MessageDecryptor Class

Properties   Methods   Events   Config Settings   Errors  

The MessageDecryptor class decrypts data that is stored in the PKCS#7 format.

Syntax

class secureblackbox.MessageDecryptor

Remarks

PKCS#7 (Public Key Cryptography Standard #7) is a common format used to store encrypted and signed data. It is used by a variety of protocols, including S/MIME and CMS.

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

certificate_bytesReturns raw certificate data in DER format.
certificate_handleAllows to get or set a 'handle', a unique identifier of the underlying property object.
certificate_issuerThe common name of the certificate issuer (CA), typically a company name.
certificate_issuer_rdnA collection of information, in the form of [OID, Value] pairs, uniquely identifying the certificate issuer.
certificate_serial_numberReturns the certificate's serial number.
certificate_subjectThe common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name.
certificate_subject_rdnA collection of information, in the form of [OID, Value] pairs, uniquely identifying the certificate holder (subject).
cert_countThe number of records in the Cert arrays.
cert_bytesReturns raw certificate data in DER format.
cert_handleAllows to get or set a 'handle', a unique identifier of the underlying property object.
encryption_algorithmThe symmetric cipher that was used to encrypt the data.
encryption_typeSpecifies the kind of encrypted message to create.
external_crypto_async_document_idSpecifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.
external_crypto_custom_paramsCustom parameters to be passed to the signing service (uninterpreted).
external_crypto_dataAdditional data to be included in the async state and mirrored back by the requestor.
external_crypto_external_hash_calculationSpecifies whether the message hash is to be calculated at the external endpoint.
external_crypto_hash_algorithmSpecifies the request's signature hash algorithm.
external_crypto_key_idThe ID of the pre-shared key used for DC request authentication.
external_crypto_key_secretThe pre-shared key used for DC request authentication.
external_crypto_methodSpecifies the asynchronous signing method.
external_crypto_modeSpecifies the external cryptography mode.
external_crypto_public_key_algorithmProvide public key algorithm here if the certificate is not available on the pre-signing stage.
fips_modeReserved.
input_bytesUse this property to pass the input to class in the byte array form.
input_filePath to the file containing the encrypted message.
keyThe symmetric key to use for decryption.
output_bytesUse this property to read the output the class object has produced.
output_filePath to the file to save the decrypted data to.
signed_attribute_countThe number of records in the SignedAttribute arrays.
signed_attribute_oidThe object identifier of the attribute.
signed_attribute_valueThe value of the attribute.
unsigned_attribute_countThe number of records in the UnsignedAttribute arrays.
unsigned_attribute_oidThe object identifier of the attribute.
unsigned_attribute_valueThe value of the attribute.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

check_encryption_typeDetermines the type of encrypted message in the supplied file.
configSets or retrieves a configuration setting.
decryptAttempts to decrypt an encrypted PKCS#7 message.
do_actionPerforms an additional action.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

on_errorInformation about errors during PKCS#7 message decryption.
on_external_decryptHandles remote or external decryption.
on_notificationThis event notifies the application about an underlying control flow event.
on_recipient_foundFires to report a message addressee parameters.

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

NoOuterContentInfoWhether the message has outer content.
OAEPHashAlgorithmHash algorithm to be used in RSA-OAEP.
TempPathPath for storing temporary files.
CheckKeyIntegrityBeforeUseEnables or disable private key integrity check before use.
CookieCachingSpecifies whether a cookie cache should be used for HTTP(S) transports.
CookiesGets or sets local cookies for the class.
DefDeriveKeyIterationsSpecifies the default key derivation algorithm iteration count.
EnableClientSideSSLFFDHEEnables or disables finite field DHE key exchange support in TLS clients.
GlobalCookiesGets or sets global cookies for all the HTTP transports.
HttpUserAgentSpecifies the user agent name to be used by all HTTP clients.
LogDestinationSpecifies the debug log destination.
LogDetailsSpecifies the debug log details to dump.
LogFileSpecifies the debug log filename.
LogFiltersSpecifies the debug log filters.
LogFlushModeSpecifies the log flush mode.
LogLevelSpecifies the debug log level.
LogMaxEventCountSpecifies the maximum number of events to cache before further action is taken.
LogRotationModeSpecifies the log rotation mode.
MaxASN1BufferLengthSpecifies the maximal allowed length for ASN.1 primitive tag data.
MaxASN1TreeDepthSpecifies the maximal depth for processed ASN.1 trees.
OCSPHashAlgorithmSpecifies the hash algorithm to be used to identify certificates in OCSP requests.
StaticDNSSpecifies whether static DNS rules should be used.
StaticIPAddress[domain]Gets or sets an IP address for the specified domain name.
StaticIPAddressesGets or sets all the static DNS rules.
TagAllows to store any custom data.
TLSSessionGroupSpecifies the group name of TLS sessions to be used for session resumption.
TLSSessionLifetimeSpecifies lifetime in seconds of the cached TLS session.
TLSSessionPurgeIntervalSpecifies how often the session cache should remove the expired TLS sessions.
UseOwnDNSResolverSpecifies whether the client classes should use own DNS resolver.
UseSharedSystemStoragesSpecifies whether the validation engine should use a global per-process copy of the system certificate stores.
UseSystemOAEPAndPSSEnforces or disables the use of system-driven RSA OAEP and PSS computations.
UseSystemRandomEnables or disables the use of the OS PRNG.

