CryptoKeyStorage Class
Properties Methods Events Config Settings Errors
The CryptoKeyStorage class provides access to key stores of various types.
Syntax
CryptoKeyStorage
Remarks
CryptoKeyStorage allows you to load and access cryptographic keys stored on different media, such as memory buffers, files, operating system, and hardware security modules.
To access keys stored on certain type of media, start with the Open method. Provide the location of your certificates via a uniform URI-like specifier. Once the storage has been opened, you can access the certificates contained in it via the Keys property.
KeyStorage.Open("pkcs11://user:12345@localhost/C:/Windows/system32/asepkcs.dll?slot=0");
Iterate over the keys by using the Keys property, or use filtering facilities provided by the Select method. You can add keys to the storage with the ImportBytes, ImportFromFile, and ImportPinned methods. In the latter case please assign the key object to be imported to the PinnedKey property.
Use CreateNew method to create a new storage. Note that not all storage kinds can be created.
KeyStorage.CreateNew("file", StorageFile);
When you have finished working with the certificate storage, close it with the Close method.
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
FIPSMode | Reserved. |
Keys | An accessor to the collection of keys contained in the storage. |
Opened | Indicates whether the storage is in the open state. |
PinnedKey | A pinned key. |
SelectedKeys | A collection of selected keys. |
StorageID | A unique identifier of this storage. |
StorageLocation | Specifies the location of the currently opened storage. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
AddPinned | Adds the pinned key to the storage. |
Clear | Removes all existing keys from the storage. |
Close | Closes the logical storage. |
Config | Sets or retrieves a configuration setting. |
CreateNew | Creates a new storage. |
DoAction | Performs an additional action. |
GetStorageProperty | Returns the value of a custom key storage property. |
ImportBytes | Imports a key to the storage. |
ImportFromFile | Imports a key to the storage. |
ImportFromStream | Imports a key to the storage. |
ListStores | Returns a list of individual stores available within the storage. |
Login | Signs in to a session or elevates the session rights. |
Logout | Signs out of an opened session. |
Open | Opens existing storage or creates one in memory. |
Refresh | Refreshes all storage keychains. |
Remove | Removes a key from the storage. |
Reset | Resets the class settings. |
Select | Allows the selection of keys from the store. |
SetStorageProperty | Sets the value of a custom key storage property. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
Error | Fires when an errors happens during a key storage operation. |
Notification | This event notifies the application about an underlying control flow event. |
PasswordNeeded | This event is fired when a decryption password is needed. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
AuthAttempts | The number of auth/login attempts to try. |
PKCS11ActiveSlot | The index of the slot that the class is working with. |
PKCS11AutoDetectStructAlignment | TBD. |
PKCS11AutoGenerateKeyIDs | TBD. |
PKCS11CreatePublicKeyObjects | TBD. |
PKCS11DelayedPublicKeyImport | TBD. |
PKCS11ForceUseForIndirectHashingOperations | TBD. |
PKCS11IgnoreReportedSupportedAlgorithms | TBD. |
PKCS11NewPIN | Changes the current user's PIN. |
PKCS11NewUserPIN | Registers a new user PIN. |
PKCS11NormalizeSourceLength | TBD. |
PKCS11PIN | Sets the operation PIN. |
PKCS11Slot | Controls the number of a PKCS#11 slot to be opened. |
PKCS11SlotCount | The number of slots exposed in the storage. |
PKCS11SlotDescription[i] | A human-readable description of the slot. |
PKCS11SlotLoggedIn[i] | Whether slot i has an active session associated with it. |
PKCS11SlotLoginRequired[i] | Specifies whether the token expects the user to sign in. |
PKCS11SlotPinNeeded[i] | Whether slot i requires you to provide a PIN to log in or sign. |
PKCS11SlotReadOnly[i] | Whether slot i only supports read-only access. |
PKCS11SlotTokenFlags[i] | The capabilities flags of the inserted token. |
PKCS11SlotTokenLabel[i] | The label assigned to the token. |
PKCS11SlotTokenModel[i] | The token model. |
PKCS11SlotTokenPresent[i] | Indicates whether there is a token in the slot. |
PKCS11SlotTokenSerial[i] | The serial number of the token. |
PKCS11SlotTokenVendorID[i] | The manufacturer ID of the inserted token. |
PKCS11SlotVendorID[i] | Returns the manufacturer ID of the slot. |
PKCS11SmartKeyImport | TBD. |
PKCS11StoreKeys | TBD. |
PKCS11TextEncodingMode | The encoding mode to apply to non-ASCII text strings. |
PKCS11ThreadSafe | TBD. |
PKCS11UseForHashingOperations | TBD. |
PKCS11UseForNonPrivateOperations | TBD. |
PKCS11UseForPublicKeyOperations | TBD. |
PKCS11UseForSymmetricKeyOperations | TBD. |
TempPath | Path for storing temporary files. |
ASN1UseGlobalTagCache | Controls whether ASN.1 module should use a global object cache. |
AssignSystemSmartCardPins | Specifies whether CSP-level PINs should be assigned to CNG keys. |
CheckKeyIntegrityBeforeUse | Enables or disable private key integrity check before use. |
CookieCaching | Specifies whether a cookie cache should be used for HTTP(S) transports. |
Cookies | Gets or sets local cookies for the class. |
DefDeriveKeyIterations | Specifies the default key derivation algorithm iteration count. |
DNSLocalSuffix | The suffix to assign for TLD names. |
EnableClientSideSSLFFDHE | Enables or disables finite field DHE key exchange support in TLS clients. |
GlobalCookies | Gets or sets global cookies for all the HTTP transports. |
HardwareCryptoUsePolicy | The hardware crypto usage policy. |
HttpUserAgent | Specifies the user agent name to be used by all HTTP clients. |
HttpVersion | The HTTP version to use in any inner HTTP client classes created. |
IgnoreExpiredMSCTLSigningCert | Whether to tolerate the expired Windows Update signing certificate. |
ListDelimiter | The delimiter character for multi-element lists. |
LogDestination | Specifies the debug log destination. |
LogDetails | Specifies the debug log details to dump. |
LogFile | Specifies the debug log filename. |
LogFilters | Specifies the debug log filters. |
LogFlushMode | Specifies the log flush mode. |
LogLevel | Specifies the debug log level. |
LogMaxEventCount | Specifies the maximum number of events to cache before further action is taken. |
LogRotationMode | Specifies the log rotation mode. |
MaxASN1BufferLength | Specifies the maximal allowed length for ASN.1 primitive tag data. |
MaxASN1TreeDepth | Specifies the maximal depth for processed ASN.1 trees. |
OCSPHashAlgorithm | Specifies the hash algorithm to be used to identify certificates in OCSP requests. |
OldClientSideRSAFallback | Specifies whether the SSH client should use a SHA1 fallback. |
PKICache | Specifies which PKI elements (certificates, CRLs, OCSP responses) should be cached. |
PKICachePath | Specifies the file system path where cached PKI data is stored. |
ProductVersion | Returns the version of the SecureBlackbox library. |
ServerSSLDHKeyLength | Sets the size of the TLS DHE key exchange group. |
StaticDNS | Specifies whether static DNS rules should be used. |
StaticIPAddress[domain] | Gets or sets an IP address for the specified domain name. |
StaticIPAddresses | Gets or sets all the static DNS rules. |
Tag | Allows to store any custom data. |
TLSSessionGroup | Specifies the group name of TLS sessions to be used for session resumption. |
TLSSessionLifetime | Specifies lifetime in seconds of the cached TLS session. |
TLSSessionPurgeInterval | Specifies how often the session cache should remove the expired TLS sessions. |
UseCRLObjectCaching | Specifies whether reuse of loaded CRL objects is enabled. |
UseInternalRandom | Switches between SecureBlackbox-own and platform PRNGs. |
UseLegacyAdESValidation | Enables legacy AdES validation mode. |
UseOCSPResponseObjectCaching | Specifies whether reuse of loaded OCSP response objects is enabled. |
UseOwnDNSResolver | Specifies whether the client classes should use own DNS resolver. |
UseSharedSystemStorages | Specifies whether the validation engine should use a global per-process copy of the system certificate stores. |
UseSystemNativeSizeCalculation | An internal CryptoAPI access tweak. |
UseSystemOAEPAndPSS | Enforces or disables the use of system-driven RSA OAEP and PSS computations. |
UseSystemRandom | Enables or disables the use of the OS PRNG. |
XMLRDNDescriptorName[OID] | Defines an OID mapping to descriptor names for the certificate's IssuerRDN or SubjectRDN. |
XMLRDNDescriptorPriority[OID] | Specifies the priority of descriptor names associated with a specific OID. |
XMLRDNDescriptorReverseOrder | Specifies whether to reverse the order of descriptors in RDN. |
XMLRDNDescriptorSeparator | Specifies the separator used between descriptors in RDN. |
FIPSMode Property (CryptoKeyStorage Class)
Reserved.
