KMIPServer Class
Properties Methods Events Config Settings Errors
The KMIPServer class provides server-side functionality for Key Management Interoperability Protocol (KMIP).
Syntax
KMIPServer
Remarks
The Key Management Interoperability Protocol (KMIP) is an OASIS standard for communication between key management servers and clients. KMIP servers are typically responsible for managing cryptographic keys and providing access to them to remote client applications.
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
Active | Indicates if the KMIP server is active and listening to incoming connections. |
AllowKeepAlive | Enables or disables keep-alive mode. |
AuthRealm | Specifies authentication realm for digest and NTLM authentication. |
AuthTypes | Defines allowed HTTP authentication types. |
BoundPort | Indicates the bound listening port. |
CACertificate | The default CA certificate. |
Certificate | Contains the certificate that has just been generated or added. |
CompressionLevel | The default compression level to use. |
ExternalCrypto | Provides access to external signing and DC parameters. |
FIPSMode | Reserved. |
HandshakeTimeout | Specifies the handshake timeout in milliseconds. |
Host | Specifies the host name of the KMIP server. |
Key | Contains the key that has just been generated or added. |
PinnedClient | Populates the pinned client details. |
PinnedClientChain | Contains the certificate chain of the pinned client. |
Port | A port to listen for connections on. |
ReadOnly | Controls whether the server works in read-only mode. |
SessionTimeout | Specifies the default session timeout value in milliseconds. |
SocketSettings | Manages network connection settings. |
StorageFileName | A path to the KMIP object database. |
TLSServerChain | The server's TLS certificates. |
TLSSettings | Manages TLS layer settings. |
UseChunkedTransfer | Enables chunked transfer. |
UseCompression | Enables or disables server-side compression. |
UseHTTP | Specifies whether the server should use HTTP instead of KMIP-over-TCP/TLS. |
Users | A database of registered users. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
Cleanup | Cleans up the server environment by purging expired sessions and cleaning caches. |
Config | Sets or retrieves a configuration setting. |
DoAction | Performs an additional action. |
DropClient | Terminates a client connection. |
GetClientCert | Populates the per-connection certificate object. |
GetClientKey | Populates the per-connection key object. |
GetRequestHeader | Returns a request header value. |
GetResponseHeader | Returns a response header value. |
ListClients | Enumerates the connected clients. |
PinClient | Takes a snapshot of the connection's properties. |
ProcessGenericRequest | Processes a generic HTTP request. |
Reset | Resets the class settings. |
SetClientBytes | Commits a data buffer to the connection. |
SetClientCert | Commits the per-connection certificate object to the connection context. |
SetClientKey | Commits the per-connection key object to the connection context. |
SetResponseHeader | Sets a response header. |
Start | Start the KMIP server. |
Stop | Stops the KMIP server. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
Accept | Reports an incoming connection. |
ActivateObject | Notifies the application about the object activation request. |
Add | Passes the certificate import request to the application. |
AddKey | Expects the application to handle the key import request. |
AfterAdd | Notifies the application about completion of the certificate import operation. |
AfterAddKey | Reports the completion of the key import procedure. |
AfterBrowse | KMIP server uses this event to notify the application about the completion of the browsing (attribute request) operation. |
AfterDecrypt | Notifies the application about completion of the decryption call. |
AfterDeriveKey | Notifies the application about completion of the key derivation request. |
AfterEdit | Notifies the application of completion of the object editing operation. |
AfterEncrypt | Notifies the application about the completion of the encryption call. |
AfterGenerate | Signifies completion of certificate generation. |
AfterGenerateKey | Notifies the application of the completion of key generation procedure. |
AfterGenerateKeyPair | Notifies the application of the completion of keypair generation. |
AfterHash | Notifies the application about completion of the hashing call. |
AfterList | Notifies the application about completion of the list command. |
AfterObtainLease | Reports the completion of lease allocation operation. |
AfterReadObject | Notifies the application of the completion of the read operation on the object. |
AfterReCertify | Notifies the application about the completion of the re-certify operation. |
AfterReKey | Notifies the application about the completion of the re-key operation. |
AfterRekeyKeyPair | Notifies the application about the completion of the re-key keypair operation. |
AfterRemoveObject | Notifies the application about completion of the object removal request. |
AfterSign | Notifies the application of completion of a signing operation. |
AfterVerify | Notifies the application about completion of the Verify operation. |
AfterVerifyHash | Notifies the application about completion of the hash verification. |
ArchiveObject | Notifies the application about the received object archival request. |
AuthAttempt | Fires when a connected client makes an authentication attempt. |
BeforeAdd | Fires when a certificate import request is received from a client. |
BeforeAddKey | Fires when a key import request is received from the client. |
BeforeBrowse | Notifies the application about the browse request being received. |
BeforeDecrypt | Notifies the application about the initiation of the decryption operation. |
BeforeDeriveKey | Fires when a derive key request is received. |
BeforeEdit | Notifies the application about the start of the object editing operation. |
BeforeEncrypt | Notifies the application about the initiation of an encryption operation. |
BeforeGenerate | Fires when a certificate generation request is received. |
BeforeGenerateKey | Fires when a key generation request is received. |
BeforeGenerateKeyPair | Fires when a key generation request is received. |
BeforeHash | Notifies the application about the initiation of the hashing operation. |
BeforeList | Notifies the application about the initiation of the list operation. |
BeforeObtainLease | Notifies the application about the client requesting an object lease. |
BeforeReadObject | Notifies the application about the start of the object reading request. |
BeforeReCertify | Notifies the application about a re-certification request. |
BeforeReKey | Notifies the application about a re-key request received. |
BeforeRekeyKeyPair | Notifies the application about a keypair re-key request received. |
BeforeRemoveObject | Notifies the application about an incoming Remove Object request. |
BeforeSign | Notifies the application about the initiation of a signing operation. |
BeforeVerify | Notifies the application about the initiation of the verify operation. |
BeforeVerifyHash | Notifies the application about the initiation of the hash verification operation. |
Cancel | Reports a cancellation request received from the client. |
Check | Notifies the application about a Check request received. |
Connect | Reports an accepted connection. |
Decrypt | Instructs the application to decrypt a chunk of data. |
DeleteAttribute | Instructs the application to delete an object attribute. |
DeriveKey | Notifies the application of key derivation request. |
Disconnect | Fires to report a disconnected client. |
Encrypt | Instructs the application to encrypt a chunk of data. |
Error | Information about errors during data delivery. |
ExternalSign | Handles remote or external signing initiated by the server protocol. |
Generate | Notifies the application about an incoming Generate request. |
GenerateKey | Notifies the application about an incoming Generate request. |
GenerateKeyPair | Notifies the application about an incoming Generate request. |
GetUsageAllocation | Notifies the application about an incoming Get Usage Allocation request. |
Hash | Instructs the application to update the current hashing operation. |
HeadersPrepared | Fires when the response headers have been formed and are ready to be sent to the server. |
KMIPAuthAttempt | Fires when a connected client makes an authentication attempt. |
List | Instructs the application to return the list of objects that match the specified criteria. |
ListAttributes | Requests a list of object attribute names from the application. |
Notification | This event notifies the application about an underlying control flow event. |
ObtainLease | Lets the application handle the lease request. |
OperationAttempt | Fires when a request is received from the client. |
Poll | Notifies the application about the received Poll request. |
ReadAttribute | Requests an object attribute value from the application. |
ReadObject | Requests the details of the object from the application. |
ReCertify | Notifies the application about an incoming re-certification request. |
RecoverObject | Notifies the application about an incoming Recover Object request. |
ReKey | Notifies the application about an incoming re-key request. |
RekeyKeyPair | Notifies the application about an incoming re-key request. |
RemoveObject | Notifies the application about the object deletion request. |
Request | Notifies the application about KMIP requests being received. |
Response | Notifies the application about KMIP responses being sent back. |
RevokeObject | Instructs the application to revoke an object. |
RNGGenerate | Asks the application for another block of random numbers. |
RNGSeed | Tells the application to seed the random number generator. |
SetAttribute | Passes a set-attribute request to the application. |
Sign | Instructs the application to sign data with a private key. |
TLSCertValidate | Fires when a client certificate needs to be validated. |
TLSEstablished | Reports the setup of a TLS session. |
TLSHandshake | Fires when a newly established client connection initiates a TLS handshake. |
TLSPSK | Requests a pre-shared key for TLS-PSK. |
TLSShutdown | Reports closure of a TLS session. |
ValidateChain | Passes the chain validation request to the application. |
Verify | KMIPServer fires this event to notify the application about a verification operation request, and expects the application to perform it. |
VerifyHash | Delegates the hash verification operation to a custom handler. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
AllowKeepAlive | Enables or disables keep-alive mode. |
AllowOptionsResponseWithoutAuth | Enables unauthenticated responses to OPTIONS requests. |
AuthBasic | Turns on/off the basic authentication. |
AuthDigest | Turns on/off the digest authentication. |
AuthDigestExpire | Specifies digest expiration time for digest authentication. |
AuthRealm | Specifies authentication realm for digest and NTLM authentication. |
CompressionLevel | The default compression level to use. |
DualStack | Allows the use of ip4 and ip6 simultaneously. |
HomePage | Specifies the home page resource name. |
MajorProtocolVersion | Major protocol version on the KMIP server. |
MinorProtocolVersion | Minor protocol version on the KMIP server. |
RequestFilter | The request string modifier. |
SSLMode | Whether to establish a TLS-secured connection. |
UseChunkedTransfer | Whether to use chunked encoding of the data. |
UseChunkedTransfer | Enables chunked transfer. |
UseCompression | Whether to use GZip compression. |
UseCompression | Enables or disables server-side compression. |
ASN1UseGlobalTagCache | Controls whether ASN.1 module should use a global object cache. |
AssignSystemSmartCardPins | Specifies whether CSP-level PINs should be assigned to CNG keys. |
CheckKeyIntegrityBeforeUse | Enables or disable private key integrity check before use. |
CookieCaching | Specifies whether a cookie cache should be used for HTTP(S) transports. |
Cookies | Gets or sets local cookies for the class. |
DefDeriveKeyIterations | Specifies the default key derivation algorithm iteration count. |
DNSLocalSuffix | The suffix to assign for TLD names. |
EnableClientSideSSLFFDHE | Enables or disables finite field DHE key exchange support in TLS clients. |
GlobalCookies | Gets or sets global cookies for all the HTTP transports. |
HardwareCryptoUsePolicy | The hardware crypto usage policy. |
HttpUserAgent | Specifies the user agent name to be used by all HTTP clients. |
HttpVersion | The HTTP version to use in any inner HTTP client classes created. |
IgnoreExpiredMSCTLSigningCert | Whether to tolerate the expired Windows Update signing certificate. |
ListDelimiter | The delimiter character for multi-element lists. |
LogDestination | Specifies the debug log destination. |
LogDetails | Specifies the debug log details to dump. |
LogFile | Specifies the debug log filename. |
LogFilters | Specifies the debug log filters. |
LogFlushMode | Specifies the log flush mode. |
LogLevel | Specifies the debug log level. |
LogMaxEventCount | Specifies the maximum number of events to cache before further action is taken. |
LogRotationMode | Specifies the log rotation mode. |
MaxASN1BufferLength | Specifies the maximal allowed length for ASN.1 primitive tag data. |
MaxASN1TreeDepth | Specifies the maximal depth for processed ASN.1 trees. |
OCSPHashAlgorithm | Specifies the hash algorithm to be used to identify certificates in OCSP requests. |
OldClientSideRSAFallback | Specifies whether the SSH client should use a SHA1 fallback. |
ProductVersion | Returns the version of the SecureBlackbox library. |
ServerSSLDHKeyLength | Sets the size of the TLS DHE key exchange group. |
StaticDNS | Specifies whether static DNS rules should be used. |
StaticIPAddress[domain] | Gets or sets an IP address for the specified domain name. |
StaticIPAddresses | Gets or sets all the static DNS rules. |
Tag | Allows to store any custom data. |
TLSSessionGroup | Specifies the group name of TLS sessions to be used for session resumption. |
TLSSessionLifetime | Specifies lifetime in seconds of the cached TLS session. |
TLSSessionPurgeInterval | Specifies how often the session cache should remove the expired TLS sessions. |
UseInternalRandom | Switches between SecureBlackbox-own and platform PRNGs. |
UseLegacyAdESValidation | Enables legacy AdES validation mode. |
UseOwnDNSResolver | Specifies whether the client classes should use own DNS resolver. |
UseSharedSystemStorages | Specifies whether the validation engine should use a global per-process copy of the system certificate stores. |
UseSystemNativeSizeCalculation | An internal CryptoAPI access tweak. |
UseSystemOAEPAndPSS | Enforces or disables the use of system-driven RSA OAEP and PSS computations. |
UseSystemRandom | Enables or disables the use of the OS PRNG. |
Active Property (KMIPServer Class)
Indicates if the KMIP server is active and listening to incoming connections.
Syntax
ANSI (Cross Platform) int GetActive(); Unicode (Windows) BOOL GetActive();
int secureblackbox_kmipserver_getactive(void* lpObj);
bool GetActive();
Default Value
FALSE
Remarks
Check this property to find out if the KMIP server is in an active state. Use Start and Stop methods to launch and stop the server.
This property is read-only and not available at design time.
Data Type
Boolean
AllowKeepAlive Property (KMIPServer Class)
Enables or disables keep-alive mode.
Syntax
ANSI (Cross Platform) int GetAllowKeepAlive();
int SetAllowKeepAlive(int bAllowKeepAlive); Unicode (Windows) BOOL GetAllowKeepAlive();
INT SetAllowKeepAlive(BOOL bAllowKeepAlive);
int secureblackbox_kmipserver_getallowkeepalive(void* lpObj);
int secureblackbox_kmipserver_setallowkeepalive(void* lpObj, int bAllowKeepAlive);
bool GetAllowKeepAlive();
int SetAllowKeepAlive(bool bAllowKeepAlive);
Default Value
TRUE
Remarks
Use this property to enable or disable the keep-alive connection mode. If keep-alive is enabled, clients that choose to use it may stay connected for a while.
Data Type
Boolean
AuthRealm Property (KMIPServer Class)
Specifies authentication realm for digest and NTLM authentication.
Syntax
ANSI (Cross Platform) char* GetAuthRealm();
int SetAuthRealm(const char* lpszAuthRealm); Unicode (Windows) LPWSTR GetAuthRealm();
INT SetAuthRealm(LPCWSTR lpszAuthRealm);
char* secureblackbox_kmipserver_getauthrealm(void* lpObj);
int secureblackbox_kmipserver_setauthrealm(void* lpObj, const char* lpszAuthRealm);
QString GetAuthRealm();
int SetAuthRealm(QString qsAuthRealm);
Default Value
"SecureBlackbox"
Remarks
Specifies authentication realm for digest and NTLM authentication types.
Data Type
String
AuthTypes Property (KMIPServer Class)
Defines allowed HTTP authentication types.
Syntax
ANSI (Cross Platform) int GetAuthTypes();
int SetAuthTypes(int iAuthTypes); Unicode (Windows) INT GetAuthTypes();
INT SetAuthTypes(INT iAuthTypes);
int secureblackbox_kmipserver_getauthtypes(void* lpObj);
int secureblackbox_kmipserver_setauthtypes(void* lpObj, int iAuthTypes);
int GetAuthTypes();
int SetAuthTypes(int iAuthTypes);
Default Value
0
Remarks
Use this property to define which authentication types the component should support or attempt to use by enabling the relevant bitmask flags:
haBasic | 0x01 | Basic authentication |
haDigest | 0x02 | Digest authentication (RFC 2617) |
haNTLM | 0x04 | Windows NTLM authentication |
haKerberos | 0x08 | Kerberos (Negotiate) authentication |
haOAuth2 | 0x10 | OAuth2 authentication |
Data Type
Integer
BoundPort Property (KMIPServer Class)
Indicates the bound listening port.
Syntax
ANSI (Cross Platform) int GetBoundPort(); Unicode (Windows) INT GetBoundPort();
int secureblackbox_kmipserver_getboundport(void* lpObj);
int GetBoundPort();
Default Value
0
Remarks
Check this property to find out the port that has been allocated to the server by the system. The bound port always equals Port if it is provided, or is allocated dynamically if configured to fall in the range between PortRangeFrom and PortRangeTo constraints.
This property is read-only and not available at design time.
Data Type
Integer
CACertificate Property (KMIPServer Class)
The default CA certificate.
Syntax
SecureBlackboxCertificate* GetCACertificate(); int SetCACertificate(SecureBlackboxCertificate* val);
int secureblackbox_kmipserver_getcacertbytes(void* lpObj, char** lpCACertBytes, int* lenCACertBytes);
int64 secureblackbox_kmipserver_getcacerthandle(void* lpObj);
int secureblackbox_kmipserver_setcacerthandle(void* lpObj, int64 lCACertHandle);
QByteArray GetCACertBytes(); qint64 GetCACertHandle();
int SetCACertHandle(qint64 lCACertHandle);
Remarks
KMIP server uses this certificate to sign incoming certificate requests. All certificates generated by the KMIP server will be signed by this CA.
This property is not available at design time.
Data Type
Certificate Property (KMIPServer Class)
Contains the certificate that has just been generated or added.
Syntax
SecureBlackboxCertificate* GetCertificate(); int SetCertificate(SecureBlackboxCertificate* val);
int secureblackbox_kmipserver_getcertificatebytes(void* lpObj, char** lpCertificateBytes, int* lenCertificateBytes);
int64 secureblackbox_kmipserver_getcertificatehandle(void* lpObj);
int secureblackbox_kmipserver_setcertificatehandle(void* lpObj, int64 lCertificateHandle);
QByteArray GetCertificateBytes(); qint64 GetCertificateHandle();
int SetCertificateHandle(qint64 lCertificateHandle);
Remarks
Use this property to access the certificate that has just been generated or added.
This property is not available at design time.
Data Type
CompressionLevel Property (KMIPServer Class)
The default compression level to use.
Syntax
ANSI (Cross Platform) int GetCompressionLevel();
int SetCompressionLevel(int iCompressionLevel); Unicode (Windows) INT GetCompressionLevel();
INT SetCompressionLevel(INT iCompressionLevel);
int secureblackbox_kmipserver_getcompressionlevel(void* lpObj);
int secureblackbox_kmipserver_setcompressionlevel(void* lpObj, int iCompressionLevel);
int GetCompressionLevel();
int SetCompressionLevel(int iCompressionLevel);
Default Value
6
Remarks
Assign this property with the compression level (1 to 9) to apply for gzipped responses. 1 stands for the lightest but fastest compression, and 9 for the best but the slowest.
Data Type
Integer
ExternalCrypto Property (KMIPServer Class)
Provides access to external signing and DC parameters.
Syntax
SecureBlackboxExternalCrypto* GetExternalCrypto();
char* secureblackbox_kmipserver_getexternalcryptoasyncdocumentid(void* lpObj);
int secureblackbox_kmipserver_setexternalcryptoasyncdocumentid(void* lpObj, const char* lpszExternalCryptoAsyncDocumentID);
char* secureblackbox_kmipserver_getexternalcryptocustomparams(void* lpObj);
int secureblackbox_kmipserver_setexternalcryptocustomparams(void* lpObj, const char* lpszExternalCryptoCustomParams);
char* secureblackbox_kmipserver_getexternalcryptodata(void* lpObj);
int secureblackbox_kmipserver_setexternalcryptodata(void* lpObj, const char* lpszExternalCryptoData);
int secureblackbox_kmipserver_getexternalcryptoexternalhashcalculation(void* lpObj);
int secureblackbox_kmipserver_setexternalcryptoexternalhashcalculation(void* lpObj, int bExternalCryptoExternalHashCalculation);
char* secureblackbox_kmipserver_getexternalcryptohashalgorithm(void* lpObj);
int secureblackbox_kmipserver_setexternalcryptohashalgorithm(void* lpObj, const char* lpszExternalCryptoHashAlgorithm);
char* secureblackbox_kmipserver_getexternalcryptokeyid(void* lpObj);
int secureblackbox_kmipserver_setexternalcryptokeyid(void* lpObj, const char* lpszExternalCryptoKeyID);
char* secureblackbox_kmipserver_getexternalcryptokeysecret(void* lpObj);
int secureblackbox_kmipserver_setexternalcryptokeysecret(void* lpObj, const char* lpszExternalCryptoKeySecret);
int secureblackbox_kmipserver_getexternalcryptomethod(void* lpObj);
int secureblackbox_kmipserver_setexternalcryptomethod(void* lpObj, int iExternalCryptoMethod);
int secureblackbox_kmipserver_getexternalcryptomode(void* lpObj);
int secureblackbox_kmipserver_setexternalcryptomode(void* lpObj, int iExternalCryptoMode);
char* secureblackbox_kmipserver_getexternalcryptopublickeyalgorithm(void* lpObj);
int secureblackbox_kmipserver_setexternalcryptopublickeyalgorithm(void* lpObj, const char* lpszExternalCryptoPublicKeyAlgorithm);
QString GetExternalCryptoAsyncDocumentID();
int SetExternalCryptoAsyncDocumentID(QString qsExternalCryptoAsyncDocumentID); QString GetExternalCryptoCustomParams();
int SetExternalCryptoCustomParams(QString qsExternalCryptoCustomParams); QString GetExternalCryptoData();
int SetExternalCryptoData(QString qsExternalCryptoData); bool GetExternalCryptoExternalHashCalculation();
int SetExternalCryptoExternalHashCalculation(bool bExternalCryptoExternalHashCalculation); QString GetExternalCryptoHashAlgorithm();
int SetExternalCryptoHashAlgorithm(QString qsExternalCryptoHashAlgorithm); QString GetExternalCryptoKeyID();
int SetExternalCryptoKeyID(QString qsExternalCryptoKeyID); QString GetExternalCryptoKeySecret();
int SetExternalCryptoKeySecret(QString qsExternalCryptoKeySecret); int GetExternalCryptoMethod();
int SetExternalCryptoMethod(int iExternalCryptoMethod); int GetExternalCryptoMode();
int SetExternalCryptoMode(int iExternalCryptoMode); QString GetExternalCryptoPublicKeyAlgorithm();
int SetExternalCryptoPublicKeyAlgorithm(QString qsExternalCryptoPublicKeyAlgorithm);
Remarks
Use this property to tune-up remote cryptography settings. SecureBlackbox supports two independent types of external cryptography: synchronous (based on the ExternalSign event) and asynchronous (based on the DC protocol and the DCAuth signing component).
This property is read-only.
Data Type
FIPSMode Property (KMIPServer Class)
Reserved.
Syntax
ANSI (Cross Platform) int GetFIPSMode();
int SetFIPSMode(int bFIPSMode); Unicode (Windows) BOOL GetFIPSMode();
INT SetFIPSMode(BOOL bFIPSMode);
int secureblackbox_kmipserver_getfipsmode(void* lpObj);
int secureblackbox_kmipserver_setfipsmode(void* lpObj, int bFIPSMode);
bool GetFIPSMode();
int SetFIPSMode(bool bFIPSMode);
Default Value
FALSE
Remarks
This property is reserved for future use.
Data Type
Boolean
HandshakeTimeout Property (KMIPServer Class)
Specifies the handshake timeout in milliseconds.
Syntax
ANSI (Cross Platform) int GetHandshakeTimeout();
int SetHandshakeTimeout(int iHandshakeTimeout); Unicode (Windows) INT GetHandshakeTimeout();
INT SetHandshakeTimeout(INT iHandshakeTimeout);
int secureblackbox_kmipserver_gethandshaketimeout(void* lpObj);
int secureblackbox_kmipserver_sethandshaketimeout(void* lpObj, int iHandshakeTimeout);
int GetHandshakeTimeout();
int SetHandshakeTimeout(int iHandshakeTimeout);
Default Value
20000
Remarks
Use this property to set the TLS handshake timeout.
Data Type
Integer
Host Property (KMIPServer Class)
Specifies the host name of the KMIP server.
Syntax
ANSI (Cross Platform) char* GetHost();
int SetHost(const char* lpszHost); Unicode (Windows) LPWSTR GetHost();
INT SetHost(LPCWSTR lpszHost);
char* secureblackbox_kmipserver_gethost(void* lpObj);
int secureblackbox_kmipserver_sethost(void* lpObj, const char* lpszHost);
QString GetHost();
int SetHost(QString qsHost);
Default Value
""
Remarks
Use this property to specify the address of the KMIP server.
Data Type
String
Key Property (KMIPServer Class)
Contains the key that has just been generated or added.
Syntax
SecureBlackboxCryptoKey* GetKey(); int SetKey(SecureBlackboxCryptoKey* val);
char* secureblackbox_kmipserver_getkeyalgorithm(void* lpObj);
int secureblackbox_kmipserver_setkeyalgorithm(void* lpObj, const char* lpszKeyAlgorithm);
int secureblackbox_kmipserver_getkeybits(void* lpObj);
char* secureblackbox_kmipserver_getkeycurve(void* lpObj);
int secureblackbox_kmipserver_setkeycurve(void* lpObj, const char* lpszKeyCurve);
int secureblackbox_kmipserver_getkeyexportable(void* lpObj);
char* secureblackbox_kmipserver_getkeyfingerprint(void* lpObj);
int64 secureblackbox_kmipserver_getkeyhandle(void* lpObj);
int secureblackbox_kmipserver_setkeyhandle(void* lpObj, int64 lKeyHandle);
int secureblackbox_kmipserver_getkeyid(void* lpObj, char** lpKeyID, int* lenKeyID);
int secureblackbox_kmipserver_setkeyid(void* lpObj, const char* lpKeyID, int lenKeyID);
int secureblackbox_kmipserver_getkeyiv(void* lpObj, char** lpKeyIV, int* lenKeyIV);
int secureblackbox_kmipserver_setkeyiv(void* lpObj, const char* lpKeyIV, int lenKeyIV);
int secureblackbox_kmipserver_getkeykey(void* lpObj, char** lpKeyKey, int* lenKeyKey);
int secureblackbox_kmipserver_getkeynonce(void* lpObj, char** lpKeyNonce, int* lenKeyNonce);
int secureblackbox_kmipserver_setkeynonce(void* lpObj, const char* lpKeyNonce, int lenKeyNonce);
int secureblackbox_kmipserver_getkeyprivate(void* lpObj);
int secureblackbox_kmipserver_getkeypublic(void* lpObj);
int secureblackbox_kmipserver_getkeysubject(void* lpObj, char** lpKeySubject, int* lenKeySubject);
int secureblackbox_kmipserver_setkeysubject(void* lpObj, const char* lpKeySubject, int lenKeySubject);
int secureblackbox_kmipserver_getkeysymmetric(void* lpObj);
int secureblackbox_kmipserver_getkeyvalid(void* lpObj);
QString GetKeyAlgorithm();
int SetKeyAlgorithm(QString qsKeyAlgorithm); int GetKeyBits(); QString GetKeyCurve();
int SetKeyCurve(QString qsKeyCurve); bool GetKeyExportable(); QString GetKeyFingerprint(); qint64 GetKeyHandle();
int SetKeyHandle(qint64 lKeyHandle); QByteArray GetKeyID();
int SetKeyID(QByteArray qbaKeyID); QByteArray GetKeyIV();
int SetKeyIV(QByteArray qbaKeyIV); QByteArray GetKeyKey(); QByteArray GetKeyNonce();
int SetKeyNonce(QByteArray qbaKeyNonce); bool GetKeyPrivate(); bool GetKeyPublic(); QByteArray GetKeySubject();
int SetKeySubject(QByteArray qbaKeySubject); bool GetKeySymmetric(); bool GetKeyValid();
Remarks
Use this property to access the key that has just been generated or added.
This property is not available at design time.
Data Type
PinnedClient Property (KMIPServer Class)
Populates the pinned client details.
Syntax
SecureBlackboxTLSConnectionInfo* GetPinnedClient();
int secureblackbox_kmipserver_getpinnedclientaeadcipher(void* lpObj);
int secureblackbox_kmipserver_getpinnedclientchainvalidationdetails(void* lpObj);
int secureblackbox_kmipserver_getpinnedclientchainvalidationresult(void* lpObj);
char* secureblackbox_kmipserver_getpinnedclientciphersuite(void* lpObj);
int secureblackbox_kmipserver_getpinnedclientclientauthenticated(void* lpObj);
int secureblackbox_kmipserver_getpinnedclientclientauthrequested(void* lpObj);
int secureblackbox_kmipserver_getpinnedclientconnectionestablished(void* lpObj);
int secureblackbox_kmipserver_getpinnedclientconnectionid(void* lpObj, char** lpPinnedClientConnectionID, int* lenPinnedClientConnectionID);
char* secureblackbox_kmipserver_getpinnedclientdigestalgorithm(void* lpObj);
char* secureblackbox_kmipserver_getpinnedclientencryptionalgorithm(void* lpObj);
int secureblackbox_kmipserver_getpinnedclientexportable(void* lpObj);
int64 secureblackbox_kmipserver_getpinnedclientid(void* lpObj);
char* secureblackbox_kmipserver_getpinnedclientkeyexchangealgorithm(void* lpObj);
int secureblackbox_kmipserver_getpinnedclientkeyexchangekeybits(void* lpObj);
char* secureblackbox_kmipserver_getpinnedclientnamedeccurve(void* lpObj);
int secureblackbox_kmipserver_getpinnedclientpfscipher(void* lpObj);
char* secureblackbox_kmipserver_getpinnedclientpresharedidentity(void* lpObj);
char* secureblackbox_kmipserver_getpinnedclientpresharedidentityhint(void* lpObj);
int secureblackbox_kmipserver_getpinnedclientpublickeybits(void* lpObj);
char* secureblackbox_kmipserver_getpinnedclientremoteaddress(void* lpObj);
int secureblackbox_kmipserver_getpinnedclientremoteport(void* lpObj);
int secureblackbox_kmipserver_getpinnedclientresumedsession(void* lpObj);
int secureblackbox_kmipserver_getpinnedclientsecureconnection(void* lpObj);
int secureblackbox_kmipserver_getpinnedclientserverauthenticated(void* lpObj);
char* secureblackbox_kmipserver_getpinnedclientsignaturealgorithm(void* lpObj);
int secureblackbox_kmipserver_getpinnedclientsymmetricblocksize(void* lpObj);
int secureblackbox_kmipserver_getpinnedclientsymmetrickeybits(void* lpObj);
int64 secureblackbox_kmipserver_getpinnedclienttotalbytesreceived(void* lpObj);
int64 secureblackbox_kmipserver_getpinnedclienttotalbytessent(void* lpObj);
char* secureblackbox_kmipserver_getpinnedclientvalidationlog(void* lpObj);
char* secureblackbox_kmipserver_getpinnedclientversion(void* lpObj);
bool GetPinnedClientAEADCipher(); int GetPinnedClientChainValidationDetails(); int GetPinnedClientChainValidationResult(); QString GetPinnedClientCiphersuite(); bool GetPinnedClientClientAuthenticated(); bool GetPinnedClientClientAuthRequested(); bool GetPinnedClientConnectionEstablished(); QByteArray GetPinnedClientConnectionID(); QString GetPinnedClientDigestAlgorithm(); QString GetPinnedClientEncryptionAlgorithm(); bool GetPinnedClientExportable(); qint64 GetPinnedClientID(); QString GetPinnedClientKeyExchangeAlgorithm(); int GetPinnedClientKeyExchangeKeyBits(); QString GetPinnedClientNamedECCurve(); bool GetPinnedClientPFSCipher(); QString GetPinnedClientPreSharedIdentity(); QString GetPinnedClientPreSharedIdentityHint(); int GetPinnedClientPublicKeyBits(); QString GetPinnedClientRemoteAddress(); int GetPinnedClientRemotePort(); bool GetPinnedClientResumedSession(); bool GetPinnedClientSecureConnection(); bool GetPinnedClientServerAuthenticated(); QString GetPinnedClientSignatureAlgorithm(); int GetPinnedClientSymmetricBlockSize(); int GetPinnedClientSymmetricKeyBits(); qint64 GetPinnedClientTotalBytesReceived(); qint64 GetPinnedClientTotalBytesSent(); QString GetPinnedClientValidationLog(); QString GetPinnedClientVersion();
Remarks
Use this property to access the details of the client connection previously pinned with PinClient method.
This property is read-only and not available at design time.
Data Type
SecureBlackboxTLSConnectionInfo
PinnedClientChain Property (KMIPServer Class)
Contains the certificate chain of the pinned client.