certificate_bytes Property

Returns raw certificate data in DER format.

Syntax

def get_certificate_bytes() -> bytes: ...

certificate_bytes = property(get_certificate_bytes, None)

Remarks

Returns raw certificate data in DER format.

This property is read-only.

certificate_handle Property

Allows to get or set a 'handle', a unique identifier of the underlying property object.

Syntax

def get_certificate_handle() -> int: ...

certificate_handle = property(get_certificate_handle, None)

Default Value

0

Remarks

Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.

When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object after such operation. pdfSigner.setSigningCertHandle(certMgr.getCertHandle());

This property is read-only.

certificate_issuer Property

The common name of the certificate issuer (CA), typically a company name.

Syntax

def get_certificate_issuer() -> str: ...

certificate_issuer = property(get_certificate_issuer, None)

Default Value

""

Remarks

The common name of the certificate issuer (CA), typically a company name.

This property is read-only.

certificate_issuer_rdn Property

A collection of information, in the form of [OID, Value] pairs, uniquely identifying the certificate issuer.

Syntax

def get_certificate_issuer_rdn() -> str: ...

certificate_issuer_rdn = property(get_certificate_issuer_rdn, None)

Default Value

""

Remarks

A collection of information, in the form of [OID, Value] pairs, uniquely identifying the certificate issuer.

This property is read-only.

certificate_serial_number Property

Returns the certificate's serial number.

Syntax

def get_certificate_serial_number() -> bytes: ...

certificate_serial_number = property(get_certificate_serial_number, None)

Remarks

Returns the certificate's serial number.

This property is read-only.

certificate_subject Property

The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name.

Syntax

def get_certificate_subject() -> str: ...

certificate_subject = property(get_certificate_subject, None)

Default Value

""

Remarks

The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name.

This property is read-only.

certificate_subject_rdn Property

A collection of information, in the form of [OID, Value] pairs, uniquely identifying the certificate holder (subject).

Syntax

def get_certificate_subject_rdn() -> str: ...

certificate_subject_rdn = property(get_certificate_subject_rdn, None)

Default Value

""

Remarks

A collection of information, in the form of [OID, Value] pairs, uniquely identifying the certificate holder (subject).

This property is read-only.

cert_count Property

The number of records in the Cert arrays.

Syntax

def get_cert_count() -> int: ...
def set_cert_count(value: int) -> None: ...

cert_count = property(get_cert_count, set_cert_count)

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at cert_count - 1.

cert_bytes Property

Returns raw certificate data in DER format.

Syntax

def get_cert_bytes(cert_index: int) -> bytes: ...

Remarks

Returns raw certificate data in DER format.

The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.

This property is read-only.

cert_handle Property

Allows to get or set a 'handle', a unique identifier of the underlying property object.

Syntax

def get_cert_handle(cert_index: int) -> int: ...
def set_cert_handle(cert_index: int, value: int) -> None: ...

Default Value

0

Remarks

Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.

When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object after such operation. pdfSigner.setSigningCertHandle(certMgr.getCertHandle());

The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.

encryption_algorithm Property

The symmetric cipher that was used to encrypt the data.

Syntax

def get_encryption_algorithm() -> str: ...

encryption_algorithm = property(get_encryption_algorithm, None)

Default Value

""

Remarks

This property contains the symmetric algorithm that the creator had used to encrypt the message.

This property is read-only.

encryption_type Property

Specifies the kind of encrypted message to create.

Syntax

def get_encryption_type() -> int: ...

encryption_type = property(get_encryption_type, None)

Default Value

0

Remarks

Possible values:

metUnknown0Unknown or unsupported encryption type

metCertEncrypted1Certificate-based encryption

metKeyEncrypted2Symmetric key-based encryption

metCertEncryptedAndAuthenticated3Certificate-based encryption with authentication (AEAD)

This property is read-only.

external_crypto_async_document_id Property

Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.

