XMLSigner Class

Properties   Methods   Events   Config Settings   Errors  

The XMLSigner class provides a simple interface for digitally signing XML data according to the XML-Signature Syntax and Processing specification.

Syntax

XMLSigner

Remarks

To sign the data, you need to specify the data to be signed using the References property, then select the signature type and signature method type (signature or MAC).

Set the path to the file to be signed via the InputFile. Signed data will be saved in the OutputFile. Finally, call the Sign method to generate a signature and save signed data. It is possible to generate a signature remotely: use SignExternal method to do this.

Asynchronous signing is also supported. Call SignAsyncBegin to generate a signature and save the generated XML-DSIG without signature value into the document. To complete the signing, call SignAsyncEnd.

XMLSigner only performs basic signing of XML documents. For richer features, such as XAdES and/or chain validation, please see the XAdESSigner class

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

CanonicalizationMethodSpecifies XML canonicalization method to use.
DataBytesUse this property to pass the external data to class in the byte array form.
DataFileA file containing the external data covered by a detached signature.
DataTypeSpecifies the external data type.
DataURISpecifies a detached data resource URI.
EncodingSpecifies XML encoding.
ExternalCryptoProvides access to external signing and DC parameters.
FIPSModeReserved.
HashAlgorithmSpecifies the hash algorithm to be used.
InputBytesUse this property to pass the input to class in byte array form.
InputFileSpecifies the XML document to be signed.
OutputBytesUse this property to read the output the class object has produced.
OutputFileA file where the signed document is to be saved.
ReferencesA list of references to the data to be signed.
SignatureTypeThe signature type to employ when signing the document.
SigningCertificateThe certificate to be used for signing.
SigningChainThe signing certificate chain.
XMLElementSpecifies the XML element where to save the signature data.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

AddDataReferenceCreates a new XML reference to the specified data.
AddKnownNamespaceAdds known prefix and correspondent namespace URI.
AddReferenceCreates a new XML reference to the specified XML element.
ConfigSets or retrieves a configuration setting.
DoActionPerforms an additional action.
ExtractAsyncDataExtracts user data from the DC signing service response.
GetInnerXMLGet the inner XML content of the selected XML element.
GetOuterXMLGet the outer XML content of the selected XML element.
GetTextContentGet the text content of the selected XML element.
ResetResets the class settings.
SetInnerXMLSet the inner XML content of the selected XML element.
SetTextContentSet the text content of the selected XML element.
SignSigns an XML document.
SignAsyncBeginInitiates the asynchronous signing operation.
SignAsyncEndCompletes the asynchronous signing operation.
SignExternalSigns the document using an external signing facility.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

ErrorReports the details of signing errors.
ExternalSignHandles remote or external signing initiated by the SignExternal method or other source.
FormatElementReports the XML element that is currently being processed.
FormatTextReports XML text that is currently being processed.
NotificationThis event notifies the application about an underlying control flow event.
ResolveReferenceAsks the application to resolve a reference.

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

AddAllDataObjectsTimestampWhether to add all data objects timestamp during signing.
AsyncDocumentIDSpecifies the document ID for SignAsyncEnd() call.
ChainCurrentCACertReturns the current CA certificate.
ChainCurrentCertReturns the certificate that is currently being validated.
ChainCurrentCRLReturns the current CRL.
ChainCurrentCRLSizeReturns the size of the current CRL.
ChainCurrentOCSPReturns the current OCSP response.
ChainCurrentOCSPSignerReturns the signer of the current OCSP object.
ChainInterimDetailsReturns the current interim validation details.
ChainInterimResultReturns the current interim validation result.
CheckValidityPeriodForTrustedWhether to check validity period for trusted certificates.
ClaimedRolesXMLThe XML content of the claimed roles.
ClaimedRoleTextThe text of the claimed role.
CommitmentTypeIndicationAllSignedDataObjects[Index]Specifies the CommitmentTypeIndication's AllSignedDataObjects.
CommitmentTypeIndicationCountThe number of the CommitmentTypeIndication elements.
CommitmentTypeIndicationIdentifier[Index]Specifies the CommitmentTypeIndication's CommitmentTypeId's Identifier.
CommitmentTypeIndicationIdentifierDescription[Index]Specifies the CommitmentTypeIndication's CommitmentTypeId's Description.
CommitmentTypeIndicationIdentifierDocumentationReferences[Index]Specifies the CommitmentTypeIndication's CommitmentTypeId's DocumentationReferences.
CommitmentTypeIndicationIdentifierQualifier[Index]Specifies the CommitmentTypeIndication's CommitmentTypeId's IdentifierQualifier.
CommitmentTypeIndicationObjectReference[Index]Specifies the CommitmentTypeIndication's ObjectReference.
CommitmentTypeIndicationQualifiersXML[Index]The XML content of the CommitmentTypeIndication's Qualifiers.
CustomTrustedListsSpecifies the custom TrustedLists.
CustomTSLsSpecifies the custom TrustedLists.
DataObjectFormatCountThe number of the DataObjectFormat elements.
DataObjectFormatDescription[Index]Specifies the DataObjectFormat's Description.
DataObjectFormatEncoding[Index]Specifies the DataObjectFormat's Encoding.
DataObjectFormatMimeType[Index]Specifies the DataObjectFormat's MimeType.
DataObjectFormatObjectIdentifier[Index]Specifies the DataObjectFormat's ObjectIdentifier's Identifier.
DataObjectFormatObjectIdentifierDescription[Index]Specifies the DataObjectFormat's ObjectIdentifier's Description.
DataObjectFormatObjectIdentifierDocumentationReferences[Index]Specifies the DataObjectFormat's ObjectIdentifier's DocumentationReferences.
DataObjectFormatObjectIdentifierQualifier[Index]Specifies the DataObjectFormat's ObjectIdentifier's IdentifierQualifier.
DataObjectFormatObjectReference[Index]Specifies the DataObjectFormat's ObjectReference.
DataTypeSpecifies the external data type.
DetachedResourceURISpecifies a detached resource URI.
DislikeOpenEndedOCSPsTells the class to discourage OCSP responses without an explicit NextUpdate parameter.
EnvelopingObjectEncodingSpecifies the enveloping object encoding.
EnvelopingObjectIDSpecifies the enveloping object identifier.
EnvelopingObjectMimeTypeSpecifies the enveloping object MIME type.
ExclusiveCanonicalizationPrefixSpecifies the exclusive canonicalization prefix.
ForceCompleteChainValidationWhether to check the CA certificates when the signing certificate is invalid.
ForceCompleteChainValidationForTrustedWhether to continue with the full validation up to the root CA certificate for mid-level trust anchors.
GracePeriodSpecifies a grace period to apply during revocation information checks.
HMACKeyThe key value for HMAC.
HMACOutputLengthSets the length of the HMAC output.
HMACSigningUsedWhether to use HMAC signing.
IDAttributeNameSpecifies the custom name of ID attribute.
IDAttributeNamespaceURISpecifies the custom namespace URI of ID attribute.
IgnoreChainLoopsWhether chain loops should be ignored.
IgnoreChainValidationErrorsWhether to ignore any certificate chain validation issues.
IgnoreOCSPNoCheckExtensionWhether the OCSP NoCheck extension should be ignored.
IgnoreSystemTrustWhether trusted Windows Certificate Stores should be treated as trusted.
IgnoreTimestampFailureWhether to ignore time-stamping failure during signing.
ImplicitlyTrustSelfSignedCertificatesWhether to trust self-signed certificates.
IncludeKeySpecifies whether to include the signing key to the signature.
IncludeKeyValueSpecifies whether the key value must be included to the signature.
IncludeKnownRevocationInfoToSignatureWhether to include custom revocation info to the signature.
InclusiveNamespacesPrefixListSpecifies the InclusiveNamespaces PrefixList.
InputTypeSpecifies the Input type.
InsertBeforeXMLElementDefines the reference XML element for signature insertion.
KeyInfoCustomXMLThe custom XML content for KeyInfo element.
KeyInfoDetailsSpecifies the signing key info details to include to the signature.
KeyInfoIDSpecifies the ID for KeyInfo element.
KeyNameContains information about the key used for signing.
ManifestCountTBD.
ManifestID[i]TBD.
ManifestObjectIndex[i]TBD.
ManifestXML[i]TBD.
NormalizeNewLineControls whether newline combinations should be automatically normalized.
ObjectCountTBD.
ObjectEncoding[i]TBD.
ObjectID[i]TBD.
ObjectMimeType[i]TBD.
ObjectSignaturePropertiesCountTBD.
ObjectSignaturePropertiesID[i]TBD.
ObjectSignaturePropertiesObjectIndex[i]TBD.
ObjectSignaturePropertiesXML[i]TBD.
ObjectSignaturePropertyCountTBD.
ObjectSignaturePropertyID[i]TBD.
ObjectSignaturePropertyPropertiesIndex[i]TBD.
ObjectSignaturePropertyTarget[i]TBD.
ObjectSignaturePropertyXML[i]TBD.
ObjectXML[i]TBD.
PolicyDescriptionsignature policy description.
PolicyDescriptionsignature policy description.
PolicyExplicitTextThe explicit text of the user notice.
PolicyExplicitTextThe explicit text of the user notice.
PolicyUNNumbersThe noticeNumbers part of the NoticeReference CAdES attribute.
PolicyUNNumbersThe noticeNumbers part of the NoticeReference CAdES attribute.
PolicyUNOrganizationThe organization part of the NoticeReference qualifier.
PolicyUNOrganizationThe organization part of the NoticeReference qualifier.
ProductionPlaceIdentifies the place of the signature production.
ProductionPlaceIdentifies the place of the signature production.
PromoteLongOCSPResponsesWhether long OCSP responses are requested.
PSSUsedWhether to use RSASSA-PSS algorithm.
PSSUsedWhether to use RSASSA-PSS algorithm.
QualifyingPropertiesIDSpecifies the ID for QualifyingProperties element.
QualifyingPropertiesObjectIDSpecifies the ID for object with QualifyingProperties element.
QualifyingPropertiesReferenceCountThe number of the QualifyingPropertiesReference elements.
QualifyingPropertiesReferenceID[Index]Specifies the QualifyingPropertiesReference's ID.
QualifyingPropertiesReferenceURI[Index]Specifies the QualifyingPropertiesReference's URI.
RefsTimestampTypeSpecifies references timestamp type to include to the signature.
SchemeParamsThe algorithm scheme parameters to employ.
SignatureComplianceSpecifies the signature compliance mode.
SignatureIDSpecifies the ID for Signature element.
SignaturePrefixSpecifies the signature prefix.
SignatureValueIDSpecifies the ID for SignatureValue element.
SignedInfoIDSpecifies the ID for SignedInfo element.
SignedPropertiesIDSpecifies the ID for SignedProperties element.
SignedPropertiesReferenceCanonicalizationMethodSpecifies the canonicalization method used in SignedProperties reference.
SignedPropertiesReferenceHashAlgorithmSpecifies the hash algorithm used in SignedProperties reference.
SignedPropertiesReferenceIDSpecifies the ID for Reference element that points to SignedProperties element.
SignedPropertiesReferenceInclusiveNamespacesPrefixListSpecifies the InclusiveNamespaces PrefixList used in SignedProperties reference.
SignedPropertiesReferenceIndexSpecifies the index of SignedProperties reference.
SignedSignaturePropertiesIDSpecifies the ID for SignedSignatureProperties element.
SigningCertificatesChainThe indicator of which certificates should be/are included as the signing chain.
SigningCertificatesHashAlgorithmSpecifies the hash algorithm used for SigningCertificates.
SigPolicyDescriptionsignature policy description.
SigPolicyDescriptionsignature policy description.
SigPolicyExplicitTextThe explicit text of the user notice.
SigPolicyExplicitTextThe explicit text of the user notice.
SigPolicyHashThe EPES policy hash.
SigPolicyHashThe EPES policy hash.
SigPolicyHashAlgorithmThe hash algorithm that was used to generate the EPES policy hash.
SigPolicyHashAlgorithmThe hash algorithm that was used to generate the EPES policy hash.
SigPolicyIDThe EPES policy ID.
SigPolicyIDThe EPES policy ID.
SigPolicyNoticeNumbersThe noticeNumbers part of the NoticeReference CAdES attribute.
SigPolicyNoticeNumbersThe noticeNumbers part of the NoticeReference CAdES attribute.
SigPolicyNoticeOrganizationThe organization part of the NoticeReference qualifier.
SigPolicyNoticeOrganizationThe organization part of the NoticeReference qualifier.
SigPolicyURIThe EPES policy URI.
SigPolicyURIThe EPES policy URI.
StripWhitespaceControls whether excessive whitespace characters should be stripped off when saving the document.
TempPathPath for storing temporary files.
TimestampCanonicalizationMethodSpecifies canonicalization method used in timestamp.
TimestampResponseA base16-encoded timestamp response received from a TSA.
TimestampValidationDataDetailsSpecifies timestamp validation data details to include to the signature.
TLSChainValidationDetailsContains the advanced details of the TLS server certificate validation.
TLSChainValidationResultContains the result of the TLS server certificate validation.
TLSClientAuthRequestedIndicates whether the TLS server requests client authentication.
TLSValidationLogContains the log of the TLS server certificate validation.
TolerateMinorChainIssuesWhether to tolerate minor chain issues.
TspAttemptCountSpecifies the number of timestamping request attempts.
TspHashAlgorithmSets a specific hash algorithm for use with the timestamping service.
TspReqPolicySets a request policy ID to include in the timestamping request.
UseDefaultTrustedListsEnables or disables the use of the default TrustedLists.
UseDefaultTSLsEnables or disables the use of the default TrustedLists.
UseHMACSigningWhether to use HMAC signing.
UseHMACSigningWhether to use HMAC signing.
UseMicrosoftCTLEnables or disables the automatic use of the Microsoft online certificate trust list.
UsePSSWhether to use RSASSA-PSS algorithm.
UsePSSWhether to use RSASSA-PSS algorithm.
UseSystemCertificatesEnables or disables the use of the system certificates.
UseValidationCacheEnables or disable the use of the product-wide certificate chain validation cache.
UseValidatorSettingsForTLSValidationWhether to employ the primary chain validator setup for auxiliary TLS chain validations.
ValidationDataRefsDetailsSpecifies validation data references details to include to the signature.
ValidationDataRefsHashAlgorithmSpecifies the hash algorithm used in validation data references.
ValidationDataValuesDetailsSpecifies validation data values details to include to the signature.
WriteBOMSpecifies whether byte-order mark should be written when saving the document.
XAdESPrefixSpecifies the XAdES prefix.
XAdESv141PrefixSpecifies the XAdES v1.4.1 prefix.
XMLFormattingSpecifies the signature XML formatting.
ASN1UseGlobalTagCacheControls whether ASN.1 module should use a global object cache.
AssignSystemSmartCardPinsSpecifies whether CSP-level PINs should be assigned to CNG keys.
CheckKeyIntegrityBeforeUseEnables or disable private key integrity check before use.
CookieCachingSpecifies whether a cookie cache should be used for HTTP(S) transports.
CookiesGets or sets local cookies for the class.
DefDeriveKeyIterationsSpecifies the default key derivation algorithm iteration count.
DNSLocalSuffixThe suffix to assign for TLD names.
EnableClientSideSSLFFDHEEnables or disables finite field DHE key exchange support in TLS clients.
GlobalCookiesGets or sets global cookies for all the HTTP transports.
HardwareCryptoUsePolicyThe hardware crypto usage policy.
HttpUserAgentSpecifies the user agent name to be used by all HTTP clients.
HttpVersionThe HTTP version to use in any inner HTTP client classes created.
IgnoreExpiredMSCTLSigningCertWhether to tolerate the expired Windows Update signing certificate.
ListDelimiterThe delimiter character for multi-element lists.
LogDestinationSpecifies the debug log destination.
LogDetailsSpecifies the debug log details to dump.
LogFileSpecifies the debug log filename.
LogFiltersSpecifies the debug log filters.
LogFlushModeSpecifies the log flush mode.
LogLevelSpecifies the debug log level.
LogMaxEventCountSpecifies the maximum number of events to cache before further action is taken.
LogRotationModeSpecifies the log rotation mode.
MaxASN1BufferLengthSpecifies the maximal allowed length for ASN.1 primitive tag data.
MaxASN1TreeDepthSpecifies the maximal depth for processed ASN.1 trees.
OCSPHashAlgorithmSpecifies the hash algorithm to be used to identify certificates in OCSP requests.
OldClientSideRSAFallbackSpecifies whether the SSH client should use a SHA1 fallback.
ProductVersionReturns the version of the SecureBlackbox library.
ServerSSLDHKeyLengthSets the size of the TLS DHE key exchange group.
StaticDNSSpecifies whether static DNS rules should be used.
StaticIPAddress[domain]Gets or sets an IP address for the specified domain name.
StaticIPAddressesGets or sets all the static DNS rules.
TagAllows to store any custom data.
TLSSessionGroupSpecifies the group name of TLS sessions to be used for session resumption.
TLSSessionLifetimeSpecifies lifetime in seconds of the cached TLS session.
TLSSessionPurgeIntervalSpecifies how often the session cache should remove the expired TLS sessions.
UseInternalRandomSwitches between SecureBlackbox-own and platform PRNGs.
UseLegacyAdESValidationEnables legacy AdES validation mode.
UseOwnDNSResolverSpecifies whether the client classes should use own DNS resolver.
UseSharedSystemStoragesSpecifies whether the validation engine should use a global per-process copy of the system certificate stores.
UseSystemNativeSizeCalculationAn internal CryptoAPI access tweak.
UseSystemOAEPAndPSSEnforces or disables the use of system-driven RSA OAEP and PSS computations.
UseSystemRandomEnables or disables the use of the OS PRNG.

CanonicalizationMethod Property (XMLSigner Class)

Specifies XML canonicalization method to use.

Syntax

ANSI (Cross Platform)
int GetCanonicalizationMethod();
int SetCanonicalizationMethod(int iCanonicalizationMethod); Unicode (Windows) INT GetCanonicalizationMethod();
INT SetCanonicalizationMethod(INT iCanonicalizationMethod);

Possible Values

CXCM_NONE(0), 
CXCM_CANON(1),
CXCM_CANON_COMMENT(2),
CXCM_EXCL_CANON(3),
CXCM_EXCL_CANON_COMMENT(4),
CXCM_MIN_CANON(5),
CXCM_CANON_V_1_1(6),
CXCM_CANON_COMMENT_V_1_1(7)
int secureblackbox_xmlsigner_getcanonicalizationmethod(void* lpObj);
int secureblackbox_xmlsigner_setcanonicalizationmethod(void* lpObj, int iCanonicalizationMethod);
int GetCanonicalizationMethod();
int SetCanonicalizationMethod(int iCanonicalizationMethod);

Default Value

1

Remarks

Use this property to specify the method for XML canonicalization of SignedInfo element. See XML-Signature Syntax and Processing specification for details.

Supported canonicalization methods:

cxcmNone0
cxcmCanon1
cxcmCanonComment2
cxcmExclCanon3
cxcmExclCanonComment4
cxcmMinCanon5
cxcmCanon_v1_16
cxcmCanonComment_v1_17

Data Type

Integer

DataBytes Property (XMLSigner Class)

Use this property to pass the external data to class in the byte array form.

