PDFEncryptor Class
Properties Methods Events Config Settings Errors
The PDFEncryptor class encrypts PDF documents.
Syntax
PDFEncryptor
Remarks
PDFEncryptor encrypts PDF documents with passwords or certificates.
Use PDFEncryptor to encrypt unencrypted and unsigned PDF documents. The PDF specification offers two encryption types:
- Password-based encryption: only someone who knows the password can decrypt the document.
- Certificate-based encryption: only the person who has the private key matching the encryption certificate can decrypt the document.
To encrypt a document with a password, simply assign the password to OwnerPassword and UserPassword properties. While PDF allows you to use different passwords for less-restricted owner and more-restricted user, this is rarely used in practice, with the majority of implementations sticking to the same password for both types of users.
To encrypt a document with a certificate, load the recipient's certificate using CertificateManager or CertificateStorage components and assign it to the EncryptionCertificate property. The certificate does not need to include the private key.
For both encryption types, use Permissions setting to adjust what the viewer can and cannot do. Please note that those are largely declarative, and when a PDF viewing application gets access to the decryption password, it can violate them or simply re-save the document without encryption.
Use EncryptionAlgorithm property to tweak the encryption algorithm. EncryptMetadata specifies whether the document information (author name, producer software etc.) should be encrypted together with the rest of the document or kept in the clear.
Finally, provide the input and output locations using InputFile (or InputBytes) and OutputFile properties and call the Encrypt method to complete the operation. If OutputFile is
not assigned, the encrypted document will be generated in OutputBytes.
encryptor.InputFile = "plain.pdf";
encryptor.OutputFile = "encrypted.pdf";
encryptor.OwnerPassword = "password";
encryptor.UserPassword = "password";
encryptor.Permissions = pepLowQualityPrint | pepHighQualityPrint;
encryptor.Encrypt();
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
DocumentInfo | Contains information about the document properties. |
EncryptionAlgorithm | The encryption algorithm to encrypt the document with. |
EncryptionCertificate | The encryption certificate. |
EncryptMetadata | Specifies whether to encrypt the document metadata. |
FIPSMode | Reserved. |
InputBytes | Use this property to pass the input to class in byte array form. |
InputFile | The PDF file to be encrypted. |
OutputBytes | Use this property to read the output the class object has produced. |
OutputFile | The file to save the encrypted document to. |
OwnerPassword | The owner password. |
Permissions | Specifies the document permissions associated with the encryption. |
UserPassword | The user password. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
DoAction | Performs an additional action. |
Encrypt | Encrypts the PDF document. |
Reset | Resets the class settings. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
DocumentLoaded | This event is fired when the document has been loaded into memory. |
Error | Information about errors during encryption. |
Notification | This event notifies the application about an underlying control flow event. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
DocumentVersion | The document version from the PDF document header. |
EmptySignatureFieldAddRevInfo[Index] | Specifies if revocation checking should be performed. |
EmptySignatureFieldAlternateName[Index] | Contains an alternate field name. |
EmptySignatureFieldCount | The number of empty signature form fields. |
EmptySignatureFieldFlags[Index] | The field flags of the signature form field. |
EmptySignatureFieldHeight[Index] | The Height of the empty signature form field. |
EmptySignatureFieldInvisible[Index] | The visibility status of the field. |
EmptySignatureFieldLegalAttestations[Index] | Specifies the legal attestations that are associated with the signature. |
EmptySignatureFieldMappingName[Index] | The mapping name to be used when exporting form field data from the document. |
EmptySignatureFieldName[Index] | Textual field name. |
EmptySignatureFieldOffsetX[Index] | The field's offset from the left page border. |
EmptySignatureFieldOffsetY[Index] | The field's offset from the bottom page border. |
EmptySignatureFieldPage[Index] | The index of the form field's page in the document. |
EmptySignatureFieldRequiredAllowedChanges[Index] | Specifies the changes allowed by the signature. |
EmptySignatureFieldRequiredConstraints[Index] | Specifies the required Seed Value Dictionary (SVD) constraints. |
EmptySignatureFieldRequiredDigestAlgorithms[Index] | Specifies the required digest algorithms. |
EmptySignatureFieldRequiredFilter[Index] | Specifies the required filter. |
EmptySignatureFieldRequiredLockAction[Index] | Indicates which set of fields shall be locked. |
EmptySignatureFieldRequiredLockFields[Index] | Indicates the fields that shall be locked on signing. |
EmptySignatureFieldRequiredReasons[Index] | Specifies the required reasons. |
EmptySignatureFieldRequiredSubfilters[Index] | Specifies the required subfilters. |
EmptySignatureFieldTimestampRequired[Index] | Specifies if the signature should be timestamped. |
EmptySignatureFieldTSPURL[Index] | URL for a TSP server. |
EmptySignatureFieldWidth[Index] | The Width of the empty signature form field. |
EncryptionHandlerName | Specifies the custom security handler PDF-name. |
HardenedKeyGeneration | Specifies if hardened Key generation should be used. |
PageInfoCount | The number of pages. |
PageInfoCropBoxEmpty[Index] | Check if the page's crop box is empty or not. |
PageInfoCropLLX[Index] | Defines the X coordinate of the lower left corner of the crop box. |
PageInfoCropLLY[Index] | Defines the Y coordinate of the lower left corner of the crop box. |
PageInfoCropURX[Index] | Defines the X coordinate of the upper right corner of the crop box. |
PageInfoCropURY[Index] | Defines the Y coordinate of the upper right corner of the crop box. |
PageInfoHeight[Index] | The Height of the page. |
PageInfoMediaLLX[Index] | Defines the X coordinate of the lower left corner of the media box. |
PageInfoMediaLLY[Index] | Defines the Y coordinate of the lower left corner of the media box. |
PageInfoMediaURX[Index] | Defines the X coordinate of the upper right corner of the media box. |
PageInfoMediaURY[Index] | Defines the Y coordinate of the upper right corner of the media box. |
PageInfoRotate[Index] | The Rotate value of the page. |
PageInfoUserUnit[Index] | Defines the size of default user space units. |
PageInfoWidth[Index] | The Width of the page. |
RC4KeyBits | Specifies the number of key bits used for the RC4 algorithm. |
TempPath | Path for storing temporary files. |
XMPMetadataContent | The XMP metadata content. |
ASN1UseGlobalTagCache | Controls whether ASN.1 module should use a global object cache. |
AssignSystemSmartCardPins | Specifies whether CSP-level PINs should be assigned to CNG keys. |
CheckKeyIntegrityBeforeUse | Enables or disable private key integrity check before use. |
CookieCaching | Specifies whether a cookie cache should be used for HTTP(S) transports. |
Cookies | Gets or sets local cookies for the class. |
DefDeriveKeyIterations | Specifies the default key derivation algorithm iteration count. |
DNSLocalSuffix | The suffix to assign for TLD names. |
EnableClientSideSSLFFDHE | Enables or disables finite field DHE key exchange support in TLS clients. |
GlobalCookies | Gets or sets global cookies for all the HTTP transports. |
HardwareCryptoUsePolicy | The hardware crypto usage policy. |
HttpUserAgent | Specifies the user agent name to be used by all HTTP clients. |
HttpVersion | The HTTP version to use in any inner HTTP client classes created. |
IgnoreExpiredMSCTLSigningCert | Whether to tolerate the expired Windows Update signing certificate. |
ListDelimiter | The delimiter character for multi-element lists. |
LogDestination | Specifies the debug log destination. |
LogDetails | Specifies the debug log details to dump. |
LogFile | Specifies the debug log filename. |
LogFilters | Specifies the debug log filters. |
LogFlushMode | Specifies the log flush mode. |
LogLevel | Specifies the debug log level. |
LogMaxEventCount | Specifies the maximum number of events to cache before further action is taken. |
LogRotationMode | Specifies the log rotation mode. |
MaxASN1BufferLength | Specifies the maximal allowed length for ASN.1 primitive tag data. |
MaxASN1TreeDepth | Specifies the maximal depth for processed ASN.1 trees. |
OCSPHashAlgorithm | Specifies the hash algorithm to be used to identify certificates in OCSP requests. |
OldClientSideRSAFallback | Specifies whether the SSH client should use a SHA1 fallback. |
PKICache | Specifies which PKI elements (certificates, CRLs, OCSP responses) should be cached. |
PKICachePath | Specifies the file system path where cached PKI data is stored. |
ProductVersion | Returns the version of the SecureBlackbox library. |
ServerSSLDHKeyLength | Sets the size of the TLS DHE key exchange group. |
StaticDNS | Specifies whether static DNS rules should be used. |
StaticIPAddress[domain] | Gets or sets an IP address for the specified domain name. |
StaticIPAddresses | Gets or sets all the static DNS rules. |
Tag | Allows to store any custom data. |
TLSSessionGroup | Specifies the group name of TLS sessions to be used for session resumption. |
TLSSessionLifetime | Specifies lifetime in seconds of the cached TLS session. |
TLSSessionPurgeInterval | Specifies how often the session cache should remove the expired TLS sessions. |
UseCRLObjectCaching | Specifies whether reuse of loaded CRL objects is enabled. |
UseInternalRandom | Switches between SecureBlackbox-own and platform PRNGs. |
UseLegacyAdESValidation | Enables legacy AdES validation mode. |
UseOCSPResponseObjectCaching | Specifies whether reuse of loaded OCSP response objects is enabled. |
UseOwnDNSResolver | Specifies whether the client classes should use own DNS resolver. |
UseSharedSystemStorages | Specifies whether the validation engine should use a global per-process copy of the system certificate stores. |
UseSystemNativeSizeCalculation | An internal CryptoAPI access tweak. |
UseSystemOAEPAndPSS | Enforces or disables the use of system-driven RSA OAEP and PSS computations. |
UseSystemRandom | Enables or disables the use of the OS PRNG. |
XMLRDNDescriptorName[OID] | Defines an OID mapping to descriptor names for the certificate's IssuerRDN or SubjectRDN. |
XMLRDNDescriptorPriority[OID] | Specifies the priority of descriptor names associated with a specific OID. |
XMLRDNDescriptorReverseOrder | Specifies whether to reverse the order of descriptors in RDN. |
XMLRDNDescriptorSeparator | Specifies the separator used between descriptors in RDN. |
DocumentInfo Property (PDFEncryptor Class)
Contains information about the document properties.