Syntax

def get_external_crypto_async_document_id() -> str: ...
def set_external_crypto_async_document_id(value: str) -> None: ...

external_crypto_async_document_id = property(get_external_crypto_async_document_id, set_external_crypto_async_document_id)

Default Value

""

Remarks

Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.

Use this property when working with multi-signature DCAuth requests and responses to uniquely identify documents signed within a larger batch. On the completion stage, this value helps the signing component identify the correct signature in the returned batch of responses.

If using batched requests, make sure to set this property to the same value on both pre-signing (SignAsyncBegin) and completion (SignAsyncEnd) stages.

external_crypto_custom_params Property

Custom parameters to be passed to the signing service (uninterpreted).

Syntax

def get_external_crypto_custom_params() -> str: ...
def set_external_crypto_custom_params(value: str) -> None: ...

external_crypto_custom_params = property(get_external_crypto_custom_params, set_external_crypto_custom_params)

Default Value

""

Remarks

Custom parameters to be passed to the signing service (uninterpreted).

external_crypto_data Property

Additional data to be included in the async state and mirrored back by the requestor.

Syntax

def get_external_crypto_data() -> str: ...
def set_external_crypto_data(value: str) -> None: ...

external_crypto_data = property(get_external_crypto_data, set_external_crypto_data)

Default Value

""

Remarks

Additional data to be included in the async state and mirrored back by the requestor

external_crypto_external_hash_calculation Property

Specifies whether the message hash is to be calculated at the external endpoint.

Syntax

def get_external_crypto_external_hash_calculation() -> bool: ...
def set_external_crypto_external_hash_calculation(value: bool) -> None: ...

external_crypto_external_hash_calculation = property(get_external_crypto_external_hash_calculation, set_external_crypto_external_hash_calculation)

Default Value

FALSE

Remarks

Specifies whether the message hash is to be calculated at the external endpoint. Please note that this mode is not supported by all components. In particular, components operating with larger objects (PDFSigner, CAdESSigner, XAdESSigner) do not support it.

external_crypto_hash_algorithm Property

Specifies the request's signature hash algorithm.

Syntax

def get_external_crypto_hash_algorithm() -> str: ...
def set_external_crypto_hash_algorithm(value: str) -> None: ...

external_crypto_hash_algorithm = property(get_external_crypto_hash_algorithm, set_external_crypto_hash_algorithm)

Default Value

"SHA256"

Remarks

Specifies the request's signature hash algorithm.

SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_MD2MD2
SB_HASH_ALGORITHM_MD4MD4
SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_CRC32CRC32
SB_HASH_ALGORITHM_SSL3SSL3
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_POLY1305POLY1305
SB_HASH_ALGORITHM_SHA3_224SHA3_224
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512
SB_HASH_ALGORITHM_BLAKE2S_128BLAKE2S_128
SB_HASH_ALGORITHM_BLAKE2S_160BLAKE2S_160
SB_HASH_ALGORITHM_BLAKE2S_224BLAKE2S_224
SB_HASH_ALGORITHM_BLAKE2S_256BLAKE2S_256
SB_HASH_ALGORITHM_BLAKE2B_160BLAKE2B_160
SB_HASH_ALGORITHM_BLAKE2B_256BLAKE2B_256
SB_HASH_ALGORITHM_BLAKE2B_384BLAKE2B_384
SB_HASH_ALGORITHM_BLAKE2B_512BLAKE2B_512
SB_HASH_ALGORITHM_SHAKE_128SHAKE_128
SB_HASH_ALGORITHM_SHAKE_256SHAKE_256
SB_HASH_ALGORITHM_SHAKE_128_LENSHAKE_128_LEN
SB_HASH_ALGORITHM_SHAKE_256_LENSHAKE_256_LEN

external_crypto_key_id Property

The ID of the pre-shared key used for DC request authentication.

Syntax

def get_external_crypto_key_id() -> str: ...
def set_external_crypto_key_id(value: str) -> None: ...

external_crypto_key_id = property(get_external_crypto_key_id, set_external_crypto_key_id)

Default Value

""

Remarks

The ID of the pre-shared key used for DC request authentication.

Asynchronous DCAuth-driven communication requires that parties authenticate each other with a secret pre-shared cryptographic key. This provides extra protection layer for the protocol and diminishes the risk of private key becoming abused by foreign parties. Use this property to provide the pre-shared key identifier, and use external_crypto_key_secret to pass the key itself.

The same KeyID/KeySecret pair should be used on the DCAuth side for the signing requests to be accepted.

Note: The KeyID/KeySecret scheme is very similar to the AuthKey scheme used in various Cloud service providers to authenticate users.