Syntax

ANSI (Cross Platform)
int GetDataBytes(char* &lpDataBytes, int &lenDataBytes);
int SetDataBytes(const char* lpDataBytes, int lenDataBytes); Unicode (Windows) INT GetDataBytes(LPSTR &lpDataBytes, INT &lenDataBytes);
INT SetDataBytes(LPCSTR lpDataBytes, INT lenDataBytes);
int secureblackbox_xmlsigner_getdatabytes(void* lpObj, char** lpDataBytes, int* lenDataBytes);
int secureblackbox_xmlsigner_setdatabytes(void* lpObj, const char* lpDataBytes, int lenDataBytes);
QByteArray GetDataBytes();
int SetDataBytes(QByteArray qbaDataBytes);

Remarks

Assign a byte array containing the external data to be processed to this property.

This property is not available at design time.

Data Type

Byte Array

DataFile Property (XMLSigner Class)

A file containing the external data covered by a detached signature.

Syntax

ANSI (Cross Platform)
char* GetDataFile();
int SetDataFile(const char* lpszDataFile); Unicode (Windows) LPWSTR GetDataFile();
INT SetDataFile(LPCWSTR lpszDataFile);
char* secureblackbox_xmlsigner_getdatafile(void* lpObj);
int secureblackbox_xmlsigner_setdatafile(void* lpObj, const char* lpszDataFile);
QString GetDataFile();
int SetDataFile(QString qsDataFile);

Default Value

""

Remarks

In the case of a detached signature, use this property to provide the external data to the class from a file. Alternatively, provide the data via DataStream.

Data Type

String

DataType Property (XMLSigner Class)

Specifies the external data type.

Syntax

ANSI (Cross Platform)
int GetDataType();
int SetDataType(int iDataType); Unicode (Windows) INT GetDataType();
INT SetDataType(INT iDataType);

Possible Values

CXDT_XML(0), 
CXDT_BINARY(1),
CXDT_BASE_64(2)
int secureblackbox_xmlsigner_getdatatype(void* lpObj);
int secureblackbox_xmlsigner_setdatatype(void* lpObj, int iDataType);
int GetDataType();
int SetDataType(int iDataType);

Default Value

0

Remarks

Use this property to specify the type of the external data (either DataFile, DataStream or DataBytes properties) for class.

Data Type

Integer

DataURI Property (XMLSigner Class)

Specifies a detached data resource URI.

Syntax

ANSI (Cross Platform)
char* GetDataURI();
int SetDataURI(const char* lpszDataURI); Unicode (Windows) LPWSTR GetDataURI();
INT SetDataURI(LPCWSTR lpszDataURI);
char* secureblackbox_xmlsigner_getdatauri(void* lpObj);
int secureblackbox_xmlsigner_setdatauri(void* lpObj, const char* lpszDataURI);
QString GetDataURI();
int SetDataURI(QString qsDataURI);

Default Value

""

Remarks

Specifies a URI used for data being signed, usually the data filename if stored along with a detached signature.

Data Type

String

Encoding Property (XMLSigner Class)

Specifies XML encoding.

Syntax

ANSI (Cross Platform)
char* GetEncoding();
int SetEncoding(const char* lpszEncoding); Unicode (Windows) LPWSTR GetEncoding();
INT SetEncoding(LPCWSTR lpszEncoding);
char* secureblackbox_xmlsigner_getencoding(void* lpObj);
int secureblackbox_xmlsigner_setencoding(void* lpObj, const char* lpszEncoding);
QString GetEncoding();
int SetEncoding(QString qsEncoding);

Default Value

""

Remarks

Use this property to specify the encoding to apply to the XML documents.

Data Type

String

ExternalCrypto Property (XMLSigner Class)

Provides access to external signing and DC parameters.

Syntax

SecureBlackboxExternalCrypto* GetExternalCrypto();

char* secureblackbox_xmlsigner_getexternalcryptoasyncdocumentid(void* lpObj);
int secureblackbox_xmlsigner_setexternalcryptoasyncdocumentid(void* lpObj, const char* lpszExternalCryptoAsyncDocumentID);
char* secureblackbox_xmlsigner_getexternalcryptocustomparams(void* lpObj);
int secureblackbox_xmlsigner_setexternalcryptocustomparams(void* lpObj, const char* lpszExternalCryptoCustomParams);
char* secureblackbox_xmlsigner_getexternalcryptodata(void* lpObj);
int secureblackbox_xmlsigner_setexternalcryptodata(void* lpObj, const char* lpszExternalCryptoData);
int secureblackbox_xmlsigner_getexternalcryptoexternalhashcalculation(void* lpObj);
int secureblackbox_xmlsigner_setexternalcryptoexternalhashcalculation(void* lpObj, int bExternalCryptoExternalHashCalculation);
char* secureblackbox_xmlsigner_getexternalcryptohashalgorithm(void* lpObj);
int secureblackbox_xmlsigner_setexternalcryptohashalgorithm(void* lpObj, const char* lpszExternalCryptoHashAlgorithm);
char* secureblackbox_xmlsigner_getexternalcryptokeyid(void* lpObj);
int secureblackbox_xmlsigner_setexternalcryptokeyid(void* lpObj, const char* lpszExternalCryptoKeyID);
char* secureblackbox_xmlsigner_getexternalcryptokeysecret(void* lpObj);
int secureblackbox_xmlsigner_setexternalcryptokeysecret(void* lpObj, const char* lpszExternalCryptoKeySecret);
int secureblackbox_xmlsigner_getexternalcryptomethod(void* lpObj);
int secureblackbox_xmlsigner_setexternalcryptomethod(void* lpObj, int iExternalCryptoMethod);
int secureblackbox_xmlsigner_getexternalcryptomode(void* lpObj);
int secureblackbox_xmlsigner_setexternalcryptomode(void* lpObj, int iExternalCryptoMode);
char* secureblackbox_xmlsigner_getexternalcryptopublickeyalgorithm(void* lpObj);
int secureblackbox_xmlsigner_setexternalcryptopublickeyalgorithm(void* lpObj, const char* lpszExternalCryptoPublicKeyAlgorithm);
QString GetExternalCryptoAsyncDocumentID();
int SetExternalCryptoAsyncDocumentID(QString qsExternalCryptoAsyncDocumentID); QString GetExternalCryptoCustomParams();
int SetExternalCryptoCustomParams(QString qsExternalCryptoCustomParams); QString GetExternalCryptoData();
int SetExternalCryptoData(QString qsExternalCryptoData); bool GetExternalCryptoExternalHashCalculation();
int SetExternalCryptoExternalHashCalculation(bool bExternalCryptoExternalHashCalculation); QString GetExternalCryptoHashAlgorithm();
int SetExternalCryptoHashAlgorithm(QString qsExternalCryptoHashAlgorithm); QString GetExternalCryptoKeyID();
int SetExternalCryptoKeyID(QString qsExternalCryptoKeyID); QString GetExternalCryptoKeySecret();
int SetExternalCryptoKeySecret(QString qsExternalCryptoKeySecret); int GetExternalCryptoMethod();
int SetExternalCryptoMethod(int iExternalCryptoMethod); int GetExternalCryptoMode();
int SetExternalCryptoMode(int iExternalCryptoMode); QString GetExternalCryptoPublicKeyAlgorithm();
int SetExternalCryptoPublicKeyAlgorithm(QString qsExternalCryptoPublicKeyAlgorithm);

Remarks

Use this property to tune-up remote cryptography settings. SecureBlackbox supports two independent types of external cryptography: synchronous (based on the ExternalSign event) and asynchronous (based on the DC protocol and the DCAuth signing component).

This property is read-only.

Data Type

SecureBlackboxExternalCrypto

FIPSMode Property (XMLSigner Class)

Reserved.

Syntax

ANSI (Cross Platform)
int GetFIPSMode();
int SetFIPSMode(int bFIPSMode); Unicode (Windows) BOOL GetFIPSMode();
INT SetFIPSMode(BOOL bFIPSMode);
int secureblackbox_xmlsigner_getfipsmode(void* lpObj);
int secureblackbox_xmlsigner_setfipsmode(void* lpObj, int bFIPSMode);
bool GetFIPSMode();
int SetFIPSMode(bool bFIPSMode);

Default Value

FALSE

Remarks

This property is reserved for future use.

Data Type

Boolean

HashAlgorithm Property (XMLSigner Class)

Specifies the hash algorithm to be used.

Syntax

ANSI (Cross Platform)
char* GetHashAlgorithm();
int SetHashAlgorithm(const char* lpszHashAlgorithm); Unicode (Windows) LPWSTR GetHashAlgorithm();
INT SetHashAlgorithm(LPCWSTR lpszHashAlgorithm);
char* secureblackbox_xmlsigner_gethashalgorithm(void* lpObj);
int secureblackbox_xmlsigner_sethashalgorithm(void* lpObj, const char* lpszHashAlgorithm);
QString GetHashAlgorithm();
int SetHashAlgorithm(QString qsHashAlgorithm);

Default Value

"SHA256"

Remarks

Use this property to set the hash algorithm for signature calculation.

Supported values:

SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512

Data Type

String

InputBytes Property (XMLSigner Class)

Use this property to pass the input to class in byte array form.

Syntax

ANSI (Cross Platform)
int GetInputBytes(char* &lpInputBytes, int &lenInputBytes);
int SetInputBytes(const char* lpInputBytes, int lenInputBytes); Unicode (Windows) INT GetInputBytes(LPSTR &lpInputBytes, INT &lenInputBytes);
INT SetInputBytes(LPCSTR lpInputBytes, INT lenInputBytes);
int secureblackbox_xmlsigner_getinputbytes(void* lpObj, char** lpInputBytes, int* lenInputBytes);
int secureblackbox_xmlsigner_setinputbytes(void* lpObj, const char* lpInputBytes, int lenInputBytes);
QByteArray GetInputBytes();
int SetInputBytes(QByteArray qbaInputBytes);

Remarks

Assign a byte array containing the data to be processed to this property.

This property is not available at design time.

Data Type

Byte Array

InputFile Property (XMLSigner Class)

Specifies the XML document to be signed.

Syntax

ANSI (Cross Platform)
char* GetInputFile();
int SetInputFile(const char* lpszInputFile); Unicode (Windows) LPWSTR GetInputFile();
INT SetInputFile(LPCWSTR lpszInputFile);
char* secureblackbox_xmlsigner_getinputfile(void* lpObj);
int secureblackbox_xmlsigner_setinputfile(void* lpObj, const char* lpszInputFile);
QString GetInputFile();
int SetInputFile(QString qsInputFile);

Default Value

""

Remarks

Provide a path to the XML file to be signed.

Data Type

String

OutputBytes Property (XMLSigner Class)

Use this property to read the output the class object has produced.

Syntax

ANSI (Cross Platform)
int GetOutputBytes(char* &lpOutputBytes, int &lenOutputBytes);

Unicode (Windows)
INT GetOutputBytes(LPSTR &lpOutputBytes, INT &lenOutputBytes);
int secureblackbox_xmlsigner_getoutputbytes(void* lpObj, char** lpOutputBytes, int* lenOutputBytes);
QByteArray GetOutputBytes();

Remarks

Read the contents of this property after the operation has completed to read the produced output. This property will only be set if the OutputFile and OutputStream properties had not been assigned.

This property is read-only and not available at design time.

Data Type

Byte Array

OutputFile Property (XMLSigner Class)

A file where the signed document is to be saved.

Syntax

ANSI (Cross Platform)
char* GetOutputFile();
int SetOutputFile(const char* lpszOutputFile); Unicode (Windows) LPWSTR GetOutputFile();
INT SetOutputFile(LPCWSTR lpszOutputFile);
char* secureblackbox_xmlsigner_getoutputfile(void* lpObj);
int secureblackbox_xmlsigner_setoutputfile(void* lpObj, const char* lpszOutputFile);
QString GetOutputFile();
int SetOutputFile(QString qsOutputFile);

Default Value

""

Remarks

Provide a path to the file where the signed document is to be saved.

Data Type

String

References Property (XMLSigner Class)

A list of references to the data to be signed.

Syntax

int secureblackbox_xmlsigner_getreferencecount(void* lpObj);
int secureblackbox_xmlsigner_setreferencecount(void* lpObj, int iReferenceCount);
int secureblackbox_xmlsigner_getreferenceautogenerateelementid(void* lpObj, int referenceindex);
int secureblackbox_xmlsigner_setreferenceautogenerateelementid(void* lpObj, int referenceindex, int bReferenceAutoGenerateElementId);
int secureblackbox_xmlsigner_getreferencecanonicalizationmethod(void* lpObj, int referenceindex);
int secureblackbox_xmlsigner_setreferencecanonicalizationmethod(void* lpObj, int referenceindex, int iReferenceCanonicalizationMethod);
char* secureblackbox_xmlsigner_getreferencecustomelementid(void* lpObj, int referenceindex);
int secureblackbox_xmlsigner_setreferencecustomelementid(void* lpObj, int referenceindex, const char* lpszReferenceCustomElementId);
int secureblackbox_xmlsigner_getreferencedigestvalue(void* lpObj, int referenceindex, char** lpReferenceDigestValue, int* lenReferenceDigestValue);
int secureblackbox_xmlsigner_setreferencedigestvalue(void* lpObj, int referenceindex, const char* lpReferenceDigestValue, int lenReferenceDigestValue);
int64 secureblackbox_xmlsigner_getreferencehandle(void* lpObj, int referenceindex);
int secureblackbox_xmlsigner_setreferencehandle(void* lpObj, int referenceindex, int64 lReferenceHandle);
char* secureblackbox_xmlsigner_getreferencehashalgorithm(void* lpObj, int referenceindex);
int secureblackbox_xmlsigner_setreferencehashalgorithm(void* lpObj, int referenceindex, const char* lpszReferenceHashAlgorithm);
int secureblackbox_xmlsigner_getreferencehasuri(void* lpObj, int referenceindex);
int secureblackbox_xmlsigner_setreferencehasuri(void* lpObj, int referenceindex, int bReferenceHasURI);
char* secureblackbox_xmlsigner_getreferenceid(void* lpObj, int referenceindex);
int secureblackbox_xmlsigner_setreferenceid(void* lpObj, int referenceindex, const char* lpszReferenceID);
char* secureblackbox_xmlsigner_getreferenceinclusivenamespacesprefixlist(void* lpObj, int referenceindex);
int secureblackbox_xmlsigner_setreferenceinclusivenamespacesprefixlist(void* lpObj, int referenceindex, const char* lpszReferenceInclusiveNamespacesPrefixList);
char* secureblackbox_xmlsigner_getreferencereferencetype(void* lpObj, int referenceindex);
int secureblackbox_xmlsigner_setreferencereferencetype(void* lpObj, int referenceindex, const char* lpszReferenceReferenceType);
int secureblackbox_xmlsigner_getreferencetargetdata(void* lpObj, int referenceindex, char** lpReferenceTargetData, int* lenReferenceTargetData);
int secureblackbox_xmlsigner_setreferencetargetdata(void* lpObj, int referenceindex, const char* lpReferenceTargetData, int lenReferenceTargetData);
int secureblackbox_xmlsigner_getreferencetargettype(void* lpObj, int referenceindex);
int secureblackbox_xmlsigner_setreferencetargettype(void* lpObj, int referenceindex, int iReferenceTargetType);
char* secureblackbox_xmlsigner_getreferencetargetxmlelement(void* lpObj, int referenceindex);
int secureblackbox_xmlsigner_setreferencetargetxmlelement(void* lpObj, int referenceindex, const char* lpszReferenceTargetXMLElement);
char* secureblackbox_xmlsigner_getreferenceuri(void* lpObj, int referenceindex);
int secureblackbox_xmlsigner_setreferenceuri(void* lpObj, int referenceindex, const char* lpszReferenceURI);
int secureblackbox_xmlsigner_getreferenceusebase64transform(void* lpObj, int referenceindex);
int secureblackbox_xmlsigner_setreferenceusebase64transform(void* lpObj, int referenceindex, int bReferenceUseBase64Transform);
int secureblackbox_xmlsigner_getreferenceuseenvelopedsignaturetransform(void* lpObj, int referenceindex);
int secureblackbox_xmlsigner_setreferenceuseenvelopedsignaturetransform(void* lpObj, int referenceindex, int bReferenceUseEnvelopedSignatureTransform);
int secureblackbox_xmlsigner_getreferenceusexpathfilter2transform(void* lpObj, int referenceindex);
int secureblackbox_xmlsigner_setreferenceusexpathfilter2transform(void* lpObj, int referenceindex, int bReferenceUseXPathFilter2Transform);
int secureblackbox_xmlsigner_getreferenceusexpathtransform(void* lpObj, int referenceindex);
int secureblackbox_xmlsigner_setreferenceusexpathtransform(void* lpObj, int referenceindex, int bReferenceUseXPathTransform);
int secureblackbox_xmlsigner_getreferencevalidationresult(void* lpObj, int referenceindex);
char* secureblackbox_xmlsigner_getreferencexpathexpression(void* lpObj, int referenceindex);
int secureblackbox_xmlsigner_setreferencexpathexpression(void* lpObj, int referenceindex, const char* lpszReferenceXPathExpression);
char* secureblackbox_xmlsigner_getreferencexpathfilter2expressions(void* lpObj, int referenceindex);
int secureblackbox_xmlsigner_setreferencexpathfilter2expressions(void* lpObj, int referenceindex, const char* lpszReferenceXPathFilter2Expressions);
char* secureblackbox_xmlsigner_getreferencexpathfilter2filters(void* lpObj, int referenceindex);
int secureblackbox_xmlsigner_setreferencexpathfilter2filters(void* lpObj, int referenceindex, const char* lpszReferenceXPathFilter2Filters);
char* secureblackbox_xmlsigner_getreferencexpathfilter2prefixlist(void* lpObj, int referenceindex);
int secureblackbox_xmlsigner_setreferencexpathfilter2prefixlist(void* lpObj, int referenceindex, const char* lpszReferenceXPathFilter2PrefixList);
char* secureblackbox_xmlsigner_getreferencexpathprefixlist(void* lpObj, int referenceindex);
int secureblackbox_xmlsigner_setreferencexpathprefixlist(void* lpObj, int referenceindex, const char* lpszReferenceXPathPrefixList);
int GetReferenceCount();
int SetReferenceCount(int iReferenceCount); bool GetReferenceAutoGenerateElementId(int iReferenceIndex);
int SetReferenceAutoGenerateElementId(int iReferenceIndex, bool bReferenceAutoGenerateElementId); int GetReferenceCanonicalizationMethod(int iReferenceIndex);
int SetReferenceCanonicalizationMethod(int iReferenceIndex, int iReferenceCanonicalizationMethod); QString GetReferenceCustomElementId(int iReferenceIndex);
int SetReferenceCustomElementId(int iReferenceIndex, QString qsReferenceCustomElementId); QByteArray GetReferenceDigestValue(int iReferenceIndex);
int SetReferenceDigestValue(int iReferenceIndex, QByteArray qbaReferenceDigestValue); qint64 GetReferenceHandle(int iReferenceIndex);
int SetReferenceHandle(int iReferenceIndex, qint64 lReferenceHandle); QString GetReferenceHashAlgorithm(int iReferenceIndex);
int SetReferenceHashAlgorithm(int iReferenceIndex, QString qsReferenceHashAlgorithm); bool GetReferenceHasURI(int iReferenceIndex);
int SetReferenceHasURI(int iReferenceIndex, bool bReferenceHasURI); QString GetReferenceID(int iReferenceIndex);
int SetReferenceID(int iReferenceIndex, QString qsReferenceID); QString GetReferenceInclusiveNamespacesPrefixList(int iReferenceIndex);
int SetReferenceInclusiveNamespacesPrefixList(int iReferenceIndex, QString qsReferenceInclusiveNamespacesPrefixList); QString GetReferenceReferenceType(int iReferenceIndex);
int SetReferenceReferenceType(int iReferenceIndex, QString qsReferenceReferenceType); QByteArray GetReferenceTargetData(int iReferenceIndex);
int SetReferenceTargetData(int iReferenceIndex, QByteArray qbaReferenceTargetData); int GetReferenceTargetType(int iReferenceIndex);
int SetReferenceTargetType(int iReferenceIndex, int iReferenceTargetType); QString GetReferenceTargetXMLElement(int iReferenceIndex);
int SetReferenceTargetXMLElement(int iReferenceIndex, QString qsReferenceTargetXMLElement); QString GetReferenceURI(int iReferenceIndex);
int SetReferenceURI(int iReferenceIndex, QString qsReferenceURI); bool GetReferenceUseBase64Transform(int iReferenceIndex);
int SetReferenceUseBase64Transform(int iReferenceIndex, bool bReferenceUseBase64Transform); bool GetReferenceUseEnvelopedSignatureTransform(int iReferenceIndex);
int SetReferenceUseEnvelopedSignatureTransform(int iReferenceIndex, bool bReferenceUseEnvelopedSignatureTransform); bool GetReferenceUseXPathFilter2Transform(int iReferenceIndex);
int SetReferenceUseXPathFilter2Transform(int iReferenceIndex, bool bReferenceUseXPathFilter2Transform); bool GetReferenceUseXPathTransform(int iReferenceIndex);
int SetReferenceUseXPathTransform(int iReferenceIndex, bool bReferenceUseXPathTransform); bool GetReferenceValidationResult(int iReferenceIndex); QString GetReferenceXPathExpression(int iReferenceIndex);
int SetReferenceXPathExpression(int iReferenceIndex, QString qsReferenceXPathExpression); QString GetReferenceXPathFilter2Expressions(int iReferenceIndex);
int SetReferenceXPathFilter2Expressions(int iReferenceIndex, QString qsReferenceXPathFilter2Expressions); QString GetReferenceXPathFilter2Filters(int iReferenceIndex);
int SetReferenceXPathFilter2Filters(int iReferenceIndex, QString qsReferenceXPathFilter2Filters); QString GetReferenceXPathFilter2PrefixList(int iReferenceIndex);
int SetReferenceXPathFilter2PrefixList(int iReferenceIndex, QString qsReferenceXPathFilter2PrefixList); QString GetReferenceXPathPrefixList(int iReferenceIndex);
int SetReferenceXPathPrefixList(int iReferenceIndex, QString qsReferenceXPathPrefixList);