Syntax
SecureBlackboxList<SecureBlackboxCertificate>* GetPinnedClientChain();
int secureblackbox_kmipserver_getpinnedclientcertcount(void* lpObj);
int secureblackbox_kmipserver_getpinnedclientcertbytes(void* lpObj, int pinnedclientcertindex, char** lpPinnedClientCertBytes, int* lenPinnedClientCertBytes);
int secureblackbox_kmipserver_getpinnedclientcertcakeyid(void* lpObj, int pinnedclientcertindex, char** lpPinnedClientCertCAKeyID, int* lenPinnedClientCertCAKeyID);
char* secureblackbox_kmipserver_getpinnedclientcertfingerprint(void* lpObj, int pinnedclientcertindex);
int64 secureblackbox_kmipserver_getpinnedclientcerthandle(void* lpObj, int pinnedclientcertindex);
char* secureblackbox_kmipserver_getpinnedclientcertissuer(void* lpObj, int pinnedclientcertindex);
char* secureblackbox_kmipserver_getpinnedclientcertissuerrdn(void* lpObj, int pinnedclientcertindex);
char* secureblackbox_kmipserver_getpinnedclientcertkeyalgorithm(void* lpObj, int pinnedclientcertindex);
int secureblackbox_kmipserver_getpinnedclientcertkeybits(void* lpObj, int pinnedclientcertindex);
char* secureblackbox_kmipserver_getpinnedclientcertkeyfingerprint(void* lpObj, int pinnedclientcertindex);
int secureblackbox_kmipserver_getpinnedclientcertkeyusage(void* lpObj, int pinnedclientcertindex);
int secureblackbox_kmipserver_getpinnedclientcertpublickeybytes(void* lpObj, int pinnedclientcertindex, char** lpPinnedClientCertPublicKeyBytes, int* lenPinnedClientCertPublicKeyBytes);
int secureblackbox_kmipserver_getpinnedclientcertselfsigned(void* lpObj, int pinnedclientcertindex);
int secureblackbox_kmipserver_getpinnedclientcertserialnumber(void* lpObj, int pinnedclientcertindex, char** lpPinnedClientCertSerialNumber, int* lenPinnedClientCertSerialNumber);
char* secureblackbox_kmipserver_getpinnedclientcertsigalgorithm(void* lpObj, int pinnedclientcertindex);
char* secureblackbox_kmipserver_getpinnedclientcertsubject(void* lpObj, int pinnedclientcertindex);
int secureblackbox_kmipserver_getpinnedclientcertsubjectkeyid(void* lpObj, int pinnedclientcertindex, char** lpPinnedClientCertSubjectKeyID, int* lenPinnedClientCertSubjectKeyID);
char* secureblackbox_kmipserver_getpinnedclientcertsubjectrdn(void* lpObj, int pinnedclientcertindex);
char* secureblackbox_kmipserver_getpinnedclientcertvalidfrom(void* lpObj, int pinnedclientcertindex);
char* secureblackbox_kmipserver_getpinnedclientcertvalidto(void* lpObj, int pinnedclientcertindex);
int GetPinnedClientCertCount(); QByteArray GetPinnedClientCertBytes(int iPinnedClientCertIndex); QByteArray GetPinnedClientCertCAKeyID(int iPinnedClientCertIndex); QString GetPinnedClientCertFingerprint(int iPinnedClientCertIndex); qint64 GetPinnedClientCertHandle(int iPinnedClientCertIndex); QString GetPinnedClientCertIssuer(int iPinnedClientCertIndex); QString GetPinnedClientCertIssuerRDN(int iPinnedClientCertIndex); QString GetPinnedClientCertKeyAlgorithm(int iPinnedClientCertIndex); int GetPinnedClientCertKeyBits(int iPinnedClientCertIndex); QString GetPinnedClientCertKeyFingerprint(int iPinnedClientCertIndex); int GetPinnedClientCertKeyUsage(int iPinnedClientCertIndex); QByteArray GetPinnedClientCertPublicKeyBytes(int iPinnedClientCertIndex); bool GetPinnedClientCertSelfSigned(int iPinnedClientCertIndex); QByteArray GetPinnedClientCertSerialNumber(int iPinnedClientCertIndex); QString GetPinnedClientCertSigAlgorithm(int iPinnedClientCertIndex); QString GetPinnedClientCertSubject(int iPinnedClientCertIndex); QByteArray GetPinnedClientCertSubjectKeyID(int iPinnedClientCertIndex); QString GetPinnedClientCertSubjectRDN(int iPinnedClientCertIndex); QString GetPinnedClientCertValidFrom(int iPinnedClientCertIndex); QString GetPinnedClientCertValidTo(int iPinnedClientCertIndex);
Remarks
Use this property to access the certificate chain of the client connection pinned previously with a PinClient call.
This property is read-only and not available at design time.
Data Type
Port Property (KMIPServer Class)
A port to listen for connections on.
Syntax
ANSI (Cross Platform) int GetPort();
int SetPort(int iPort); Unicode (Windows) INT GetPort();
INT SetPort(INT iPort);
int secureblackbox_kmipserver_getport(void* lpObj);
int secureblackbox_kmipserver_setport(void* lpObj, int iPort);
int GetPort();
int SetPort(int iPort);
Default Value
5696
Remarks
Use this property to specify the listening port.
Data Type
Integer
ReadOnly Property (KMIPServer Class)
Controls whether the server works in read-only mode.
Syntax
ANSI (Cross Platform) int GetReadOnly();
int SetReadOnly(int bReadOnly); Unicode (Windows) BOOL GetReadOnly();
INT SetReadOnly(BOOL bReadOnly);
int secureblackbox_kmipserver_getreadonly(void* lpObj);
int secureblackbox_kmipserver_setreadonly(void* lpObj, int bReadOnly);
bool GetReadOnly();
int SetReadOnly(bool bReadOnly);
Default Value
FALSE
Remarks
Use this property to enable or disable read-only mode on the server. It is an easy way to prevent connecting users from adding or removing objects managed by the server.
This property is not available at design time.
Data Type
Boolean
SessionTimeout Property (KMIPServer Class)
Specifies the default session timeout value in milliseconds.
Syntax
ANSI (Cross Platform) int GetSessionTimeout();
int SetSessionTimeout(int iSessionTimeout); Unicode (Windows) INT GetSessionTimeout();
INT SetSessionTimeout(INT iSessionTimeout);
int secureblackbox_kmipserver_getsessiontimeout(void* lpObj);
int secureblackbox_kmipserver_setsessiontimeout(void* lpObj, int iSessionTimeout);
int GetSessionTimeout();
int SetSessionTimeout(int iSessionTimeout);
Default Value
360000
Remarks
Specifies the period of inactivity (in milliseconds) after which the connection will be terminated by the server.
Data Type
Integer
SocketSettings Property (KMIPServer Class)
Manages network connection settings.
Syntax
SecureBlackboxSocketSettings* GetSocketSettings();
int secureblackbox_kmipserver_getsocketincomingspeedlimit(void* lpObj);
int secureblackbox_kmipserver_setsocketincomingspeedlimit(void* lpObj, int iSocketIncomingSpeedLimit);
char* secureblackbox_kmipserver_getsocketlocaladdress(void* lpObj);
int secureblackbox_kmipserver_setsocketlocaladdress(void* lpObj, const char* lpszSocketLocalAddress);
int secureblackbox_kmipserver_getsocketlocalport(void* lpObj);
int secureblackbox_kmipserver_setsocketlocalport(void* lpObj, int iSocketLocalPort);
int secureblackbox_kmipserver_getsocketoutgoingspeedlimit(void* lpObj);
int secureblackbox_kmipserver_setsocketoutgoingspeedlimit(void* lpObj, int iSocketOutgoingSpeedLimit);
int secureblackbox_kmipserver_getsockettimeout(void* lpObj);
int secureblackbox_kmipserver_setsockettimeout(void* lpObj, int iSocketTimeout);
int secureblackbox_kmipserver_getsocketuseipv6(void* lpObj);
int secureblackbox_kmipserver_setsocketuseipv6(void* lpObj, int bSocketUseIPv6);
int GetSocketIncomingSpeedLimit();
int SetSocketIncomingSpeedLimit(int iSocketIncomingSpeedLimit); QString GetSocketLocalAddress();
int SetSocketLocalAddress(QString qsSocketLocalAddress); int GetSocketLocalPort();
int SetSocketLocalPort(int iSocketLocalPort); int GetSocketOutgoingSpeedLimit();
int SetSocketOutgoingSpeedLimit(int iSocketOutgoingSpeedLimit); int GetSocketTimeout();
int SetSocketTimeout(int iSocketTimeout); bool GetSocketUseIPv6();
int SetSocketUseIPv6(bool bSocketUseIPv6);
Remarks
Use this property to tune up network connection parameters.
This property is read-only.
Data Type
StorageFileName Property (KMIPServer Class)
A path to the KMIP object database.
Syntax
ANSI (Cross Platform) char* GetStorageFileName();
int SetStorageFileName(const char* lpszStorageFileName); Unicode (Windows) LPWSTR GetStorageFileName();
INT SetStorageFileName(LPCWSTR lpszStorageFileName);
char* secureblackbox_kmipserver_getstoragefilename(void* lpObj);
int secureblackbox_kmipserver_setstoragefilename(void* lpObj, const char* lpszStorageFileName);
QString GetStorageFileName();
int SetStorageFileName(QString qsStorageFileName);
Default Value
""
Remarks
Assign the path to the database of objects managed by the KMIP server to this property.
Data Type
String
TLSServerChain Property (KMIPServer Class)
The server's TLS certificates.
Syntax
SecureBlackboxList<SecureBlackboxCertificate>* GetTLSServerChain(); int SetTLSServerChain(SecureBlackboxList<SecureBlackboxCertificate>* val);
int secureblackbox_kmipserver_gettlsservercertcount(void* lpObj);
int secureblackbox_kmipserver_settlsservercertcount(void* lpObj, int iTLSServerCertCount);
int secureblackbox_kmipserver_gettlsservercertbytes(void* lpObj, int tlsservercertindex, char** lpTLSServerCertBytes, int* lenTLSServerCertBytes);
int64 secureblackbox_kmipserver_gettlsservercerthandle(void* lpObj, int tlsservercertindex);
int secureblackbox_kmipserver_settlsservercerthandle(void* lpObj, int tlsservercertindex, int64 lTLSServerCertHandle);
int GetTLSServerCertCount();
int SetTLSServerCertCount(int iTLSServerCertCount); QByteArray GetTLSServerCertBytes(int iTLSServerCertIndex); qint64 GetTLSServerCertHandle(int iTLSServerCertIndex);
int SetTLSServerCertHandle(int iTLSServerCertIndex, qint64 lTLSServerCertHandle);
Remarks
Use this property to provide a list of TLS certificates for the server endpoint.
A TLS endpoint needs a certificate to be able to accept TLS connections. At least one of the certificates in the collection - the endpoint certificate - must have a private key associated with it.
The collection may include more than one endpoint certificate, and more than one chain. A typical usage scenario is to include two chains (ECDSA and RSA), to cater for clients with different cipher suite preferences.
This property is not available at design time.
Data Type
TLSSettings Property (KMIPServer Class)
Manages TLS layer settings.
Syntax
SecureBlackboxTLSSettings* GetTLSSettings();
int secureblackbox_kmipserver_gettlsautovalidatecertificates(void* lpObj);
int secureblackbox_kmipserver_settlsautovalidatecertificates(void* lpObj, int bTLSAutoValidateCertificates);
int secureblackbox_kmipserver_gettlsbaseconfiguration(void* lpObj);
int secureblackbox_kmipserver_settlsbaseconfiguration(void* lpObj, int iTLSBaseConfiguration);
char* secureblackbox_kmipserver_gettlsciphersuites(void* lpObj);
int secureblackbox_kmipserver_settlsciphersuites(void* lpObj, const char* lpszTLSCiphersuites);
int secureblackbox_kmipserver_gettlsclientauth(void* lpObj);
int secureblackbox_kmipserver_settlsclientauth(void* lpObj, int iTLSClientAuth);
char* secureblackbox_kmipserver_gettlseccurves(void* lpObj);
int secureblackbox_kmipserver_settlseccurves(void* lpObj, const char* lpszTLSECCurves);
char* secureblackbox_kmipserver_gettlsextensions(void* lpObj);
int secureblackbox_kmipserver_settlsextensions(void* lpObj, const char* lpszTLSExtensions);
int secureblackbox_kmipserver_gettlsforceresumeifdestinationchanges(void* lpObj);
int secureblackbox_kmipserver_settlsforceresumeifdestinationchanges(void* lpObj, int bTLSForceResumeIfDestinationChanges);
char* secureblackbox_kmipserver_gettlspresharedidentity(void* lpObj);
int secureblackbox_kmipserver_settlspresharedidentity(void* lpObj, const char* lpszTLSPreSharedIdentity);
char* secureblackbox_kmipserver_gettlspresharedkey(void* lpObj);
int secureblackbox_kmipserver_settlspresharedkey(void* lpObj, const char* lpszTLSPreSharedKey);
char* secureblackbox_kmipserver_gettlspresharedkeyciphersuite(void* lpObj);
int secureblackbox_kmipserver_settlspresharedkeyciphersuite(void* lpObj, const char* lpszTLSPreSharedKeyCiphersuite);
int secureblackbox_kmipserver_gettlsrenegotiationattackpreventionmode(void* lpObj);
int secureblackbox_kmipserver_settlsrenegotiationattackpreventionmode(void* lpObj, int iTLSRenegotiationAttackPreventionMode);
int secureblackbox_kmipserver_gettlsrevocationcheck(void* lpObj);
int secureblackbox_kmipserver_settlsrevocationcheck(void* lpObj, int iTLSRevocationCheck);
int secureblackbox_kmipserver_gettlsssloptions(void* lpObj);
int secureblackbox_kmipserver_settlsssloptions(void* lpObj, int iTLSSSLOptions);
int secureblackbox_kmipserver_gettlstlsmode(void* lpObj);
int secureblackbox_kmipserver_settlstlsmode(void* lpObj, int iTLSTLSMode);
int secureblackbox_kmipserver_gettlsuseextendedmastersecret(void* lpObj);
int secureblackbox_kmipserver_settlsuseextendedmastersecret(void* lpObj, int bTLSUseExtendedMasterSecret);
int secureblackbox_kmipserver_gettlsusesessionresumption(void* lpObj);
int secureblackbox_kmipserver_settlsusesessionresumption(void* lpObj, int bTLSUseSessionResumption);
int secureblackbox_kmipserver_gettlsversions(void* lpObj);
int secureblackbox_kmipserver_settlsversions(void* lpObj, int iTLSVersions);
bool GetTLSAutoValidateCertificates();
int SetTLSAutoValidateCertificates(bool bTLSAutoValidateCertificates); int GetTLSBaseConfiguration();
int SetTLSBaseConfiguration(int iTLSBaseConfiguration); QString GetTLSCiphersuites();
int SetTLSCiphersuites(QString qsTLSCiphersuites); int GetTLSClientAuth();
int SetTLSClientAuth(int iTLSClientAuth); QString GetTLSECCurves();
int SetTLSECCurves(QString qsTLSECCurves); QString GetTLSExtensions();
int SetTLSExtensions(QString qsTLSExtensions); bool GetTLSForceResumeIfDestinationChanges();
int SetTLSForceResumeIfDestinationChanges(bool bTLSForceResumeIfDestinationChanges); QString GetTLSPreSharedIdentity();
int SetTLSPreSharedIdentity(QString qsTLSPreSharedIdentity); QString GetTLSPreSharedKey();
int SetTLSPreSharedKey(QString qsTLSPreSharedKey); QString GetTLSPreSharedKeyCiphersuite();
int SetTLSPreSharedKeyCiphersuite(QString qsTLSPreSharedKeyCiphersuite); int GetTLSRenegotiationAttackPreventionMode();
int SetTLSRenegotiationAttackPreventionMode(int iTLSRenegotiationAttackPreventionMode); int GetTLSRevocationCheck();
int SetTLSRevocationCheck(int iTLSRevocationCheck); int GetTLSSSLOptions();
int SetTLSSSLOptions(int iTLSSSLOptions); int GetTLSTLSMode();
int SetTLSTLSMode(int iTLSTLSMode); bool GetTLSUseExtendedMasterSecret();
int SetTLSUseExtendedMasterSecret(bool bTLSUseExtendedMasterSecret); bool GetTLSUseSessionResumption();
int SetTLSUseSessionResumption(bool bTLSUseSessionResumption); int GetTLSVersions();
int SetTLSVersions(int iTLSVersions);
Remarks
Use this property to tune up the TLS layer parameters.
This property is read-only.
Data Type
UseChunkedTransfer Property (KMIPServer Class)
Enables chunked transfer.
Syntax
ANSI (Cross Platform) int GetUseChunkedTransfer();
int SetUseChunkedTransfer(int bUseChunkedTransfer); Unicode (Windows) BOOL GetUseChunkedTransfer();
INT SetUseChunkedTransfer(BOOL bUseChunkedTransfer);
int secureblackbox_kmipserver_getusechunkedtransfer(void* lpObj);
int secureblackbox_kmipserver_setusechunkedtransfer(void* lpObj, int bUseChunkedTransfer);
bool GetUseChunkedTransfer();
int SetUseChunkedTransfer(bool bUseChunkedTransfer);
Default Value
FALSE
Remarks
Use this property to enable chunked content encoding.
Data Type
Boolean
UseCompression Property (KMIPServer Class)
Enables or disables server-side compression.
Syntax
ANSI (Cross Platform) int GetUseCompression();
int SetUseCompression(int bUseCompression); Unicode (Windows) BOOL GetUseCompression();
INT SetUseCompression(BOOL bUseCompression);
int secureblackbox_kmipserver_getusecompression(void* lpObj);
int secureblackbox_kmipserver_setusecompression(void* lpObj, int bUseCompression);
bool GetUseCompression();
int SetUseCompression(bool bUseCompression);
Default Value
FALSE
Remarks
Use this property to enable or disable server-side content compression.
Data Type
Boolean
UseHTTP Property (KMIPServer Class)
Specifies whether the server should use HTTP instead of KMIP-over-TCP/TLS.
Syntax
ANSI (Cross Platform) int GetUseHTTP();
int SetUseHTTP(int bUseHTTP); Unicode (Windows) BOOL GetUseHTTP();
INT SetUseHTTP(BOOL bUseHTTP);
int secureblackbox_kmipserver_getusehttp(void* lpObj);
int secureblackbox_kmipserver_setusehttp(void* lpObj, int bUseHTTP);
bool GetUseHTTP();
int SetUseHTTP(bool bUseHTTP);
Default Value
FALSE
Remarks
Set this property to true to tell the server to expect HTTP(S) connections instead of TCP-based KMIP requests.
This property is not available at design time.
Data Type
Boolean
Users Property (KMIPServer Class)
A database of registered users.
Syntax
SecureBlackboxList<SecureBlackboxUserAccount>* GetUsers(); int SetUsers(SecureBlackboxList<SecureBlackboxUserAccount>* val);
int secureblackbox_kmipserver_getusercount(void* lpObj);
int secureblackbox_kmipserver_setusercount(void* lpObj, int iUserCount);
int secureblackbox_kmipserver_getuserassociateddata(void* lpObj, int userindex, char** lpUserAssociatedData, int* lenUserAssociatedData);
int secureblackbox_kmipserver_setuserassociateddata(void* lpObj, int userindex, const char* lpUserAssociatedData, int lenUserAssociatedData);
char* secureblackbox_kmipserver_getuserbasepath(void* lpObj, int userindex);
int secureblackbox_kmipserver_setuserbasepath(void* lpObj, int userindex, const char* lpszUserBasePath);
int secureblackbox_kmipserver_getusercertificate(void* lpObj, int userindex, char** lpUserCertificate, int* lenUserCertificate);
int secureblackbox_kmipserver_setusercertificate(void* lpObj, int userindex, const char* lpUserCertificate, int lenUserCertificate);
char* secureblackbox_kmipserver_getuserdata(void* lpObj, int userindex);
int secureblackbox_kmipserver_setuserdata(void* lpObj, int userindex, const char* lpszUserData);
char* secureblackbox_kmipserver_getuseremail(void* lpObj, int userindex);
int secureblackbox_kmipserver_setuseremail(void* lpObj, int userindex, const char* lpszUserEmail);
int64 secureblackbox_kmipserver_getuserhandle(void* lpObj, int userindex);
int secureblackbox_kmipserver_setuserhandle(void* lpObj, int userindex, int64 lUserHandle);
char* secureblackbox_kmipserver_getuserhashalgorithm(void* lpObj, int userindex);
int secureblackbox_kmipserver_setuserhashalgorithm(void* lpObj, int userindex, const char* lpszUserHashAlgorithm);
int secureblackbox_kmipserver_getuserincomingspeedlimit(void* lpObj, int userindex);
int secureblackbox_kmipserver_setuserincomingspeedlimit(void* lpObj, int userindex, int iUserIncomingSpeedLimit);
int secureblackbox_kmipserver_getuserotpalgorithm(void* lpObj, int userindex);
int secureblackbox_kmipserver_setuserotpalgorithm(void* lpObj, int userindex, int iUserOtpAlgorithm);
int secureblackbox_kmipserver_getuserotplen(void* lpObj, int userindex);
int secureblackbox_kmipserver_setuserotplen(void* lpObj, int userindex, int iUserOTPLen);
int secureblackbox_kmipserver_getuserotpvalue(void* lpObj, int userindex);
int secureblackbox_kmipserver_setuserotpvalue(void* lpObj, int userindex, int iUserOtpValue);
int secureblackbox_kmipserver_getuseroutgoingspeedlimit(void* lpObj, int userindex);
int secureblackbox_kmipserver_setuseroutgoingspeedlimit(void* lpObj, int userindex, int iUserOutgoingSpeedLimit);
char* secureblackbox_kmipserver_getuserpassword(void* lpObj, int userindex);
int secureblackbox_kmipserver_setuserpassword(void* lpObj, int userindex, const char* lpszUserPassword);
int secureblackbox_kmipserver_getusersharedsecret(void* lpObj, int userindex, char** lpUserSharedSecret, int* lenUserSharedSecret);
int secureblackbox_kmipserver_setusersharedsecret(void* lpObj, int userindex, const char* lpUserSharedSecret, int lenUserSharedSecret);
int secureblackbox_kmipserver_getusersshkey(void* lpObj, int userindex, char** lpUserSSHKey, int* lenUserSSHKey);
int secureblackbox_kmipserver_setusersshkey(void* lpObj, int userindex, const char* lpUserSSHKey, int lenUserSSHKey);
char* secureblackbox_kmipserver_getuserusername(void* lpObj, int userindex);
int secureblackbox_kmipserver_setuserusername(void* lpObj, int userindex, const char* lpszUserUsername);
int GetUserCount();
int SetUserCount(int iUserCount); QByteArray GetUserAssociatedData(int iUserIndex);
int SetUserAssociatedData(int iUserIndex, QByteArray qbaUserAssociatedData); QString GetUserBasePath(int iUserIndex);
int SetUserBasePath(int iUserIndex, QString qsUserBasePath); QByteArray GetUserCertificate(int iUserIndex);
int SetUserCertificate(int iUserIndex, QByteArray qbaUserCertificate); QString GetUserData(int iUserIndex);
int SetUserData(int iUserIndex, QString qsUserData); QString GetUserEmail(int iUserIndex);
int SetUserEmail(int iUserIndex, QString qsUserEmail); qint64 GetUserHandle(int iUserIndex);
int SetUserHandle(int iUserIndex, qint64 lUserHandle); QString GetUserHashAlgorithm(int iUserIndex);
int SetUserHashAlgorithm(int iUserIndex, QString qsUserHashAlgorithm); int GetUserIncomingSpeedLimit(int iUserIndex);
int SetUserIncomingSpeedLimit(int iUserIndex, int iUserIncomingSpeedLimit); int GetUserOtpAlgorithm(int iUserIndex);
int SetUserOtpAlgorithm(int iUserIndex, int iUserOtpAlgorithm); int GetUserOTPLen(int iUserIndex);
int SetUserOTPLen(int iUserIndex, int iUserOTPLen); int GetUserOtpValue(int iUserIndex);
int SetUserOtpValue(int iUserIndex, int iUserOtpValue); int GetUserOutgoingSpeedLimit(int iUserIndex);
int SetUserOutgoingSpeedLimit(int iUserIndex, int iUserOutgoingSpeedLimit); QString GetUserPassword(int iUserIndex);
int SetUserPassword(int iUserIndex, QString qsUserPassword); QByteArray GetUserSharedSecret(int iUserIndex);
int SetUserSharedSecret(int iUserIndex, QByteArray qbaUserSharedSecret); QByteArray GetUserSSHKey(int iUserIndex);
int SetUserSSHKey(int iUserIndex, QByteArray qbaUserSSHKey); QString GetUserUsername(int iUserIndex);
int SetUserUsername(int iUserIndex, QString qsUserUsername);
Remarks
Use this property to configure user authentication on the KMIP server.
This property is not available at design time.
Data Type
Cleanup Method (KMIPServer Class)
Cleans up the server environment by purging expired sessions and cleaning caches.
Syntax
ANSI (Cross Platform) int Cleanup(); Unicode (Windows) INT Cleanup();
int secureblackbox_kmipserver_cleanup(void* lpObj);
int Cleanup();
Remarks
Call this method while the server is active to clean up the environment allocated for the server by releasing unused resources and cleaning caches.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Config Method (KMIPServer Class)
Sets or retrieves a configuration setting.
Syntax
ANSI (Cross Platform) char* Config(const char* lpszConfigurationString); Unicode (Windows) LPWSTR Config(LPCWSTR lpszConfigurationString);
char* secureblackbox_kmipserver_config(void* lpObj, const char* lpszConfigurationString);
QString Config(const QString& qsConfigurationString);
Remarks
Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
DoAction Method (KMIPServer Class)
Performs an additional action.
Syntax
ANSI (Cross Platform) char* DoAction(const char* lpszActionID, const char* lpszActionParams); Unicode (Windows) LPWSTR DoAction(LPCWSTR lpszActionID, LPCWSTR lpszActionParams);
char* secureblackbox_kmipserver_doaction(void* lpObj, const char* lpszActionID, const char* lpszActionParams);
QString DoAction(const QString& qsActionID, const QString& qsActionParams);
Remarks
DoAction is a generic method available in every class. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.
The unique identifier (case insensitive) of the action is provided in the ActionID parameter.
ActionParams contains the value of a single parameter, or a list of multiple parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
DropClient Method (KMIPServer Class)
Terminates a client connection.
Syntax
ANSI (Cross Platform) int DropClient(int64 lConnectionId, int bForced); Unicode (Windows) INT DropClient(LONG64 lConnectionId, BOOL bForced);
int secureblackbox_kmipserver_dropclient(void* lpObj, int64 lConnectionId, int bForced);
int DropClient(qint64 lConnectionId, bool bForced);
Remarks
Call this method to shut down a connected client. Forced indicates whether the connection should be closed in a graceful manner.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
GetClientCert Method (KMIPServer Class)
Populates the per-connection certificate object.
Syntax
ANSI (Cross Platform) int GetClientCert(int64 lConnectionID); Unicode (Windows) INT GetClientCert(LONG64 lConnectionID);
int secureblackbox_kmipserver_getclientcert(void* lpObj, int64 lConnectionID);
int GetClientCert(qint64 lConnectionID);
Remarks
This method populates the certificate template/object received with the certificate generation request in Certificate property.
Call this method from your BeforeGenerate event handler to populate the certificate template, as received in the request. It is still not late to alter the details of the certificate on this stage.
Call it from your AfterGenerate event handler to populate the certificate that has been generated.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
GetClientKey Method (KMIPServer Class)
Populates the per-connection key object.
Syntax
ANSI (Cross Platform) int GetClientKey(int64 lConnectionID); Unicode (Windows) INT GetClientKey(LONG64 lConnectionID);
int secureblackbox_kmipserver_getclientkey(void* lpObj, int64 lConnectionID);
int GetClientKey(qint64 lConnectionID);
Remarks
This method populates the key template/object received with the key generation request in Key property.
Call this method from your BeforeGenerateKey event handler to populate the key template, as received in the request. It is still not late to alter the details of the key on this stage.
Call it from your AfterGenerateKey event handler to populate the key that has been generated.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
GetRequestHeader Method (KMIPServer Class)
Returns a request header value.
Syntax
ANSI (Cross Platform) char* GetRequestHeader(int64 lConnectionId, const char* lpszHeaderName); Unicode (Windows) LPWSTR GetRequestHeader(LONG64 lConnectionId, LPCWSTR lpszHeaderName);
char* secureblackbox_kmipserver_getrequestheader(void* lpObj, int64 lConnectionId, const char* lpszHeaderName);
QString GetRequestHeader(qint64 lConnectionId, const QString& qsHeaderName);
Remarks
Use this method to get the value of a request header. A good place to call this method is a request-marking event, such as GetRequest or PostRequest.
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
GetResponseHeader Method (KMIPServer Class)
Returns a response header value.
Syntax
ANSI (Cross Platform) char* GetResponseHeader(int64 lConnectionId, const char* lpszHeaderName); Unicode (Windows) LPWSTR GetResponseHeader(LONG64 lConnectionId, LPCWSTR lpszHeaderName);
char* secureblackbox_kmipserver_getresponseheader(void* lpObj, int64 lConnectionId, const char* lpszHeaderName);
QString GetResponseHeader(qint64 lConnectionId, const QString& qsHeaderName);
Remarks
Use this method to get the value of a response header. A good place to call this method is HeadersPrepared event. Call the method with empty HeaderName to get the whole response header.
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
ListClients Method (KMIPServer Class)
Enumerates the connected clients.
Syntax
ANSI (Cross Platform) char* ListClients(); Unicode (Windows) LPWSTR ListClients();
char* secureblackbox_kmipserver_listclients(void* lpObj);
QString ListClients();
Remarks
This method enumerates the connected clients. It returns a list of strings, with each string being of 'ConnectionID|Address|Port' format, and representing a single connection.
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
PinClient Method (KMIPServer Class)
Takes a snapshot of the connection's properties.
Syntax
ANSI (Cross Platform) int PinClient(int64 lConnectionId); Unicode (Windows) INT PinClient(LONG64 lConnectionId);
int secureblackbox_kmipserver_pinclient(void* lpObj, int64 lConnectionId);
int PinClient(qint64 lConnectionId);
Remarks
Use this method to take a snapshot of a connected client. The captured properties are populated in PinnedClient and PinnedClientChain properties.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
ProcessGenericRequest Method (KMIPServer Class)
Processes a generic HTTP request.
Syntax
ANSI (Cross Platform) char* ProcessGenericRequest(int64 lConnectionId, const char* lpRequestBytes, int lenRequestBytes, int *lpSize = NULL); Unicode (Windows) LPSTR ProcessGenericRequest(LONG64 lConnectionId, LPCSTR lpRequestBytes, INT lenRequestBytes, LPINT lpSize = NULL);
char* secureblackbox_kmipserver_processgenericrequest(void* lpObj, int64 lConnectionId, const char* lpRequestBytes, int lenRequestBytes, int *lpSize);
QByteArray ProcessGenericRequest(qint64 lConnectionId, QByteArray qbaRequestBytes);
Remarks
This method processes a generic HTTP request and produces a response. Use it to generate HTTP responses for requests obtained externally, out of the default HTTP channel.
This method respects all current settings of the server object, and invokes the corresponding events to consult about the request and response details with the application. ConnectionId allows to identify the request in the events.
The method returns the complete HTTP response including HTTP headers.
Error Handling (C++)
This method returns a Byte Array value (with length lpSize); after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
Reset Method (KMIPServer Class)
Resets the class settings.
Syntax
ANSI (Cross Platform) int Reset(); Unicode (Windows) INT Reset();
int secureblackbox_kmipserver_reset(void* lpObj);
int Reset();
Remarks
Reset is a generic method available in every class.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SetClientBytes Method (KMIPServer Class)
Commits a data buffer to the connection.
Syntax
ANSI (Cross Platform) int SetClientBytes(int64 lConnectionID, const char* lpValue, int lenValue); Unicode (Windows) INT SetClientBytes(LONG64 lConnectionID, LPCSTR lpValue, INT lenValue);
int secureblackbox_kmipserver_setclientbytes(void* lpObj, int64 lConnectionID, const char* lpValue, int lenValue);
int SetClientBytes(qint64 lConnectionID, QByteArray qbaValue);
Remarks
Use this method from your Response Encrypt AfterEncrypt Decrypt AfterDecrypt Sign AfterSign events handler to commit a new data to the server component.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SetClientCert Method (KMIPServer Class)
Commits the per-connection certificate object to the connection context.
Syntax
ANSI (Cross Platform) int SetClientCert(int64 lConnectionID); Unicode (Windows) INT SetClientCert(LONG64 lConnectionID);
int secureblackbox_kmipserver_setclientcert(void* lpObj, int64 lConnectionID);
int SetClientCert(qint64 lConnectionID);
Remarks
This method commits the certificate object stored in Certificate to the connection context.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SetClientKey Method (KMIPServer Class)
Commits the per-connection key object to the connection context.
Syntax
ANSI (Cross Platform) int SetClientKey(int64 lConnectionID); Unicode (Windows) INT SetClientKey(LONG64 lConnectionID);
int secureblackbox_kmipserver_setclientkey(void* lpObj, int64 lConnectionID);
int SetClientKey(qint64 lConnectionID);
Remarks
This method commits the key object stored in Key to the connection context.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SetResponseHeader Method (KMIPServer Class)
Sets a response header.
Syntax
ANSI (Cross Platform) int SetResponseHeader(int64 lConnectionId, const char* lpszHeaderName, const char* lpszValue); Unicode (Windows) INT SetResponseHeader(LONG64 lConnectionId, LPCWSTR lpszHeaderName, LPCWSTR lpszValue);
int secureblackbox_kmipserver_setresponseheader(void* lpObj, int64 lConnectionId, const char* lpszHeaderName, const char* lpszValue);
int SetResponseHeader(qint64 lConnectionId, const QString& qsHeaderName, const QString& qsValue);
Remarks
Use this method to set a response header. A good place to call this method is a request-marking event, such as GetRequest or PostRequest.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Start Method (KMIPServer Class)
Start the KMIP server.
Syntax
ANSI (Cross Platform) int Start(); Unicode (Windows) INT Start();
int secureblackbox_kmipserver_start(void* lpObj);
int Start();
Remarks
Call this method to activate the KMIP server and start listening to incoming connections.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Stop Method (KMIPServer Class)
Stops the KMIP server.
Syntax
ANSI (Cross Platform) int Stop(); Unicode (Windows) INT Stop();
int secureblackbox_kmipserver_stop(void* lpObj);
int Stop();
Remarks
Call this method to stop the KMIP server.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Accept Event (KMIPServer Class)
Reports an incoming connection.