Example: signer.ExternalCrypto.KeyID = "MainSigningKey"; signer.ExternalCrypto.KeySecret = "abcdef0123456789";

external_crypto_key_secret Property

The pre-shared key used for DC request authentication.

Syntax

def get_external_crypto_key_secret() -> str: ...
def set_external_crypto_key_secret(value: str) -> None: ...

external_crypto_key_secret = property(get_external_crypto_key_secret, set_external_crypto_key_secret)

Default Value

""

Remarks

The pre-shared key used for DC request authentication. This key must be set and match the key used by the DCAuth counterpart for the scheme to work.

Read more about configuring authentication in the external_crypto_key_id topic.

external_crypto_method Property

Specifies the asynchronous signing method.

Syntax

def get_external_crypto_method() -> int: ...
def set_external_crypto_method(value: int) -> None: ...

external_crypto_method = property(get_external_crypto_method, set_external_crypto_method)

Default Value

0

Remarks

Specifies the asynchronous signing method. This is typically defined by the DC server capabilities and setup.

Available options:

asmdPKCS10
asmdPKCS71

external_crypto_mode Property

Specifies the external cryptography mode.

Syntax

def get_external_crypto_mode() -> int: ...
def set_external_crypto_mode(value: int) -> None: ...

external_crypto_mode = property(get_external_crypto_mode, set_external_crypto_mode)

Default Value

0

Remarks

Specifies the external cryptography mode.

Available options:

ecmDefaultThe default value (0)
ecmDisabledDo not use DC or external signing (1)
ecmGenericGeneric external signing with OnExternalSign event (2)
ecmDCAuthDCAuth signing (3)
ecmDCAuthJSONDCAuth signing in JSON format (4)

external_crypto_public_key_algorithm Property

Provide public key algorithm here if the certificate is not available on the pre-signing stage.

Syntax

def get_external_crypto_public_key_algorithm() -> str: ...
def set_external_crypto_public_key_algorithm(value: str) -> None: ...

external_crypto_public_key_algorithm = property(get_external_crypto_public_key_algorithm, set_external_crypto_public_key_algorithm)

Default Value

""

Remarks

Provide public key algorithm here if the certificate is not available on the pre-signing stage.

SB_CERT_ALGORITHM_ID_RSA_ENCRYPTIONrsaEncryption
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTIONmd2withRSAEncryption
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTIONmd5withRSAEncryption
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTIONsha1withRSAEncryption
SB_CERT_ALGORITHM_ID_DSAid-dsa
SB_CERT_ALGORITHM_ID_DSA_SHA1id-dsa-with-sha1
SB_CERT_ALGORITHM_DH_PUBLICdhpublicnumber
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTIONsha224WithRSAEncryption
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTIONsha256WithRSAEncryption
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTIONsha384WithRSAEncryption
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTIONsha512WithRSAEncryption
SB_CERT_ALGORITHM_ID_RSAPSSid-RSASSA-PSS
SB_CERT_ALGORITHM_ID_RSAOAEPid-RSAES-OAEP
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160ripemd160withRSA
SB_CERT_ALGORITHM_ID_ELGAMALelGamal
SB_CERT_ALGORITHM_SHA1_ECDSAecdsa-with-SHA1
SB_CERT_ALGORITHM_RECOMMENDED_ECDSAecdsa-recommended
SB_CERT_ALGORITHM_SHA224_ECDSAecdsa-with-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSAecdsa-with-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSAecdsa-with-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSAecdsa-with-SHA512
SB_CERT_ALGORITHM_ECid-ecPublicKey
SB_CERT_ALGORITHM_SPECIFIED_ECDSAecdsa-specified
SB_CERT_ALGORITHM_GOST_R3410_1994id-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3410_2001id-GostR3410-2001
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994id-GostR3411-94-with-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001id-GostR3411-94-with-GostR3410-2001
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAINecdsa-plain-SHA1
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAINecdsa-plain-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAINecdsa-plain-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAINecdsa-plain-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAINecdsa-plain-SHA512
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAINecdsa-plain-RIPEMD160
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTIONwhirlpoolWithRSAEncryption
SB_CERT_ALGORITHM_ID_DSA_SHA224id-dsa-with-sha224
SB_CERT_ALGORITHM_ID_DSA_SHA256id-dsa-with-sha256
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSAid-ecdsa-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSAid-ecdsa-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSAid-ecdsa-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSAid-ecdsa-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAINid-ecdsa-plain-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAINid-ecdsa-plain-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAINid-ecdsa-plain-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAINid-ecdsa-plain-with-sha3-512
SB_CERT_ALGORITHM_ID_DSA_SHA3_224id-dsa-with-sha3-224
SB_CERT_ALGORITHM_ID_DSA_SHA3_256id-dsa-with-sha3-256
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSAid-ecdsa-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSAid-ecdsa-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSAid-ecdsa-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSAid-ecdsa-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSAid-ecdsa-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSAid-ecdsa-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSAid-ecdsa-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSAid-ecdsa-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAINid-ecdsa-plain-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAINid-ecdsa-plain-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAINid-ecdsa-plain-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAINid-ecdsa-plain-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAINid-ecdsa-plain-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAINid-ecdsa-plain-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAINid-ecdsa-plain-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAINid-ecdsa-plain-with-blake2b512
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224id-dsa-with-blake2s224
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256id-dsa-with-blake2s256
SB_CERT_ALGORITHM_EDDSA_ED25519id-Ed25519
SB_CERT_ALGORITHM_EDDSA_ED448id-Ed448
SB_CERT_ALGORITHM_EDDSA_ED25519_PHid-Ed25519ph
SB_CERT_ALGORITHM_EDDSA_ED448_PHid-Ed448ph
SB_CERT_ALGORITHM_EDDSAid-EdDSA
SB_CERT_ALGORITHM_EDDSA_SIGNATUREid-EdDSA-sig