Remarks

Electronic signature is computed over a set of data pieces. Each piece of data to be signed is specified by a reference.

This property is read-only and not available at design time.

Data Type

SecureBlackboxXMLReference

SignatureType Property (XMLSigner Class)

The signature type to employ when signing the document.

Syntax

ANSI (Cross Platform)
int GetSignatureType();
int SetSignatureType(int iSignatureType); Unicode (Windows) INT GetSignatureType();
INT SetSignatureType(INT iSignatureType);

Possible Values

CXST_DETACHED(1), 
CXST_ENVELOPING(2),
CXST_ENVELOPED(4)
int secureblackbox_xmlsigner_getsignaturetype(void* lpObj);
int secureblackbox_xmlsigner_setsignaturetype(void* lpObj, int iSignatureType);
int GetSignatureType();
int SetSignatureType(int iSignatureType);

Default Value

4

Remarks

This property specifies the signature type to be used when signing the document.

Supported values:

cxstDetached1Specifies whether a detached signature should be produced. I.e., a signature which is kept separately from the signed document.
cxstEnveloping2Specifies whether an enveloping signature should be produced.
cxstEnveloped4Specifies whether an enveloped signature should be produced.

Data Type

Integer

SigningCertificate Property (XMLSigner Class)

The certificate to be used for signing.

Syntax

SecureBlackboxCertificate* GetSigningCertificate();
int SetSigningCertificate(SecureBlackboxCertificate* val);
int secureblackbox_xmlsigner_getsigningcertbytes(void* lpObj, char** lpSigningCertBytes, int* lenSigningCertBytes);
int64 secureblackbox_xmlsigner_getsigningcerthandle(void* lpObj);
int secureblackbox_xmlsigner_setsigningcerthandle(void* lpObj, int64 lSigningCertHandle);
QByteArray GetSigningCertBytes();

qint64 GetSigningCertHandle();
int SetSigningCertHandle(qint64 lSigningCertHandle);

Remarks

Use this property to specify the certificate that shall be used for signing the data. Note that this certificate should have a private key associated with it. Use SigningChain to supply the rest of the certificate chain for inclusion into the signature.

This property is not available at design time.

Data Type

SecureBlackboxCertificate

SigningChain Property (XMLSigner Class)

The signing certificate chain.

Syntax

int secureblackbox_xmlsigner_getsigningchaincount(void* lpObj);
int secureblackbox_xmlsigner_setsigningchaincount(void* lpObj, int iSigningChainCount);
int secureblackbox_xmlsigner_getsigningchainbytes(void* lpObj, int signingchainindex, char** lpSigningChainBytes, int* lenSigningChainBytes);
int64 secureblackbox_xmlsigner_getsigningchainhandle(void* lpObj, int signingchainindex);
int secureblackbox_xmlsigner_setsigningchainhandle(void* lpObj, int signingchainindex, int64 lSigningChainHandle);
int GetSigningChainCount();
int SetSigningChainCount(int iSigningChainCount); QByteArray GetSigningChainBytes(int iSigningChainIndex); qint64 GetSigningChainHandle(int iSigningChainIndex);
int SetSigningChainHandle(int iSigningChainIndex, qint64 lSigningChainHandle);

Remarks

Use this property to provide the chain for the signing certificate. Use the SigningCertificate property, if it is available, to provide the signing certificate itself.

This property is not available at design time.

Data Type

SecureBlackboxCertificate

XMLElement Property (XMLSigner Class)

Specifies the XML element where to save the signature data.

Syntax

ANSI (Cross Platform)
char* GetXMLElement();
int SetXMLElement(const char* lpszXMLElement); Unicode (Windows) LPWSTR GetXMLElement();
INT SetXMLElement(LPCWSTR lpszXMLElement);
char* secureblackbox_xmlsigner_getxmlelement(void* lpObj);
int secureblackbox_xmlsigner_setxmlelement(void* lpObj, const char* lpszXMLElement);
QString GetXMLElement();
int SetXMLElement(QString qsXMLElement);

Default Value

""

Remarks

This property specifies the XML element where to save the electronic signature.

Supported values are:

""an empty string indicates the Document element
"#id"indicates an XML element with specified Id
XPath expressionindicates an XML element selected using XPath expression. Use AddKnownNamespace method to specify Prefixes and NamespaceURIs

For example:

"/root/data[1]" - indicates the second "data" element under the document element with a name "root"

"//ns1:data" - indicates a data element. "ns1" prefix should be defined via AddKnownNamespace method.

Node nameindicates an XML element selected using its NodeName.

For example: "data" - indicates an XML element with node name "data".

Data Type

String

AddDataReference Method (XMLSigner Class)

Creates a new XML reference to the specified data.

Syntax

ANSI (Cross Platform)
int AddDataReference(const char* lpszDataURI, const char* lpData, int lenData);

Unicode (Windows)
INT AddDataReference(LPCWSTR lpszDataURI, LPCSTR lpData, INT lenData);
int secureblackbox_xmlsigner_adddatareference(void* lpObj, const char* lpszDataURI, const char* lpData, int lenData);
int AddDataReference(const QString& qsDataURI, QByteArray qbaData);

Remarks

Use this method to add a reference to the custom data. Pass the reference's URI via DataURI parameter.

This method uses HashAlgorithm property to specify the hash algorithm of the reference.

The method returns the index of the new reference entry in the References collection.

Error Handling (C++)

This method returns an Integer value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

AddKnownNamespace Method (XMLSigner Class)

Adds known prefix and correspondent namespace URI.

Syntax

ANSI (Cross Platform)
int AddKnownNamespace(const char* lpszPrefix, const char* lpszURI);

Unicode (Windows)
INT AddKnownNamespace(LPCWSTR lpszPrefix, LPCWSTR lpszURI);
int secureblackbox_xmlsigner_addknownnamespace(void* lpObj, const char* lpszPrefix, const char* lpszURI);
int AddKnownNamespace(const QString& qsPrefix, const QString& qsURI);

Remarks

Use this method to add a known prefix and namespace URI that are used in XPath expression within XMLElement/XMLNode property, and within TargetXMLElement and XPathPrefixList properties of the references.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

AddReference Method (XMLSigner Class)

Creates a new XML reference to the specified XML element.

Syntax

ANSI (Cross Platform)
int AddReference(const char* lpszTargetXmlElement, const char* lpszCustomId, int bAutoGenerateId);

Unicode (Windows)
INT AddReference(LPCWSTR lpszTargetXmlElement, LPCWSTR lpszCustomId, BOOL bAutoGenerateId);
int secureblackbox_xmlsigner_addreference(void* lpObj, const char* lpszTargetXmlElement, const char* lpszCustomId, int bAutoGenerateId);
int AddReference(const QString& qsTargetXmlElement, const QString& qsCustomId, bool bAutoGenerateId);

Remarks

Use this method to add a reference to a particular XML element.

The reference's URI is set basing on the ID of the XML element. If the XML element doesn't have an ID then a CustomId value will be used. If CustomId is empty and AutoGenerateId is set, the ID will be generated automatically. An exception will be thrown otherwise.

This method uses CanonicalizationMethod and HashAlgorithm properties to specify the canonicalization method and hash algorithm of the reference.

The method returns the index of the new reference entry in the References collection.

Error Handling (C++)

This method returns an Integer value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

Config Method (XMLSigner Class)

Sets or retrieves a configuration setting.

Syntax

ANSI (Cross Platform)
char* Config(const char* lpszConfigurationString);

Unicode (Windows)
LPWSTR Config(LPCWSTR lpszConfigurationString);
char* secureblackbox_xmlsigner_config(void* lpObj, const char* lpszConfigurationString);
QString Config(const QString& qsConfigurationString);

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

DoAction Method (XMLSigner Class)

Performs an additional action.

Syntax

ANSI (Cross Platform)
char* DoAction(const char* lpszActionID, const char* lpszActionParams);

Unicode (Windows)
LPWSTR DoAction(LPCWSTR lpszActionID, LPCWSTR lpszActionParams);
char* secureblackbox_xmlsigner_doaction(void* lpObj, const char* lpszActionID, const char* lpszActionParams);
QString DoAction(const QString& qsActionID, const QString& qsActionParams);

Remarks

DoAction is a generic method available in every class. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.

The unique identifier (case insensitive) of the action is provided in the ActionID parameter.

ActionParams contains the value of a single parameter, or a list of multiple parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

ExtractAsyncData Method (XMLSigner Class)

Extracts user data from the DC signing service response.

Syntax

ANSI (Cross Platform)
char* ExtractAsyncData(const char* lpszAsyncReply);

Unicode (Windows)
LPWSTR ExtractAsyncData(LPCWSTR lpszAsyncReply);
char* secureblackbox_xmlsigner_extractasyncdata(void* lpObj, const char* lpszAsyncReply);
QString ExtractAsyncData(const QString& qsAsyncReply);

Remarks

Call this method before finalizing the asynchronous signing process to extract the data passed to the ExternalCrypto.Data property on the pre-signing stage.

The Data parameter can be used to pass some state or document identifier along with the signing request from the pre-signing to the completion async stage.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

GetInnerXML Method (XMLSigner Class)

Get the inner XML content of the selected XML element.

Syntax

ANSI (Cross Platform)
char* GetInnerXML(const char* lpszXPath);

Unicode (Windows)
LPWSTR GetInnerXML(LPCWSTR lpszXPath);
char* secureblackbox_xmlsigner_getinnerxml(void* lpObj, const char* lpszXPath);
QString GetInnerXML(const QString& qsXPath);

Remarks

Call this method to get the inner XML content of the selected XML element.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

GetOuterXML Method (XMLSigner Class)

Get the outer XML content of the selected XML element.

Syntax

ANSI (Cross Platform)
char* GetOuterXML(const char* lpszXPath);

Unicode (Windows)
LPWSTR GetOuterXML(LPCWSTR lpszXPath);
char* secureblackbox_xmlsigner_getouterxml(void* lpObj, const char* lpszXPath);
QString GetOuterXML(const QString& qsXPath);

Remarks

Call this method to get the outer XML content of the selected XML element.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

GetTextContent Method (XMLSigner Class)

Get the text content of the selected XML element.

Syntax

ANSI (Cross Platform)
char* GetTextContent(const char* lpszXPath);

Unicode (Windows)
LPWSTR GetTextContent(LPCWSTR lpszXPath);
char* secureblackbox_xmlsigner_gettextcontent(void* lpObj, const char* lpszXPath);
QString GetTextContent(const QString& qsXPath);

Remarks

Call this method to get the text content of the selected XML element.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

Reset Method (XMLSigner Class)

Resets the class settings.

Syntax

ANSI (Cross Platform)
int Reset();

Unicode (Windows)
INT Reset();
int secureblackbox_xmlsigner_reset(void* lpObj);
int Reset();

Remarks

Reset is a generic method available in every class.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

SetInnerXML Method (XMLSigner Class)

Set the inner XML content of the selected XML element.

Syntax

ANSI (Cross Platform)
int SetInnerXML(const char* lpszXPath, const char* lpszValue);

Unicode (Windows)
INT SetInnerXML(LPCWSTR lpszXPath, LPCWSTR lpszValue);
int secureblackbox_xmlsigner_setinnerxml(void* lpObj, const char* lpszXPath, const char* lpszValue);
int SetInnerXML(const QString& qsXPath, const QString& qsValue);

Remarks

Call this method to set the inner XML content of the selected XML element.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

SetTextContent Method (XMLSigner Class)

Set the text content of the selected XML element.

Syntax

ANSI (Cross Platform)
int SetTextContent(const char* lpszXPath, const char* lpszValue);

Unicode (Windows)
INT SetTextContent(LPCWSTR lpszXPath, LPCWSTR lpszValue);
int secureblackbox_xmlsigner_settextcontent(void* lpObj, const char* lpszXPath, const char* lpszValue);
int SetTextContent(const QString& qsXPath, const QString& qsValue);

Remarks

Call this method to set the text content of the selected XML element.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Sign Method (XMLSigner Class)

Signs an XML document.

Syntax

ANSI (Cross Platform)
int Sign();

Unicode (Windows)
INT Sign();
int secureblackbox_xmlsigner_sign(void* lpObj);
int Sign();

Remarks

Call this method to generate a signature over an XML document.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

SignAsyncBegin Method (XMLSigner Class)

Initiates the asynchronous signing operation.

Syntax

ANSI (Cross Platform)
char* SignAsyncBegin();

Unicode (Windows)
LPWSTR SignAsyncBegin();
char* secureblackbox_xmlsigner_signasyncbegin(void* lpObj);
QString SignAsyncBegin();

Remarks

When using the DC framework, call this method to initiate the asynchronous signing process. Upon completion, a pre-signed copy of the document will be saved in OutputFile (or OutputStream). Keep the pre-signed copy somewhere local, and pass the returned string ('the request state') to the DC processor for handling.

Upon receiving the response state from the DC processor, assign the path to the pre-signed copy to InputFile (or InputStream), and call SignAsyncEnd to finalize the signing.

Note that depending on the signing method and DC configuration used, you may still need to provide the public part of the signing certificate via the SigningCertificate property.

Use the ExternalCrypto.AsyncDocumentID property to supply a unique document ID to include in the request. This is helpful when creating batches of multiple async requests, as it allows you to pass the whole response batch to SignAsyncEnd and expect it to recover the correct response from the batch automatically.

AsyncState is a message of the distributed cryptography (DC) protocol. The DC protocol is based on the exchange of async states between a DC client (an application that wants to sign a PDF, XML, or Office document) and a DC server (an application that controls access to the private key). An async state can carry one or more signing requests, comprised of document hashes, or one or more signatures produced over those hashes.

In a typical scenario you get a client-side async state from the SignAsyncBegin method. This state contains document hashes to be signed on the DC server side. You then send the async state to the DC server (often represented by the DCAuth class), which processes it and produces a matching signature state. The async state produced by the server is then passed to the SignAsyncEnd method.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

SignAsyncEnd Method (XMLSigner Class)

Completes the asynchronous signing operation.

Syntax

ANSI (Cross Platform)
int SignAsyncEnd(const char* lpszAsyncReply);

Unicode (Windows)
INT SignAsyncEnd(LPCWSTR lpszAsyncReply);
int secureblackbox_xmlsigner_signasyncend(void* lpObj, const char* lpszAsyncReply);
int SignAsyncEnd(const QString& qsAsyncReply);

Remarks

When using the DC framework, call this method upon receiving the response state from the DC processor to complete the asynchronous signing process.

Before calling this method, assign the path to the pre-signed copy of the document obtained from the prior SignAsyncBegin call to InputFile (or InputStream). The method will embed the signature into the pre-signed document, and save the complete signed document to OutputFile (or OutputStream).

Note that depending on the signing method and DC configuration used, you may still need to provide the public part of the signing certificate via the SigningCertificate property.

Use the ExternalCrypto.AsyncDocumentID parameter to pass a specific document ID if using batched AsyncReply. If used, it should match the value provided on the pre-signing (SignAsyncBegin) stage.

AsyncState is a message of the distributed cryptography (DC) protocol. The DC protocol is based on the exchange of async states between a DC client (an application that wants to sign a PDF, XML, or Office document) and a DC server (an application that controls access to the private key). An async state can carry one or more signing requests, comprised of document hashes, or one or more signatures produced over those hashes.

In a typical scenario you get a client-side async state from the SignAsyncBegin method. This state contains document hashes to be signed on the DC server side. You then send the async state to the DC server (often represented by the DCAuth class), which processes it and produces a matching signature state. The async state produced by the server is then passed to the SignAsyncEnd method.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

SignExternal Method (XMLSigner Class)

Signs the document using an external signing facility.

Syntax

ANSI (Cross Platform)
int SignExternal();

Unicode (Windows)
INT SignExternal();
int secureblackbox_xmlsigner_signexternal(void* lpObj);
int SignExternal();

Remarks

Call this method to delegate the low-level signing operation to an external, remote, or custom signing engine. This method is useful if the signature has to be made by a device accessible through a custom or non-standard signing interface.