Syntax
ANSI (Cross Platform) virtual int FireAccept(KMIPServerAcceptEventParams *e);
typedef struct {
const char *RemoteAddress;
int RemotePort;
int Accept; int reserved; } KMIPServerAcceptEventParams;
Unicode (Windows) virtual INT FireAccept(KMIPServerAcceptEventParams *e);
typedef struct {
LPCWSTR RemoteAddress;
INT RemotePort;
BOOL Accept; INT reserved; } KMIPServerAcceptEventParams;
#define EID_KMIPSERVER_ACCEPT 1 virtual INT SECUREBLACKBOX_CALL FireAccept(LPSTR &lpszRemoteAddress, INT &iRemotePort, BOOL &bAccept);
class KMIPServerAcceptEventParams { public: const QString &RemoteAddress(); int RemotePort(); bool Accept(); void SetAccept(bool bAccept); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Accept(KMIPServerAcceptEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAccept(KMIPServerAcceptEventParams *e) {...}
Remarks
This event is fired when a new connection from RemoteAddress:RemotePort is ready to be accepted. Use the Accept parameter to accept or decline it.
Subscribe to Connect event to be notified of every connection that has been set up.
ActivateObject Event (KMIPServer Class)
Notifies the application about the object activation request.
Syntax
ANSI (Cross Platform) virtual int FireActivateObject(KMIPServerActivateObjectEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
int OperationStatus; int reserved; } KMIPServerActivateObjectEventParams;
Unicode (Windows) virtual INT FireActivateObject(KMIPServerActivateObjectEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
INT OperationStatus; INT reserved; } KMIPServerActivateObjectEventParams;
#define EID_KMIPSERVER_ACTIVATEOBJECT 2 virtual INT SECUREBLACKBOX_CALL FireActivateObject(LONG64 &lConnectionId, LPSTR &lpszObjectId, INT &iOperationStatus);
class KMIPServerActivateObjectEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void ActivateObject(KMIPServerActivateObjectEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireActivateObject(KMIPServerActivateObjectEventParams *e) {...}
Remarks
Subscribe to this event to get notified about object activation requests. The ObjectId parameter contain the unique identifier of the object being activated.
Object activation requests are handled in a simplified way, without using the three-step virtualization approach.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
Add Event (KMIPServer Class)
Passes the certificate import request to the application.
Syntax
ANSI (Cross Platform) virtual int FireAdd(KMIPServerAddEventParams *e);
typedef struct {
int64 ConnectionId;
char *Group;
char *CertId;
int OperationStatus; int reserved; } KMIPServerAddEventParams;
Unicode (Windows) virtual INT FireAdd(KMIPServerAddEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPWSTR Group;
LPWSTR CertId;
INT OperationStatus; INT reserved; } KMIPServerAddEventParams;
#define EID_KMIPSERVER_ADD 3 virtual INT SECUREBLACKBOX_CALL FireAdd(LONG64 &lConnectionId, LPSTR &lpszGroup, LPSTR &lpszCertId, INT &iOperationStatus);
class KMIPServerAddEventParams { public: qint64 ConnectionId(); const QString &Group(); void SetGroup(const QString &qsGroup); const QString &CertId(); void SetCertId(const QString &qsCertId); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Add(KMIPServerAddEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAdd(KMIPServerAddEventParams *e) {...}
Remarks
The server uses this event to allow the application to customize a certificate import request. This request fires after BeforeAdd if the Action parameter passed back to it was set to fraCustom.
The Group parameter indicates the shared name for the certificate elements (public key, private key, certificate). The CertId provides a unique identifier for the certificate object. Both can be adjusted by the application as required. Use the Certificate object to access the certificate parameters.
Upon completion of the processing, set the value of OperationStatus to match the result of the operation.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
AddKey Event (KMIPServer Class)
Expects the application to handle the key import request.
Syntax
ANSI (Cross Platform) virtual int FireAddKey(KMIPServerAddKeyEventParams *e);
typedef struct {
int64 ConnectionId;
char *Group;
char *KeyId;
int OperationStatus; int reserved; } KMIPServerAddKeyEventParams;
Unicode (Windows) virtual INT FireAddKey(KMIPServerAddKeyEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPWSTR Group;
LPWSTR KeyId;
INT OperationStatus; INT reserved; } KMIPServerAddKeyEventParams;
#define EID_KMIPSERVER_ADDKEY 4 virtual INT SECUREBLACKBOX_CALL FireAddKey(LONG64 &lConnectionId, LPSTR &lpszGroup, LPSTR &lpszKeyId, INT &iOperationStatus);
class KMIPServerAddKeyEventParams { public: qint64 ConnectionId(); const QString &Group(); void SetGroup(const QString &qsGroup); const QString &KeyId(); void SetKeyId(const QString &qsKeyId); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AddKey(KMIPServerAddKeyEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAddKey(KMIPServerAddKeyEventParams *e) {...}
Remarks
Application uses this event to wiretap into the key import procedure. For this event to be invoked, the fraCustom action needs to be previously returned from the BeforeAddKey event.
The handler of this event should process the key data provided via the Key property, typically by storing the key object in a local database. The handler also should set the KeyId and, optionally, Group parameters to match the properties of the new key object. The result of the operation should be returned via the OperationStatus parameter.
See the
Handling and overriding server operations using the Three-Step Virtualization
Most of the server components shipped with SecureBlackbox are highly customizable, allowing the user to override or alter the way the clients' requests are handled by default. The customization feature paves the way for creation of bespoke or virtualized server solutions that work over standardized protocols.
The possibility of customization is typically offered through a three-step virtualization model. Every customizable operation or request that can be handled by the server - say, RenameFile - is represented with a triple of events:
- BeforeRenameFile
- RenameFile
- AfterRenameFile
The first event fires right after the respective request has been received from a client. It provides the details of the operation, such as the original and target file names, and, importantly, a by-reference (writable) Action parameter. The event handler can set the Action parameter to one of the three settings given below. The setting chosen defines the further operation flow:
- fraAuto: the operation shall be handled automatically by the server: in this case, a file will be searched in the provided local directory and renamed.
- fraCustom: indicates that the user wants to take care of the operation by themselves. If this setting is chosen, the server takes no action, and instead fires the RenameFile event shortly after BeforeRenameFile completes. The user is expected to handle RenameFile and perform the requested action - that is, rename the file - manually.
- fraAbort: the operation should be aborted as not supported/allowed. Neither the server nor the user are expected to perform it.
The second event (RenameFile) only fires if Action was set to fraCustom in the earlier call to BeforeRenameFile. It lets the user handle the requested operation in the way they want. The user code must fulfil the operation (for example, rename a database entry, if building a virtualized server), and return the operation result as the event's OperationResult parameter.
If the Action parameter was set to fraAuto, RenameFile is not called. The server performs the operation automatically.
The third event, AfterRenameFile, fires upon completion of the operation, either in automatic or custom mode. The user code can check and/or adjust the result to be returned to the client.
To summarize:
- If Action is set to fraAuto, the next call about this operation will be to AfterRenameFile.
- If Action is set to fraCustom, the next call about the operation will be to RenameFile, and after that to AfterRenameFile.
- If Action is set to fraAbort, the operation is rejected and no further calls about it are performed.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
AfterAdd Event (KMIPServer Class)
Notifies the application about completion of the certificate import operation.
Syntax
ANSI (Cross Platform) virtual int FireAfterAdd(KMIPServerAfterAddEventParams *e);
typedef struct {
int64 ConnectionId;
char *Group;
char *CertId;
int OperationStatus; int reserved; } KMIPServerAfterAddEventParams;
Unicode (Windows) virtual INT FireAfterAdd(KMIPServerAfterAddEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPWSTR Group;
LPWSTR CertId;
INT OperationStatus; INT reserved; } KMIPServerAfterAddEventParams;
#define EID_KMIPSERVER_AFTERADD 5 virtual INT SECUREBLACKBOX_CALL FireAfterAdd(LONG64 &lConnectionId, LPSTR &lpszGroup, LPSTR &lpszCertId, INT &iOperationStatus);
class KMIPServerAfterAddEventParams { public: qint64 ConnectionId(); const QString &Group(); void SetGroup(const QString &qsGroup); const QString &CertId(); void SetCertId(const QString &qsCertId); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AfterAdd(KMIPServerAfterAddEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAfterAdd(KMIPServerAfterAddEventParams *e) {...}
Remarks
The class fires this event upon completion of certificate import routine. The certificate object that has been generated can be read from the Certificate property.
The Group and CertId parameters contain the name of the group and the unique identifier assigned to the new certificate. The OperationStatus parameter contains the result of the operation. The application can adjust them as required.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
AfterAddKey Event (KMIPServer Class)
Reports the completion of the key import procedure.
Syntax
ANSI (Cross Platform) virtual int FireAfterAddKey(KMIPServerAfterAddKeyEventParams *e);
typedef struct {
int64 ConnectionId;
char *Group;
char *KeyId;
int OperationStatus; int reserved; } KMIPServerAfterAddKeyEventParams;
Unicode (Windows) virtual INT FireAfterAddKey(KMIPServerAfterAddKeyEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPWSTR Group;
LPWSTR KeyId;
INT OperationStatus; INT reserved; } KMIPServerAfterAddKeyEventParams;
#define EID_KMIPSERVER_AFTERADDKEY 6 virtual INT SECUREBLACKBOX_CALL FireAfterAddKey(LONG64 &lConnectionId, LPSTR &lpszGroup, LPSTR &lpszKeyId, INT &iOperationStatus);
class KMIPServerAfterAddKeyEventParams { public: qint64 ConnectionId(); const QString &Group(); void SetGroup(const QString &qsGroup); const QString &KeyId(); void SetKeyId(const QString &qsKeyId); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AfterAddKey(KMIPServerAfterAddKeyEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAfterAddKey(KMIPServerAfterAddKeyEventParams *e) {...}
Remarks
The component uses the AfterAddKey event to notify the application about completion of the key import processing. The OperationStatus parameter returns the operation result. The KeyId and Group parameters are set to match the properties of the newly created key. The application can change them if required.
This event fires both for "normal" and "virtualized" requests, independently of the value of the Action parameter returned from the BeforeAddKey event. See the
Handling and overriding server operations using the Three-Step Virtualization
Most of the server components shipped with SecureBlackbox are highly customizable, allowing the user to override or alter the way the clients' requests are handled by default. The customization feature paves the way for creation of bespoke or virtualized server solutions that work over standardized protocols.
The possibility of customization is typically offered through a three-step virtualization model. Every customizable operation or request that can be handled by the server - say, RenameFile - is represented with a triple of events:
- BeforeRenameFile
- RenameFile
- AfterRenameFile
The first event fires right after the respective request has been received from a client. It provides the details of the operation, such as the original and target file names, and, importantly, a by-reference (writable) Action parameter. The event handler can set the Action parameter to one of the three settings given below. The setting chosen defines the further operation flow:
- fraAuto: the operation shall be handled automatically by the server: in this case, a file will be searched in the provided local directory and renamed.
- fraCustom: indicates that the user wants to take care of the operation by themselves. If this setting is chosen, the server takes no action, and instead fires the RenameFile event shortly after BeforeRenameFile completes. The user is expected to handle RenameFile and perform the requested action - that is, rename the file - manually.
- fraAbort: the operation should be aborted as not supported/allowed. Neither the server nor the user are expected to perform it.
The second event (RenameFile) only fires if Action was set to fraCustom in the earlier call to BeforeRenameFile. It lets the user handle the requested operation in the way they want. The user code must fulfil the operation (for example, rename a database entry, if building a virtualized server), and return the operation result as the event's OperationResult parameter.
If the Action parameter was set to fraAuto, RenameFile is not called. The server performs the operation automatically.
The third event, AfterRenameFile, fires upon completion of the operation, either in automatic or custom mode. The user code can check and/or adjust the result to be returned to the client.
To summarize:
- If Action is set to fraAuto, the next call about this operation will be to AfterRenameFile.
- If Action is set to fraCustom, the next call about the operation will be to RenameFile, and after that to AfterRenameFile.
- If Action is set to fraAbort, the operation is rejected and no further calls about it are performed.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
AfterBrowse Event (KMIPServer Class)
KMIP server uses this event to notify the application about the completion of the browsing (attribute request) operation.
Syntax
ANSI (Cross Platform) virtual int FireAfterBrowse(KMIPServerAfterBrowseEventParams *e);
typedef struct {
int64 ConnectionID;
const char *ObjectId;
int OperationStatus; int reserved; } KMIPServerAfterBrowseEventParams;
Unicode (Windows) virtual INT FireAfterBrowse(KMIPServerAfterBrowseEventParams *e);
typedef struct {
LONG64 ConnectionID;
LPCWSTR ObjectId;
INT OperationStatus; INT reserved; } KMIPServerAfterBrowseEventParams;
#define EID_KMIPSERVER_AFTERBROWSE 7 virtual INT SECUREBLACKBOX_CALL FireAfterBrowse(LONG64 &lConnectionID, LPSTR &lpszObjectId, INT &iOperationStatus);
class KMIPServerAfterBrowseEventParams { public: qint64 ConnectionID(); const QString &ObjectId(); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AfterBrowse(KMIPServerAfterBrowseEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAfterBrowse(KMIPServerAfterBrowseEventParams *e) {...}
Remarks
The ConnectionID parameter identifies the client connection, and the ObjectId parameter specifies the unique ID of the object the attributes of which are being requested.
This event follows the three-step virtualization approach, and fires after the preceding BeforeBrowse and ReadAttribute events.
Check the operation status, and alter it, if needed, through the OperationStatus parameter:
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
See the
Handling and overriding server operations using the Three-Step Virtualization
Most of the server components shipped with SecureBlackbox are highly customizable, allowing the user to override or alter the way the clients' requests are handled by default. The customization feature paves the way for creation of bespoke or virtualized server solutions that work over standardized protocols.
The possibility of customization is typically offered through a three-step virtualization model. Every customizable operation or request that can be handled by the server - say, RenameFile - is represented with a triple of events:
- BeforeRenameFile
- RenameFile
- AfterRenameFile
The first event fires right after the respective request has been received from a client. It provides the details of the operation, such as the original and target file names, and, importantly, a by-reference (writable) Action parameter. The event handler can set the Action parameter to one of the three settings given below. The setting chosen defines the further operation flow:
- fraAuto: the operation shall be handled automatically by the server: in this case, a file will be searched in the provided local directory and renamed.
- fraCustom: indicates that the user wants to take care of the operation by themselves. If this setting is chosen, the server takes no action, and instead fires the RenameFile event shortly after BeforeRenameFile completes. The user is expected to handle RenameFile and perform the requested action - that is, rename the file - manually.
- fraAbort: the operation should be aborted as not supported/allowed. Neither the server nor the user are expected to perform it.
The second event (RenameFile) only fires if Action was set to fraCustom in the earlier call to BeforeRenameFile. It lets the user handle the requested operation in the way they want. The user code must fulfil the operation (for example, rename a database entry, if building a virtualized server), and return the operation result as the event's OperationResult parameter.
If the Action parameter was set to fraAuto, RenameFile is not called. The server performs the operation automatically.
The third event, AfterRenameFile, fires upon completion of the operation, either in automatic or custom mode. The user code can check and/or adjust the result to be returned to the client.
To summarize:
- If Action is set to fraAuto, the next call about this operation will be to AfterRenameFile.
- If Action is set to fraCustom, the next call about the operation will be to RenameFile, and after that to AfterRenameFile.
- If Action is set to fraAbort, the operation is rejected and no further calls about it are performed.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
AfterDecrypt Event (KMIPServer Class)
Notifies the application about completion of the decryption call.
Syntax
ANSI (Cross Platform) virtual int FireAfterDecrypt(KMIPServerAfterDecryptEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
const char *DecryptedData; int lenDecryptedData;
char *CorrelationValue;
int OperationStatus; int reserved; } KMIPServerAfterDecryptEventParams;
Unicode (Windows) virtual INT FireAfterDecrypt(KMIPServerAfterDecryptEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
LPCSTR DecryptedData; INT lenDecryptedData;
LPWSTR CorrelationValue;
INT OperationStatus; INT reserved; } KMIPServerAfterDecryptEventParams;
#define EID_KMIPSERVER_AFTERDECRYPT 8 virtual INT SECUREBLACKBOX_CALL FireAfterDecrypt(LONG64 &lConnectionId, LPSTR &lpszObjectId, LPSTR &lpDecryptedData, INT &lenDecryptedData, LPSTR &lpszCorrelationValue, INT &iOperationStatus);
class KMIPServerAfterDecryptEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); const QByteArray &DecryptedData(); const QString &CorrelationValue(); void SetCorrelationValue(const QString &qsCorrelationValue); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AfterDecrypt(KMIPServerAfterDecryptEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAfterDecrypt(KMIPServerAfterDecryptEventParams *e) {...}
Remarks
The component uses this event to notify the application about completion of the decrypt request. The event parameters provide the details of the decryption operation. This event fires independently of whether the build-in or virtualized decryption is used.
The ObjectId parameter contains the unique identifier of the decryption key. DecryptedData contains the decryption result. The CorrelationValue string is a linking token that allows to associate several pieces of a multi-step decryption operation together. The OperationStatus contains the result of the operation.
See the
Handling and overriding server operations using the Three-Step Virtualization
Most of the server components shipped with SecureBlackbox are highly customizable, allowing the user to override or alter the way the clients' requests are handled by default. The customization feature paves the way for creation of bespoke or virtualized server solutions that work over standardized protocols.
The possibility of customization is typically offered through a three-step virtualization model. Every customizable operation or request that can be handled by the server - say, RenameFile - is represented with a triple of events:
- BeforeRenameFile
- RenameFile
- AfterRenameFile
The first event fires right after the respective request has been received from a client. It provides the details of the operation, such as the original and target file names, and, importantly, a by-reference (writable) Action parameter. The event handler can set the Action parameter to one of the three settings given below. The setting chosen defines the further operation flow:
- fraAuto: the operation shall be handled automatically by the server: in this case, a file will be searched in the provided local directory and renamed.
- fraCustom: indicates that the user wants to take care of the operation by themselves. If this setting is chosen, the server takes no action, and instead fires the RenameFile event shortly after BeforeRenameFile completes. The user is expected to handle RenameFile and perform the requested action - that is, rename the file - manually.
- fraAbort: the operation should be aborted as not supported/allowed. Neither the server nor the user are expected to perform it.
The second event (RenameFile) only fires if Action was set to fraCustom in the earlier call to BeforeRenameFile. It lets the user handle the requested operation in the way they want. The user code must fulfil the operation (for example, rename a database entry, if building a virtualized server), and return the operation result as the event's OperationResult parameter.
If the Action parameter was set to fraAuto, RenameFile is not called. The server performs the operation automatically.
The third event, AfterRenameFile, fires upon completion of the operation, either in automatic or custom mode. The user code can check and/or adjust the result to be returned to the client.
To summarize:
- If Action is set to fraAuto, the next call about this operation will be to AfterRenameFile.
- If Action is set to fraCustom, the next call about the operation will be to RenameFile, and after that to AfterRenameFile.
- If Action is set to fraAbort, the operation is rejected and no further calls about it are performed.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
AfterDeriveKey Event (KMIPServer Class)
Notifies the application about completion of the key derivation request.
Syntax
ANSI (Cross Platform) virtual int FireAfterDeriveKey(KMIPServerAfterDeriveKeyEventParams *e);
typedef struct {
int64 ConnectionId;
char *NewKeyId;
int OperationStatus; int reserved; } KMIPServerAfterDeriveKeyEventParams;
Unicode (Windows) virtual INT FireAfterDeriveKey(KMIPServerAfterDeriveKeyEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPWSTR NewKeyId;
INT OperationStatus; INT reserved; } KMIPServerAfterDeriveKeyEventParams;
#define EID_KMIPSERVER_AFTERDERIVEKEY 9 virtual INT SECUREBLACKBOX_CALL FireAfterDeriveKey(LONG64 &lConnectionId, LPSTR &lpszNewKeyId, INT &iOperationStatus);
class KMIPServerAfterDeriveKeyEventParams { public: qint64 ConnectionId(); const QString &NewKeyId(); void SetNewKeyId(const QString &qsNewKeyId); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AfterDeriveKey(KMIPServerAfterDeriveKeyEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAfterDeriveKey(KMIPServerAfterDeriveKeyEventParams *e) {...}
Remarks
Use this event to get notified about completion of key derivation requests. The OperationStatus parameter specifies the result of the key derivation operation. The NewKeyId contains the unique identifier of the new key. You can change both parameters if required.
See the
Handling and overriding server operations using the Three-Step Virtualization
Most of the server components shipped with SecureBlackbox are highly customizable, allowing the user to override or alter the way the clients' requests are handled by default. The customization feature paves the way for creation of bespoke or virtualized server solutions that work over standardized protocols.
The possibility of customization is typically offered through a three-step virtualization model. Every customizable operation or request that can be handled by the server - say, RenameFile - is represented with a triple of events:
- BeforeRenameFile
- RenameFile
- AfterRenameFile
The first event fires right after the respective request has been received from a client. It provides the details of the operation, such as the original and target file names, and, importantly, a by-reference (writable) Action parameter. The event handler can set the Action parameter to one of the three settings given below. The setting chosen defines the further operation flow:
- fraAuto: the operation shall be handled automatically by the server: in this case, a file will be searched in the provided local directory and renamed.
- fraCustom: indicates that the user wants to take care of the operation by themselves. If this setting is chosen, the server takes no action, and instead fires the RenameFile event shortly after BeforeRenameFile completes. The user is expected to handle RenameFile and perform the requested action - that is, rename the file - manually.
- fraAbort: the operation should be aborted as not supported/allowed. Neither the server nor the user are expected to perform it.
The second event (RenameFile) only fires if Action was set to fraCustom in the earlier call to BeforeRenameFile. It lets the user handle the requested operation in the way they want. The user code must fulfil the operation (for example, rename a database entry, if building a virtualized server), and return the operation result as the event's OperationResult parameter.
If the Action parameter was set to fraAuto, RenameFile is not called. The server performs the operation automatically.
The third event, AfterRenameFile, fires upon completion of the operation, either in automatic or custom mode. The user code can check and/or adjust the result to be returned to the client.
To summarize:
- If Action is set to fraAuto, the next call about this operation will be to AfterRenameFile.
- If Action is set to fraCustom, the next call about the operation will be to RenameFile, and after that to AfterRenameFile.
- If Action is set to fraAbort, the operation is rejected and no further calls about it are performed.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
AfterEdit Event (KMIPServer Class)
Notifies the application of completion of the object editing operation.
Syntax
ANSI (Cross Platform) virtual int FireAfterEdit(KMIPServerAfterEditEventParams *e);
typedef struct {
int64 ConnectionID;
const char *ObjectId;
int OperationStatus; int reserved; } KMIPServerAfterEditEventParams;
Unicode (Windows) virtual INT FireAfterEdit(KMIPServerAfterEditEventParams *e);
typedef struct {
LONG64 ConnectionID;
LPCWSTR ObjectId;
INT OperationStatus; INT reserved; } KMIPServerAfterEditEventParams;
#define EID_KMIPSERVER_AFTEREDIT 10 virtual INT SECUREBLACKBOX_CALL FireAfterEdit(LONG64 &lConnectionID, LPSTR &lpszObjectId, INT &iOperationStatus);
class KMIPServerAfterEditEventParams { public: qint64 ConnectionID(); const QString &ObjectId(); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AfterEdit(KMIPServerAfterEditEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAfterEdit(KMIPServerAfterEditEventParams *e) {...}
Remarks
The component fires this event to notify the application about completion of an edit operation. An edit operation consists of a number of individual attribute update requests.
The ObjectId parameter contains the unique identifier of the object that was edited. Use the OperationStatus parameter to check or update the result of the operation.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
AfterEncrypt Event (KMIPServer Class)
Notifies the application about the completion of the encryption call.
Syntax
ANSI (Cross Platform) virtual int FireAfterEncrypt(KMIPServerAfterEncryptEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
const char *EncryptedData; int lenEncryptedData;
char *CorrelationValue;
int OperationStatus; int reserved; } KMIPServerAfterEncryptEventParams;
Unicode (Windows) virtual INT FireAfterEncrypt(KMIPServerAfterEncryptEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
LPCSTR EncryptedData; INT lenEncryptedData;
LPWSTR CorrelationValue;
INT OperationStatus; INT reserved; } KMIPServerAfterEncryptEventParams;
#define EID_KMIPSERVER_AFTERENCRYPT 11 virtual INT SECUREBLACKBOX_CALL FireAfterEncrypt(LONG64 &lConnectionId, LPSTR &lpszObjectId, LPSTR &lpEncryptedData, INT &lenEncryptedData, LPSTR &lpszCorrelationValue, INT &iOperationStatus);
class KMIPServerAfterEncryptEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); const QByteArray &EncryptedData(); const QString &CorrelationValue(); void SetCorrelationValue(const QString &qsCorrelationValue); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AfterEncrypt(KMIPServerAfterEncryptEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAfterEncrypt(KMIPServerAfterEncryptEventParams *e) {...}
Remarks
The component uses this event to notify the application about completion of the encrypt request. The event parameters provide the details of the encryption operation. This event fires independently of whether the build-in or virtualized decryption is used.
The ObjectId parameter contains the unique identifier of the encryption key. EncryptedData contains the encryption result. The CorrelationValue string is a linking token that allows to associate several pieces of a multi-step encryption operation together. The OperationStatus contains the result of the operation.
See the
Handling and overriding server operations using the Three-Step Virtualization
Most of the server components shipped with SecureBlackbox are highly customizable, allowing the user to override or alter the way the clients' requests are handled by default. The customization feature paves the way for creation of bespoke or virtualized server solutions that work over standardized protocols.
The possibility of customization is typically offered through a three-step virtualization model. Every customizable operation or request that can be handled by the server - say, RenameFile - is represented with a triple of events:
- BeforeRenameFile
- RenameFile
- AfterRenameFile
The first event fires right after the respective request has been received from a client. It provides the details of the operation, such as the original and target file names, and, importantly, a by-reference (writable) Action parameter. The event handler can set the Action parameter to one of the three settings given below. The setting chosen defines the further operation flow:
- fraAuto: the operation shall be handled automatically by the server: in this case, a file will be searched in the provided local directory and renamed.
- fraCustom: indicates that the user wants to take care of the operation by themselves. If this setting is chosen, the server takes no action, and instead fires the RenameFile event shortly after BeforeRenameFile completes. The user is expected to handle RenameFile and perform the requested action - that is, rename the file - manually.
- fraAbort: the operation should be aborted as not supported/allowed. Neither the server nor the user are expected to perform it.
The second event (RenameFile) only fires if Action was set to fraCustom in the earlier call to BeforeRenameFile. It lets the user handle the requested operation in the way they want. The user code must fulfil the operation (for example, rename a database entry, if building a virtualized server), and return the operation result as the event's OperationResult parameter.
If the Action parameter was set to fraAuto, RenameFile is not called. The server performs the operation automatically.
The third event, AfterRenameFile, fires upon completion of the operation, either in automatic or custom mode. The user code can check and/or adjust the result to be returned to the client.
To summarize:
- If Action is set to fraAuto, the next call about this operation will be to AfterRenameFile.
- If Action is set to fraCustom, the next call about the operation will be to RenameFile, and after that to AfterRenameFile.
- If Action is set to fraAbort, the operation is rejected and no further calls about it are performed.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
AfterGenerate Event (KMIPServer Class)
Signifies completion of certificate generation.
Syntax
ANSI (Cross Platform) virtual int FireAfterGenerate(KMIPServerAfterGenerateEventParams *e);
typedef struct {
int64 ConnectionId;
char *CertId;
int OperationStatus; int reserved; } KMIPServerAfterGenerateEventParams;
Unicode (Windows) virtual INT FireAfterGenerate(KMIPServerAfterGenerateEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPWSTR CertId;
INT OperationStatus; INT reserved; } KMIPServerAfterGenerateEventParams;
#define EID_KMIPSERVER_AFTERGENERATE 12 virtual INT SECUREBLACKBOX_CALL FireAfterGenerate(LONG64 &lConnectionId, LPSTR &lpszCertId, INT &iOperationStatus);
class KMIPServerAfterGenerateEventParams { public: qint64 ConnectionId(); const QString &CertId(); void SetCertId(const QString &qsCertId); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AfterGenerate(KMIPServerAfterGenerateEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAfterGenerate(KMIPServerAfterGenerateEventParams *e) {...}
Remarks
The class fires this event upon completion of certificate generation routine. The generated certificate can be read from Certificate.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
AfterGenerateKey Event (KMIPServer Class)
Notifies the application of the completion of key generation procedure.
Syntax
ANSI (Cross Platform) virtual int FireAfterGenerateKey(KMIPServerAfterGenerateKeyEventParams *e);
typedef struct {
int64 ConnectionId;
char *KeyId;
int OperationStatus; int reserved; } KMIPServerAfterGenerateKeyEventParams;
Unicode (Windows) virtual INT FireAfterGenerateKey(KMIPServerAfterGenerateKeyEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPWSTR KeyId;
INT OperationStatus; INT reserved; } KMIPServerAfterGenerateKeyEventParams;
#define EID_KMIPSERVER_AFTERGENERATEKEY 13 virtual INT SECUREBLACKBOX_CALL FireAfterGenerateKey(LONG64 &lConnectionId, LPSTR &lpszKeyId, INT &iOperationStatus);
class KMIPServerAfterGenerateKeyEventParams { public: qint64 ConnectionId(); const QString &KeyId(); void SetKeyId(const QString &qsKeyId); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AfterGenerateKey(KMIPServerAfterGenerateKeyEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAfterGenerateKey(KMIPServerAfterGenerateKeyEventParams *e) {...}
Remarks
The component uses this event to notify the application about the completion of the key generation procedure. The KeyId parameter contains the ID of the new key object (and can be changed by the user code if required). The OperationStatus parameter reports the result of the operation.
This event is the third and conclusive in the sequence of BeforeGenerateKey, GenerateKey, and the AfterGenerateKey events. See the
Handling and overriding server operations using the Three-Step Virtualization
Most of the server components shipped with SecureBlackbox are highly customizable, allowing the user to override or alter the way the clients' requests are handled by default. The customization feature paves the way for creation of bespoke or virtualized server solutions that work over standardized protocols.
The possibility of customization is typically offered through a three-step virtualization model. Every customizable operation or request that can be handled by the server - say, RenameFile - is represented with a triple of events:
- BeforeRenameFile
- RenameFile
- AfterRenameFile
The first event fires right after the respective request has been received from a client. It provides the details of the operation, such as the original and target file names, and, importantly, a by-reference (writable) Action parameter. The event handler can set the Action parameter to one of the three settings given below. The setting chosen defines the further operation flow:
- fraAuto: the operation shall be handled automatically by the server: in this case, a file will be searched in the provided local directory and renamed.
- fraCustom: indicates that the user wants to take care of the operation by themselves. If this setting is chosen, the server takes no action, and instead fires the RenameFile event shortly after BeforeRenameFile completes. The user is expected to handle RenameFile and perform the requested action - that is, rename the file - manually.
- fraAbort: the operation should be aborted as not supported/allowed. Neither the server nor the user are expected to perform it.
The second event (RenameFile) only fires if Action was set to fraCustom in the earlier call to BeforeRenameFile. It lets the user handle the requested operation in the way they want. The user code must fulfil the operation (for example, rename a database entry, if building a virtualized server), and return the operation result as the event's OperationResult parameter.
If the Action parameter was set to fraAuto, RenameFile is not called. The server performs the operation automatically.
The third event, AfterRenameFile, fires upon completion of the operation, either in automatic or custom mode. The user code can check and/or adjust the result to be returned to the client.
To summarize:
- If Action is set to fraAuto, the next call about this operation will be to AfterRenameFile.
- If Action is set to fraCustom, the next call about the operation will be to RenameFile, and after that to AfterRenameFile.
- If Action is set to fraAbort, the operation is rejected and no further calls about it are performed.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
AfterGenerateKeyPair Event (KMIPServer Class)
Notifies the application of the completion of keypair generation.
Syntax
ANSI (Cross Platform) virtual int FireAfterGenerateKeyPair(KMIPServerAfterGenerateKeyPairEventParams *e);
typedef struct {
int64 ConnectionId;
char *PrivateKeyId;
char *PublicKeyId;
int OperationStatus; int reserved; } KMIPServerAfterGenerateKeyPairEventParams;
Unicode (Windows) virtual INT FireAfterGenerateKeyPair(KMIPServerAfterGenerateKeyPairEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPWSTR PrivateKeyId;
LPWSTR PublicKeyId;
INT OperationStatus; INT reserved; } KMIPServerAfterGenerateKeyPairEventParams;
#define EID_KMIPSERVER_AFTERGENERATEKEYPAIR 14 virtual INT SECUREBLACKBOX_CALL FireAfterGenerateKeyPair(LONG64 &lConnectionId, LPSTR &lpszPrivateKeyId, LPSTR &lpszPublicKeyId, INT &iOperationStatus);
class KMIPServerAfterGenerateKeyPairEventParams { public: qint64 ConnectionId(); const QString &PrivateKeyId(); void SetPrivateKeyId(const QString &qsPrivateKeyId); const QString &PublicKeyId(); void SetPublicKeyId(const QString &qsPublicKeyId); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AfterGenerateKeyPair(KMIPServerAfterGenerateKeyPairEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAfterGenerateKeyPair(KMIPServerAfterGenerateKeyPairEventParams *e) {...}
Remarks
The component uses this event to notify the application about the completion of the keypair generation operation. The PrivateKeyId and PublicKeyId parameters contain the IDs of the new private and public keys respectively. The OperationStatus parameter returns the result of the operation.
See the
Handling and overriding server operations using the Three-Step Virtualization
Most of the server components shipped with SecureBlackbox are highly customizable, allowing the user to override or alter the way the clients' requests are handled by default. The customization feature paves the way for creation of bespoke or virtualized server solutions that work over standardized protocols.