Syntax
ANSI (Cross Platform) int GetFIPSMode();
int SetFIPSMode(int bFIPSMode); Unicode (Windows) BOOL GetFIPSMode();
INT SetFIPSMode(BOOL bFIPSMode);
int secureblackbox_cryptokeystorage_getfipsmode(void* lpObj);
int secureblackbox_cryptokeystorage_setfipsmode(void* lpObj, int bFIPSMode);
bool GetFIPSMode();
int SetFIPSMode(bool bFIPSMode);
Default Value
FALSE
Remarks
This property is reserved for future use.
Data Type
Boolean
Keys Property (CryptoKeyStorage Class)
An accessor to the collection of keys contained in the storage.
Syntax
SecureBlackboxList<SecureBlackboxCryptoKey>* GetKeys();
int secureblackbox_cryptokeystorage_getkeycount(void* lpObj);
char* secureblackbox_cryptokeystorage_getkeyalgorithm(void* lpObj, int keyindex);
int secureblackbox_cryptokeystorage_getkeybits(void* lpObj, int keyindex);
char* secureblackbox_cryptokeystorage_getkeycurve(void* lpObj, int keyindex);
int secureblackbox_cryptokeystorage_getkeyexportable(void* lpObj, int keyindex);
char* secureblackbox_cryptokeystorage_getkeyfingerprint(void* lpObj, int keyindex);
int64 secureblackbox_cryptokeystorage_getkeyhandle(void* lpObj, int keyindex);
int secureblackbox_cryptokeystorage_getkeyid(void* lpObj, int keyindex, char** lpKeyID, int* lenKeyID);
int secureblackbox_cryptokeystorage_getkeyiv(void* lpObj, int keyindex, char** lpKeyIV, int* lenKeyIV);
int secureblackbox_cryptokeystorage_getkeykey(void* lpObj, int keyindex, char** lpKeyKey, int* lenKeyKey);
int secureblackbox_cryptokeystorage_getkeynonce(void* lpObj, int keyindex, char** lpKeyNonce, int* lenKeyNonce);
int secureblackbox_cryptokeystorage_getkeyprivate(void* lpObj, int keyindex);
int secureblackbox_cryptokeystorage_getkeypublic(void* lpObj, int keyindex);
int secureblackbox_cryptokeystorage_getkeysubject(void* lpObj, int keyindex, char** lpKeySubject, int* lenKeySubject);
int secureblackbox_cryptokeystorage_getkeysymmetric(void* lpObj, int keyindex);
int secureblackbox_cryptokeystorage_getkeyvalid(void* lpObj, int keyindex);
int GetKeyCount(); QString GetKeyAlgorithm(int iKeyIndex); int GetKeyBits(int iKeyIndex); QString GetKeyCurve(int iKeyIndex); bool GetKeyExportable(int iKeyIndex); QString GetKeyFingerprint(int iKeyIndex); qint64 GetKeyHandle(int iKeyIndex); QByteArray GetKeyID(int iKeyIndex); QByteArray GetKeyIV(int iKeyIndex); QByteArray GetKeyKey(int iKeyIndex); QByteArray GetKeyNonce(int iKeyIndex); bool GetKeyPrivate(int iKeyIndex); bool GetKeyPublic(int iKeyIndex); QByteArray GetKeySubject(int iKeyIndex); bool GetKeySymmetric(int iKeyIndex); bool GetKeyValid(int iKeyIndex);
Remarks
Use this property to access, browse, or iterate over keys contained in the storage.
This property is read-only and not available at design time.
Data Type
Opened Property (CryptoKeyStorage Class)
Indicates whether the storage is in the open state.
Syntax
ANSI (Cross Platform) int GetOpened(); Unicode (Windows) BOOL GetOpened();
int secureblackbox_cryptokeystorage_getopened(void* lpObj);
bool GetOpened();
Default Value
FALSE
Remarks
Use this property to check if the storage has been 'opened.' Different kinds of key storages imply different meanings for 'being opened', but generally a storage is open if it is available for operations.
Use Open method to open a storage.
This property is read-only and not available at design time.
Data Type
Boolean
PinnedKey Property (CryptoKeyStorage Class)
A pinned key.
Syntax
SecureBlackboxCryptoKey* GetPinnedKey(); int SetPinnedKey(SecureBlackboxCryptoKey* val);
int64 secureblackbox_cryptokeystorage_getpinnedkeyhandle(void* lpObj);
int secureblackbox_cryptokeystorage_setpinnedkeyhandle(void* lpObj, int64 lPinnedKeyHandle);
qint64 GetPinnedKeyHandle();
int SetPinnedKeyHandle(qint64 lPinnedKeyHandle);
Remarks
Use this property to pin a key before adding it to the storage with AddPinned method.
This property is not available at design time.
Data Type
SelectedKeys Property (CryptoKeyStorage Class)
A collection of selected keys.