When all preparations are done and hash is computed, the class fires ExternalSign event which allows to pass the hash value for signing.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Error Event (XMLSigner Class)

Reports the details of signing errors.

Syntax

ANSI (Cross Platform)
virtual int FireError(XMLSignerErrorEventParams *e);
typedef struct {
int ErrorCode;
const char *Description; int reserved; } XMLSignerErrorEventParams;
Unicode (Windows) virtual INT FireError(XMLSignerErrorEventParams *e);
typedef struct {
INT ErrorCode;
LPCWSTR Description; INT reserved; } XMLSignerErrorEventParams;
#define EID_XMLSIGNER_ERROR 1

virtual INT SECUREBLACKBOX_CALL FireError(INT &iErrorCode, LPSTR &lpszDescription);
class XMLSignerErrorEventParams {
public:
  int ErrorCode();

  const QString &Description();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Error(XMLSignerErrorEventParams *e);
// Or, subclass XMLSigner and override this emitter function. virtual int FireError(XMLSignerErrorEventParams *e) {...}

Remarks

The event is fired in case of exceptional conditions during signing.

ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to XML.

ExternalSign Event (XMLSigner Class)

Handles remote or external signing initiated by the SignExternal method or other source.

Syntax

ANSI (Cross Platform)
virtual int FireExternalSign(XMLSignerExternalSignEventParams *e);
typedef struct {
const char *OperationId;
const char *HashAlgorithm;
const char *Pars;
const char *Data;
char *SignedData; int reserved; } XMLSignerExternalSignEventParams;
Unicode (Windows) virtual INT FireExternalSign(XMLSignerExternalSignEventParams *e);
typedef struct {
LPCWSTR OperationId;
LPCWSTR HashAlgorithm;
LPCWSTR Pars;
LPCWSTR Data;
LPWSTR SignedData; INT reserved; } XMLSignerExternalSignEventParams;
#define EID_XMLSIGNER_EXTERNALSIGN 2

virtual INT SECUREBLACKBOX_CALL FireExternalSign(LPSTR &lpszOperationId, LPSTR &lpszHashAlgorithm, LPSTR &lpszPars, LPSTR &lpszData, LPSTR &lpszSignedData);
class XMLSignerExternalSignEventParams {
public:
  const QString &OperationId();

  const QString &HashAlgorithm();

  const QString &Pars();

  const QString &Data();

  const QString &SignedData();
  void SetSignedData(const QString &qsSignedData);

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void ExternalSign(XMLSignerExternalSignEventParams *e);
// Or, subclass XMLSigner and override this emitter function. virtual int FireExternalSign(XMLSignerExternalSignEventParams *e) {...}

Remarks

Assign a handler to this event if you need to delegate a low-level signing operation to an external, remote, or custom signing engine. Depending on the settings, the handler will receive a hashed or unhashed value to be signed.

The event handler must pass the value of Data to the signer, obtain the signature, and pass it back to the class via the SignedData parameter.

OperationId provides a comment about the operation and its origin. It depends on the exact class being used, and may be empty. HashAlgorithm specifies the hash algorithm being used for the operation, and Pars contains algorithm-dependent parameters.

The class uses base16 (hex) encoding for the Data, SignedData, and Pars parameters. If your signing engine uses a different input and output encoding, you may need to decode and/or encode the data before and/or after the signing.

A sample MD5 hash encoded in base16: a0dee2a0382afbb09120ffa7ccd8a152 - lower case base16 A0DEE2A0382AFBB09120FFA7CCD8A152 - upper case base16

A sample event handler that uses the .NET RSACryptoServiceProvider class may look like the following: signer.OnExternalSign += (s, e) => { var cert = new X509Certificate2("cert.pfx", "", X509KeyStorageFlags.Exportable); var key = (RSACryptoServiceProvider)cert.PrivateKey; var dataToSign = e.Data.FromBase16String(); var signedData = key.SignHash(dataToSign, "2.16.840.1.101.3.4.2.1"); e.SignedData = signedData.ToBase16String(); };

FormatElement Event (XMLSigner Class)

Reports the XML element that is currently being processed.

Syntax

ANSI (Cross Platform)
virtual int FireFormatElement(XMLSignerFormatElementEventParams *e);
typedef struct {
char *StartTagWhitespace;
char *EndTagWhitespace;
int Level;
const char *Path;
int HasChildElements; int reserved; } XMLSignerFormatElementEventParams;
Unicode (Windows) virtual INT FireFormatElement(XMLSignerFormatElementEventParams *e);
typedef struct {
LPWSTR StartTagWhitespace;
LPWSTR EndTagWhitespace;
INT Level;
LPCWSTR Path;
BOOL HasChildElements; INT reserved; } XMLSignerFormatElementEventParams;
#define EID_XMLSIGNER_FORMATELEMENT 3

virtual INT SECUREBLACKBOX_CALL FireFormatElement(LPSTR &lpszStartTagWhitespace, LPSTR &lpszEndTagWhitespace, INT &iLevel, LPSTR &lpszPath, BOOL &bHasChildElements);
class XMLSignerFormatElementEventParams {
public:
  const QString &StartTagWhitespace();
  void SetStartTagWhitespace(const QString &qsStartTagWhitespace);

  const QString &EndTagWhitespace();
  void SetEndTagWhitespace(const QString &qsEndTagWhitespace);

  int Level();

  const QString &Path();

  bool HasChildElements();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void FormatElement(XMLSignerFormatElementEventParams *e);
// Or, subclass XMLSigner and override this emitter function. virtual int FireFormatElement(XMLSignerFormatElementEventParams *e) {...}

Remarks

Path and Level specify the path to the XML element being processed and its nesting level, respectively.

HasChildElements specify if processed XML element has child elements.

Among other purposes, this event may be used to add whitespace formatting before or after a particular element in the signature.

FormatText Event (XMLSigner Class)

Reports XML text that is currently being processed.

Syntax

ANSI (Cross Platform)
virtual int FireFormatText(XMLSignerFormatTextEventParams *e);
typedef struct {
char *Text;
int TextType;
int Level;
const char *Path; int reserved; } XMLSignerFormatTextEventParams;
Unicode (Windows) virtual INT FireFormatText(XMLSignerFormatTextEventParams *e);
typedef struct {
LPWSTR Text;
INT TextType;
INT Level;
LPCWSTR Path; INT reserved; } XMLSignerFormatTextEventParams;
#define EID_XMLSIGNER_FORMATTEXT 4

virtual INT SECUREBLACKBOX_CALL FireFormatText(LPSTR &lpszText, INT &iTextType, INT &iLevel, LPSTR &lpszPath);
class XMLSignerFormatTextEventParams {
public:
  const QString &Text();
  void SetText(const QString &qsText);

  int TextType();

  int Level();

  const QString &Path();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void FormatText(XMLSignerFormatTextEventParams *e);
// Or, subclass XMLSigner and override this emitter function. virtual int FireFormatText(XMLSignerFormatTextEventParams *e) {...}

Remarks

TextType parameter specifies the type of the XML text (normal or Base64-encoded) that is stored in the element; Path and Level specify the path to the XML element and its nesting level.

Among other purposes, this event may be used to add whitespace formatting before or after a particular element in the signature.

Notification Event (XMLSigner Class)

This event notifies the application about an underlying control flow event.

Syntax

ANSI (Cross Platform)
virtual int FireNotification(XMLSignerNotificationEventParams *e);
typedef struct {
const char *EventID;
const char *EventParam; int reserved; } XMLSignerNotificationEventParams;
Unicode (Windows) virtual INT FireNotification(XMLSignerNotificationEventParams *e);
typedef struct {
LPCWSTR EventID;
LPCWSTR EventParam; INT reserved; } XMLSignerNotificationEventParams;
#define EID_XMLSIGNER_NOTIFICATION 5

virtual INT SECUREBLACKBOX_CALL FireNotification(LPSTR &lpszEventID, LPSTR &lpszEventParam);
class XMLSignerNotificationEventParams {
public:
  const QString &EventID();

  const QString &EventParam();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Notification(XMLSignerNotificationEventParams *e);
// Or, subclass XMLSigner and override this emitter function. virtual int FireNotification(XMLSignerNotificationEventParams *e) {...}

Remarks

The class fires this event to let the application know about some event, occurrence, or milestone in the class. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.

The unique identifier of the event is provided in the EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the class, the exact action it is performing, or the document being processed, one or both may be omitted.

This class can fire this event with the following EventID values:

DocumentLoadedNotifies the application that the document has been loaded. This is a backward-compatibility-only notification. Use OnDocumentLoaded event instead.
SignaturesLoadedNotifies the application that the component has finished loading signatures.
RetrieveQualifyingPropertiesTBD
BeforeTimestampThis event is fired before a timestamp is requested from the timestamping authority. Use the event handler to modify TSA and HTTP settings.
TimestampErrorThis event is only fired if the class failed to obtain a timestamp from the timestamping authority. The EventParam parameter contains extended error info.
TimestampRequestA timestamp is requested from the custom timestamping authority. This event is only fired if TimestampServer was set to a virtual:// URI. The EventParam parameter contains the TSP request (or the plain hash, depending on the value provided to TimestampServer), in base16, that needs to be sent to the TSA.

Use the event handler to send the request to the TSA. Upon receiving the response, assign it, in base16, to the TimestampResponse configuration property.

ResolveReference Event (XMLSigner Class)

Asks the application to resolve a reference.

Syntax

ANSI (Cross Platform)
virtual int FireResolveReference(XMLSignerResolveReferenceEventParams *e);
typedef struct {
int ReferenceIndex;
const char *URI; int reserved; } XMLSignerResolveReferenceEventParams;
Unicode (Windows) virtual INT FireResolveReference(XMLSignerResolveReferenceEventParams *e);
typedef struct {
INT ReferenceIndex;
LPCWSTR URI; INT reserved; } XMLSignerResolveReferenceEventParams;
#define EID_XMLSIGNER_RESOLVEREFERENCE 6

virtual INT SECUREBLACKBOX_CALL FireResolveReference(INT &iReferenceIndex, LPSTR &lpszURI);
class XMLSignerResolveReferenceEventParams {
public:
  int ReferenceIndex();

  const QString &URI();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void ResolveReference(XMLSignerResolveReferenceEventParams *e);
// Or, subclass XMLSigner and override this emitter function. virtual int FireResolveReference(XMLSignerResolveReferenceEventParams *e) {...}

Remarks

This event is fired when the control could not automatically resolve a reference and requires custom treatment.

URI contains a reference to the data.

ReferenceIndex specifies the index of the reference to process.

Based on the reference's URI the event handler should set either TargetXMLElement or TargetData property of the reference.

Certificate Type

Encapsulates an individual X.509 certificate.

Syntax

SecureBlackboxCertificate (declared in secureblackbox.h)

Remarks

This type keeps and provides access to X.509 certificate details.

The following fields are available:

Fields

Bytes
char* (read-only)

Default Value:

Returns the raw certificate data in DER format.

CA
int

Default Value: FALSE

Indicates whether the certificate has a CA capability. For the certificate to be considered a CA, it must have its Basic Constraints extension set with the CA indicator enabled.

Set this field when generating a new certificate to have its Basic Constraints extension generated automatically.

CAKeyID
char* (read-only)

Default Value:

A unique identifier (fingerprint) of the CA certificate's cryptographic key.

Authority Key Identifier is a certificate extension which allows identification of certificates belonging to the same issuer, but with different public keys. It is a de-facto standard to include this extension in all certificates to facilitate chain building.

This setting cannot be set when generating a certificate as it always derives from another certificate property. CertificateManager generates this setting automatically if enough information is available to it: for self-signed certificates, this value is copied from the SubjectKeyID setting, and for lower-level certificates, from the parent certificate's subject key ID extension.

CertType
int (read-only)

Default Value: 0

Returns the type of the entity contained in the Certificate object.

A Certificate object can contain two types of cryptographic objects: a ready-to-use X.509 certificate, or a certificate request ("an unsigned certificate"). Certificate requests can be upgraded to full certificates by signing them with a CA certificate.

Use the CertificateManager class to load or create new certificate and certificate requests objects.

CRLDistributionPoints
char*

Default Value: ""

Contains a list of locations of CRL distribution points used to check this certificate's validity. The list is taken from the respective certificate extension.

Use this field when generating a certificate to provide a list of CRL endpoints that should be made part of the new certificate.

The endpoints are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.

Curve
char*

Default Value: ""

Specifies the elliptic curve associated with the certificate's public key. This setting only applies to certificates containing EC keys.

SB_EC_SECP112R1SECP112R1
SB_EC_SECP112R2SECP112R2
SB_EC_SECP128R1SECP128R1
SB_EC_SECP128R2SECP128R2
SB_EC_SECP160K1SECP160K1
SB_EC_SECP160R1SECP160R1
SB_EC_SECP160R2SECP160R2
SB_EC_SECP192K1SECP192K1
SB_EC_SECP192R1SECP192R1
SB_EC_SECP224K1SECP224K1
SB_EC_SECP224R1SECP224R1
SB_EC_SECP256K1SECP256K1
SB_EC_SECP256R1SECP256R1
SB_EC_SECP384R1SECP384R1
SB_EC_SECP521R1SECP521R1
SB_EC_SECT113R1SECT113R1
SB_EC_SECT113R2SECT113R2
SB_EC_SECT131R1SECT131R1
SB_EC_SECT131R2SECT131R2
SB_EC_SECT163K1SECT163K1
SB_EC_SECT163R1SECT163R1
SB_EC_SECT163R2SECT163R2
SB_EC_SECT193R1SECT193R1
SB_EC_SECT193R2SECT193R2
SB_EC_SECT233K1SECT233K1
SB_EC_SECT233R1SECT233R1
SB_EC_SECT239K1SECT239K1
SB_EC_SECT283K1SECT283K1
SB_EC_SECT283R1SECT283R1
SB_EC_SECT409K1SECT409K1
SB_EC_SECT409R1SECT409R1
SB_EC_SECT571K1SECT571K1
SB_EC_SECT571R1SECT571R1
SB_EC_PRIME192V1PRIME192V1
SB_EC_PRIME192V2PRIME192V2
SB_EC_PRIME192V3PRIME192V3
SB_EC_PRIME239V1PRIME239V1
SB_EC_PRIME239V2PRIME239V2
SB_EC_PRIME239V3PRIME239V3
SB_EC_PRIME256V1PRIME256V1
SB_EC_C2PNB163V1C2PNB163V1
SB_EC_C2PNB163V2C2PNB163V2
SB_EC_C2PNB163V3C2PNB163V3
SB_EC_C2PNB176W1C2PNB176W1
SB_EC_C2TNB191V1C2TNB191V1
SB_EC_C2TNB191V2C2TNB191V2
SB_EC_C2TNB191V3C2TNB191V3
SB_EC_C2ONB191V4C2ONB191V4
SB_EC_C2ONB191V5C2ONB191V5
SB_EC_C2PNB208W1C2PNB208W1
SB_EC_C2TNB239V1C2TNB239V1
SB_EC_C2TNB239V2C2TNB239V2
SB_EC_C2TNB239V3C2TNB239V3
SB_EC_C2ONB239V4C2ONB239V4
SB_EC_C2ONB239V5C2ONB239V5
SB_EC_C2PNB272W1C2PNB272W1
SB_EC_C2PNB304W1C2PNB304W1
SB_EC_C2TNB359V1C2TNB359V1
SB_EC_C2PNB368W1C2PNB368W1
SB_EC_C2TNB431R1C2TNB431R1
SB_EC_NISTP192NISTP192
SB_EC_NISTP224NISTP224
SB_EC_NISTP256NISTP256
SB_EC_NISTP384NISTP384
SB_EC_NISTP521NISTP521
SB_EC_NISTB163NISTB163
SB_EC_NISTB233NISTB233
SB_EC_NISTB283NISTB283
SB_EC_NISTB409NISTB409
SB_EC_NISTB571NISTB571
SB_EC_NISTK163NISTK163
SB_EC_NISTK233NISTK233
SB_EC_NISTK283NISTK283
SB_EC_NISTK409NISTK409
SB_EC_NISTK571NISTK571
SB_EC_GOSTCPTESTGOSTCPTEST
SB_EC_GOSTCPAGOSTCPA
SB_EC_GOSTCPBGOSTCPB
SB_EC_GOSTCPCGOSTCPC
SB_EC_GOSTCPXCHAGOSTCPXCHA
SB_EC_GOSTCPXCHBGOSTCPXCHB
SB_EC_BRAINPOOLP160R1BRAINPOOLP160R1
SB_EC_BRAINPOOLP160T1BRAINPOOLP160T1
SB_EC_BRAINPOOLP192R1BRAINPOOLP192R1
SB_EC_BRAINPOOLP192T1BRAINPOOLP192T1
SB_EC_BRAINPOOLP224R1BRAINPOOLP224R1
SB_EC_BRAINPOOLP224T1BRAINPOOLP224T1
SB_EC_BRAINPOOLP256R1BRAINPOOLP256R1
SB_EC_BRAINPOOLP256T1BRAINPOOLP256T1
SB_EC_BRAINPOOLP320R1BRAINPOOLP320R1
SB_EC_BRAINPOOLP320T1BRAINPOOLP320T1
SB_EC_BRAINPOOLP384R1BRAINPOOLP384R1
SB_EC_BRAINPOOLP384T1BRAINPOOLP384T1
SB_EC_BRAINPOOLP512R1BRAINPOOLP512R1
SB_EC_BRAINPOOLP512T1BRAINPOOLP512T1
SB_EC_CURVE25519CURVE25519
SB_EC_CURVE448CURVE448

Fingerprint
char* (read-only)

Default Value: ""

Contains the fingerprint (a hash imprint) of this certificate.

While there is no formal standard defining what a fingerprint is, a SHA1 hash of the certificate's DER-encoded body is typically used.

FriendlyName
char* (read-only)

Default Value: ""

Contains an associated alias (friendly name) of the certificate. The friendly name is not a property of a certificate: it is maintained by the certificate media rather than being included in its DER representation. Windows certificate stores are one example of media that does support friendly names.

Handle
int64

Default Value: 0

Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.

When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object after such operation. pdfSigner.setSigningCertHandle(certMgr.getCertHandle());

HashAlgorithm
char*

Default Value: ""

Provides means to set the hash algorithm to be used in the subsequent operation on the certificate (such as generation or key signing). It is not a property of a certificate; use SigAlgorithm to find out the hash algorithm that is part of the certificate signature.

SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_MD2MD2
SB_HASH_ALGORITHM_MD4MD4
SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_CRC32CRC32
SB_HASH_ALGORITHM_SSL3SSL3
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_POLY1305POLY1305
SB_HASH_ALGORITHM_SHA3_224SHA3_224
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512
SB_HASH_ALGORITHM_BLAKE2S_128BLAKE2S_128
SB_HASH_ALGORITHM_BLAKE2S_160BLAKE2S_160
SB_HASH_ALGORITHM_BLAKE2S_224BLAKE2S_224
SB_HASH_ALGORITHM_BLAKE2S_256BLAKE2S_256
SB_HASH_ALGORITHM_BLAKE2B_160BLAKE2B_160
SB_HASH_ALGORITHM_BLAKE2B_256BLAKE2B_256
SB_HASH_ALGORITHM_BLAKE2B_384BLAKE2B_384
SB_HASH_ALGORITHM_BLAKE2B_512BLAKE2B_512
SB_HASH_ALGORITHM_SHAKE_128SHAKE_128
SB_HASH_ALGORITHM_SHAKE_256SHAKE_256
SB_HASH_ALGORITHM_SHAKE_128_LENSHAKE_128_LEN
SB_HASH_ALGORITHM_SHAKE_256_LENSHAKE_256_LEN

Issuer
char* (read-only)

Default Value: ""

The common name of the certificate issuer (CA), typically a company name. This is part of a larger set of credentials available via IssuerRDN.

IssuerRDN
char*

Default Value: ""

A list of Property=Value pairs that uniquely identify the certificate issuer.

Example: /C=US/O=Nationwide CA/CN=Web Certification Authority

KeyAlgorithm
char*

Default Value: "0"

Specifies the public key algorithm of this certificate.

SB_CERT_ALGORITHM_ID_RSA_ENCRYPTIONrsaEncryption
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTIONmd2withRSAEncryption
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTIONmd5withRSAEncryption
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTIONsha1withRSAEncryption
SB_CERT_ALGORITHM_ID_DSAid-dsa
SB_CERT_ALGORITHM_ID_DSA_SHA1id-dsa-with-sha1
SB_CERT_ALGORITHM_DH_PUBLICdhpublicnumber
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTIONsha224WithRSAEncryption
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTIONsha256WithRSAEncryption
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTIONsha384WithRSAEncryption
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTIONsha512WithRSAEncryption
SB_CERT_ALGORITHM_ID_RSAPSSid-RSASSA-PSS
SB_CERT_ALGORITHM_ID_RSAOAEPid-RSAES-OAEP
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160ripemd160withRSA
SB_CERT_ALGORITHM_ID_ELGAMALelGamal
SB_CERT_ALGORITHM_SHA1_ECDSAecdsa-with-SHA1
SB_CERT_ALGORITHM_RECOMMENDED_ECDSAecdsa-recommended
SB_CERT_ALGORITHM_SHA224_ECDSAecdsa-with-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSAecdsa-with-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSAecdsa-with-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSAecdsa-with-SHA512
SB_CERT_ALGORITHM_ECid-ecPublicKey
SB_CERT_ALGORITHM_SPECIFIED_ECDSAecdsa-specified
SB_CERT_ALGORITHM_GOST_R3410_1994id-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3410_2001id-GostR3410-2001
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994id-GostR3411-94-with-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001id-GostR3411-94-with-GostR3410-2001
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAINecdsa-plain-SHA1
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAINecdsa-plain-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAINecdsa-plain-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAINecdsa-plain-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAINecdsa-plain-SHA512
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAINecdsa-plain-RIPEMD160
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTIONwhirlpoolWithRSAEncryption
SB_CERT_ALGORITHM_ID_DSA_SHA224id-dsa-with-sha224
SB_CERT_ALGORITHM_ID_DSA_SHA256id-dsa-with-sha256
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSAid-ecdsa-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSAid-ecdsa-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSAid-ecdsa-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSAid-ecdsa-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAINid-ecdsa-plain-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAINid-ecdsa-plain-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAINid-ecdsa-plain-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAINid-ecdsa-plain-with-sha3-512
SB_CERT_ALGORITHM_ID_DSA_SHA3_224id-dsa-with-sha3-224
SB_CERT_ALGORITHM_ID_DSA_SHA3_256id-dsa-with-sha3-256
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSAid-ecdsa-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSAid-ecdsa-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSAid-ecdsa-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSAid-ecdsa-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSAid-ecdsa-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSAid-ecdsa-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSAid-ecdsa-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSAid-ecdsa-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAINid-ecdsa-plain-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAINid-ecdsa-plain-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAINid-ecdsa-plain-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAINid-ecdsa-plain-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAINid-ecdsa-plain-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAINid-ecdsa-plain-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAINid-ecdsa-plain-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAINid-ecdsa-plain-with-blake2b512
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224id-dsa-with-blake2s224
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256id-dsa-with-blake2s256
SB_CERT_ALGORITHM_EDDSA_ED25519id-Ed25519
SB_CERT_ALGORITHM_EDDSA_ED448id-Ed448
SB_CERT_ALGORITHM_EDDSA_ED25519_PHid-Ed25519ph
SB_CERT_ALGORITHM_EDDSA_ED448_PHid-Ed448ph
SB_CERT_ALGORITHM_EDDSAid-EdDSA
SB_CERT_ALGORITHM_EDDSA_SIGNATUREid-EdDSA-sig

Use the KeyBits, Curve, and PublicKeyBytes fields to get more details about the key the certificate contains.

KeyBits
int (read-only)

Default Value: 0

Returns the length of the public key in bits.

This value indicates the length of the principal cryptographic parameter of the key, such as the length of the RSA modulus or ECDSA field. The key data returned by the PublicKeyBytes or PrivateKeyBytes field would typically contain auxiliary values, and therefore be longer.

KeyFingerprint
char* (read-only)

Default Value: ""

Returns a SHA1 fingerprint of the public key contained in the certificate.

Note that the key fingerprint is different from the certificate fingerprint accessible via the Fingerprint field. The key fingeprint uniquely identifies the public key, and so can be the same for multiple certificates containing the same key.

KeyUsage
int

Default Value: 0

Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.

This value is a bit mask of the following values:

ckuUnknown0x00000Unknown key usage

ckuDigitalSignature0x00001Digital signature

ckuNonRepudiation0x00002Non-repudiation

ckuKeyEncipherment0x00004Key encipherment

ckuDataEncipherment0x00008Data encipherment

ckuKeyAgreement0x00010Key agreement

ckuKeyCertSign0x00020Certificate signing

ckuCRLSign0x00040Revocation signing

ckuEncipherOnly0x00080Encipher only

ckuDecipherOnly0x00100Decipher only

ckuServerAuthentication0x00200Server authentication

ckuClientAuthentication0x00400Client authentication

ckuCodeSigning0x00800Code signing

ckuEmailProtection0x01000Email protection

ckuTimeStamping0x02000Timestamping

ckuOCSPSigning0x04000OCSP signing

ckuSmartCardLogon0x08000Smartcard logon

ckuKeyPurposeClientAuth0x10000Kerberos - client authentication

ckuKeyPurposeKDC0x20000Kerberos - KDC

Set this field before generating the certificate to propagate the key usage flags to the new certificate.

KeyValid
int (read-only)

Default Value: FALSE

Returns True if the certificate's key is cryptographically valid, and False otherwise.

OCSPLocations
char*

Default Value: ""

Locations of OCSP services that can be used to check this certificate's validity in real time, as recorded by the CA.

Set this field before calling the certificate manager's Generate method to propagate it to the new certificate.

The OCSP locations are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.

OCSPNoCheck
int

Default Value: FALSE

Accessor to the value of the certificate's ocsp-no-check extension.

Origin
int (read-only)

Default Value: 0

Returns the location that the certificate was taken or loaded from.

PolicyIDs
char*

Default Value: ""

Contains identifiers (OIDs) of the applicable certificate policies.

The Certificate Policies extension identifies a sequence of policies under which the certificate has been issued, and which regulate its usage.

Set this field when generating a certificate to propagate the policies information to the new certificate.

The policies are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the policy element separator.

PrivateKeyBytes
char* (read-only)

Default Value:

Returns the certificate's private key in DER-encoded format. It is normal for this field to be empty if the private key is non-exportable, which, for example, is typical for certificates originating from hardware security devices.

PrivateKeyExists
int (read-only)

Default Value: FALSE

Indicates whether the certificate has a usable private key associated with it. If it is set to True, the certificate can be used for private key operations, such as signing or decryption.

This field is independent from PrivateKeyBytes, and can be set to True even if the former is empty. This would imply that the private key is non-exportable, but still can be used for cryptographic operations.

PrivateKeyExtractable
int (read-only)

Default Value: FALSE

Indicates whether the private key is extractable (exportable).

PublicKeyBytes
char* (read-only)

Default Value:

Contains the certificate's public key in DER format.

This typically would contain an ASN.1-encoded public key value. The exact format depends on the type of the public key contained in the certificate.

Qualified
int (read-only)

Default Value: FALSE

Indicates whether the certificate is qualified.

This property is set to True if the certificate is confirmed by a Trusted List to be qualified.

QualifiedStatements
int

Default Value: 0

Returns a simplified qualified status of the certificate.

Qualifiers
char* (read-only)

Default Value: ""

A list of qualifiers.

Contains a comma-separated list of qualifier aliases for the certificate, for example QCP-n-qscd,QCWithSSCD.

SelfSigned
int (read-only)

Default Value: FALSE

Indicates whether the certificate is self-signed (root) or signed by an external CA.

SerialNumber
char*

Default Value:

Returns the certificate's serial number.

The serial number is a binary string that uniquely identifies a certificate among others issued by the same CA. According to the X.509 standard, the (issuer, serial number) pair should be globally unique to facilitate chain building.

SigAlgorithm
char* (read-only)

Default Value: ""

Indicates the algorithm that was used by the CA to sign this certificate.

A signature algorithm typically combines hash and public key algorithms together, such as sha256WithRSAEncryption or ecdsa-with-SHA256.

Source
int (read-only)

Default Value: 0

Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.

Subject
char* (read-only)

Default Value: ""

The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name. This is part of a larger set of credentials available via SubjectRDN.

SubjectAlternativeName
char*

Default Value: ""

Returns or sets the value of the Subject Alternative Name extension of the certificate.

Subject alternative names are used to provide additional names that are impractical to store in the main SubjectRDN field. For example, it is often used to store all the domain names that a TLS certificate is authorized to protect.

The alternative names are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the element separator.

SubjectKeyID
char*

Default Value:

Contains a unique identifier of the certificate's cryptographic key.

Subject Key Identifier is a certificate extension which allows a specific public key to be associated with a certificate holder. Typically, subject key identifiers of CA certificates are recorded as respective CA key identifiers in the subordinate certificates that they issue, which facilitates chain building.

The SubjectKeyID and CAKeyID fields of self-signed certificates typically contain identical values, as in that specific case, the issuer and the subject are the same entity.

SubjectRDN
char*

Default Value: ""

A list of Property=Value pairs that uniquely identify the certificate holder (subject).

Depending on the purpose of the certificate and the policies of the CA that issued it, the values included in the subject record may differ drastically and contain business or personal names, web URLs, email addresses, and other data.

Example: /C=US/O=Oranges and Apples, Inc./OU=Accounts Receivable/1.2.3.4.5=Value with unknown OID/CN=Margaret Watkins.

Valid
int (read-only)

Default Value: FALSE

Indicates whether or not the signature over the certificate or the request is valid and matches the public key contained in the CA certificate/request.

ValidFrom
char*

Default Value: ""

The time point at which the certificate becomes valid, in UTC.

ValidTo
char*

Default Value: ""

The time point at which the certificate expires, in UTC.

Constructors

Certificate()

Creates a new object with default field values.

ExternalCrypto Type

Specifies the parameters of external cryptographic calls.

Syntax

SecureBlackboxExternalCrypto (declared in secureblackbox.h)

Remarks

External cryptocalls are used in a Distributed Cryptography (DC) subsystem, which allows the delegation of security operations to the remote agent. For instance, it can be used to compute the signature value on the server, while retaining the client's private key locally.

The following fields are available:

Fields

AsyncDocumentID
char*

Default Value: ""

Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.

Use this property when working with multi-signature DCAuth requests and responses to uniquely identify documents signed within a larger batch. On the completion stage, this value helps the signing component identify the correct signature in the returned batch of responses.

If using batched requests, make sure to set this property to the same value on both the pre-signing (SignAsyncBegin) and completion (SignAsyncEnd) stages.

CustomParams
char*

Default Value: ""

Custom parameters to be passed to the signing service (uninterpreted).

Data
char*

Default Value: ""

Additional data to be included in the async state and mirrored back by the requestor.

ExternalHashCalculation
int

Default Value: FALSE

Specifies whether the message hash is to be calculated at the external endpoint. Please note that this mode is not supported by the DCAuth class.

If set to true, the class will pass a few kilobytes of to-be-signed data from the document to the OnExternalSign event. This only applies when SignExternal() is called.

HashAlgorithm
char*

Default Value: "SHA256"

Specifies the request's signature hash algorithm.

SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_MD2MD2
SB_HASH_ALGORITHM_MD4MD4
SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_CRC32CRC32
SB_HASH_ALGORITHM_SSL3SSL3
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_POLY1305POLY1305
SB_HASH_ALGORITHM_SHA3_224SHA3_224
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512
SB_HASH_ALGORITHM_BLAKE2S_128BLAKE2S_128
SB_HASH_ALGORITHM_BLAKE2S_160BLAKE2S_160
SB_HASH_ALGORITHM_BLAKE2S_224BLAKE2S_224
SB_HASH_ALGORITHM_BLAKE2S_256BLAKE2S_256
SB_HASH_ALGORITHM_BLAKE2B_160BLAKE2B_160
SB_HASH_ALGORITHM_BLAKE2B_256BLAKE2B_256
SB_HASH_ALGORITHM_BLAKE2B_384BLAKE2B_384
SB_HASH_ALGORITHM_BLAKE2B_512BLAKE2B_512
SB_HASH_ALGORITHM_SHAKE_128SHAKE_128
SB_HASH_ALGORITHM_SHAKE_256SHAKE_256
SB_HASH_ALGORITHM_SHAKE_128_LENSHAKE_128_LEN
SB_HASH_ALGORITHM_SHAKE_256_LENSHAKE_256_LEN

KeyID
char*

Default Value: ""

The ID of the pre-shared key used for DC request authentication.

Asynchronous DCAuth-driven communication requires that parties authenticate each other with a secret pre-shared cryptographic key. This provides an extra protection layer for the protocol and diminishes the risk of the private key becoming abused by foreign parties. Use this property to provide the pre-shared key identifier, and use KeySecret to pass the key itself.

The same KeyID/KeySecret pair should be used on the DCAuth side for the signing requests to be accepted.

Note: The KeyID/KeySecret scheme is very similar to the AuthKey scheme used in various Cloud service providers to authenticate users.

Example: signer.ExternalCrypto.KeyID = "MainSigningKey"; signer.ExternalCrypto.KeySecret = "abcdef0123456789";

KeySecret
char*

Default Value: ""

The pre-shared key used for DC request authentication. This key must be set and match the key used by the DCAuth counterpart for the scheme to work.

Read more about configuring authentication in the KeyID topic.

Method
int

Default Value: 0

Specifies the asynchronous signing method. This is typically defined by the DC server capabilities and setup.

Available options:

asmdPKCS10
asmdPKCS71

Mode
int

Default Value: 0

Specifies the external cryptography mode.

Available options:

ecmDefaultThe default value (0)
ecmDisabledDo not use DC or external signing (1)
ecmGenericGeneric external signing with the OnExternalSign event (2)
ecmDCAuthDCAuth signing (3)
ecmDCAuthJSONDCAuth signing in JSON format (4)

PublicKeyAlgorithm
char*

Default Value: ""

Provide the public key algorithm here if the certificate is not available on the pre-signing stage.

SB_CERT_ALGORITHM_ID_RSA_ENCRYPTIONrsaEncryption
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTIONmd2withRSAEncryption
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTIONmd5withRSAEncryption
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTIONsha1withRSAEncryption
SB_CERT_ALGORITHM_ID_DSAid-dsa
SB_CERT_ALGORITHM_ID_DSA_SHA1id-dsa-with-sha1
SB_CERT_ALGORITHM_DH_PUBLICdhpublicnumber
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTIONsha224WithRSAEncryption
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTIONsha256WithRSAEncryption
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTIONsha384WithRSAEncryption
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTIONsha512WithRSAEncryption
SB_CERT_ALGORITHM_ID_RSAPSSid-RSASSA-PSS
SB_CERT_ALGORITHM_ID_RSAOAEPid-RSAES-OAEP
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160ripemd160withRSA
SB_CERT_ALGORITHM_ID_ELGAMALelGamal
SB_CERT_ALGORITHM_SHA1_ECDSAecdsa-with-SHA1
SB_CERT_ALGORITHM_RECOMMENDED_ECDSAecdsa-recommended
SB_CERT_ALGORITHM_SHA224_ECDSAecdsa-with-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSAecdsa-with-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSAecdsa-with-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSAecdsa-with-SHA512
SB_CERT_ALGORITHM_ECid-ecPublicKey
SB_CERT_ALGORITHM_SPECIFIED_ECDSAecdsa-specified
SB_CERT_ALGORITHM_GOST_R3410_1994id-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3410_2001id-GostR3410-2001
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994id-GostR3411-94-with-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001id-GostR3411-94-with-GostR3410-2001
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAINecdsa-plain-SHA1
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAINecdsa-plain-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAINecdsa-plain-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAINecdsa-plain-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAINecdsa-plain-SHA512
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAINecdsa-plain-RIPEMD160
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTIONwhirlpoolWithRSAEncryption
SB_CERT_ALGORITHM_ID_DSA_SHA224id-dsa-with-sha224
SB_CERT_ALGORITHM_ID_DSA_SHA256id-dsa-with-sha256
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSAid-ecdsa-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSAid-ecdsa-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSAid-ecdsa-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSAid-ecdsa-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAINid-ecdsa-plain-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAINid-ecdsa-plain-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAINid-ecdsa-plain-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAINid-ecdsa-plain-with-sha3-512
SB_CERT_ALGORITHM_ID_DSA_SHA3_224id-dsa-with-sha3-224
SB_CERT_ALGORITHM_ID_DSA_SHA3_256id-dsa-with-sha3-256
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSAid-ecdsa-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSAid-ecdsa-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSAid-ecdsa-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSAid-ecdsa-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSAid-ecdsa-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSAid-ecdsa-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSAid-ecdsa-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSAid-ecdsa-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAINid-ecdsa-plain-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAINid-ecdsa-plain-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAINid-ecdsa-plain-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAINid-ecdsa-plain-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAINid-ecdsa-plain-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAINid-ecdsa-plain-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAINid-ecdsa-plain-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAINid-ecdsa-plain-with-blake2b512
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224id-dsa-with-blake2s224
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256id-dsa-with-blake2s256
SB_CERT_ALGORITHM_EDDSA_ED25519id-Ed25519
SB_CERT_ALGORITHM_EDDSA_ED448id-Ed448
SB_CERT_ALGORITHM_EDDSA_ED25519_PHid-Ed25519ph
SB_CERT_ALGORITHM_EDDSA_ED448_PHid-Ed448ph
SB_CERT_ALGORITHM_EDDSAid-EdDSA
SB_CERT_ALGORITHM_EDDSA_SIGNATUREid-EdDSA-sig

Constructors

ExternalCrypto()

Creates a new ExternalCrypto object with default field values.

XMLReference Type

Represents an XML reference element.