Syntax
SecureBlackboxPDFDocumentInfo* GetDocumentInfo();
char* secureblackbox_pdfencryptor_getdocumentinfoencryptionalgorithm(void* lpObj);
int secureblackbox_pdfencryptor_getdocumentinfoencryptiontype(void* lpObj);
int secureblackbox_pdfencryptor_getdocumentinfometadataencrypted(void* lpObj);
int secureblackbox_pdfencryptor_getdocumentinfopermissions(void* lpObj);
QString GetDocumentInfoEncryptionAlgorithm(); int GetDocumentInfoEncryptionType(); bool GetDocumentInfoMetadataEncrypted(); int GetDocumentInfoPermissions();
Remarks
Use this property to access general parameters of the document being processed. A good place to check this property is in the handler of the DocumentLoaded event.
This property is read-only and not available at design time.
Data Type
EncryptionAlgorithm Property (PDFEncryptor Class)
The encryption algorithm to encrypt the document with.
Syntax
ANSI (Cross Platform) char* GetEncryptionAlgorithm();
int SetEncryptionAlgorithm(const char* lpszEncryptionAlgorithm); Unicode (Windows) LPWSTR GetEncryptionAlgorithm();
INT SetEncryptionAlgorithm(LPCWSTR lpszEncryptionAlgorithm);
char* secureblackbox_pdfencryptor_getencryptionalgorithm(void* lpObj);
int secureblackbox_pdfencryptor_setencryptionalgorithm(void* lpObj, const char* lpszEncryptionAlgorithm);
QString GetEncryptionAlgorithm();
int SetEncryptionAlgorithm(QString qsEncryptionAlgorithm);
Default Value
"AES256"
Remarks
Use this property to specify the encryption algorithm to encrypt the PDF document with.
Supported values:
SB_SYMMETRIC_ALGORITHM_RC4 | RC4 | |
SB_SYMMETRIC_ALGORITHM_AES128 | AES128 | |
SB_SYMMETRIC_ALGORITHM_AES256 | AES256 |
Data Type
String
EncryptionCertificate Property (PDFEncryptor Class)
The encryption certificate.
Syntax
SecureBlackboxCertificate* GetEncryptionCertificate(); int SetEncryptionCertificate(SecureBlackboxCertificate* val);
int secureblackbox_pdfencryptor_getencryptioncertificatebytes(void* lpObj, char** lpEncryptionCertificateBytes, int* lenEncryptionCertificateBytes);
int secureblackbox_pdfencryptor_getencryptioncertificateca(void* lpObj);
int secureblackbox_pdfencryptor_setencryptioncertificateca(void* lpObj, int bEncryptionCertificateCA);
int secureblackbox_pdfencryptor_getencryptioncertificatecakeyid(void* lpObj, char** lpEncryptionCertificateCAKeyID, int* lenEncryptionCertificateCAKeyID);
int secureblackbox_pdfencryptor_getencryptioncertificatecerttype(void* lpObj);
char* secureblackbox_pdfencryptor_getencryptioncertificatecrldistributionpoints(void* lpObj);
int secureblackbox_pdfencryptor_setencryptioncertificatecrldistributionpoints(void* lpObj, const char* lpszEncryptionCertificateCRLDistributionPoints);
char* secureblackbox_pdfencryptor_getencryptioncertificatecurve(void* lpObj);
int secureblackbox_pdfencryptor_setencryptioncertificatecurve(void* lpObj, const char* lpszEncryptionCertificateCurve);
char* secureblackbox_pdfencryptor_getencryptioncertificatefingerprint(void* lpObj);
char* secureblackbox_pdfencryptor_getencryptioncertificatefriendlyname(void* lpObj);
int64 secureblackbox_pdfencryptor_getencryptioncertificatehandle(void* lpObj);
int secureblackbox_pdfencryptor_setencryptioncertificatehandle(void* lpObj, int64 lEncryptionCertificateHandle);
char* secureblackbox_pdfencryptor_getencryptioncertificatehashalgorithm(void* lpObj);
int secureblackbox_pdfencryptor_setencryptioncertificatehashalgorithm(void* lpObj, const char* lpszEncryptionCertificateHashAlgorithm);
char* secureblackbox_pdfencryptor_getencryptioncertificateissuer(void* lpObj);
char* secureblackbox_pdfencryptor_getencryptioncertificateissuerrdn(void* lpObj);
int secureblackbox_pdfencryptor_setencryptioncertificateissuerrdn(void* lpObj, const char* lpszEncryptionCertificateIssuerRDN);
char* secureblackbox_pdfencryptor_getencryptioncertificatekeyalgorithm(void* lpObj);
int secureblackbox_pdfencryptor_setencryptioncertificatekeyalgorithm(void* lpObj, const char* lpszEncryptionCertificateKeyAlgorithm);
int secureblackbox_pdfencryptor_getencryptioncertificatekeybits(void* lpObj);
char* secureblackbox_pdfencryptor_getencryptioncertificatekeyfingerprint(void* lpObj);
int secureblackbox_pdfencryptor_getencryptioncertificatekeyusage(void* lpObj);
int secureblackbox_pdfencryptor_setencryptioncertificatekeyusage(void* lpObj, int iEncryptionCertificateKeyUsage);
int secureblackbox_pdfencryptor_getencryptioncertificatekeyvalid(void* lpObj);
char* secureblackbox_pdfencryptor_getencryptioncertificateocsplocations(void* lpObj);
int secureblackbox_pdfencryptor_setencryptioncertificateocsplocations(void* lpObj, const char* lpszEncryptionCertificateOCSPLocations);
int secureblackbox_pdfencryptor_getencryptioncertificateocspnocheck(void* lpObj);
int secureblackbox_pdfencryptor_setencryptioncertificateocspnocheck(void* lpObj, int bEncryptionCertificateOCSPNoCheck);
int secureblackbox_pdfencryptor_getencryptioncertificateorigin(void* lpObj);
char* secureblackbox_pdfencryptor_getencryptioncertificatepolicyids(void* lpObj);
int secureblackbox_pdfencryptor_setencryptioncertificatepolicyids(void* lpObj, const char* lpszEncryptionCertificatePolicyIDs);
int secureblackbox_pdfencryptor_getencryptioncertificateprivatekeybytes(void* lpObj, char** lpEncryptionCertificatePrivateKeyBytes, int* lenEncryptionCertificatePrivateKeyBytes);
int secureblackbox_pdfencryptor_getencryptioncertificateprivatekeyexists(void* lpObj);
int secureblackbox_pdfencryptor_getencryptioncertificateprivatekeyextractable(void* lpObj);
int secureblackbox_pdfencryptor_getencryptioncertificatepublickeybytes(void* lpObj, char** lpEncryptionCertificatePublicKeyBytes, int* lenEncryptionCertificatePublicKeyBytes);
int secureblackbox_pdfencryptor_getencryptioncertificatequalified(void* lpObj);
int secureblackbox_pdfencryptor_getencryptioncertificatequalifiedstatements(void* lpObj);