Syntax
SecureBlackboxList<SecureBlackboxCryptoKey>* GetSelectedKeys();
int secureblackbox_cryptokeystorage_getselectedkeycount(void* lpObj);
char* secureblackbox_cryptokeystorage_getselectedkeyalgorithm(void* lpObj, int selectedkeyindex);
int secureblackbox_cryptokeystorage_getselectedkeybits(void* lpObj, int selectedkeyindex);
char* secureblackbox_cryptokeystorage_getselectedkeycurve(void* lpObj, int selectedkeyindex);
int secureblackbox_cryptokeystorage_getselectedkeyexportable(void* lpObj, int selectedkeyindex);
char* secureblackbox_cryptokeystorage_getselectedkeyfingerprint(void* lpObj, int selectedkeyindex);
int64 secureblackbox_cryptokeystorage_getselectedkeyhandle(void* lpObj, int selectedkeyindex);
int secureblackbox_cryptokeystorage_getselectedkeyid(void* lpObj, int selectedkeyindex, char** lpSelectedKeyID, int* lenSelectedKeyID);
int secureblackbox_cryptokeystorage_getselectedkeyiv(void* lpObj, int selectedkeyindex, char** lpSelectedKeyIV, int* lenSelectedKeyIV);
int secureblackbox_cryptokeystorage_getselectedkeykey(void* lpObj, int selectedkeyindex, char** lpSelectedKeyKey, int* lenSelectedKeyKey);
int secureblackbox_cryptokeystorage_getselectedkeynonce(void* lpObj, int selectedkeyindex, char** lpSelectedKeyNonce, int* lenSelectedKeyNonce);
int secureblackbox_cryptokeystorage_getselectedkeyprivate(void* lpObj, int selectedkeyindex);
int secureblackbox_cryptokeystorage_getselectedkeypublic(void* lpObj, int selectedkeyindex);
int secureblackbox_cryptokeystorage_getselectedkeysubject(void* lpObj, int selectedkeyindex, char** lpSelectedKeySubject, int* lenSelectedKeySubject);
int secureblackbox_cryptokeystorage_getselectedkeysymmetric(void* lpObj, int selectedkeyindex);
int secureblackbox_cryptokeystorage_getselectedkeyvalid(void* lpObj, int selectedkeyindex);
int GetSelectedKeyCount(); QString GetSelectedKeyAlgorithm(int iSelectedKeyIndex); int GetSelectedKeyBits(int iSelectedKeyIndex); QString GetSelectedKeyCurve(int iSelectedKeyIndex); bool GetSelectedKeyExportable(int iSelectedKeyIndex); QString GetSelectedKeyFingerprint(int iSelectedKeyIndex); qint64 GetSelectedKeyHandle(int iSelectedKeyIndex); QByteArray GetSelectedKeyID(int iSelectedKeyIndex); QByteArray GetSelectedKeyIV(int iSelectedKeyIndex); QByteArray GetSelectedKeyKey(int iSelectedKeyIndex); QByteArray GetSelectedKeyNonce(int iSelectedKeyIndex); bool GetSelectedKeyPrivate(int iSelectedKeyIndex); bool GetSelectedKeyPublic(int iSelectedKeyIndex); QByteArray GetSelectedKeySubject(int iSelectedKeyIndex); bool GetSelectedKeySymmetric(int iSelectedKeyIndex); bool GetSelectedKeyValid(int iSelectedKeyIndex);
Remarks
This property contains a list of keys returned by Select method.
This property is read-only and not available at design time.
Data Type
StorageID Property (CryptoKeyStorage Class)
A unique identifier of this storage.
Syntax
ANSI (Cross Platform) char* GetStorageID(); Unicode (Windows) LPWSTR GetStorageID();
char* secureblackbox_cryptokeystorage_getstorageid(void* lpObj);
QString GetStorageID();
Default Value
""
Remarks
Use this property to get a unique ID of this storage. The format of ID may differ for different kinds of key storages, and may range from a file path for a file storage, to a URI-like ID for a PKCS#11 storage, to an empty value for an in-memory storage.
This property is read-only.
Data Type
String
StorageLocation Property (CryptoKeyStorage Class)
Specifies the location of the currently opened storage.
Syntax
ANSI (Cross Platform) char* GetStorageLocation(); Unicode (Windows) LPWSTR GetStorageLocation();
char* secureblackbox_cryptokeystorage_getstoragelocation(void* lpObj);
QString GetStorageLocation();
Default Value
""
Remarks
Use this property to get the location of the active storage. The location indicates the nature of the storage and can be assigned with one of the below values (more values may be added in future):
cslUnspecified | unspecified | |
cslMemory | memory | in-memory storage |
cslFile | file | file storage |
cslSystem | system | OS-specific certificate storage (e.g. CryptoAPI) |
cslPKCS11 | pkcs11 | PKCS#11 compatible device |
cslKMIP | kmip | |
cslApple | apple | Apple certificates storage (macOS and iOS only) |
cslJava | java | java key storage |
This property is read-only.
Data Type
String
AddPinned Method (CryptoKeyStorage Class)
Adds the pinned key to the storage.
Syntax
ANSI (Cross Platform) int AddPinned(); Unicode (Windows) INT AddPinned();
int secureblackbox_cryptokeystorage_addpinned(void* lpObj);
int AddPinned();
Remarks
This method adds a key attached to the PinnedKey property to the storage. This method is a handy way of adding keys generated/returned by other components.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Clear Method (CryptoKeyStorage Class)
Removes all existing keys from the storage.
Syntax
ANSI (Cross Platform) int Clear(); Unicode (Windows) INT Clear();
int secureblackbox_cryptokeystorage_clear(void* lpObj);
int Clear();
Remarks
Use this method to empty the storage.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Close Method (CryptoKeyStorage Class)
Closes the logical storage.
Syntax
ANSI (Cross Platform) int Close(int bSave); Unicode (Windows) INT Close(BOOL bSave);
int secureblackbox_cryptokeystorage_close(void* lpObj, int bSave);
int Close(bool bSave);
Remarks
Use this method to close logical storages connected to PKCS#11-compliant hardware security modules, or storages of similar persistent kinds. Closing a persistent storage with this method is important, as unused but unclosed storages consume extra resources and may result in eventual key locks.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Config Method (CryptoKeyStorage Class)
Sets or retrieves a configuration setting.
Syntax
ANSI (Cross Platform) char* Config(const char* lpszConfigurationString); Unicode (Windows) LPWSTR Config(LPCWSTR lpszConfigurationString);
char* secureblackbox_cryptokeystorage_config(void* lpObj, const char* lpszConfigurationString);
QString Config(const QString& qsConfigurationString);
Remarks
Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
CreateNew Method (CryptoKeyStorage Class)
Creates a new storage.
Syntax
ANSI (Cross Platform) int CreateNew(const char* lpszStorageLocation, const char* lpszStorageID); Unicode (Windows) INT CreateNew(LPCWSTR lpszStorageLocation, LPCWSTR lpszStorageID);
int secureblackbox_cryptokeystorage_createnew(void* lpObj, const char* lpszStorageLocation, const char* lpszStorageID);
int CreateNew(const QString& qsStorageLocation, const QString& qsStorageID);
Remarks
Use this method to create new key storage.
StorageLocation specifies where the new storage should be created, and StorageID contains a unique storage identifier.
cslUnspecified | unspecified | |
cslMemory | memory | in-memory storage |
cslFile | file | file storage |
cslSystem | system | OS-specific certificate storage (e.g. CryptoAPI) |
cslPKCS11 | pkcs11 | PKCS#11 compatible device |
cslKMIP | kmip | |
cslApple | apple | Apple certificates storage (macOS and iOS only) |
cslJava | java | java key storage |
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
DoAction Method (CryptoKeyStorage Class)
Performs an additional action.