fips_mode Property

Reserved.

Syntax

def get_fips_mode() -> bool: ...
def set_fips_mode(value: bool) -> None: ...

fips_mode = property(get_fips_mode, set_fips_mode)

Default Value

FALSE

Remarks

This property is reserved for future use.

input_bytes Property

Use this property to pass the input to class in the byte array form.

Syntax

def get_input_bytes() -> bytes: ...
def set_input_bytes(value: bytes) -> None: ...

input_bytes = property(get_input_bytes, set_input_bytes)

Remarks

Assign a byte array containing the data to be processed to this property.

input_file Property

Path to the file containing the encrypted message.

Syntax

def get_input_file() -> str: ...
def set_input_file(value: str) -> None: ...

input_file = property(get_input_file, set_input_file)

Default Value

""

Remarks

Use this property to provide a file containing the encrypted data.

key Property

The symmetric key to use for decryption.

Syntax

def get_key() -> bytes: ...
def set_key(value: bytes) -> None: ...

key = property(get_key, set_key)

Remarks

Use this property to provide the symmetric key to decrypt the data. This property is only applicable for processing data of EncryptedData subtype.

Assign this property before calling decrypt.

output_bytes Property

Use this property to read the output the class object has produced.

Syntax

def get_output_bytes() -> bytes: ...

output_bytes = property(get_output_bytes, None)

Remarks

Read the contents of this property after the operation is completed to read the produced output. This property will only be set if output_file and output_stream properties had not been assigned.

This property is read-only.

output_file Property

Path to the file to save the decrypted data to.

Syntax

def get_output_file() -> str: ...
def set_output_file(value: str) -> None: ...

output_file = property(get_output_file, set_output_file)

Default Value

""

Remarks

Use this property to specify the output file where the decrypted message should be saved.

signed_attribute_count Property

The number of records in the SignedAttribute arrays.

Syntax

def get_signed_attribute_count() -> int: ...

signed_attribute_count = property(get_signed_attribute_count, None)

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at signed_attribute_count - 1.

This property is read-only.

signed_attribute_oid Property

The object identifier of the attribute.

Syntax

def get_signed_attribute_oid(signed_attribute_index: int) -> str: ...

Default Value

""

Remarks

The object identifier of the attribute.

The signed_attribute_index parameter specifies the index of the item in the array. The size of the array is controlled by the signed_attribute_count property.

This property is read-only.

signed_attribute_value Property

The value of the attribute.

Syntax

def get_signed_attribute_value(signed_attribute_index: int) -> bytes: ...

Remarks

The value of the attribute.

The signed_attribute_index parameter specifies the index of the item in the array. The size of the array is controlled by the signed_attribute_count property.

This property is read-only.

unsigned_attribute_count Property

The number of records in the UnsignedAttribute arrays.

Syntax

def get_unsigned_attribute_count() -> int: ...

unsigned_attribute_count = property(get_unsigned_attribute_count, None)

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at unsigned_attribute_count - 1.

This property is read-only.

unsigned_attribute_oid Property

The object identifier of the attribute.

Syntax

def get_unsigned_attribute_oid(unsigned_attribute_index: int) -> str: ...

Default Value

""

Remarks

The object identifier of the attribute.

The unsigned_attribute_index parameter specifies the index of the item in the array. The size of the array is controlled by the unsigned_attribute_count property.

This property is read-only.

unsigned_attribute_value Property

The value of the attribute.