int secureblackbox_pdfencryptor_setencryptioncertificatequalifiedstatements(void* lpObj, int iEncryptionCertificateQualifiedStatements);
char* secureblackbox_pdfencryptor_getencryptioncertificatequalifiers(void* lpObj);
int secureblackbox_pdfencryptor_getencryptioncertificateselfsigned(void* lpObj);
int secureblackbox_pdfencryptor_getencryptioncertificateserialnumber(void* lpObj, char** lpEncryptionCertificateSerialNumber, int* lenEncryptionCertificateSerialNumber);
int secureblackbox_pdfencryptor_setencryptioncertificateserialnumber(void* lpObj, const char* lpEncryptionCertificateSerialNumber, int lenEncryptionCertificateSerialNumber);
char* secureblackbox_pdfencryptor_getencryptioncertificatesigalgorithm(void* lpObj);
int secureblackbox_pdfencryptor_getencryptioncertificatesource(void* lpObj);
char* secureblackbox_pdfencryptor_getencryptioncertificatesubject(void* lpObj);
char* secureblackbox_pdfencryptor_getencryptioncertificatesubjectalternativename(void* lpObj);
int secureblackbox_pdfencryptor_setencryptioncertificatesubjectalternativename(void* lpObj, const char* lpszEncryptionCertificateSubjectAlternativeName);
int secureblackbox_pdfencryptor_getencryptioncertificatesubjectkeyid(void* lpObj, char** lpEncryptionCertificateSubjectKeyID, int* lenEncryptionCertificateSubjectKeyID);
int secureblackbox_pdfencryptor_setencryptioncertificatesubjectkeyid(void* lpObj, const char* lpEncryptionCertificateSubjectKeyID, int lenEncryptionCertificateSubjectKeyID);
char* secureblackbox_pdfencryptor_getencryptioncertificatesubjectrdn(void* lpObj);
int secureblackbox_pdfencryptor_setencryptioncertificatesubjectrdn(void* lpObj, const char* lpszEncryptionCertificateSubjectRDN);
int secureblackbox_pdfencryptor_getencryptioncertificatevalid(void* lpObj);
char* secureblackbox_pdfencryptor_getencryptioncertificatevalidfrom(void* lpObj);
int secureblackbox_pdfencryptor_setencryptioncertificatevalidfrom(void* lpObj, const char* lpszEncryptionCertificateValidFrom);
char* secureblackbox_pdfencryptor_getencryptioncertificatevalidto(void* lpObj);
int secureblackbox_pdfencryptor_setencryptioncertificatevalidto(void* lpObj, const char* lpszEncryptionCertificateValidTo);
QByteArray GetEncryptionCertificateBytes(); bool GetEncryptionCertificateCA();
int SetEncryptionCertificateCA(bool bEncryptionCertificateCA); QByteArray GetEncryptionCertificateCAKeyID(); int GetEncryptionCertificateCertType(); QString GetEncryptionCertificateCRLDistributionPoints();
int SetEncryptionCertificateCRLDistributionPoints(QString qsEncryptionCertificateCRLDistributionPoints); QString GetEncryptionCertificateCurve();
int SetEncryptionCertificateCurve(QString qsEncryptionCertificateCurve); QString GetEncryptionCertificateFingerprint(); QString GetEncryptionCertificateFriendlyName(); qint64 GetEncryptionCertificateHandle();
int SetEncryptionCertificateHandle(qint64 lEncryptionCertificateHandle); QString GetEncryptionCertificateHashAlgorithm();
int SetEncryptionCertificateHashAlgorithm(QString qsEncryptionCertificateHashAlgorithm); QString GetEncryptionCertificateIssuer(); QString GetEncryptionCertificateIssuerRDN();
int SetEncryptionCertificateIssuerRDN(QString qsEncryptionCertificateIssuerRDN); QString GetEncryptionCertificateKeyAlgorithm();
int SetEncryptionCertificateKeyAlgorithm(QString qsEncryptionCertificateKeyAlgorithm); int GetEncryptionCertificateKeyBits(); QString GetEncryptionCertificateKeyFingerprint(); int GetEncryptionCertificateKeyUsage();
int SetEncryptionCertificateKeyUsage(int iEncryptionCertificateKeyUsage); bool GetEncryptionCertificateKeyValid(); QString GetEncryptionCertificateOCSPLocations();
int SetEncryptionCertificateOCSPLocations(QString qsEncryptionCertificateOCSPLocations); bool GetEncryptionCertificateOCSPNoCheck();
int SetEncryptionCertificateOCSPNoCheck(bool bEncryptionCertificateOCSPNoCheck); int GetEncryptionCertificateOrigin(); QString GetEncryptionCertificatePolicyIDs();
int SetEncryptionCertificatePolicyIDs(QString qsEncryptionCertificatePolicyIDs); QByteArray GetEncryptionCertificatePrivateKeyBytes(); bool GetEncryptionCertificatePrivateKeyExists(); bool GetEncryptionCertificatePrivateKeyExtractable(); QByteArray GetEncryptionCertificatePublicKeyBytes(); bool GetEncryptionCertificateQualified(); int GetEncryptionCertificateQualifiedStatements();
int SetEncryptionCertificateQualifiedStatements(int iEncryptionCertificateQualifiedStatements); QString GetEncryptionCertificateQualifiers(); bool GetEncryptionCertificateSelfSigned(); QByteArray GetEncryptionCertificateSerialNumber();
int SetEncryptionCertificateSerialNumber(QByteArray qbaEncryptionCertificateSerialNumber); QString GetEncryptionCertificateSigAlgorithm(); int GetEncryptionCertificateSource(); QString GetEncryptionCertificateSubject(); QString GetEncryptionCertificateSubjectAlternativeName();
int SetEncryptionCertificateSubjectAlternativeName(QString qsEncryptionCertificateSubjectAlternativeName); QByteArray GetEncryptionCertificateSubjectKeyID();
int SetEncryptionCertificateSubjectKeyID(QByteArray qbaEncryptionCertificateSubjectKeyID); QString GetEncryptionCertificateSubjectRDN();
int SetEncryptionCertificateSubjectRDN(QString qsEncryptionCertificateSubjectRDN); bool GetEncryptionCertificateValid(); QString GetEncryptionCertificateValidFrom();
int SetEncryptionCertificateValidFrom(QString qsEncryptionCertificateValidFrom); QString GetEncryptionCertificateValidTo();
int SetEncryptionCertificateValidTo(QString qsEncryptionCertificateValidTo);
Remarks
Use this property to provide the encryption certificate. It does not need to have a private key, but the intended recipient of this PDF document does.
This property is not available at design time.
Data Type
EncryptMetadata Property (PDFEncryptor Class)
Specifies whether to encrypt the document metadata.