Syntax
ANSI (Cross Platform) char* DoAction(const char* lpszActionID, const char* lpszActionParams); Unicode (Windows) LPWSTR DoAction(LPCWSTR lpszActionID, LPCWSTR lpszActionParams);
char* secureblackbox_cryptokeystorage_doaction(void* lpObj, const char* lpszActionID, const char* lpszActionParams);
QString DoAction(const QString& qsActionID, const QString& qsActionParams);
Remarks
DoAction is a generic method available in every class. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.
The unique identifier (case insensitive) of the action is provided in the ActionID parameter.
ActionParams contains the value of a single parameter, or a list of multiple parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....
Common ActionIDs:
Action | Parameters | Returned value | Description |
ResetTrustedListCache | none | none | Clears the cached list of trusted lists. |
ResetCertificateCache | none | none | Clears the cached certificates. |
ResetCRLCache | none | none | Clears the cached CRLs. |
ResetOCSPResponseCache | none | none | Clears the cached OCSP responses. |
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
GetStorageProperty Method (CryptoKeyStorage Class)
Returns the value of a custom key storage property.
Syntax
ANSI (Cross Platform) char* GetStorageProperty(const char* lpszPropName); Unicode (Windows) LPWSTR GetStorageProperty(LPCWSTR lpszPropName);
char* secureblackbox_cryptokeystorage_getstorageproperty(void* lpObj, const char* lpszPropName);
QString GetStorageProperty(const QString& qsPropName);
Remarks
This method, together with SetStorageProperty, provides an extensible way of managing the certificate storage's settings that are not available through the primary properties of the component. The list of settings may be extended in future, in response to emergence of new storage variants and recognition of non-obvious storage usage scenarios.
Currently no custom properties are available for this component.
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
ImportBytes Method (CryptoKeyStorage Class)
Imports a key to the storage.
Syntax
ANSI (Cross Platform) int ImportBytes(const char* lpValue, int lenValue, int iFormat, const char* lpszKeyAlgorithm, const char* lpszScheme, const char* lpszSchemeParams, int iKeyType, const char* lpszPassword); Unicode (Windows) INT ImportBytes(LPCSTR lpValue, INT lenValue, INT iFormat, LPCWSTR lpszKeyAlgorithm, LPCWSTR lpszScheme, LPCWSTR lpszSchemeParams, INT iKeyType, LPCWSTR lpszPassword);
int secureblackbox_cryptokeystorage_importbytes(void* lpObj, const char* lpValue, int lenValue, int iFormat, const char* lpszKeyAlgorithm, const char* lpszScheme, const char* lpszSchemeParams, int iKeyType, const char* lpszPassword);
int ImportBytes(QByteArray& qbaValue, int iFormat, const QString& qsKeyAlgorithm, const QString& qsScheme, const QString& qsSchemeParams, int iKeyType, const QString& qsPassword);
Remarks
Use this method to add a key from a byte array.
kffUnknown | 0 | The key format was not recognized as one of the known formats. |
kffAuto | 1 | The default format in current circumstances. This depends on the key being loaded or saved. |
kffDER | 2 | DER (binary) format |
kffPEM | 3 | PEM format (base64-encoded with headers) |
kffJSON | 4 | JSON key format |
ktAuto | 0 | The default key type in current circumstances. This depends on the operation, the file content, and the storage type. |
ktPublic | 1 | The operation should be performed on a public key. |
ktSecret | 2 | The operation should be performed on a private or secret key |
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
ImportFromFile Method (CryptoKeyStorage Class)
Imports a key to the storage.
Syntax
ANSI (Cross Platform) int ImportFromFile(const char* lpszFileName, int iFormat, const char* lpszKeyAlgorithm, const char* lpszScheme, const char* lpszSchemeParams, int iKeyType, const char* lpszPassword); Unicode (Windows) INT ImportFromFile(LPCWSTR lpszFileName, INT iFormat, LPCWSTR lpszKeyAlgorithm, LPCWSTR lpszScheme, LPCWSTR lpszSchemeParams, INT iKeyType, LPCWSTR lpszPassword);
int secureblackbox_cryptokeystorage_importfromfile(void* lpObj, const char* lpszFileName, int iFormat, const char* lpszKeyAlgorithm, const char* lpszScheme, const char* lpszSchemeParams, int iKeyType, const char* lpszPassword);
int ImportFromFile(const QString& qsFileName, int iFormat, const QString& qsKeyAlgorithm, const QString& qsScheme, const QString& qsSchemeParams, int iKeyType, const QString& qsPassword);
Remarks
Use this method to add a key stored in a file.
kffUnknown | 0 | The key format was not recognized as one of the known formats. |
kffAuto | 1 | The default format in current circumstances. This depends on the key being loaded or saved. |
kffDER | 2 | DER (binary) format |
kffPEM | 3 | PEM format (base64-encoded with headers) |
kffJSON | 4 | JSON key format |
ktAuto | 0 | The default key type in current circumstances. This depends on the operation, the file content, and the storage type. |
ktPublic | 1 | The operation should be performed on a public key. |
ktSecret | 2 | The operation should be performed on a private or secret key |
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
ImportFromStream Method (CryptoKeyStorage Class)
Imports a key to the storage.
Syntax
ANSI (Cross Platform) int ImportFromStream(SecureBlackboxStream* sStream, int iFormat, const char* lpszKeyAlgorithm, const char* lpszScheme, const char* lpszSchemeParams, int iKeyType, const char* lpszPassword); Unicode (Windows) INT ImportFromStream(SecureBlackboxStream* sStream, INT iFormat, LPCWSTR lpszKeyAlgorithm, LPCWSTR lpszScheme, LPCWSTR lpszSchemeParams, INT iKeyType, LPCWSTR lpszPassword);
int secureblackbox_cryptokeystorage_importfromstream(void* lpObj, SecureBlackboxStream* sStream, int iFormat, const char* lpszKeyAlgorithm, const char* lpszScheme, const char* lpszSchemeParams, int iKeyType, const char* lpszPassword);
int ImportFromStream(SecureBlackboxStream* sStream, int iFormat, const QString& qsKeyAlgorithm, const QString& qsScheme, const QString& qsSchemeParams, int iKeyType, const QString& qsPassword);
Remarks
Use this method to add a key contained in a stream.
kffUnknown | 0 | The key format was not recognized as one of the known formats. |
kffAuto | 1 | The default format in current circumstances. This depends on the key being loaded or saved. |
kffDER | 2 | DER (binary) format |
kffPEM | 3 | PEM format (base64-encoded with headers) |
kffJSON | 4 | JSON key format |
ktAuto | 0 | The default key type in current circumstances. This depends on the operation, the file content, and the storage type. |
ktPublic | 1 | The operation should be performed on a public key. |
ktSecret | 2 | The operation should be performed on a private or secret key |
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
ListStores Method (CryptoKeyStorage Class)
Returns a list of individual stores available within the storage.
Syntax
ANSI (Cross Platform) char* ListStores(); Unicode (Windows) LPWSTR ListStores();
char* secureblackbox_cryptokeystorage_liststores(void* lpObj);
QString ListStores();
Remarks
Use this method to query a list of individual stores available in the opened storage.
The contents of the list depends on the type of the store used and the parameters it is opened with. For PKCS#11 stores the method returns a list of slot descriptions for all slots published by the driver.