Syntax

SecureBlackboxXMLReference (declared in secureblackbox.h)

Remarks

XMLReference specifies the digest algorithm and digest value, and, optionally: an identifier of the object being signed, the type of the object, and/or a list of transforms to be applied prior to digesting.

The following fields are available:

Fields

AutoGenerateElementId
int

Default Value: FALSE

Specifies whether the identifier (ID) attribute for a referenced (target) element should be auto-generated during signing. Used when the referenced element doesn't have an ID and CustomElementId and URI properties are empty.

CanonicalizationMethod
int

Default Value: 0

Use this property to specify the canonicalization method for the transform of the reference. Use cxcmNone value to not to include canonicalization transform in transform chain. See XML-Signature Syntax and Processing specification for details.

cxcmNone0
cxcmCanon1
cxcmCanonComment2
cxcmExclCanon3
cxcmExclCanonComment4
cxcmMinCanon5
cxcmCanon_v1_16
cxcmCanonComment_v1_17

CustomElementId
char*

Default Value: ""

Specifies a custom identifier (ID) attribute for a referenced (target) element that will be set on signing. Used when the referenced element doesn't have an ID and URI property is empty.

DataObjectDescription
char*

Default Value: ""

This property contains textual information related to the referenced data object, which is found in the corresponding DataObjectFormat's Description element.

DataObjectEncoding
char*

Default Value: ""

This property contains an indication of the encoding format of the referenced data object, which is found in the corresponding DataObjectFormat's Encoding element.

DataObjectIdentifier
char*

Default Value: ""

This property contains an identifier indicating the type of the referenced data object, which is found in the corresponding DataObjectFormat's ObjectIdentifier element.

DataObjectMimeType
char*

Default Value: ""

This property contains an indication of the MIME type of the referenced data object, which is found in the corresponding DataObjectFormat's MimeType element.

DigestValue
char*

Default Value:

Use this property to get or set the value of the digest calculated over the referenced data.

This field is optional and should be set only if you don't provide the actual data via TargetData or URI. If the data is set, then you don't need to set DigestValue since it will be calculated automatically.

Handle
int64

Default Value: 0

Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.

When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object after such operation. pdfSigner.setSigningCertHandle(certMgr.getCertHandle());

HasDataObjectFormat
int

Default Value: FALSE

Specifies whether corresponding XAdES DataObjectFormat element is created for the current reference.

Check this property to find out if the reference has an associated DataObjectFormat element.

HashAlgorithm
char*

Default Value: "SHA256"

Specifies the hash algorithm to be used.

Supported values:

SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512

HasURI
int

Default Value: TRUE

Specifies whether the URI is set (even when it is empty).

ID
char*

Default Value: ""

A user-defined identifier (ID) attribute of this Reference element.

InclusiveNamespacesPrefixList
char*

Default Value: ""

Use this property to specify InclusiveNamespaces PrefixList for exclusive canonicalization transform of the reference. See XML-Signature Syntax and Processing specification for details.

ReferenceType
char*

Default Value: ""

The Reference's type attribute as defined in XMLDSIG specification.

TargetData
char*

Default Value:

Contains the referenced external data when the digest value is not explicitly specified.

This field is optional and should only be set if you reference the external data via URI, and you don't provide the digest value explicitly via DigestValue.

TargetType
int

Default Value: 0

The reference's target type to use.

Use this property to specify the reference's target type to use when forming the signature.

TargetXMLElement
char*

Default Value: ""

This property specifies the referenced XML element. Used when the URI property is not set. In this case, the URI value is generated based on the ID of the referenced (target) XML element. If the URI property is set, this property is ignored until the ResolveReference event.

Supported values are:

""an empty string indicates the Document element.
"#id"indicates an XML element with specified Id.
XPointer expressionindicates an XML element selected using XPointer expression. Use the AddKnownNamespace method to specify Prefixes and NamespaceURIs

For example:

"/root/data[1]" - indicates the second "data" element under the document element with a name "root"

"//ns1:data" - indicates a data element. "ns1" prefix should be defined via AddKnownNamespace method.

Node nameindicates an XML element selected using its NodeName.

For example: "data" - indicates an XML element with node name "data".

URI
char*

Default Value: ""

Use this property to get or set the URL which references the data. If the data is external, the application must set either TargetData or DigestValue. If TargetData is set, the digest is calculated automatically unless it is explicitly set by the application via DigestValue.

UseBase64Transform
int

Default Value: FALSE

Specifies whether Base64 transform is included in transform chain.

UseEnvelopedSignatureTransform
int

Default Value: FALSE

Specifies whether enveloped signature transform is included in transform chain.

UseXPathFilter2Transform
int

Default Value: FALSE

Specifies whether XPath Filter 2.0 transform is included in transform chain.

UseXPathTransform
int

Default Value: FALSE

Specifies whether XPath transform is included in transform chain.

ValidationResult
int (read-only)

Default Value: FALSE

The outcome of the cryptographic reference validation.

XPathExpression
char*

Default Value: ""

Use this property to specify XPath expression for XPath transform of the reference.

XPathFilter2Expressions
char*

Default Value: ""

Use this property to specify XPointer expression(s) for XPath Filter 2.0 transform of the reference.

XPathFilter2Filters
char*

Default Value: ""

Use this property to specify XPointer filter(s) for XPath Filter 2.0 transform of the reference. The prefix list is comma-separated.

Supported values:

"intersect"Intersect filter computes the intersection of the selected subtrees with the filter node-set.
"subtract"Subtract filter computes the subtraction of the selected subtrees with the filter node-set.
"union"Union filter computes the union of the selected subtrees with the filter node-set.

XPathFilter2PrefixList
char*

Default Value: ""

Use this property to specify a prefix list for XPath Filter 2.0 transform of the reference. The prefix list is space-separated. Namespace URIs that are used are taken from XPathNamespaces property.

XPathPrefixList
char*

Default Value: ""

Use this property to specify a prefix list for XPath transform of the reference. The prefix list is space-separated. Namespace URIs that are used are taken from XPathNamespaces property.

Constructors

XMLReference()

Creates a new XML reference element.

XMLReference(const char* lpszID)

Creates a new XML reference element from its ID .

XMLReference(const char* lpszID, const char* lpszURI)

Creates a new XML reference element from its ID and URI reference to the external data.

SecureBlackboxList Type

Syntax

SecureBlackboxList<T> (declared in secureblackbox.h)

Remarks

SecureBlackboxList is a generic class that is used to hold a collection of objects of type T, where T is one of the custom types supported by the XMLSigner class.

Methods

GetCount This method returns the current size of the collection.

int GetCount() {}

SetCount This method sets the size of the collection. This method returns 0 if setting the size was successful; or -1 if the collection is ReadOnly. When adding additional objects to a collection call this method to specify the new size. Increasing the size of the collection preserves existing objects in the collection.

int SetCount(int count) {}

Get This method gets the item at the specified position. The index parameter specifies the index of the item in the collection. This method returns NULL if an invalid index is specified.

T* Get(int index) {}

Set This method sets the item at the specified position. The index parameter specifies the index of the item in the collection that is being set. This method returns -1 if an invalid index is specified. Note: Objects created using the new operator must be freed using the delete operator; they will not be automatically freed by the class.

T* Set(int index, T* value) {}

Config Settings (XMLSigner Class)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

XMLSigner Config Settings

AddAllDataObjectsTimestamp:   Whether to add all data objects timestamp during signing.

If this property is set to True, the all data objects timestamp (xades:AllDataObjectsTimeStamp element) will be added.

AsyncDocumentID:   Specifies the document ID for SignAsyncEnd() call.

Use this property when working with multi-signature DCAuth requests and responses to uniquely identify documents signed within a larger batch. This value helps ASiCSigner identify the correct signature in the returned batch of responses. If using batched requests, make sure to set this property to the same value on both pre-signing (SignAsyncBegin) and completion (SignAsyncEnd) stages.

ChainCurrentCACert:   Returns the current CA certificate.

This property returns the CA certificate that is used on the current step.

ChainCurrentCert:   Returns the certificate that is currently being validated.

Use this property to obtain the body of the certificate that is currently being validated.

ChainCurrentCRL:   Returns the current CRL.

Returns the CRL object that is currently being processed.

ChainCurrentCRLSize:   Returns the size of the current CRL.

This property returns the size of the CRL object that is currently being processed.

ChainCurrentOCSP:   Returns the current OCSP response.

Returns the OCSP object that is currently being processed.

ChainCurrentOCSPSigner:   Returns the signer of the current OCSP object.

Returns the signer/CA that has issued the OCSP response that is currently being processed.

ChainInterimDetails:   Returns the current interim validation details.

This property returns the interim chain validation details.

ChainInterimResult:   Returns the current interim validation result.

Use this setting to obtain the current (mid-chain) validation result. This property applies to the current validation step and may change as the chain walk proceeds. The final result will be published in the ChainValidationResult property once the validation process completes.

CheckValidityPeriodForTrusted:   Whether to check validity period for trusted certificates.

Whether to check validity period for trusted certificates.

ClaimedRolesXML:   The XML content of the claimed roles.

Use this property to get/specify the XML content of the claimed roles element.

ClaimedRoleText:   The text of the claimed role.

Use this property to get/specify the text of the first claimed role.

CommitmentTypeIndicationAllSignedDataObjects[Index]:   Specifies the CommitmentTypeIndication's AllSignedDataObjects.

This property contains if the CommitmentTypeIndication's AllSignedDataObjects element is present that indicates that all the signed data objects share the same commitment. Index value could be omitted for the first CommitmentTypeIndication element.

CommitmentTypeIndicationCount:   The number of the CommitmentTypeIndication elements.

Returns the number of the xades:CommitmentTypeIndication elements available.

CommitmentTypeIndicationIdentifier[Index]:   Specifies the CommitmentTypeIndication's CommitmentTypeId's Identifier.

This property contains an identifier indicating the type of commitment made by the signer in the CommitmentTypeIndication's CommitmentTypeId's Identifier element. Index value could be omitted for the first CommitmentTypeIndication element.

CommitmentTypeIndicationIdentifierDescription[Index]:   Specifies the CommitmentTypeIndication's CommitmentTypeId's Description.

This property contains an identifier's description indicating the type of commitment made by the signer in the CommitmentTypeIndication's CommitmentTypeId's Description element. Index value could be omitted for the first CommitmentTypeIndication element.

CommitmentTypeIndicationIdentifierDocumentationReferences[Index]:   Specifies the CommitmentTypeIndication's CommitmentTypeId's DocumentationReferences.

This property contains an identifier's documentation references indicating the type of commitment made by the signer in the CommitmentTypeIndication's CommitmentTypeId's DocumentationReferences element. Index value could be omitted for the first CommitmentTypeIndication element.

CommitmentTypeIndicationIdentifierQualifier[Index]:   Specifies the CommitmentTypeIndication's CommitmentTypeId's IdentifierQualifier.

This property contains an identifier qualifier indicating the type of commitment made by the signer in the CommitmentTypeIndication's CommitmentTypeId's IdentifierQualifier element. Index value could be omitted for the first CommitmentTypeIndication element.

CommitmentTypeIndicationObjectReference[Index]:   Specifies the CommitmentTypeIndication's ObjectReference.

This property contains the CommitmentTypeIndication's ObjectReference elements that refer to one or several ds:Reference elements of the ds:SignedInfo corresponding with one data object qualified by this property. Index value could be omitted for the first CommitmentTypeIndication element.

CommitmentTypeIndicationQualifiersXML[Index]:   The XML content of the CommitmentTypeIndication's Qualifiers.

This property contains the CommitmentTypeIndication's Qualifiers elements XML content. Index value could be omitted for the first CommitmentTypeIndication element.

CustomTrustedLists:   Specifies the custom TrustedLists.

Use this property to specify the custom TSLs (Trust Service status Lists) to the validator. The URLs list is comma-separated.

CustomTSLs:   Specifies the custom TrustedLists.

Use this property to specify the custom TSLs (Trust Service status Lists) to the validator. The URLs list is comma-separated.

DataObjectFormatCount:   The number of the DataObjectFormat elements.

Returns the number of the xades:DataObjectFormat elements available.

DataObjectFormatDescription[Index]:   Specifies the DataObjectFormat's Description.

This property contains textual information related to the signed data object in the DataObjectFormat's Description element. Index value could be omitted for the first DataObjectFormat element.

DataObjectFormatEncoding[Index]:   Specifies the DataObjectFormat's Encoding.

This property contains an indication of the encoding format of the signed data object in the DataObjectFormat's Encoding element. Index value could be omitted for the first DataObjectFormat element.

DataObjectFormatMimeType[Index]:   Specifies the DataObjectFormat's MimeType.

This property contains an indication of the MIME type of the signed data object in the DataObjectFormat's MimeType element. Index value could be omitted for the first DataObjectFormat element.

DataObjectFormatObjectIdentifier[Index]:   Specifies the DataObjectFormat's ObjectIdentifier's Identifier.

This property contains an identifier indicating the type of the signed data object in the DataObjectFormat's ObjectIdentifier's Identifier element. Index value could be omitted for the first DataObjectFormat element.

DataObjectFormatObjectIdentifierDescription[Index]:   Specifies the DataObjectFormat's ObjectIdentifier's Description.

This property contains an identifier's description indicating the type of the signed data object in the DataObjectFormat's ObjectIdentifier's Description element. Index value could be omitted for the first DataObjectFormat element.

DataObjectFormatObjectIdentifierDocumentationReferences[Index]:   Specifies the DataObjectFormat's ObjectIdentifier's DocumentationReferences.

This property contains an identifier's documentation references indicating the type of the signed data object in the DataObjectFormat's ObjectIdentifier's DocumentationReferences element. Index value could be omitted for the first DataObjectFormat element.

DataObjectFormatObjectIdentifierQualifier[Index]:   Specifies the DataObjectFormat's ObjectIdentifier's IdentifierQualifier.

This property contains an identifier qualifier indicating the type of the signed data object in the DataObjectFormat's ObjectIdentifier's IdentifierQualifier element. Index value could be omitted for the first DataObjectFormat element.

DataObjectFormatObjectReference[Index]:   Specifies the DataObjectFormat's ObjectReference.

This property contains the DataObjectFormat's ObjectReference element that reference the ds:Reference element of the ds:Signature corresponding with the data object qualified by this property.

For example, if the corresponding ds:Reference element has an Id "reference-id-1", then you should set this property to "#reference-id-1" value.

Index value could be omitted for the first DataObjectFormat element.

DataType:   Specifies the external data type.

Use this property to specify the type of the external data (either DataFile, DataStream or DataBytes properties) for class.

The following data types are supported:

"" or "XML"an XML document (by default).
"data"a binary data.

DetachedResourceURI:   Specifies a detached resource URI.

Specifies a URI used for data being signed, usually the data filename if stored along with a detached signature.

DislikeOpenEndedOCSPs:   Tells the class to discourage OCSP responses without an explicit NextUpdate parameter.

When this property is set to True, the validation engine treats OCSP response without a NextUpdate field as 'substandard' and tries to obtain some further revocation material for the certificate in question (a different OCSP or a CRL, even if the class is configured to prefer the OCSP route). This is to work around Adobe Reader's intolerance to such OCSPs when classifying signed documents as LTV (as of August 2022).

EnvelopingObjectEncoding:   Specifies the enveloping object encoding.

In case of enveloping signature, this property contains the Encoding attribute of the enveloped object.

EnvelopingObjectID:   Specifies the enveloping object identifier.

In case of enveloping signature, this property contains the identifier (ID) attribute of the enveloped object.

EnvelopingObjectMimeType:   Specifies the enveloping object MIME type.

In case of enveloping signature, this property contains the MIME type attribute of the enveloped object.

ExclusiveCanonicalizationPrefix:   Specifies the exclusive canonicalization prefix.

Specifies the prefix for the ec:InclusiveNamespaces element for the exclusive canonicalization.

Default value is "ec". In this case "ec:" prefix will be used.

Special values:

"#default" or ""indicates that the prefix will be omitted.
"#auto"indicates that the prefix will be auto-detected based on the parent nodes.

ForceCompleteChainValidation:   Whether to check the CA certificates when the signing certificate is invalid.

Set this property to True to check issuer (CA) certificates if the signing or an intermediate chain certificate is invalid.

ForceCompleteChainValidationForTrusted:   Whether to continue with the full validation up to the root CA certificate for mid-level trust anchors.

Set this property to True to enable full chain validation for explicitly trusted intermediary or end-entity certificates. This may be useful when creating signatures to enforce completeness of the collected revocation information. It often makes sense to set this property to false when validating signatures to reduce validation time and avoid issues with badly configured environments.

GracePeriod:   Specifies a grace period to apply during revocation information checks.

Use this property to specify a grace period (in seconds). Grace period applies to certain subprotocols, such as OCSP, and caters to the inaccuracy and/or missynchronization of clocks on different participating systems. Any time deviations within the grace period will be tolerated.

HMACKey:   The key value for HMAC.

Use this property to set the HMAC key. The component uses base16 (hex) encoding for this configuration value.

HMACOutputLength:   Sets the length of the HMAC output.

Use this property to configure the length of the HMAC output, in bytes.

HMACSigningUsed:   Whether to use HMAC signing.

Set this property to true to make the component perform signing using HMAC method, rather than asymmetric cryptography. TBD

IDAttributeName:   Specifies the custom name of ID attribute.

This property contains the custom name of identifier (ID) attribute. Used to identify the target XML element when reference URI has "#id_name" value or when ID attribute should be auto-generated for a target XML element.

IDAttributeNamespaceURI:   Specifies the custom namespace URI of ID attribute.

This property contains the custom namespace URI of identifier (ID) attribute. Used to identify the target XML element when reference URI has "#id_name" value or when ID attribute should be auto-generated for a target XML element.

IgnoreChainLoops:   Whether chain loops should be ignored.

Set this property to True to make the validation engine ignore chain loops. This may be an option when you need to process chains from buggy CAs that happen to include subchains that sign themselves.

IgnoreChainValidationErrors:   Whether to ignore any certificate chain validation issues.

Enable this property to ignore any chain validation errors when creating a signature. This may be useful if the signature is created in an environment which uses different trust settings to the validation environment.

IgnoreOCSPNoCheckExtension:   Whether the OCSP NoCheck extension should be ignored.

Set this property to True to make the validation engine ignore the OCSP no-check extension. You would normally need to set this property when validating severely non-compliant chains that misuse the extension, causing chain loops or other validation issues.

IgnoreSystemTrust:   Whether trusted Windows Certificate Stores should be treated as trusted.

Specifies whether, during chain validation, the class should respect the trust to CA certificates as configured in the operating system. In Windows this effectively defines whether the class should trust the certificates residing in the Trusted Root Certification Authorities store.

If IgnoreSystemTrust is True, certificates residing in the trusted root store are treated as if they are known, rather than trusted. Only certificates provided via other means (such as the TrustedCertificates property) are considered trusted.

IgnoreTimestampFailure:   Whether to ignore time-stamping failure during signing.

If this property is set to True, any failure during time-stamping process will be ignored.

ImplicitlyTrustSelfSignedCertificates:   Whether to trust self-signed certificates.