Syntax
ANSI (Cross Platform) int GetEncryptMetadata();
int SetEncryptMetadata(int bEncryptMetadata); Unicode (Windows) BOOL GetEncryptMetadata();
INT SetEncryptMetadata(BOOL bEncryptMetadata);
int secureblackbox_pdfencryptor_getencryptmetadata(void* lpObj);
int secureblackbox_pdfencryptor_setencryptmetadata(void* lpObj, int bEncryptMetadata);
bool GetEncryptMetadata();
int SetEncryptMetadata(bool bEncryptMetadata);
Default Value
TRUE
Remarks
Use this property to enable or disable metadata encryption.
Metadata contains additional information about the document, such as its name and author.
Data Type
Boolean
FIPSMode Property (PDFEncryptor Class)
Reserved.
Syntax
ANSI (Cross Platform) int GetFIPSMode();
int SetFIPSMode(int bFIPSMode); Unicode (Windows) BOOL GetFIPSMode();
INT SetFIPSMode(BOOL bFIPSMode);
int secureblackbox_pdfencryptor_getfipsmode(void* lpObj);
int secureblackbox_pdfencryptor_setfipsmode(void* lpObj, int bFIPSMode);
bool GetFIPSMode();
int SetFIPSMode(bool bFIPSMode);
Default Value
FALSE
Remarks
This property is reserved for future use.
Data Type
Boolean
InputBytes Property (PDFEncryptor Class)
Use this property to pass the input to class in byte array form.
Syntax
ANSI (Cross Platform) int GetInputBytes(char* &lpInputBytes, int &lenInputBytes);
int SetInputBytes(const char* lpInputBytes, int lenInputBytes); Unicode (Windows) INT GetInputBytes(LPSTR &lpInputBytes, INT &lenInputBytes);
INT SetInputBytes(LPCSTR lpInputBytes, INT lenInputBytes);
int secureblackbox_pdfencryptor_getinputbytes(void* lpObj, char** lpInputBytes, int* lenInputBytes);
int secureblackbox_pdfencryptor_setinputbytes(void* lpObj, const char* lpInputBytes, int lenInputBytes);
QByteArray GetInputBytes();
int SetInputBytes(QByteArray qbaInputBytes);
Remarks
Assign a byte array containing the data to be processed to this property.
This property is not available at design time.
Data Type
Byte Array
InputFile Property (PDFEncryptor Class)
The PDF file to be encrypted.
Syntax
ANSI (Cross Platform) char* GetInputFile();
int SetInputFile(const char* lpszInputFile); Unicode (Windows) LPWSTR GetInputFile();
INT SetInputFile(LPCWSTR lpszInputFile);
char* secureblackbox_pdfencryptor_getinputfile(void* lpObj);
int secureblackbox_pdfencryptor_setinputfile(void* lpObj, const char* lpszInputFile);
QString GetInputFile();
int SetInputFile(QString qsInputFile);
Default Value
""
Remarks
Provide the path to the PDF document to be encrypted.
Data Type
String
OutputBytes Property (PDFEncryptor Class)
Use this property to read the output the class object has produced.
Syntax
ANSI (Cross Platform) int GetOutputBytes(char* &lpOutputBytes, int &lenOutputBytes); Unicode (Windows) INT GetOutputBytes(LPSTR &lpOutputBytes, INT &lenOutputBytes);
int secureblackbox_pdfencryptor_getoutputbytes(void* lpObj, char** lpOutputBytes, int* lenOutputBytes);
QByteArray GetOutputBytes();
Remarks
Read the contents of this property after the operation has completed to read the produced output. This property will only be set if the OutputFile and OutputStream properties had not been assigned.
This property is read-only and not available at design time.
Data Type
Byte Array
OutputFile Property (PDFEncryptor Class)
The file to save the encrypted document to.
Syntax
ANSI (Cross Platform) char* GetOutputFile();
int SetOutputFile(const char* lpszOutputFile); Unicode (Windows) LPWSTR GetOutputFile();
INT SetOutputFile(LPCWSTR lpszOutputFile);
char* secureblackbox_pdfencryptor_getoutputfile(void* lpObj);
int secureblackbox_pdfencryptor_setoutputfile(void* lpObj, const char* lpszOutputFile);
QString GetOutputFile();
int SetOutputFile(QString qsOutputFile);
Default Value
""
Remarks
Specifies the path where the encrypted PDF should be saved.
Data Type
String
OwnerPassword Property (PDFEncryptor Class)
The owner password.
Syntax
ANSI (Cross Platform) char* GetOwnerPassword();
int SetOwnerPassword(const char* lpszOwnerPassword); Unicode (Windows) LPWSTR GetOwnerPassword();
INT SetOwnerPassword(LPCWSTR lpszOwnerPassword);
char* secureblackbox_pdfencryptor_getownerpassword(void* lpObj);
int secureblackbox_pdfencryptor_setownerpassword(void* lpObj, const char* lpszOwnerPassword);
QString GetOwnerPassword();
int SetOwnerPassword(QString qsOwnerPassword);
Default Value
""
Remarks
Use this property to provide the document owner password. Though it may be different from UserPassword, most implementations use the same value for both.
Data Type
String
Permissions Property (PDFEncryptor Class)
Specifies the document permissions associated with the encryption.
Syntax
ANSI (Cross Platform) int GetPermissions();
int SetPermissions(int iPermissions); Unicode (Windows) INT GetPermissions();
INT SetPermissions(INT iPermissions);
int secureblackbox_pdfencryptor_getpermissions(void* lpObj);
int secureblackbox_pdfencryptor_setpermissions(void* lpObj, int iPermissions);
int GetPermissions();
int SetPermissions(int iPermissions);
Default Value
0
Remarks
Use this property to specify the permissions protected by this encryption. The PDF specification expects applications to comply with these permissions when handling encrypted documents, but keep in mind that it is a policy-like requirement rather than an enforcement. Provide the permissions as a bit mask of the following flags:
pepAnnotations | 0x0001 | Annotating is allowed |
pepAssemble | 0x0002 | Assembling a new document on the basis of the processed one is allowed |
pepExtract | 0x0004 | Extraction/copying of the pictures and text from the document is allowed |
pepExtractAcc | 0x0008 | Content extraction is allowed for accessibility purposes only |
pepFillInForms | 0x0010 | Filling forms in is allowed |
pepHighQualityPrint | 0x0020 | High quality printing is allowed |
pepLowQualityPrint | 0x0040 | Low quality printing is allowed |
pepModify | 0x0080 | Modifications are allowed |
This property is not available at design time.
Data Type
Integer
UserPassword Property (PDFEncryptor Class)
The user password.
Syntax
ANSI (Cross Platform) char* GetUserPassword();
int SetUserPassword(const char* lpszUserPassword); Unicode (Windows) LPWSTR GetUserPassword();
INT SetUserPassword(LPCWSTR lpszUserPassword);
char* secureblackbox_pdfencryptor_getuserpassword(void* lpObj);
int secureblackbox_pdfencryptor_setuserpassword(void* lpObj, const char* lpszUserPassword);
QString GetUserPassword();
int SetUserPassword(QString qsUserPassword);
Default Value
""
Remarks
Use this property to provide the document user password. Though it may be different from OwnerPassword, most implementations use the same value for both.
Data Type
String
Config Method (PDFEncryptor Class)
Sets or retrieves a configuration setting.
Syntax
ANSI (Cross Platform) char* Config(const char* lpszConfigurationString); Unicode (Windows) LPWSTR Config(LPCWSTR lpszConfigurationString);
char* secureblackbox_pdfencryptor_config(void* lpObj, const char* lpszConfigurationString);
QString Config(const QString& qsConfigurationString);
Remarks
Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
DoAction Method (PDFEncryptor Class)
Performs an additional action.
Syntax
ANSI (Cross Platform) char* DoAction(const char* lpszActionID, const char* lpszActionParams); Unicode (Windows) LPWSTR DoAction(LPCWSTR lpszActionID, LPCWSTR lpszActionParams);
char* secureblackbox_pdfencryptor_doaction(void* lpObj, const char* lpszActionID, const char* lpszActionParams);
QString DoAction(const QString& qsActionID, const QString& qsActionParams);
Remarks
DoAction is a generic method available in every class. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.
