OFTPServer Class

Properties   Methods   Events   Config Settings   Errors  

The OFTPServer class implements the server side of the Odette File Transfer Protocol.

Syntax

OFTPServer

Remarks

The OFTPServer component implements an OFTP server. It is a lightweight server that supports version 1.2, 1.3, 1.4, and 2.0 of OFTP.

Sending and Receiving Files

To use the class first decide if you will support TLS/SSL connections or not. If UseSSL is set to true, all clients will be expected to connect in TLS/SSL. If UseSSL is set to false (default), all clients are expected to connect in plaintext. If UseSSL is true, only clients that support Version 2.0 of the protocol can connect.

Once you have decided whether or not to support TLS/SSL, specify the port you wish the server to listen on in LocalPort. By default this value is 3305.

Next, specify values for ServerSSIDCode, ServerSFIDCode, ServerPassword.

Then set Listening to true to start listening for incoming requests.

When a client connects, you will have an opportunity to authenticate the client before continuing the connection. This is done when the AcceptConnection event fires. Within this event you can validate that the connecting client has access based on rules you determine. If you wish to reject the connection set the Accept parameter to false. Within this event you can also specify the directory to which files sent by the client to the server are saved. It is necessary to specify the directory within this event, as the client can start sending files as soon as the connection is complete. To specify the download directory set the DownloadDirectory field. For instance: oftpserver1.SetOFTPConnectionDownloadDirectory(e->ConnectionId, "C:\\Downloads");

When the connection is complete, the client may send files. If the client does send a file the AcceptFile event will fire and you will have the opportunity to reject the file by setting the Accept parameter of the event. In addition you will have a chance to change the filename by setting the Filename parameter if desired.

After the client has sent all the files it is configured to send, it will pass control to the server. At that time the ReadyToSend event will fire, and the ReadyToSend field will be set to true. After this, you can either end the session with the client by calling Logoff or send files to the client. To send files to the client simply call the SendFile method with the specified parameters.

TLS/SSL Notes

When UseSSL is set to true, the server must be configured with a TLS/SSL certificate before it is started. Set SSLCert to a valid certificate with corresponding private key before setting Listening to true. This may be a PFX file, PEM key, or a certificate in a windows certificate store. See the SSLCert property for more information.

After SSLCert is set to a valid certificate and Listening is set to true, when a client connects the SSLStatus event will fire during the TLS/SSL negotiation. This is purely informational, if there is an error the Error event will fire.

If you want to require TLS/SSL client authentication, set SSLAuthenticateClients to true before setting Listening to true. This will force clients to present a certificate during TLS/SSL negotiation to be used for authorization. In this case the SSLClientAuthentication event will fire and you must set the Accept parameter within the event to true in order to accept the client's certificate and proceed with the connection.

Example Code

MyOftpserver server; server.SetServerSSIDCode("SERVERSSID"); server.SetServerSFIDCode("SERVERSFID"); server.SetServerPassword("SERVER"); server.SetListening(true); ... //Within the main loop of the application call server.DoEvents() in a loop //to process events. //When the ReadyToSend event fires the server can then send files to the client. To do this call the SendFile method. //Alternatively, monitor server.GetOFTPConnectionReadyToSend(<ConnectionId>) to determine when files can be sent. class MyOFTPServer : public OFTPServer { public: MyOFTPServer() {} virtual int FireAcceptConnection(OFTPServerAcceptConnectionEventParams* e) { clientConnectionId = e->ConnectionId; clientSSIDCode = strdup(e->ClientSSIDCode); this->SetOFTPConnectionDownloadDirectory(e->ConnectionId, INCOMING_DIR); return 0; } virtual int FireAcceptFile(OFTPServerAcceptFileEventParams* e) { //e->Accept = False; //To reject a file set e->Accept to false return 0; } virtual int FirePITrail(OFTPServerPITrailEventParams* e) { char logmsg[MAX_PATH]; if (e->Direction == 0) { sprintf(logmsg, "CLIENT: %s : %s", e->CommandId, e->CommandDescription); } else { sprintf(logmsg, "SERVER: %s : %s", e->CommandId, e->CommandDescription); } printf(logmsg); return 0; } virtual int FireError(OFTPServerErrorEventParams* e) { printf("[%d] %s\n", e->ErrorCode,strdup(e->Description)); return 0; } };

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

CertificateThe certificate used for session authentication, signing, and decryption.
ConnectionBacklogThis property includes the maximum number of pending connections maintained by the Transmission Control Protocol (TCP)/IP subsystem.
ConnectionsA collection of currently connected clients.
DefaultTimeoutAn initial timeout value to be used by incoming connections.
ListeningThis property indicates whether the class is listening for incoming connections on LocalPort.
LocalHostThe name of the local host or user-assigned IP interface through which connections are initiated or accepted.
LocalPortThe TCP port in the local host where the class listens.
ServerPasswordThe server's password.
ServerSFIDCodeServer's SFID code.
ServerSSIDCodeThe server's SSID code.
SSLAuthenticateClientsIf set to True, the server asks the client(s) for a certificate.
SSLCertThe certificate to be used during Secure Sockets Layer (SSL) negotiation.
TrustedCertsA collection of trusted CA certificates.
UseSSLUse SSL to access the RemoteHost .

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

ChangeDirectionSends a Change Direction (CD) command.
ConfigSets or retrieves a configuration setting.
DisconnectThis method disconnects the specified client.
DoEventsThis method processes events from the internal message queue.
ExchangeCertificateExchange a certificate with the remote host.
ImportTrustedCertsImports a list of trusted CA certificates.
InterruptThis method interrupts a synchronous send to the remote host.
LogoffEnds a session with the connection client.
ResetResets the state of the control.
SendEndResponseSends an EERP/NERP asynchronously.
SendFileSends a file to the specified client.
ShutdownThis method shuts down the server.
StartListeningThis method starts listening for incoming connections.
StopListeningThis method stops listening for new connections.
ValidateCertValidates the certificate with private key.
ValidateRecipientCertValidates the recipient certificate.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

AcceptConnectionFired when a client connects.
AcceptFileFired when the client sends a file.
CertificateReceivedFired when a certificate is received from the remote host.
ConnectedThis event is fired immediately after a connection completes (or fails).
ConnectionRequestThis event is fired when a request for connection comes from a remote host.
DisconnectedThis event is fired when a connection is closed.
EndResponseFired every time an end response is received from the client.
EndTransferFired when a file finishes transferring.
ErrorInformation about errors during data delivery.
LogFires once for each log message.
PITrailFired when any protocol level communication occurs.
ReadyToSendFired when the class is ready to send data.
SSLClientAuthenticationThis event is fired when the client presents its credentials to the server.
SSLConnectionRequestThis event fires when a Secure Sockets Layer (SSL) connection is requested.
SSLStatusThis event is fired to show the progress of the secure connection.
StartTransferFired when a document starts transferring.
TransferFired while a document transfers (delivers document).

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

AllowRetry[ConnectionId]Whether to send a retry indicator when rejecting a file.
CDAfterSendEndResponse[ConnectionId]Whether to issue a CD command after sending an asynchronous EERP.
CertificateStore[ConnectionId]The name of the certificate store.
CertificateStorePassword[ConnectionId]The certificate password.
CertificateStoreType[ConnectionId]The type of certificate store.
CertificateSubject[ConnectionId]The certificate subject.
CertificateTypeSpecifies the type of certificate being supplied.
CertificateType[ConnectionId]Specifies the type of certificate being supplied.
ConnectionType[ConnectionId]Specifies the type of connection that will be created.
CreditCount[ConnectionId]Specifies the maximum credit value.
DefaultIdleTimeoutThe default idle timeout for inactive clients.
DefaultReceiptHashAlgorithmThe receipt hash algorithm to request when sending a file.
DeleteOnErrorWhether received files are deleted when there is an error during processing.
DisconnectAfterEndSessionDetermines if the connection is closed immediately after ending the session.
ExchangeBufferSize[ConnectionId]Specifies the data exchange buffer size in bytes.
ExchangeCertStoreTypeSpecifies the store type when loading a certificate to be exchanged.
ExchangeCertSubjectThe subject of the certificate being exchanged.
FailOnUntrustedCertWhether or not to throw an exception when untrusted certificates are used.
FileDescription[ConnectionId]Additional description information sent with the file.
FileHashAlgorithm[ConnectionId]The hash algorithm to use when sending a file.
FireEndResponseOnSendDetermines if the EndResponse event is fired for outgoing EERP and NERPs.
FollowRedirectsDetermines behavior when importing trusted certificates and a HTTP redirect is returned.
FriendlyLogFormatDetermines if a more friendly format is applied to PITrail event out.
IdleTimeoutThe idle timeout for this connection.
KeepAliveThis property enables the SO_KEEPALIVE option on the incoming connections. This option prevents long connections from timing out in case of inactivity.
LingerThis property controls how a connection is closed. The default is True. In this case the connection is closed only after all the data is sent. Setting it to False forces an abrupt (hard) disconnection. Any data that was in the sending queue may be lost.
LogLevelThe level of information to log.
ReceivedConnectionType[ConnectionId]Returns the connection type specified by the client.
ReceivedFileDateTime[ConnectionId]The datetime of the file being received.
ReceivedFileDescription[ConnectionId]Additional description information received with the file.
ReceivedFileEncryptionAlg[ConnectionId]The encryption algorithm used for the file being received.
ReceivedFileName[ConnectionId]Returns the name of the received file.
ReceivedFileNameFormatThe name format of received files.
ReceivedFileNameFormat[ConnectionId]The name format of received files.
RecipientCertificateTypeSpecifies the type of recipient certificate being supplied.
Retry[ConnectionId]Indicates whether the recipient allows the send to be retried.
SecureAuthenticationSpecifies secure authentication requirements for connecting clients.
SendCDAfterEFPASpecifies whether a CD is always sent after receiving an EFPA.
ServerPassword[ConnectionId]Sets or gets the ServerPassword for a particular connection.
ServerSFIDCode[ConnectionId]Sets or gets the ServerSFIDCode for a particular connection.
ServerSSIDCode[ConnectionId]Sets the ServerSSIDCode for a particular connection.
TempPath[ConnectionId]The path of a directory where temporary files will be created.
TrustedCertsDataSpecifies the source to be used when importing trusted certificates.
VirtualFileDateFormatThe DateTime format of received files.
AllowedClientsA comma-separated list of host names or IP addresses that can access the class.
BindExclusivelyWhether or not the class considers a local port reserved for exclusive use.
BlockedClientsA comma-separated list of host names or IP addresses that cannot access the class.
ConnectionUIDThe unique connectionId for a connection.
DefaultConnectionTimeoutThe inactivity timeout applied to the SSL handshake.
InBufferSizeThe size in bytes of the incoming queue of the socket.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveRetryCountThe number of keep-alive packets to be sent before the remotehost is considered disconnected.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
MaxConnectionsThe maximum number of connections available.
MaxReadTimeThe maximum time spent reading data from each connection.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
TcpNoDelayWhether or not to delay when sending packets.
UseIOCPWhether to use the completion port I/O model.
UseIPv6Whether to use IPv6.
UseWindowsMessagesWhether to use the WSAAsyncSelect I/O model.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
OpenSSLCADirThe path to a directory containing CA certificates.
OpenSSLCAFileName of the file containing the list of CA's trusted by your application.
OpenSSLCipherListA string that controls the ciphers to be used by SSL.
OpenSSLPrngSeedDataThe data to seed the pseudo random number generator (PRNG).
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertFilePathsThe paths to CA certificate files on Unix/Linux.
SSLCACertsA newline separated list of CA certificates to be included when performing an SSL handshake.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLClientCACertsA newline separated list of CA certificates to use during SSL client certificate validation.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificates to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
BuildInfoInformation about the product's build.
CodePageThe system code page used for Unicode to Multibyte translations.
LicenseInfoInformation about the current license.
MaskSensitiveDataWhether sensitive data is masked in log messages.
ProcessIdleEventsWhether the class uses its internal event loop to process events when the main thread is idle.
SelectWaitMillisThe length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.
UseFIPSCompliantAPITells the class whether or not to use FIPS certified APIs.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

Certificate Property (OFTPServer Class)

The certificate used for session authentication, signing, and decryption.

Syntax

IPWorksEDICertificate* GetCertificate();
int SetCertificate(IPWorksEDICertificate* val);
int ipworksedi_oftpserver_getcertstore(void* lpObj, char** lpCertStore, int* lenCertStore);
int ipworksedi_oftpserver_setcertstore(void* lpObj, const char* lpCertStore, int lenCertStore);
char* ipworksedi_oftpserver_getcertstorepassword(void* lpObj);
int ipworksedi_oftpserver_setcertstorepassword(void* lpObj, const char* lpszCertStorePassword);
int ipworksedi_oftpserver_getcertstoretype(void* lpObj);
int ipworksedi_oftpserver_setcertstoretype(void* lpObj, int iCertStoreType);
char* ipworksedi_oftpserver_getcertsubject(void* lpObj);
int ipworksedi_oftpserver_setcertsubject(void* lpObj, const char* lpszCertSubject);
int ipworksedi_oftpserver_getcertencoded(void* lpObj, char** lpCertEncoded, int* lenCertEncoded);
int ipworksedi_oftpserver_setcertencoded(void* lpObj, const char* lpCertEncoded, int lenCertEncoded);
QByteArray GetCertStore();
int SetCertStore(QByteArray qbaCertStore); QString GetCertStorePassword();
int SetCertStorePassword(QString qsCertStorePassword); int GetCertStoreType();
int SetCertStoreType(int iCertStoreType); QString GetCertSubject();
int SetCertSubject(QString qsCertSubject); QByteArray GetCertEncoded();
int SetCertEncoded(QByteArray qbaCertEncoded);

Remarks

Set this property to a valid Certificate object with private key to perform various security related operations.

Once specified, this certificate will be used for:

  • Session authentication if a client requests secure authentication.
  • Signing files sent to the client if VirtualFileFormat is set to slEncryptedAndSigned or slSigned.
  • Signing receipts sent to the client.
  • Decrypting files received from the client.
Note that all of the above operations are only supported in OFTP Version 2.0.

Data Type

IPWorksEDICertificate

ConnectionBacklog Property (OFTPServer Class)

This property includes the maximum number of pending connections maintained by the Transmission Control Protocol (TCP)/IP subsystem.

Syntax

ANSI (Cross Platform)
int GetConnectionBacklog();
int SetConnectionBacklog(int iConnectionBacklog); Unicode (Windows) INT GetConnectionBacklog();
INT SetConnectionBacklog(INT iConnectionBacklog);
int ipworksedi_oftpserver_getconnectionbacklog(void* lpObj);
int ipworksedi_oftpserver_setconnectionbacklog(void* lpObj, int iConnectionBacklog);
int GetConnectionBacklog();
int SetConnectionBacklog(int iConnectionBacklog);

Default Value

5

Remarks

This property contains the maximum number of pending connections maintained by the TCP/IP subsystem. This value reflects the SOMAXCONN option for the main listening socket. The default value for most systems is 5. You may set this property to a larger value if the server is expected to receive a large number of connections, and queuing them is desirable.

This property is not available at design time.

Data Type

Integer

Connections Property (OFTPServer Class)

A collection of currently connected clients.