The store identifiers are separated from each other with a CRLF sequence.
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
Login Method (CryptoKeyStorage Class)
Signs in to a session or elevates the session rights.
Syntax
ANSI (Cross Platform) int Login(int iSessionType, const char* lpszPin, int bReadOnly); Unicode (Windows) INT Login(INT iSessionType, LPCWSTR lpszPin, BOOL bReadOnly);
int secureblackbox_cryptokeystorage_login(void* lpObj, int iSessionType, const char* lpszPin, int bReadOnly);
int Login(int iSessionType, const QString& qsPin, bool bReadOnly);
Remarks
Use this method to sign in to a session with a required access type. Note that in some cases you may call this method more than one time for a specific session to elevate your access rights, for example:
// open an unauthenticated session
storage.Login(stUnauthenticated, "", false);
// elevate the access rights for the session
storage.Login(stUser, "password", false);
Sessions are currently supported for PKCS#11 storage types only.
stUnauthenticated | 0 | |
stUser | 1 | |
stAdministrator | 2 |
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Logout Method (CryptoKeyStorage Class)
Signs out of an opened session.
Syntax
ANSI (Cross Platform) int Logout(int bCloseSesion); Unicode (Windows) INT Logout(BOOL bCloseSesion);
int secureblackbox_cryptokeystorage_logout(void* lpObj, int bCloseSesion);
int Logout(bool bCloseSesion);
Remarks
Use this method to sign out of a session. Pass true to CloseSession to shut the session down altogether.
This method is currently support for PKCS#11 storage type only.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Open Method (CryptoKeyStorage Class)
Opens existing storage or creates one in memory.
Syntax
ANSI (Cross Platform) int Open(const char* lpszStorageID); Unicode (Windows) INT Open(LPCWSTR lpszStorageID);
int secureblackbox_cryptokeystorage_open(void* lpObj, const char* lpszStorageID);
int Open(const QString& qsStorageID);
Remarks
Use this method to open the storage with the given StorageID. Key storages can come from several different locations, detailed below.
Memory
A storage can be created in memory by passing an empty string ("").
File
A storage can be opened from a file using one of two syntaxes:
- C:\Certs\keys.pem
- file://C:/Certs/keys.pem
Windows System
A storage can be opened from the Windows System using this syntax: system://{user}@{host}/?{params}
user is one of these values:
- currentuser
- localmachine
- currentservice
params are chosen from this list:
- store (required), is the name of the Windows store to access (e.g. "MY")
- readonly, whether to access the store with only read permissions. Use 0 for false, and 1 for true.
PKCS#11 Device
A storage can be opened from a PKCS#11 device using this syntax: pkcs11://{user}:{pin}@/{driverpath}?{params}
user is the username used to access the device.
pin is the pin code used to access the device.
driverpath is the path to the driver used to access the device.
params are chosen from this list:
- slot, the token slot to access on the device. If not provided, one will be chosen automatically.
- readonly, whether to access the device with only read permissions. Use 0 for false, and 1 for true.
KMIP Server
A storage can be opened from a KMIP server using this syntax: mailto:{password}@{remotehost}:{remoteport}/?{params}
password is the password use to authenticate to the server.
remotehost is the FQDN to the server.
remoteport is the server port to connect to.
params are chosen from this list:
- encoder, the message encoding used to communicate with the server. Possible values are:
- 1 (XML)
- 2 (JSON)
- 3 (TTLV)
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Refresh Method (CryptoKeyStorage Class)
Refreshes all storage keychains.
Syntax
ANSI (Cross Platform) int Refresh(); Unicode (Windows) INT Refresh();
int secureblackbox_cryptokeystorage_refresh(void* lpObj);
int Refresh();
Remarks
Call this method to refresh the storage.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Remove Method (CryptoKeyStorage Class)
Removes a key from the storage.
Syntax
ANSI (Cross Platform) int Remove(int iIndex); Unicode (Windows) INT Remove(INT iIndex);
int secureblackbox_cryptokeystorage_remove(void* lpObj, int iIndex);
int Remove(int iIndex);
Remarks
Use this method to remove a key from the storage by its index.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Reset Method (CryptoKeyStorage Class)
Resets the class settings.
Syntax
ANSI (Cross Platform) int Reset(); Unicode (Windows) INT Reset();
int secureblackbox_cryptokeystorage_reset(void* lpObj);
int Reset();
Remarks
Reset is a generic method available in every class.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Select Method (CryptoKeyStorage Class)
Allows the selection of keys from the store.
Syntax
ANSI (Cross Platform) int Select(const char* lpszFilter, int bPrivateKeyNeeded, int iMaxCount); Unicode (Windows) INT Select(LPCWSTR lpszFilter, BOOL bPrivateKeyNeeded, INT iMaxCount);
int secureblackbox_cryptokeystorage_select(void* lpObj, const char* lpszFilter, int bPrivateKeyNeeded, int iMaxCount);
int Select(const QString& qsFilter, bool bPrivateKeyNeeded, int iMaxCount);
Remarks
This function allows the user to select keys from the storage by applying a Filter. PrivateKeyNeeded specifies whether only private keys should be selected. MaxCount limits the number of certificates selected.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SetStorageProperty Method (CryptoKeyStorage Class)
Sets the value of a custom key storage property.
Syntax
ANSI (Cross Platform) int SetStorageProperty(const char* lpszPropName, const char* lpszPropValue); Unicode (Windows) INT SetStorageProperty(LPCWSTR lpszPropName, LPCWSTR lpszPropValue);
int secureblackbox_cryptokeystorage_setstorageproperty(void* lpObj, const char* lpszPropName, const char* lpszPropValue);
int SetStorageProperty(const QString& qsPropName, const QString& qsPropValue);
Remarks
This method, together with GetStorageProperty, provides an extensible way of managing the certificate storage's settings that are not available through the primary properties of the component. The list of settings may be extended in future, in response to emergence of new storage variants and recognition of non-obvious storage usage scenarios.
Currently no custom properties are available for this component.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Error Event (CryptoKeyStorage Class)
Fires when an errors happens during a key storage operation.
Syntax
ANSI (Cross Platform) virtual int FireError(CryptoKeyStorageErrorEventParams *e);
typedef struct {
int ErrorCode;
const char *Description; int reserved; } CryptoKeyStorageErrorEventParams;
Unicode (Windows) virtual INT FireError(CryptoKeyStorageErrorEventParams *e);
typedef struct {
INT ErrorCode;
LPCWSTR Description; INT reserved; } CryptoKeyStorageErrorEventParams;
#define EID_CRYPTOKEYSTORAGE_ERROR 1 virtual INT SECUREBLACKBOX_CALL FireError(INT &iErrorCode, LPSTR &lpszDescription);
class CryptoKeyStorageErrorEventParams { public: int ErrorCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Error(CryptoKeyStorageErrorEventParams *e);
// Or, subclass CryptoKeyStorage and override this emitter function. virtual int FireError(CryptoKeyStorageErrorEventParams *e) {...}
Remarks
This event reports an exceptional situation during a key storage operation.
ErrorCode contains an error code and Description contains a textual description of the error.
Notification Event (CryptoKeyStorage Class)
This event notifies the application about an underlying control flow event.