The unique identifier (case insensitive) of the action is provided in the ActionID parameter.
ActionParams contains the value of a single parameter, or a list of multiple parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....
Common ActionIDs:
Action | Parameters | Returned value | Description |
ResetTrustedListCache | none | none | Clears the cached list of trusted lists. |
ResetCertificateCache | none | none | Clears the cached certificates. |
ResetCRLCache | none | none | Clears the cached CRLs. |
ResetOCSPResponseCache | none | none | Clears the cached OCSP responses. |
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
Encrypt Method (PDFEncryptor Class)
Encrypts the PDF document.
Syntax
ANSI (Cross Platform) int Encrypt(); Unicode (Windows) INT Encrypt();
int secureblackbox_pdfencryptor_encrypt(void* lpObj);
int Encrypt();
Remarks
Use this method to encrypt the PDF document as configured in the object's properties.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Reset Method (PDFEncryptor Class)
Resets the class settings.
Syntax
ANSI (Cross Platform) int Reset(); Unicode (Windows) INT Reset();
int secureblackbox_pdfencryptor_reset(void* lpObj);
int Reset();
Remarks
Reset is a generic method available in every class.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
DocumentLoaded Event (PDFEncryptor Class)
This event is fired when the document has been loaded into memory.
Syntax
ANSI (Cross Platform) virtual int FireDocumentLoaded(PDFEncryptorDocumentLoadedEventParams *e);
typedef struct {
int Cancel; int reserved; } PDFEncryptorDocumentLoadedEventParams;
Unicode (Windows) virtual INT FireDocumentLoaded(PDFEncryptorDocumentLoadedEventParams *e);
typedef struct {
BOOL Cancel; INT reserved; } PDFEncryptorDocumentLoadedEventParams;
#define EID_PDFENCRYPTOR_DOCUMENTLOADED 1 virtual INT SECUREBLACKBOX_CALL FireDocumentLoaded(BOOL &bCancel);
class PDFEncryptorDocumentLoadedEventParams { public: bool Cancel(); void SetCancel(bool bCancel); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void DocumentLoaded(PDFEncryptorDocumentLoadedEventParams *e);
// Or, subclass PDFEncryptor and override this emitter function. virtual int FireDocumentLoaded(PDFEncryptorDocumentLoadedEventParams *e) {...}
Remarks
The handler for this event is a good place to check the document structure, which may be useful when preparing the signature. For example, you can use the Pages information to find the optimal position for the signature widget.
Set Cancel to true to terminate document processing on this stage.
Error Event (PDFEncryptor Class)
Information about errors during encryption.
Syntax
ANSI (Cross Platform) virtual int FireError(PDFEncryptorErrorEventParams *e);
typedef struct {
int ErrorCode;
const char *Description; int reserved; } PDFEncryptorErrorEventParams;
Unicode (Windows) virtual INT FireError(PDFEncryptorErrorEventParams *e);
typedef struct {
INT ErrorCode;
LPCWSTR Description; INT reserved; } PDFEncryptorErrorEventParams;
#define EID_PDFENCRYPTOR_ERROR 2 virtual INT SECUREBLACKBOX_CALL FireError(INT &iErrorCode, LPSTR &lpszDescription);
class PDFEncryptorErrorEventParams { public: int ErrorCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Error(PDFEncryptorErrorEventParams *e);
// Or, subclass PDFEncryptor and override this emitter function. virtual int FireError(PDFEncryptorErrorEventParams *e) {...}
Remarks
The event is fired in case of exceptional conditions during PDF processing.
ErrorCode contains an error code and Description contains a textual description of the error.
Notification Event (PDFEncryptor Class)
This event notifies the application about an underlying control flow event.
Syntax
ANSI (Cross Platform) virtual int FireNotification(PDFEncryptorNotificationEventParams *e);
typedef struct {
const char *EventID;
const char *EventParam; int reserved; } PDFEncryptorNotificationEventParams;
Unicode (Windows) virtual INT FireNotification(PDFEncryptorNotificationEventParams *e);
typedef struct {
LPCWSTR EventID;
LPCWSTR EventParam; INT reserved; } PDFEncryptorNotificationEventParams;
#define EID_PDFENCRYPTOR_NOTIFICATION 3 virtual INT SECUREBLACKBOX_CALL FireNotification(LPSTR &lpszEventID, LPSTR &lpszEventParam);
class PDFEncryptorNotificationEventParams { public: const QString &EventID(); const QString &EventParam(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Notification(PDFEncryptorNotificationEventParams *e);
// Or, subclass PDFEncryptor and override this emitter function. virtual int FireNotification(PDFEncryptorNotificationEventParams *e) {...}
Remarks
The class fires this event to let the application know about some event, occurrence, or milestone in the class. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.
The unique identifier of the event is provided in the EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the class, the exact action it is performing, or the document being processed, one or both may be omitted.
This class can fire this event with the following EventID values:
DocumentLoaded | Notifies the application that the document has been loaded. This is a backward-compatibility-only notification. Use OnDocumentLoaded event instead. |
Certificate Type
Encapsulates an individual X.509 certificate.
Syntax
SecureBlackboxCertificate (declared in secureblackbox.h)
Remarks
This type keeps and provides access to X.509 certificate details.
Fields
Bytes
char* (read-only)
Default Value:
Returns the raw certificate data in DER format.
CA
int
Default Value: FALSE
Indicates whether the certificate has a CA capability. For the certificate to be considered a CA, it must have its Basic Constraints extension set with the CA indicator enabled.
Set this field when generating a new certificate to have its Basic Constraints extension generated automatically.
CAKeyID
char* (read-only)
Default Value:
A unique identifier (fingerprint) of the CA certificate's cryptographic key.
Authority Key Identifier is a certificate extension which allows identification of certificates belonging to the same issuer, but with different public keys. It is a de-facto standard to include this extension in all certificates to facilitate chain building.
This setting cannot be set when generating a certificate as it always derives from another certificate property. CertificateManager generates this setting automatically if enough information is available to it: for self-signed certificates, this value is copied from the SubjectKeyID setting, and for lower-level certificates, from the parent certificate's subject key ID extension.
CertType
int (read-only)
Default Value: 0
Returns the type of the entity contained in the Certificate object.
A Certificate object can contain two types of cryptographic objects: a ready-to-use X.509 certificate, or a certificate request ("an unsigned certificate"). Certificate requests can be upgraded to full certificates by signing them with a CA certificate.
Use the CertificateManager class to load or create new certificate and certificate requests objects.
CRLDistributionPoints
char*
Default Value: ""
Contains a list of locations of CRL distribution points used to check this certificate's validity. The list is taken from the respective certificate extension.
Use this field when generating a certificate to provide a list of CRL endpoints that should be made part of the new certificate.
The endpoints are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.
Curve
char*
Default Value: ""
Specifies the elliptic curve associated with the certificate's public key. This setting only applies to certificates containing EC keys.