Syntax

int ipworksedi_oftpserver_getoftpconnectioncount(void* lpObj);
int ipworksedi_oftpserver_getoftpconnectioncompress(void* lpObj, int connectionid);
int ipworksedi_oftpserver_setoftpconnectioncompress(void* lpObj, int connectionid, int bOFTPConnectionCompress);
int ipworksedi_oftpserver_getoftpconnectionconnected(void* lpObj, int connectionid);
int ipworksedi_oftpserver_getoftpconnectionconnectionid(void* lpObj, int connectionid);
char* ipworksedi_oftpserver_getoftpconnectiondownloaddirectory(void* lpObj, int connectionid);
int ipworksedi_oftpserver_setoftpconnectiondownloaddirectory(void* lpObj, int connectionid, const char* lpszOFTPConnectionDownloadDirectory);
int ipworksedi_oftpserver_getoftpconnectionencryptionalgorithm(void* lpObj, int connectionid);
int ipworksedi_oftpserver_setoftpconnectionencryptionalgorithm(void* lpObj, int connectionid, int iOFTPConnectionEncryptionAlgorithm);
char* ipworksedi_oftpserver_getoftpconnectionlocaladdress(void* lpObj, int connectionid);
int ipworksedi_oftpserver_getoftpconnectionmaxrecordsize(void* lpObj, int connectionid);
int ipworksedi_oftpserver_setoftpconnectionmaxrecordsize(void* lpObj, int connectionid, int iOFTPConnectionMaxRecordSize);
int ipworksedi_oftpserver_getoftpconnectionreadytosend(void* lpObj, int connectionid);
int ipworksedi_oftpserver_getoftpconnectionrecipientcertstore(void* lpObj, int connectionid, char** lpOFTPConnectionRecipientCertStore, int* lenOFTPConnectionRecipientCertStore);
int ipworksedi_oftpserver_setoftpconnectionrecipientcertstore(void* lpObj, int connectionid, const char* lpOFTPConnectionRecipientCertStore, int lenOFTPConnectionRecipientCertStore);
char* ipworksedi_oftpserver_getoftpconnectionrecipientcertstorepassword(void* lpObj, int connectionid);
int ipworksedi_oftpserver_setoftpconnectionrecipientcertstorepassword(void* lpObj, int connectionid, const char* lpszOFTPConnectionRecipientCertStorePassword);
int ipworksedi_oftpserver_getoftpconnectionrecipientcertstoretype(void* lpObj, int connectionid);
int ipworksedi_oftpserver_setoftpconnectionrecipientcertstoretype(void* lpObj, int connectionid, int iOFTPConnectionRecipientCertStoreType);
char* ipworksedi_oftpserver_getoftpconnectionrecipientcertsubject(void* lpObj, int connectionid);
int ipworksedi_oftpserver_setoftpconnectionrecipientcertsubject(void* lpObj, int connectionid, const char* lpszOFTPConnectionRecipientCertSubject);
char* ipworksedi_oftpserver_getoftpconnectionremotehost(void* lpObj, int connectionid);
int ipworksedi_oftpserver_getoftpconnectionremoteport(void* lpObj, int connectionid);
char* ipworksedi_oftpserver_getoftpconnectionsfidcode(void* lpObj, int connectionid);
int ipworksedi_oftpserver_setoftpconnectionsfidcode(void* lpObj, int connectionid, const char* lpszOFTPConnectionSFIDCode);
int ipworksedi_oftpserver_getoftpconnectionsignedreceipt(void* lpObj, int connectionid);
int ipworksedi_oftpserver_setoftpconnectionsignedreceipt(void* lpObj, int connectionid, int bOFTPConnectionSignedReceipt);
char* ipworksedi_oftpserver_getoftpconnectionssidcode(void* lpObj, int connectionid);
int ipworksedi_oftpserver_setoftpconnectionssidcode(void* lpObj, int connectionid, const char* lpszOFTPConnectionSSIDCode);
int ipworksedi_oftpserver_getoftpconnectiontimeout(void* lpObj, int connectionid);
int ipworksedi_oftpserver_setoftpconnectiontimeout(void* lpObj, int connectionid, int iOFTPConnectionTimeout);
int ipworksedi_oftpserver_getoftpconnectionversion(void* lpObj, int connectionid);
char* ipworksedi_oftpserver_getoftpconnectionvirtualfiledate(void* lpObj, int connectionid);
int ipworksedi_oftpserver_setoftpconnectionvirtualfiledate(void* lpObj, int connectionid, const char* lpszOFTPConnectionVirtualFileDate);
int ipworksedi_oftpserver_getoftpconnectionvirtualfileformat(void* lpObj, int connectionid);
int ipworksedi_oftpserver_setoftpconnectionvirtualfileformat(void* lpObj, int connectionid, int iOFTPConnectionVirtualFileFormat);
int ipworksedi_oftpserver_getoftpconnectionvirtualfilesecuritylevel(void* lpObj, int connectionid);
int ipworksedi_oftpserver_setoftpconnectionvirtualfilesecuritylevel(void* lpObj, int connectionid, int iOFTPConnectionVirtualFileSecurityLevel);
int GetOFTPConnectionCount();

bool GetOFTPConnectionCompress(int iConnectionId);
int SetOFTPConnectionCompress(int iConnectionId, bool bOFTPConnectionCompress); bool GetOFTPConnectionConnected(int iConnectionId); int GetOFTPConnectionConnectionId(int iConnectionId); QString GetOFTPConnectionDownloadDirectory(int iConnectionId);
int SetOFTPConnectionDownloadDirectory(int iConnectionId, QString qsOFTPConnectionDownloadDirectory); int GetOFTPConnectionEncryptionAlgorithm(int iConnectionId);
int SetOFTPConnectionEncryptionAlgorithm(int iConnectionId, int iOFTPConnectionEncryptionAlgorithm); QString GetOFTPConnectionLocalAddress(int iConnectionId); int GetOFTPConnectionMaxRecordSize(int iConnectionId);
int SetOFTPConnectionMaxRecordSize(int iConnectionId, int iOFTPConnectionMaxRecordSize); bool GetOFTPConnectionReadyToSend(int iConnectionId); QByteArray GetOFTPConnectionRecipientCertStore(int iConnectionId);
int SetOFTPConnectionRecipientCertStore(int iConnectionId, QByteArray qbaOFTPConnectionRecipientCertStore); QString GetOFTPConnectionRecipientCertStorePassword(int iConnectionId);
int SetOFTPConnectionRecipientCertStorePassword(int iConnectionId, QString qsOFTPConnectionRecipientCertStorePassword); int GetOFTPConnectionRecipientCertStoreType(int iConnectionId);
int SetOFTPConnectionRecipientCertStoreType(int iConnectionId, int iOFTPConnectionRecipientCertStoreType); QString GetOFTPConnectionRecipientCertSubject(int iConnectionId);
int SetOFTPConnectionRecipientCertSubject(int iConnectionId, QString qsOFTPConnectionRecipientCertSubject); QString GetOFTPConnectionRemoteHost(int iConnectionId); int GetOFTPConnectionRemotePort(int iConnectionId); QString GetOFTPConnectionSFIDCode(int iConnectionId);
int SetOFTPConnectionSFIDCode(int iConnectionId, QString qsOFTPConnectionSFIDCode); bool GetOFTPConnectionSignedReceipt(int iConnectionId);
int SetOFTPConnectionSignedReceipt(int iConnectionId, bool bOFTPConnectionSignedReceipt); QString GetOFTPConnectionSSIDCode(int iConnectionId);
int SetOFTPConnectionSSIDCode(int iConnectionId, QString qsOFTPConnectionSSIDCode); int GetOFTPConnectionTimeout(int iConnectionId);
int SetOFTPConnectionTimeout(int iConnectionId, int iOFTPConnectionTimeout); int GetOFTPConnectionVersion(int iConnectionId); QString GetOFTPConnectionVirtualFileDate(int iConnectionId);
int SetOFTPConnectionVirtualFileDate(int iConnectionId, QString qsOFTPConnectionVirtualFileDate); int GetOFTPConnectionVirtualFileFormat(int iConnectionId);
int SetOFTPConnectionVirtualFileFormat(int iConnectionId, int iOFTPConnectionVirtualFileFormat); int GetOFTPConnectionVirtualFileSecurityLevel(int iConnectionId);
int SetOFTPConnectionVirtualFileSecurityLevel(int iConnectionId, int iOFTPConnectionVirtualFileSecurityLevel);

Remarks

This property contains a collection of currently connected clients. All of the connections may be managed using this property. Each connection is described by the different fields of the OFTPConnection type.

This collection is a hashtable type of collection, in which the ConnectionId string is used as the key to the desired connection. You may acquire the key for a given connection through the Connected event.

Example (Setting the Download Directory) oftpserver1.SetOFTPConnectionDownloadDirectory(123456789, "C:\\Downloads");

This property is read-only.

Data Type

IPWorksEDIOFTPConnection

DefaultTimeout Property (OFTPServer Class)

An initial timeout value to be used by incoming connections.

Syntax

ANSI (Cross Platform)
int GetDefaultTimeout();
int SetDefaultTimeout(int iDefaultTimeout); Unicode (Windows) INT GetDefaultTimeout();
INT SetDefaultTimeout(INT iDefaultTimeout);
int ipworksedi_oftpserver_getdefaulttimeout(void* lpObj);
int ipworksedi_oftpserver_setdefaulttimeout(void* lpObj, int iDefaultTimeout);
int GetDefaultTimeout();
int SetDefaultTimeout(int iDefaultTimeout);

Default Value

60

Remarks

If the DefaultTimeout property is set to 0, all operations will run uninterrupted until successful completion or an error condition is encountered.

If DefaultTimeout is set to a positive value, the class will wait for the operation to complete before returning control.

The class will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not freeze and remains responsive.

If Timeout expires, and the operation is not yet complete, the class fails with an error.

Note: By default, all timeouts are inactivity timeouts, that is, the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.

The default value for the DefaultTimeout property is 60 (seconds).

Data Type

Integer

Listening Property (OFTPServer Class)

This property indicates whether the class is listening for incoming connections on LocalPort.

Syntax

ANSI (Cross Platform)
int GetListening();

Unicode (Windows)
BOOL GetListening();
int ipworksedi_oftpserver_getlistening(void* lpObj);
bool GetListening();

Default Value

FALSE

Remarks

This property indicates whether the class is listening for connections on the port specified by the LocalPort property. Use the StartListening and StopListening methods to control whether the class is listening.

This property is read-only and not available at design time.

Data Type

Boolean

LocalHost Property (OFTPServer Class)

The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

ANSI (Cross Platform)
char* GetLocalHost();
int SetLocalHost(const char* lpszLocalHost); Unicode (Windows) LPWSTR GetLocalHost();
INT SetLocalHost(LPCWSTR lpszLocalHost);
char* ipworksedi_oftpserver_getlocalhost(void* lpObj);
int ipworksedi_oftpserver_setlocalhost(void* lpObj, const char* lpszLocalHost);
QString GetLocalHost();
int SetLocalHost(QString qsLocalHost);

Default Value

""

Remarks

This property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.

If the class is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

Note: LocalHost is not persistent. You must always set it in code, and never in the property window.

Data Type

String

LocalPort Property (OFTPServer Class)

The TCP port in the local host where the class listens.

Syntax

ANSI (Cross Platform)
int GetLocalPort();
int SetLocalPort(int iLocalPort); Unicode (Windows) INT GetLocalPort();
INT SetLocalPort(INT iLocalPort);
int ipworksedi_oftpserver_getlocalport(void* lpObj);
int ipworksedi_oftpserver_setlocalport(void* lpObj, int iLocalPort);
int GetLocalPort();
int SetLocalPort(int iLocalPort);

Default Value

3305

Remarks

This property must be set before OFTPServer starts listening. If its value is 0, then the TCP/IP subsystem picks a port number at random. The port number can be found by checking the value of this property after OFTPServer is in listening mode (after successfully assigning True to the Listening property).

The service port is not shared among servers (i.e. there can be only one OFTPServer 'listening' on a particular port at one time).

The default value for plaintext communication is 3305. If UseSSL is set to true, set this value to 6619 (the default port for SSL communication).

Data Type

Integer

ServerPassword Property (OFTPServer Class)

The server's password.

Syntax

ANSI (Cross Platform)
char* GetServerPassword();
int SetServerPassword(const char* lpszServerPassword); Unicode (Windows) LPWSTR GetServerPassword();
INT SetServerPassword(LPCWSTR lpszServerPassword);
char* ipworksedi_oftpserver_getserverpassword(void* lpObj);
int ipworksedi_oftpserver_setserverpassword(void* lpObj, const char* lpszServerPassword);
QString GetServerPassword();
int SetServerPassword(QString qsServerPassword);

Default Value

""

Remarks

The password assigned to the server in the bilateral agreement. This property must be a string of no more than 8 characters long.

Data Type

String

ServerSFIDCode Property (OFTPServer Class)

Server's SFID code.

Syntax

ANSI (Cross Platform)
char* GetServerSFIDCode();
int SetServerSFIDCode(const char* lpszServerSFIDCode); Unicode (Windows) LPWSTR GetServerSFIDCode();
INT SetServerSFIDCode(LPCWSTR lpszServerSFIDCode);
char* ipworksedi_oftpserver_getserversfidcode(void* lpObj);
int ipworksedi_oftpserver_setserversfidcode(void* lpObj, const char* lpszServerSFIDCode);
QString GetServerSFIDCode();
int SetServerSFIDCode(QString qsServerSFIDCode);

Default Value

""

Remarks

The SFID code identifies the origin or destination party that is sending or receiving a file, while the SSID code identifies the party that a session is established with. If the SFID and SSID codes do not match, then the party the session is established with is acting as an intermediary, and the party identified by the SFID code is either the origin or final destination.

When acting as an intermediary the component will not perform any security services (i.e. sign, verify, encrypt, decrypt). Security services are to be performed by the origin or destination only. Data should simply be passed along by an intermediary.

Data Type

String

ServerSSIDCode Property (OFTPServer Class)

The server's SSID code.

Syntax

ANSI (Cross Platform)
char* GetServerSSIDCode();
int SetServerSSIDCode(const char* lpszServerSSIDCode); Unicode (Windows) LPWSTR GetServerSSIDCode();
INT SetServerSSIDCode(LPCWSTR lpszServerSSIDCode);
char* ipworksedi_oftpserver_getserverssidcode(void* lpObj);
int ipworksedi_oftpserver_setserverssidcode(void* lpObj, const char* lpszServerSSIDCode);
QString GetServerSSIDCode();
int SetServerSSIDCode(QString qsServerSSIDCode);

Default Value

""

Remarks

The identification code of the server. This code may be less than, but no more than 25 characters long. Generally, SSID codes have the following format as specified in RFC 2204 that is based on ISO 6523:

Code Identifier 'O' - Indicates ODETTE assigned the Organization Identifier. Other values can be used for non-ODETTE codes.

NOTE: This field is a fixed length of 1 character.

International Code A code forming part of the Organization Identifier.

NOTE: This field may be of variable length up to 4 characters long.

Organization CodeA code forming part of the Organization Identifier. This field may contain the letters A to Z, the digits 0 to 9, and space and hyphen characters.

NOTE: This field may be of variable length up to 14 characters long.

Computer Sub-AddressA locally assigned address which uniquely identifies a system within an organization (defined by an Organization Identifier).

NOTE: This field may be of variable length up to 6 characters long.

Data Type

String

SSLAuthenticateClients Property (OFTPServer Class)

If set to True, the server asks the client(s) for a certificate.

Syntax

ANSI (Cross Platform)
int GetSSLAuthenticateClients();
int SetSSLAuthenticateClients(int bSSLAuthenticateClients); Unicode (Windows) BOOL GetSSLAuthenticateClients();
INT SetSSLAuthenticateClients(BOOL bSSLAuthenticateClients);
int ipworksedi_oftpserver_getsslauthenticateclients(void* lpObj);
int ipworksedi_oftpserver_setsslauthenticateclients(void* lpObj, int bSSLAuthenticateClients);
bool GetSSLAuthenticateClients();
int SetSSLAuthenticateClients(bool bSSLAuthenticateClients);

Default Value

FALSE

Remarks

This property is used in conjunction with the SSLClientAuthentication event. Please refer to the documentation of the SSLClientAuthentication event for details.

Data Type

Boolean

SSLCert Property (OFTPServer Class)

The certificate to be used during Secure Sockets Layer (SSL) negotiation.

Syntax

IPWorksEDICertificate* GetSSLCert();
int SetSSLCert(IPWorksEDICertificate* val);
char* ipworksedi_oftpserver_getsslcerteffectivedate(void* lpObj);
char* ipworksedi_oftpserver_getsslcertexpirationdate(void* lpObj);
char* ipworksedi_oftpserver_getsslcertextendedkeyusage(void* lpObj);
char* ipworksedi_oftpserver_getsslcertfingerprint(void* lpObj);
char* ipworksedi_oftpserver_getsslcertfingerprintsha1(void* lpObj);
char* ipworksedi_oftpserver_getsslcertfingerprintsha256(void* lpObj);
char* ipworksedi_oftpserver_getsslcertissuer(void* lpObj);
char* ipworksedi_oftpserver_getsslcertprivatekey(void* lpObj);
int ipworksedi_oftpserver_getsslcertprivatekeyavailable(void* lpObj);
char* ipworksedi_oftpserver_getsslcertprivatekeycontainer(void* lpObj);
char* ipworksedi_oftpserver_getsslcertpublickey(void* lpObj);
char* ipworksedi_oftpserver_getsslcertpublickeyalgorithm(void* lpObj);
int ipworksedi_oftpserver_getsslcertpublickeylength(void* lpObj);
char* ipworksedi_oftpserver_getsslcertserialnumber(void* lpObj);
char* ipworksedi_oftpserver_getsslcertsignaturealgorithm(void* lpObj);
int ipworksedi_oftpserver_getsslcertstore(void* lpObj, char** lpSSLCertStore, int* lenSSLCertStore);
int ipworksedi_oftpserver_setsslcertstore(void* lpObj, const char* lpSSLCertStore, int lenSSLCertStore);
char* ipworksedi_oftpserver_getsslcertstorepassword(void* lpObj);
int ipworksedi_oftpserver_setsslcertstorepassword(void* lpObj, const char* lpszSSLCertStorePassword);
int ipworksedi_oftpserver_getsslcertstoretype(void* lpObj);
int ipworksedi_oftpserver_setsslcertstoretype(void* lpObj, int iSSLCertStoreType);
char* ipworksedi_oftpserver_getsslcertsubjectaltnames(void* lpObj);
char* ipworksedi_oftpserver_getsslcertthumbprintmd5(void* lpObj);
char* ipworksedi_oftpserver_getsslcertthumbprintsha1(void* lpObj);
char* ipworksedi_oftpserver_getsslcertthumbprintsha256(void* lpObj);
char* ipworksedi_oftpserver_getsslcertusage(void* lpObj);
int ipworksedi_oftpserver_getsslcertusageflags(void* lpObj);
char* ipworksedi_oftpserver_getsslcertversion(void* lpObj);
char* ipworksedi_oftpserver_getsslcertsubject(void* lpObj);
int ipworksedi_oftpserver_setsslcertsubject(void* lpObj, const char* lpszSSLCertSubject);
int ipworksedi_oftpserver_getsslcertencoded(void* lpObj, char** lpSSLCertEncoded, int* lenSSLCertEncoded);
int ipworksedi_oftpserver_setsslcertencoded(void* lpObj, const char* lpSSLCertEncoded, int lenSSLCertEncoded);
QString GetSSLCertEffectiveDate();

QString GetSSLCertExpirationDate();

QString GetSSLCertExtendedKeyUsage();

QString GetSSLCertFingerprint();

QString GetSSLCertFingerprintSHA1();

QString GetSSLCertFingerprintSHA256();

QString GetSSLCertIssuer();

QString GetSSLCertPrivateKey();

bool GetSSLCertPrivateKeyAvailable();

QString GetSSLCertPrivateKeyContainer();

QString GetSSLCertPublicKey();

QString GetSSLCertPublicKeyAlgorithm();

int GetSSLCertPublicKeyLength();

QString GetSSLCertSerialNumber();

QString GetSSLCertSignatureAlgorithm();

QByteArray GetSSLCertStore();
int SetSSLCertStore(QByteArray qbaSSLCertStore); QString GetSSLCertStorePassword();
int SetSSLCertStorePassword(QString qsSSLCertStorePassword); int GetSSLCertStoreType();
int SetSSLCertStoreType(int iSSLCertStoreType); QString GetSSLCertSubjectAltNames(); QString GetSSLCertThumbprintMD5(); QString GetSSLCertThumbprintSHA1(); QString GetSSLCertThumbprintSHA256(); QString GetSSLCertUsage(); int GetSSLCertUsageFlags(); QString GetSSLCertVersion(); QString GetSSLCertSubject();
int SetSSLCertSubject(QString qsSSLCertSubject); QByteArray GetSSLCertEncoded();
int SetSSLCertEncoded(QByteArray qbaSSLCertEncoded);

Remarks

This property includes the digital certificate that the class will use during SSL negotiation. Set this property to a valid certificate before starting SSL negotiation. To set a certificate, you may set the Encoded field to the encoded certificate. To select a certificate, use the store and subject fields.