Syntax
ANSI (Cross Platform) virtual int FireNotification(CryptoKeyStorageNotificationEventParams *e);
typedef struct {
const char *EventID;
const char *EventParam; int reserved; } CryptoKeyStorageNotificationEventParams;
Unicode (Windows) virtual INT FireNotification(CryptoKeyStorageNotificationEventParams *e);
typedef struct {
LPCWSTR EventID;
LPCWSTR EventParam; INT reserved; } CryptoKeyStorageNotificationEventParams;
#define EID_CRYPTOKEYSTORAGE_NOTIFICATION 2 virtual INT SECUREBLACKBOX_CALL FireNotification(LPSTR &lpszEventID, LPSTR &lpszEventParam);
class CryptoKeyStorageNotificationEventParams { public: const QString &EventID(); const QString &EventParam(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Notification(CryptoKeyStorageNotificationEventParams *e);
// Or, subclass CryptoKeyStorage and override this emitter function. virtual int FireNotification(CryptoKeyStorageNotificationEventParams *e) {...}
Remarks
The class fires this event to let the application know about some event, occurrence, or milestone in the class. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.
The unique identifier of the event is provided in the EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the class, the exact action it is performing, or the document being processed, one or both may be omitted.
PasswordNeeded Event (CryptoKeyStorage Class)
This event is fired when a decryption password is needed.
Syntax
ANSI (Cross Platform) virtual int FirePasswordNeeded(CryptoKeyStoragePasswordNeededEventParams *e);
typedef struct {
const char *NeededFor;
char *Password;
int Cancel; int reserved; } CryptoKeyStoragePasswordNeededEventParams;
Unicode (Windows) virtual INT FirePasswordNeeded(CryptoKeyStoragePasswordNeededEventParams *e);
typedef struct {
LPCWSTR NeededFor;
LPWSTR Password;
BOOL Cancel; INT reserved; } CryptoKeyStoragePasswordNeededEventParams;
#define EID_CRYPTOKEYSTORAGE_PASSWORDNEEDED 3 virtual INT SECUREBLACKBOX_CALL FirePasswordNeeded(LPSTR &lpszNeededFor, LPSTR &lpszPassword, BOOL &bCancel);
class CryptoKeyStoragePasswordNeededEventParams { public: const QString &NeededFor(); const QString &Password(); void SetPassword(const QString &qsPassword); bool Cancel(); void SetCancel(bool bCancel); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void PasswordNeeded(CryptoKeyStoragePasswordNeededEventParams *e);
// Or, subclass CryptoKeyStorage and override this emitter function. virtual int FirePasswordNeeded(CryptoKeyStoragePasswordNeededEventParams *e) {...}
Remarks
The class fires this event when a password is needed to decrypt a certificate or a private key.
In the handler of this event, assign the password to the Password parameter, or set Cancel to true to abort the operation.
The NeededFor parameter identifies the key or certificate for which the password is requested.
CryptoKey Type
This container represents a cryptographic key.
Syntax
SecureBlackboxCryptoKey (declared in secureblackbox.h)
Remarks
This type is a universal placeholder for cryptographic keys.
- Algorithm
- Bits
- Curve
- Exportable
- Fingerprint
- Handle
- ID
- IV
- Key
- Nonce
- Private
- Public
- Subject
- Symmetric
- Valid
Fields
Algorithm
char*
Default Value: ""
The algorithm of the cryptographic key. A cryptokey object may hold either symmetric, MAC, or public key. Public key algorithms: RSA, ECDSA, Elgamal, DH.
SB_SYMMETRIC_ALGORITHM_RC4 | RC4 | |
SB_SYMMETRIC_ALGORITHM_DES | DES | |
SB_SYMMETRIC_ALGORITHM_3DES | 3DES | |
SB_SYMMETRIC_ALGORITHM_RC2 | RC2 | |
SB_SYMMETRIC_ALGORITHM_AES128 | AES128 | |
SB_SYMMETRIC_ALGORITHM_AES192 | AES192 | |
SB_SYMMETRIC_ALGORITHM_AES256 | AES256 | |
SB_SYMMETRIC_ALGORITHM_IDENTITY | Identity | |
SB_SYMMETRIC_ALGORITHM_BLOWFISH | Blowfish | |
SB_SYMMETRIC_ALGORITHM_CAST128 | CAST128 | |
SB_SYMMETRIC_ALGORITHM_IDEA | IDEA | |
SB_SYMMETRIC_ALGORITHM_TWOFISH | Twofish | |
SB_SYMMETRIC_ALGORITHM_TWOFISH128 | Twofish128 | |
SB_SYMMETRIC_ALGORITHM_TWOFISH192 | Twofish192 | |
SB_SYMMETRIC_ALGORITHM_TWOFISH256 | Twofish256 | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA | Camellia | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA128 | Camellia128 | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA192 | Camellia192 | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA256 | Camellia256 | |
SB_SYMMETRIC_ALGORITHM_SERPENT | Serpent | |
SB_SYMMETRIC_ALGORITHM_SERPENT128 | Serpent128 | |
SB_SYMMETRIC_ALGORITHM_SERPENT192 | Serpent192 | |
SB_SYMMETRIC_ALGORITHM_SERPENT256 | Serpent256 | |
SB_SYMMETRIC_ALGORITHM_SEED | SEED | |
SB_SYMMETRIC_ALGORITHM_RABBIT | Rabbit | |
SB_SYMMETRIC_ALGORITHM_SYMMETRIC | Generic | |
SB_SYMMETRIC_ALGORITHM_GOST_28147_1989 | GOST-28147-1989 | |
SB_SYMMETRIC_ALGORITHM_CHACHA20 | ChaCha20 |
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
Bits
int (read-only)
Default Value: 0
The length of the key in bits.
Curve
char*
Default Value: ""
This property specifies the name of the curve the EC key is built on.
Exportable
int (read-only)
Default Value: FALSE
Returns True if the key is exportable (can be serialized into an array of bytes), and False otherwise.
Fingerprint
char* (read-only)
Default Value: ""
Contains the fingerprint (a hash imprint) of this key.
Handle
int64
Default Value: 0
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
ID
char*
Default Value:
Provides access to a storage-specific key identifier. Key identifiers are used by cryptographic providers to refer to a particular key and/or distinguish between different keys. They are typically unique within a storage, but there is no guarantee that a particular cryptoprovider will conform to that (or will assign any key IDs at all).
IV
char*
Default Value:
The initialization vector (IV) of a symmetric key. This is normally a public part of a symmetric key, the idea of which is to introduce randomness to the encrypted data and/or serve as a first block in chaining ciphers.
Key
char* (read-only)
Default Value:
The byte array representation of the key. This may not be available for non-Exportable keys.
Nonce
char*
Default Value:
A nonce value associated with a key. It is similar to IV, but its only purpose is to introduce randomness.
Private
int (read-only)
Default Value: FALSE
Returns True if the object hosts a private key, and False otherwise.
Public
int (read-only)
Default Value: FALSE
Returns True if the object hosts a public key, and False otherwise.
Subject
char*
Default Value:
Returns the key subject. This is a cryptoprovider-dependent value, which normally aims to provide some user-friendly insight into the key owner.