SB_EC_SECP112R1 | SECP112R1 | |
SB_EC_SECP112R2 | SECP112R2 | |
SB_EC_SECP128R1 | SECP128R1 | |
SB_EC_SECP128R2 | SECP128R2 | |
SB_EC_SECP160K1 | SECP160K1 | |
SB_EC_SECP160R1 | SECP160R1 | |
SB_EC_SECP160R2 | SECP160R2 | |
SB_EC_SECP192K1 | SECP192K1 | |
SB_EC_SECP192R1 | SECP192R1 | |
SB_EC_SECP224K1 | SECP224K1 | |
SB_EC_SECP224R1 | SECP224R1 | |
SB_EC_SECP256K1 | SECP256K1 | |
SB_EC_SECP256R1 | SECP256R1 | |
SB_EC_SECP384R1 | SECP384R1 | |
SB_EC_SECP521R1 | SECP521R1 | |
SB_EC_SECT113R1 | SECT113R1 | |
SB_EC_SECT113R2 | SECT113R2 | |
SB_EC_SECT131R1 | SECT131R1 | |
SB_EC_SECT131R2 | SECT131R2 | |
SB_EC_SECT163K1 | SECT163K1 | |
SB_EC_SECT163R1 | SECT163R1 | |
SB_EC_SECT163R2 | SECT163R2 | |
SB_EC_SECT193R1 | SECT193R1 | |
SB_EC_SECT193R2 | SECT193R2 | |
SB_EC_SECT233K1 | SECT233K1 | |
SB_EC_SECT233R1 | SECT233R1 | |
SB_EC_SECT239K1 | SECT239K1 | |
SB_EC_SECT283K1 | SECT283K1 | |
SB_EC_SECT283R1 | SECT283R1 | |
SB_EC_SECT409K1 | SECT409K1 | |
SB_EC_SECT409R1 | SECT409R1 | |
SB_EC_SECT571K1 | SECT571K1 | |
SB_EC_SECT571R1 | SECT571R1 | |
SB_EC_PRIME192V1 | PRIME192V1 | |
SB_EC_PRIME192V2 | PRIME192V2 | |
SB_EC_PRIME192V3 | PRIME192V3 | |
SB_EC_PRIME239V1 | PRIME239V1 | |
SB_EC_PRIME239V2 | PRIME239V2 | |
SB_EC_PRIME239V3 | PRIME239V3 | |
SB_EC_PRIME256V1 | PRIME256V1 | |
SB_EC_C2PNB163V1 | C2PNB163V1 | |
SB_EC_C2PNB163V2 | C2PNB163V2 | |
SB_EC_C2PNB163V3 | C2PNB163V3 | |
SB_EC_C2PNB176W1 | C2PNB176W1 | |
SB_EC_C2TNB191V1 | C2TNB191V1 | |
SB_EC_C2TNB191V2 | C2TNB191V2 | |
SB_EC_C2TNB191V3 | C2TNB191V3 | |
SB_EC_C2ONB191V4 | C2ONB191V4 | |
SB_EC_C2ONB191V5 | C2ONB191V5 | |
SB_EC_C2PNB208W1 | C2PNB208W1 | |
SB_EC_C2TNB239V1 | C2TNB239V1 | |
SB_EC_C2TNB239V2 | C2TNB239V2 | |
SB_EC_C2TNB239V3 | C2TNB239V3 | |
SB_EC_C2ONB239V4 | C2ONB239V4 | |
SB_EC_C2ONB239V5 | C2ONB239V5 | |
SB_EC_C2PNB272W1 | C2PNB272W1 | |
SB_EC_C2PNB304W1 | C2PNB304W1 | |
SB_EC_C2TNB359V1 | C2TNB359V1 | |
SB_EC_C2PNB368W1 | C2PNB368W1 | |
SB_EC_C2TNB431R1 | C2TNB431R1 | |
SB_EC_NISTP192 | NISTP192 | |
SB_EC_NISTP224 | NISTP224 | |
SB_EC_NISTP256 | NISTP256 | |
SB_EC_NISTP384 | NISTP384 | |
SB_EC_NISTP521 | NISTP521 | |
SB_EC_NISTB163 | NISTB163 | |
SB_EC_NISTB233 | NISTB233 | |
SB_EC_NISTB283 | NISTB283 | |
SB_EC_NISTB409 | NISTB409 | |
SB_EC_NISTB571 | NISTB571 | |
SB_EC_NISTK163 | NISTK163 | |
SB_EC_NISTK233 | NISTK233 | |
SB_EC_NISTK283 | NISTK283 | |
SB_EC_NISTK409 | NISTK409 | |
SB_EC_NISTK571 | NISTK571 | |
SB_EC_GOSTCPTEST | GOSTCPTEST | |
SB_EC_GOSTCPA | GOSTCPA | |
SB_EC_GOSTCPB | GOSTCPB | |
SB_EC_GOSTCPC | GOSTCPC | |
SB_EC_GOSTCPXCHA | GOSTCPXCHA | |
SB_EC_GOSTCPXCHB | GOSTCPXCHB | |
SB_EC_BRAINPOOLP160R1 | BRAINPOOLP160R1 | |
SB_EC_BRAINPOOLP160T1 | BRAINPOOLP160T1 | |
SB_EC_BRAINPOOLP192R1 | BRAINPOOLP192R1 | |
SB_EC_BRAINPOOLP192T1 | BRAINPOOLP192T1 | |
SB_EC_BRAINPOOLP224R1 | BRAINPOOLP224R1 | |
SB_EC_BRAINPOOLP224T1 | BRAINPOOLP224T1 | |
SB_EC_BRAINPOOLP256R1 | BRAINPOOLP256R1 | |
SB_EC_BRAINPOOLP256T1 | BRAINPOOLP256T1 | |
SB_EC_BRAINPOOLP320R1 | BRAINPOOLP320R1 | |
SB_EC_BRAINPOOLP320T1 | BRAINPOOLP320T1 | |
SB_EC_BRAINPOOLP384R1 | BRAINPOOLP384R1 | |
SB_EC_BRAINPOOLP384T1 | BRAINPOOLP384T1 | |
SB_EC_BRAINPOOLP512R1 | BRAINPOOLP512R1 | |
SB_EC_BRAINPOOLP512T1 | BRAINPOOLP512T1 | |
SB_EC_CURVE25519 | CURVE25519 | |
SB_EC_CURVE448 | CURVE448 |
Fingerprint
char* (read-only)
Default Value: ""
Contains the fingerprint (a hash imprint) of this certificate.
While there is no formal standard defining what a fingerprint is, a SHA1 hash of the certificate's DER-encoded body is typically used.
FriendlyName
char* (read-only)
Default Value: ""
Contains an associated alias (friendly name) of the certificate. The friendly name is not a property of a certificate: it is maintained by the certificate media rather than being included in its DER representation. Windows certificate stores are one example of media that does support friendly names.
Handle
int64
Default Value: 0
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
HashAlgorithm
char*
Default Value: ""
Provides means to set the hash algorithm to be used in the subsequent operation on the certificate (such as generation or key signing). It is not a property of a certificate; use SigAlgorithm to find out the hash algorithm that is part of the certificate signature.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
Issuer
char* (read-only)
Default Value: ""
The common name of the certificate issuer (CA), typically a company name. This is part of a larger set of credentials available via IssuerRDN.
IssuerRDN
char*
Default Value: ""
A list of Property=Value pairs that uniquely identify the certificate issuer.
Example: /C=US/O=Nationwide CA/CN=Web Certification Authority
KeyAlgorithm
char*
Default Value: "0"
Specifies the public key algorithm of this certificate.