Data Type

IPWorksEDICertificate

TrustedCerts Property (OFTPServer Class)

A collection of trusted CA certificates.

Syntax

IPWorksEDIList<IPWorksEDICertificate>* GetTrustedCerts();
int SetTrustedCerts(IPWorksEDIList<IPWorksEDICertificate>* val);
int ipworksedi_oftpserver_gettrustedcertcount(void* lpObj);
int ipworksedi_oftpserver_settrustedcertcount(void* lpObj, int iTrustedCertCount);
int ipworksedi_oftpserver_gettrustedcertstore(void* lpObj, int trustedcertindex, char** lpTrustedCertStore, int* lenTrustedCertStore);
int ipworksedi_oftpserver_settrustedcertstore(void* lpObj, int trustedcertindex, const char* lpTrustedCertStore, int lenTrustedCertStore);
char* ipworksedi_oftpserver_gettrustedcertstorepassword(void* lpObj, int trustedcertindex);
int ipworksedi_oftpserver_settrustedcertstorepassword(void* lpObj, int trustedcertindex, const char* lpszTrustedCertStorePassword);
int ipworksedi_oftpserver_gettrustedcertstoretype(void* lpObj, int trustedcertindex);
int ipworksedi_oftpserver_settrustedcertstoretype(void* lpObj, int trustedcertindex, int iTrustedCertStoreType);
char* ipworksedi_oftpserver_gettrustedcertsubject(void* lpObj, int trustedcertindex);
int ipworksedi_oftpserver_settrustedcertsubject(void* lpObj, int trustedcertindex, const char* lpszTrustedCertSubject);
int ipworksedi_oftpserver_gettrustedcertencoded(void* lpObj, int trustedcertindex, char** lpTrustedCertEncoded, int* lenTrustedCertEncoded);
int ipworksedi_oftpserver_settrustedcertencoded(void* lpObj, int trustedcertindex, const char* lpTrustedCertEncoded, int lenTrustedCertEncoded);
int GetTrustedCertCount();
int SetTrustedCertCount(int iTrustedCertCount); QByteArray GetTrustedCertStore(int iTrustedCertIndex);
int SetTrustedCertStore(int iTrustedCertIndex, QByteArray qbaTrustedCertStore); QString GetTrustedCertStorePassword(int iTrustedCertIndex);
int SetTrustedCertStorePassword(int iTrustedCertIndex, QString qsTrustedCertStorePassword); int GetTrustedCertStoreType(int iTrustedCertIndex);
int SetTrustedCertStoreType(int iTrustedCertIndex, int iTrustedCertStoreType); QString GetTrustedCertSubject(int iTrustedCertIndex);
int SetTrustedCertSubject(int iTrustedCertIndex, QString qsTrustedCertSubject); QByteArray GetTrustedCertEncoded(int iTrustedCertIndex);
int SetTrustedCertEncoded(int iTrustedCertIndex, QByteArray qbaTrustedCertEncoded);

Remarks

If this collection is populated the class will validate any certificates that are loaded against the CA certificates specified here.

If this collection is not populated no validation will occur. Certificates are imported into this collection by calling the ImportTrustedCerts method.

See also FailOnUntrustedCert and TrustedCertsData.

This property is not available at design time.

Data Type

IPWorksEDICertificate

UseSSL Property (OFTPServer Class)

Use SSL to access the RemoteHost .

Syntax

ANSI (Cross Platform)
int GetUseSSL();
int SetUseSSL(int bUseSSL); Unicode (Windows) BOOL GetUseSSL();
INT SetUseSSL(BOOL bUseSSL);
int ipworksedi_oftpserver_getusessl(void* lpObj);
int ipworksedi_oftpserver_setusessl(void* lpObj, int bUseSSL);
bool GetUseSSL();
int SetUseSSL(bool bUseSSL);

Default Value

FALSE

Remarks

Use this property to determine whether the class uses SSL when clients connect.

This property is only valid when using version 2.0 of the protocol. If set to true, all clients that connect must use version 2.0.

This property is not available at design time.

Data Type

Boolean

ChangeDirection Method (OFTPServer Class)

Sends a Change Direction (CD) command.

Syntax

ANSI (Cross Platform)
int ChangeDirection(int iConnectionId);

Unicode (Windows)
INT ChangeDirection(INT iConnectionId);
int ipworksedi_oftpserver_changedirection(void* lpObj, int iConnectionId);
int ChangeDirection(int iConnectionId);

Remarks

This method sends a Change Direction (CD) command to the client when called. In normal operation this should not be used. This should only be used if a condition arises where you must manually change the speaker when communicating with the client. For instance: component.ChangeDirection(MyConnectionId);

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Config Method (OFTPServer Class)

Sets or retrieves a configuration setting.

Syntax

ANSI (Cross Platform)
char* Config(const char* lpszConfigurationString);

Unicode (Windows)
LPWSTR Config(LPCWSTR lpszConfigurationString);
char* ipworksedi_oftpserver_config(void* lpObj, const char* lpszConfigurationString);
QString Config(const QString& qsConfigurationString);

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

Disconnect Method (OFTPServer Class)

This method disconnects the specified client.

Syntax

ANSI (Cross Platform)
int Disconnect(int iConnectionId);

Unicode (Windows)
INT Disconnect(INT iConnectionId);
int ipworksedi_oftpserver_disconnect(void* lpObj, int iConnectionId);
int Disconnect(int iConnectionId);

Remarks

Calling this method will disconnect the client specified by the ConnectionId parameter.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

DoEvents Method (OFTPServer Class)

This method processes events from the internal message queue.

Syntax

ANSI (Cross Platform)
int DoEvents();

Unicode (Windows)
INT DoEvents();
int ipworksedi_oftpserver_doevents(void* lpObj);
int DoEvents();

Remarks

When DoEvents is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

ExchangeCertificate Method (OFTPServer Class)

Exchange a certificate with the remote host.

Syntax

ANSI (Cross Platform)
int ExchangeCertificate(int iConnectionId, const char* lpszClientSFIDCode, const char* lpszCertificateStore, int iCertificateExchangeType);

Unicode (Windows)
INT ExchangeCertificate(INT iConnectionId, LPCWSTR lpszClientSFIDCode, LPCWSTR lpszCertificateStore, INT iCertificateExchangeType);
int ipworksedi_oftpserver_exchangecertificate(void* lpObj, int iConnectionId, const char* lpszClientSFIDCode, const char* lpszCertificateStore, int iCertificateExchangeType);
int ExchangeCertificate(int iConnectionId, const QString& qsClientSFIDCode, const QString& qsCertificateStore, int iCertificateExchangeType);

Remarks

If the remote host supports the certificate exchange feature of OFTP 2.0 this method may be used to send and/or request certificates.

The CertificateStore parameter specifies the location of the certificate to be exchanged. In most cases this will be the path to a .cer file on disk. If the certificate is in another format or is installed to the Windows certificate store please see ExchangeCertStoreType and ExchangeCertSubject for more information.

The CertificateExchangeType parameter determines the type of request. Possible values are:

0Request: The class will send the certificate file specified. The remote host will respond with a certificate of it's own. The response may be in a separate session.
1Replace: The class will send the certificate file specified. No certificate is expected in response. The certificate sent here invalidates any previous certificates the remote host has stored.
2Deliver: The class will send the certificate file specified. This is used to respond to a certificate request. It may also be used to send new additional certificates to the remote host. This will not invalidate previous certificates the remote host has stored.
When the remote host sends a certificate to the class the received certificate will be provided through the CertificateReceived event.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

ImportTrustedCerts Method (OFTPServer Class)

Imports a list of trusted CA certificates.

Syntax

ANSI (Cross Platform)
int ImportTrustedCerts();

Unicode (Windows)
INT ImportTrustedCerts();
int ipworksedi_oftpserver_importtrustedcerts(void* lpObj);
int ImportTrustedCerts();

Remarks

When ImportTrustedCerts is called the class will import the CA certificates from the source specified by TrustedCertsData into the TrustedCerts collection.

The class will then validate the trust of certificates when they are loaded.

If trusted CA certificates are not imported no validation will occur (default).

See also FailOnUntrustedCert.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Interrupt Method (OFTPServer Class)

This method interrupts a synchronous send to the remote host.

Syntax

ANSI (Cross Platform)
int Interrupt(int iConnectionId);

Unicode (Windows)
INT Interrupt(INT iConnectionId);
int ipworksedi_oftpserver_interrupt(void* lpObj, int iConnectionId);
int Interrupt(int iConnectionId);

Remarks

This property is called using the Connection Id if you wish to interrupt a connection and stop a file from uploading without disconnecting the client connected to the class. If you use SendFile to upload a file, the class will run synchronously on that Connection Id until it is completed.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Logoff Method (OFTPServer Class)

Ends a session with the connection client.

Syntax

ANSI (Cross Platform)
int Logoff(int iConnectionId);

Unicode (Windows)
INT Logoff(INT iConnectionId);
int ipworksedi_oftpserver_logoff(void* lpObj, int iConnectionId);
int Logoff(int iConnectionId);

Remarks

This method will attempt to end the session with the client if the client has acknowledged it is finished sending files to the server. If the client still wishes to process commands, the method will give control back to the client and ReadyToSend will be false. When ReadyToSend is true, calling this method will end the session.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Reset Method (OFTPServer Class)

Resets the state of the control.

Syntax

ANSI (Cross Platform)
int Reset();

Unicode (Windows)
INT Reset();
int ipworksedi_oftpserver_reset(void* lpObj);
int Reset();

Remarks

Reset resets the state of the class. All properties will be set to their default values.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

SendEndResponse Method (OFTPServer Class)

Sends an EERP/NERP asynchronously.

Syntax

ANSI (Cross Platform)
int SendEndResponse(int iConnectionId, const char* lpszVirtualFileName, const char* lpszVirtualFileDate, const char* lpszDestination, const char* lpszOriginator, const char* lpszCreator, int iReasonCode, const char* lpszReasonText, const char* lpszFileHash, const char* lpszSignature);

Unicode (Windows)
INT SendEndResponse(INT iConnectionId, LPCWSTR lpszVirtualFileName, LPCWSTR lpszVirtualFileDate, LPCWSTR lpszDestination, LPCWSTR lpszOriginator, LPCWSTR lpszCreator, INT iReasonCode, LPCWSTR lpszReasonText, LPCWSTR lpszFileHash, LPCWSTR lpszSignature);
int ipworksedi_oftpserver_sendendresponse(void* lpObj, int iConnectionId, const char* lpszVirtualFileName, const char* lpszVirtualFileDate, const char* lpszDestination, const char* lpszOriginator, const char* lpszCreator, int iReasonCode, const char* lpszReasonText, const char* lpszFileHash, const char* lpszSignature);
int SendEndResponse(int iConnectionId, const QString& qsVirtualFileName, const QString& qsVirtualFileDate, const QString& qsDestination, const QString& qsOriginator, const QString& qsCreator, int iReasonCode, const QString& qsReasonText, const QString& qsFileHash, const QString& qsSignature);

Remarks

This method sends an EERP/NERP. By default the class will automatically respond with an EERP/NERP when receiving a file. To respond asynchronously instead this method may be used.

To respond asynchronously first set the SendEndResponse parameter of the EndTransfer event to False. This instructs the class to not send a response automatically. Within the EndTransfer event you must also save the values that are required parameters for this method. This includes FileHash, VirtualFileDate, and VirtualFileName. Note: VirtualFileDateFormat must be set to a format that includes the necessary level of accuracy.

Destination should be set to the SFID of the remote host.

Originator should be set to the SFID of the local system. In the case that the class is being used as part of a gateway process to forward traffic to another OFTP host this may be set to the SFID of that host instead.

Creator should be set to the SFID of the local system.

Signature is only applicable if the application is acting as a routing application. In all other cases this should be set to empty string. In the case where the application is acting as a routing application the end response is being forwarded to another entity for processing. The Signature should be set to the value received in the EndResponse event (if populated).

ReasonCode and ReasonText are used to specify error information. If ReasonCode is set to 0 the class will send an EERP. If ReasonCode is set to any non-zero value the class will send a NERP. Common values are:

ReasonCode ReasonText
3 User Code Not Known
4 Invalid Password
9 Unspecified Reason
11 Invalid FileName
12 Invalid Destination
13 Invalid Origin
14 Invalid Storage Record Format
15 Maximum Record Length Not Supported
16 File Size Too Big
20 Invalid Record Count
21 Invalid Byte Count
22 Access Method Failure
23 Duplicate File
24 File Direction Refused
25 Cipher Suite Not Supported
26 Encrypted File Not Allowed
27 Unencrypted File Not Allowed
28 Compression Not Allowed
29 Signed File Not Allowed
30 Unsigned File Not Allowed
31 File Signature Not Valid
32 File Decompression Failed
33 File Decryption Failed
34 File Processing Failed
35 Not Delivered To Recipient
36 Not Acknowledged By Recipient
50 Transmission Stopped By The Operator
90 File Size Incompatible With Recipient's Protocol Version
99 Unspecified Reason

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

SendFile Method (OFTPServer Class)

Sends a file to the specified client.

Syntax

ANSI (Cross Platform)
int SendFile(int iConnectionId, const char* lpszClientSFIDCode, const char* lpszFileName, const char* lpszVirtualFileName);

Unicode (Windows)
INT SendFile(INT iConnectionId, LPCWSTR lpszClientSFIDCode, LPCWSTR lpszFileName, LPCWSTR lpszVirtualFileName);
int ipworksedi_oftpserver_sendfile(void* lpObj, int iConnectionId, const char* lpszClientSFIDCode, const char* lpszFileName, const char* lpszVirtualFileName);
int SendFile(int iConnectionId, const QString& qsClientSFIDCode, const QString& qsFileName, const QString& qsVirtualFileName);

Remarks

This method sends a file to the client specified by the ConnectionId parameter.

After the ReadyToSend event fires or when the ReadyToSend field is true, this method can be used to send a file to the connected client specified by the ConnectionId parameter.

The ClientSFIDCode corresponds to the destination.

FileName must be the full path to the file which will be sent.

VirtualFileName may be specified to indicate the name of the file that the client will see when receiving the file.

If UploadStream is set, pass empty string as the value for the FileName parameter.

When this method is called, the class will fire the StartTransfer, Transfer, and EndTransfer events that can be monitored to check the status of the send. The SendFile method will not return until either the transfer is complete or an error was encountered.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Shutdown Method (OFTPServer Class)

This method shuts down the server.

Syntax

ANSI (Cross Platform)
int Shutdown();

Unicode (Windows)
INT Shutdown();
int ipworksedi_oftpserver_shutdown(void* lpObj);
int Shutdown();

Remarks

This method shuts down the server. Calling this method is equivalent to calling StopListening and then breaking every client connection by calling Disconnect.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

StartListening Method (OFTPServer Class)

This method starts listening for incoming connections.