The possibility of customization is typically offered through a three-step virtualization model. Every customizable operation or request that can be handled by the server - say, RenameFile - is represented with a triple of events:
- BeforeRenameFile
- RenameFile
- AfterRenameFile
The first event fires right after the respective request has been received from a client. It provides the details of the operation, such as the original and target file names, and, importantly, a by-reference (writable) Action parameter. The event handler can set the Action parameter to one of the three settings given below. The setting chosen defines the further operation flow:
- fraAuto: the operation shall be handled automatically by the server: in this case, a file will be searched in the provided local directory and renamed.
- fraCustom: indicates that the user wants to take care of the operation by themselves. If this setting is chosen, the server takes no action, and instead fires the RenameFile event shortly after BeforeRenameFile completes. The user is expected to handle RenameFile and perform the requested action - that is, rename the file - manually.
- fraAbort: the operation should be aborted as not supported/allowed. Neither the server nor the user are expected to perform it.
The second event (RenameFile) only fires if Action was set to fraCustom in the earlier call to BeforeRenameFile. It lets the user handle the requested operation in the way they want. The user code must fulfil the operation (for example, rename a database entry, if building a virtualized server), and return the operation result as the event's OperationResult parameter.
If the Action parameter was set to fraAuto, RenameFile is not called. The server performs the operation automatically.
The third event, AfterRenameFile, fires upon completion of the operation, either in automatic or custom mode. The user code can check and/or adjust the result to be returned to the client.
To summarize:
- If Action is set to fraAuto, the next call about this operation will be to AfterRenameFile.
- If Action is set to fraCustom, the next call about the operation will be to RenameFile, and after that to AfterRenameFile.
- If Action is set to fraAbort, the operation is rejected and no further calls about it are performed.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
AfterHash Event (KMIPServer Class)
Notifies the application about completion of the hashing call.
Syntax
ANSI (Cross Platform) virtual int FireAfterHash(KMIPServerAfterHashEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
const char *HashData; int lenHashData;
char *CorrelationValue;
int OperationStatus; int reserved; } KMIPServerAfterHashEventParams;
Unicode (Windows) virtual INT FireAfterHash(KMIPServerAfterHashEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
LPCSTR HashData; INT lenHashData;
LPWSTR CorrelationValue;
INT OperationStatus; INT reserved; } KMIPServerAfterHashEventParams;
#define EID_KMIPSERVER_AFTERHASH 15 virtual INT SECUREBLACKBOX_CALL FireAfterHash(LONG64 &lConnectionId, LPSTR &lpszObjectId, LPSTR &lpHashData, INT &lenHashData, LPSTR &lpszCorrelationValue, INT &iOperationStatus);
class KMIPServerAfterHashEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); const QByteArray &HashData(); const QString &CorrelationValue(); void SetCorrelationValue(const QString &qsCorrelationValue); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AfterHash(KMIPServerAfterHashEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAfterHash(KMIPServerAfterHashEventParams *e) {...}
Remarks
Subscribe to this event to be notified about completion of the hashing request processing. The DataHash parameter contains the hash that has been calculated. The OperationStatus parameter contains the operation result. If the hashing operation was a MAC (keyed) operation, the ID of the key is passed to the ObjectId parameter.
See the
Handling and overriding server operations using the Three-Step Virtualization
Most of the server components shipped with SecureBlackbox are highly customizable, allowing the user to override or alter the way the clients' requests are handled by default. The customization feature paves the way for creation of bespoke or virtualized server solutions that work over standardized protocols.
The possibility of customization is typically offered through a three-step virtualization model. Every customizable operation or request that can be handled by the server - say, RenameFile - is represented with a triple of events:
- BeforeRenameFile
- RenameFile
- AfterRenameFile
The first event fires right after the respective request has been received from a client. It provides the details of the operation, such as the original and target file names, and, importantly, a by-reference (writable) Action parameter. The event handler can set the Action parameter to one of the three settings given below. The setting chosen defines the further operation flow:
- fraAuto: the operation shall be handled automatically by the server: in this case, a file will be searched in the provided local directory and renamed.
- fraCustom: indicates that the user wants to take care of the operation by themselves. If this setting is chosen, the server takes no action, and instead fires the RenameFile event shortly after BeforeRenameFile completes. The user is expected to handle RenameFile and perform the requested action - that is, rename the file - manually.
- fraAbort: the operation should be aborted as not supported/allowed. Neither the server nor the user are expected to perform it.
The second event (RenameFile) only fires if Action was set to fraCustom in the earlier call to BeforeRenameFile. It lets the user handle the requested operation in the way they want. The user code must fulfil the operation (for example, rename a database entry, if building a virtualized server), and return the operation result as the event's OperationResult parameter.
If the Action parameter was set to fraAuto, RenameFile is not called. The server performs the operation automatically.
The third event, AfterRenameFile, fires upon completion of the operation, either in automatic or custom mode. The user code can check and/or adjust the result to be returned to the client.
To summarize:
- If Action is set to fraAuto, the next call about this operation will be to AfterRenameFile.
- If Action is set to fraCustom, the next call about the operation will be to RenameFile, and after that to AfterRenameFile.
- If Action is set to fraAbort, the operation is rejected and no further calls about it are performed.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
AfterList Event (KMIPServer Class)
Notifies the application about completion of the list command.
Syntax
ANSI (Cross Platform) virtual int FireAfterList(KMIPServerAfterListEventParams *e);
typedef struct {
int64 ConnectionId;
int ObjectType;
int ObjectStatus;
int OnlyFreshObjects;
char *ObjectIds;
int OperationStatus; int reserved; } KMIPServerAfterListEventParams;
Unicode (Windows) virtual INT FireAfterList(KMIPServerAfterListEventParams *e);
typedef struct {
LONG64 ConnectionId;
INT ObjectType;
INT ObjectStatus;
BOOL OnlyFreshObjects;
LPWSTR ObjectIds;
INT OperationStatus; INT reserved; } KMIPServerAfterListEventParams;
#define EID_KMIPSERVER_AFTERLIST 16 virtual INT SECUREBLACKBOX_CALL FireAfterList(LONG64 &lConnectionId, INT &iObjectType, INT &iObjectStatus, BOOL &bOnlyFreshObjects, LPSTR &lpszObjectIds, INT &iOperationStatus);
class KMIPServerAfterListEventParams { public: qint64 ConnectionId(); int ObjectType(); int ObjectStatus(); bool OnlyFreshObjects(); const QString &ObjectIds(); void SetObjectIds(const QString &qsObjectIds); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AfterList(KMIPServerAfterListEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAfterList(KMIPServerAfterListEventParams *e) {...}
Remarks
The component uses this event to notify the application about the completion of the list command. The ObjectType, ObjectStatus, and OnlyFreshObjects contain the listing criteria. The ObjectIds contains a list of object unique identifiers, separated by newlines.
See the
Handling and overriding server operations using the Three-Step Virtualization
Most of the server components shipped with SecureBlackbox are highly customizable, allowing the user to override or alter the way the clients' requests are handled by default. The customization feature paves the way for creation of bespoke or virtualized server solutions that work over standardized protocols.
The possibility of customization is typically offered through a three-step virtualization model. Every customizable operation or request that can be handled by the server - say, RenameFile - is represented with a triple of events:
- BeforeRenameFile
- RenameFile
- AfterRenameFile
The first event fires right after the respective request has been received from a client. It provides the details of the operation, such as the original and target file names, and, importantly, a by-reference (writable) Action parameter. The event handler can set the Action parameter to one of the three settings given below. The setting chosen defines the further operation flow:
- fraAuto: the operation shall be handled automatically by the server: in this case, a file will be searched in the provided local directory and renamed.
- fraCustom: indicates that the user wants to take care of the operation by themselves. If this setting is chosen, the server takes no action, and instead fires the RenameFile event shortly after BeforeRenameFile completes. The user is expected to handle RenameFile and perform the requested action - that is, rename the file - manually.
- fraAbort: the operation should be aborted as not supported/allowed. Neither the server nor the user are expected to perform it.
The second event (RenameFile) only fires if Action was set to fraCustom in the earlier call to BeforeRenameFile. It lets the user handle the requested operation in the way they want. The user code must fulfil the operation (for example, rename a database entry, if building a virtualized server), and return the operation result as the event's OperationResult parameter.
If the Action parameter was set to fraAuto, RenameFile is not called. The server performs the operation automatically.
The third event, AfterRenameFile, fires upon completion of the operation, either in automatic or custom mode. The user code can check and/or adjust the result to be returned to the client.
To summarize:
- If Action is set to fraAuto, the next call about this operation will be to AfterRenameFile.
- If Action is set to fraCustom, the next call about the operation will be to RenameFile, and after that to AfterRenameFile.
- If Action is set to fraAbort, the operation is rejected and no further calls about it are performed.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
AfterObtainLease Event (KMIPServer Class)
Reports the completion of lease allocation operation.
Syntax
ANSI (Cross Platform) virtual int FireAfterObtainLease(KMIPServerAfterObtainLeaseEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
int LeaseTime;
char *LastChangeDate;
int OperationStatus; int reserved; } KMIPServerAfterObtainLeaseEventParams;
Unicode (Windows) virtual INT FireAfterObtainLease(KMIPServerAfterObtainLeaseEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
INT LeaseTime;
LPWSTR LastChangeDate;
INT OperationStatus; INT reserved; } KMIPServerAfterObtainLeaseEventParams;
#define EID_KMIPSERVER_AFTEROBTAINLEASE 17 virtual INT SECUREBLACKBOX_CALL FireAfterObtainLease(LONG64 &lConnectionId, LPSTR &lpszObjectId, INT &iLeaseTime, LPSTR &lpszLastChangeDate, INT &iOperationStatus);
class KMIPServerAfterObtainLeaseEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); int LeaseTime(); void SetLeaseTime(int iLeaseTime); const QString &LastChangeDate(); void SetLastChangeDate(const QString &qsLastChangeDate); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AfterObtainLease(KMIPServerAfterObtainLeaseEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAfterObtainLease(KMIPServerAfterObtainLeaseEventParams *e) {...}
Remarks
The component uses this event to notify the application about the completion of lease allocation operation. The ObjectId parameter specifies the identifier of the object a lease for each is allocated. The LeaseTime and LastChangeDate parameters specify parameters of the lease.
See the
Handling and overriding server operations using the Three-Step Virtualization
Most of the server components shipped with SecureBlackbox are highly customizable, allowing the user to override or alter the way the clients' requests are handled by default. The customization feature paves the way for creation of bespoke or virtualized server solutions that work over standardized protocols.
The possibility of customization is typically offered through a three-step virtualization model. Every customizable operation or request that can be handled by the server - say, RenameFile - is represented with a triple of events:
- BeforeRenameFile
- RenameFile
- AfterRenameFile
The first event fires right after the respective request has been received from a client. It provides the details of the operation, such as the original and target file names, and, importantly, a by-reference (writable) Action parameter. The event handler can set the Action parameter to one of the three settings given below. The setting chosen defines the further operation flow:
- fraAuto: the operation shall be handled automatically by the server: in this case, a file will be searched in the provided local directory and renamed.
- fraCustom: indicates that the user wants to take care of the operation by themselves. If this setting is chosen, the server takes no action, and instead fires the RenameFile event shortly after BeforeRenameFile completes. The user is expected to handle RenameFile and perform the requested action - that is, rename the file - manually.
- fraAbort: the operation should be aborted as not supported/allowed. Neither the server nor the user are expected to perform it.
The second event (RenameFile) only fires if Action was set to fraCustom in the earlier call to BeforeRenameFile. It lets the user handle the requested operation in the way they want. The user code must fulfil the operation (for example, rename a database entry, if building a virtualized server), and return the operation result as the event's OperationResult parameter.
If the Action parameter was set to fraAuto, RenameFile is not called. The server performs the operation automatically.
The third event, AfterRenameFile, fires upon completion of the operation, either in automatic or custom mode. The user code can check and/or adjust the result to be returned to the client.
To summarize:
- If Action is set to fraAuto, the next call about this operation will be to AfterRenameFile.
- If Action is set to fraCustom, the next call about the operation will be to RenameFile, and after that to AfterRenameFile.
- If Action is set to fraAbort, the operation is rejected and no further calls about it are performed.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
AfterReadObject Event (KMIPServer Class)
Notifies the application of the completion of the read operation on the object.
Syntax
ANSI (Cross Platform) virtual int FireAfterReadObject(KMIPServerAfterReadObjectEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
int ObjectType;
int OperationStatus; int reserved; } KMIPServerAfterReadObjectEventParams;
Unicode (Windows) virtual INT FireAfterReadObject(KMIPServerAfterReadObjectEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
INT ObjectType;
INT OperationStatus; INT reserved; } KMIPServerAfterReadObjectEventParams;
#define EID_KMIPSERVER_AFTERREADOBJECT 18 virtual INT SECUREBLACKBOX_CALL FireAfterReadObject(LONG64 &lConnectionId, LPSTR &lpszObjectId, INT &iObjectType, INT &iOperationStatus);
class KMIPServerAfterReadObjectEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); int ObjectType(); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AfterReadObject(KMIPServerAfterReadObjectEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAfterReadObject(KMIPServerAfterReadObjectEventParams *e) {...}
Remarks
Use this event to be notified about completion of the read operation.
See the
Handling and overriding server operations using the Three-Step Virtualization
Most of the server components shipped with SecureBlackbox are highly customizable, allowing the user to override or alter the way the clients' requests are handled by default. The customization feature paves the way for creation of bespoke or virtualized server solutions that work over standardized protocols.
The possibility of customization is typically offered through a three-step virtualization model. Every customizable operation or request that can be handled by the server - say, RenameFile - is represented with a triple of events:
- BeforeRenameFile
- RenameFile
- AfterRenameFile
The first event fires right after the respective request has been received from a client. It provides the details of the operation, such as the original and target file names, and, importantly, a by-reference (writable) Action parameter. The event handler can set the Action parameter to one of the three settings given below. The setting chosen defines the further operation flow:
- fraAuto: the operation shall be handled automatically by the server: in this case, a file will be searched in the provided local directory and renamed.
- fraCustom: indicates that the user wants to take care of the operation by themselves. If this setting is chosen, the server takes no action, and instead fires the RenameFile event shortly after BeforeRenameFile completes. The user is expected to handle RenameFile and perform the requested action - that is, rename the file - manually.
- fraAbort: the operation should be aborted as not supported/allowed. Neither the server nor the user are expected to perform it.
The second event (RenameFile) only fires if Action was set to fraCustom in the earlier call to BeforeRenameFile. It lets the user handle the requested operation in the way they want. The user code must fulfil the operation (for example, rename a database entry, if building a virtualized server), and return the operation result as the event's OperationResult parameter.
If the Action parameter was set to fraAuto, RenameFile is not called. The server performs the operation automatically.
The third event, AfterRenameFile, fires upon completion of the operation, either in automatic or custom mode. The user code can check and/or adjust the result to be returned to the client.
To summarize:
- If Action is set to fraAuto, the next call about this operation will be to AfterRenameFile.
- If Action is set to fraCustom, the next call about the operation will be to RenameFile, and after that to AfterRenameFile.
- If Action is set to fraAbort, the operation is rejected and no further calls about it are performed.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
AfterReCertify Event (KMIPServer Class)
Notifies the application about the completion of the re-certify operation.
Syntax
ANSI (Cross Platform) virtual int FireAfterReCertify(KMIPServerAfterReCertifyEventParams *e);
typedef struct {
int64 ConnectionId;
char *NewCertId;
int OperationStatus; int reserved; } KMIPServerAfterReCertifyEventParams;
Unicode (Windows) virtual INT FireAfterReCertify(KMIPServerAfterReCertifyEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPWSTR NewCertId;
INT OperationStatus; INT reserved; } KMIPServerAfterReCertifyEventParams;
#define EID_KMIPSERVER_AFTERRECERTIFY 19 virtual INT SECUREBLACKBOX_CALL FireAfterReCertify(LONG64 &lConnectionId, LPSTR &lpszNewCertId, INT &iOperationStatus);
class KMIPServerAfterReCertifyEventParams { public: qint64 ConnectionId(); const QString &NewCertId(); void SetNewCertId(const QString &qsNewCertId); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AfterReCertify(KMIPServerAfterReCertifyEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAfterReCertify(KMIPServerAfterReCertifyEventParams *e) {...}
Remarks
The server component uses this event to notify the application about the completion of the re-certification (certificate renewal) operation. The NewCertId contains the unique ID of the new certificate object. You can adjust it if required.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
AfterReKey Event (KMIPServer Class)
Notifies the application about the completion of the re-key operation.
Syntax
ANSI (Cross Platform) virtual int FireAfterReKey(KMIPServerAfterReKeyEventParams *e);
typedef struct {
int64 ConnectionId;
char *NewKeyId;
int OperationStatus; int reserved; } KMIPServerAfterReKeyEventParams;
Unicode (Windows) virtual INT FireAfterReKey(KMIPServerAfterReKeyEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPWSTR NewKeyId;
INT OperationStatus; INT reserved; } KMIPServerAfterReKeyEventParams;
#define EID_KMIPSERVER_AFTERREKEY 20 virtual INT SECUREBLACKBOX_CALL FireAfterReKey(LONG64 &lConnectionId, LPSTR &lpszNewKeyId, INT &iOperationStatus);
class KMIPServerAfterReKeyEventParams { public: qint64 ConnectionId(); const QString &NewKeyId(); void SetNewKeyId(const QString &qsNewKeyId); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AfterReKey(KMIPServerAfterReKeyEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAfterReKey(KMIPServerAfterReKeyEventParams *e) {...}
Remarks
The server component uses this event to notify the application about the completion of the re-key (key renewal) operation. The NewKeyId contains the unique ID of the new key object. You can adjust it if required.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
AfterRekeyKeyPair Event (KMIPServer Class)
Notifies the application about the completion of the re-key keypair operation.
Syntax
ANSI (Cross Platform) virtual int FireAfterRekeyKeyPair(KMIPServerAfterRekeyKeyPairEventParams *e);
typedef struct {
int64 ConnectionId;
char *NewPrivateKeyId;
char *NewPublicKeyId;
int OperationStatus; int reserved; } KMIPServerAfterRekeyKeyPairEventParams;
Unicode (Windows) virtual INT FireAfterRekeyKeyPair(KMIPServerAfterRekeyKeyPairEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPWSTR NewPrivateKeyId;
LPWSTR NewPublicKeyId;
INT OperationStatus; INT reserved; } KMIPServerAfterRekeyKeyPairEventParams;
#define EID_KMIPSERVER_AFTERREKEYKEYPAIR 21 virtual INT SECUREBLACKBOX_CALL FireAfterRekeyKeyPair(LONG64 &lConnectionId, LPSTR &lpszNewPrivateKeyId, LPSTR &lpszNewPublicKeyId, INT &iOperationStatus);
class KMIPServerAfterRekeyKeyPairEventParams { public: qint64 ConnectionId(); const QString &NewPrivateKeyId(); void SetNewPrivateKeyId(const QString &qsNewPrivateKeyId); const QString &NewPublicKeyId(); void SetNewPublicKeyId(const QString &qsNewPublicKeyId); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AfterRekeyKeyPair(KMIPServerAfterRekeyKeyPairEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAfterRekeyKeyPair(KMIPServerAfterRekeyKeyPairEventParams *e) {...}
Remarks
The server component uses this event to notify the application about the completion of the re-key (asymmetric key renewal) operation. The NewPrivateKeyId and NewPublicKeyId parameters contains the unique ID of the new key objects. You can adjust them if required.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
AfterRemoveObject Event (KMIPServer Class)
Notifies the application about completion of the object removal request.
Syntax
ANSI (Cross Platform) virtual int FireAfterRemoveObject(KMIPServerAfterRemoveObjectEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
int OperationStatus; int reserved; } KMIPServerAfterRemoveObjectEventParams;
Unicode (Windows) virtual INT FireAfterRemoveObject(KMIPServerAfterRemoveObjectEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
INT OperationStatus; INT reserved; } KMIPServerAfterRemoveObjectEventParams;
#define EID_KMIPSERVER_AFTERREMOVEOBJECT 22 virtual INT SECUREBLACKBOX_CALL FireAfterRemoveObject(LONG64 &lConnectionId, LPSTR &lpszObjectId, INT &iOperationStatus);
class KMIPServerAfterRemoveObjectEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AfterRemoveObject(KMIPServerAfterRemoveObjectEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAfterRemoveObject(KMIPServerAfterRemoveObjectEventParams *e) {...}
Remarks
Subscribe to this event to be notified about completion of an object removal request. The OperationStatus parameter contains the result of the operation.
See the
Handling and overriding server operations using the Three-Step Virtualization
Most of the server components shipped with SecureBlackbox are highly customizable, allowing the user to override or alter the way the clients' requests are handled by default. The customization feature paves the way for creation of bespoke or virtualized server solutions that work over standardized protocols.
The possibility of customization is typically offered through a three-step virtualization model. Every customizable operation or request that can be handled by the server - say, RenameFile - is represented with a triple of events:
- BeforeRenameFile
- RenameFile
- AfterRenameFile
The first event fires right after the respective request has been received from a client. It provides the details of the operation, such as the original and target file names, and, importantly, a by-reference (writable) Action parameter. The event handler can set the Action parameter to one of the three settings given below. The setting chosen defines the further operation flow:
- fraAuto: the operation shall be handled automatically by the server: in this case, a file will be searched in the provided local directory and renamed.
- fraCustom: indicates that the user wants to take care of the operation by themselves. If this setting is chosen, the server takes no action, and instead fires the RenameFile event shortly after BeforeRenameFile completes. The user is expected to handle RenameFile and perform the requested action - that is, rename the file - manually.
- fraAbort: the operation should be aborted as not supported/allowed. Neither the server nor the user are expected to perform it.
The second event (RenameFile) only fires if Action was set to fraCustom in the earlier call to BeforeRenameFile. It lets the user handle the requested operation in the way they want. The user code must fulfil the operation (for example, rename a database entry, if building a virtualized server), and return the operation result as the event's OperationResult parameter.
If the Action parameter was set to fraAuto, RenameFile is not called. The server performs the operation automatically.
The third event, AfterRenameFile, fires upon completion of the operation, either in automatic or custom mode. The user code can check and/or adjust the result to be returned to the client.
To summarize:
- If Action is set to fraAuto, the next call about this operation will be to AfterRenameFile.
- If Action is set to fraCustom, the next call about the operation will be to RenameFile, and after that to AfterRenameFile.
- If Action is set to fraAbort, the operation is rejected and no further calls about it are performed.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
AfterSign Event (KMIPServer Class)
Notifies the application of completion of a signing operation.
Syntax
ANSI (Cross Platform) virtual int FireAfterSign(KMIPServerAfterSignEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
int InputIsHash;
const char *SignatureData; int lenSignatureData;
char *CorrelationValue;
int OperationStatus; int reserved; } KMIPServerAfterSignEventParams;
Unicode (Windows) virtual INT FireAfterSign(KMIPServerAfterSignEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
BOOL InputIsHash;
LPCSTR SignatureData; INT lenSignatureData;
LPWSTR CorrelationValue;
INT OperationStatus; INT reserved; } KMIPServerAfterSignEventParams;
#define EID_KMIPSERVER_AFTERSIGN 23 virtual INT SECUREBLACKBOX_CALL FireAfterSign(LONG64 &lConnectionId, LPSTR &lpszObjectId, BOOL &bInputIsHash, LPSTR &lpSignatureData, INT &lenSignatureData, LPSTR &lpszCorrelationValue, INT &iOperationStatus);
class KMIPServerAfterSignEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); bool InputIsHash(); const QByteArray &SignatureData(); const QString &CorrelationValue(); void SetCorrelationValue(const QString &qsCorrelationValue); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AfterSign(KMIPServerAfterSignEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAfterSign(KMIPServerAfterSignEventParams *e) {...}
Remarks
The component uses this event to notify the application about the completion of a signing operation.
The ObjectId parameter contains the unique identifier of the signing key. SignatureData contains the signing result. The CorrelationValue string is a linking token that allows to associate several pieces of a multi-step signing operation together. The OperationStatus contains the result of the operation.
See the
Handling and overriding server operations using the Three-Step Virtualization
Most of the server components shipped with SecureBlackbox are highly customizable, allowing the user to override or alter the way the clients' requests are handled by default. The customization feature paves the way for creation of bespoke or virtualized server solutions that work over standardized protocols.
The possibility of customization is typically offered through a three-step virtualization model. Every customizable operation or request that can be handled by the server - say, RenameFile - is represented with a triple of events:
- BeforeRenameFile
- RenameFile
- AfterRenameFile
The first event fires right after the respective request has been received from a client. It provides the details of the operation, such as the original and target file names, and, importantly, a by-reference (writable) Action parameter. The event handler can set the Action parameter to one of the three settings given below. The setting chosen defines the further operation flow:
- fraAuto: the operation shall be handled automatically by the server: in this case, a file will be searched in the provided local directory and renamed.
- fraCustom: indicates that the user wants to take care of the operation by themselves. If this setting is chosen, the server takes no action, and instead fires the RenameFile event shortly after BeforeRenameFile completes. The user is expected to handle RenameFile and perform the requested action - that is, rename the file - manually.
- fraAbort: the operation should be aborted as not supported/allowed. Neither the server nor the user are expected to perform it.
The second event (RenameFile) only fires if Action was set to fraCustom in the earlier call to BeforeRenameFile. It lets the user handle the requested operation in the way they want. The user code must fulfil the operation (for example, rename a database entry, if building a virtualized server), and return the operation result as the event's OperationResult parameter.
If the Action parameter was set to fraAuto, RenameFile is not called. The server performs the operation automatically.
The third event, AfterRenameFile, fires upon completion of the operation, either in automatic or custom mode. The user code can check and/or adjust the result to be returned to the client.
To summarize:
- If Action is set to fraAuto, the next call about this operation will be to AfterRenameFile.
- If Action is set to fraCustom, the next call about the operation will be to RenameFile, and after that to AfterRenameFile.
- If Action is set to fraAbort, the operation is rejected and no further calls about it are performed.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
AfterVerify Event (KMIPServer Class)
Notifies the application about completion of the Verify operation.
Syntax
ANSI (Cross Platform) virtual int FireAfterVerify(KMIPServerAfterVerifyEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
int InputIsHash;
int ValidationResult;
char *CorrelationValue;
int OperationStatus; int reserved; } KMIPServerAfterVerifyEventParams;
Unicode (Windows) virtual INT FireAfterVerify(KMIPServerAfterVerifyEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
BOOL InputIsHash;
INT ValidationResult;
LPWSTR CorrelationValue;
INT OperationStatus; INT reserved; } KMIPServerAfterVerifyEventParams;
#define EID_KMIPSERVER_AFTERVERIFY 24 virtual INT SECUREBLACKBOX_CALL FireAfterVerify(LONG64 &lConnectionId, LPSTR &lpszObjectId, BOOL &bInputIsHash, INT &iValidationResult, LPSTR &lpszCorrelationValue, INT &iOperationStatus);
class KMIPServerAfterVerifyEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); bool InputIsHash(); int ValidationResult(); void SetValidationResult(int iValidationResult); const QString &CorrelationValue(); void SetCorrelationValue(const QString &qsCorrelationValue); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AfterVerify(KMIPServerAfterVerifyEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAfterVerify(KMIPServerAfterVerifyEventParams *e) {...}
Remarks
The component fires this event to notify the application of a completion of a verification operation. The ValidationResult parameter contains the validity status of the signature.
The ObjectId parameter contains the unique identifier of the verifying key. The OperationStatus parameter contains the result of the operation.
See the
Handling and overriding server operations using the Three-Step Virtualization
Most of the server components shipped with SecureBlackbox are highly customizable, allowing the user to override or alter the way the clients' requests are handled by default. The customization feature paves the way for creation of bespoke or virtualized server solutions that work over standardized protocols.
The possibility of customization is typically offered through a three-step virtualization model. Every customizable operation or request that can be handled by the server - say, RenameFile - is represented with a triple of events:
- BeforeRenameFile
- RenameFile
- AfterRenameFile
The first event fires right after the respective request has been received from a client. It provides the details of the operation, such as the original and target file names, and, importantly, a by-reference (writable) Action parameter. The event handler can set the Action parameter to one of the three settings given below. The setting chosen defines the further operation flow:
- fraAuto: the operation shall be handled automatically by the server: in this case, a file will be searched in the provided local directory and renamed.
- fraCustom: indicates that the user wants to take care of the operation by themselves. If this setting is chosen, the server takes no action, and instead fires the RenameFile event shortly after BeforeRenameFile completes. The user is expected to handle RenameFile and perform the requested action - that is, rename the file - manually.
- fraAbort: the operation should be aborted as not supported/allowed. Neither the server nor the user are expected to perform it.
The second event (RenameFile) only fires if Action was set to fraCustom in the earlier call to BeforeRenameFile. It lets the user handle the requested operation in the way they want. The user code must fulfil the operation (for example, rename a database entry, if building a virtualized server), and return the operation result as the event's OperationResult parameter.
If the Action parameter was set to fraAuto, RenameFile is not called. The server performs the operation automatically.
The third event, AfterRenameFile, fires upon completion of the operation, either in automatic or custom mode. The user code can check and/or adjust the result to be returned to the client.
To summarize:
- If Action is set to fraAuto, the next call about this operation will be to AfterRenameFile.
- If Action is set to fraCustom, the next call about the operation will be to RenameFile, and after that to AfterRenameFile.
- If Action is set to fraAbort, the operation is rejected and no further calls about it are performed.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
AfterVerifyHash Event (KMIPServer Class)
Notifies the application about completion of the hash verification.
Syntax
ANSI (Cross Platform) virtual int FireAfterVerifyHash(KMIPServerAfterVerifyHashEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
int IsValid;
char *CorrelationValue;
int OperationStatus; int reserved; } KMIPServerAfterVerifyHashEventParams;
Unicode (Windows) virtual INT FireAfterVerifyHash(KMIPServerAfterVerifyHashEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
BOOL IsValid;
LPWSTR CorrelationValue;
INT OperationStatus; INT reserved; } KMIPServerAfterVerifyHashEventParams;
#define EID_KMIPSERVER_AFTERVERIFYHASH 25 virtual INT SECUREBLACKBOX_CALL FireAfterVerifyHash(LONG64 &lConnectionId, LPSTR &lpszObjectId, BOOL &bIsValid, LPSTR &lpszCorrelationValue, INT &iOperationStatus);
class KMIPServerAfterVerifyHashEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); bool IsValid(); void SetIsValid(bool bIsValid); const QString &CorrelationValue(); void SetCorrelationValue(const QString &qsCorrelationValue); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AfterVerifyHash(KMIPServerAfterVerifyHashEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAfterVerifyHash(KMIPServerAfterVerifyHashEventParams *e) {...}
Remarks
The component uses this event to notify the application about hash verification result. The optional ObjectId parameter contains the unique identifier of the key object if HMAC algorithm is used.
The IsValid parameter contains the validity factor of the hash.
See the
Handling and overriding server operations using the Three-Step Virtualization
Most of the server components shipped with SecureBlackbox are highly customizable, allowing the user to override or alter the way the clients' requests are handled by default. The customization feature paves the way for creation of bespoke or virtualized server solutions that work over standardized protocols.
The possibility of customization is typically offered through a three-step virtualization model. Every customizable operation or request that can be handled by the server - say, RenameFile - is represented with a triple of events:
- BeforeRenameFile
- RenameFile
- AfterRenameFile
The first event fires right after the respective request has been received from a client. It provides the details of the operation, such as the original and target file names, and, importantly, a by-reference (writable) Action parameter. The event handler can set the Action parameter to one of the three settings given below. The setting chosen defines the further operation flow:
- fraAuto: the operation shall be handled automatically by the server: in this case, a file will be searched in the provided local directory and renamed.
- fraCustom: indicates that the user wants to take care of the operation by themselves. If this setting is chosen, the server takes no action, and instead fires the RenameFile event shortly after BeforeRenameFile completes. The user is expected to handle RenameFile and perform the requested action - that is, rename the file - manually.
- fraAbort: the operation should be aborted as not supported/allowed. Neither the server nor the user are expected to perform it.
The second event (RenameFile) only fires if Action was set to fraCustom in the earlier call to BeforeRenameFile. It lets the user handle the requested operation in the way they want. The user code must fulfil the operation (for example, rename a database entry, if building a virtualized server), and return the operation result as the event's OperationResult parameter.
If the Action parameter was set to fraAuto, RenameFile is not called. The server performs the operation automatically.
The third event, AfterRenameFile, fires upon completion of the operation, either in automatic or custom mode. The user code can check and/or adjust the result to be returned to the client.
To summarize:
- If Action is set to fraAuto, the next call about this operation will be to AfterRenameFile.
- If Action is set to fraCustom, the next call about the operation will be to RenameFile, and after that to AfterRenameFile.
- If Action is set to fraAbort, the operation is rejected and no further calls about it are performed.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
ArchiveObject Event (KMIPServer Class)
Notifies the application about the received object archival request.
Syntax
ANSI (Cross Platform) virtual int FireArchiveObject(KMIPServerArchiveObjectEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
int OperationStatus; int reserved; } KMIPServerArchiveObjectEventParams;
Unicode (Windows) virtual INT FireArchiveObject(KMIPServerArchiveObjectEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
INT OperationStatus; INT reserved; } KMIPServerArchiveObjectEventParams;
#define EID_KMIPSERVER_ARCHIVEOBJECT 26 virtual INT SECUREBLACKBOX_CALL FireArchiveObject(LONG64 &lConnectionId, LPSTR &lpszObjectId, INT &iOperationStatus);
class KMIPServerArchiveObjectEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void ArchiveObject(KMIPServerArchiveObjectEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireArchiveObject(KMIPServerArchiveObjectEventParams *e) {...}
Remarks
The component fires this event when it receives an object archival request from a connected client. The archival procedure go through a simplified handling route, without the three-step flow.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
AuthAttempt Event (KMIPServer Class)
Fires when a connected client makes an authentication attempt.