SB_CERT_ALGORITHM_ID_RSA_ENCRYPTION | rsaEncryption | |
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTION | md2withRSAEncryption | |
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTION | md5withRSAEncryption | |
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTION | sha1withRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA | id-dsa | |
SB_CERT_ALGORITHM_ID_DSA_SHA1 | id-dsa-with-sha1 | |
SB_CERT_ALGORITHM_DH_PUBLIC | dhpublicnumber | |
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTION | sha224WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTION | sha256WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTION | sha384WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTION | sha512WithRSAEncryption | |
SB_CERT_ALGORITHM_ID_RSAPSS | id-RSASSA-PSS | |
SB_CERT_ALGORITHM_ID_RSAOAEP | id-RSAES-OAEP | |
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160 | ripemd160withRSA | |
SB_CERT_ALGORITHM_ID_ELGAMAL | elGamal | |
SB_CERT_ALGORITHM_SHA1_ECDSA | ecdsa-with-SHA1 | |
SB_CERT_ALGORITHM_RECOMMENDED_ECDSA | ecdsa-recommended | |
SB_CERT_ALGORITHM_SHA224_ECDSA | ecdsa-with-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA | ecdsa-with-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA | ecdsa-with-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA | ecdsa-with-SHA512 | |
SB_CERT_ALGORITHM_EC | id-ecPublicKey | |
SB_CERT_ALGORITHM_SPECIFIED_ECDSA | ecdsa-specified | |
SB_CERT_ALGORITHM_GOST_R3410_1994 | id-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3410_2001 | id-GostR3410-2001 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994 | id-GostR3411-94-with-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001 | id-GostR3411-94-with-GostR3410-2001 | |
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAIN | ecdsa-plain-SHA1 | |
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAIN | ecdsa-plain-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAIN | ecdsa-plain-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAIN | ecdsa-plain-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAIN | ecdsa-plain-SHA512 | |
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAIN | ecdsa-plain-RIPEMD160 | |
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTION | whirlpoolWithRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA_SHA224 | id-dsa-with-sha224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA256 | id-dsa-with-sha256 | |
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA | id-ecdsa-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA | id-ecdsa-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA | id-ecdsa-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA | id-ecdsa-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-512 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_224 | id-dsa-with-sha3-224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_256 | id-dsa-with-sha3-256 | |
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA | id-ecdsa-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA | id-ecdsa-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA | id-ecdsa-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA | id-ecdsa-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA | id-ecdsa-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA | id-ecdsa-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA | id-ecdsa-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA | id-ecdsa-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b512 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224 | id-dsa-with-blake2s224 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256 | id-dsa-with-blake2s256 | |
SB_CERT_ALGORITHM_EDDSA_ED25519 | id-Ed25519 | |
SB_CERT_ALGORITHM_EDDSA_ED448 | id-Ed448 | |
SB_CERT_ALGORITHM_EDDSA_ED25519_PH | id-Ed25519ph | |
SB_CERT_ALGORITHM_EDDSA_ED448_PH | id-Ed448ph | |
SB_CERT_ALGORITHM_EDDSA | id-EdDSA | |
SB_CERT_ALGORITHM_EDDSA_SIGNATURE | id-EdDSA-sig |
Use the KeyBits, Curve, and PublicKeyBytes fields to get more details about the key the certificate contains.
KeyBits
int (read-only)
Default Value: 0
Returns the length of the public key in bits.
This value indicates the length of the principal cryptographic parameter of the key, such as the length of the RSA modulus or ECDSA field. The key data returned by the PublicKeyBytes or PrivateKeyBytes field would typically contain auxiliary values, and therefore be longer.
KeyFingerprint
char* (read-only)
Default Value: ""
Returns a SHA1 fingerprint of the public key contained in the certificate.
Note that the key fingerprint is different from the certificate fingerprint accessible via the Fingerprint field. The key fingeprint uniquely identifies the public key, and so can be the same for multiple certificates containing the same key.
KeyUsage
int
Default Value: 0
Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.
This value is a bit mask of the following values:
ckuUnknown | 0x00000 | Unknown key usage |
ckuDigitalSignature | 0x00001 | Digital signature |
ckuNonRepudiation | 0x00002 | Non-repudiation |
ckuKeyEncipherment | 0x00004 | Key encipherment |
ckuDataEncipherment | 0x00008 | Data encipherment |
ckuKeyAgreement | 0x00010 | Key agreement |
ckuKeyCertSign | 0x00020 | Certificate signing |
ckuCRLSign | 0x00040 | Revocation signing |
ckuEncipherOnly | 0x00080 | Encipher only |
ckuDecipherOnly | 0x00100 | Decipher only |
ckuServerAuthentication | 0x00200 | Server authentication |
ckuClientAuthentication | 0x00400 | Client authentication |
ckuCodeSigning | 0x00800 | Code signing |
ckuEmailProtection | 0x01000 | Email protection |
ckuTimeStamping | 0x02000 | Timestamping |
ckuOCSPSigning | 0x04000 | OCSP signing |
ckuSmartCardLogon | 0x08000 | Smartcard logon |
ckuKeyPurposeClientAuth | 0x10000 | Kerberos - client authentication |
ckuKeyPurposeKDC | 0x20000 | Kerberos - KDC |
Set this field before generating the certificate to propagate the key usage flags to the new certificate.
KeyValid
int (read-only)
Default Value: FALSE
Returns True if the certificate's key is cryptographically valid, and False otherwise.
OCSPLocations
char*
Default Value: ""
Locations of OCSP services that can be used to check this certificate's validity in real time, as recorded by the CA.
Set this field before calling the certificate manager's Generate method to propagate it to the new certificate.
The OCSP locations are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.
OCSPNoCheck
int
Default Value: FALSE
Accessor to the value of the certificate's ocsp-no-check extension.
Origin
int (read-only)
Default Value: 0
Returns the location that the certificate was taken or loaded from.
PolicyIDs
char*
Default Value: ""
Contains identifiers (OIDs) of the applicable certificate policies.
The Certificate Policies extension identifies a sequence of policies under which the certificate has been issued, and which regulate its usage.
Set this field when generating a certificate to propagate the policies information to the new certificate.
The policies are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the policy element separator.
PrivateKeyBytes
char* (read-only)
Default Value:
Returns the certificate's private key in DER-encoded format. It is normal for this field to be empty if the private key is non-exportable, which, for example, is typical for certificates originating from hardware security devices.
PrivateKeyExists
int (read-only)
Default Value: FALSE
Indicates whether the certificate has a usable private key associated with it. If it is set to True, the certificate can be used for private key operations, such as signing or decryption.
This field is independent from PrivateKeyBytes, and can be set to True even if the former is empty. This would imply that the private key is non-exportable, but still can be used for cryptographic operations.
PrivateKeyExtractable
int (read-only)
Default Value: FALSE
Indicates whether the private key is extractable (exportable).
PublicKeyBytes
char* (read-only)
Default Value:
Contains the certificate's public key in DER format.
This typically would contain an ASN.1-encoded public key value. The exact format depends on the type of the public key contained in the certificate.
Qualified
int (read-only)
Default Value: FALSE
Indicates whether the certificate is qualified.
This property is set to True if the certificate is confirmed by a Trusted List to be qualified.
QualifiedStatements
int
Default Value: 0
Returns a simplified qualified status of the certificate.
Qualifiers
char* (read-only)
Default Value: ""
A list of qualifiers.
Contains a comma-separated list of qualifier aliases for the certificate, for example QCP-n-qscd,QCWithSSCD.
SelfSigned
int (read-only)
Default Value: FALSE
Indicates whether the certificate is self-signed (root) or signed by an external CA.
SerialNumber
char*
Default Value:
Returns the certificate's serial number.
The serial number is a binary string that uniquely identifies a certificate among others issued by the same CA. According to the X.509 standard, the (issuer, serial number) pair should be globally unique to facilitate chain building.
SigAlgorithm
char* (read-only)
Default Value: ""
Indicates the algorithm that was used by the CA to sign this certificate.
A signature algorithm typically combines hash and public key algorithms together, such as sha256WithRSAEncryption or ecdsa-with-SHA256.
Source
int (read-only)
Default Value: 0
Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.
Subject
char* (read-only)
Default Value: ""
The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name. This is part of a larger set of credentials available via SubjectRDN.
SubjectAlternativeName
char*
Default Value: ""
Returns or sets the value of the Subject Alternative Name extension of the certificate.
Subject alternative names are used to provide additional names that are impractical to store in the main SubjectRDN field. For example, it is often used to store all the domain names that a TLS certificate is authorized to protect.
The alternative names are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the element separator.
SubjectKeyID
char*
Default Value:
Contains a unique identifier of the certificate's cryptographic key.
Subject Key Identifier is a certificate extension which allows a specific public key to be associated with a certificate holder. Typically, subject key identifiers of CA certificates are recorded as respective CA key identifiers in the subordinate certificates that they issue, which facilitates chain building.
The SubjectKeyID and CAKeyID fields of self-signed certificates typically contain identical values, as in that specific case, the issuer and the subject are the same entity.
SubjectRDN
char*
Default Value: ""
A list of Property=Value pairs that uniquely identify the certificate holder (subject).
Depending on the purpose of the certificate and the policies of the CA that issued it, the values included in the subject record may differ drastically and contain business or personal names, web URLs, email addresses, and other data.