Syntax

ANSI (Cross Platform)
int StartListening();

Unicode (Windows)
INT StartListening();
int ipworksedi_oftpserver_startlistening(void* lpObj);
int StartListening();

Remarks

This method begins listening for incoming connections on the port specified by LocalPort. Once listening, events will fire as new clients connect and data are transferred.

To stop listening for new connections, call StopListening. To stop listening for new connections and to disconnect all existing clients, call Shutdown.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

StopListening Method (OFTPServer Class)

This method stops listening for new connections.

Syntax

ANSI (Cross Platform)
int StopListening();

Unicode (Windows)
INT StopListening();
int ipworksedi_oftpserver_stoplistening(void* lpObj);
int StopListening();

Remarks

This method stops listening for new connections. After being called, any new connection attempts will be rejected. Calling this method does not disconnect existing connections.

To stop listening and to disconnect all existing clients, call Shutdown instead.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

ValidateCert Method (OFTPServer Class)

Validates the certificate with private key.

Syntax

ANSI (Cross Platform)
bool ValidateCert();

Unicode (Windows)
INT ValidateCert();
bool ipworksedi_oftpserver_validatecert(void* lpObj);
bool ValidateCert();

Remarks

This method optionally validates the certificate specified by Certificate. It is not required to validate the certificate from a technical perspective, but may be desired to ensure the recipient's certificate is valid and issued by a trusted authority.

Before calling this method call ImportTrustedCerts to load the trusted certification information.

When this method is called the class:

  • Validates the certificate has not expired
  • Validates the certificate was issued by a CA in the TrustedCerts collection. If the certificate is self-signed this step is skipped.
  • Validates the certificate has not been revoked. Note that the revocation check will only make use of the CRL distribution point identified in the certificate's extension. If the certificate does not contain a CRL distribution point extension this step is skipped.

Error Handling (C++)

This method returns a Boolean value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

ValidateRecipientCert Method (OFTPServer Class)

Validates the recipient certificate.

Syntax

ANSI (Cross Platform)
bool ValidateRecipientCert(int iConnectionId);

Unicode (Windows)
INT ValidateRecipientCert(INT iConnectionId);
bool ipworksedi_oftpserver_validaterecipientcert(void* lpObj, int iConnectionId);
bool ValidateRecipientCert(int iConnectionId);

Remarks

This method optionally validates the certificate specified by RecipientCertSubject. It is not required to validate the certificate from a technical perspective, but may be desired to ensure the recipient's certificate is valid and issued by a trusted authority.

Before calling this method call ImportTrustedCerts to load the trusted certification information.

When this method is called the class:

  • Validates the certificate has not expired
  • Validates the certificate was issued by a CA in the TrustedCerts collection. If the certificate is self-signed this step is skipped.
  • Validates the certificate has not been revoked. Note that the revocation check will only make use of the CRL distribution point identified in the certificate's extension. If the certificate does not contain a CRL distribution point extension this step is skipped.

Error Handling (C++)

This method returns a Boolean value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

AcceptConnection Event (OFTPServer Class)

Fired when a client connects.

Syntax

ANSI (Cross Platform)
virtual int FireAcceptConnection(OFTPServerAcceptConnectionEventParams *e);
typedef struct {
int ConnectionId;
const char *ClientSSIDCode;
const char *ClientPassword;
int ClientVersion;
int ServerVersion;
int Accept;
int ErrorCode;
char *ErrorDescription; int reserved; } OFTPServerAcceptConnectionEventParams;
Unicode (Windows) virtual INT FireAcceptConnection(OFTPServerAcceptConnectionEventParams *e);
typedef struct {
INT ConnectionId;
LPCWSTR ClientSSIDCode;
LPCWSTR ClientPassword;
INT ClientVersion;
INT ServerVersion;
BOOL Accept;
INT ErrorCode;
LPWSTR ErrorDescription; INT reserved; } OFTPServerAcceptConnectionEventParams;
#define EID_OFTPSERVER_ACCEPTCONNECTION 1

virtual INT IPWORKSEDI_CALL FireAcceptConnection(INT &iConnectionId, LPSTR &lpszClientSSIDCode, LPSTR &lpszClientPassword, INT &iClientVersion, INT &iServerVersion, BOOL &bAccept, INT &iErrorCode, LPSTR &lpszErrorDescription);
class OFTPServerAcceptConnectionEventParams {
public:
  int ConnectionId();

  const QString &ClientSSIDCode();

  const QString &ClientPassword();

  int ClientVersion();

  int ServerVersion();
  void SetServerVersion(int iServerVersion);

  bool Accept();
  void SetAccept(bool bAccept);

  int ErrorCode();
  void SetErrorCode(int iErrorCode);

  const QString &ErrorDescription();
  void SetErrorDescription(const QString &qsErrorDescription);

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void AcceptConnection(OFTPServerAcceptConnectionEventParams *e);
// Or, subclass OFTPServer and override this emitter function. virtual int FireAcceptConnection(OFTPServerAcceptConnectionEventParams *e) {...}

Remarks

This event fires when a new OFTP connection is made to the server. Use the parameters of this event to verify the identify of the client identified by the ConnectionId. By default the connection will be accepted. To reject the connection set Accept to false.

ClientVersion specifies the OFTP protocol version the client supports. By default the class will use the version requested by the client for the connection. If you wish to restrict connections to a specific OFTP protocol version use this value when determining whether or not to accept the connection. When rejecting the connection based on the OFTP protocol version use ErrorCode 10. Possible values are:

0 OFTP 1.2
1 OFTP 1.3
2 OFTP 1.4
3 OFTP 2.0

ServerVersion specifies the OFTP protocol version the server will use for the connection. By default this will be the same as ClientVersion. This may be set to a different version which will be sent back to the client. Possible values are:

0 OFTP 1.2
1 OFTP 1.3
2 OFTP 1.4
3 OFTP 2.0

When rejecting a connection the ErrorCode and ErrorDescription may optionally be set. Possible common values are:

ErrorCode ErrorDescription
3 User Code Not Known
4 Invalid Password
9 Unspecified Reason
10 Mode or capabilities incompatible
99 Unspecified Reason

AcceptFile Event (OFTPServer Class)

Fired when the client sends a file.

Syntax

ANSI (Cross Platform)
virtual int FireAcceptFile(OFTPServerAcceptFileEventParams *e);
typedef struct {
int ConnectionId;
const char *VirtualFileName;
const char *VirtualFileDate;
const char *Destination;
const char *Originator;
int Accept;
char *FileName;
int Overwrite;
int ErrorCode;
char *ErrorDescription; int reserved; } OFTPServerAcceptFileEventParams;
Unicode (Windows) virtual INT FireAcceptFile(OFTPServerAcceptFileEventParams *e);
typedef struct {
INT ConnectionId;
LPCWSTR VirtualFileName;
LPCWSTR VirtualFileDate;
LPCWSTR Destination;
LPCWSTR Originator;
BOOL Accept;
LPWSTR FileName;
BOOL Overwrite;
INT ErrorCode;
LPWSTR ErrorDescription; INT reserved; } OFTPServerAcceptFileEventParams;
#define EID_OFTPSERVER_ACCEPTFILE 2

virtual INT IPWORKSEDI_CALL FireAcceptFile(INT &iConnectionId, LPSTR &lpszVirtualFileName, LPSTR &lpszVirtualFileDate, LPSTR &lpszDestination, LPSTR &lpszOriginator, BOOL &bAccept, LPSTR &lpszFileName, BOOL &bOverwrite, INT &iErrorCode, LPSTR &lpszErrorDescription);
class OFTPServerAcceptFileEventParams {
public:
  int ConnectionId();

  const QString &VirtualFileName();

  const QString &VirtualFileDate();

  const QString &Destination();

  const QString &Originator();

  bool Accept();
  void SetAccept(bool bAccept);

  const QString &FileName();
  void SetFileName(const QString &qsFileName);

  bool Overwrite();
  void SetOverwrite(bool bOverwrite);

  int ErrorCode();
  void SetErrorCode(int iErrorCode);

  const QString &ErrorDescription();
  void SetErrorDescription(const QString &qsErrorDescription);

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void AcceptFile(OFTPServerAcceptFileEventParams *e);
// Or, subclass OFTPServer and override this emitter function. virtual int FireAcceptFile(OFTPServerAcceptFileEventParams *e) {...}

Remarks

This event controls the behavior when the client sends a file to the server.

VirtualFileName holds the name of the file being received.

VirtualFileDate holds the date associated with the file in the format specified by VirtualFileDateFormat. The default value is "MM/dd/yyyy HH:mm:ss".

Destination identifies the receiver (SFID) code in the send file request. If the file was intended for this server this will match the value in ServerSFIDCode

Originator identifies the sender (SFID) code in the send file request.

Accept is true by default, and must be set to False in order to reject the file.

Filename will be populated with the full path and filename that will be written. It may be changed within this event to specify a new location. The Filename is determined by combining the path specified in DownloadDirectory and the name received from the client.

Overwrite is false by default, but may be set to true to overwrite existing files on disk.

ErrorCode controls the error returned to the client when Accept is set to False. If this is not set the class will use a value of 99 to indicate a general error.

ErrorDescription may also be set to include an error message. If this is not set the class will automatically include an error message based on the ErrorCode specified. Common error codes and their corresponding error messages are listed below.

ErrorCode ErrorMessage
1 Invalid filename.
2 Invalid destination.
3 Invalid origin.
4 Storage record format not supported.
5 Maximum record length not supported.
6 File size is too big.
10 Invalid record count.
11 Invalid byte count.
12 Access method failure.
13 Duplicate file.
14 File direction refused.
15 Cipher suite not supported.
16 Encrypted file not allowed.
17 Unencrypted file not allowed.
18 Compression not allowed.
19 Signed file not allowed.
20 Unsigned file not allowed.
99 Unspecified reason.

CertificateReceived Event (OFTPServer Class)

Fired when a certificate is received from the remote host.

Syntax

ANSI (Cross Platform)
virtual int FireCertificateReceived(OFTPServerCertificateReceivedEventParams *e);
typedef struct {
int ConnectionId;
const char *CertificateFileName;
int CertificateExchangeType; int reserved; } OFTPServerCertificateReceivedEventParams;
Unicode (Windows) virtual INT FireCertificateReceived(OFTPServerCertificateReceivedEventParams *e);
typedef struct {
INT ConnectionId;
LPCWSTR CertificateFileName;
INT CertificateExchangeType; INT reserved; } OFTPServerCertificateReceivedEventParams;
#define EID_OFTPSERVER_CERTIFICATERECEIVED 3

virtual INT IPWORKSEDI_CALL FireCertificateReceived(INT &iConnectionId, LPSTR &lpszCertificateFileName, INT &iCertificateExchangeType);
class OFTPServerCertificateReceivedEventParams {
public:
  int ConnectionId();

  const QString &CertificateFileName();

  int CertificateExchangeType();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void CertificateReceived(OFTPServerCertificateReceivedEventParams *e);
// Or, subclass OFTPServer and override this emitter function. virtual int FireCertificateReceived(OFTPServerCertificateReceivedEventParams *e) {...}

Remarks

This event provides information about the certificate file that was sent by the remote host.

When the remote host sends a certificate using the Certificate Exchange feature of OFTP 2.0, this event provides information about it. The certificate file will be written to the DownloadDirectory. After the file is written to DownloadDirectory this event will fire.

The CertificateFilemame parameter holds the filename of the received certificate.

The CertificateExchangeType parameter identifies the type of request associated with the certificate. Possible values are:

0Request: The class received a certificate and request from the remote host. Respond using the ExchangeCertificate method using a CertificateExchangeType of 3 (Deliver). The response may be in a separate session.
1Replace: The class received a certificate from the remote host. No response is expected. The certificate received here invalidates any previously stored certificates for this configuration.
2Deliver: The class received a certificate from the remote host. This is either a response to a certificate request, or a new additional certificates from the remote host. This will not invalidate previous certificates stored for this configuration.

ConnectionId identifies the connected client.

Connected Event (OFTPServer Class)

This event is fired immediately after a connection completes (or fails).

Syntax

ANSI (Cross Platform)
virtual int FireConnected(OFTPServerConnectedEventParams *e);
typedef struct {
int ConnectionId;
int StatusCode;
const char *Description; int reserved; } OFTPServerConnectedEventParams;
Unicode (Windows) virtual INT FireConnected(OFTPServerConnectedEventParams *e);
typedef struct {
INT ConnectionId;
INT StatusCode;
LPCWSTR Description; INT reserved; } OFTPServerConnectedEventParams;
#define EID_OFTPSERVER_CONNECTED 4

virtual INT IPWORKSEDI_CALL FireConnected(INT &iConnectionId, INT &iStatusCode, LPSTR &lpszDescription);
class OFTPServerConnectedEventParams {
public:
  int ConnectionId();

  int StatusCode();

  const QString &Description();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Connected(OFTPServerConnectedEventParams *e);
// Or, subclass OFTPServer and override this emitter function. virtual int FireConnected(OFTPServerConnectedEventParams *e) {...}

Remarks

If the connection is made normally, StatusCode is 0, and Description is "OK".

If the connection fails, StatusCode has the error code returned by the system. Description contains a description of this code. The value of StatusCode is equal to the value of the system error.

Please refer to the Error Codes section for more information.

ConnectionRequest Event (OFTPServer Class)

This event is fired when a request for connection comes from a remote host.

Syntax

ANSI (Cross Platform)
virtual int FireConnectionRequest(OFTPServerConnectionRequestEventParams *e);
typedef struct {
const char *Address;
int Port;
int Accept; int reserved; } OFTPServerConnectionRequestEventParams;
Unicode (Windows) virtual INT FireConnectionRequest(OFTPServerConnectionRequestEventParams *e);
typedef struct {
LPCWSTR Address;
INT Port;
BOOL Accept; INT reserved; } OFTPServerConnectionRequestEventParams;
#define EID_OFTPSERVER_CONNECTIONREQUEST 5

virtual INT IPWORKSEDI_CALL FireConnectionRequest(LPSTR &lpszAddress, INT &iPort, BOOL &bAccept);
class OFTPServerConnectionRequestEventParams {
public:
  const QString &Address();

  int Port();

  bool Accept();
  void SetAccept(bool bAccept);

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void ConnectionRequest(OFTPServerConnectionRequestEventParams *e);
// Or, subclass OFTPServer and override this emitter function. virtual int FireConnectionRequest(OFTPServerConnectionRequestEventParams *e) {...}

Remarks

This event indicates an incoming connection. The connection is accepted by default. Address and Port will contain information about the remote host requesting the inbound connection. If you want to refuse it, you can set the Accept parameter to False.

Disconnected Event (OFTPServer Class)

This event is fired when a connection is closed.

Syntax

ANSI (Cross Platform)
virtual int FireDisconnected(OFTPServerDisconnectedEventParams *e);
typedef struct {
int ConnectionId;
int StatusCode;
const char *Description; int reserved; } OFTPServerDisconnectedEventParams;
Unicode (Windows) virtual INT FireDisconnected(OFTPServerDisconnectedEventParams *e);
typedef struct {
INT ConnectionId;
INT StatusCode;
LPCWSTR Description; INT reserved; } OFTPServerDisconnectedEventParams;
#define EID_OFTPSERVER_DISCONNECTED 6

virtual INT IPWORKSEDI_CALL FireDisconnected(INT &iConnectionId, INT &iStatusCode, LPSTR &lpszDescription);
class OFTPServerDisconnectedEventParams {
public:
  int ConnectionId();

  int StatusCode();

  const QString &Description();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Disconnected(OFTPServerDisconnectedEventParams *e);
// Or, subclass OFTPServer and override this emitter function. virtual int FireDisconnected(OFTPServerDisconnectedEventParams *e) {...}

Remarks

If the connection is broken normally, StatusCode is 0, and Description is "OK".

If the connection is broken for any other reason, StatusCode has the error code returned by the system. Description contains a description of this code. The value of StatusCode is equal to the value of the system error.

Please refer to the Error Codes section for more information.

EndResponse Event (OFTPServer Class)

Fired every time an end response is received from the client.