Set this property to True to implicitly trust all self-signed certificates. Use it with care as trusting just about every self-signed certificate is unwise. One exceptional reason where this property may be handy is where a chain is validated in an environment that is not supposed to trust it (for example, a signing, rather than verifying environment, or a QA server). Trusting all self-signing certificates (which are normally trusted) allows emulating the verifying environment without actually changing its security settings.

IncludeKey:   Specifies whether to include the signing key to the signature.

Set this property to True to include the public part of the signing key to the signature.

IncludeKeyValue:   Specifies whether the key value must be included to the signature.

Set this property to True if the key value (its public part) should be included to the signature.

IncludeKnownRevocationInfoToSignature:   Whether to include custom revocation info to the signature.

This property specifies whether revocation pieces provided via KnownCertificates, KnownCRLs, and KnownOCSPs properties should be included into the signature. This property lets you include custom validation elements to the signature in addition to the ones comprising the signing chain.

InclusiveNamespacesPrefixList:   Specifies the InclusiveNamespaces PrefixList.

Use this property to read/specify InclusiveNamespaces PrefixList for exclusive canonicalization transform of SignedInfo element. See XML-Signature Syntax and Processing specification for details.

InputType:   Specifies the Input type.

Use this property to specify the type of the input (either InputFile, InputStream or InputBytes properties) for class. The following input types are supported:

"" or "XML"an XML document (by default).
"data"a binary data.
"base64"Base64 encoded binary data (input data will be encoded in Base64 and will be placed in ds:Object for Enveloping signature type)
What input types could be used depends on SignatureType:
Enveloped signature type supports only an XML document as the input.
Enveloping signature type supports all types of the input.
Detached signature type supports an XML document and a binary data as the input.
InsertBeforeXMLElement:   Defines the reference XML element for signature insertion.

Use this property to specify XML element before which the signature should be inserted, but it must be under the element specified by the XMLElement field.

Supported values are:

""an empty string indicates the Document element
"#id"indicates an XML element with specified Id
XPath expressionindicates an XML element selected using XPath expression. Use AddKnownNamespace method to specify Prefixes and NamespaceURIs

For example:

"/root/data[1]" - indicates the second "data" element under the document element with a name "root"

"//ns1:data" - indicates a data element. "ns1" prefix should be defined via AddKnownNamespace method.

Node nameindicates an XML element selected using its NodeName.

For example: "data" - indicates an XML element with node name "data".

KeyInfoCustomXML:   The custom XML content for KeyInfo element.

Use this property to specify the custom XML content of the ds:KeyInfo element.

The empty elements in the custom XML content act as a placeholder for auto-generated elements.

For example to change the order of ds:KeyValue and ds:X509Data auto-generated elements use the value: "<X509Data/><KeyValue/>"

KeyInfoDetails:   Specifies the signing key info details to include to the signature.

Contains a comma-separated list of values that specifies which signing key info details to include to the signature.

Supported values are:

certificateBase64-encoded [X509v3] certificate is placed to the signature
issuerserialX.509 issuer distinguished name/serial number pair are placed to the signature
subjectnameX.509 subject distinguished name is placed to the signature
skiBase64 encoded plain (i.e. non-DER-encoded) value of a X509 V.3 SubjectKeyIdentifier extension is placed to the signature
crlBase64-encoded certificate revocation list (CRL) is placed to the signature

KeyInfoID:   Specifies the ID for KeyInfo element.

This property contains the identifier (ID) attribute of the ds:KeyInfo element.

KeyName:   Contains information about the key used for signing.

The KeyName element contains a string value (with significant whitespaces) which may be used by the signer to communicate a key identifier to the recipient. Typically, the KeyName element contains an identifier related to the key pair used to sign the message, but it may contain other protocol-related information that indirectly identifies a key pair. Common uses of the KeyName include simple string names for keys, a key index, a distinguished name (DN), an email address, etc.

ManifestCount:   TBD.

TBD

ManifestID[i]:   TBD.

TBD

ManifestXML[i]:   TBD.

TBD

NormalizeNewLine:   Controls whether newline combinations should be automatically normalized.

If set to true (the default value), the component will normalize any non-compliant newline characters to match those appropriate for the operating system.

ObjectCount:   TBD.

TBD

ObjectEncoding[i]:   TBD.

TBD

ObjectID[i]:   TBD.

TBD

ObjectMimeType[i]:   TBD.

TBD

ObjectXML[i]:   TBD.

TBD

PolicyDescription:   signature policy description.

This property specifies the Description of the signature policy. signature policy description.

This property specifies the Description of the signature policy.

PolicyDescription:   signature policy description.

This property specifies the Description of the signature policy. signature policy description.

This property specifies the Description of the signature policy.

PolicyExplicitText:   The explicit text of the user notice.

Use this property to specify the explicit text of the user notice to be displayed when the signature is verified. The explicit text of the user notice.

Use this property to specify the explicit text of the user notice to be displayed when the signature is verified.

PolicyExplicitText:   The explicit text of the user notice.

Use this property to specify the explicit text of the user notice to be displayed when the signature is verified. The explicit text of the user notice.

Use this property to specify the explicit text of the user notice to be displayed when the signature is verified.

PolicyUNNumbers:   The noticeNumbers part of the NoticeReference CAdES attribute.

Defines the "noticeNumbers" part of the NoticeReference signature policy qualifier for CAdES-EPES. The noticeNumbers part of the NoticeReference CAdES attribute.

Defines the "noticeNumbers" part of the NoticeReference signature policy qualifier for CAdES-EPES.

PolicyUNNumbers:   The noticeNumbers part of the NoticeReference CAdES attribute.

Defines the "noticeNumbers" part of the NoticeReference signature policy qualifier for CAdES-EPES. The noticeNumbers part of the NoticeReference CAdES attribute.

Defines the "noticeNumbers" part of the NoticeReference signature policy qualifier for CAdES-EPES.

PolicyUNOrganization:   The organization part of the NoticeReference qualifier.

Defines the "organization" part of the NoticeReference signature policy qualifier for CAdES-EPES. The organization part of the NoticeReference qualifier.

Defines the "organization" part of the NoticeReference signature policy qualifier for CAdES-EPES.

PolicyUNOrganization:   The organization part of the NoticeReference qualifier.

Defines the "organization" part of the NoticeReference signature policy qualifier for CAdES-EPES. The organization part of the NoticeReference qualifier.

Defines the "organization" part of the NoticeReference signature policy qualifier for CAdES-EPES.

ProductionPlace:   Identifies the place of the signature production.

The signature production place in JSON format that was included or to be included into the signature.

Sample value: '{"addressCountry": "UK", "addressLocality": "London", "postalCode": "N1 7GU", "streetAddress": "20-22 Wenlock Road"}'

Identifies the place of the signature production.

The signature production place in JSON format that was included or to be included into the signature.

Sample value: '{"addressCountry": "UK", "addressLocality": "London", "postalCode": "N1 7GU", "streetAddress": "20-22 Wenlock Road"}'

ProductionPlace:   Identifies the place of the signature production.

The signature production place in JSON format that was included or to be included into the signature.

Sample value: '{"addressCountry": "UK", "addressLocality": "London", "postalCode": "N1 7GU", "streetAddress": "20-22 Wenlock Road"}'

Identifies the place of the signature production.

The signature production place in JSON format that was included or to be included into the signature.

Sample value: '{"addressCountry": "UK", "addressLocality": "London", "postalCode": "N1 7GU", "streetAddress": "20-22 Wenlock Road"}'

PromoteLongOCSPResponses:   Whether long OCSP responses are requested.

Set this property to True to force the class to publish the 'long' form of OCSP responses. Otherwise, only BasicOCSPResponse blobs are promoted.

PSSUsed:   Whether to use RSASSA-PSS algorithm.

Although the RSASSA-PSS algorithm provides better security than a classic RSA scheme (PKCS#1-1.5), please take into account that RSASSA-PSS is a relatively new algorithm which may not be understood by older implementations. This is an alias for UsePSS. Whether to use RSASSA-PSS algorithm.

Although the RSASSA-PSS algorithm provides better security than a classic RSA scheme (PKCS#1-1.5), please take into account that RSASSA-PSS is a relatively new algorithm which may not be understood by older implementations. This is an alias for UsePSS.

PSSUsed:   Whether to use RSASSA-PSS algorithm.

Although the RSASSA-PSS algorithm provides better security than a classic RSA scheme (PKCS#1-1.5), please take into account that RSASSA-PSS is a relatively new algorithm which may not be understood by older implementations. This is an alias for UsePSS. Whether to use RSASSA-PSS algorithm.

Although the RSASSA-PSS algorithm provides better security than a classic RSA scheme (PKCS#1-1.5), please take into account that RSASSA-PSS is a relatively new algorithm which may not be understood by older implementations. This is an alias for UsePSS.

QualifyingPropertiesID:   Specifies the ID for QualifyingProperties element.

This property contains the identifier (ID) attribute of the xades:QualifyingProperties element.

QualifyingPropertiesObjectID:   Specifies the ID for object with QualifyingProperties element.

This property contains the identifier (ID) attribute of the ds:Object element that contains xades:QualifyingProperties element.

QualifyingPropertiesReferenceCount:   The number of the QualifyingPropertiesReference elements.

Returns the number of the xades:QualifyingPropertiesReference elements available.

QualifyingPropertiesReferenceID[Index]:   Specifies the QualifyingPropertiesReference's ID.

This property contains an identifier (ID) attribute of the xades:QualifyingPropertiesReference element. Index value could be omitted for the first QualifyingPropertiesReference element.

QualifyingPropertiesReferenceURI[Index]:   Specifies the QualifyingPropertiesReference's URI.

This property contains an URI attribute of the xades:QualifyingPropertiesReference element. Index value could be omitted for the first QualifyingPropertiesReference element.

RefsTimestampType:   Specifies references timestamp type to include to the signature.

Contains a comma-separated list of values that specifies which references timestamp type to include to the signature when signature upgraded to XAdES-X or XAdES-E-X form.

Supported values are:

SigAndRefsSigAndRefs timestamp
RefsOnlyRefsOnly timestamp

SchemeParams:   The algorithm scheme parameters to employ.

Use this property to specify the parameters of the algorithm scheme if needed.

This setting is used to provide parameters for some cryptographic schemes. Use the Name1=Value1;Name2=Value2;... syntax to encode the parameters. For example: Scheme=PSS;SaltSize=32;TrailerField=1.

SignatureCompliance:   Specifies the signature compliance mode.

Use this property to specify whether the signature is W3C's XMLDSig, or Electronic Banking Internet Communication Standard (EBICS) compliant.

Supported values are:

""The same as "XML-DSig".
XML-DSigThe W3C's XMLDSig-compliant signature (by default).
EBICSElectronic Banking Internet Communication Standard (EBICS) compliant signature. On signing the version is autodetected based on the document element.
EBICS_H3Electronic Banking Internet Communication Standard (EBICS) compliant signature. The version is H3.
EBICS_H4Electronic Banking Internet Communication Standard (EBICS) compliant signature. The version is H4.
EBICS_H5Electronic Banking Internet Communication Standard (EBICS) compliant signature. The version is H5.

SignatureID:   Specifies the ID for Signature element.

This property contains the identifier (ID) attribute of the ds:Signature element.

SignaturePrefix:   Specifies the signature prefix.

Specifies the prefix for the Signature elements.

Default value is "ds". In this case "ds:" prefix will be used.

Special values:

"#default" or ""indicates that the prefix will be omitted.
"#auto"indicates that the prefix will be auto-detected based on the parent nodes.

SignatureValueID:   Specifies the ID for SignatureValue element.

This property contains the identifier (ID) attribute of the ds:SignatureValue element.

SignedInfoID:   Specifies the ID for SignedInfo element.

This property contains the identifier (ID) attribute of the ds:SignedInfo element.

SignedPropertiesID:   Specifies the ID for SignedProperties element.

This property contains the identifier (ID) attribute of the xades:SignedProperties element.

SignedPropertiesReferenceCanonicalizationMethod:   Specifies the canonicalization method used in SignedProperties reference.

Use this property to specify the canonicalization method for the canonicalization transform of the ds:Reference element that points to xades:SignedProperties element. Use cxcmNone value to not to include canonicalization transform in transform chain.

cxcmNone0
cxcmCanon1
cxcmCanonComment2
cxcmExclCanon3
cxcmExclCanonComment4
cxcmMinCanon5
cxcmCanon_v1_16
cxcmCanonComment_v1_17
SignedPropertiesReferenceHashAlgorithm:   Specifies the hash algorithm used in SignedProperties reference.

Use this property to specify the hash algorithm to be used for the ds:Reference element that points to xades:SignedProperties element.

Supported values:

SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512

The default value is empty string, in this case, the hash algorithm specified in HashAlgorithm property is used.

SignedPropertiesReferenceID:   Specifies the ID for Reference element that points to SignedProperties element.

This property contains the identifier (ID) attribute of the ds:Reference element that points to xades:SignedProperties element.

SignedPropertiesReferenceInclusiveNamespacesPrefixList:   Specifies the InclusiveNamespaces PrefixList used in SignedProperties reference.

Use this property to specify InclusiveNamespaces PrefixList for exclusive canonicalization transform of the ds:Reference element that points to xades:SignedProperties element.

SignedPropertiesReferenceIndex:   Specifies the index of SignedProperties reference.

Use this property to specify the reference's index for the ds:Reference element that points to xades:SignedProperties element.

SignedSignaturePropertiesID:   Specifies the ID for SignedSignatureProperties element.

This property contains the identifier (ID) attribute of the xades:SignedSignatureProperties element.

SigningCertificatesChain:   The indicator of which certificates should be/are included as the signing chain.

Use this property to check or set the indices of the signing chain included in the signature. The none and all placeholders are supported.

SigningCertificatesHashAlgorithm:   Specifies the hash algorithm used for SigningCertificates.

Use this property to specify the hash algorithm to be used for xades:SigningCertificates element.

Supported values:

SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512

The default value is empty string, in this case, the hash algorithm specified in HashAlgorithm property is used.

SigPolicyDescription:   signature policy description.

This property specifies the Description of the signature policy (an alias for PolicyDescription). signature policy description.

This property specifies the Description of the signature policy (an alias for PolicyDescription).

SigPolicyDescription:   signature policy description.

This property specifies the Description of the signature policy (an alias for PolicyDescription). signature policy description.

This property specifies the Description of the signature policy (an alias for PolicyDescription).

SigPolicyExplicitText:   The explicit text of the user notice.

Use this property to specify the explicit text of the user notice to be displayed when the signature is verified (an alias for PolicyExplicitText); The explicit text of the user notice.

Use this property to specify the explicit text of the user notice to be displayed when the signature is verified (an alias for PolicyExplicitText);

SigPolicyExplicitText:   The explicit text of the user notice.

Use this property to specify the explicit text of the user notice to be displayed when the signature is verified (an alias for PolicyExplicitText); The explicit text of the user notice.

Use this property to specify the explicit text of the user notice to be displayed when the signature is verified (an alias for PolicyExplicitText);

SigPolicyHash:   The EPES policy hash.

Use this configuration setting to provide the EPES policy hash. The EPES policy hash.

Use this configuration setting to provide the EPES policy hash.

SigPolicyHash:   The EPES policy hash.

Use this configuration setting to provide the EPES policy hash. The EPES policy hash.

Use this configuration setting to provide the EPES policy hash.

SigPolicyHashAlgorithm:   The hash algorithm that was used to generate the EPES policy hash.

Use this setting to provide the hash algorithm that was used to generate the policy hash. The hash algorithm that was used to generate the EPES policy hash.

Use this setting to provide the hash algorithm that was used to generate the policy hash.

SigPolicyHashAlgorithm:   The hash algorithm that was used to generate the EPES policy hash.

Use this setting to provide the hash algorithm that was used to generate the policy hash. The hash algorithm that was used to generate the EPES policy hash.

Use this setting to provide the hash algorithm that was used to generate the policy hash.

SigPolicyID:   The EPES policy ID.

The EPES signature policy identifier, in dotted OID format (1.2.3.4.5). The EPES policy ID.

The EPES signature policy identifier, in dotted OID format (1.2.3.4.5).

SigPolicyID:   The EPES policy ID.

The EPES signature policy identifier, in dotted OID format (1.2.3.4.5). The EPES policy ID.

The EPES signature policy identifier, in dotted OID format (1.2.3.4.5).

SigPolicyNoticeNumbers:   The noticeNumbers part of the NoticeReference CAdES attribute.

Defines the "noticeNumbers" part of the NoticeReference signature policy qualifier for CAdES-EPES (an alias for PolicyUNNumbers). The noticeNumbers part of the NoticeReference CAdES attribute.

Defines the "noticeNumbers" part of the NoticeReference signature policy qualifier for CAdES-EPES (an alias for PolicyUNNumbers).

SigPolicyNoticeNumbers:   The noticeNumbers part of the NoticeReference CAdES attribute.

Defines the "noticeNumbers" part of the NoticeReference signature policy qualifier for CAdES-EPES (an alias for PolicyUNNumbers). The noticeNumbers part of the NoticeReference CAdES attribute.

Defines the "noticeNumbers" part of the NoticeReference signature policy qualifier for CAdES-EPES (an alias for PolicyUNNumbers).

SigPolicyNoticeOrganization:   The organization part of the NoticeReference qualifier.

Defines the "organization" part of the NoticeReference signature policy qualifier for CAdES-EPES (an alias for PolicyUNOrganization). The organization part of the NoticeReference qualifier.

Defines the "organization" part of the NoticeReference signature policy qualifier for CAdES-EPES (an alias for PolicyUNOrganization).

SigPolicyNoticeOrganization:   The organization part of the NoticeReference qualifier.

Defines the "organization" part of the NoticeReference signature policy qualifier for CAdES-EPES (an alias for PolicyUNOrganization). The organization part of the NoticeReference qualifier.

Defines the "organization" part of the NoticeReference signature policy qualifier for CAdES-EPES (an alias for PolicyUNOrganization).

SigPolicyURI:   The EPES policy URI.

Assign the EPES policy URI to this setting. The EPES policy URI.

Assign the EPES policy URI to this setting.

SigPolicyURI:   The EPES policy URI.

Assign the EPES policy URI to this setting. The EPES policy URI.

Assign the EPES policy URI to this setting.

StripWhitespace:   Controls whether excessive whitespace characters should be stripped off when saving the document.

Set this property to true to have the component eliminate excessive whitespace from the document.

TempPath:   Path for storing temporary files.

This setting specifies an absolute path to the location on disk where temporary files are stored.

TimestampCanonicalizationMethod:   Specifies canonicalization method used in timestamp.

Use this property to specify the canonicalization method used in timestamp.

cxcmNone0
cxcmCanon1
cxcmCanonComment2
cxcmExclCanon3
cxcmExclCanonComment4
cxcmMinCanon5
cxcmCanon_v1_16
cxcmCanonComment_v1_17
TimestampResponse:   A base16-encoded timestamp response received from a TSA.

When using virtual:// timestamp endpoints, assign this property in your Notification event handler with the TSP response that you receive from the TSA. Remember to encode the response in hex (base16).

TimestampValidationDataDetails:   Specifies timestamp validation data details to include to the signature.

Contains a comma-separated list of values that specifies which validation data values details to include to the signature when xades:TimeStampValidationData element added.