Syntax
ANSI (Cross Platform) virtual int FireAuthAttempt(KMIPServerAuthAttemptEventParams *e);
typedef struct {
int64 ConnectionID;
const char *HTTPMethod;
const char *URI;
const char *AuthMethod;
const char *Username;
const char *Password;
int Allow; int reserved; } KMIPServerAuthAttemptEventParams;
Unicode (Windows) virtual INT FireAuthAttempt(KMIPServerAuthAttemptEventParams *e);
typedef struct {
LONG64 ConnectionID;
LPCWSTR HTTPMethod;
LPCWSTR URI;
LPCWSTR AuthMethod;
LPCWSTR Username;
LPCWSTR Password;
BOOL Allow; INT reserved; } KMIPServerAuthAttemptEventParams;
#define EID_KMIPSERVER_AUTHATTEMPT 27 virtual INT SECUREBLACKBOX_CALL FireAuthAttempt(LONG64 &lConnectionID, LPSTR &lpszHTTPMethod, LPSTR &lpszURI, LPSTR &lpszAuthMethod, LPSTR &lpszUsername, LPSTR &lpszPassword, BOOL &bAllow);
class KMIPServerAuthAttemptEventParams { public: qint64 ConnectionID(); const QString &HTTPMethod(); const QString &URI(); const QString &AuthMethod(); const QString &Username(); const QString &Password(); bool Allow(); void SetAllow(bool bAllow); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void AuthAttempt(KMIPServerAuthAttemptEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireAuthAttempt(KMIPServerAuthAttemptEventParams *e) {...}
Remarks
The class fires this event whenever a client attempts to authenticate itself. Use the Allow parameter to let the client through.
ConnectionID contains the unique session identifier for that client, HTTPMethod specifies the HTTP method (GET, POST, etc.) used to access the URI resource, AuthMethod specifies the authentication method, and Username and Password contain the professed credentials.
BeforeAdd Event (KMIPServer Class)
Fires when a certificate import request is received from a client.
Syntax
ANSI (Cross Platform) virtual int FireBeforeAdd(KMIPServerBeforeAddEventParams *e);
typedef struct {
int64 ConnectionId;
char *Group;
int Action; int reserved; } KMIPServerBeforeAddEventParams;
Unicode (Windows) virtual INT FireBeforeAdd(KMIPServerBeforeAddEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPWSTR Group;
INT Action; INT reserved; } KMIPServerBeforeAddEventParams;
#define EID_KMIPSERVER_BEFOREADD 28 virtual INT SECUREBLACKBOX_CALL FireBeforeAdd(LONG64 &lConnectionId, LPSTR &lpszGroup, INT &iAction);
class KMIPServerBeforeAddEventParams { public: qint64 ConnectionId(); const QString &Group(); void SetGroup(const QString &qsGroup); int Action(); void SetAction(int iAction); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void BeforeAdd(KMIPServerBeforeAddEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireBeforeAdd(KMIPServerBeforeAddEventParams *e) {...}
Remarks
The class fires this event when it receives a request from the client to import a certificate on to the server. The supplied certificate is available in Certificate object.
The Group parameter specifies a common identifier for objects related to the certificate being imported: the certificate, its public key, and its private key.
BeforeAddKey Event (KMIPServer Class)
Fires when a key import request is received from the client.
Syntax
ANSI (Cross Platform) virtual int FireBeforeAddKey(KMIPServerBeforeAddKeyEventParams *e);
typedef struct {
int64 ConnectionId;
char *Group;
int Action; int reserved; } KMIPServerBeforeAddKeyEventParams;
Unicode (Windows) virtual INT FireBeforeAddKey(KMIPServerBeforeAddKeyEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPWSTR Group;
INT Action; INT reserved; } KMIPServerBeforeAddKeyEventParams;
#define EID_KMIPSERVER_BEFOREADDKEY 29 virtual INT SECUREBLACKBOX_CALL FireBeforeAddKey(LONG64 &lConnectionId, LPSTR &lpszGroup, INT &iAction);
class KMIPServerBeforeAddKeyEventParams { public: qint64 ConnectionId(); const QString &Group(); void SetGroup(const QString &qsGroup); int Action(); void SetAction(int iAction); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void BeforeAddKey(KMIPServerBeforeAddKeyEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireBeforeAddKey(KMIPServerBeforeAddKeyEventParams *e) {...}
Remarks
The class fires this event when it receives a request from the client to import a key on to the server. The supplied key is available in the Key parameter.
For keypairs, the Group parameter contains a common label that will be applied to both parts of that keypair (the public key object and the private key object).
BeforeBrowse Event (KMIPServer Class)
Notifies the application about the browse request being received.
Syntax
ANSI (Cross Platform) virtual int FireBeforeBrowse(KMIPServerBeforeBrowseEventParams *e);
typedef struct {
int64 ConnectionID;
const char *ObjectId;
int Action; int reserved; } KMIPServerBeforeBrowseEventParams;
Unicode (Windows) virtual INT FireBeforeBrowse(KMIPServerBeforeBrowseEventParams *e);
typedef struct {
LONG64 ConnectionID;
LPCWSTR ObjectId;
INT Action; INT reserved; } KMIPServerBeforeBrowseEventParams;
#define EID_KMIPSERVER_BEFOREBROWSE 30 virtual INT SECUREBLACKBOX_CALL FireBeforeBrowse(LONG64 &lConnectionID, LPSTR &lpszObjectId, INT &iAction);
class KMIPServerBeforeBrowseEventParams { public: qint64 ConnectionID(); const QString &ObjectId(); int Action(); void SetAction(int iAction); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void BeforeBrowse(KMIPServerBeforeBrowseEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireBeforeBrowse(KMIPServerBeforeBrowseEventParams *e) {...}
Remarks
The component uses this event to notify the application about a browse request received for an object ObjectId.
BeforeDecrypt Event (KMIPServer Class)
Notifies the application about the initiation of the decryption operation.
Syntax
ANSI (Cross Platform) virtual int FireBeforeDecrypt(KMIPServerBeforeDecryptEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
char *CorrelationValue;
int Action; int reserved; } KMIPServerBeforeDecryptEventParams;
Unicode (Windows) virtual INT FireBeforeDecrypt(KMIPServerBeforeDecryptEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
LPWSTR CorrelationValue;
INT Action; INT reserved; } KMIPServerBeforeDecryptEventParams;
#define EID_KMIPSERVER_BEFOREDECRYPT 31 virtual INT SECUREBLACKBOX_CALL FireBeforeDecrypt(LONG64 &lConnectionId, LPSTR &lpszObjectId, LPSTR &lpszCorrelationValue, INT &iAction);
class KMIPServerBeforeDecryptEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); const QString &CorrelationValue(); void SetCorrelationValue(const QString &qsCorrelationValue); int Action(); void SetAction(int iAction); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void BeforeDecrypt(KMIPServerBeforeDecryptEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireBeforeDecrypt(KMIPServerBeforeDecryptEventParams *e) {...}
Remarks
The component fires this event to notify the application about the initiation of the decryption operation. The ObjectId parameter contains a reference to the decryption key. The optional CorrelationValue parameter can be used to link consecutive steps of multi-part decryption operation together.
Use the Action parameter to indicate the procedure you want to use for this request. See the
Handling and overriding server operations using the Three-Step Virtualization
Most of the server components shipped with SecureBlackbox are highly customizable, allowing the user to override or alter the way the clients' requests are handled by default. The customization feature paves the way for creation of bespoke or virtualized server solutions that work over standardized protocols.
The possibility of customization is typically offered through a three-step virtualization model. Every customizable operation or request that can be handled by the server - say, RenameFile - is represented with a triple of events:
- BeforeRenameFile
- RenameFile
- AfterRenameFile
The first event fires right after the respective request has been received from a client. It provides the details of the operation, such as the original and target file names, and, importantly, a by-reference (writable) Action parameter. The event handler can set the Action parameter to one of the three settings given below. The setting chosen defines the further operation flow:
- fraAuto: the operation shall be handled automatically by the server: in this case, a file will be searched in the provided local directory and renamed.
- fraCustom: indicates that the user wants to take care of the operation by themselves. If this setting is chosen, the server takes no action, and instead fires the RenameFile event shortly after BeforeRenameFile completes. The user is expected to handle RenameFile and perform the requested action - that is, rename the file - manually.
- fraAbort: the operation should be aborted as not supported/allowed. Neither the server nor the user are expected to perform it.
The second event (RenameFile) only fires if Action was set to fraCustom in the earlier call to BeforeRenameFile. It lets the user handle the requested operation in the way they want. The user code must fulfil the operation (for example, rename a database entry, if building a virtualized server), and return the operation result as the event's OperationResult parameter.
If the Action parameter was set to fraAuto, RenameFile is not called. The server performs the operation automatically.
The third event, AfterRenameFile, fires upon completion of the operation, either in automatic or custom mode. The user code can check and/or adjust the result to be returned to the client.
To summarize:
- If Action is set to fraAuto, the next call about this operation will be to AfterRenameFile.
- If Action is set to fraCustom, the next call about the operation will be to RenameFile, and after that to AfterRenameFile.
- If Action is set to fraAbort, the operation is rejected and no further calls about it are performed.
BeforeDeriveKey Event (KMIPServer Class)
Fires when a derive key request is received.
Syntax
ANSI (Cross Platform) virtual int FireBeforeDeriveKey(KMIPServerBeforeDeriveKeyEventParams *e);
typedef struct {
int64 ConnectionId;
int ObjectType;
const char *ObjectIds;
const char *DerivationMethod;
int Action; int reserved; } KMIPServerBeforeDeriveKeyEventParams;
Unicode (Windows) virtual INT FireBeforeDeriveKey(KMIPServerBeforeDeriveKeyEventParams *e);
typedef struct {
LONG64 ConnectionId;
INT ObjectType;
LPCWSTR ObjectIds;
LPCWSTR DerivationMethod;
INT Action; INT reserved; } KMIPServerBeforeDeriveKeyEventParams;
#define EID_KMIPSERVER_BEFOREDERIVEKEY 32 virtual INT SECUREBLACKBOX_CALL FireBeforeDeriveKey(LONG64 &lConnectionId, INT &iObjectType, LPSTR &lpszObjectIds, LPSTR &lpszDerivationMethod, INT &iAction);
class KMIPServerBeforeDeriveKeyEventParams { public: qint64 ConnectionId(); int ObjectType(); const QString &ObjectIds(); const QString &DerivationMethod(); int Action(); void SetAction(int iAction); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void BeforeDeriveKey(KMIPServerBeforeDeriveKeyEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireBeforeDeriveKey(KMIPServerBeforeDeriveKeyEventParams *e) {...}
Remarks
The class fires this event when it receives a request from the client to derive a key. The supplied certificate is available in Key.
BeforeEdit Event (KMIPServer Class)
Notifies the application about the start of the object editing operation.
Syntax
ANSI (Cross Platform) virtual int FireBeforeEdit(KMIPServerBeforeEditEventParams *e);
typedef struct {
int64 ConnectionID;
const char *ObjectId;
int Action; int reserved; } KMIPServerBeforeEditEventParams;
Unicode (Windows) virtual INT FireBeforeEdit(KMIPServerBeforeEditEventParams *e);
typedef struct {
LONG64 ConnectionID;
LPCWSTR ObjectId;
INT Action; INT reserved; } KMIPServerBeforeEditEventParams;
#define EID_KMIPSERVER_BEFOREEDIT 33 virtual INT SECUREBLACKBOX_CALL FireBeforeEdit(LONG64 &lConnectionID, LPSTR &lpszObjectId, INT &iAction);
class KMIPServerBeforeEditEventParams { public: qint64 ConnectionID(); const QString &ObjectId(); int Action(); void SetAction(int iAction); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void BeforeEdit(KMIPServerBeforeEditEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireBeforeEdit(KMIPServerBeforeEditEventParams *e) {...}
Remarks
The editing operation consists of a sequence of attribute update requests. Each attribute is provided to the application via an individual SetAttribute call. When the list of supplied attributes has been exhausted, the AfterEdit event call follows.
The ObjectId parameter specifies the identifier of the object being edited.
BeforeEncrypt Event (KMIPServer Class)
Notifies the application about the initiation of an encryption operation.
Syntax
ANSI (Cross Platform) virtual int FireBeforeEncrypt(KMIPServerBeforeEncryptEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
char *CorrelationValue;
int Action; int reserved; } KMIPServerBeforeEncryptEventParams;
Unicode (Windows) virtual INT FireBeforeEncrypt(KMIPServerBeforeEncryptEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
LPWSTR CorrelationValue;
INT Action; INT reserved; } KMIPServerBeforeEncryptEventParams;
#define EID_KMIPSERVER_BEFOREENCRYPT 34 virtual INT SECUREBLACKBOX_CALL FireBeforeEncrypt(LONG64 &lConnectionId, LPSTR &lpszObjectId, LPSTR &lpszCorrelationValue, INT &iAction);
class KMIPServerBeforeEncryptEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); const QString &CorrelationValue(); void SetCorrelationValue(const QString &qsCorrelationValue); int Action(); void SetAction(int iAction); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void BeforeEncrypt(KMIPServerBeforeEncryptEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireBeforeEncrypt(KMIPServerBeforeEncryptEventParams *e) {...}
Remarks
The component fires this event to notify the application about the initiation of an encryption operation. The ObjectId parameter contains a reference to the encryption key. The optional CorrelationValue parameter can be used to link consecutive steps of multi-part encryption operation together.
Use the Action parameter to indicate the procedure you want to use for this request. See the
Handling and overriding server operations using the Three-Step Virtualization
Most of the server components shipped with SecureBlackbox are highly customizable, allowing the user to override or alter the way the clients' requests are handled by default. The customization feature paves the way for creation of bespoke or virtualized server solutions that work over standardized protocols.
The possibility of customization is typically offered through a three-step virtualization model. Every customizable operation or request that can be handled by the server - say, RenameFile - is represented with a triple of events:
- BeforeRenameFile
- RenameFile
- AfterRenameFile
The first event fires right after the respective request has been received from a client. It provides the details of the operation, such as the original and target file names, and, importantly, a by-reference (writable) Action parameter. The event handler can set the Action parameter to one of the three settings given below. The setting chosen defines the further operation flow:
- fraAuto: the operation shall be handled automatically by the server: in this case, a file will be searched in the provided local directory and renamed.
- fraCustom: indicates that the user wants to take care of the operation by themselves. If this setting is chosen, the server takes no action, and instead fires the RenameFile event shortly after BeforeRenameFile completes. The user is expected to handle RenameFile and perform the requested action - that is, rename the file - manually.
- fraAbort: the operation should be aborted as not supported/allowed. Neither the server nor the user are expected to perform it.
The second event (RenameFile) only fires if Action was set to fraCustom in the earlier call to BeforeRenameFile. It lets the user handle the requested operation in the way they want. The user code must fulfil the operation (for example, rename a database entry, if building a virtualized server), and return the operation result as the event's OperationResult parameter.
If the Action parameter was set to fraAuto, RenameFile is not called. The server performs the operation automatically.
The third event, AfterRenameFile, fires upon completion of the operation, either in automatic or custom mode. The user code can check and/or adjust the result to be returned to the client.
To summarize:
- If Action is set to fraAuto, the next call about this operation will be to AfterRenameFile.
- If Action is set to fraCustom, the next call about the operation will be to RenameFile, and after that to AfterRenameFile.
- If Action is set to fraAbort, the operation is rejected and no further calls about it are performed.
BeforeGenerate Event (KMIPServer Class)
Fires when a certificate generation request is received.
Syntax
ANSI (Cross Platform) virtual int FireBeforeGenerate(KMIPServerBeforeGenerateEventParams *e);
typedef struct {
int64 ConnectionId;
const char *PublicKeyId;
int Action; int reserved; } KMIPServerBeforeGenerateEventParams;
Unicode (Windows) virtual INT FireBeforeGenerate(KMIPServerBeforeGenerateEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR PublicKeyId;
INT Action; INT reserved; } KMIPServerBeforeGenerateEventParams;
#define EID_KMIPSERVER_BEFOREGENERATE 35 virtual INT SECUREBLACKBOX_CALL FireBeforeGenerate(LONG64 &lConnectionId, LPSTR &lpszPublicKeyId, INT &iAction);
class KMIPServerBeforeGenerateEventParams { public: qint64 ConnectionId(); const QString &PublicKeyId(); int Action(); void SetAction(int iAction); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void BeforeGenerate(KMIPServerBeforeGenerateEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireBeforeGenerate(KMIPServerBeforeGenerateEventParams *e) {...}
Remarks
The class fires this event when it receives a request from the client to generate a certificate. The supplied certificate template is available in Certificate.
BeforeGenerateKey Event (KMIPServer Class)
Fires when a key generation request is received.
Syntax
ANSI (Cross Platform) virtual int FireBeforeGenerateKey(KMIPServerBeforeGenerateKeyEventParams *e);
typedef struct {
int64 ConnectionId;
char *KeyAlgorithm;
int KeyLength;
int Action; int reserved; } KMIPServerBeforeGenerateKeyEventParams;
Unicode (Windows) virtual INT FireBeforeGenerateKey(KMIPServerBeforeGenerateKeyEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPWSTR KeyAlgorithm;
INT KeyLength;
INT Action; INT reserved; } KMIPServerBeforeGenerateKeyEventParams;
#define EID_KMIPSERVER_BEFOREGENERATEKEY 36 virtual INT SECUREBLACKBOX_CALL FireBeforeGenerateKey(LONG64 &lConnectionId, LPSTR &lpszKeyAlgorithm, INT &iKeyLength, INT &iAction);
class KMIPServerBeforeGenerateKeyEventParams { public: qint64 ConnectionId(); const QString &KeyAlgorithm(); void SetKeyAlgorithm(const QString &qsKeyAlgorithm); int KeyLength(); void SetKeyLength(int iKeyLength); int Action(); void SetAction(int iAction); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void BeforeGenerateKey(KMIPServerBeforeGenerateKeyEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireBeforeGenerateKey(KMIPServerBeforeGenerateKeyEventParams *e) {...}
Remarks
The class fires this event when it receives a request from the client to generate a key. KeyAlgorithm and KeyLength parameters specify the requested key properties.
BeforeGenerateKeyPair Event (KMIPServer Class)
Fires when a key generation request is received.
Syntax
ANSI (Cross Platform) virtual int FireBeforeGenerateKeyPair(KMIPServerBeforeGenerateKeyPairEventParams *e);
typedef struct {
int64 ConnectionId;
char *KeyAlgorithm;
int KeyLength;
char *Scheme;
char *SchemeParams;
int Action; int reserved; } KMIPServerBeforeGenerateKeyPairEventParams;
Unicode (Windows) virtual INT FireBeforeGenerateKeyPair(KMIPServerBeforeGenerateKeyPairEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPWSTR KeyAlgorithm;
INT KeyLength;
LPWSTR Scheme;
LPWSTR SchemeParams;
INT Action; INT reserved; } KMIPServerBeforeGenerateKeyPairEventParams;
#define EID_KMIPSERVER_BEFOREGENERATEKEYPAIR 37 virtual INT SECUREBLACKBOX_CALL FireBeforeGenerateKeyPair(LONG64 &lConnectionId, LPSTR &lpszKeyAlgorithm, INT &iKeyLength, LPSTR &lpszScheme, LPSTR &lpszSchemeParams, INT &iAction);
class KMIPServerBeforeGenerateKeyPairEventParams { public: qint64 ConnectionId(); const QString &KeyAlgorithm(); void SetKeyAlgorithm(const QString &qsKeyAlgorithm); int KeyLength(); void SetKeyLength(int iKeyLength); const QString &Scheme(); void SetScheme(const QString &qsScheme); const QString &SchemeParams(); void SetSchemeParams(const QString &qsSchemeParams); int Action(); void SetAction(int iAction); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void BeforeGenerateKeyPair(KMIPServerBeforeGenerateKeyPairEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireBeforeGenerateKeyPair(KMIPServerBeforeGenerateKeyPairEventParams *e) {...}
Remarks
The class fires this event when it receives a request from the client to generate a keypair. KeyAlgorithm, KeyLength, Scheme and SchemeParams parameters specify the requested key properties.
BeforeHash Event (KMIPServer Class)
Notifies the application about the initiation of the hashing operation.
Syntax
ANSI (Cross Platform) virtual int FireBeforeHash(KMIPServerBeforeHashEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
const char *HashAlgorithm;
char *CorrelationValue;
int Action; int reserved; } KMIPServerBeforeHashEventParams;
Unicode (Windows) virtual INT FireBeforeHash(KMIPServerBeforeHashEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
LPCWSTR HashAlgorithm;
LPWSTR CorrelationValue;
INT Action; INT reserved; } KMIPServerBeforeHashEventParams;
#define EID_KMIPSERVER_BEFOREHASH 38 virtual INT SECUREBLACKBOX_CALL FireBeforeHash(LONG64 &lConnectionId, LPSTR &lpszObjectId, LPSTR &lpszHashAlgorithm, LPSTR &lpszCorrelationValue, INT &iAction);
class KMIPServerBeforeHashEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); const QString &HashAlgorithm(); const QString &CorrelationValue(); void SetCorrelationValue(const QString &qsCorrelationValue); int Action(); void SetAction(int iAction); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void BeforeHash(KMIPServerBeforeHashEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireBeforeHash(KMIPServerBeforeHashEventParams *e) {...}
Remarks
The component fires this event to notify the application about the initiation of a hashing operation. The optional ObjectId parameter contains a reference to the hashing key if HMAC-based hashing is used. The optional CorrelationValue parameter can be used to link consecutive steps of multi-part hash operation together.
Use the Action parameter to indicate the procedure you want to use for this request. See the
Handling and overriding server operations using the Three-Step Virtualization
Most of the server components shipped with SecureBlackbox are highly customizable, allowing the user to override or alter the way the clients' requests are handled by default. The customization feature paves the way for creation of bespoke or virtualized server solutions that work over standardized protocols.
The possibility of customization is typically offered through a three-step virtualization model. Every customizable operation or request that can be handled by the server - say, RenameFile - is represented with a triple of events:
- BeforeRenameFile
- RenameFile
- AfterRenameFile
The first event fires right after the respective request has been received from a client. It provides the details of the operation, such as the original and target file names, and, importantly, a by-reference (writable) Action parameter. The event handler can set the Action parameter to one of the three settings given below. The setting chosen defines the further operation flow:
- fraAuto: the operation shall be handled automatically by the server: in this case, a file will be searched in the provided local directory and renamed.
- fraCustom: indicates that the user wants to take care of the operation by themselves. If this setting is chosen, the server takes no action, and instead fires the RenameFile event shortly after BeforeRenameFile completes. The user is expected to handle RenameFile and perform the requested action - that is, rename the file - manually.
- fraAbort: the operation should be aborted as not supported/allowed. Neither the server nor the user are expected to perform it.
The second event (RenameFile) only fires if Action was set to fraCustom in the earlier call to BeforeRenameFile. It lets the user handle the requested operation in the way they want. The user code must fulfil the operation (for example, rename a database entry, if building a virtualized server), and return the operation result as the event's OperationResult parameter.
If the Action parameter was set to fraAuto, RenameFile is not called. The server performs the operation automatically.
The third event, AfterRenameFile, fires upon completion of the operation, either in automatic or custom mode. The user code can check and/or adjust the result to be returned to the client.
To summarize:
- If Action is set to fraAuto, the next call about this operation will be to AfterRenameFile.
- If Action is set to fraCustom, the next call about the operation will be to RenameFile, and after that to AfterRenameFile.
- If Action is set to fraAbort, the operation is rejected and no further calls about it are performed.
BeforeList Event (KMIPServer Class)
Notifies the application about the initiation of the list operation.
Syntax
ANSI (Cross Platform) virtual int FireBeforeList(KMIPServerBeforeListEventParams *e);
typedef struct {
int64 ConnectionId;
int ObjectType;
int ObjectStatus;
int OnlyFreshObjects;
int Action; int reserved; } KMIPServerBeforeListEventParams;
Unicode (Windows) virtual INT FireBeforeList(KMIPServerBeforeListEventParams *e);
typedef struct {
LONG64 ConnectionId;
INT ObjectType;
INT ObjectStatus;
BOOL OnlyFreshObjects;
INT Action; INT reserved; } KMIPServerBeforeListEventParams;
#define EID_KMIPSERVER_BEFORELIST 39 virtual INT SECUREBLACKBOX_CALL FireBeforeList(LONG64 &lConnectionId, INT &iObjectType, INT &iObjectStatus, BOOL &bOnlyFreshObjects, INT &iAction);
class KMIPServerBeforeListEventParams { public: qint64 ConnectionId(); int ObjectType(); int ObjectStatus(); bool OnlyFreshObjects(); int Action(); void SetAction(int iAction); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void BeforeList(KMIPServerBeforeListEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireBeforeList(KMIPServerBeforeListEventParams *e) {...}
Remarks
The component uses this event to notify the application of the received list call. The ObjectType, ObjectStatus, and OnlyFreshObjects parameters provide the listing criteria.
BeforeObtainLease Event (KMIPServer Class)
Notifies the application about the client requesting an object lease.
Syntax
ANSI (Cross Platform) virtual int FireBeforeObtainLease(KMIPServerBeforeObtainLeaseEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
int Action; int reserved; } KMIPServerBeforeObtainLeaseEventParams;
Unicode (Windows) virtual INT FireBeforeObtainLease(KMIPServerBeforeObtainLeaseEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
INT Action; INT reserved; } KMIPServerBeforeObtainLeaseEventParams;
#define EID_KMIPSERVER_BEFOREOBTAINLEASE 40 virtual INT SECUREBLACKBOX_CALL FireBeforeObtainLease(LONG64 &lConnectionId, LPSTR &lpszObjectId, INT &iAction);
class KMIPServerBeforeObtainLeaseEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); int Action(); void SetAction(int iAction); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void BeforeObtainLease(KMIPServerBeforeObtainLeaseEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireBeforeObtainLease(KMIPServerBeforeObtainLeaseEventParams *e) {...}
Remarks
Use this event to get notified about the connected client requesting an object lease.
BeforeReadObject Event (KMIPServer Class)
Notifies the application about the start of the object reading request.
Syntax
ANSI (Cross Platform) virtual int FireBeforeReadObject(KMIPServerBeforeReadObjectEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
int Action; int reserved; } KMIPServerBeforeReadObjectEventParams;
Unicode (Windows) virtual INT FireBeforeReadObject(KMIPServerBeforeReadObjectEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
INT Action; INT reserved; } KMIPServerBeforeReadObjectEventParams;
#define EID_KMIPSERVER_BEFOREREADOBJECT 41 virtual INT SECUREBLACKBOX_CALL FireBeforeReadObject(LONG64 &lConnectionId, LPSTR &lpszObjectId, INT &iAction);
class KMIPServerBeforeReadObjectEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); int Action(); void SetAction(int iAction); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void BeforeReadObject(KMIPServerBeforeReadObjectEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireBeforeReadObject(KMIPServerBeforeReadObjectEventParams *e) {...}
Remarks
Object "reading" consists of a number of individual attribute requests. If fraCustom action is returned from this event handler, the component will fire ReadObject and ReadAttribute events repeatedly to request information about the object from your code.
BeforeReCertify Event (KMIPServer Class)
Notifies the application about a re-certification request.
Syntax
ANSI (Cross Platform) virtual int FireBeforeReCertify(KMIPServerBeforeReCertifyEventParams *e);
typedef struct {
int64 ConnectionId;
const char *OldCertId;
int Action; int reserved; } KMIPServerBeforeReCertifyEventParams;
Unicode (Windows) virtual INT FireBeforeReCertify(KMIPServerBeforeReCertifyEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR OldCertId;
INT Action; INT reserved; } KMIPServerBeforeReCertifyEventParams;
#define EID_KMIPSERVER_BEFORERECERTIFY 42 virtual INT SECUREBLACKBOX_CALL FireBeforeReCertify(LONG64 &lConnectionId, LPSTR &lpszOldCertId, INT &iAction);
class KMIPServerBeforeReCertifyEventParams { public: qint64 ConnectionId(); const QString &OldCertId(); int Action(); void SetAction(int iAction); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void BeforeReCertify(KMIPServerBeforeReCertifyEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireBeforeReCertify(KMIPServerBeforeReCertifyEventParams *e) {...}
Remarks
The component uses this event to notify the application about a re-certification request (a request to re-issue an existing certificate).
The OldCertId parameter indicates the unique identifier of the certificate object that needs to be re-issued.
This event provides a pre-notification for the operation. If your code sets the Action parameter to fraCustom, this event will be followed by a ReCertify call that will let you handle the actual request as required.
BeforeReKey Event (KMIPServer Class)
Notifies the application about a re-key request received.
Syntax
ANSI (Cross Platform) virtual int FireBeforeReKey(KMIPServerBeforeReKeyEventParams *e);
typedef struct {
int64 ConnectionId;
const char *OldKeyId;
int Action; int reserved; } KMIPServerBeforeReKeyEventParams;
Unicode (Windows) virtual INT FireBeforeReKey(KMIPServerBeforeReKeyEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR OldKeyId;
INT Action; INT reserved; } KMIPServerBeforeReKeyEventParams;
#define EID_KMIPSERVER_BEFOREREKEY 43 virtual INT SECUREBLACKBOX_CALL FireBeforeReKey(LONG64 &lConnectionId, LPSTR &lpszOldKeyId, INT &iAction);
class KMIPServerBeforeReKeyEventParams { public: qint64 ConnectionId(); const QString &OldKeyId(); int Action(); void SetAction(int iAction); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void BeforeReKey(KMIPServerBeforeReKeyEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireBeforeReKey(KMIPServerBeforeReKeyEventParams *e) {...}
Remarks
The component uses this event to notify the application about a key re-issue request received from the client. The OldKeyId parameter contains the unique identifier of the old key object.
BeforeRekeyKeyPair Event (KMIPServer Class)
Notifies the application about a keypair re-key request received.
Syntax
ANSI (Cross Platform) virtual int FireBeforeRekeyKeyPair(KMIPServerBeforeRekeyKeyPairEventParams *e);
typedef struct {
int64 ConnectionId;
const char *OldPrivateKeyId;
int Action; int reserved; } KMIPServerBeforeRekeyKeyPairEventParams;
Unicode (Windows) virtual INT FireBeforeRekeyKeyPair(KMIPServerBeforeRekeyKeyPairEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR OldPrivateKeyId;
INT Action; INT reserved; } KMIPServerBeforeRekeyKeyPairEventParams;
#define EID_KMIPSERVER_BEFOREREKEYKEYPAIR 44 virtual INT SECUREBLACKBOX_CALL FireBeforeRekeyKeyPair(LONG64 &lConnectionId, LPSTR &lpszOldPrivateKeyId, INT &iAction);
class KMIPServerBeforeRekeyKeyPairEventParams { public: qint64 ConnectionId(); const QString &OldPrivateKeyId(); int Action(); void SetAction(int iAction); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void BeforeRekeyKeyPair(KMIPServerBeforeRekeyKeyPairEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireBeforeRekeyKeyPair(KMIPServerBeforeRekeyKeyPairEventParams *e) {...}
Remarks
The component uses this event to notify the application about a keypair re-issue request received from the client. The OldPrivateKeyId parameter contains the unique identifier of the old private key object.
BeforeRemoveObject Event (KMIPServer Class)
Notifies the application about an incoming Remove Object request.
Syntax
ANSI (Cross Platform) virtual int FireBeforeRemoveObject(KMIPServerBeforeRemoveObjectEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
int Action; int reserved; } KMIPServerBeforeRemoveObjectEventParams;
Unicode (Windows) virtual INT FireBeforeRemoveObject(KMIPServerBeforeRemoveObjectEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
INT Action; INT reserved; } KMIPServerBeforeRemoveObjectEventParams;
#define EID_KMIPSERVER_BEFOREREMOVEOBJECT 45 virtual INT SECUREBLACKBOX_CALL FireBeforeRemoveObject(LONG64 &lConnectionId, LPSTR &lpszObjectId, INT &iAction);
class KMIPServerBeforeRemoveObjectEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); int Action(); void SetAction(int iAction); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void BeforeRemoveObject(KMIPServerBeforeRemoveObjectEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireBeforeRemoveObject(KMIPServerBeforeRemoveObjectEventParams *e) {...}
Remarks
Subscribe to this event to choose the operation flow (automated/custom) for the object removal operation.
BeforeSign Event (KMIPServer Class)
Notifies the application about the initiation of a signing operation.
Syntax
ANSI (Cross Platform) virtual int FireBeforeSign(KMIPServerBeforeSignEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
const char *Algorithm;
const char *HashAlgorithm;
int InputIsHash;
char *CorrelationValue;
int Action; int reserved; } KMIPServerBeforeSignEventParams;
Unicode (Windows) virtual INT FireBeforeSign(KMIPServerBeforeSignEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
LPCWSTR Algorithm;
LPCWSTR HashAlgorithm;
BOOL InputIsHash;
LPWSTR CorrelationValue;
INT Action; INT reserved; } KMIPServerBeforeSignEventParams;
#define EID_KMIPSERVER_BEFORESIGN 46 virtual INT SECUREBLACKBOX_CALL FireBeforeSign(LONG64 &lConnectionId, LPSTR &lpszObjectId, LPSTR &lpszAlgorithm, LPSTR &lpszHashAlgorithm, BOOL &bInputIsHash, LPSTR &lpszCorrelationValue, INT &iAction);
class KMIPServerBeforeSignEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); const QString &Algorithm(); const QString &HashAlgorithm(); bool InputIsHash(); const QString &CorrelationValue(); void SetCorrelationValue(const QString &qsCorrelationValue); int Action(); void SetAction(int iAction); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void BeforeSign(KMIPServerBeforeSignEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireBeforeSign(KMIPServerBeforeSignEventParams *e) {...}
Remarks
The component fires this event to notify the application about the initiation of the signing operation. The ObjectId parameter contains a reference to the signing key. The optional CorrelationValue parameter can be used to link consecutive steps of multi-part signing operation together.