Syntax

ANSI (Cross Platform)
virtual int FireEndResponse(OFTPServerEndResponseEventParams *e);
typedef struct {
int ConnectionId;
const char *VirtualFileName;
const char *VirtualFileDate;
const char *Destination;
const char *Originator;
const char *Creator;
int ReasonCode;
const char *ReasonText;
char *FileHash;
const char *Signature;
int Direction; int reserved; } OFTPServerEndResponseEventParams;
Unicode (Windows) virtual INT FireEndResponse(OFTPServerEndResponseEventParams *e);
typedef struct {
INT ConnectionId;
LPCWSTR VirtualFileName;
LPCWSTR VirtualFileDate;
LPCWSTR Destination;
LPCWSTR Originator;
LPCWSTR Creator;
INT ReasonCode;
LPCWSTR ReasonText;
LPWSTR FileHash;
LPCWSTR Signature;
INT Direction; INT reserved; } OFTPServerEndResponseEventParams;
#define EID_OFTPSERVER_ENDRESPONSE 7

virtual INT IPWORKSEDI_CALL FireEndResponse(INT &iConnectionId, LPSTR &lpszVirtualFileName, LPSTR &lpszVirtualFileDate, LPSTR &lpszDestination, LPSTR &lpszOriginator, LPSTR &lpszCreator, INT &iReasonCode, LPSTR &lpszReasonText, LPSTR &lpszFileHash, LPSTR &lpszSignature, INT &iDirection);
class OFTPServerEndResponseEventParams {
public:
  int ConnectionId();

  const QString &VirtualFileName();

  const QString &VirtualFileDate();

  const QString &Destination();

  const QString &Originator();

  const QString &Creator();

  int ReasonCode();

  const QString &ReasonText();

  const QString &FileHash();
  void SetFileHash(const QString &qsFileHash);

  const QString &Signature();

  int Direction();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void EndResponse(OFTPServerEndResponseEventParams *e);
// Or, subclass OFTPServer and override this emitter function. virtual int FireEndResponse(OFTPServerEndResponseEventParams *e) {...}

Remarks

This event contains information received from an either an End-To-End Response or a Negative End Response received from the server.

An End-To-End Response will not contain values for the ReasonCode, ReasonText, or Creator parameters.

VirtualFileName specifies the name of the file.

VirtualFileDate holds the VirtualFileDate value in the format specified by VirtualFileDateFormat. The default value is "MM/dd/yyyy HH:mm:ss".

Destination is the SFID of the destination system (this class).

Originator identifies the system that originated the end response. This is typically the same as Creator and holds the remote system's SFID.

Creator is the SFID of the remote system.

Direction specifies whether the end response is being received or sent. Possible values are:

0Received
1Sent
By default the class will only fire this event for received end responses. To configure the class to fire the event for both send and received end responses set FireEndResponseOnSend to True.

FileHash is populated if the OFTP Version is 2.0 and a signed receipt was originally requested. FileHash may also be specified with the expected value in the case where an asynchronous EndResponse is received. The expected value may be obtained from the EndTransfer event when initially sending the file.

Signature is only applicable when the OFTP version is 2.0 and the application is acting as a routing application where the end response will be forwarded on to another entity. In this case Signature will be populated if the end response is signed. This should be stored and supplied when forwarding the response with the SendEndResponse method.

ReasonCode and ReasonText identify the error if a Negative End Response (NERP) was received. A value of 0 indicates there was no an error and the response is an End-To-End Response (EERP). Common values are:

ReasonCode ReasonText
3 User Code Not Known
4 Invalid Password
9 Unspecified Reason
11 Invalid FileName
12 Invalid Destination
13 Invalid Origin
14 Invalid Storage Record Format
15 Maximum Record Length Not Supported
16 File Size Too Big
20 Invalid Record Count
21 Invalid Byte Count
22 Access Method Failure
23 Duplicate File
24 File Direction Refused
25 Cipher Suite Not Supported
26 Encrypted File Not Allowed
27 Unencrypted File Not Allowed
28 Compression Not Allowed
29 Signed File Not Allowed
30 Unsigned File Not Allowed
31 File Signature Not Valid
32 File Decompression Failed
33 File Decryption Failed
34 File Processing Failed
35 Not Delivered To Recipient
36 Not Acknowledged By Recipient
50 Transmission Stopped By The Operator
90 File Size Incompatible With Recipient's Protocol Version
99 Unspecified Reason

ConnectionId identifies the connected client.

EndTransfer Event (OFTPServer Class)

Fired when a file finishes transferring.

Syntax

ANSI (Cross Platform)
virtual int FireEndTransfer(OFTPServerEndTransferEventParams *e);
typedef struct {
int ConnectionId;
int Direction;
const char *LocalFile;
const char *VirtualFileName;
const char *VirtualFileDate;
const char *Destination;
const char *Originator;
int ReasonCode;
const char *ReasonText;
int64 FileSize;
const char *FileHash;
int SendEndResponse; int reserved; } OFTPServerEndTransferEventParams;
Unicode (Windows) virtual INT FireEndTransfer(OFTPServerEndTransferEventParams *e);
typedef struct {
INT ConnectionId;
INT Direction;
LPCWSTR LocalFile;
LPCWSTR VirtualFileName;
LPCWSTR VirtualFileDate;
LPCWSTR Destination;
LPCWSTR Originator;
INT ReasonCode;
LPCWSTR ReasonText;
LONG64 FileSize;
LPCWSTR FileHash;
BOOL SendEndResponse; INT reserved; } OFTPServerEndTransferEventParams;
#define EID_OFTPSERVER_ENDTRANSFER 8

virtual INT IPWORKSEDI_CALL FireEndTransfer(INT &iConnectionId, INT &iDirection, LPSTR &lpszLocalFile, LPSTR &lpszVirtualFileName, LPSTR &lpszVirtualFileDate, LPSTR &lpszDestination, LPSTR &lpszOriginator, INT &iReasonCode, LPSTR &lpszReasonText, LONG64 &lFileSize, LPSTR &lpszFileHash, BOOL &bSendEndResponse);
class OFTPServerEndTransferEventParams {
public:
  int ConnectionId();

  int Direction();

  const QString &LocalFile();

  const QString &VirtualFileName();

  const QString &VirtualFileDate();

  const QString &Destination();

  const QString &Originator();

  int ReasonCode();

  const QString &ReasonText();

  qint64 FileSize();

  const QString &FileHash();

  bool SendEndResponse();
  void SetSendEndResponse(bool bSendEndResponse);

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void EndTransfer(OFTPServerEndTransferEventParams *e);
// Or, subclass OFTPServer and override this emitter function. virtual int FireEndTransfer(OFTPServerEndTransferEventParams *e) {...}

Remarks

The EndTransfer event is fired when a file is sent or received by the class.

The FileSize parameter gives the size of the file that was sent or received.

The Direction parameter shows whether the client or the server is sending the data.

0 (Client) The file originated from the client.
1 (Server) The file originated from the server.

VirtualFileName holds the filename.

VirtualFileDate holds the date associated with the file in the format specified by VirtualFileDateFormat. The default value is "MM/dd/yyyy HH:mm:ss".

Originator identifies the sender (SFID) code in the send file request.

Destination identifies the receiver (SFID) code in the send file request.

SendEndResponse indicates whether the EERP/NERP for this request should be sent synchronously or asynchronously. When this parameter is True (default) the class will automatically respond with an EERP/NERP synchronously. To respond asynchronously set this parameter to False. You may then use the SendEndResponse method to send the response at a later time. See SendEndResponse for more details. Note: VirtualFileDateFormat must be set to a format that includes the necessary level of accuracy.

FileHash holds the hash of the file being transmitted. This is only applicable when the OFTP version is 2.0 and the sender requested a signed receipt. When receiving files this value should be saved if you wish to respond asynchronously using SendEndResponse. See SendEndResponse for more details.

LocalFile holds the full path to the file that will be written.

ReasonCode and ReasonText identify the error if a Negative End Response (NERP) was received. A value of 0 indicates there was no an error and the response is an End-To-End Response (EERP). Common values are:

ReasonCode ReasonText
3 User Code Not Known
4 Invalid Password
9 Unspecified Reason
11 Invalid FileName
12 Invalid Destination
13 Invalid Origin
14 Invalid Storage Record Format
15 Maximum Record Length Not Supported
16 File Size Too Big
20 Invalid Record Count
21 Invalid Byte Count
22 Access Method Failure
23 Duplicate File
24 File Direction Refused
25 Cipher Suite Not Supported
26 Encrypted File Not Allowed
27 Unencrypted File Not Allowed
28 Compression Not Allowed
29 Signed File Not Allowed
30 Unsigned File Not Allowed
31 File Signature Not Valid
32 File Decompression Failed
33 File Decryption Failed
34 File Processing Failed
35 Not Delivered To Recipient
36 Not Acknowledged By Recipient
50 Transmission Stopped By The Operator
90 File Size Incompatible With Recipient's Protocol Version
99 Unspecified Reason

ConnectionId identifies the connected client.

Error Event (OFTPServer Class)

Information about errors during data delivery.

Syntax

ANSI (Cross Platform)
virtual int FireError(OFTPServerErrorEventParams *e);
typedef struct {
int ConnectionId;
int ErrorCode;
const char *Description; int reserved; } OFTPServerErrorEventParams;
Unicode (Windows) virtual INT FireError(OFTPServerErrorEventParams *e);
typedef struct {
INT ConnectionId;
INT ErrorCode;
LPCWSTR Description; INT reserved; } OFTPServerErrorEventParams;
#define EID_OFTPSERVER_ERROR 9

virtual INT IPWORKSEDI_CALL FireError(INT &iConnectionId, INT &iErrorCode, LPSTR &lpszDescription);
class OFTPServerErrorEventParams {
public:
  int ConnectionId();

  int ErrorCode();

  const QString &Description();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Error(OFTPServerErrorEventParams *e);
// Or, subclass OFTPServer and override this emitter function. virtual int FireError(OFTPServerErrorEventParams *e) {...}

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.

ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

ConnectionId contains the Id of the connection to which this error applies.

Log Event (OFTPServer Class)

Fires once for each log message.

Syntax

ANSI (Cross Platform)
virtual int FireLog(OFTPServerLogEventParams *e);
typedef struct {
int ConnectionId;
int LogLevel;
const char *Message;
const char *LogType; int reserved; } OFTPServerLogEventParams;
Unicode (Windows) virtual INT FireLog(OFTPServerLogEventParams *e);
typedef struct {
INT ConnectionId;
INT LogLevel;
LPCWSTR Message;
LPCWSTR LogType; INT reserved; } OFTPServerLogEventParams;
#define EID_OFTPSERVER_LOG 10

virtual INT IPWORKSEDI_CALL FireLog(INT &iConnectionId, INT &iLogLevel, LPSTR &lpszMessage, LPSTR &lpszLogType);
class OFTPServerLogEventParams {
public:
  int ConnectionId();

  int LogLevel();

  const QString &Message();

  const QString &LogType();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Log(OFTPServerLogEventParams *e);
// Or, subclass OFTPServer and override this emitter function. virtual int FireLog(OFTPServerLogEventParams *e) {...}

Remarks

This event fires once for each log message generated by the class. The verbosity is controlled by the LogLevel setting.

ConnectionId identifies the connected client.

LogLevel indicates the level of message. Possible values are:

0 (None) No messages are logged.
1 (Info - Default) Informational events such as OFTP commands which are sent and received.
2 (Verbose) Detailed data such as individual packet information is logged.
3 (Debug) Debug data including all relevant sent and received bytes are logged.

Message is the log entry.

LogType identifies the type of log entry. Possible values are:

  • "Info"
  • "OFTP"

PITrail Event (OFTPServer Class)

Fired when any protocol level communication occurs.

Syntax

ANSI (Cross Platform)
virtual int FirePITrail(OFTPServerPITrailEventParams *e);
typedef struct {
int ConnectionId;
int Direction;
const char *Data; int lenData;
int CommandId;
const char *CommandDescription; int reserved; } OFTPServerPITrailEventParams;
Unicode (Windows) virtual INT FirePITrail(OFTPServerPITrailEventParams *e);
typedef struct {
INT ConnectionId;
INT Direction;
LPCSTR Data; INT lenData;
INT CommandId;
LPCWSTR CommandDescription; INT reserved; } OFTPServerPITrailEventParams;
#define EID_OFTPSERVER_PITRAIL 11

virtual INT IPWORKSEDI_CALL FirePITrail(INT &iConnectionId, INT &iDirection, LPSTR &lpData, INT &lenData, INT &iCommandId, LPSTR &lpszCommandDescription);
class OFTPServerPITrailEventParams {
public:
  int ConnectionId();

  int Direction();

  const QByteArray &Data();

  int CommandId();

  const QString &CommandDescription();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void PITrail(OFTPServerPITrailEventParams *e);
// Or, subclass OFTPServer and override this emitter function. virtual int FirePITrail(OFTPServerPITrailEventParams *e) {...}

Remarks

This event provides information about the protocol level communication between the client and server.

The Direction parameter specifies who sent the command.

0 (Client) The command originated from the connected client.
1 (Server) The command originated from the server.

The CommandId and CommandDescription parameters specify which command was sent. The table below shows possible values.

CommandIdCommandDescription
50SFPA (Start File Positive Answer)
51SFNA (Start File Negative Answer)
52EFPA (End File Positive Answer)
53EFNA (End File Negative Answer)
65AUCH (Authentication Challenge)
67CDT (Set Credit)
68DATA (Data Exchange Buffer)
69EERP (End to End Response)
70ESID (End Session)
72SFID (Start File)
73SSRM (Start Session Ready Message)
74SECD (Security Change Direction)
78NERP (Negative End Response)
80RTR (Ready To Receive)
82CD (Change Direction)
83AURP (Authentication Response)
84EFID (End File)
88SSID (Start Session)

The Data parameter contains the raw OFTP packet.

ReadyToSend Event (OFTPServer Class)

Fired when the class is ready to send data.

Syntax

ANSI (Cross Platform)
virtual int FireReadyToSend(OFTPServerReadyToSendEventParams *e);
typedef struct {
int ConnectionId; int reserved; } OFTPServerReadyToSendEventParams;
Unicode (Windows) virtual INT FireReadyToSend(OFTPServerReadyToSendEventParams *e);
typedef struct {
INT ConnectionId; INT reserved; } OFTPServerReadyToSendEventParams;
#define EID_OFTPSERVER_READYTOSEND 12

virtual INT IPWORKSEDI_CALL FireReadyToSend(INT &iConnectionId);
class OFTPServerReadyToSendEventParams {
public:
  int ConnectionId();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void ReadyToSend(OFTPServerReadyToSendEventParams *e);
// Or, subclass OFTPServer and override this emitter function. virtual int FireReadyToSend(OFTPServerReadyToSendEventParams *e) {...}

Remarks

The ReadyToSend event indicates that the connected client is in a state where it can accept files sent from the server. When a client connects initially it will not be ready to receive files. After the client sends files (if any) to the server it will pass control to the server. At that time the ReadyToSend event will fire. In addition the ReadyToSend field will be set to true for the connection.

After this event fires SendFile can be called to send files to the connected client.

SSLClientAuthentication Event (OFTPServer Class)

This event is fired when the client presents its credentials to the server.

Syntax

ANSI (Cross Platform)
virtual int FireSSLClientAuthentication(OFTPServerSSLClientAuthenticationEventParams *e);
typedef struct {
int ConnectionId;
const char *CertEncoded; int lenCertEncoded;
const char *CertSubject;
const char *CertIssuer;
const char *Status;
int Accept; int reserved; } OFTPServerSSLClientAuthenticationEventParams;
Unicode (Windows) virtual INT FireSSLClientAuthentication(OFTPServerSSLClientAuthenticationEventParams *e);
typedef struct {
INT ConnectionId;
LPCSTR CertEncoded; INT lenCertEncoded;
LPCWSTR CertSubject;
LPCWSTR CertIssuer;
LPCWSTR Status;
BOOL Accept; INT reserved; } OFTPServerSSLClientAuthenticationEventParams;
#define EID_OFTPSERVER_SSLCLIENTAUTHENTICATION 13

virtual INT IPWORKSEDI_CALL FireSSLClientAuthentication(INT &iConnectionId, LPSTR &lpCertEncoded, INT &lenCertEncoded, LPSTR &lpszCertSubject, LPSTR &lpszCertIssuer, LPSTR &lpszStatus, BOOL &bAccept);
class OFTPServerSSLClientAuthenticationEventParams {
public:
  int ConnectionId();

  const QByteArray &CertEncoded();

  const QString &CertSubject();

  const QString &CertIssuer();

  const QString &Status();

  bool Accept();
  void SetAccept(bool bAccept);

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void SSLClientAuthentication(OFTPServerSSLClientAuthenticationEventParams *e);
// Or, subclass OFTPServer and override this emitter function. virtual int FireSSLClientAuthentication(OFTPServerSSLClientAuthenticationEventParams *e) {...}

Remarks

This event enables the server to decide whether or not to continue. The Accept parameter is a recommendation on whether to continue or to close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string "OK").

SSLConnectionRequest Event (OFTPServer Class)

This event fires when a Secure Sockets Layer (SSL) connection is requested.