Supported values are:

certificateBase64-encoded [X509v3] certificates
crlBase64-encoded certificate revocation lists (CRL)
ocspOCSP responses

TLSChainValidationDetails:   Contains the advanced details of the TLS server certificate validation.

Check this property in the TLSCertValidate event handler to access the TLS certificate validation details.

TLSChainValidationResult:   Contains the result of the TLS server certificate validation.

Check this property in the TLSCertValidate event handler to obtain the TLS certificate validation result.

TLSClientAuthRequested:   Indicates whether the TLS server requests client authentication.

Check this property in the TLSCertValidate event handler to find out whether the TLS server requests the client to provide the authentication certificate. If this property is set to true, provide your certificate via the TLSClientChain property. Note that the class may fire this event more than once during each operation, as more than one TLS-enabled server may need to be contacted.

TLSValidationLog:   Contains the log of the TLS server certificate validation.

Check this property in the TLSCertValidate event handler to retrieve the validation log of the TLS server.

TolerateMinorChainIssues:   Whether to tolerate minor chain issues.

This parameter controls whether the chain validator should tolerate minor technical issues when validating the chain. Those are:

  • CA, revocation source, TLS key usage requirements are not mandated
  • Violation of OCSP issuer requirements are ignored
  • The AuthorityKeyID extension in CRL- and certificate-issuing CAs are ignored (helps with incorrectly renewed certificates)
  • Basic constraints and name constraints of CA certificates are ignored
  • Some weaker algorithms are tolerated
TspAttemptCount:   Specifies the number of timestamping request attempts.

Use this property to specify a number of timestamping request attempts.

In case of a timestamping failure, provide new TSA and HTTP settings inside the Notification event handler ('BeforeTimestamp' and 'TimestampError' event IDs).

TspHashAlgorithm:   Sets a specific hash algorithm for use with the timestamping service.

In default configuration class uses the 'SHA256' hash algorithm. Use this property to specify a different hash algorithm for the timestamp.

TspReqPolicy:   Sets a request policy ID to include in the timestamping request.

Use this property to provide a specific request policy OID to include in the timestamping request. Use the standard human-readable OID notation (1.2.3.4.5).

UseDefaultTrustedLists:   Enables or disables the use of the default TrustedLists.

Use this property to tell the validator to use (or not to use) the default TSLs (Trust Service status Lists).

The following default TSLs are used: EU (European Union) LOTL (list of trusted lists).

UseDefaultTSLs:   Enables or disables the use of the default TrustedLists.

Use this property to tell the validator to use (or not to use) the default TSLs (Trust Service status Lists).

The following default TSLs are used: EU (European Union) LOTL (list of trusted lists).

UseHMACSigning:   Whether to use HMAC signing.

Set this property to true to make the component perform signing using HMAC method, rather than asymmetric cryptography. Whether to use HMAC signing.

Set this property to true to make the component perform signing using HMAC method, rather than asymmetric cryptography.

UseHMACSigning:   Whether to use HMAC signing.

Set this property to true to make the component perform signing using HMAC method, rather than asymmetric cryptography. Whether to use HMAC signing.

Set this property to true to make the component perform signing using HMAC method, rather than asymmetric cryptography.

UseMicrosoftCTL:   Enables or disables the automatic use of the Microsoft online certificate trust list.

Enable this property to make the chain validation module automatically look up missing CA certificates in the public Windows Update repository.

UsePSS:   Whether to use RSASSA-PSS algorithm.

Although the RSASSA-PSS algorithm provides better security than a classic RSA scheme (PKCS#1-1.5), please take into account that RSASSA-PSS is a relatively new algorithm which may not be understood by older implementations. Whether to use RSASSA-PSS algorithm.

Although the RSASSA-PSS algorithm provides better security than a classic RSA scheme (PKCS#1-1.5), please take into account that RSASSA-PSS is a relatively new algorithm which may not be understood by older implementations.

UsePSS:   Whether to use RSASSA-PSS algorithm.

Although the RSASSA-PSS algorithm provides better security than a classic RSA scheme (PKCS#1-1.5), please take into account that RSASSA-PSS is a relatively new algorithm which may not be understood by older implementations. Whether to use RSASSA-PSS algorithm.

Although the RSASSA-PSS algorithm provides better security than a classic RSA scheme (PKCS#1-1.5), please take into account that RSASSA-PSS is a relatively new algorithm which may not be understood by older implementations.

UseSystemCertificates:   Enables or disables the use of the system certificates.

Use this property to tell the chain validation module to automatically look up missing CA certificates in the system certificates. In many cases it is beneficial to switch this property on, as the operating system certificate configuration provides a representative trust framework.

UseValidationCache:   Enables or disable the use of the product-wide certificate chain validation cache.

Use this property to enable or disable the use of the global chain validation cache. If enabled, the class will consult the product-wide validation cache when validating the signing chains. Also, the outcomes of any new chain validations performed by the class, both interim and final, will be saved in the cache and available for re-use by any future validations. Disable this property to ignore the cache and always perform the validation from a fresh start.

UseValidatorSettingsForTLSValidation:   Whether to employ the primary chain validator setup for auxiliary TLS chain validations.

Use this property to specify whether you would like to use the primary (AdES) chain validator component to validate TLS chains for any connections involved (OCSP, CRL).

ValidationDataRefsDetails:   Specifies validation data references details to include to the signature.

Contains a comma-separated list of values that specifies which validation data references details to include to the signature when signature upgraded to XAdES-C or XAdES-E-C form.

Supported values are:

certificateReferences to X.509 certificates
crlReferences to certificate revocation lists (CRL)
ocspReferences to OCSP responses

ValidationDataRefsHashAlgorithm:   Specifies the hash algorithm used in validation data references.

Use this property to specify the hash algorithm used to compute hashes for validation data references.

Supported values:

SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512

The default value is empty string, in this case, the hash algorithm specified in HashAlgorithm property is used.

ValidationDataValuesDetails:   Specifies validation data values details to include to the signature.

Contains a comma-separated list of values that specifies which validation data values details to include to the signature when signature upgraded to XAdES-X-L or XAdES-E-X-L form.

Supported values are:

certificateBase64-encoded [X509v3] certificates
crlBase64-encoded certificate revocation lists (CRL)
ocspOCSP responses

WriteBOM:   Specifies whether byte-order mark should be written when saving the document.

Set this property to False to disable writing byte-order mark (BOM) when saving the XML document in Unicode encoding.

XAdESPrefix:   Specifies the XAdES prefix.

Specifies the prefix for the XAdES elements.

Default value is "xades". In this case "xades:" prefix will be used.

Special values:

"#default" or ""indicates that the prefix will be omitted.
"#auto"indicates that the prefix will be auto-detected based on the parent nodes.

XAdESv141Prefix:   Specifies the XAdES v1.4.1 prefix.

Specifies the prefix for the XAdES v1.4.1 elements.

Default value is "xadesv141". In this case "xadesv141:" prefix will be used.

Special values:

"#default" or ""indicates that the prefix will be omitted.
"#auto"indicates that the prefix will be auto-detected based on the parent nodes.

XMLFormatting:   Specifies the signature XML formatting.

Use this property to specify how the signature should be formatted.

Supported values:

"" or "none"no formatting (by default).
"auto"enables auto-formatting, equivalent to: "indent: 1; indent-char: tab; base64-max-length: 64; starting-level: node"
Custom values, contains a list of value pairs ("name:value") separated by comma or semicolon:
indentspecifies indentation level (default is 1)
indent-charspecifies indentation character: "space" or "tab" (default)
base64-max-lengthspecifies max length of base64 encoded data, such as signature value, certificate data and etc. (default is 64)
starting-levelspecifies starting indentation level: non-negative integer or "node" - detected based on parent node, or "root" - detected based on number of parent nodes to a document element (default is "node").
indent-before-mainspecifies if whitespace characters should be inserted before a main (ds:Signature) element: "auto" (default), "yes" or "no"
For more preciese formatting use OnFormatText and OnFormatElement events.

Base Config Settings

ASN1UseGlobalTagCache:   Controls whether ASN.1 module should use a global object cache.

This is a performance setting. It is unlikely that you will ever need to adjust it.

AssignSystemSmartCardPins:   Specifies whether CSP-level PINs should be assigned to CNG keys.

This is a low-level tweak for certain cryptographic providers. It is unlikely that you will ever need to adjust it.

CheckKeyIntegrityBeforeUse:   Enables or disable private key integrity check before use.

This global property enables or disables private key material check before each signing operation. This slows down performance a bit, but prevents a selection of attacks on RSA keys where keys with unknown origins are used.

You can switch this property off to improve performance if your project only uses known, good private keys.

CookieCaching:   Specifies whether a cookie cache should be used for HTTP(S) transports.

Set this property to enable or disable cookies caching for the class.

Supported values are:

offNo caching (default)
localLocal caching
globalGlobal caching

Cookies:   Gets or sets local cookies for the class.

Use this property to get cookies from the internal cookie storage of the class and/or restore them back between application sessions.

DefDeriveKeyIterations:   Specifies the default key derivation algorithm iteration count.

This global property sets the default number of iterations for all supported key derivation algorithms. Note that you can provide the required number of iterations by using properties of the relevant key generation component; this global setting is used in scenarios where specific iteration count is not or cannot be provided.

DNSLocalSuffix:   The suffix to assign for TLD names.

Use this global setting to adjust the default suffix to assign to top-level domain names. The default is .local.

EnableClientSideSSLFFDHE:   Enables or disables finite field DHE key exchange support in TLS clients.

This global property enables or disables support for finite field DHE key exchange methods in TLS clients. FF DHE is a slower algorithm if compared to EC DHE; enabling it may result in slower connections.

This setting only applies to sessions negotiated with TLS version 1.3.

GlobalCookies:   Gets or sets global cookies for all the HTTP transports.

Use this property to get cookies from the GLOBAL cookie storage or restore them back between application sessions. These cookies will be used by all the classes that have its CookieCaching property set to "global".

HardwareCryptoUsePolicy:   The hardware crypto usage policy.

This global setting controls the hardware cryptography usage policy: auto, enable, or disable.

HttpUserAgent:   Specifies the user agent name to be used by all HTTP clients.

This global setting defines the User-Agent field of the HTTP request provides information about the software that initiates the request. This value will be used by all the HTTP clients including the ones used internally in other classes.

HttpVersion:   The HTTP version to use in any inner HTTP client components created.

Set this property to 1.0 or 1.1 to indicate the HTTP version that any internal HTTP clients should use.

IgnoreExpiredMSCTLSigningCert:   Whether to tolerate the expired Windows Update signing certificate.

It is not uncommon for Microsoft Windows Update Certificate Trust List to be signed with an expired Microsoft certificate. Setting this global property to true makes SBB ignore the expired factor and take the Trust List into account.

ListDelimiter:   The delimiter character for multi-element lists.

Allows to set the delimiter for any multi-entry values returned by the component as a string object, such as file lists. For most of the components, this property is set to a newline sequence.

LogDestination:   Specifies the debug log destination.

Contains a comma-separated list of values that specifies where debug log should be dumped.

Supported values are:

fileFile
consoleConsole
systemlogSystem Log (supported for Android only)
debuggerDebugger (supported for VCL for Windows and .Net)

LogDetails:   Specifies the debug log details to dump.

Contains a comma-separated list of values that specifies which debug log details to dump.

Supported values are:

timeCurrent time
levelLevel
packagePackage name
moduleModule name
classClass name
methodMethod name
threadidThread Id
contenttypeContent type
contentContent
allAll details

LogFile:   Specifies the debug log filename.

Use this property to provide a path to the log file.

LogFilters:   Specifies the debug log filters.

Contains a comma-separated list of value pairs ("name:value") that describe filters.

Supported filter names are:

exclude-packageExclude a package specified in the value
exclude-moduleExclude a module specified in the value
exclude-classExclude a class specified in the value
exclude-methodExclude a method specified in the value
include-packageInclude a package specified in the value
include-moduleInclude a module specified in the value
include-classInclude a class specified in the value
include-methodInclude a method specified in the value

LogFlushMode:   Specifies the log flush mode.

Use this property to set the log flush mode. The following values are defined:

noneNo flush (caching only)
immediateImmediate flush (real-time logging)
maxcountFlush cached entries upon reaching LogMaxEventCount entries in the cache.

LogLevel:   Specifies the debug log level.

Use this property to provide the desired debug log level.

Supported values are:

noneNone (by default)
fatalSevere errors that cause premature termination.
errorOther runtime errors or unexpected conditions.
warningUse of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong".
infoInteresting runtime events (startup/shutdown).
debugDetailed information on flow of through the system.
traceMore detailed information.

LogMaxEventCount:   Specifies the maximum number of events to cache before further action is taken.

Use this property to specify the log event number threshold. This threshold may have different effects, depending on the rotation setting and/or the flush mode.

The default value of this setting is 100.

LogRotationMode:   Specifies the log rotation mode.

Use this property to set the log rotation mode. The following values are defined:

noneNo rotation
deleteolderDelete older entries from the cache upon reaching LogMaxEventCount
keepolderKeep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded)

MaxASN1BufferLength:   Specifies the maximal allowed length for ASN.1 primitive tag data.

This global property limits the maximal allowed length for ASN.1 tag data for non-content-carrying structures, such as certificates, CRLs, or timestamps. It does not affect structures that can carry content, such as CMS/CAdES messages. This is a security property aiming at preventing DoS attacks.

MaxASN1TreeDepth:   Specifies the maximal depth for processed ASN.1 trees.

This global property limits the maximal depth of ASN.1 trees that the component can handle without throwing an error. This is a security property aiming at preventing DoS attacks.

OCSPHashAlgorithm:   Specifies the hash algorithm to be used to identify certificates in OCSP requests.

This global setting defines the hash algorithm to use in OCSP requests during chain validation. Some OCSP responders can only use older algorithms, in which case setting this property to SHA1 may be helpful.

OldClientSideRSAFallback:   Specifies whether the SSH client should use a SHA1 fallback.

Tells the SSH client to use a legacy ssh-rsa authentication even if the server indicates support for newer algorithms, such as rsa-sha-256. This is a backward-compatibility tweak.

ProductVersion:   Returns the version of the SecureBlackbox library.

This property returns the long version string of the SecureBlackbox library being used (major.minor.build.revision).

ServerSSLDHKeyLength:   Sets the size of the TLS DHE key exchange group.

Use this property to adjust the length, in bits, of the DHE prime to be used by the TLS server.

StaticDNS:   Specifies whether static DNS rules should be used.

Set this property to enable or disable static DNS rules for the class. Works only if UseOwnDNSResolver is set to true.

Supported values are:

noneNo static DNS rules (default)
localLocal static DNS rules
globalGlobal static DNS rules

StaticIPAddress[domain]:   Gets or sets an IP address for the specified domain name.

Use this property to get or set an IP address for the specified domain name in the internal (of the class) or global DNS rules storage depending on the StaticDNS value. The type of the IP address (IPv4 or IPv6) is determined automatically. If both addresses are available, they are devided by the | (pipe) character.

StaticIPAddresses:   Gets or sets all the static DNS rules.

Use this property to get static DNS rules from the current rules storage or restore them back between application sessions. If StaticDNS of the class is set to "local", the property returns/restores the rules from/to the internal storage of the class. If StaticDNS of the class is set to "global", the property returns/restores the rules from/to the GLOBAL storage. The rules list is returned and accepted in JSON format.

Tag:   Allows to store any custom data.

Use this config property to store any custom data.

TLSSessionGroup:   Specifies the group name of TLS sessions to be used for session resumption.

Use this property to limit the search of chached TLS sessions to the specified group. Sessions from other groups will be ignored. By default, all sessions are cached with an empty group name and available to all the classes.

TLSSessionLifetime:   Specifies lifetime in seconds of the cached TLS session.

Use this property to specify how much time the TLS session should be kept in the session cache. After this time, the session expires and will be automatically removed from the cache. Default value is 300 seconds (5 minutes).

TLSSessionPurgeInterval:   Specifies how often the session cache should remove the expired TLS sessions.

Use this property to specify the time interval of purging the expired TLS sessions from the session cache. Default value is 60 seconds (1 minute).

UseInternalRandom:   Switches between SecureBlackbox-own and platform PRNGs.

Allows to switch between internal/native PRNG implementation and the one provided by the platform.

UseLegacyAdESValidation:   Enables legacy AdES validation mode.

Use this setting to switch the AdES component to the validation approach that was used in SBB 2020/SBB 2022 (less attention to temporal details).

UseOwnDNSResolver:   Specifies whether the client components should use own DNS resolver.

Set this global property to false to force all the client components to use the DNS resolver provided by the target OS instead of using own one.

UseSharedSystemStorages:   Specifies whether the validation engine should use a global per-process copy of the system certificate stores.

Set this global property to false to make each validation run use its own copy of system certificate stores.

UseSystemNativeSizeCalculation:   An internal CryptoAPI access tweak.

This is an internal setting. Please do not use it unless instructed by the support team.

UseSystemOAEPAndPSS:   Enforces or disables the use of system-driven RSA OAEP and PSS computations.

This global setting defines who is responsible for performing RSA-OAEP and RSA-PSS computations where the private key is stored in a Windows system store and is exportable. If set to true, SBB will delegate the computations to Windows via a CryptoAPI call. Otherwise, it will export the key material and perform the computations using its own OAEP/PSS implementation.

This setting only applies to certificates originating from a Windows system store.

UseSystemRandom:   Enables or disables the use of the OS PRNG.

Use this global property to enable or disable the use of operating system-driven pseudorandom number generation.

Trappable Errors (XMLSigner Class)

Error Handling (C++)

Call the GetLastErrorCode() method to obtain the last called method's result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. Known error codes are listed below. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

XMLSigner Errors

1048577   Invalid parameter (SB_ERROR_INVALID_PARAMETER)
1048578   Invalid configuration (SB_ERROR_INVALID_SETUP)
1048579   Invalid state (SB_ERROR_INVALID_STATE)
1048580   Invalid value (SB_ERROR_INVALID_VALUE)
1048581   Private key not found (SB_ERROR_NO_PRIVATE_KEY)
1048582   Cancelled by the user (SB_ERROR_CANCELLED_BY_USER)
1048583   The file was not found (SB_ERROR_NO_SUCH_FILE)
1048584   Unsupported feature or operation (SB_ERROR_UNSUPPORTED_FEATURE)
1048585   General error (SB_ERROR_GENERAL_ERROR)
39845889   The input file does not exist (SB_ERROR_XML_INPUTFILE_NOT_EXISTS)
39845890   Data file does not exist (SB_ERROR_XML_DATAFILE_NOT_EXISTS)
39845892   Unsupported hash algorithm (SB_ERROR_XML_UNSUPPORTED_HASH_ALGORITHM)
39845893   Unsupported key type (SB_ERROR_XML_UNSUPPORTED_KEY_TYPE)
39845895   Unsupported encryption algorithm (SB_ERROR_XML_INVALID_ENCRYPTION_METHOD)
39845896   XML element not found (SB_ERROR_XML_NOT_FOUND)
39845897   XML element has no ID (SB_ERROR_XML_NO_ELEMENT_ID)