Example: /C=US/O=Oranges and Apples, Inc./OU=Accounts Receivable/1.2.3.4.5=Value with unknown OID/CN=Margaret Watkins.
Valid
int (read-only)
Default Value: FALSE
Indicates whether or not the signature over the certificate or the request is valid and matches the public key contained in the CA certificate/request.
ValidFrom
char*
Default Value: ""
The time point at which the certificate becomes valid, in UTC.
ValidTo
char*
Default Value: ""
The time point at which the certificate expires, in UTC.
Constructors
Certificate()
Creates a new object with default field values.
PDFDocumentInfo Type
Contains document security information.
Syntax
SecureBlackboxPDFDocumentInfo (declared in secureblackbox.h)
Remarks
This type provides an overview of the document security parameters, including the encryption method (if used) and signature count. This information is available early into the signing/validation process and lets you prepare for the subsequent signature validation.
Fields
EncryptionAlgorithm
char* (read-only)
Default Value: ""
The symmetric algorithm used to encrypt the document.
This property contains the encryption algorithm that was used to encrypt the PDF document.
Supported values:
SB_SYMMETRIC_ALGORITHM_RC4 | RC4 | |
SB_SYMMETRIC_ALGORITHM_AES128 | AES128 | |
SB_SYMMETRIC_ALGORITHM_AES256 | AES256 |
EncryptionType
int (read-only)
Default Value: 1
The document encryption type.
This property indicates the kind of encryption that was used to encrypt the PDF document.
Supported values:
petPassword | 1 | The document is encrypted with a password. |
petCertificate | 2 | The document is encrypted with a certificate (or many certificates). |
MetadataEncrypted
int (read-only)
Default Value: TRUE
Indicates if the document metadata is encrypted.
Use this property to check if the document metadata is encrypted.
Metadata contains additional information about the document such as its name and author.
Permissions
int (read-only)
Default Value: 0
Contains the document permissions associated with the encryption.
Use this property to check the permissions protected by this encryption. The PDF specification expects applications to comply with these permissions when handling encrypted documents. Contains a bit mask of the following flags:
pepAnnotations | 0x0001 | Annotating is allowed |
pepAssemble | 0x0002 | Assembling a new document on the basis of the processed one is allowed |
pepExtract | 0x0004 | Extraction/copying of the pictures and text from the document is allowed |
pepExtractAcc | 0x0008 | Content extraction is allowed for accessibility purposes only |
pepFillInForms | 0x0010 | Filling forms in is allowed |
pepHighQualityPrint | 0x0020 | High quality printing is allowed |
pepLowQualityPrint | 0x0040 | Low quality printing is allowed |
pepModify | 0x0080 | Modifications are allowed |
Constructors
PDFDocumentInfo()
Initializes an instance of PDFDocumentInfo class.
Config Settings (PDFEncryptor Class)
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.PDFEncryptor Config Settings
Base Config Settings
You can switch this property off to improve performance if your project only uses known, good private keys.
Supported values are:
off | No caching (default) | |
local | Local caching | |
global | Global caching |
This setting only applies to sessions negotiated with TLS version 1.3.
Supported values are:
file | File | |
console | Console | |
systemlog | System Log (supported for Android only) | |
debugger | Debugger (supported for VCL for Windows and .Net) |
Supported values are:
time | Current time | |
level | Level | |
package | Package name | |
module | Module name | |
class | Class name | |
method | Method name | |
threadid | Thread Id | |
contenttype | Content type | |
content | Content | |
all | All details |
Supported filter names are:
exclude-package | Exclude a package specified in the value | |
exclude-module | Exclude a module specified in the value | |
exclude-class | Exclude a class specified in the value | |
exclude-method | Exclude a method specified in the value | |
include-package | Include a package specified in the value | |
include-module | Include a module specified in the value | |
include-class | Include a class specified in the value | |
include-method | Include a method specified in the value |
none | No flush (caching only) | |
immediate | Immediate flush (real-time logging) | |
maxcount | Flush cached entries upon reaching LogMaxEventCount entries in the cache. |
Supported values are:
none | None (by default) | |
fatal | Severe errors that cause premature termination. | |
error | Other runtime errors or unexpected conditions. | |
warning | Use of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong". | |
info | Interesting runtime events (startup/shutdown). | |
debug | Detailed information on flow of through the system. | |
trace | More detailed information. |
The default value of this setting is 100.
none | No rotation | |
deleteolder | Delete older entries from the cache upon reaching LogMaxEventCount | |
keepolder | Keep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded) |
Supported Values:
certificate | Enables caching of certificates. |
crl | Enables caching of Certificate Revocation Lists (CRLs). |
ocsp | Enables caching of OCSP (Online Certificate Status Protocol) responses. |
Example (default value):
PKICache=certificate,crl,ocsp
In this example, the component caches certificates, CRLs, and OCSP responses.
The default value is an empty string - no cached PKI data is stored on disk.
Example:
PKICachePath=C:\Temp\cache
In this example, the cached PKI data is stored in the C:\Temp\cache directory.
Supported values are:
none | No static DNS rules (default) | |
local | Local static DNS rules | |
global | Global static DNS rules |
This setting only applies to certificates originating from a Windows system store.
The property accepts comma-separated values where the first descriptor name is used when the OID is mapped, and subsequent values act as aliases for parsing.
Syntax:
Config("XMLRDNDescriptorName[OID]=PrimaryName,Alias1,Alias2");
Where:
OID: The Object Identifier from the certificate's IssuerRDN or SubjectRDN that you want to map.
PrimaryName: The main descriptor name used in the XML signature when the OID is encountered.
Alias1, Alias2, ...: Optional alternative names recognized during parsing.
Usage Examples:
Map OID 2.5.4.5 to SERIALNUMBER:
Config("XMLRDNDescriptorName[2.5.4.5]=SERIALNUMBER");
Map OID 1.2.840.113549.1.9.1 to E, with aliases EMAIL and EMAILADDRESS:
Config("XMLRDNDescriptorName[1.2.840.113549.1.9.1]=E,EMAIL,EMAILADDRESS");
Trappable Errors (PDFEncryptor Class)
Error Handling (C++)
Call the GetLastErrorCode() method to obtain the last called method's result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. Known error codes are listed below. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
PDFEncryptor Errors
1048577 | Invalid parameter (SB_ERROR_INVALID_PARAMETER) |
1048578 | Invalid configuration (SB_ERROR_INVALID_SETUP) |
1048579 | Invalid state (SB_ERROR_INVALID_STATE) |
1048580 | Invalid value (SB_ERROR_INVALID_VALUE) |
1048581 | Private key not found (SB_ERROR_NO_PRIVATE_KEY) |
1048582 | Cancelled by the user (SB_ERROR_CANCELLED_BY_USER) |
1048583 | The file was not found (SB_ERROR_NO_SUCH_FILE) |
1048584 | Unsupported feature or operation (SB_ERROR_UNSUPPORTED_FEATURE) |
1048585 | General error (SB_ERROR_GENERAL_ERROR) |
26214401 | The input file does not exist (SB_ERROR_PDF_INPUTFILE_NOT_EXISTS) |
26214402 | Cannot encrypt already encrypted file (SB_ERROR_PDF_ENCRYPTED) |
26214403 | The file is not encrypted (SB_ERROR_PDF_NOT_ENCRYPTED) |
26214405 | Invalid password (SB_ERROR_PDF_INVALID_PASSWORD) |
26214406 | Failed to decrypt the file (SB_ERROR_PDF_DECRYPTION_FAILED) |
26214407 | The document is signed (SB_ERROR_PDF_SIGNED) |
26214408 | The document is not signed (SB_ERROR_PDF_NOT_SIGNED) |
26214409 | Cannot update this type of signature (SB_ERROR_PDF_INAPPROPRIATE_SIGNATURE) |
26214410 | Unsupported feature or operation (SB_ERROR_PDF_NOT_SUPPORTED) |
26214411 | No timestamp server specified (SB_ERROR_PDF_NO_TIMESTAMP_SERVER) |
26214412 | The component is not in edit mode (SB_ERROR_PDF_READONLY) |