Syntax

ANSI (Cross Platform)
virtual int FireSSLConnectionRequest(OFTPServerSSLConnectionRequestEventParams *e);
typedef struct {
int ConnectionId;
const char *SupportedCipherSuites;
const char *SupportedSignatureAlgs;
int CertStoreType;
char *CertStore;
char *CertPassword;
char *CertSubject; int reserved; } OFTPServerSSLConnectionRequestEventParams;
Unicode (Windows) virtual INT FireSSLConnectionRequest(OFTPServerSSLConnectionRequestEventParams *e);
typedef struct {
INT ConnectionId;
LPCWSTR SupportedCipherSuites;
LPCWSTR SupportedSignatureAlgs;
INT CertStoreType;
LPWSTR CertStore;
LPWSTR CertPassword;
LPWSTR CertSubject; INT reserved; } OFTPServerSSLConnectionRequestEventParams;
#define EID_OFTPSERVER_SSLCONNECTIONREQUEST 14

virtual INT IPWORKSEDI_CALL FireSSLConnectionRequest(INT &iConnectionId, LPSTR &lpszSupportedCipherSuites, LPSTR &lpszSupportedSignatureAlgs, INT &iCertStoreType, LPSTR &lpszCertStore, LPSTR &lpszCertPassword, LPSTR &lpszCertSubject);
class OFTPServerSSLConnectionRequestEventParams {
public:
  int ConnectionId();

  const QString &SupportedCipherSuites();

  const QString &SupportedSignatureAlgs();

  int CertStoreType();
  void SetCertStoreType(int iCertStoreType);

  const QString &CertStore();
  void SetCertStore(const QString &qsCertStore);

  const QString &CertPassword();
  void SetCertPassword(const QString &qsCertPassword);

  const QString &CertSubject();
  void SetCertSubject(const QString &qsCertSubject);

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void SSLConnectionRequest(OFTPServerSSLConnectionRequestEventParams *e);
// Or, subclass OFTPServer and override this emitter function. virtual int FireSSLConnectionRequest(OFTPServerSSLConnectionRequestEventParams *e) {...}

Remarks

This event fires when an SSL connection is requested and SSLProvider is set to Internal. This event provides an opportunity to select an alternative certificate to the connecting client. This event does not fire when SSLProvider is set to Platform.

This event allows the class to be configured to use both RSA and ECDSA certificates depending on the connecting client's capabilities.

ConnectionId is the connection Id of the client requesting the connection.

SupportedCipherSuites is a comma-separated list of cipher suites that the client supports.

SupportedSignatureAlgs is a comma-separated list of certificate signature algorithms that the client supports.

CertStoreType is the store type of the alternate certificate to use for this connection. The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This field can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

CertStore is the store name or location of the alternate certificate to use for this connection.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

CertPassword is the password of the certificate store containing the alternate certificate to use for this connection.

CertSubject is the subject of the alternate certificate to use for this connection.

The special value * matches any subject and will select the first certificate in the store. The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

SSLStatus Event (OFTPServer Class)

This event is fired to show the progress of the secure connection.

Syntax

ANSI (Cross Platform)
virtual int FireSSLStatus(OFTPServerSSLStatusEventParams *e);
typedef struct {
int ConnectionId;
const char *Message; int reserved; } OFTPServerSSLStatusEventParams;
Unicode (Windows) virtual INT FireSSLStatus(OFTPServerSSLStatusEventParams *e);
typedef struct {
INT ConnectionId;
LPCWSTR Message; INT reserved; } OFTPServerSSLStatusEventParams;
#define EID_OFTPSERVER_SSLSTATUS 15

virtual INT IPWORKSEDI_CALL FireSSLStatus(INT &iConnectionId, LPSTR &lpszMessage);
class OFTPServerSSLStatusEventParams {
public:
  int ConnectionId();

  const QString &Message();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void SSLStatus(OFTPServerSSLStatusEventParams *e);
// Or, subclass OFTPServer and override this emitter function. virtual int FireSSLStatus(OFTPServerSSLStatusEventParams *e) {...}

Remarks

The event is fired for informational and logging purposes only. It is used to track the progress of the connection.

StartTransfer Event (OFTPServer Class)

Fired when a document starts transferring.

Syntax

ANSI (Cross Platform)
virtual int FireStartTransfer(OFTPServerStartTransferEventParams *e);
typedef struct {
int ConnectionId;
int Direction;
char *LocalFile;
const char *VirtualFileName;
const char *VirtualFileDate;
const char *Destination;
const char *Originator; int reserved; } OFTPServerStartTransferEventParams;
Unicode (Windows) virtual INT FireStartTransfer(OFTPServerStartTransferEventParams *e);
typedef struct {
INT ConnectionId;
INT Direction;
LPWSTR LocalFile;
LPCWSTR VirtualFileName;
LPCWSTR VirtualFileDate;
LPCWSTR Destination;
LPCWSTR Originator; INT reserved; } OFTPServerStartTransferEventParams;
#define EID_OFTPSERVER_STARTTRANSFER 16

virtual INT IPWORKSEDI_CALL FireStartTransfer(INT &iConnectionId, INT &iDirection, LPSTR &lpszLocalFile, LPSTR &lpszVirtualFileName, LPSTR &lpszVirtualFileDate, LPSTR &lpszDestination, LPSTR &lpszOriginator);
class OFTPServerStartTransferEventParams {
public:
  int ConnectionId();

  int Direction();

  const QString &LocalFile();
  void SetLocalFile(const QString &qsLocalFile);

  const QString &VirtualFileName();

  const QString &VirtualFileDate();

  const QString &Destination();

  const QString &Originator();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void StartTransfer(OFTPServerStartTransferEventParams *e);
// Or, subclass OFTPServer and override this emitter function. virtual int FireStartTransfer(OFTPServerStartTransferEventParams *e) {...}

Remarks

This event fires when a file transfer begins.

Direction specifies if the client or server sent the file.

0 (Client) The file originated from the client.
1 (Server) The file originated from the server.

VirtualFileName holds the filename.

VirtualFileDate holds the date associated with the file in the format "MM/dd/yyyy HH:mm:ss".

Originator identifies the sender (SFID) code in the send file request.

Destination identifies the receiver (SFID) code in the send file request.

LocalFile holds the full path to the file that will be written.

ConnectionId identifies the connected client.

Transfer Event (OFTPServer Class)

Fired while a document transfers (delivers document).

Syntax

ANSI (Cross Platform)
virtual int FireTransfer(OFTPServerTransferEventParams *e);
typedef struct {
int ConnectionId;
int Direction;
const char *LocalFile;
const char *VirtualFileName;
const char *VirtualFileDate;
const char *Destination;
const char *Originator;
int64 BytesTransferred;
const char *Text; int lenText; int reserved; } OFTPServerTransferEventParams;
Unicode (Windows) virtual INT FireTransfer(OFTPServerTransferEventParams *e);
typedef struct {
INT ConnectionId;
INT Direction;
LPCWSTR LocalFile;
LPCWSTR VirtualFileName;
LPCWSTR VirtualFileDate;
LPCWSTR Destination;
LPCWSTR Originator;
LONG64 BytesTransferred;
LPCSTR Text; INT lenText; INT reserved; } OFTPServerTransferEventParams;
#define EID_OFTPSERVER_TRANSFER 17

virtual INT IPWORKSEDI_CALL FireTransfer(INT &iConnectionId, INT &iDirection, LPSTR &lpszLocalFile, LPSTR &lpszVirtualFileName, LPSTR &lpszVirtualFileDate, LPSTR &lpszDestination, LPSTR &lpszOriginator, LONG64 &lBytesTransferred, LPSTR &lpText, INT &lenText);
class OFTPServerTransferEventParams {
public:
  int ConnectionId();

  int Direction();

  const QString &LocalFile();

  const QString &VirtualFileName();

  const QString &VirtualFileDate();

  const QString &Destination();

  const QString &Originator();

  qint64 BytesTransferred();

  const QByteArray &Text();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Transfer(OFTPServerTransferEventParams *e);
// Or, subclass OFTPServer and override this emitter function. virtual int FireTransfer(OFTPServerTransferEventParams *e) {...}

Remarks

The Text parameter contains the portion of the document text being retrieved. It is empty if data is being posted to the server.

The BytesTransferred parameter contains the number of bytes transferred in this Direction since the beginning of the document text.

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

VirtualFileName holds the filename.

VirtualFileDate holds the date associated with the file in the format specified by VirtualFileDateFormat. The default value is "MM/dd/yyyy HH:mm:ss".

Originator identifies the sender (SFID) code in the send file request.

Destination identifies the receiver (SFID) code in the send file request.

LocalFile holds the full path to the file that will be written.

ConnectionId identifies the connected client.

Certificate Type

This is the digital certificate being used.

Syntax

IPWorksEDICertificate (declared in ipworksedi.h)

Remarks

This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.

The following fields are available:

Fields

EffectiveDate
char* (read-only)

Default Value: ""

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

ExpirationDate
char* (read-only)

Default Value: ""

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

ExtendedKeyUsage
char* (read-only)

Default Value: ""

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

Fingerprint
char* (read-only)

Default Value: ""

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

FingerprintSHA1
char* (read-only)

Default Value: ""

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

FingerprintSHA256
char* (read-only)

Default Value: ""

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

Issuer
char* (read-only)

Default Value: ""

The issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.

PrivateKey
char* (read-only)

Default Value: ""

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.

PrivateKeyAvailable
int (read-only)

Default Value: FALSE

Whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).

PrivateKeyContainer
char* (read-only)

Default Value: ""

The name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.

PublicKey
char* (read-only)

Default Value: ""

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

PublicKeyAlgorithm
char* (read-only)

Default Value: ""

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

PublicKeyLength
int (read-only)

Default Value: 0

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

SerialNumber
char* (read-only)

Default Value: ""

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

SignatureAlgorithm
char* (read-only)

Default Value: ""

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

Store
char*

Default Value: "MY"

The name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password-protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StorePassword
char*

Default Value: ""

If the type of certificate store requires a password, this field is used to specify the password needed to open the certificate store.

StoreType
int

Default Value: 0

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This field can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

SubjectAltNames
char* (read-only)

Default Value: ""

Comma-separated lists of alternative subject names for the certificate.

ThumbprintMD5
char* (read-only)

Default Value: ""

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA1
char* (read-only)

Default Value: ""

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA256
char* (read-only)

Default Value: ""

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

Usage
char* (read-only)

Default Value: ""

The text description of UsageFlags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

UsageFlags
int (read-only)

Default Value: 0

The flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the Usage field for a text representation of UsageFlags.

This functionality currently is not available when the provider is OpenSSL.

Version
char* (read-only)

Default Value: ""

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

Subject
char*

Default Value: ""

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the field is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

Encoded
char*

Default Value: ""

The certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

Constructors

Certificate()

Creates a instance whose properties can be set. This is useful for use with when generating new certificates.

Certificate(const char* lpEncoded, int lenEncoded)

Parses Encoded as an X.509 public key.

Certificate(int iStoreType, const char* lpStore, int lenStore, const char* lpszStorePassword, const char* lpszSubject)

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.

After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

OFTPConnection Type

A currently connected client.

Syntax

IPWorksEDIOFTPConnection (declared in ipworksedi.h)

Remarks

This type describes the connection of a client which is currently connected to the class. You may use the different fields of this type to manage the connection.

The following fields are available:

Fields

Compress
int

Default Value: FALSE

Whether or not compression is used on the outgoing or incoming file.

When sending files to the client, if Compress is true the file will be compressed.

When receiving files, query this field to determine whether the file received from the client was compressed or not.

Note that this is only applicable when Version 2.0 of the protocol is used as indicated by Version.

Connected
int (read-only)

Default Value: FALSE

This field indicates the status of individual connections.

When true, the connection is established. Use the Disconnect method to disconnect an existing connection.

ConnectionId
int (read-only)

Default Value: 0

This field contains an identifier generated by the class to identify each connection. This identifier is unique to this connection.

DownloadDirectory
char*

Default Value: ""

The directory to which files will be saved.

This specifies the directory where files received by the server will be saved. This must be set before the client begins sending files. Set this in the Connected, AcceptConnection, or ConnectionRequest events, for instance: oftpserver1.SetOFTPConnectionDownloadDirectory(123456789, "C:\\Downloads");

EncryptionAlgorithm
int

Default Value: 0

The encryption algorithm used when sending files to the client.

In order to use encryption, you must set the VirtualFileSecurityLevel field. The supported algorithms for encryption are:

0 (encra3DES - default) DES (Triple Data Encryption Standard).
1 (encraAES) AES (Advanced Encryption Standard with key length of 128).

Note that this is only applicable when Version 2.0 of the protocol is used as indicated by Version.

LocalAddress
char* (read-only)

Default Value: ""

This field shows the IP address of the interface through which the connection is passing.

LocalAddress is important for multihomed hosts so that it can be used to find the particular network interface through which an individual connection is going.

MaxRecordSize
int

Default Value: 0

This value determines the maximum length for a record in the outgoing virtual file. When VirtualFileFormat has been set to ffUnstructured or ffText, this value must be zero. When ffFixed or ffVariable, this must be set to a value greater than 0, containing the maximum line length of the outgoing file.

ReadyToSend
int (read-only)

Default Value: FALSE

Specifies whether or not the server can send to the client.

When the client passes control to the server, this field will be true. Additionally the ReadyToSend event will fire at this time. This must be true before sending files to the client.

RecipientCertStore
char*

Default Value: "MY"

The name of the certificate store for the recipient certificate.

The RecipientCertStoreType field specifies the type of the certificate store specified by RecipientCertStore. If the store is password protected, specify the password in RecipientCertStorePassword.

RecipientCertStore is used in conjunction with the RecipientCertSubject field in order to specify client certificates. If RecipientCertStore has a value, and RecipientCertSubject is set, a search for a certificate is initiated. Please refer to the RecipientCertSubject field for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

Note that this is only applicable when Version 2.0 of the protocol is used as indicated by Version.

RecipientCertStorePassword
char*

Default Value: ""

If the certificate store is of a type that requires a password, this property is used to specify that password in order to open the certificate store.

Note that this is only applicable when Version 2.0 of the protocol is used as indicated by Version.

RecipientCertStoreType
int

Default Value: 0

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This field can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

Note that this is only applicable when Version 2.0 of the protocol is used as indicated by Version.

RecipientCertSubject
char*

Default Value: ""

The subject of the recipient certificate.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the field is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

Note that this is only applicable when Version 2.0 of the protocol is used as indicated by Version.

RemoteHost
char* (read-only)

Default Value: ""

This field shows the IP address of the remote host through which the connection is coming.

The connection must be valid or an error will be fired.

If the class is configured to use a SOCKS firewall, the value assigned to this property may be preceded with an "*". If this is the case, the host name is passed to the firewall unresolved and the firewall performs the DNS resolution.

RemotePort
int (read-only)

Default Value: 0

This field shows the Transmission Control Protocol (TCP) port on the remote host through which the connection is coming.

The connection must be valid or an error will be fired.

SFIDCode
char*

Default Value: ""

The connected client's SFID code.

The SFID code identifies the origin or destination party that is sending or receiving a file, while the SSID code identifies the party that a session is established with. If the SFID and SSID codes do not match, then the party the session is established with is acting as an intermediary, and the party identified by the SFID code is either the origin or final destination.

When acting as an intermediary the component will not perform any security services (i.e. sign, verify, encrypt, decrypt). Security services are to be performed by the origin or destination only. Data should simply be passed along by an intermediary.

SignedReceipt
int

Default Value: FALSE

Indicates whether a signed receipt is requested.

When sending files, if this is set to true a signed receipt will be requested. In that case RecipientCertStoreType, RecipientCertStore, and RecipientCertSubject must be set to specify the public certificate that will be used to verify the signature on the receipt returned by the client after SendFile is called. The class will automatically verify the signature on the returned receipt.

When receiving files, query this field to determine if the client requested a signed receipt. If true, the Certificate property must be set to a certificate with private key in order to sign the receipt that will be returned to the client. The class will sign and deliver the receipt automatically.

Note that this is only applicable when Version 2.0 of the protocol is used as indicated by Version.

SSIDCode
char*

Default Value: ""

The connected client's SSID code.

Timeout
int

Default Value: 0

A timeout for the class.

If the Timeout field is set to 0, all operations will run uninterrupted until successful completion or an error condition is encountered.

If Timeout is set to a positive value, the class will wait for the operation to complete before returning control.

The class will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not freeze and remains responsive.

If Timeout expires, and the operation is not yet complete, the class fails with an error.

Note: By default, all timeouts are inactivity timeouts, that is, the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.

The default value for Timeout is specified by the DefaultTimeout property.

Version
int (read-only)

Default Value: 0

This holds the version of OFTP supported by the client. This value cannot be changed. All communication with the client is performed using the version returned by this field. Possible values are:

0 (oftpVer12) OFTP Version 1.2
1 (oftpVer13) OFTP Version 1.3
2 (oftpVer14) OFTP Version 1.4
3 (oftpVer20) OFTP Version 2.0

VirtualFileDate
char*

Default Value: ""

Set this to the date/time stamp for the virtual file before sending. If this is not set when sending a file, the current date/time will be used. This property will accept various date formats, but will return the following format only: "MM/dd/yyyy HH:mm:ss".