Symmetric
int (read-only)
Default Value: FALSE
Returns True if the object contains a symmetric key, and False otherwise.
Valid
int (read-only)
Default Value: FALSE
Returns True if this key is valid. The term Valid highly depends on the kind of the key being stored. A symmetric key is considered valid if its length fits the algorithm being set. The validity of an RSA key also ensures that the RSA key elements (primes, exponents, and modulus) are consistent.
Constructors
CryptoKey()
Creates an empty crypto key object.
SecureBlackboxList Type
Syntax
SecureBlackboxList<T> (declared in secureblackbox.h)
Remarks
SecureBlackboxList is a generic class that is used to hold a collection of objects of type T, where T is one of the custom types supported by the CryptoKeyStorage class.
SecureBlackboxStream Type
Syntax
SecureBlackboxStream (declared in secureblackbox.h)
Remarks
The CryptoKeyStorage class includes one or more API members that take a stream object as a parameter. To use such API members, create a concrete class that implements the SecureBlackboxStream interface and pass the CryptoKeyStorage class an instance of that concrete class.
When implementing the SecureBlackboxStream interface's properties and methods, they must behave as described below. If the concrete class's implementation does not behave as expected, undefined behavior may occur.
Config Settings (CryptoKeyStorage Class)
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.CryptoKeyStorage Config Settings
Specifies the number of tries to authenticate to the storage (the default is 3). The control will fire PasswordNeeded event after each unsuccessful attempt. Applicable to: PKCS11.
Returns the index of the PKCS#11 slot that is currently being accessed.
TBD
TBD
TBD
TBD
Setting this property will change the current users's PIN to the provided value. Most HSMs require the user to be signed in to perform this operation. This is the way to change your own PIN, either for admin or regular user accounts.
Setting this property will register a new PIN to the HSM user account. This property is the way to administratively reset the user's PIN, and can only be set from under the 'admin' session.
TBD
Use this property to provide your PIN on the fly for an operation requiring the private key (e.g. signing). This may be useful if the PIN was not provided on the Open stage.
Use this property to set the number of slot to be opened late into the process (after the storage has been opened). Use the auto placeholder to tell the component to select the slot automatically.
Returns the number of slots available in an opened PKCS#11 storage.
Returns a human-readable description of slot i.
Returns true if there is an active session associated with slot number i.
Specifies whether the token in the slot #i expects the user to sign in to perform further operations with the token.
Returns true if you need to provide a PIN to sign in to the session for slot i.
Returns the availability of the slot for write operations.
Returns the capabilities flags for the token inserted into slot number i.
Returns the label assigned to the token.
Returns the model of the token as provided by the driver.
Returns true if slot number i has a token inserted.
Returns the serial number of the token.
Returns vendor ID string for slot number i.
Returns the manufacturer name associated with the slot.
TBD
TBD
Specifies the method to approach strings (e.g. PINs) containing international characters when accessing PKCS#11 devices. The following options are available:
- standard: use UTF8, as instructed by the PKCS#11 specification.
- ansi: use Ansi (local) code page to convert text to the byte arrays that are passed over to the driver.
- smart: if the standard approach fails, try the ansi approach automatically
TBD
TBD
TBD
TBD
TBD
This setting specifies an absolute path to the location on disk where temporary files are stored. This setting is supported only in the Java edition for all applicable signing components except PDFSigner, where this limitation does not apply.
Base Config Settings
This is a performance setting. It is unlikely that you will ever need to adjust it.
This is a low-level tweak for certain cryptographic providers. It is unlikely that you will ever need to adjust it.
This global property enables or disables private key material check before each signing operation. This slows down performance a bit, but prevents a selection of attacks on RSA keys where keys with unknown origins are used.
You can switch this property off to improve performance if your project only uses known, good private keys.
Set this property to enable or disable cookies caching for the class.
Supported values are:
off | No caching (default) | |
local | Local caching | |
global | Global caching |
Use this property to get cookies from the internal cookie storage of the class and/or restore them back between application sessions.
This global property sets the default number of iterations for all supported key derivation algorithms. Note that you can provide the required number of iterations by using properties of the relevant key generation component; this global setting is used in scenarios where specific iteration count is not or cannot be provided.
Use this global setting to adjust the default suffix to assign to top-level domain names. The default is .local.
This global property enables or disables support for finite field DHE key exchange methods in TLS clients. FF DHE is a slower algorithm if compared to EC DHE; enabling it may result in slower connections.
This setting only applies to sessions negotiated with TLS version 1.3.
Use this property to get cookies from the GLOBAL cookie storage or restore them back between application sessions. These cookies will be used by all the classes that have its CookieCaching property set to "global".
This global setting controls the hardware cryptography usage policy: auto, enable, or disable.
This global setting defines the User-Agent field of the HTTP request provides information about the software that initiates the request. This value will be used by all the HTTP clients including the ones used internally in other classes.
Set this property to 1.0 or 1.1 to indicate the HTTP version that any internal HTTP clients should use.
It is not uncommon for Microsoft Windows Update Certificate Trust List to be signed with an expired Microsoft certificate. Setting this global property to true makes SBB ignore the expired factor and take the Trust List into account.
Allows to set the delimiter for any multi-entry values returned by the component as a string object, such as file lists. For most of the components, this property is set to a newline sequence.
Contains a comma-separated list of values that specifies where debug log should be dumped.
Supported values are:
file | File | |
console | Console | |
systemlog | System Log (supported for Android only) | |
debugger | Debugger (supported for VCL for Windows and .Net) |
Contains a comma-separated list of values that specifies which debug log details to dump.
Supported values are:
time | Current time | |
level | Level | |
package | Package name | |
module | Module name | |
class | Class name | |
method | Method name | |
threadid | Thread Id | |
contenttype | Content type | |
content | Content | |
all | All details |
Use this property to provide a path to the log file.
Contains a comma-separated list of value pairs ("name:value") that describe filters.
Supported filter names are:
exclude-package | Exclude a package specified in the value | |
exclude-module | Exclude a module specified in the value | |
exclude-class | Exclude a class specified in the value | |
exclude-method | Exclude a method specified in the value | |
include-package | Include a package specified in the value | |
include-module | Include a module specified in the value | |
include-class | Include a class specified in the value | |
include-method | Include a method specified in the value |
Use this property to set the log flush mode. The following values are defined:
none | No flush (caching only) | |
immediate | Immediate flush (real-time logging) | |
maxcount | Flush cached entries upon reaching LogMaxEventCount entries in the cache. |
Use this property to provide the desired debug log level.
Supported values are:
none | None (by default) | |
fatal | Severe errors that cause premature termination. | |
error | Other runtime errors or unexpected conditions. | |
warning | Use of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong". | |
info | Interesting runtime events (startup/shutdown). | |
debug | Detailed information on flow of through the system. | |
trace | More detailed information. |
Use this property to specify the log event number threshold. This threshold may have different effects, depending on the rotation setting and/or the flush mode.
The default value of this setting is 100.
Use this property to set the log rotation mode. The following values are defined:
none | No rotation | |
deleteolder | Delete older entries from the cache upon reaching LogMaxEventCount | |
keepolder | Keep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded) |
This global property limits the maximal allowed length for ASN.1 tag data for non-content-carrying structures, such as certificates, CRLs, or timestamps. It does not affect structures that can carry content, such as CMS/CAdES messages. This is a security property aiming at preventing DoS attacks.