Syntax

def get_unsigned_attribute_value(unsigned_attribute_index: int) -> bytes: ...

Remarks

The value of the attribute.

The unsigned_attribute_index parameter specifies the index of the item in the array. The size of the array is controlled by the unsigned_attribute_count property.

This property is read-only.

check_encryption_type Method

Determines the type of encrypted message in the supplied file.

Syntax

def check_encryption_type() -> int: ...

Remarks

Use this method to determine the kind of the signature stored in input_file (input_stream).

metUnknown0Unknown or unsupported encryption type

metCertEncrypted1Certificate-based encryption

metKeyEncrypted2Symmetric key-based encryption

metCertEncryptedAndAuthenticated3Certificate-based encryption with authentication (AEAD)

config Method

Sets or retrieves a configuration setting.

Syntax

def config(configuration_string: str) -> str: ...

Remarks

config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

decrypt Method

Attempts to decrypt an encrypted PKCS#7 message.

Syntax

def decrypt() -> None: ...

Remarks

Call this method to attempt to decrypt the PKCS#7 encrypted data. This call supports EnvelopedData and EncryptedData subtypes on input.

Use input_file or input_stream property to provide the data, and either certificates or key to supply the decryption key material.

When processing enveloped data, the class may fire on_recipient_found event to report recipient information.

do_action Method

Performs an additional action.

Syntax

def do_action(action_id: str, action_params: str) -> str: ...

Remarks

do_action is a generic method available in every class. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.

The unique identifier (case insencitive) of the action is provided in the ActionID parameter.

ActionParams contains the value of a single parameter, or a list of multiple parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....

on_error Event

Information about errors during PKCS#7 message decryption.

Syntax

class MessageDecryptorErrorEventParams(object):
  @property
  def error_code() -> int: ...

  @property
  def description() -> str: ...

# In class MessageDecryptor:
@property
def on_error() -> Callable[[MessageDecryptorErrorEventParams], None]: ...
@on_error.setter
def on_error(event_hook: Callable[[MessageDecryptorErrorEventParams], None]) -> None: ...

Remarks

The event is fired in case of exceptional conditions during message processing.

ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Messages section.

on_external_decrypt Event

Handles remote or external decryption.

Syntax

class MessageDecryptorExternalDecryptEventParams(object):
  @property
  def operation_id() -> str: ...

  @property
  def algorithm() -> str: ...

  @property
  def pars() -> str: ...

  @property
  def encrypted_data() -> str: ...

  @property
  def data() -> str: ...
  @data.setter
  def data(value) -> None: ...

# In class MessageDecryptor:
@property
def on_external_decrypt() -> Callable[[MessageDecryptorExternalDecryptEventParams], None]: ...
@on_external_decrypt.setter
def on_external_decrypt(event_hook: Callable[[MessageDecryptorExternalDecryptEventParams], None]) -> None: ...

Remarks

Assign a handler to this event if you need to delegate a low-level decryption operation to an external, remote, or custom decryption engine. The handler receives a encrypted value in the EncryptedData parameter, and is expected to decrypt it and place the decrypted value into the Data parameter.

OperationId provides a comment about the operation and its origin. It depends on the exact component being used, and may be empty. Algorithm specifies the encryption algorithm being used, and Pars contain algorithm-dependent parameters.

The component uses base16 (hex) encoding for EncryptedData, Data, and Pars parameters. If your decryption engine uses a different input and output encoding, you may need to decode and/or encode the data before and/or after the decryption.

A sample data encoded in base16: a0dee2a0382afbb09120ffa7ccd8a152 - lower case base16 A0DEE2A0382AFBB09120FFA7CCD8A152 - upper case base16

on_notification Event

This event notifies the application about an underlying control flow event.

Syntax

class MessageDecryptorNotificationEventParams(object):
  @property
  def event_id() -> str: ...

  @property
  def event_param() -> str: ...

# In class MessageDecryptor:
@property
def on_notification() -> Callable[[MessageDecryptorNotificationEventParams], None]: ...
@on_notification.setter
def on_notification(event_hook: Callable[[MessageDecryptorNotificationEventParams], None]) -> None: ...

Remarks

The class fires this event to let the application know about some event, occurrence, or milestone in the component. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.

The unique identifier of the event is provided in EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the component, the exact action it is performing, or the document being processed, one or both may be omitted.

on_recipient_found Event

Fires to report a message addressee parameters.

Syntax

class MessageDecryptorRecipientFoundEventParams(object):
  @property
  def issuer_rdn() -> str: ...

  @property
  def serial_number() -> bytes: ...

  @property
  def subject_key_id() -> bytes: ...

  @property
  def cert_found() -> bool: ...