Supported date formats:

  • ddd, d MMM yy HH:mm:ss zzz
  • ddd, d MMM yyyy HH:mm:ss zzz
  • d MMM yy HH:mm:ss zzz
  • d MMM yyyy HH:mm:ss zzz
  • dd-MMM-yyyy HH:mm:ss
  • ddd, d MMM yy HH:mm:ss zz
  • ddd, d MMM yyyy HH:mm:ss zz
  • ddd, d MMM yy HH:mm:ss zzz
  • ddd, d MMM yyyy HH:mm:ss zzz
  • ddd, d MMM yy HH:mm:ss z
  • ddd, d MMM yyyy HH:mm:ss z
  • ddd, dd MMM yyyy HH:mm:ss 'GMT'
  • dddd, MMMM dd, yyyy h:mm:ss tt
  • dddd, MMMM dd yyyy h:mm tt
  • yyMMddHHmmssZ
  • yyyyMMddHHmmssZ
  • yyMMddHHmmsszzzz
  • yyyyMMddHHmmsszzzz
  • yyyyMMddHHmmssffff
  • MM/dd/yyyy HH:mm:ss

VirtualFileFormat
int

Default Value: 0

The structure of the outgoing or incoming file.

When sending files, set this field to specify the format to apply to outgoing files.

When receiving files, query this field to determine the structure of the file received from the client.

The following values are valid file formats for outgoing virtual files:

0 (Unstructured - default) The outgoing file is binary and has not structure. There are no records in this type of file.
1 (Text) The outgoing file is a text file that consists of lines containing no more than 2048 characters terminated by CRLF. This type contains no records.
2 (Fixed) The outgoing file is in fixed file format, which means all records are of the same length. For fixed files, the class expects the file to be in text format with each line containing the MaxRecordSize characters terminated by a CRLF.
3 (Variable) The outgoing file is a variable file format, meaning all records are of variable length and are no longer than MaxRecordSize. When using this format, the class will parse out each record as a line terminated by CRLF. Thus, this type of file must be a text file, and must contain lines with less than MaxRecordSize characters.

Note: When either VirtualFileSecurityLevel has been set to a value other than slNone or Compress has been set to true, all files become ffUnstructured except ffVariable files.

VirtualFileSecurityLevel
int

Default Value: 0

Specifies security options for the outgoing or incoming file.

When receiving files, query this field to determine the security level of the file received from the client.

When sending files to the client, this field will be used to determine what security options apply to the outgoing file. Possible values are:

0 (slNone - default)The file will not be signed nor encrypted.
1 (slEncrypted)The file will be encrypted using the certificate specified by the RecipientCertSubject. field
2 (slSigned)The file will be signed using the certificate specified by the Certificate property;
3 (slEncryptedAndSigned)The file will be both signed and encrypted.

Note that this is only applicable when Version 2.0 of the protocol is used as indicated by Version.

Constructors

OFTPConnection()

IPWorksEDIList Type

Syntax

IPWorksEDIList<T> (declared in ipworksedi.h)

Remarks

IPWorksEDIList is a generic class that is used to hold a collection of objects of type T, where T is one of the custom types supported by the OFTPServer class.

Methods

GetCount This method returns the current size of the collection.

int GetCount() {}

SetCount This method sets the size of the collection. This method returns 0 if setting the size was successful; or -1 if the collection is ReadOnly. When adding additional objects to a collection call this method to specify the new size. Increasing the size of the collection preserves existing objects in the collection.

int SetCount(int count) {}

Get This method gets the item at the specified position. The index parameter specifies the index of the item in the collection. This method returns NULL if an invalid index is specified.

T* Get(int index) {}

Set This method sets the item at the specified position. The index parameter specifies the index of the item in the collection that is being set. This method returns -1 if an invalid index is specified. Note: Objects created using the new operator must be freed using the delete operator; they will not be automatically freed by the class.

T* Set(int index, T* value) {}

Config Settings (OFTPServer Class)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

OFTPServer Config Settings

AllowRetry[ConnectionId]:   Whether to send a retry indicator when rejecting a file.

When rejecting a file from within the AcceptFile event if this setting is set to True the class will send a retry indicator value to the client to specify the file may be retried later. This should be set from within the AcceptFile event. For instance: component.Config("AllowRetry[" + e->ConnectionId + "]"); When set to False (default) the component will send a value indicating the client should not retry the send operation.

CDAfterSendEndResponse[ConnectionId]:   Whether to issue a CD command after sending an asynchronous EERP.

By default the class will send a CD command after sending an asynchronous EERP and getting back a RTR (Ready to Receive) response. This gives control of the connection back to the client. If sending multiple asynchronous EERPs set this to False. After sending all of the EERPs use the ChangeDirection method to explicitly change the speaker for the connection if desired.

CertificateStore[ConnectionId]:   The name of the certificate store.

The name of the certificate store. This is used when specifying an alternative Certificate for the specified connection.

The CertificateStoreType specifies the type of the certificate store specified by CertificateStore. If the store is password protected, specify the password in CertificateStorePassword.

CertificateStore is used in conjunction with the CertificateSubject field in order to specify the certificate.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

CertificateStorePassword[ConnectionId]:   The certificate password.

If the certificate store is of a type that requires a password, this property is used to specify that password in order to open the certificate store. This is used when specifying an alternative Certificate for the specified connection.

CertificateStoreType[ConnectionId]:   The type of certificate store.

This specifies the type of certificate store. This is used when specifying an alternative Certificate for the specified connection. Possible values are:

0 User - This is the default for Windows. This specifies that the certificate store is a certificate store owned by the current user. Note: This store type is not available in Java.
1 Machine - For Windows, this specifies that the certificate store is a machine store. Note: This store type is not available in Java.
2 PFXFile - The certificate store is the name of a PFX (PKCS12) file containing certificates.
3 PFXBlob - The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS12) format.
4 JKSFile - The certificate store is the name of a Java Key Store (JKS) file containing certificates. Note: This store type is available only in Java.
5 JKSBlob - The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format. Note: This store type is available only in Java.
6 PEMKeyFile - The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 PEMKeyBlob - The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
14 PPKFile - The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 PPKBlob - The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 XMLFile - The certificate store is the name of a file that contains a certificate in XML format.
17 XMLBlob - The certificate store is a string that contains a certificate in XML format.
CertificateSubject[ConnectionId]:   The certificate subject.

The subject of the certificate. This is used when specifying an alternative Certificate for the specified connection.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

CertificateType:   Specifies the type of certificate being supplied.

By default the class will use the certificate set in the Certificate property for all operations that require a certificate. This setting allows for different certificates to be set for specific operations. First, specify the CertificateType via this setting and then set the Certificate property. For instance: component.Config("CertificateType=3"); component.Certificate = mySigningCertificate; Possible values are:

0 (default)All Operations
1Session Authentication
2Decryption
3Signing
4Receipt Signing
CertificateType[ConnectionId]:   Specifies the type of certificate being supplied.

By default the class will use the alternate certificate specified by the CertificateSubject setting for all operations that require a certificate. This setting allows for different certificates to be set for specific operations. First, specify the CertificateType via this setting and then set the Certificate* configuration settings. For instance: component.Config("CertificateType[ConnectionId]=3"); component.Config("CertificateStoreType[ConnectionId]=2"); component.Config("CertificateStore[ConnectionId]=C:\\mycert.pfx"); component.Config("CertificateStorePassword[ConnectionId]=password"); component.Config("CertificateSubject[ConnectionId]=*"); Possible values are:

0 (default)All Operations
1Session Authentication
2Decryption
3Signing
4Receipt Signing
ConnectionType[ConnectionId]:   Specifies the type of connection that will be created.

Specifies the type of connection that is created. The default value is 0 (Both) in which the class can both send and receive files. However you can limit the class to only be able to send or receive files by specifying a value of 1 (Send Only) or 2 (Receive Only).

This may be set within the AcceptConnection event. It only applies to the connection parameters sent by the server to the client. It does not return the value sent by the client to the server. Valid values are:

0Both (Default)
1Send Only
2Receive Only
For instance: component.Config("ConnectionType[" + e->ConnectionId + "]=1"); To check the value sent by the client to the server query ReceivedConnectionType[ConnectionId]; instead.

CreditCount[ConnectionId]:   Specifies the maximum credit value.

This setting defines the maximum credit value to be sent in the initial connection (SSID command). The default value is 99 and the maximum value is 999. This setting may be used within the AcceptConnection event. Querying this setting inside the event will return the value provided by the connecting client. You may set this value within the event to specify the credit count that will be sent to the client.

When establishing a connection the smaller of the two values provided by the client and the server will be used. This setting may also be queried after a connection is established to determine the negotiated value.

For instance: string receivedCreditCount = component.Config("CreditCount[" + e->ConnectionId + "]"); component.Config("CreditCount[" + e->ConnectionId + "]=55");

DefaultIdleTimeout:   The default idle timeout for inactive clients.

This property specifies the idle timeout (in seconds) for clients. When set to a positive value the class will disconnect idle clients after the specified timeout.

This only applies to clients that have not sent or received data within DefaultIdleTimeout seconds.

If set to 0 (default) no idle timeout is applied.

Note: DoEvents must be called in order for the class to check existing connections.

DefaultReceiptHashAlgorithm:   The receipt hash algorithm to request when sending a file.

The receipt hash algorithm specified in this setting is sent to the receiving party when a file is sent, and the receiving party should use this value when calculating the hash returned in the EERP or NERP receipt. Possible values are:

0sha1 (Default)
1sha256
2sha512
DeleteOnError:   Whether received files are deleted when there is an error during processing.

By default this value is True. When set to False and receiving a file, if the file is encrypted, signed, or compressed the file will be decrypted, verified, or decompressed. If there is an error during processing the original unprocessed file will be placed in DownloadDirectory. In that case you may choose what to do with the file based on the error reported during processing.

When this is set to True (default) and there is an error during processing the original unprocessed file will be deleted and no files will be placed in DownloadDirectory.

DisconnectAfterEndSession:   Determines if the connection is closed immediately after ending the session.

By default when Logoff is called the class will close the TCP connection after ending the session (the ESID command is sent). To let the other side close the connection after it has received the end session command (ESID), set this to False.

ExchangeBufferSize[ConnectionId]:   Specifies the data exchange buffer size in bytes.

This setting defines the data exchange buffer size to be sent in the initial connection (SSID command) in bytes. The default value is 2048. This setting may be used within the AcceptConnection event. Querying this setting inside the event will return the value provided by the connecting client. You may set this value within the event to specify the data exchange buffer size that will be sent to the client.

When establishing a connection the smaller of the two values provided by the client and the server will be used. This setting may also be queried after a connection is established to determine the negotiated value.

For instance: string receivedExchangeBufferSize = component.Config("ExchangeBufferSize[" + e->ConnectionId + "]"); component.Config("ExchangeBufferSize[" + e->ConnectionId + "]=1024");

ExchangeCertStoreType:   Specifies the store type when loading a certificate to be exchanged.

This specifies the certificate store type when loading a certificate that will be sent to the remote party. This is only applicable when calling ExchangeCertificate. The default value is "8" which indicates the certificate will be loaded from a file on disk. When the certificate is not in a .cer format or is located in the Windows certificate store this setting should be set to the appropriate value before calling ExchangeCertificate.

For a list of possible values please see StoreType. Also see ExchangeCertSubject.

ExchangeCertSubject:   The subject of the certificate being exchanged.

This specifies the subject of the certificate being exchanged. This will be used to load the appropriate certificate when ExchangeCertificate is called. This is used in conjunction with ExchangeCertStoreType and is only necessary when loading a certificate from a store that may hold more than one certificate (such as a Windows certificate store).

FailOnUntrustedCert:   Whether or not to throw an exception when untrusted certificates are used.

When TrustedCerts is populated the class will validate that loaded certificates were issued by a trusted CA in TrustedCerts. This setting controls the behavior when an untrusted certificate is found. By default this value is True and the class will throw an exception. If this is set to False the class will fire the Error event but the error will not be fatal and the operation will be allowed to continue.

FileDescription[ConnectionId]:   Additional description information sent with the file.

When sending a file this setting may be set to specify additional information. There is no restriction on the type of data supplied here. It may be set to a longer filename, or simply additional text data that you wish to pass to the receiver. The data supplied will be UTF-8 encoded by the class. The maximum length is 999 bytes (after UTF-8 encoding). This setting is only applicable when sending files.

For instance: component.Config("FileDescription[myConnectionId]=My File Description"); To obtain the FileDescription when receiving files use ReceivedFileDescription[ConnectionId]; instead.

FileHashAlgorithm[ConnectionId]:   The hash algorithm to use when sending a file.

The file hash algorithm specified in this setting is used to calculate the hash sent along with an outgoing file. Possible values are:

0sha1
1sha256 (Default)
2sha512
FireEndResponseOnSend:   Determines if the EndResponse event is fired for outgoing EERP and NERPs.

If set to True (default) the class will fire the EndResponse event for both sent and received end responses. If set to False the EndResponse event will fire only for received (incoming) end responses. The Direction parameter of EndResponse determines if the end response is being sent or received. The default value is True.

FollowRedirects:   Determines behavior when importing trusted certificates and a HTTP redirect is returned.

When TrustedCertsData holds a URL and ImportTrustedCerts is called the class makes a HTTP request to obtain the trusted certificates. If the server returns a HTTP redirect this setting specifies how the class will handle it. Possible values are:

0 (default) Never follow redirects. An exception will be thrown.
1 Always follow redirects. The redirect will be automatically followed.
2 Follow same scheme redirects. Follow the redirect if it matches the same scheme (http:// or https://).
FriendlyLogFormat:   Determines if a more friendly format is applied to PITrail event out.

This setting effects the content of the Data parameter of the PITrail event. By default this setting is true and a format designed to be more easily read is used. If set to false the Data parameter will hold the raw unformatted protocol level content.

IdleTimeout:   The idle timeout for this connection.

This field is similar to DefaultIdleTimeout but may be set on a per-connection basis to override DefaultIdleTimeout. This field specifies the idle timeout (in seconds) for the connected client. When set to a positive value the component will disconnect idle clients after the specified timeout. This only applies to clients that have not send to received data within the specified number of seconds. If set to 0 (default) no idle timeout is applied.

For instance: component.Config("IdleTimeout[" + e->ConnectionId + "]=1"); Note: DoEvents must be called in order for the class to check existing connections.

KeepAlive:   This property enables the SO_KEEPALIVE option on the incoming connections. This option prevents long connections from timing out in case of inactivity.

The default value is False. When True, KEEPALIVE packets are enabled (for long connections).

Please note that system TCP/IP stack implementations are not required to support SO_KEEPALIVE.

This property is shared among incoming connections. When the property is set, the corresponding value is set for incoming connections as they are accepted. Existing connections are not modified.

Linger:   This property controls how a connection is closed. The default is True. In this case the connection is closed only after all the data is sent. Setting it to False forces an abrupt (hard) disconnection. Any data that was in the sending queue may be lost.

When set to True, connections are terminated gracefully.

The default behavior (which is also the default mode for stream sockets) might result in an indefinite delay in closing the connection. Although the class returns control immediately, the system might indefinitely hold system resources until all pending data is sent (even after your application closes). This means that valuable system resources might be wasted.

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you have sent (by a client acknowledgment, for example), setting this property to False might be the appropriate course of action.

This property is shared among incoming connections. When the property is set, the corresponding value is set for incoming connections as they are accepted. Existing connections are not modified.

LogLevel:   The level of information to log.

This setting specifies the level of detail that is logged to the Log event. Possible values are:

0 (None) No messages are logged.
1 (Info - Default) Informational events such as OFTP commands which are sent and received.
2 (Verbose) Detailed data such as individual packet information is logged.
3 (Debug) Debug data including all relevant sent and received bytes are logged.
ReceivedConnectionType[ConnectionId]:   Returns the connection type specified by the client.

This setting returns the connection type specified by the client. It may be queried to determine the type of connection requested by the client.

This setting returns the type of connection being created. This may be queried within the AcceptConnection event or any time after. It only applies to the connection parameters sent by the client to the server. Valid values are:

0Both (Default)
1Send Only
2Receive Only

For instance: string receivedConnectionType = component.Config("ReceivedConnectionType[" + e->ConnectionId + "]");

ReceivedFileDateTime[ConnectionId]:   The datetime of the file being received.

This setting may be queried to obtain the datetime of the received file.

ReceivedFileDescription[ConnectionId]:   Additional description information received with the file.

Query this setting after receiving a file to obtain any additional information provided by the client. The data will be UTF-8 decoded by the class.

For instance: string receivedFileDescription = component.Config("ReceivedFileDescription[" + e->ConnectionId + "]");

ReceivedFileEncryptionAlg[ConnectionId]:   The encryption algorithm used for the file being received.

This setting may be queried inside the AcceptFile or EndTransfer events to obtain the encryption algorithm used by the client for encryption of the file being received. The possible values are:

0 3DES (Triple Data Encryption Standard).
1 AES (Advanced Encryption Standard with key length of 128).
ReceivedFileName[ConnectionId]:   Returns the name of the received file.

This setting may be queried inside the EndTransfer event to obtain the name of the received file on disk. This includes the full path to the file on disk.

ReceivedFileNameFormat:   The name format of received files.

This setting specifies the format used when determining the local filename of a received file. The use of macros is supported to provide flexibility. This setting may include one or more of the following values:

  • %VirtualFileName%
  • %VirtualFileDate%
  • %Originator%
  • %Destination%
  • %UserData%
  • %CurrentTime%
  • %GUID%
An example value is "%VirtualFileName%_%VirtualFileDate%_%Destination%". The default value is "%VirtualFileName%".