Use the Action parameter to indicate the procedure you want to use for this request. See the
Handling and overriding server operations using the Three-Step Virtualization
Most of the server components shipped with SecureBlackbox are highly customizable, allowing the user to override or alter the way the clients' requests are handled by default. The customization feature paves the way for creation of bespoke or virtualized server solutions that work over standardized protocols.
The possibility of customization is typically offered through a three-step virtualization model. Every customizable operation or request that can be handled by the server - say, RenameFile - is represented with a triple of events:
- BeforeRenameFile
- RenameFile
- AfterRenameFile
The first event fires right after the respective request has been received from a client. It provides the details of the operation, such as the original and target file names, and, importantly, a by-reference (writable) Action parameter. The event handler can set the Action parameter to one of the three settings given below. The setting chosen defines the further operation flow:
- fraAuto: the operation shall be handled automatically by the server: in this case, a file will be searched in the provided local directory and renamed.
- fraCustom: indicates that the user wants to take care of the operation by themselves. If this setting is chosen, the server takes no action, and instead fires the RenameFile event shortly after BeforeRenameFile completes. The user is expected to handle RenameFile and perform the requested action - that is, rename the file - manually.
- fraAbort: the operation should be aborted as not supported/allowed. Neither the server nor the user are expected to perform it.
The second event (RenameFile) only fires if Action was set to fraCustom in the earlier call to BeforeRenameFile. It lets the user handle the requested operation in the way they want. The user code must fulfil the operation (for example, rename a database entry, if building a virtualized server), and return the operation result as the event's OperationResult parameter.
If the Action parameter was set to fraAuto, RenameFile is not called. The server performs the operation automatically.
The third event, AfterRenameFile, fires upon completion of the operation, either in automatic or custom mode. The user code can check and/or adjust the result to be returned to the client.
To summarize:
- If Action is set to fraAuto, the next call about this operation will be to AfterRenameFile.
- If Action is set to fraCustom, the next call about the operation will be to RenameFile, and after that to AfterRenameFile.
- If Action is set to fraAbort, the operation is rejected and no further calls about it are performed.
BeforeVerify Event (KMIPServer Class)
Notifies the application about the initiation of the verify operation.
Syntax
ANSI (Cross Platform) virtual int FireBeforeVerify(KMIPServerBeforeVerifyEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
const char *HashAlgorithm;
int InputIsHash;
char *CorrelationValue;
int Action; int reserved; } KMIPServerBeforeVerifyEventParams;
Unicode (Windows) virtual INT FireBeforeVerify(KMIPServerBeforeVerifyEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
LPCWSTR HashAlgorithm;
BOOL InputIsHash;
LPWSTR CorrelationValue;
INT Action; INT reserved; } KMIPServerBeforeVerifyEventParams;
#define EID_KMIPSERVER_BEFOREVERIFY 47 virtual INT SECUREBLACKBOX_CALL FireBeforeVerify(LONG64 &lConnectionId, LPSTR &lpszObjectId, LPSTR &lpszHashAlgorithm, BOOL &bInputIsHash, LPSTR &lpszCorrelationValue, INT &iAction);
class KMIPServerBeforeVerifyEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); const QString &HashAlgorithm(); bool InputIsHash(); const QString &CorrelationValue(); void SetCorrelationValue(const QString &qsCorrelationValue); int Action(); void SetAction(int iAction); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void BeforeVerify(KMIPServerBeforeVerifyEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireBeforeVerify(KMIPServerBeforeVerifyEventParams *e) {...}
Remarks
The component fires this event to notify the application about the initiation of the verification operation. The ObjectId parameter contains a reference to the verification key.
Use the Action parameter to indicate the procedure you want to use for this request. See the
Handling and overriding server operations using the Three-Step Virtualization
Most of the server components shipped with SecureBlackbox are highly customizable, allowing the user to override or alter the way the clients' requests are handled by default. The customization feature paves the way for creation of bespoke or virtualized server solutions that work over standardized protocols.
The possibility of customization is typically offered through a three-step virtualization model. Every customizable operation or request that can be handled by the server - say, RenameFile - is represented with a triple of events:
- BeforeRenameFile
- RenameFile
- AfterRenameFile
The first event fires right after the respective request has been received from a client. It provides the details of the operation, such as the original and target file names, and, importantly, a by-reference (writable) Action parameter. The event handler can set the Action parameter to one of the three settings given below. The setting chosen defines the further operation flow:
- fraAuto: the operation shall be handled automatically by the server: in this case, a file will be searched in the provided local directory and renamed.
- fraCustom: indicates that the user wants to take care of the operation by themselves. If this setting is chosen, the server takes no action, and instead fires the RenameFile event shortly after BeforeRenameFile completes. The user is expected to handle RenameFile and perform the requested action - that is, rename the file - manually.
- fraAbort: the operation should be aborted as not supported/allowed. Neither the server nor the user are expected to perform it.
The second event (RenameFile) only fires if Action was set to fraCustom in the earlier call to BeforeRenameFile. It lets the user handle the requested operation in the way they want. The user code must fulfil the operation (for example, rename a database entry, if building a virtualized server), and return the operation result as the event's OperationResult parameter.
If the Action parameter was set to fraAuto, RenameFile is not called. The server performs the operation automatically.
The third event, AfterRenameFile, fires upon completion of the operation, either in automatic or custom mode. The user code can check and/or adjust the result to be returned to the client.
To summarize:
- If Action is set to fraAuto, the next call about this operation will be to AfterRenameFile.
- If Action is set to fraCustom, the next call about the operation will be to RenameFile, and after that to AfterRenameFile.
- If Action is set to fraAbort, the operation is rejected and no further calls about it are performed.
BeforeVerifyHash Event (KMIPServer Class)
Notifies the application about the initiation of the hash verification operation.
Syntax
ANSI (Cross Platform) virtual int FireBeforeVerifyHash(KMIPServerBeforeVerifyHashEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
const char *HashAlgorithm;
char *CorrelationValue;
int Action; int reserved; } KMIPServerBeforeVerifyHashEventParams;
Unicode (Windows) virtual INT FireBeforeVerifyHash(KMIPServerBeforeVerifyHashEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
LPCWSTR HashAlgorithm;
LPWSTR CorrelationValue;
INT Action; INT reserved; } KMIPServerBeforeVerifyHashEventParams;
#define EID_KMIPSERVER_BEFOREVERIFYHASH 48 virtual INT SECUREBLACKBOX_CALL FireBeforeVerifyHash(LONG64 &lConnectionId, LPSTR &lpszObjectId, LPSTR &lpszHashAlgorithm, LPSTR &lpszCorrelationValue, INT &iAction);
class KMIPServerBeforeVerifyHashEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); const QString &HashAlgorithm(); const QString &CorrelationValue(); void SetCorrelationValue(const QString &qsCorrelationValue); int Action(); void SetAction(int iAction); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void BeforeVerifyHash(KMIPServerBeforeVerifyHashEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireBeforeVerifyHash(KMIPServerBeforeVerifyHashEventParams *e) {...}
Remarks
The component fires this event to notify the application about the initiation of the hash verification operation. The ObjectId parameter contains a reference to the HMAC key, if MAC algorithm is used.
Use the Action parameter to indicate the procedure you want to use for this request. See the
Handling and overriding server operations using the Three-Step Virtualization
Most of the server components shipped with SecureBlackbox are highly customizable, allowing the user to override or alter the way the clients' requests are handled by default. The customization feature paves the way for creation of bespoke or virtualized server solutions that work over standardized protocols.
The possibility of customization is typically offered through a three-step virtualization model. Every customizable operation or request that can be handled by the server - say, RenameFile - is represented with a triple of events:
- BeforeRenameFile
- RenameFile
- AfterRenameFile
The first event fires right after the respective request has been received from a client. It provides the details of the operation, such as the original and target file names, and, importantly, a by-reference (writable) Action parameter. The event handler can set the Action parameter to one of the three settings given below. The setting chosen defines the further operation flow:
- fraAuto: the operation shall be handled automatically by the server: in this case, a file will be searched in the provided local directory and renamed.
- fraCustom: indicates that the user wants to take care of the operation by themselves. If this setting is chosen, the server takes no action, and instead fires the RenameFile event shortly after BeforeRenameFile completes. The user is expected to handle RenameFile and perform the requested action - that is, rename the file - manually.
- fraAbort: the operation should be aborted as not supported/allowed. Neither the server nor the user are expected to perform it.
The second event (RenameFile) only fires if Action was set to fraCustom in the earlier call to BeforeRenameFile. It lets the user handle the requested operation in the way they want. The user code must fulfil the operation (for example, rename a database entry, if building a virtualized server), and return the operation result as the event's OperationResult parameter.
If the Action parameter was set to fraAuto, RenameFile is not called. The server performs the operation automatically.
The third event, AfterRenameFile, fires upon completion of the operation, either in automatic or custom mode. The user code can check and/or adjust the result to be returned to the client.
To summarize:
- If Action is set to fraAuto, the next call about this operation will be to AfterRenameFile.
- If Action is set to fraCustom, the next call about the operation will be to RenameFile, and after that to AfterRenameFile.
- If Action is set to fraAbort, the operation is rejected and no further calls about it are performed.
Cancel Event (KMIPServer Class)
Reports a cancellation request received from the client.
Syntax
ANSI (Cross Platform) virtual int FireCancel(KMIPServerCancelEventParams *e);
typedef struct {
int64 ConnectionId;
const char *AsyncCorrelationValue;
int CancellationResult;
int OperationStatus; int reserved; } KMIPServerCancelEventParams;
Unicode (Windows) virtual INT FireCancel(KMIPServerCancelEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR AsyncCorrelationValue;
INT CancellationResult;
INT OperationStatus; INT reserved; } KMIPServerCancelEventParams;
#define EID_KMIPSERVER_CANCEL 49 virtual INT SECUREBLACKBOX_CALL FireCancel(LONG64 &lConnectionId, LPSTR &lpszAsyncCorrelationValue, INT &iCancellationResult, INT &iOperationStatus);
class KMIPServerCancelEventParams { public: qint64 ConnectionId(); const QString &AsyncCorrelationValue(); int CancellationResult(); void SetCancellationResult(int iCancellationResult); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Cancel(KMIPServerCancelEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireCancel(KMIPServerCancelEventParams *e) {...}
Remarks
The component uses this event to notify the application about the cancellation request received. The application should handle the cancellation request and set CancellationResult and OperationStatus to one of the following values:
kccCancelled | 0x01 | |
kccUnableToCancel | 0x02 | |
kccCompleted | 0x03 | |
kccFailed | 0x04 | |
kccUnavailable | 0x05 |
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
Check Event (KMIPServer Class)
Notifies the application about a Check request received.
Syntax
ANSI (Cross Platform) virtual int FireCheck(KMIPServerCheckEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
int64 *pUsageLimitsCount;
int CryptographicUsageMask;
int LeaseTime;
int OperationStatus; int reserved; } KMIPServerCheckEventParams;
Unicode (Windows) virtual INT FireCheck(KMIPServerCheckEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
LONG64 *pUsageLimitsCount;
INT CryptographicUsageMask;
INT LeaseTime;
INT OperationStatus; INT reserved; } KMIPServerCheckEventParams;
#define EID_KMIPSERVER_CHECK 50 virtual INT SECUREBLACKBOX_CALL FireCheck(LONG64 &lConnectionId, LPSTR &lpszObjectId, LONG64 &lUsageLimitsCount, INT &iCryptographicUsageMask, INT &iLeaseTime, INT &iOperationStatus);
class KMIPServerCheckEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); qint64 UsageLimitsCount(); void SetUsageLimitsCount(qint64 lUsageLimitsCount); int CryptographicUsageMask(); void SetCryptographicUsageMask(int iCryptographicUsageMask); int LeaseTime(); void SetLeaseTime(int iLeaseTime); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Check(KMIPServerCheckEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireCheck(KMIPServerCheckEventParams *e) {...}
Remarks
The component fires this event to notify the application about the Check request received from the client side. Applications working in virtual mode should implement the relevant logic in their event handlers.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
Connect Event (KMIPServer Class)
Reports an accepted connection.
Syntax
ANSI (Cross Platform) virtual int FireConnect(KMIPServerConnectEventParams *e);
typedef struct {
int64 ConnectionID;
const char *RemoteAddress;
int RemotePort; int reserved; } KMIPServerConnectEventParams;
Unicode (Windows) virtual INT FireConnect(KMIPServerConnectEventParams *e);
typedef struct {
LONG64 ConnectionID;
LPCWSTR RemoteAddress;
INT RemotePort; INT reserved; } KMIPServerConnectEventParams;
#define EID_KMIPSERVER_CONNECT 51 virtual INT SECUREBLACKBOX_CALL FireConnect(LONG64 &lConnectionID, LPSTR &lpszRemoteAddress, INT &iRemotePort);
class KMIPServerConnectEventParams { public: qint64 ConnectionID(); const QString &RemoteAddress(); int RemotePort(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Connect(KMIPServerConnectEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireConnect(KMIPServerConnectEventParams *e) {...}
Remarks
The class fires this event to report that a new connection has been established. ConnectionId indicates the unique ID assigned to this connection. The same ID will be supplied to any other events related to this connection, such as GetRequest or AuthAttempt.
Decrypt Event (KMIPServer Class)
Instructs the application to decrypt a chunk of data.
Syntax
ANSI (Cross Platform) virtual int FireDecrypt(KMIPServerDecryptEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
const char *Data; int lenData;
const char *IV;
int InitIndicator;
int FinalIndicator;
const char *BlockCipherMode;
int TagLength;
const char *PaddingMethod;
char *CorrelationValue;
int OperationStatus; int reserved; } KMIPServerDecryptEventParams;
Unicode (Windows) virtual INT FireDecrypt(KMIPServerDecryptEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
LPCSTR Data; INT lenData;
LPCWSTR IV;
BOOL InitIndicator;
BOOL FinalIndicator;
LPCWSTR BlockCipherMode;
INT TagLength;
LPCWSTR PaddingMethod;
LPWSTR CorrelationValue;
INT OperationStatus; INT reserved; } KMIPServerDecryptEventParams;
#define EID_KMIPSERVER_DECRYPT 52 virtual INT SECUREBLACKBOX_CALL FireDecrypt(LONG64 &lConnectionId, LPSTR &lpszObjectId, LPSTR &lpData, INT &lenData, LPSTR &lpszIV, BOOL &bInitIndicator, BOOL &bFinalIndicator, LPSTR &lpszBlockCipherMode, INT &iTagLength, LPSTR &lpszPaddingMethod, LPSTR &lpszCorrelationValue, INT &iOperationStatus);
class KMIPServerDecryptEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); const QByteArray &Data(); const QString &IV(); bool InitIndicator(); bool FinalIndicator(); const QString &BlockCipherMode(); int TagLength(); const QString &PaddingMethod(); const QString &CorrelationValue(); void SetCorrelationValue(const QString &qsCorrelationValue); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Decrypt(KMIPServerDecryptEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireDecrypt(KMIPServerDecryptEventParams *e) {...}
Remarks
The server uses this event to inform the application of a decryption request submitted by the client and, optionally, request the application to decrypt the data block with the provided set of parameters. The decryption logic only needs to be implemented if the application uses the virtual storage mode.
In the event handler, use the parameters provided to decrypt Data with the key identified with ObjectId. The InitIndicator and FinalIndicator tell whether the provided block is first and/or last in a sequence of blocks forming a multi-step decryption operation. If the block is not the last one, set CorrelationValue to a random string to preserve continuity between consecutive block decryptions.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
DeleteAttribute Event (KMIPServer Class)
Instructs the application to delete an object attribute.
Syntax
ANSI (Cross Platform) virtual int FireDeleteAttribute(KMIPServerDeleteAttributeEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
const char *AttributeName;
char *AttributeValue;
int OperationStatus; int reserved; } KMIPServerDeleteAttributeEventParams;
Unicode (Windows) virtual INT FireDeleteAttribute(KMIPServerDeleteAttributeEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
LPCWSTR AttributeName;
LPWSTR AttributeValue;
INT OperationStatus; INT reserved; } KMIPServerDeleteAttributeEventParams;
#define EID_KMIPSERVER_DELETEATTRIBUTE 53 virtual INT SECUREBLACKBOX_CALL FireDeleteAttribute(LONG64 &lConnectionId, LPSTR &lpszObjectId, LPSTR &lpszAttributeName, LPSTR &lpszAttributeValue, INT &iOperationStatus);
class KMIPServerDeleteAttributeEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); const QString &AttributeName(); const QString &AttributeValue(); void SetAttributeValue(const QString &qsAttributeValue); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void DeleteAttribute(KMIPServerDeleteAttributeEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireDeleteAttribute(KMIPServerDeleteAttributeEventParams *e) {...}
Remarks
The server fires this event to relay the KMIP client's Delete Attribute request to the application if the application chose to use custom flow in the preceding BeforeEdit event.
The event handler is expected to delete the AttributeName from the ObjectId's attribute set, and return the (now deleted) AttributeValue and the OperationStatus back to the server.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
DeriveKey Event (KMIPServer Class)
Notifies the application of key derivation request.
Syntax
ANSI (Cross Platform) virtual int FireDeriveKey(KMIPServerDeriveKeyEventParams *e);
typedef struct {
int64 ConnectionId;
int ObjectType;
const char *ObjectIds;
const char *DerivationMethod;
const char *InitializationVector; int lenInitializationVector;
const char *DerivationData; int lenDerivationData;
char *NewKeyId;
int OperationStatus; int reserved; } KMIPServerDeriveKeyEventParams;
Unicode (Windows) virtual INT FireDeriveKey(KMIPServerDeriveKeyEventParams *e);
typedef struct {
LONG64 ConnectionId;
INT ObjectType;
LPCWSTR ObjectIds;
LPCWSTR DerivationMethod;
LPCSTR InitializationVector; INT lenInitializationVector;
LPCSTR DerivationData; INT lenDerivationData;
LPWSTR NewKeyId;
INT OperationStatus; INT reserved; } KMIPServerDeriveKeyEventParams;
#define EID_KMIPSERVER_DERIVEKEY 54 virtual INT SECUREBLACKBOX_CALL FireDeriveKey(LONG64 &lConnectionId, INT &iObjectType, LPSTR &lpszObjectIds, LPSTR &lpszDerivationMethod, LPSTR &lpInitializationVector, INT &lenInitializationVector, LPSTR &lpDerivationData, INT &lenDerivationData, LPSTR &lpszNewKeyId, INT &iOperationStatus);
class KMIPServerDeriveKeyEventParams { public: qint64 ConnectionId(); int ObjectType(); const QString &ObjectIds(); const QString &DerivationMethod(); const QByteArray &InitializationVector(); const QByteArray &DerivationData(); const QString &NewKeyId(); void SetNewKeyId(const QString &qsNewKeyId); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void DeriveKey(KMIPServerDeriveKeyEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireDeriveKey(KMIPServerDeriveKeyEventParams *e) {...}
Remarks
The server fires this event to notify the application of a received key derivation request. Applications working in virtual mode should react to this event by performing the requested operation and returning the ID of the new key via the NewKeyId parameter.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
Disconnect Event (KMIPServer Class)
Fires to report a disconnected client.
Syntax
ANSI (Cross Platform) virtual int FireDisconnect(KMIPServerDisconnectEventParams *e);
typedef struct {
int64 ConnectionID; int reserved; } KMIPServerDisconnectEventParams;
Unicode (Windows) virtual INT FireDisconnect(KMIPServerDisconnectEventParams *e);
typedef struct {
LONG64 ConnectionID; INT reserved; } KMIPServerDisconnectEventParams;
#define EID_KMIPSERVER_DISCONNECT 55 virtual INT SECUREBLACKBOX_CALL FireDisconnect(LONG64 &lConnectionID);
class KMIPServerDisconnectEventParams { public: qint64 ConnectionID(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Disconnect(KMIPServerDisconnectEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireDisconnect(KMIPServerDisconnectEventParams *e) {...}
Remarks
The class fires this event when a connected client disconnects.
Encrypt Event (KMIPServer Class)
Instructs the application to encrypt a chunk of data.
Syntax
ANSI (Cross Platform) virtual int FireEncrypt(KMIPServerEncryptEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
const char *Data; int lenData;
int InitIndicator;
int FinalIndicator;
const char *BlockCipherMode;
int TagLength;
const char *PaddingMethod;
int RandomIV;
char *IV;
char *CorrelationValue;
int OperationStatus; int reserved; } KMIPServerEncryptEventParams;
Unicode (Windows) virtual INT FireEncrypt(KMIPServerEncryptEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
LPCSTR Data; INT lenData;
BOOL InitIndicator;
BOOL FinalIndicator;
LPCWSTR BlockCipherMode;
INT TagLength;
LPCWSTR PaddingMethod;
BOOL RandomIV;
LPWSTR IV;
LPWSTR CorrelationValue;
INT OperationStatus; INT reserved; } KMIPServerEncryptEventParams;
#define EID_KMIPSERVER_ENCRYPT 56 virtual INT SECUREBLACKBOX_CALL FireEncrypt(LONG64 &lConnectionId, LPSTR &lpszObjectId, LPSTR &lpData, INT &lenData, BOOL &bInitIndicator, BOOL &bFinalIndicator, LPSTR &lpszBlockCipherMode, INT &iTagLength, LPSTR &lpszPaddingMethod, BOOL &bRandomIV, LPSTR &lpszIV, LPSTR &lpszCorrelationValue, INT &iOperationStatus);
class KMIPServerEncryptEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); const QByteArray &Data(); bool InitIndicator(); bool FinalIndicator(); const QString &BlockCipherMode(); int TagLength(); const QString &PaddingMethod(); bool RandomIV(); const QString &IV(); void SetIV(const QString &qsIV); const QString &CorrelationValue(); void SetCorrelationValue(const QString &qsCorrelationValue); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Encrypt(KMIPServerEncryptEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireEncrypt(KMIPServerEncryptEventParams *e) {...}
Remarks
The server uses this event to request the application to encrypt a data block with the provided set of parameters. This event is only fired if the application chose to use a custom encryption flow in the preceding BeforeEncrypt call.
In the event handler, use the parameters provided to encrypt Data with the key identified with ObjectId. The InitIndicator and FinalIndicator tell whether the provided block is first and/or last in a sequence of blocks forming a multi-step encryption operation. If the block is not last, set CorrelationValue to a random string to preserve continuity between consecutive block encryptions.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
Error Event (KMIPServer Class)
Information about errors during data delivery.
Syntax
ANSI (Cross Platform) virtual int FireError(KMIPServerErrorEventParams *e);
typedef struct {
int64 ConnectionID;
int ErrorCode;
int Fatal;
int Remote;
const char *Description; int reserved; } KMIPServerErrorEventParams;
Unicode (Windows) virtual INT FireError(KMIPServerErrorEventParams *e);
typedef struct {
LONG64 ConnectionID;
INT ErrorCode;
BOOL Fatal;
BOOL Remote;
LPCWSTR Description; INT reserved; } KMIPServerErrorEventParams;
#define EID_KMIPSERVER_ERROR 57 virtual INT SECUREBLACKBOX_CALL FireError(LONG64 &lConnectionID, INT &iErrorCode, BOOL &bFatal, BOOL &bRemote, LPSTR &lpszDescription);
class KMIPServerErrorEventParams { public: qint64 ConnectionID(); int ErrorCode(); bool Fatal(); bool Remote(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Error(KMIPServerErrorEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireError(KMIPServerErrorEventParams *e) {...}
Remarks
The event is fired in case of exceptional conditions during message processing.
ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the HTTPS section.
ExternalSign Event (KMIPServer Class)
Handles remote or external signing initiated by the server protocol.
Syntax
ANSI (Cross Platform) virtual int FireExternalSign(KMIPServerExternalSignEventParams *e);
typedef struct {
int64 ConnectionID;
const char *OperationId;
const char *HashAlgorithm;
const char *Pars;
const char *Data;
char *SignedData; int reserved; } KMIPServerExternalSignEventParams;
Unicode (Windows) virtual INT FireExternalSign(KMIPServerExternalSignEventParams *e);
typedef struct {
LONG64 ConnectionID;
LPCWSTR OperationId;
LPCWSTR HashAlgorithm;
LPCWSTR Pars;
LPCWSTR Data;
LPWSTR SignedData; INT reserved; } KMIPServerExternalSignEventParams;
#define EID_KMIPSERVER_EXTERNALSIGN 58 virtual INT SECUREBLACKBOX_CALL FireExternalSign(LONG64 &lConnectionID, LPSTR &lpszOperationId, LPSTR &lpszHashAlgorithm, LPSTR &lpszPars, LPSTR &lpszData, LPSTR &lpszSignedData);
class KMIPServerExternalSignEventParams { public: qint64 ConnectionID(); const QString &OperationId(); const QString &HashAlgorithm(); const QString &Pars(); const QString &Data(); const QString &SignedData(); void SetSignedData(const QString &qsSignedData); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void ExternalSign(KMIPServerExternalSignEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireExternalSign(KMIPServerExternalSignEventParams *e) {...}
Remarks
Assign a handler to this event if you need to delegate a low-level signing operation to an external, remote, or custom signing engine. Depending on the settings, the handler will receive a hashed or unhashed value to be signed.
The event handler must pass the value of Data to the signer, obtain the signature, and pass it back to the class via the SignedData parameter.
OperationId provides a comment about the operation and its origin. It depends on the exact class being used, and may be empty. HashAlgorithm specifies the hash algorithm being used for the operation, and Pars contains algorithm-dependent parameters.
The class uses base16 (hex) encoding for the Data, SignedData, and Pars parameters. If your signing engine uses a different input and output encoding, you may need to decode and/or encode the data before and/or after the signing.
A sample MD5 hash encoded in base16: a0dee2a0382afbb09120ffa7ccd8a152 - lower case base16 A0DEE2A0382AFBB09120FFA7CCD8A152 - upper case base16
A sample event handler that uses the .NET RSACryptoServiceProvider class may look like the following:
signer.OnExternalSign += (s, e) =>
{
var cert = new X509Certificate2("cert.pfx", "", X509KeyStorageFlags.Exportable);
var key = (RSACryptoServiceProvider)cert.PrivateKey;
var dataToSign = e.Data.FromBase16String();
var signedData = key.SignHash(dataToSign, "2.16.840.1.101.3.4.2.1");
e.SignedData = signedData.ToBase16String();
};
Generate Event (KMIPServer Class)
Notifies the application about an incoming Generate request.
Syntax
ANSI (Cross Platform) virtual int FireGenerate(KMIPServerGenerateEventParams *e);
typedef struct {
int64 ConnectionId;
const char *PublicKeyId;
char *CertId;
int OperationStatus; int reserved; } KMIPServerGenerateEventParams;
Unicode (Windows) virtual INT FireGenerate(KMIPServerGenerateEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR PublicKeyId;
LPWSTR CertId;
INT OperationStatus; INT reserved; } KMIPServerGenerateEventParams;
#define EID_KMIPSERVER_GENERATE 59 virtual INT SECUREBLACKBOX_CALL FireGenerate(LONG64 &lConnectionId, LPSTR &lpszPublicKeyId, LPSTR &lpszCertId, INT &iOperationStatus);
class KMIPServerGenerateEventParams { public: qint64 ConnectionId(); const QString &PublicKeyId(); const QString &CertId(); void SetCertId(const QString &qsCertId); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Generate(KMIPServerGenerateEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireGenerate(KMIPServerGenerateEventParams *e) {...}
Remarks
Subscribe to this event to get notified about incoming certificate generate requests. The PublicKeyId parameter specifies the public key that the new certificate should be generated over.
Applications using the server in virtual storage mode should implement the generation logic in the event handler and return the new CertId back along with OperationStatus.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
GenerateKey Event (KMIPServer Class)
Notifies the application about an incoming Generate request.
Syntax
ANSI (Cross Platform) virtual int FireGenerateKey(KMIPServerGenerateKeyEventParams *e);
typedef struct {
int64 ConnectionId;
const char *KeyAlgorithm;
int KeyLength;
const char *Group;
char *KeyId;
int OperationStatus; int reserved; } KMIPServerGenerateKeyEventParams;
Unicode (Windows) virtual INT FireGenerateKey(KMIPServerGenerateKeyEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR KeyAlgorithm;
INT KeyLength;
LPCWSTR Group;
LPWSTR KeyId;
INT OperationStatus; INT reserved; } KMIPServerGenerateKeyEventParams;
#define EID_KMIPSERVER_GENERATEKEY 60 virtual INT SECUREBLACKBOX_CALL FireGenerateKey(LONG64 &lConnectionId, LPSTR &lpszKeyAlgorithm, INT &iKeyLength, LPSTR &lpszGroup, LPSTR &lpszKeyId, INT &iOperationStatus);
class KMIPServerGenerateKeyEventParams { public: qint64 ConnectionId(); const QString &KeyAlgorithm(); int KeyLength(); const QString &Group(); const QString &KeyId(); void SetKeyId(const QString &qsKeyId); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void GenerateKey(KMIPServerGenerateKeyEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireGenerateKey(KMIPServerGenerateKeyEventParams *e) {...}
Remarks
Subscribe to this event to get notified about incoming key generation requests. The KeyAlgorithm and KeyLength parameters specify the parameters of the key to be generated. Use the Group parameter to arrange together keys belonging to the same set, such as private and public parts of a keypair.
Applications using the server in virtual storage mode should implement the generation logic in the event handler and return the new KeyId back along with OperationStatus.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
GenerateKeyPair Event (KMIPServer Class)
Notifies the application about an incoming Generate request.
Syntax
ANSI (Cross Platform) virtual int FireGenerateKeyPair(KMIPServerGenerateKeyPairEventParams *e);
typedef struct {
int64 ConnectionId;
const char *KeyAlgorithm;
int KeyLength;
const char *Scheme;
const char *SchemeParams;
const char *Group;
char *PrivateKeyId;
char *PublicKeyId;
int OperationStatus; int reserved; } KMIPServerGenerateKeyPairEventParams;
Unicode (Windows) virtual INT FireGenerateKeyPair(KMIPServerGenerateKeyPairEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR KeyAlgorithm;
INT KeyLength;
LPCWSTR Scheme;
LPCWSTR SchemeParams;
LPCWSTR Group;
LPWSTR PrivateKeyId;
LPWSTR PublicKeyId;
INT OperationStatus; INT reserved; } KMIPServerGenerateKeyPairEventParams;
#define EID_KMIPSERVER_GENERATEKEYPAIR 61 virtual INT SECUREBLACKBOX_CALL FireGenerateKeyPair(LONG64 &lConnectionId, LPSTR &lpszKeyAlgorithm, INT &iKeyLength, LPSTR &lpszScheme, LPSTR &lpszSchemeParams, LPSTR &lpszGroup, LPSTR &lpszPrivateKeyId, LPSTR &lpszPublicKeyId, INT &iOperationStatus);
class KMIPServerGenerateKeyPairEventParams { public: qint64 ConnectionId(); const QString &KeyAlgorithm(); int KeyLength(); const QString &Scheme(); const QString &SchemeParams(); const QString &Group(); const QString &PrivateKeyId(); void SetPrivateKeyId(const QString &qsPrivateKeyId); const QString &PublicKeyId(); void SetPublicKeyId(const QString &qsPublicKeyId); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void GenerateKeyPair(KMIPServerGenerateKeyPairEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireGenerateKeyPair(KMIPServerGenerateKeyPairEventParams *e) {...}
Remarks
Subscribe to this event to get notified about incoming keypair generation requests. The KeyAlgorithm, KeyLength, Scheme and SchemeParams parameters specify the parameters of the keypair to be generated. Use the Group parameter to put together keys belonging to the same set, such as private and public parts of a keypair.
Applications using the server in virtual storage mode should implement the generation logic in the event handler and return the new PrivateKeyId and PublicKeyId back along with OperationStatus.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
GetUsageAllocation Event (KMIPServer Class)
Notifies the application about an incoming Get Usage Allocation request.
Syntax
ANSI (Cross Platform) virtual int FireGetUsageAllocation(KMIPServerGetUsageAllocationEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
int UsageLimitsCount;
int OperationStatus; int reserved; } KMIPServerGetUsageAllocationEventParams;
Unicode (Windows) virtual INT FireGetUsageAllocation(KMIPServerGetUsageAllocationEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
INT UsageLimitsCount;
INT OperationStatus; INT reserved; } KMIPServerGetUsageAllocationEventParams;
#define EID_KMIPSERVER_GETUSAGEALLOCATION 62 virtual INT SECUREBLACKBOX_CALL FireGetUsageAllocation(LONG64 &lConnectionId, LPSTR &lpszObjectId, INT &iUsageLimitsCount, INT &iOperationStatus);
class KMIPServerGetUsageAllocationEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); int UsageLimitsCount(); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void GetUsageAllocation(KMIPServerGetUsageAllocationEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireGetUsageAllocation(KMIPServerGetUsageAllocationEventParams *e) {...}
Remarks
The component uses this event to tell the application about a Get Usage Allocation request received.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
Hash Event (KMIPServer Class)
Instructs the application to update the current hashing operation.