# In class MessageDecryptor:
@property
def on_recipient_found() -> Callable[[MessageDecryptorRecipientFoundEventParams], None]: ...
@on_recipient_found.setter
def on_recipient_found(event_hook: Callable[[MessageDecryptorRecipientFoundEventParams], None]) -> None: ...

Remarks

This event is fired for each addressee the message is encrypted for. It may fire several times in a row if the message is encrypted for more than one recipient.

The IssuerRDN, SerialNumber, and SubjectKeyID parameters to identify the recipient's certificate. CertFound indicates if the specified certificate has been located in certificates collection. If it wasn't, you might want to look up the certificate manually, and add it to the collection inside the event handler.

MessageDecryptor Config Settings

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.

MessageDecryptor Config Settings

NoOuterContentInfo:   Whether the message has outer content.

Tells the component whether the message to be decrypted has any outer content.

OAEPHashAlgorithm:   Hash algorithm to be used in RSA-OAEP.

Defines which hash algorithm should be used in RSA-OAEP scheme.

TempPath:   Path for storing temporary files.

This setting specifies an absolute path to the location on disk where temporary files are stored.

Base Config Settings

CheckKeyIntegrityBeforeUse:   Enables or disable private key integrity check before use.

This global property enables or disables private key material check before each signing operation. This slows down performance a bit, but prevents a selection of attacks on RSA keys where keys with unknown origins are used.

You can switch this property off to improve performance if your project only uses known, good private keys.

CookieCaching:   Specifies whether a cookie cache should be used for HTTP(S) transports.

Set this property to enable or disable cookies caching for the class.

Supported values are:

offNo caching (default)
localLocal caching
globalGlobal caching

Cookies:   Gets or sets local cookies for the class.

Use this property to get cookies from the internal cookie storage of the class and/or restore them back between application sessions.

DefDeriveKeyIterations:   Specifies the default key derivation algorithm iteration count.

This global property sets the default number of iterations for all supported key derivation algorithms. Note that you can provide the required number of iterations by using properties of the relevant key generation component; this global setting is used in scenarios where specific iteration count is not or cannot be provided.

EnableClientSideSSLFFDHE:   Enables or disables finite field DHE key exchange support in TLS clients.

This global property enables or disables support for finite field DHE key exchange methods in TLS clients. FF DHE is a slower algorithm if compared to EC DHE; enabling it may result in slower connections.

This setting only applies to sessions negotiated with TLS version 1.3.

GlobalCookies:   Gets or sets global cookies for all the HTTP transports.

Use this property to get cookies from the GLOBAL cookie storage or restore them back between application sessions. These cookies will be used by all the classes that have its CookieCaching property set to "global".

HttpUserAgent:   Specifies the user agent name to be used by all HTTP clients.

This global setting defines the User-Agent field of the HTTP request provides information about the software that initiates the request. This value will be used by all the HTTP clients including the ones used internally in other classes.

LogDestination:   Specifies the debug log destination.

Contains a comma-separated list of values that specifies where debug log should be dumped.

Supported values are:

fileFile
consoleConsole
systemlogSystem Log (supported for Android only)
debuggerDebugger (supported for VCL for Windows and .Net)

LogDetails:   Specifies the debug log details to dump.

Contains a comma-separated list of values that specifies which debug log details to dump.

Supported values are:

timeCurrent time
levelLevel
packagePackage name
moduleModule name
classClass name
methodMethod name
threadidThread Id
contenttypeContent type
contentContent
allAll details

LogFile:   Specifies the debug log filename.

Use this property to provide a path to the log file.

LogFilters:   Specifies the debug log filters.

Contains a comma-separated list of value pairs ("name:value") that describe filters.

Supported filter names are:

exclude-packageExclude a package specified in the value
exclude-moduleExclude a module specified in the value
exclude-classExclude a class specified in the value
exclude-methodExclude a method specified in the value
include-packageInclude a package specified in the value
include-moduleInclude a module specified in the value
include-classInclude a class specified in the value
include-methodInclude a method specified in the value

LogFlushMode:   Specifies the log flush mode.

Use this property to set the log flush mode. The following values are defined:

noneNo flush (caching only)
immediateImmediate flush (real-time logging)
maxcountFlush cached entries upon reaching LogMaxEventCount entries in the cache.

LogLevel:   Specifies the debug log level.

Use this property to provide the desired debug log level.

Supported values are:

noneNone (by default)
fatalSevere errors that cause premature termination.
errorOther runtime errors or unexpected conditions.
warningUse of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong".
infoInteresting runtime events (startup/shutdown).
debugDetailed information on flow of through the system.
traceMore detailed information.