The '%VirtualFileDate%' macro also supports date formatting through the use of an optional DateTime format string. The format of the macro with the date format string included is:

  • %VirtualFileDate:CustomFormat%
For example: "%VirtualFileDate:yyyyMMddHHmmssffff%"

ReceivedFileNameFormat[ConnectionId]:   The name format of received files.

This setting specifies the format used when determining the local filename of a received file. The use of macros is supported to provide flexibility. This setting may include one or more of the following values:

  • %VirtualFileName%
  • %VirtualFileDate%
  • %Originator%
  • %Destination%
  • %UserData%
  • %CurrentTime%
  • %GUID%
An example value is "%VirtualFileName%_%VirtualFileDate%_%Destination%". The default value is "%VirtualFileName%".

The '%VirtualFileDate%' macro also supports date formatting through the use of an optional DateTime format string. The format of the macro with the date format string included is:

  • %VirtualFileDate:CustomFormat%
For example: "%VirtualFileDate:yyyyMMddHHmmssffff%"

RecipientCertificateType:   Specifies the type of recipient certificate being supplied.

By default the class will use the certificate set in the RecipientCert property for all operations that require a certificate. This setting allows for different certificates to be set for specific operations. First, specify the RecipientCertificateType via this setting and then set the RecipientCert property. For instance: component.Config("RecipientCertificateType=3"); component.RecipientCert = mySignatureVerificationCertificate; Possible values are:

0 (default)All Operations
1Session Authentication
2Encryption
3Signature Verification
4Receipt Signature Verification
Retry[ConnectionId]:   Indicates whether the recipient allows the send to be retried.

When sending files the recipient may reject the file for a number of reasons. The recipient may indicate that the operation can be re-attempted later. Query this setting after a send attempt was rejected to determine if the recipient allows retries. This setting will return either True or False.

SecureAuthentication:   Specifies secure authentication requirements for connecting clients.

This setting specifies the secure authentication requirements for connecting clients. Secure auth can be allowed, required, or disallowed. Possible values are:

0 Disallowed. Secure authentication is not allowed and will result in an error.
1 Required. Secure authentication is required. If secure authentication is not supported by the client the connection will result in an error.
2 (default) Automatic. Secure authentication is allowed but not required.
SendCDAfterEFPA:   Specifies whether a CD is always sent after receiving an EFPA.

When sending a file the recipient will respond with an EFPA once the file is received. Within this response is an indicator which tells the sender whether to issue a CD (Change Direction) command. The indicator is read by the class and a CD command is sent if requested. If a CD is not requested then no CD is sent.

When set to True, this overrides the default behavior and will always send a CD command regardless of whether the indicator is set in the EFPA.

This should only be set if there is a specific reason to do so. In most cases it is not necessary.

ServerPassword[ConnectionId]:   Sets or gets the ServerPassword for a particular connection.

This setting may be used to override the default ServerPassword. This allows for different ServerPasswords to be used for different connected clients. This can be changed at any time, for instance within the AcceptConnection.

ServerSFIDCode[ConnectionId]:   Sets or gets the ServerSFIDCode for a particular connection.

This setting may be used to override the default ServerSFIDCode when calling SendFile. This allows for different ServerSFIDCodes to be used for different connected clients. This can be changed at any time prior to calling SendFile. When receiving files this will be populated with the ServerSFIDCode received from the client.

ServerSSIDCode[ConnectionId]:   Sets the ServerSSIDCode for a particular connection.

This setting may be used to override the default ServerSSIDCode. This allows for different ServerSSIDCodes to be used for different connected clients. This can be set from within the AcceptConnection event.

TempPath[ConnectionId]:   The path of a directory where temporary files will be created.

Under certain conditions, the class will create temporary files before processing a file. The location of the temporary files is determined by this setting. Temporary files are created when sending a file to the client if any of the following conditions are true.

Note that VirtualFileSecurityLevel is only applicable when Version is set to oftpVer20.

This configuration setting can be set with or without a ConnectionId specified. When the ConnectionId is specified, this will cause temporary files for that connection to be written to the specified directory. Otherwise, if no ConnectionId is specified, temporary files for all connections will be written to the given folder.

TrustedCertsData:   Specifies the source to be used when importing trusted certificates.

When ImportTrustedCerts is called it will attempt to import certificates from the location specified here. By default this is the URL provided by Odette (http://www.odette.org/TSL/TSL_OFTP2.XML). This is the live list of CA certificates hosted by Odette. This may also be set to an absolute file path to load certificates from an offline source, or a string value containing the trusted CA certificates.

VirtualFileDateFormat:   The DateTime format of received files.

This setting specifies the DateTime format used by the class when reporting the VirtualFileDate of received files. The default format is "MM/dd/yyyy HH:mm:ss".

When using OFTP v2.0 If the class is configured to respond to EERP and NERP messages asynchronously this should be set to the value "yyyyMMddHHmmssffff" or a similar format that includes the same level of accuracy. This is required to ensure that when calling SendEndResponse the value saved from within the EndTransfer event has the necessary data when sending a response.

TCPServer Config Settings

AllowedClients:   A comma-separated list of host names or IP addresses that can access the class.

This configuration setting defines a comma-separated list of host names or IPv4 addresses that may access the class. The wildcard character "*" is supported. The default value is "*" and all connections are accepted.

When a client connects, the client's address is checked against the list defined here. If there is no match, the ConnectionRequest event fires with an Accept value set to false. If no action is taken within the ConnectionRequest event, the client will be disconnected.

BindExclusively:   Whether or not the component considers a local port reserved for exclusive use.

If this is true (default), the component will bind to the local port with the ExclusiveAddressUse option set, meaning that nothing else can bind to the same port. Also the component will not be able to bind to local ports that are already in use by some other instance, and attempts to do so will result in failure.

BlockedClients:   A comma-separated list of host names or IP addresses that cannot access the class.

This configuration setting defines a comma-separated list of host names or IPv4 addresses that cannot access the class.The default value is "" and all connections are accepted.

When a client connects, the client's address is checked against the list defined here. If there is a match, the ConnectionRequest event fires with an Accept value set to false. If no action is taken within the ConnectionRequest event, the client will not be connected.

ConnectionUID:   The unique connectionId for a connection.

Connection Ids may be reused as clients connect and disconnect. Querying ConnectionUID will return a unique identifier for that connection Id. If the specified connection Id does not exist, then ConnectionUID will return 0. For example:

Connection5UID = obj.config("ConnectionUID[5]")

DefaultConnectionTimeout:   The inactivity timeout applied to the SSL handshake.

This configuration setting specifies the inactivity (in seconds) to apply to incoming Secure Sockets Layer (SSL) connections. When set to a positive value, if the other end is unresponsive for the specified number of seconds, the connection will timeout. This is not applicable to the entire handshake. It is applicable only to the inactivity of the connecting client during the handshake if a response is expected and none is received within the timeout window. The default value is 0, and no connection-specific timeout is applied.

Note: This is applicable only to incoming SSL connections. This should be set only if there is a specific reason to do so.

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the Transmission Control Protocol (TCP)/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated, the InBufferSize reverts to its defined size. The same thing will happen if you attempt to make it too large or too small.

InBufferSize is shared among incoming connections. When the property is set, the corresponding value is set for incoming connections as they are accepted. Existing connections are not modified.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

A TCP keep-alive packet will be sent after a period of inactivity, as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. If this value is not specified here, the system default is 1 second. This setting is applicable to all connections.

Note: This value is not applicable in macOS.

KeepAliveRetryCount:   The number of keep-alive packets to be sent before the remotehost is considered disconnected.

A TCP keep-alive packet will be sent after a period of inactivity, as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This setting specifies the number of times that the keep-alive packets will be sent again before the remote host is considered disconnected. If this value is not specified here, the system default is 9.

Note: This configuration setting is available only in the Unix platform, and it is not supported in macOS or FreeBSD.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

By default, the operating system will determine the time a connection is idle before a TCP keep-alive packet is sent. If this value is not specified here, the system default is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds. This setting is applicable to all connections.

MaxConnections:   The maximum number of connections available.

This is the maximum number of connections available. This property must be set before Listening is set to true, and once set, it can no longer be changed for the current instance of the class. The maximum value for this setting is 100,000 connections. Use this setting with caution. Extremely large values may affect performance. The default value is 1000.

Note: Unix/Linux operating systems limit the number of simultaneous connections to 1024.

MaxReadTime:   The maximum time spent reading data from each connection.

This setting specifies the maximum time in milliseconds that the class will spend reading data from a particular connection before servicing other connections. When a single client is sending data to the class at a high rate this setting is used to ensure that other connections are serviced in a timely manner. Specifying a positive value prevents a single client from monopolizing the class's resources. The special value of 0 indicates no limit and is generally not recommended.

The default value is 50 (milliseconds).

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same thing will happen if you attempt to make it too large or too small.

OutBufferSize is shared among incoming connections. When the property is set, the corresponding value is set for incoming connections as they are accepted. Existing connections are not modified.

TcpNoDelay:   Whether or not to delay when sending packets.

When set to True, the socket will send all data that are ready to send at once. When set to False, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this configuration setting is set to False.

UseIOCP:   Whether to use the completion port I/O model.

The default value is false. When set to true, the class will use an I/O Completion Port (IOCP) to manage operations on sockets. A single completion port allows the asynchronous notification of network events on an entire group of sockets. This property must be set before Listening is set to true.

Nothing else is required to begin accepting IOCP connections. One major benefit to using this model is that there will be no thread blocked waiting for a request to complete. The system notifies the process through an Asynchronous Procedure Call (APC) once the device driver finishes servicing the I/O request. IOCP allows a single I/O worker thread handle multiple clients' input/output "fairly".

Note: When set to true, this setting will automatically set UseWindowsMessages to false.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the class will use IPv4 exclusively. When set to 1, the class will use IPv6 exclusively. When set to 2, the class will listen for both IPv4 and IPv6 connections. If IPv6 is not available on the system, only IPv4 will be used. The default value is 0. Possible values are as follows:

0 IPv4 Only
1 IPv6 Only
2 IPv6 and IPv4
UseWindowsMessages:   Whether to use the WSAAsyncSelect I/O model.

The default value is true, and the class will receive a Windows message-based notification of network events. Turning on Windows message notifications allows the application to get connect, send, receive, and socket closure network event notifications on a socket. This property must be set before Listening is set to true.

Nothing else is required to begin accepting connections using the Windows message queue. In high-traffic environments, messages will be discarded if the queue is full. Additionally, because a single window procedure will service all events on thousands of sockets, the Windows message queue is not scalable from a performance perspective.

If this setting is set to false, the class will instead use the Winsock select model instead. The component supports additional I/O models. Please see UseIOCP for more information.

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this configuration setting controls whether Secure Sockets Layer (SSL) packets should be logged. By default, this configuration setting is False, as it is useful only for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this configuration setting has no effect if SSLProvider is set to Platform.

OpenSSLCADir:   The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g., 9d66eef0.0, 9d66eef0.1). OpenSSL recommends the use of the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCAFile:   Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by the following sequences:

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

Before, between, and after the certificate text is allowed, which can be used, for example, for descriptions of the certificates. Refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCipherList:   A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

OpenSSLPrngSeedData:   The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default, OpenSSL uses the device file "/dev/urandom" to seed the PRNG, and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to True, the class will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the class is the same.

SSLCACertFilePaths:   The paths to CA certificate files on Unix/Linux.

This configuration setting specifies the paths on disk to CA certificate files on Unix/Linux.

The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found, the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.

The default value is as follows:

/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem

SSLCACerts:   A newline separated list of CA certificates to be included when performing an SSL handshake.

When SSLProvider is set to Internal, this configuration setting specifies one or more CA certificates to be included with the SSLCert property. Some servers or clients require the entire chain, including CA certificates, to be presented when performing SSL authentication. The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength is largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.

SSLClientCACerts:   A newline separated list of CA certificates to use during SSL client certificate validation.

This configuration setting is only applicable to server components (e.g., TCPServer) see SSLServerCACerts for client components (e.g., TCPClient). This setting can be used to optionally specify one or more CA certificates to be used when verifying the client certificate that is presented by the client during the SSL handshake when SSLAuthenticateClients is enabled. When verifying the client's certificate, the certificates trusted by the system will be used as part of the verification process. If the client's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the client's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

This configuration setting enables the cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when SSLProvider is set to Platform include the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when SSLProvider is set to Platform include the following:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when SSLProvider is set to Internalinclude the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_ECDH_RSA_WITH_AES_128_CBC_SHA"); Possible values when SSLProvider is set to Internal include the following:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

This configuration setting is used to enable or disable the supported security protocols.

Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default - Client and Server)
TLS1.1768 (Hex 300) (Default - Client)
TLS1 192 (Hex C0) (Default - Client)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.

SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:

By default when TLS 1.3 is enabled, the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions that are designed to run on Windows, SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider), please be aware of the following notes:

  • The platform provider is available only on Windows 11/Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the class when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This configuration setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This configuration setting is false by default, but it can be set to true to enable the extension.

This configuration setting is applicable only when SSLProvider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This configuration setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True, all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This configuration setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the class will only append, it will not overwrite previous values.

Note: This configuration setting is applicable only when SSLProvider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

This configuration setting returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

This configuration setting returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

This configuration setting returns the strength of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

This configuration setting returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be ORed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown certificate authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown certificate authority revocation status.
0x00000800Ignore unknown root revocation status.
0x00008000Allow test root certificate.
0x00004000Trust test root certificate.
0x80000000Ignore non-matching CN (certificate CN non-matching server name).

This functionality is currently not available when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificates to use during SSL server certificate validation.

This configuration setting is only used by client components (e.g., TCPClient) see SSLClientCACerts for server components (e.g., TCPServer). This configuration setting can be used to optionally specify one or more CA certificates to be used when connecting to the server and verifying the server certificate. When verifying the server's certificate, the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This configuration setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the class will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the class fails with an error.

The format of this value is a comma-separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional roundtrip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.

In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This configuration setting holds a comma-separated list of allowed signature algorithms. Possible values include the following:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This configuration setting is applicable only when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. This configuration setting should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8
The following is a list of valid code page identifiers for Mac OS only:
IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitiveData:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.

This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

ProcessIdleEvents:   Whether the class uses its internal event loop to process events when the main thread is idle.

If set to False, the class will not fire internal idle events. Set this to False to use the class in a background thread on Mac OS. By default, this setting is True.

SelectWaitMillis:   The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.

If there are no events to process when DoEvents is called, the class will wait for the amount of time specified here before returning. The default value is 20.

UseFIPSCompliantAPI:   Tells the class whether or not to use FIPS certified APIs.

When set to true, the class will utilize the underlying operating system's certified APIs. Java editions, regardless of OS, utilize Bouncy Castle Federal Information Processing Standards (FIPS), while all other Windows editions make use of Microsoft security libraries.

FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting that applies to all instances of all classes of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.

For more details, please see the FIPS 140-2 Compliance article.

Note: This setting is applicable only on Windows.

Note: Enabling FIPS compliance requires a special license; please contact sales@nsoftware.com for details.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to false, the class will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.

On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.

To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.

Trappable Errors (OFTPServer Class)

Error Handling (C++)

Call the GetLastErrorCode() method to obtain the last called method's result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. Known error codes are listed below. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

OFTPServer Errors

671   OFTP protocol error.
672   ServerSSID must be set before Listening is set to true.
673   ServerSFID must be set before Listening is set to true.
675   Session terminated by client. Unknown SSID.
675   Session terminated by client. Unknown SFID.
677   Session terminated by client. Unknown Password.
678   Error building packet to send.
679   Error reading file specified.
680   Invalid date timestamp.
681   Local file exists and overwrite is set to false.
682   Invalid hash value.
683   Invalid signature.
684   Cryptographic operation failed.
685   No encryption certificate was specified.
686   No signing certificate was specified.
687   Send failed. Check the description for more details.
688   The requested feature is only supported in OFTP Version 2.0. Check the description for more details.
689   A required certificate was not provided. The error descriptions indicates which property must be set.
690   Invalid Certificate.
691   Failed to import trusted certificates.

TCPServer Errors

100   You cannot change the RemotePort at this time. A connection is in progress.
101   You cannot change the RemoteHost at this time. A connection is in progress.
102   The RemoteHost address is invalid (0.0.0.0).
104   TCPServer is already listening.
106   Cannot change LocalPort when TCPServer is listening.
107   Cannot change LocalHost when TCPServer is listening.
108   Cannot change MaxConnections when TCPServer is listening.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   RemotePort cannot be zero. Please specify a valid service port number.
126   Invalid ConnectionId.
135   Operation would block.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on nonsocket.
10039   [10039] Destination address required.
10040   [10040] Message is too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol is not supported.
10044   [10044] Socket type is not supported.
10045   [10045] Operation is not supported on socket.
10046   [10046] Protocol family is not supported.
10047   [10047] Address family is not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Cannot assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Cannot send after socket shutdown.
10059   [10059] Too many references, cannot splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name is too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory is not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock is not loaded yet.
11001   [11001] Host not found.
11002   [11002] Nonauthoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).