aware of the following notes:
- The platform provider is available only on Windows 11/Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the class when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
This configuration setting is applicable only when SSLProvider is set to Internal.
If set to True, all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the class will only append, it will not overwrite previous values.
Note: This configuration setting is applicable only when SSLProvider is set to Internal.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown certificate authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown certificate authority revocation status. |
0x00000800 | Ignore unknown root revocation status. |
0x00008000 | Allow test root certificate. |
0x00004000 | Trust test root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN non-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When specified the class will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the class fails with an error.
The format of this value is a comma-separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.
In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
Socket Config Settings
Note: This option is not valid for User Datagram Protocol (UDP) ports.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting that applies to all instances of all classes of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.
For more details, please see the FIPS 140-2 Compliance article.
Note: This setting is applicable only on Windows.
Note: Enabling FIPS compliance requires a special license; please contact sales@nsoftware.com for details.
Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.
On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.
To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.
Trappable Errors (AS4Server Class)
Error Handling (C++)
Call the GetLastErrorCode() method to obtain the last called method's result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. Known error codes are listed below. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
AS4Server Errors
601 | Unsupported signature algorithm. |
705 | No response to deliver. |
774 | Error writing to stream. |
1201 | Invalid ebXML. |
1204 | Invalid part href value. |
1205 | Unknown original message when creating receipt. |
1206 | Could not build user message. |
1207 | MPC value is missing. |
1210 | A required property is not set, check the message for details. |
1211 | Invalid or missing URL. |
1212 | Unable to send request. |
1213 | The other party returned an error. Check the Errors property for details. |
1214 | Error processing receipt. |
1215 | Error saving data to AsyncReceiptInfoDir. |
1216 | Error reading data from AsyncReceiptInfoDir. |
1217 | MPC in the response does not match the MPC in the request. |
1218 | Duplicate message detected. |
1219 | Invalid profile value. |
1220 | Unsupported compression type |
1221 | Input file not found. |
1222 | Error compressing file. |
1223 | Invalid LogLevel value. |
1224 | Error setting EDI content when building message. |
1225 | Could not find a required message part. |
1226 | Invalid SOAP message. |
1227 | Invalid signature. |
1228 | Unknown XML reference. |
1229 | Digest verification failed. |
1230 | Could not find the required key. |
1231 | No CipherReference of CipherValue found. |
1232 | Only cid references are supported. |
1233 | Error signing message. |
1234 | Cannot find subject identifier. |
1235 | Error creating encryption key. |
1236 | Error decrypting part. |
1237 | Error calculating digest. |
1238 | The specified certificate cannot be used to decrypt this message. |
1239 | A signature is required, but is not present. |
1240 | Encryption is required, but the message is not encrypted. |
HTTP Errors
118 | Firewall error. The error description contains the detailed message. |
143 | Busy executing current method. |
151 | HTTP protocol error. The error message has the server response. |
152 | No server specified in URL. |
153 | Specified URLScheme is invalid. |
155 | Range operation is not supported by server. |
156 | Invalid cookie index (out of range). |
301 | Interrupted. |
302 | Cannot open AttachedFile. |
The class may also return one of the following error codes, which are inherited from other classes.
TCPClient Errors
100 | You cannot change the RemotePort at this time. A connection is in progress. |
101 | You cannot change the RemoteHost (Server) at this time. A connection is in progress. |
102 | The RemoteHost address is invalid (0.0.0.0). |
104 | Already connected. If you want to reconnect, close the current connection first. |
106 | You cannot change the LocalPort at this time. A connection is in progress. |
107 | You cannot change the LocalHost at this time. A connection is in progress. |
112 | You cannot change MaxLineLength at this time. A connection is in progress. |
116 | RemotePort cannot be zero. Please specify a valid service port number. |
117 | You cannot change the UseConnection option while the class is active. |
135 | Operation would block. |
201 | Timeout. |
211 | Action impossible in control's present state. |
212 | Action impossible while not connected. |
213 | Action impossible while listening. |
301 | Timeout. |
302 | Could not open file. |
434 | Unable to convert string to selected CodePage. |
1105 | Already connecting. If you want to reconnect, close the current connection first. |
1117 | You need to connect first. |
1119 | You cannot change the LocalHost at this time. A connection is in progress. |
1120 | Connection dropped by remote host. |
TCP/IP Errors
10004 | [10004] Interrupted system call. |
10009 | [10009] Bad file number. |
10013 | [10013] Access denied. |
10014 | [10014] Bad address. |
10022 | [10022] Invalid argument. |
10024 | [10024] Too many open files. |
10035 | [10035] Operation would block. |
10036 | [10036] Operation now in progress. |
10037 | [10037] Operation already in progress. |
10038 | [10038] Socket operation on nonsocket. |
10039 | [10039] Destination address required. |
10040 | [10040] Message is too long. |
10041 | [10041] Protocol wrong type for socket. |
10042 | [10042] Bad protocol option. |
10043 | [10043] Protocol is not supported. |
10044 | [10044] Socket type is not supported. |
10045 | [10045] Operation is not supported on socket. |
10046 | [10046] Protocol family is not supported. |
10047 | [10047] Address family is not supported by protocol family. |
10048 | [10048] Address already in use. |
10049 | [10049] Cannot assign requested address. |
10050 | [10050] Network is down. |
10051 | [10051] Network is unreachable. |
10052 | [10052] Net dropped connection or reset. |
10053 | [10053] Software caused connection abort. |
10054 | [10054] Connection reset by peer. |
10055 | [10055] No buffer space available. |
10056 | [10056] Socket is already connected. |
10057 | [10057] Socket is not connected. |
10058 | [10058] Cannot send after socket shutdown. |
10059 | [10059] Too many references, cannot splice. |
10060 | [10060] Connection timed out. |
10061 | [10061] Connection refused. |
10062 | [10062] Too many levels of symbolic links. |
10063 | [10063] File name is too long. |
10064 | [10064] Host is down. |
10065 | [10065] No route to host. |
10066 | [10066] Directory is not empty |
10067 | [10067] Too many processes. |
10068 | [10068] Too many users. |
10069 | [10069] Disc Quota Exceeded. |
10070 | [10070] Stale NFS file handle. |
10071 | [10071] Too many levels of remote in path. |
10091 | [10091] Network subsystem is unavailable. |
10092 | [10092] WINSOCK DLL Version out of range. |
10093 | [10093] Winsock is not loaded yet. |
11001 | [11001] Host not found. |
11002 | [11002] Nonauthoritative 'Host not found' (try again or check DNS setup). |
11003 | [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP. |
11004 | [11004] Valid name, no data record (check DNS setup). |