LogMaxEventCount:   Specifies the maximum number of events to cache before further action is taken.

Use this property to specify the log event number threshold. This threshold may have different effects, depending on the rotation setting and/or the flush mode.

The default value of this setting is 100.

LogRotationMode:   Specifies the log rotation mode.

Use this property to set the log rotation mode. The following values are defined:

noneNo rotation
deleteolderDelete older entries from the cache upon reaching LogMaxEventCount
keepolderKeep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded)

MaxASN1BufferLength:   Specifies the maximal allowed length for ASN.1 primitive tag data.

This global property limits the maximal allowed length for ASN.1 tag data for non-content-carrying structures, such as certificates, CRLs, or timestamps. It does not affect structures that can carry content, such as CMS/CAdES messages. This is a security property aiming at preventing DoS attacks.

MaxASN1TreeDepth:   Specifies the maximal depth for processed ASN.1 trees.

This global property limits the maximal depth of ASN.1 trees that the component can handle without throwing an error. This is a security property aiming at preventing DoS attacks.

OCSPHashAlgorithm:   Specifies the hash algorithm to be used to identify certificates in OCSP requests.

This global setting defines the hash algorithm to use in OCSP requests during chain validation. Some OCSP responders can only use older algorithms, in which case setting this property to SHA1 may be helpful.

StaticDNS:   Specifies whether static DNS rules should be used.

Set this property to enable or disable static DNS rules for the class. Works only if UseOwnDNSResolver is set to true.

Supported values are:

noneNo static DNS rules (default)
localLocal static DNS rules
globalGlobal static DNS rules

StaticIPAddress[domain]:   Gets or sets an IP address for the specified domain name.

Use this property to get or set an IP address for the specified domain name in the internal (of the class) or global DNS rules storage depending on the StaticDNS value. The type of the IP address (IPv4 or IPv6) is determined automatically. If both addresses are available, they are devided by the | (pipe) character.

StaticIPAddresses:   Gets or sets all the static DNS rules.

Use this property to get static DNS rules from the current rules storage or restore them back between application sessions. If StaticDNS of the class is set to "local", the property returns/restores the rules from/to the internal storage of the class. If StaticDNS of the class is set to "global", the property returns/restores the rules from/to the GLOBAL storage. The rules list is returned and accepted in JSON format.

Tag:   Allows to store any custom data.

Use this config property to store any custom data.

TLSSessionGroup:   Specifies the group name of TLS sessions to be used for session resumption.

Use this property to limit the search of chached TLS sessions to the specified group. Sessions from other groups will be ignored. By default, all sessions are cached with an empty group name and available to all the classes.

TLSSessionLifetime:   Specifies lifetime in seconds of the cached TLS session.

Use this property to specify how much time the TLS session should be kept in the session cache. After this time, the session expires and will be automatically removed from the cache. Default value is 300 seconds (5 minutes).

TLSSessionPurgeInterval:   Specifies how often the session cache should remove the expired TLS sessions.

Use this property to specify the time interval of purging the expired TLS sessions from the session cache. Default value is 60 seconds (1 minute).

UseOwnDNSResolver:   Specifies whether the client components should use own DNS resolver.

Set this global property to false to force all the client components to use the DNS resolver provided by the target OS instead of using own one.

UseSharedSystemStorages:   Specifies whether the validation engine should use a global per-process copy of the system certificate stores.

Set this global property to false to make each validation run use its own copy of system certificate stores.

UseSystemOAEPAndPSS:   Enforces or disables the use of system-driven RSA OAEP and PSS computations.

This global setting defines who is responsible for performing RSA-OAEP and RSA-PSS computations where the private key is stored in a Windows system store and is exportable. If set to true, SBB will delegate the computations to Windows via a CryptoAPI call. Otherwise, it will export the key material and perform the computations using its own OAEP/PSS implementation.

This setting only applies to certificates originating from a Windows system store.

UseSystemRandom:   Enables or disables the use of the OS PRNG.

Use this global property to enable or disable the use of operating system-driven pseudorandom number generation.

MessageDecryptor Errors

MessageDecryptor Errors

1048577   Invalid parameter value (SB_ERROR_INVALID_PARAMETER)
1048578   Class is configured incorrectly (SB_ERROR_INVALID_SETUP)
1048579   Operation cannot be executed in the current state (SB_ERROR_INVALID_STATE)
1048580   Attempt to set an invalid value to a property (SB_ERROR_INVALID_VALUE)
1048581   Certificate does not have its private key loaded (SB_ERROR_NO_PRIVATE_KEY)
1048581   Cancelled by the user (SB_ERROR_CANCELLED_BY_USER)