Syntax
ANSI (Cross Platform) virtual int FireHash(KMIPServerHashEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
const char *HashAlgorithm;
const char *Data; int lenData;
int InitIndicator;
int FinalIndicator;
char *CorrelationValue;
int OperationStatus; int reserved; } KMIPServerHashEventParams;
Unicode (Windows) virtual INT FireHash(KMIPServerHashEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
LPCWSTR HashAlgorithm;
LPCSTR Data; INT lenData;
BOOL InitIndicator;
BOOL FinalIndicator;
LPWSTR CorrelationValue;
INT OperationStatus; INT reserved; } KMIPServerHashEventParams;
#define EID_KMIPSERVER_HASH 63 virtual INT SECUREBLACKBOX_CALL FireHash(LONG64 &lConnectionId, LPSTR &lpszObjectId, LPSTR &lpszHashAlgorithm, LPSTR &lpData, INT &lenData, BOOL &bInitIndicator, BOOL &bFinalIndicator, LPSTR &lpszCorrelationValue, INT &iOperationStatus);
class KMIPServerHashEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); const QString &HashAlgorithm(); const QByteArray &Data(); bool InitIndicator(); bool FinalIndicator(); const QString &CorrelationValue(); void SetCorrelationValue(const QString &qsCorrelationValue); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Hash(KMIPServerHashEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireHash(KMIPServerHashEventParams *e) {...}
Remarks
The server fires this event to pass a new chunk of data to the application for inclusion in the hash. This event is only fired if the application chose to process the hashing operation manually in the preceding BeforeHash event.
The ObjectId specifies the key object for Hash+MAC operations. The Data parameters contains the data buffer that needs to be added to the hash, with InitIndicator and FinalIndicator specifying the very first and very last data blocks respectively.
Return a unique CorrelationValue to chain pieces of a multi-block hashing operation together.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
HeadersPrepared Event (KMIPServer Class)
Fires when the response headers have been formed and are ready to be sent to the server.
Syntax
ANSI (Cross Platform) virtual int FireHeadersPrepared(KMIPServerHeadersPreparedEventParams *e);
typedef struct {
int64 ConnectionID; int reserved; } KMIPServerHeadersPreparedEventParams;
Unicode (Windows) virtual INT FireHeadersPrepared(KMIPServerHeadersPreparedEventParams *e);
typedef struct {
LONG64 ConnectionID; INT reserved; } KMIPServerHeadersPreparedEventParams;
#define EID_KMIPSERVER_HEADERSPREPARED 64 virtual INT SECUREBLACKBOX_CALL FireHeadersPrepared(LONG64 &lConnectionID);
class KMIPServerHeadersPreparedEventParams { public: qint64 ConnectionID(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void HeadersPrepared(KMIPServerHeadersPreparedEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireHeadersPrepared(KMIPServerHeadersPreparedEventParams *e) {...}
Remarks
The class fires this event when the response headers are ready to be sent to the server. ConnectionID indicates the connection that processed the request.
Use GetResponseHeader method with an empty header name to get the whole response header.
KMIPAuthAttempt Event (KMIPServer Class)
Fires when a connected client makes an authentication attempt.
Syntax
ANSI (Cross Platform) virtual int FireKMIPAuthAttempt(KMIPServerKMIPAuthAttemptEventParams *e);
typedef struct {
int64 ConnectionId;
const char *Username;
const char *Password;
int Accept; int reserved; } KMIPServerKMIPAuthAttemptEventParams;
Unicode (Windows) virtual INT FireKMIPAuthAttempt(KMIPServerKMIPAuthAttemptEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR Username;
LPCWSTR Password;
BOOL Accept; INT reserved; } KMIPServerKMIPAuthAttemptEventParams;
#define EID_KMIPSERVER_KMIPAUTHATTEMPT 65 virtual INT SECUREBLACKBOX_CALL FireKMIPAuthAttempt(LONG64 &lConnectionId, LPSTR &lpszUsername, LPSTR &lpszPassword, BOOL &bAccept);
class KMIPServerKMIPAuthAttemptEventParams { public: qint64 ConnectionId(); const QString &Username(); const QString &Password(); bool Accept(); void SetAccept(bool bAccept); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void KMIPAuthAttempt(KMIPServerKMIPAuthAttemptEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireKMIPAuthAttempt(KMIPServerKMIPAuthAttemptEventParams *e) {...}
Remarks
The class fires this event whenever a client attempts to authenticate itself. Use the Accept parameter to let the client through.
Username and Password contain the professed credentials.
List Event (KMIPServer Class)
Instructs the application to return the list of objects that match the specified criteria.
Syntax
ANSI (Cross Platform) virtual int FireList(KMIPServerListEventParams *e);
typedef struct {
int64 ConnectionId;
int ObjectType;
int ObjectStatus;
int OnlyFreshObjects;
int OffsetItems;
int MaximumItems;
char *ObjectIds;
int LocatedItems;
int OperationStatus; int reserved; } KMIPServerListEventParams;
Unicode (Windows) virtual INT FireList(KMIPServerListEventParams *e);
typedef struct {
LONG64 ConnectionId;
INT ObjectType;
INT ObjectStatus;
BOOL OnlyFreshObjects;
INT OffsetItems;
INT MaximumItems;
LPWSTR ObjectIds;
INT LocatedItems;
INT OperationStatus; INT reserved; } KMIPServerListEventParams;
#define EID_KMIPSERVER_LIST 66 virtual INT SECUREBLACKBOX_CALL FireList(LONG64 &lConnectionId, INT &iObjectType, INT &iObjectStatus, BOOL &bOnlyFreshObjects, INT &iOffsetItems, INT &iMaximumItems, LPSTR &lpszObjectIds, INT &iLocatedItems, INT &iOperationStatus);
class KMIPServerListEventParams { public: qint64 ConnectionId(); int ObjectType(); int ObjectStatus(); bool OnlyFreshObjects(); int OffsetItems(); int MaximumItems(); const QString &ObjectIds(); void SetObjectIds(const QString &qsObjectIds); int LocatedItems(); void SetLocatedItems(int iLocatedItems); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void List(KMIPServerListEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireList(KMIPServerListEventParams *e) {...}
Remarks
The server uses this event to request a list of objects in accordance with the List call received from a KMIP client. This event only fires if the application chose to follow a custom listing flow in the preceding BeforeList event.
The event handler should use the filtering parameters provided to form the list of IDs and return it via the ObjectIds parameters. Note that ObjectType contains a bit mask of the object types that need to be returned. If that mask is set to zero, objects of all types must be considered.
The OnlyFreshObjects modifier tells the server to only return the objects that were not previously exported to the client.
otUnknown | 0x00 | |
otCertificate | 0x01 | |
otSymmetricKey | 0x02 | |
otPublicKey | 0x04 | |
otPrivateKey | 0x08 |
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
ListAttributes Event (KMIPServer Class)
Requests a list of object attribute names from the application.
Syntax
ANSI (Cross Platform) virtual int FireListAttributes(KMIPServerListAttributesEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
char *AttributeNames;
int OperationStatus; int reserved; } KMIPServerListAttributesEventParams;
Unicode (Windows) virtual INT FireListAttributes(KMIPServerListAttributesEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
LPWSTR AttributeNames;
INT OperationStatus; INT reserved; } KMIPServerListAttributesEventParams;
#define EID_KMIPSERVER_LISTATTRIBUTES 67 virtual INT SECUREBLACKBOX_CALL FireListAttributes(LONG64 &lConnectionId, LPSTR &lpszObjectId, LPSTR &lpszAttributeNames, INT &iOperationStatus);
class KMIPServerListAttributesEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); const QString &AttributeNames(); void SetAttributeNames(const QString &qsAttributeNames); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void ListAttributes(KMIPServerListAttributesEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireListAttributes(KMIPServerListAttributesEventParams *e) {...}
Remarks
The server fires this event to request a list of names of attributes defined for the object. This event is only fired if the application chose to use a custom flow for attribute listing in the preceding BeforeBrowse event call.
Following completion of this event, the server will call the ReadAttribute event for each attribute name to request the respective values.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
Notification Event (KMIPServer Class)
This event notifies the application about an underlying control flow event.
Syntax
ANSI (Cross Platform) virtual int FireNotification(KMIPServerNotificationEventParams *e);
typedef struct {
const char *EventID;
const char *EventParam; int reserved; } KMIPServerNotificationEventParams;
Unicode (Windows) virtual INT FireNotification(KMIPServerNotificationEventParams *e);
typedef struct {
LPCWSTR EventID;
LPCWSTR EventParam; INT reserved; } KMIPServerNotificationEventParams;
#define EID_KMIPSERVER_NOTIFICATION 68 virtual INT SECUREBLACKBOX_CALL FireNotification(LPSTR &lpszEventID, LPSTR &lpszEventParam);
class KMIPServerNotificationEventParams { public: const QString &EventID(); const QString &EventParam(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Notification(KMIPServerNotificationEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireNotification(KMIPServerNotificationEventParams *e) {...}
Remarks
The class fires this event to let the application know about some event, occurrence, or milestone in the class. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.
The unique identifier of the event is provided in the EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the class, the exact action it is performing, or the document being processed, one or both may be omitted.
This class can fire this event with the following EventID values:
ListeningStarted | Notifies the application that the server has started listening for incoming connections. |
ListeningStopped | Notifies the application that the server has stopped listening to incoming connections. |
ObtainLease Event (KMIPServer Class)
Lets the application handle the lease request.
Syntax
ANSI (Cross Platform) virtual int FireObtainLease(KMIPServerObtainLeaseEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
int LeaseTime;
char *LastChangeDate;
int OperationStatus; int reserved; } KMIPServerObtainLeaseEventParams;
Unicode (Windows) virtual INT FireObtainLease(KMIPServerObtainLeaseEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
INT LeaseTime;
LPWSTR LastChangeDate;
INT OperationStatus; INT reserved; } KMIPServerObtainLeaseEventParams;
#define EID_KMIPSERVER_OBTAINLEASE 69 virtual INT SECUREBLACKBOX_CALL FireObtainLease(LONG64 &lConnectionId, LPSTR &lpszObjectId, INT &iLeaseTime, LPSTR &lpszLastChangeDate, INT &iOperationStatus);
class KMIPServerObtainLeaseEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); int LeaseTime(); void SetLeaseTime(int iLeaseTime); const QString &LastChangeDate(); void SetLastChangeDate(const QString &qsLastChangeDate); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void ObtainLease(KMIPServerObtainLeaseEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireObtainLease(KMIPServerObtainLeaseEventParams *e) {...}
Remarks
Subscribe to this event to react to object lease requests in virtualized mode.
The ObjectId parameter indicates the object a lease for which is requested. The LeaseTime and LastChangeDate specify the requested parameters of the lease. You can adjust them as required.
Set OperationStatus to indicate the intended operation result to the client.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
OperationAttempt Event (KMIPServer Class)
Fires when a request is received from the client.
Syntax
ANSI (Cross Platform) virtual int FireOperationAttempt(KMIPServerOperationAttemptEventParams *e);
typedef struct {
int64 ConnectionId;
const char *Operation;
const char *Username;
int Reject; int reserved; } KMIPServerOperationAttemptEventParams;
Unicode (Windows) virtual INT FireOperationAttempt(KMIPServerOperationAttemptEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR Operation;
LPCWSTR Username;
BOOL Reject; INT reserved; } KMIPServerOperationAttemptEventParams;
#define EID_KMIPSERVER_OPERATIONATTEMPT 70 virtual INT SECUREBLACKBOX_CALL FireOperationAttempt(LONG64 &lConnectionId, LPSTR &lpszOperation, LPSTR &lpszUsername, BOOL &bReject);
class KMIPServerOperationAttemptEventParams { public: qint64 ConnectionId(); const QString &Operation(); const QString &Username(); bool Reject(); void SetReject(bool bReject); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void OperationAttempt(KMIPServerOperationAttemptEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireOperationAttempt(KMIPServerOperationAttemptEventParams *e) {...}
Remarks
The Operation parameter specifies the operation to perform, and Username the originator of the request. Use the Reject parameter to reject the request.
Poll Event (KMIPServer Class)
Notifies the application about the received Poll request.
Syntax
ANSI (Cross Platform) virtual int FirePoll(KMIPServerPollEventParams *e);
typedef struct {
int64 ConnectionId;
const char *AsyncCorrelationValue;
int OperationStatus; int reserved; } KMIPServerPollEventParams;
Unicode (Windows) virtual INT FirePoll(KMIPServerPollEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR AsyncCorrelationValue;
INT OperationStatus; INT reserved; } KMIPServerPollEventParams;
#define EID_KMIPSERVER_POLL 71 virtual INT SECUREBLACKBOX_CALL FirePoll(LONG64 &lConnectionId, LPSTR &lpszAsyncCorrelationValue, INT &iOperationStatus);
class KMIPServerPollEventParams { public: qint64 ConnectionId(); const QString &AsyncCorrelationValue(); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Poll(KMIPServerPollEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FirePoll(KMIPServerPollEventParams *e) {...}
Remarks
KMIP clients may use Poll requests to check with the server asynchronously about the progress of an operation they started earlier. Use the handler of this event to return the OperationStatus for the operation identified with the AsyncCorrelationValue parameter.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
ReadAttribute Event (KMIPServer Class)
Requests an object attribute value from the application.
Syntax
ANSI (Cross Platform) virtual int FireReadAttribute(KMIPServerReadAttributeEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
const char *AttributeName;
char *AttributeValue;
int OperationStatus; int reserved; } KMIPServerReadAttributeEventParams;
Unicode (Windows) virtual INT FireReadAttribute(KMIPServerReadAttributeEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
LPCWSTR AttributeName;
LPWSTR AttributeValue;
INT OperationStatus; INT reserved; } KMIPServerReadAttributeEventParams;
#define EID_KMIPSERVER_READATTRIBUTE 72 virtual INT SECUREBLACKBOX_CALL FireReadAttribute(LONG64 &lConnectionId, LPSTR &lpszObjectId, LPSTR &lpszAttributeName, LPSTR &lpszAttributeValue, INT &iOperationStatus);
class KMIPServerReadAttributeEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); const QString &AttributeName(); const QString &AttributeValue(); void SetAttributeValue(const QString &qsAttributeValue); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void ReadAttribute(KMIPServerReadAttributeEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireReadAttribute(KMIPServerReadAttributeEventParams *e) {...}
Remarks
The server uses this event to request an attribute value from the application. This event is only fired if the application chose the custom object browsing flow in the preceding BeforeBrowse event.
This event is fired for every AttributeName in the list returned by the application from a preceding ListAttributes event call.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
ReadObject Event (KMIPServer Class)
Requests the details of the object from the application.
Syntax
ANSI (Cross Platform) virtual int FireReadObject(KMIPServerReadObjectEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
int ObjectType;
int OperationStatus; int reserved; } KMIPServerReadObjectEventParams;
Unicode (Windows) virtual INT FireReadObject(KMIPServerReadObjectEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
INT ObjectType;
INT OperationStatus; INT reserved; } KMIPServerReadObjectEventParams;
#define EID_KMIPSERVER_READOBJECT 73 virtual INT SECUREBLACKBOX_CALL FireReadObject(LONG64 &lConnectionId, LPSTR &lpszObjectId, INT &iObjectType, INT &iOperationStatus);
class KMIPServerReadObjectEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); int ObjectType(); void SetObjectType(int iObjectType); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void ReadObject(KMIPServerReadObjectEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireReadObject(KMIPServerReadObjectEventParams *e) {...}
Remarks
The server fires this event to request the details of the object from the application. This event is only invoked if the application chose to use custom operation handling in the preceding BeforeReadObject event call.
The event handler should set the ObjectType and OperationStatus as required, and provide the relevant object via the Certificate or Key property and commiting it using SetClientCert or SetClientKey respectively.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
ReCertify Event (KMIPServer Class)
Notifies the application about an incoming re-certification request.
Syntax
ANSI (Cross Platform) virtual int FireReCertify(KMIPServerReCertifyEventParams *e);
typedef struct {
int64 ConnectionId;
const char *OldCertId;
int Offset;
const char *Group;
char *NewCertId;
int OperationStatus; int reserved; } KMIPServerReCertifyEventParams;
Unicode (Windows) virtual INT FireReCertify(KMIPServerReCertifyEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR OldCertId;
INT Offset;
LPCWSTR Group;
LPWSTR NewCertId;
INT OperationStatus; INT reserved; } KMIPServerReCertifyEventParams;
#define EID_KMIPSERVER_RECERTIFY 74 virtual INT SECUREBLACKBOX_CALL FireReCertify(LONG64 &lConnectionId, LPSTR &lpszOldCertId, INT &iOffset, LPSTR &lpszGroup, LPSTR &lpszNewCertId, INT &iOperationStatus);
class KMIPServerReCertifyEventParams { public: qint64 ConnectionId(); const QString &OldCertId(); int Offset(); const QString &Group(); const QString &NewCertId(); void SetNewCertId(const QString &qsNewCertId); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void ReCertify(KMIPServerReCertifyEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireReCertify(KMIPServerReCertifyEventParams *e) {...}
Remarks
The server uses this event to notify the application about the incoming re-certification request.
If the application uses the component in virtual mode, it should perform the requested re-certification operation in the event handler and return the identifier of the new certificate via the NewCertId parameter.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
RecoverObject Event (KMIPServer Class)
Notifies the application about an incoming Recover Object request.
Syntax
ANSI (Cross Platform) virtual int FireRecoverObject(KMIPServerRecoverObjectEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
int OperationStatus; int reserved; } KMIPServerRecoverObjectEventParams;
Unicode (Windows) virtual INT FireRecoverObject(KMIPServerRecoverObjectEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
INT OperationStatus; INT reserved; } KMIPServerRecoverObjectEventParams;
#define EID_KMIPSERVER_RECOVEROBJECT 75 virtual INT SECUREBLACKBOX_CALL FireRecoverObject(LONG64 &lConnectionId, LPSTR &lpszObjectId, INT &iOperationStatus);
class KMIPServerRecoverObjectEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void RecoverObject(KMIPServerRecoverObjectEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireRecoverObject(KMIPServerRecoverObjectEventParams *e) {...}
Remarks
Subscribe to this event to get notified about the Recover Object request. Applications that use the component in the virtual mode should handle the request in their event handler and set OperationStatus in accordance with the operation result.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
ReKey Event (KMIPServer Class)
Notifies the application about an incoming re-key request.
Syntax
ANSI (Cross Platform) virtual int FireReKey(KMIPServerReKeyEventParams *e);
typedef struct {
int64 ConnectionId;
const char *OldKeyId;
int Offset;
const char *Group;
char *NewKeyId;
int OperationStatus; int reserved; } KMIPServerReKeyEventParams;
Unicode (Windows) virtual INT FireReKey(KMIPServerReKeyEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR OldKeyId;
INT Offset;
LPCWSTR Group;
LPWSTR NewKeyId;
INT OperationStatus; INT reserved; } KMIPServerReKeyEventParams;
#define EID_KMIPSERVER_REKEY 76 virtual INT SECUREBLACKBOX_CALL FireReKey(LONG64 &lConnectionId, LPSTR &lpszOldKeyId, INT &iOffset, LPSTR &lpszGroup, LPSTR &lpszNewKeyId, INT &iOperationStatus);
class KMIPServerReKeyEventParams { public: qint64 ConnectionId(); const QString &OldKeyId(); int Offset(); const QString &Group(); const QString &NewKeyId(); void SetNewKeyId(const QString &qsNewKeyId); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void ReKey(KMIPServerReKeyEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireReKey(KMIPServerReKeyEventParams *e) {...}
Remarks
The server uses this event to notify the application about the incoming re-keying request.
If the application uses the component in virtual mode, it should perform the requested re-key operation in the event handler and return the identifier of the new key via the NewKeyId parameter.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
RekeyKeyPair Event (KMIPServer Class)
Notifies the application about an incoming re-key request.
Syntax
ANSI (Cross Platform) virtual int FireRekeyKeyPair(KMIPServerRekeyKeyPairEventParams *e);
typedef struct {
int64 ConnectionId;
const char *OldPrivateKeyId;
int Offset;
const char *Group;
char *NewPrivateKeyId;
char *NewPublicKeyId;
int OperationStatus; int reserved; } KMIPServerRekeyKeyPairEventParams;
Unicode (Windows) virtual INT FireRekeyKeyPair(KMIPServerRekeyKeyPairEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR OldPrivateKeyId;
INT Offset;
LPCWSTR Group;
LPWSTR NewPrivateKeyId;
LPWSTR NewPublicKeyId;
INT OperationStatus; INT reserved; } KMIPServerRekeyKeyPairEventParams;
#define EID_KMIPSERVER_REKEYKEYPAIR 77 virtual INT SECUREBLACKBOX_CALL FireRekeyKeyPair(LONG64 &lConnectionId, LPSTR &lpszOldPrivateKeyId, INT &iOffset, LPSTR &lpszGroup, LPSTR &lpszNewPrivateKeyId, LPSTR &lpszNewPublicKeyId, INT &iOperationStatus);
class KMIPServerRekeyKeyPairEventParams { public: qint64 ConnectionId(); const QString &OldPrivateKeyId(); int Offset(); const QString &Group(); const QString &NewPrivateKeyId(); void SetNewPrivateKeyId(const QString &qsNewPrivateKeyId); const QString &NewPublicKeyId(); void SetNewPublicKeyId(const QString &qsNewPublicKeyId); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void RekeyKeyPair(KMIPServerRekeyKeyPairEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireRekeyKeyPair(KMIPServerRekeyKeyPairEventParams *e) {...}
Remarks
The server uses this event to notify the application about the incoming asymmetric re-keying request.
If the application uses the component in virtual mode, it should perform the requested re-certification operation in the event handler and return the identifiers of the new public and private keys via the NewPublicKeyId and NewPrivateKeyId parameters.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
RemoveObject Event (KMIPServer Class)
Notifies the application about the object deletion request.
Syntax
ANSI (Cross Platform) virtual int FireRemoveObject(KMIPServerRemoveObjectEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
int OperationStatus; int reserved; } KMIPServerRemoveObjectEventParams;
Unicode (Windows) virtual INT FireRemoveObject(KMIPServerRemoveObjectEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
INT OperationStatus; INT reserved; } KMIPServerRemoveObjectEventParams;
#define EID_KMIPSERVER_REMOVEOBJECT 78 virtual INT SECUREBLACKBOX_CALL FireRemoveObject(LONG64 &lConnectionId, LPSTR &lpszObjectId, INT &iOperationStatus);
class KMIPServerRemoveObjectEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void RemoveObject(KMIPServerRemoveObjectEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireRemoveObject(KMIPServerRemoveObjectEventParams *e) {...}
Remarks
The server uses this event to notify the application about the incoming object removal request. Applications working in virtual mode should perform the requested operation in the event handler and set OperationStatus according to the outcome of the operation.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
Request Event (KMIPServer Class)
Notifies the application about KMIP requests being received.
Syntax
ANSI (Cross Platform) virtual int FireRequest(KMIPServerRequestEventParams *e);
typedef struct {
int64 ConnectionId;
const char *RequestData; int lenRequestData; int reserved; } KMIPServerRequestEventParams;
Unicode (Windows) virtual INT FireRequest(KMIPServerRequestEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCSTR RequestData; INT lenRequestData; INT reserved; } KMIPServerRequestEventParams;
#define EID_KMIPSERVER_REQUEST 79 virtual INT SECUREBLACKBOX_CALL FireRequest(LONG64 &lConnectionId, LPSTR &lpRequestData, INT &lenRequestData);
class KMIPServerRequestEventParams { public: qint64 ConnectionId(); const QByteArray &RequestData(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Request(KMIPServerRequestEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireRequest(KMIPServerRequestEventParams *e) {...}
Remarks
Subscribe to this event to get notified about incoming KMIP requests. The RequestData parameter contains the serialized KMIP request object.
Response Event (KMIPServer Class)
Notifies the application about KMIP responses being sent back.
Syntax
ANSI (Cross Platform) virtual int FireResponse(KMIPServerResponseEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ResponseData; int lenResponseData; int reserved; } KMIPServerResponseEventParams;
Unicode (Windows) virtual INT FireResponse(KMIPServerResponseEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCSTR ResponseData; INT lenResponseData; INT reserved; } KMIPServerResponseEventParams;
#define EID_KMIPSERVER_RESPONSE 80 virtual INT SECUREBLACKBOX_CALL FireResponse(LONG64 &lConnectionId, LPSTR &lpResponseData, INT &lenResponseData);
class KMIPServerResponseEventParams { public: qint64 ConnectionId(); const QByteArray &ResponseData(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Response(KMIPServerResponseEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireResponse(KMIPServerResponseEventParams *e) {...}
Remarks
Subscribe to this event to get notified about KMIP protocol responses being sent back to KMIP clients.
RevokeObject Event (KMIPServer Class)
Instructs the application to revoke an object.
Syntax
ANSI (Cross Platform) virtual int FireRevokeObject(KMIPServerRevokeObjectEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
int ReasonCode;
const char *ReasonMessage;
int OperationStatus; int reserved; } KMIPServerRevokeObjectEventParams;
Unicode (Windows) virtual INT FireRevokeObject(KMIPServerRevokeObjectEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
INT ReasonCode;
LPCWSTR ReasonMessage;
INT OperationStatus; INT reserved; } KMIPServerRevokeObjectEventParams;
#define EID_KMIPSERVER_REVOKEOBJECT 81 virtual INT SECUREBLACKBOX_CALL FireRevokeObject(LONG64 &lConnectionId, LPSTR &lpszObjectId, INT &iReasonCode, LPSTR &lpszReasonMessage, INT &iOperationStatus);
class KMIPServerRevokeObjectEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); int ReasonCode(); const QString &ReasonMessage(); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void RevokeObject(KMIPServerRevokeObjectEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireRevokeObject(KMIPServerRevokeObjectEventParams *e) {...}
Remarks
The server uses this event to relay a client's Revoke Object request to the application.
The application must mark the requested object (ObjectId) as revoked, providing ReasonCode and ReasonMessage as evidence.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
RNGGenerate Event (KMIPServer Class)
Asks the application for another block of random numbers.
Syntax
ANSI (Cross Platform) virtual int FireRNGGenerate(KMIPServerRNGGenerateEventParams *e);
typedef struct {
int64 ConnectionId;
int DataLength;
int OperationStatus; int reserved; } KMIPServerRNGGenerateEventParams;
Unicode (Windows) virtual INT FireRNGGenerate(KMIPServerRNGGenerateEventParams *e);
typedef struct {
LONG64 ConnectionId;
INT DataLength;
INT OperationStatus; INT reserved; } KMIPServerRNGGenerateEventParams;
#define EID_KMIPSERVER_RNGGENERATE 82 virtual INT SECUREBLACKBOX_CALL FireRNGGenerate(LONG64 &lConnectionId, INT &iDataLength, INT &iOperationStatus);
class KMIPServerRNGGenerateEventParams { public: qint64 ConnectionId(); int DataLength(); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void RNGGenerate(KMIPServerRNGGenerateEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireRNGGenerate(KMIPServerRNGGenerateEventParams *e) {...}
Remarks
The server uses this event to request another chunk of random data from the application, following a client's PRNG Generate request.
An application that handles this event must use its PRNG to generate DataLength bytes of data and pass that data buffer back to the server via the SetClientBytes method.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
RNGSeed Event (KMIPServer Class)
Tells the application to seed the random number generator.
Syntax
ANSI (Cross Platform) virtual int FireRNGSeed(KMIPServerRNGSeedEventParams *e);
typedef struct {
int64 ConnectionId;
const char *Data; int lenData;
int BytesUsed;
int OperationStatus; int reserved; } KMIPServerRNGSeedEventParams;
Unicode (Windows) virtual INT FireRNGSeed(KMIPServerRNGSeedEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCSTR Data; INT lenData;
INT BytesUsed;
INT OperationStatus; INT reserved; } KMIPServerRNGSeedEventParams;
#define EID_KMIPSERVER_RNGSEED 83 virtual INT SECUREBLACKBOX_CALL FireRNGSeed(LONG64 &lConnectionId, LPSTR &lpData, INT &lenData, INT &iBytesUsed, INT &iOperationStatus);
class KMIPServerRNGSeedEventParams { public: qint64 ConnectionId(); const QByteArray &Data(); int BytesUsed(); void SetBytesUsed(int iBytesUsed); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void RNGSeed(KMIPServerRNGSeedEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireRNGSeed(KMIPServerRNGSeedEventParams *e) {...}
Remarks
The server component uses this event to notify the application about the client's RNG Seed call. The application that handles this event must seed the provided data to its PRNG and return the number of BytesUsed along with the OperationStatus.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
SetAttribute Event (KMIPServer Class)
Passes a set-attribute request to the application.
Syntax
ANSI (Cross Platform) virtual int FireSetAttribute(KMIPServerSetAttributeEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
const char *AttributeName;
const char *AttributeValue;
int OperationStatus; int reserved; } KMIPServerSetAttributeEventParams;
Unicode (Windows) virtual INT FireSetAttribute(KMIPServerSetAttributeEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
LPCWSTR AttributeName;
LPCWSTR AttributeValue;
INT OperationStatus; INT reserved; } KMIPServerSetAttributeEventParams;
#define EID_KMIPSERVER_SETATTRIBUTE 84 virtual INT SECUREBLACKBOX_CALL FireSetAttribute(LONG64 &lConnectionId, LPSTR &lpszObjectId, LPSTR &lpszAttributeName, LPSTR &lpszAttributeValue, INT &iOperationStatus);
class KMIPServerSetAttributeEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); const QString &AttributeName(); const QString &AttributeValue(); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void SetAttribute(KMIPServerSetAttributeEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireSetAttribute(KMIPServerSetAttributeEventParams *e) {...}
Remarks
The server component uses this event to tell the application that a certain attribute on an object should be set. This event only fires if the application chose to handle the edit operation manually in BeforeEdit event handler.
The handler of this event should attempt to set the AttributeName attribute of the respective object as requested and return the operation result in the OperationStatus parameter.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
Sign Event (KMIPServer Class)
Instructs the application to sign data with a private key.
Syntax
ANSI (Cross Platform) virtual int FireSign(KMIPServerSignEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
const char *Algorithm;
const char *HashAlgorithm;
int InputIsHash;
const char *Data; int lenData;
int InitIndicator;
int FinalIndicator;
char *CorrelationValue;
int OperationStatus; int reserved; } KMIPServerSignEventParams;
Unicode (Windows) virtual INT FireSign(KMIPServerSignEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
LPCWSTR Algorithm;
LPCWSTR HashAlgorithm;
BOOL InputIsHash;
LPCSTR Data; INT lenData;
BOOL InitIndicator;
BOOL FinalIndicator;
LPWSTR CorrelationValue;
INT OperationStatus; INT reserved; } KMIPServerSignEventParams;
#define EID_KMIPSERVER_SIGN 85 virtual INT SECUREBLACKBOX_CALL FireSign(LONG64 &lConnectionId, LPSTR &lpszObjectId, LPSTR &lpszAlgorithm, LPSTR &lpszHashAlgorithm, BOOL &bInputIsHash, LPSTR &lpData, INT &lenData, BOOL &bInitIndicator, BOOL &bFinalIndicator, LPSTR &lpszCorrelationValue, INT &iOperationStatus);
class KMIPServerSignEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); const QString &Algorithm(); const QString &HashAlgorithm(); bool InputIsHash(); const QByteArray &Data(); bool InitIndicator(); bool FinalIndicator(); const QString &CorrelationValue(); void SetCorrelationValue(const QString &qsCorrelationValue); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Sign(KMIPServerSignEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireSign(KMIPServerSignEventParams *e) {...}
Remarks
The server used this event to request the application to sign the provided Data (or the hash of the data, subject to InputIsHash) with the private key identified by the ObjectId parameter. This event is only fired if the application chose to proceed with the custom signing flow in the preceding BeforeSign event.
The InitIndicator and FinalIndicator provide guidance as to whether the data block is the first or last in a sequence of blocks. For blocks that are not last, generate a unique CorrelationValue to ensure continuity between consecutive data blocks.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
TLSCertValidate Event (KMIPServer Class)
Fires when a client certificate needs to be validated.
Syntax
ANSI (Cross Platform) virtual int FireTLSCertValidate(KMIPServerTLSCertValidateEventParams *e);
typedef struct {
int64 ConnectionID;
int Accept; int reserved; } KMIPServerTLSCertValidateEventParams;
Unicode (Windows) virtual INT FireTLSCertValidate(KMIPServerTLSCertValidateEventParams *e);
typedef struct {
LONG64 ConnectionID;
BOOL Accept; INT reserved; } KMIPServerTLSCertValidateEventParams;
#define EID_KMIPSERVER_TLSCERTVALIDATE 86 virtual INT SECUREBLACKBOX_CALL FireTLSCertValidate(LONG64 &lConnectionID, BOOL &bAccept);
class KMIPServerTLSCertValidateEventParams { public: qint64 ConnectionID(); bool Accept(); void SetAccept(bool bAccept); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void TLSCertValidate(KMIPServerTLSCertValidateEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireTLSCertValidate(KMIPServerTLSCertValidateEventParams *e) {...}
Remarks
The class fires this event to notify the application of an authenticating client. Use the event handler to validate the certificate and pass your decision back to the server component via the Accept parameter.
TLSEstablished Event (KMIPServer Class)
Reports the setup of a TLS session.
Syntax
ANSI (Cross Platform) virtual int FireTLSEstablished(KMIPServerTLSEstablishedEventParams *e);
typedef struct {
int64 ConnectionID; int reserved; } KMIPServerTLSEstablishedEventParams;
Unicode (Windows) virtual INT FireTLSEstablished(KMIPServerTLSEstablishedEventParams *e);
typedef struct {
LONG64 ConnectionID; INT reserved; } KMIPServerTLSEstablishedEventParams;
#define EID_KMIPSERVER_TLSESTABLISHED 87 virtual INT SECUREBLACKBOX_CALL FireTLSEstablished(LONG64 &lConnectionID);
class KMIPServerTLSEstablishedEventParams { public: qint64 ConnectionID(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void TLSEstablished(KMIPServerTLSEstablishedEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireTLSEstablished(KMIPServerTLSEstablishedEventParams *e) {...}
Remarks
Subscribe to this event to be notified about the setup of a TLS connection by a connected client.