This global property limits the maximal depth of ASN.1 trees that the component can handle without throwing an error. This is a security property aiming at preventing DoS attacks.
This global setting defines the hash algorithm to use in OCSP requests during chain validation. Some OCSP responders can only use older algorithms, in which case setting this property to SHA1 may be helpful.
Tells the SSH client to use a legacy ssh-rsa authentication even if the server indicates support for newer algorithms, such as rsa-sha-256. This is a backward-compatibility tweak.
The PKICache setting specifies which Public Key Infrastructure (PKI) elements should be cached to optimize performance and reduce retrieval times. It supports comma-separated values to indicate the specific types of PKI data that should be cached.
Supported Values:
certificate | Enables caching of certificates. |
crl | Enables caching of Certificate Revocation Lists (CRLs). |
ocsp | Enables caching of OCSP (Online Certificate Status Protocol) responses. |
Example (default value):
PKICache=certificate,crl,ocsp
In this example, the component caches certificates, CRLs, and OCSP responses.
The PKICachePath setting defines the file system path where cached PKI data (e.g., certificates, CRLs, OCSP responses and Trusted Lists) will be stored. This allows the system to persistently save and retrieve PKI cache data, even across application restarts.
The default value is an empty string - no cached PKI data is stored on disk.
Example:
PKICachePath=C:\Temp\cache
In this example, the cached PKI data is stored in the C:\Temp\cache directory.
This property returns the long version string of the SecureBlackbox library being used (major.minor.build.revision).
Use this property to adjust the length, in bits, of the DHE prime to be used by the TLS server.
Set this property to enable or disable static DNS rules for the class. Works only if UseOwnDNSResolver is set to true.
Supported values are:
none | No static DNS rules (default) | |
local | Local static DNS rules | |
global | Global static DNS rules |
Use this property to get or set an IP address for the specified domain name in the internal (of the class) or global DNS rules storage depending on the StaticDNS value. The type of the IP address (IPv4 or IPv6) is determined automatically. If both addresses are available, they are devided by the | (pipe) character.
Use this property to get static DNS rules from the current rules storage or restore them back between application sessions. If StaticDNS of the class is set to "local", the property returns/restores the rules from/to the internal storage of the class. If StaticDNS of the class is set to "global", the property returns/restores the rules from/to the GLOBAL storage. The rules list is returned and accepted in JSON format.
Use this config property to store any custom data.
Use this property to limit the search of chached TLS sessions to the specified group. Sessions from other groups will be ignored. By default, all sessions are cached with an empty group name and available to all the classes.
Use this property to specify how much time the TLS session should be kept in the session cache. After this time, the session expires and will be automatically removed from the cache. Default value is 300 seconds (5 minutes).
Use this property to specify the time interval of purging the expired TLS sessions from the session cache. Default value is 60 seconds (1 minute).
This setting enables or disables the caching of CRL objects. When set to true (the default value), the system checks if a CRL object is already loaded in memory before attempting to load a new instance. If the object is found, the existing instance is reused, and its reference count is incremented to track its usage. When the reference count reaches zero, indicating that no references to the object remain, the system will free the object from memory. This setting enhances performance by minimizing unnecessary object instantiation and promotes efficient memory management, particularly in scenarios where CRL objects are frequently used.
Allows to switch between internal/native PRNG implementation and the one provided by the platform.
Use this setting to switch the AdES component to the validation approach that was used in SBB 2020/SBB 2022 (less attention to temporal details).
This setting enables or disables the caching of OCSP response objects. When set to true (the default value), the system checks if a OCSP response object is already loaded in memory before attempting to load a new instance. If the object is found, the existing instance is reused, and its reference count is incremented to track its usage. When the reference count reaches zero, indicating that no references to the object remain, the system will free the object from memory. This setting enhances performance by minimizing unnecessary object instantiation and promotes efficient memory management, particularly in scenarios where OCSP response objects are frequently used.
Set this global property to false to force all the client components to use the DNS resolver provided by the target OS instead of using own one.
Set this global property to false to make each validation run use its own copy of system certificate stores.
This is an internal setting. Please do not use it unless instructed by the support team.
This global setting defines who is responsible for performing RSA-OAEP and RSA-PSS computations where the private key is stored in a Windows system store and is exportable. If set to true, SBB will delegate the computations to Windows via a CryptoAPI call. Otherwise, it will export the key material and perform the computations using its own OAEP/PSS implementation.
This setting only applies to certificates originating from a Windows system store.
Use this global property to enable or disable the use of operating system-driven pseudorandom number generation.
This property defines custom mappings between Object Identifiers (OIDs) and descriptor names. This mapping specifies how the certificate's issuer and subject information (ds:IssuerRDN and ds:SubjectRDN elements respectively) are represented in XML signatures.
The property accepts comma-separated values where the first descriptor name is used when the OID is mapped, and subsequent values act as aliases for parsing.
Syntax:
Config("XMLRDNDescriptorName[OID]=PrimaryName,Alias1,Alias2");
Where:
OID: The Object Identifier from the certificate's IssuerRDN or SubjectRDN that you want to map.
PrimaryName: The main descriptor name used in the XML signature when the OID is encountered.
Alias1, Alias2, ...: Optional alternative names recognized during parsing.
Usage Examples:
Map OID 2.5.4.5 to SERIALNUMBER:
Config("XMLRDNDescriptorName[2.5.4.5]=SERIALNUMBER");
Map OID 1.2.840.113549.1.9.1 to E, with aliases EMAIL and EMAILADDRESS:
Config("XMLRDNDescriptorName[1.2.840.113549.1.9.1]=E,EMAIL,EMAILADDRESS");
This property specifies the priority of descriptor names associated with a specific OID that allows to reorder descriptors in the ds:IssuerRDN and ds:SubjectRDN elements during signing.
Specifies whether to reverse the order of descriptors in the ds:IssuerRDN and ds:SubjectRDN elements during XML signing. By default, this property is set to true (as specified in RFC 2253, 2.1).
Specifies the separator used between descriptors in the ds:IssuerRDN and ds:SubjectRDN elements during XML signing. By default, this property is set to ", " value.
Trappable Errors (CryptoKeyStorage Class)
Error Handling (C++)
Call the GetLastErrorCode() method to obtain the last called method's result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. Known error codes are listed below. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
CryptoKeyStorage Errors
1048577 | Invalid parameter (SB_ERROR_INVALID_PARAMETER) |
1048578 | Invalid configuration (SB_ERROR_INVALID_SETUP) |
1048579 | Invalid state (SB_ERROR_INVALID_STATE) |
1048580 | Invalid value (SB_ERROR_INVALID_VALUE) |
1048581 | Private key not found (SB_ERROR_NO_PRIVATE_KEY) |
1048582 | Cancelled by the user (SB_ERROR_CANCELLED_BY_USER) |
1048583 | The file was not found (SB_ERROR_NO_SUCH_FILE) |
1048584 | Unsupported feature or operation (SB_ERROR_UNSUPPORTED_FEATURE) |
1048585 | General error (SB_ERROR_GENERAL_ERROR) |