TLSHandshake Event (KMIPServer Class)
Fires when a newly established client connection initiates a TLS handshake.
Syntax
ANSI (Cross Platform) virtual int FireTLSHandshake(KMIPServerTLSHandshakeEventParams *e);
typedef struct {
int64 ConnectionID;
const char *ServerName;
int Abort; int reserved; } KMIPServerTLSHandshakeEventParams;
Unicode (Windows) virtual INT FireTLSHandshake(KMIPServerTLSHandshakeEventParams *e);
typedef struct {
LONG64 ConnectionID;
LPCWSTR ServerName;
BOOL Abort; INT reserved; } KMIPServerTLSHandshakeEventParams;
#define EID_KMIPSERVER_TLSHANDSHAKE 88 virtual INT SECUREBLACKBOX_CALL FireTLSHandshake(LONG64 &lConnectionID, LPSTR &lpszServerName, BOOL &bAbort);
class KMIPServerTLSHandshakeEventParams { public: qint64 ConnectionID(); const QString &ServerName(); bool Abort(); void SetAbort(bool bAbort); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void TLSHandshake(KMIPServerTLSHandshakeEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireTLSHandshake(KMIPServerTLSHandshakeEventParams *e) {...}
Remarks
Use this event to get notified about the initiation of the TLS handshake by the remote client. The ServerName parameter specifies the requested host from the client hello message.
TLSPSK Event (KMIPServer Class)
Requests a pre-shared key for TLS-PSK.
Syntax
ANSI (Cross Platform) virtual int FireTLSPSK(KMIPServerTLSPSKEventParams *e);
typedef struct {
int64 ConnectionID;
const char *Identity;
char *PSK;
char *Ciphersuite; int reserved; } KMIPServerTLSPSKEventParams;
Unicode (Windows) virtual INT FireTLSPSK(KMIPServerTLSPSKEventParams *e);
typedef struct {
LONG64 ConnectionID;
LPCWSTR Identity;
LPWSTR PSK;
LPWSTR Ciphersuite; INT reserved; } KMIPServerTLSPSKEventParams;
#define EID_KMIPSERVER_TLSPSK 89 virtual INT SECUREBLACKBOX_CALL FireTLSPSK(LONG64 &lConnectionID, LPSTR &lpszIdentity, LPSTR &lpszPSK, LPSTR &lpszCiphersuite);
class KMIPServerTLSPSKEventParams { public: qint64 ConnectionID(); const QString &Identity(); const QString &PSK(); void SetPSK(const QString &qsPSK); const QString &Ciphersuite(); void SetCiphersuite(const QString &qsCiphersuite); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void TLSPSK(KMIPServerTLSPSKEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireTLSPSK(KMIPServerTLSPSKEventParams *e) {...}
Remarks
The class fires this event to report that a client has requested a TLS-PSK negotiation. ConnectionId indicates the unique connection ID that requested the PSK handshake.
Use Identity to look up for the corresponding pre-shared key in the server's database, then assign the key to the PSK parameter. If TLS 1.3 PSK is used, you will also need to assign the Ciphersuite parameter with the cipher suite associated with that identity and their key.
TLSShutdown Event (KMIPServer Class)
Reports closure of a TLS session.
Syntax
ANSI (Cross Platform) virtual int FireTLSShutdown(KMIPServerTLSShutdownEventParams *e);
typedef struct {
int64 ConnectionID; int reserved; } KMIPServerTLSShutdownEventParams;
Unicode (Windows) virtual INT FireTLSShutdown(KMIPServerTLSShutdownEventParams *e);
typedef struct {
LONG64 ConnectionID; INT reserved; } KMIPServerTLSShutdownEventParams;
#define EID_KMIPSERVER_TLSSHUTDOWN 90 virtual INT SECUREBLACKBOX_CALL FireTLSShutdown(LONG64 &lConnectionID);
class KMIPServerTLSShutdownEventParams { public: qint64 ConnectionID(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void TLSShutdown(KMIPServerTLSShutdownEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireTLSShutdown(KMIPServerTLSShutdownEventParams *e) {...}
Remarks
The class fires this event when a connected client closes their TLS session gracefully. This event is typically followed by a Disconnect, which marks the closure of the underlying TCP session.
ValidateChain Event (KMIPServer Class)
Passes the chain validation request to the application.
Syntax
ANSI (Cross Platform) virtual int FireValidateChain(KMIPServerValidateChainEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectIds;
int Validity;
int OperationStatus; int reserved; } KMIPServerValidateChainEventParams;
Unicode (Windows) virtual INT FireValidateChain(KMIPServerValidateChainEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectIds;
INT Validity;
INT OperationStatus; INT reserved; } KMIPServerValidateChainEventParams;
#define EID_KMIPSERVER_VALIDATECHAIN 91 virtual INT SECUREBLACKBOX_CALL FireValidateChain(LONG64 &lConnectionId, LPSTR &lpszObjectIds, INT &iValidity, INT &iOperationStatus);
class KMIPServerValidateChainEventParams { public: qint64 ConnectionId(); const QString &ObjectIds(); int Validity(); void SetValidity(int iValidity); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void ValidateChain(KMIPServerValidateChainEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireValidateChain(KMIPServerValidateChainEventParams *e) {...}
Remarks
The server fires this event to notify the application about the received chain validation request. The application needs to build a chain out of certificates contained in the ObjectIds list, validate it, and return the validation result via the Validity parameter, which can take one of the following values:
cvtValid | 0 | The chain is valid |
cvtValidButUntrusted | 1 | The chain is valid, but the root certificate is not trusted |
cvtInvalid | 2 | The chain is not valid (some of certificates are revoked, expired, or contain an invalid signature) |
cvtCantBeEstablished | 3 | The validity of the chain cannot be established because of missing or unavailable validation information (certificates, CRLs, or OCSP responses) |
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
Verify Event (KMIPServer Class)
KMIPServer fires this event to notify the application about a verification operation request, and expects the application to perform it.
Syntax
ANSI (Cross Platform) virtual int FireVerify(KMIPServerVerifyEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
const char *HashAlgorithm;
int InputIsHash;
const char *Data; int lenData;
const char *SignatureData; int lenSignatureData;
int InitIndicator;
int FinalIndicator;
int ValidationResult;
char *CorrelationValue;
int OperationStatus; int reserved; } KMIPServerVerifyEventParams;
Unicode (Windows) virtual INT FireVerify(KMIPServerVerifyEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
LPCWSTR HashAlgorithm;
BOOL InputIsHash;
LPCSTR Data; INT lenData;
LPCSTR SignatureData; INT lenSignatureData;
BOOL InitIndicator;
BOOL FinalIndicator;
INT ValidationResult;
LPWSTR CorrelationValue;
INT OperationStatus; INT reserved; } KMIPServerVerifyEventParams;
#define EID_KMIPSERVER_VERIFY 92 virtual INT SECUREBLACKBOX_CALL FireVerify(LONG64 &lConnectionId, LPSTR &lpszObjectId, LPSTR &lpszHashAlgorithm, BOOL &bInputIsHash, LPSTR &lpData, INT &lenData, LPSTR &lpSignatureData, INT &lenSignatureData, BOOL &bInitIndicator, BOOL &bFinalIndicator, INT &iValidationResult, LPSTR &lpszCorrelationValue, INT &iOperationStatus);
class KMIPServerVerifyEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); const QString &HashAlgorithm(); bool InputIsHash(); const QByteArray &Data(); const QByteArray &SignatureData(); bool InitIndicator(); bool FinalIndicator(); int ValidationResult(); void SetValidationResult(int iValidationResult); const QString &CorrelationValue(); void SetCorrelationValue(const QString &qsCorrelationValue); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Verify(KMIPServerVerifyEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireVerify(KMIPServerVerifyEventParams *e) {...}
Remarks
Subscribe to this event to be notified about public key signature verification operations. For this event to be invoked, the fraCustom action needs to be previously returned from the BeforeVerify event.
The parameters of this event provide the details of the verification request:
- ObjectId: the key object to verify the signature with.
- HashAlgorithm: the hash algorithm to use for verification.
- InputIsHash: specifies whether Data contains the hash of the signed object or the object itself.
- Data: the signed data that needs to be verified.
- SignatureData: the signature data.
- InitIndicator: whether the provided data block starts a sequence of blocks.
- FinalIndicator: whether the provided data block ends a sequence of blocks.
Upon processing, set the ValidationResult and OperationStatus in accordance with the operation result.
See the
Handling and overriding server operations using the Three-Step Virtualization
Most of the server components shipped with SecureBlackbox are highly customizable, allowing the user to override or alter the way the clients' requests are handled by default. The customization feature paves the way for creation of bespoke or virtualized server solutions that work over standardized protocols.
The possibility of customization is typically offered through a three-step virtualization model. Every customizable operation or request that can be handled by the server - say, RenameFile - is represented with a triple of events:
- BeforeRenameFile
- RenameFile
- AfterRenameFile
The first event fires right after the respective request has been received from a client. It provides the details of the operation, such as the original and target file names, and, importantly, a by-reference (writable) Action parameter. The event handler can set the Action parameter to one of the three settings given below. The setting chosen defines the further operation flow:
- fraAuto: the operation shall be handled automatically by the server: in this case, a file will be searched in the provided local directory and renamed.
- fraCustom: indicates that the user wants to take care of the operation by themselves. If this setting is chosen, the server takes no action, and instead fires the RenameFile event shortly after BeforeRenameFile completes. The user is expected to handle RenameFile and perform the requested action - that is, rename the file - manually.
- fraAbort: the operation should be aborted as not supported/allowed. Neither the server nor the user are expected to perform it.
The second event (RenameFile) only fires if Action was set to fraCustom in the earlier call to BeforeRenameFile. It lets the user handle the requested operation in the way they want. The user code must fulfil the operation (for example, rename a database entry, if building a virtualized server), and return the operation result as the event's OperationResult parameter.
If the Action parameter was set to fraAuto, RenameFile is not called. The server performs the operation automatically.
The third event, AfterRenameFile, fires upon completion of the operation, either in automatic or custom mode. The user code can check and/or adjust the result to be returned to the client.
To summarize:
- If Action is set to fraAuto, the next call about this operation will be to AfterRenameFile.
- If Action is set to fraCustom, the next call about the operation will be to RenameFile, and after that to AfterRenameFile.
- If Action is set to fraAbort, the operation is rejected and no further calls about it are performed.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
VerifyHash Event (KMIPServer Class)
Delegates the hash verification operation to a custom handler.
Syntax
ANSI (Cross Platform) virtual int FireVerifyHash(KMIPServerVerifyHashEventParams *e);
typedef struct {
int64 ConnectionId;
const char *ObjectId;
const char *HashAlgorithm;
const char *Data; int lenData;
const char *Hash; int lenHash;
int InitIndicator;
int FinalIndicator;
int IsValid;
char *CorrelationValue;
int OperationStatus; int reserved; } KMIPServerVerifyHashEventParams;
Unicode (Windows) virtual INT FireVerifyHash(KMIPServerVerifyHashEventParams *e);
typedef struct {
LONG64 ConnectionId;
LPCWSTR ObjectId;
LPCWSTR HashAlgorithm;
LPCSTR Data; INT lenData;
LPCSTR Hash; INT lenHash;
BOOL InitIndicator;
BOOL FinalIndicator;
BOOL IsValid;
LPWSTR CorrelationValue;
INT OperationStatus; INT reserved; } KMIPServerVerifyHashEventParams;
#define EID_KMIPSERVER_VERIFYHASH 93 virtual INT SECUREBLACKBOX_CALL FireVerifyHash(LONG64 &lConnectionId, LPSTR &lpszObjectId, LPSTR &lpszHashAlgorithm, LPSTR &lpData, INT &lenData, LPSTR &lpHash, INT &lenHash, BOOL &bInitIndicator, BOOL &bFinalIndicator, BOOL &bIsValid, LPSTR &lpszCorrelationValue, INT &iOperationStatus);
class KMIPServerVerifyHashEventParams { public: qint64 ConnectionId(); const QString &ObjectId(); const QString &HashAlgorithm(); const QByteArray &Data(); const QByteArray &Hash(); bool InitIndicator(); bool FinalIndicator(); bool IsValid(); void SetIsValid(bool bIsValid); const QString &CorrelationValue(); void SetCorrelationValue(const QString &qsCorrelationValue); int OperationStatus(); void SetOperationStatus(int iOperationStatus); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void VerifyHash(KMIPServerVerifyHashEventParams *e);
// Or, subclass KMIPServer and override this emitter function. virtual int FireVerifyHash(KMIPServerVerifyHashEventParams *e) {...}
Remarks
This event allows the application to wiretap into the server's verification procedure. It is invoked if the Action parameter in the preceding BeforeVerify hash call was set to fraCustom.
KMIPServer uses this event to delegate both hash and MAC (keyed hash) verifications.
The ObjectId parameter contains the identifier of the key object that should be used to calculate the MAC code. This parameter is empty if a simple hashing operation is requested. The Data parameter contains the data that should be verified against the hash.
The Hash parameter contains the hash or MAC record. The Algorithm parameter specifies the hash algorithm.
In this handler, the application should calculate an Algorithm hash over Data, and verify that the result matches Hash. If the result does match, it should set the IsValid parameter to true. If the hashes do not match, or if any of the call parameters are malformed or not understood by the application, it should set IsValid to false.
ostOk | 1 | |
ostNoSuchFile | 2 | |
ostAccessDenied | 3 | |
ostWriteProtect | 4 | |
ostUnsupported | 5 | |
ostInvalidParameter | 6 | |
ostEOF | 7 |
Certificate Type
Encapsulates an individual X.509 certificate.
Syntax
SecureBlackboxCertificate (declared in secureblackbox.h)
Remarks
This type keeps and provides access to X.509 certificate details.
Fields
Bytes
char* (read-only)
Default Value:
Returns the raw certificate data in DER format.
CA
int
Default Value: FALSE
Indicates whether the certificate has a CA capability. For the certificate to be considered a CA, it must have its Basic Constraints extension set with the CA indicator enabled.
Set this field when generating a new certificate to have its Basic Constraints extension generated automatically.
CAKeyID
char* (read-only)
Default Value:
A unique identifier (fingerprint) of the CA certificate's cryptographic key.
Authority Key Identifier is a certificate extension which allows identification of certificates belonging to the same issuer, but with different public keys. It is a de-facto standard to include this extension in all certificates to facilitate chain building.
This setting cannot be set when generating a certificate as it always derives from another certificate property. CertificateManager generates this setting automatically if enough information is available to it: for self-signed certificates, this value is copied from the SubjectKeyID setting, and for lower-level certificates, from the parent certificate's subject key ID extension.
CertType
int (read-only)
Default Value: 0
Returns the type of the entity contained in the Certificate object.
A Certificate object can contain two types of cryptographic objects: a ready-to-use X.509 certificate, or a certificate request ("an unsigned certificate"). Certificate requests can be upgraded to full certificates by signing them with a CA certificate.
Use the CertificateManager class to load or create new certificate and certificate requests objects.
CRLDistributionPoints
char*
Default Value: ""
Contains a list of locations of CRL distribution points used to check this certificate's validity. The list is taken from the respective certificate extension.
Use this field when generating a certificate to provide a list of CRL endpoints that should be made part of the new certificate.
The endpoints are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.
Curve
char*
Default Value: ""
Specifies the elliptic curve associated with the certificate's public key. This setting only applies to certificates containing EC keys.
SB_EC_SECP112R1 | SECP112R1 | |
SB_EC_SECP112R2 | SECP112R2 | |
SB_EC_SECP128R1 | SECP128R1 | |
SB_EC_SECP128R2 | SECP128R2 | |
SB_EC_SECP160K1 | SECP160K1 | |
SB_EC_SECP160R1 | SECP160R1 | |
SB_EC_SECP160R2 | SECP160R2 | |
SB_EC_SECP192K1 | SECP192K1 | |
SB_EC_SECP192R1 | SECP192R1 | |
SB_EC_SECP224K1 | SECP224K1 | |
SB_EC_SECP224R1 | SECP224R1 | |
SB_EC_SECP256K1 | SECP256K1 | |
SB_EC_SECP256R1 | SECP256R1 | |
SB_EC_SECP384R1 | SECP384R1 | |
SB_EC_SECP521R1 | SECP521R1 | |
SB_EC_SECT113R1 | SECT113R1 | |
SB_EC_SECT113R2 | SECT113R2 | |
SB_EC_SECT131R1 | SECT131R1 | |
SB_EC_SECT131R2 | SECT131R2 | |
SB_EC_SECT163K1 | SECT163K1 | |
SB_EC_SECT163R1 | SECT163R1 | |
SB_EC_SECT163R2 | SECT163R2 | |
SB_EC_SECT193R1 | SECT193R1 | |
SB_EC_SECT193R2 | SECT193R2 | |
SB_EC_SECT233K1 | SECT233K1 | |
SB_EC_SECT233R1 | SECT233R1 | |
SB_EC_SECT239K1 | SECT239K1 | |
SB_EC_SECT283K1 | SECT283K1 | |
SB_EC_SECT283R1 | SECT283R1 | |
SB_EC_SECT409K1 | SECT409K1 | |
SB_EC_SECT409R1 | SECT409R1 | |
SB_EC_SECT571K1 | SECT571K1 | |
SB_EC_SECT571R1 | SECT571R1 | |
SB_EC_PRIME192V1 | PRIME192V1 | |
SB_EC_PRIME192V2 | PRIME192V2 | |
SB_EC_PRIME192V3 | PRIME192V3 | |
SB_EC_PRIME239V1 | PRIME239V1 | |
SB_EC_PRIME239V2 | PRIME239V2 | |
SB_EC_PRIME239V3 | PRIME239V3 | |
SB_EC_PRIME256V1 | PRIME256V1 | |
SB_EC_C2PNB163V1 | C2PNB163V1 | |
SB_EC_C2PNB163V2 | C2PNB163V2 | |
SB_EC_C2PNB163V3 | C2PNB163V3 | |
SB_EC_C2PNB176W1 | C2PNB176W1 | |
SB_EC_C2TNB191V1 | C2TNB191V1 | |
SB_EC_C2TNB191V2 | C2TNB191V2 | |
SB_EC_C2TNB191V3 | C2TNB191V3 | |
SB_EC_C2ONB191V4 | C2ONB191V4 | |
SB_EC_C2ONB191V5 | C2ONB191V5 | |
SB_EC_C2PNB208W1 | C2PNB208W1 | |
SB_EC_C2TNB239V1 | C2TNB239V1 | |
SB_EC_C2TNB239V2 | C2TNB239V2 | |
SB_EC_C2TNB239V3 | C2TNB239V3 | |
SB_EC_C2ONB239V4 | C2ONB239V4 | |
SB_EC_C2ONB239V5 | C2ONB239V5 | |
SB_EC_C2PNB272W1 | C2PNB272W1 | |
SB_EC_C2PNB304W1 | C2PNB304W1 | |
SB_EC_C2TNB359V1 | C2TNB359V1 | |
SB_EC_C2PNB368W1 | C2PNB368W1 | |
SB_EC_C2TNB431R1 | C2TNB431R1 | |
SB_EC_NISTP192 | NISTP192 | |
SB_EC_NISTP224 | NISTP224 | |
SB_EC_NISTP256 | NISTP256 | |
SB_EC_NISTP384 | NISTP384 | |
SB_EC_NISTP521 | NISTP521 | |
SB_EC_NISTB163 | NISTB163 | |
SB_EC_NISTB233 | NISTB233 | |
SB_EC_NISTB283 | NISTB283 | |
SB_EC_NISTB409 | NISTB409 | |
SB_EC_NISTB571 | NISTB571 | |
SB_EC_NISTK163 | NISTK163 | |
SB_EC_NISTK233 | NISTK233 | |
SB_EC_NISTK283 | NISTK283 | |
SB_EC_NISTK409 | NISTK409 | |
SB_EC_NISTK571 | NISTK571 | |
SB_EC_GOSTCPTEST | GOSTCPTEST | |
SB_EC_GOSTCPA | GOSTCPA | |
SB_EC_GOSTCPB | GOSTCPB | |
SB_EC_GOSTCPC | GOSTCPC | |
SB_EC_GOSTCPXCHA | GOSTCPXCHA | |
SB_EC_GOSTCPXCHB | GOSTCPXCHB | |
SB_EC_BRAINPOOLP160R1 | BRAINPOOLP160R1 | |
SB_EC_BRAINPOOLP160T1 | BRAINPOOLP160T1 | |
SB_EC_BRAINPOOLP192R1 | BRAINPOOLP192R1 | |
SB_EC_BRAINPOOLP192T1 | BRAINPOOLP192T1 | |
SB_EC_BRAINPOOLP224R1 | BRAINPOOLP224R1 | |
SB_EC_BRAINPOOLP224T1 | BRAINPOOLP224T1 | |
SB_EC_BRAINPOOLP256R1 | BRAINPOOLP256R1 | |
SB_EC_BRAINPOOLP256T1 | BRAINPOOLP256T1 | |
SB_EC_BRAINPOOLP320R1 | BRAINPOOLP320R1 | |
SB_EC_BRAINPOOLP320T1 | BRAINPOOLP320T1 | |
SB_EC_BRAINPOOLP384R1 | BRAINPOOLP384R1 | |
SB_EC_BRAINPOOLP384T1 | BRAINPOOLP384T1 | |
SB_EC_BRAINPOOLP512R1 | BRAINPOOLP512R1 | |
SB_EC_BRAINPOOLP512T1 | BRAINPOOLP512T1 | |
SB_EC_CURVE25519 | CURVE25519 | |
SB_EC_CURVE448 | CURVE448 |
Fingerprint
char* (read-only)
Default Value: ""
Contains the fingerprint (a hash imprint) of this certificate.
While there is no formal standard defining what a fingerprint is, a SHA1 hash of the certificate's DER-encoded body is typically used.
FriendlyName
char* (read-only)
Default Value: ""
Contains an associated alias (friendly name) of the certificate. The friendly name is not a property of a certificate: it is maintained by the certificate media rather than being included in its DER representation. Windows certificate stores are one example of media that does support friendly names.
Handle
int64
Default Value: 0
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
HashAlgorithm
char*
Default Value: ""
Provides means to set the hash algorithm to be used in the subsequent operation on the certificate (such as generation or key signing). It is not a property of a certificate; use SigAlgorithm to find out the hash algorithm that is part of the certificate signature.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
Issuer
char* (read-only)
Default Value: ""
The common name of the certificate issuer (CA), typically a company name. This is part of a larger set of credentials available via IssuerRDN.
IssuerRDN
char*
Default Value: ""
A list of Property=Value pairs that uniquely identify the certificate issuer.
Example: /C=US/O=Nationwide CA/CN=Web Certification Authority
KeyAlgorithm
char*
Default Value: "0"
Specifies the public key algorithm of this certificate.
SB_CERT_ALGORITHM_ID_RSA_ENCRYPTION | rsaEncryption | |
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTION | md2withRSAEncryption | |
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTION | md5withRSAEncryption | |
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTION | sha1withRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA | id-dsa | |
SB_CERT_ALGORITHM_ID_DSA_SHA1 | id-dsa-with-sha1 | |
SB_CERT_ALGORITHM_DH_PUBLIC | dhpublicnumber | |
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTION | sha224WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTION | sha256WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTION | sha384WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTION | sha512WithRSAEncryption | |
SB_CERT_ALGORITHM_ID_RSAPSS | id-RSASSA-PSS | |
SB_CERT_ALGORITHM_ID_RSAOAEP | id-RSAES-OAEP | |
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160 | ripemd160withRSA | |
SB_CERT_ALGORITHM_ID_ELGAMAL | elGamal | |
SB_CERT_ALGORITHM_SHA1_ECDSA | ecdsa-with-SHA1 | |
SB_CERT_ALGORITHM_RECOMMENDED_ECDSA | ecdsa-recommended | |
SB_CERT_ALGORITHM_SHA224_ECDSA | ecdsa-with-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA | ecdsa-with-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA | ecdsa-with-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA | ecdsa-with-SHA512 | |
SB_CERT_ALGORITHM_EC | id-ecPublicKey | |
SB_CERT_ALGORITHM_SPECIFIED_ECDSA | ecdsa-specified | |
SB_CERT_ALGORITHM_GOST_R3410_1994 | id-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3410_2001 | id-GostR3410-2001 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994 | id-GostR3411-94-with-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001 | id-GostR3411-94-with-GostR3410-2001 | |
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAIN | ecdsa-plain-SHA1 | |
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAIN | ecdsa-plain-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAIN | ecdsa-plain-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAIN | ecdsa-plain-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAIN | ecdsa-plain-SHA512 | |
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAIN | ecdsa-plain-RIPEMD160 | |
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTION | whirlpoolWithRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA_SHA224 | id-dsa-with-sha224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA256 | id-dsa-with-sha256 | |
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA | id-ecdsa-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA | id-ecdsa-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA | id-ecdsa-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA | id-ecdsa-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-512 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_224 | id-dsa-with-sha3-224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_256 | id-dsa-with-sha3-256 | |
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA | id-ecdsa-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA | id-ecdsa-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA | id-ecdsa-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA | id-ecdsa-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA | id-ecdsa-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA | id-ecdsa-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA | id-ecdsa-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA | id-ecdsa-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b512 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224 | id-dsa-with-blake2s224 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256 | id-dsa-with-blake2s256 | |
SB_CERT_ALGORITHM_EDDSA_ED25519 | id-Ed25519 | |
SB_CERT_ALGORITHM_EDDSA_ED448 | id-Ed448 | |
SB_CERT_ALGORITHM_EDDSA_ED25519_PH | id-Ed25519ph | |
SB_CERT_ALGORITHM_EDDSA_ED448_PH | id-Ed448ph | |
SB_CERT_ALGORITHM_EDDSA | id-EdDSA | |
SB_CERT_ALGORITHM_EDDSA_SIGNATURE | id-EdDSA-sig |
Use the KeyBits, Curve, and PublicKeyBytes fields to get more details about the key the certificate contains.
KeyBits
int (read-only)
Default Value: 0
Returns the length of the public key in bits.
This value indicates the length of the principal cryptographic parameter of the key, such as the length of the RSA modulus or ECDSA field. The key data returned by the PublicKeyBytes or PrivateKeyBytes field would typically contain auxiliary values, and therefore be longer.
KeyFingerprint
char* (read-only)
Default Value: ""
Returns a SHA1 fingerprint of the public key contained in the certificate.
Note that the key fingerprint is different from the certificate fingerprint accessible via the Fingerprint field. The key fingeprint uniquely identifies the public key, and so can be the same for multiple certificates containing the same key.
KeyUsage
int
Default Value: 0
Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.
This value is a bit mask of the following values:
ckuUnknown | 0x00000 | Unknown key usage |
ckuDigitalSignature | 0x00001 | Digital signature |
ckuNonRepudiation | 0x00002 | Non-repudiation |
ckuKeyEncipherment | 0x00004 | Key encipherment |
ckuDataEncipherment | 0x00008 | Data encipherment |
ckuKeyAgreement | 0x00010 | Key agreement |
ckuKeyCertSign | 0x00020 | Certificate signing |
ckuCRLSign | 0x00040 | Revocation signing |
ckuEncipherOnly | 0x00080 | Encipher only |
ckuDecipherOnly | 0x00100 | Decipher only |
ckuServerAuthentication | 0x00200 | Server authentication |
ckuClientAuthentication | 0x00400 | Client authentication |
ckuCodeSigning | 0x00800 | Code signing |
ckuEmailProtection | 0x01000 | Email protection |
ckuTimeStamping | 0x02000 | Timestamping |
ckuOCSPSigning | 0x04000 | OCSP signing |
ckuSmartCardLogon | 0x08000 | Smartcard logon |
ckuKeyPurposeClientAuth | 0x10000 | Kerberos - client authentication |
ckuKeyPurposeKDC | 0x20000 | Kerberos - KDC |
Set this field before generating the certificate to propagate the key usage flags to the new certificate.
KeyValid
int (read-only)
Default Value: FALSE
Returns True if the certificate's key is cryptographically valid, and False otherwise.
OCSPLocations
char*
Default Value: ""
Locations of OCSP services that can be used to check this certificate's validity in real time, as recorded by the CA.
Set this field before calling the certificate manager's Generate method to propagate it to the new certificate.
The OCSP locations are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.
OCSPNoCheck
int
Default Value: FALSE
Accessor to the value of the certificate's ocsp-no-check extension.
Origin
int (read-only)
Default Value: 0
Returns the location that the certificate was taken or loaded from.
PolicyIDs
char*
Default Value: ""
Contains identifiers (OIDs) of the applicable certificate policies.
The Certificate Policies extension identifies a sequence of policies under which the certificate has been issued, and which regulate its usage.
Set this field when generating a certificate to propagate the policies information to the new certificate.
The policies are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the policy element separator.
PrivateKeyBytes
char* (read-only)
Default Value:
Returns the certificate's private key in DER-encoded format. It is normal for this field to be empty if the private key is non-exportable, which, for example, is typical for certificates originating from hardware security devices.
PrivateKeyExists
int (read-only)
Default Value: FALSE
Indicates whether the certificate has a usable private key associated with it. If it is set to True, the certificate can be used for private key operations, such as signing or decryption.
This field is independent from PrivateKeyBytes, and can be set to True even if the former is empty. This would imply that the private key is non-exportable, but still can be used for cryptographic operations.
PrivateKeyExtractable
int (read-only)
Default Value: FALSE
Indicates whether the private key is extractable (exportable).
PublicKeyBytes
char* (read-only)
Default Value:
Contains the certificate's public key in DER format.
This typically would contain an ASN.1-encoded public key value. The exact format depends on the type of the public key contained in the certificate.
Qualified
int (read-only)
Default Value: FALSE
Indicates whether the certificate is qualified.
This property is set to True if the certificate is confirmed by a Trusted List to be qualified.
QualifiedStatements
int
Default Value: 0
Returns a simplified qualified status of the certificate.
Qualifiers
char* (read-only)
Default Value: ""
A list of qualifiers.
Contains a comma-separated list of qualifier aliases for the certificate, for example QCP-n-qscd,QCWithSSCD.
SelfSigned
int (read-only)
Default Value: FALSE
Indicates whether the certificate is self-signed (root) or signed by an external CA.
SerialNumber
char*
Default Value:
Returns the certificate's serial number.
The serial number is a binary string that uniquely identifies a certificate among others issued by the same CA. According to the X.509 standard, the (issuer, serial number) pair should be globally unique to facilitate chain building.
SigAlgorithm
char* (read-only)
Default Value: ""
Indicates the algorithm that was used by the CA to sign this certificate.
A signature algorithm typically combines hash and public key algorithms together, such as sha256WithRSAEncryption or ecdsa-with-SHA256.
Source
int (read-only)
Default Value: 0
Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.
Subject
char* (read-only)
Default Value: ""
The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name. This is part of a larger set of credentials available via SubjectRDN.
SubjectAlternativeName
char*
Default Value: ""
Returns or sets the value of the Subject Alternative Name extension of the certificate.
Subject alternative names are used to provide additional names that are impractical to store in the main SubjectRDN field. For example, it is often used to store all the domain names that a TLS certificate is authorized to protect.
The alternative names are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the element separator.
SubjectKeyID
char*
Default Value:
Contains a unique identifier of the certificate's cryptographic key.
Subject Key Identifier is a certificate extension which allows a specific public key to be associated with a certificate holder. Typically, subject key identifiers of CA certificates are recorded as respective CA key identifiers in the subordinate certificates that they issue, which facilitates chain building.
The SubjectKeyID and CAKeyID fields of self-signed certificates typically contain identical values, as in that specific case, the issuer and the subject are the same entity.
SubjectRDN
char*
Default Value: ""
A list of Property=Value pairs that uniquely identify the certificate holder (subject).
Depending on the purpose of the certificate and the policies of the CA that issued it, the values included in the subject record may differ drastically and contain business or personal names, web URLs, email addresses, and other data.
Example: /C=US/O=Oranges and Apples, Inc./OU=Accounts Receivable/1.2.3.4.5=Value with unknown OID/CN=Margaret Watkins.
Valid
int (read-only)
Default Value: FALSE
Indicates whether or not the signature over the certificate or the request is valid and matches the public key contained in the CA certificate/request.
ValidFrom
char*
Default Value: ""
The time point at which the certificate becomes valid, in UTC.
ValidTo
char*
Default Value: ""
The time point at which the certificate expires, in UTC.
Constructors
Certificate()
Creates a new object with default field values.
CryptoKey Type
This container represents a cryptographic key.
Syntax
SecureBlackboxCryptoKey (declared in secureblackbox.h)
Remarks
This type is a universal placeholder for cryptographic keys.
Fields
Algorithm
char*
Default Value: ""
The algorithm of the cryptographic key. A cryptokey object may hold either symmetric, MAC, or public key. Public key algorithms: RSA, ECDSA, Elgamal, DH.
SB_SYMMETRIC_ALGORITHM_RC4 | RC4 | |
SB_SYMMETRIC_ALGORITHM_DES | DES | |
SB_SYMMETRIC_ALGORITHM_3DES | 3DES | |
SB_SYMMETRIC_ALGORITHM_RC2 | RC2 | |
SB_SYMMETRIC_ALGORITHM_AES128 | AES128 | |
SB_SYMMETRIC_ALGORITHM_AES192 | AES192 | |
SB_SYMMETRIC_ALGORITHM_AES256 | AES256 | |
SB_SYMMETRIC_ALGORITHM_IDENTITY | Identity | |
SB_SYMMETRIC_ALGORITHM_BLOWFISH | Blowfish | |
SB_SYMMETRIC_ALGORITHM_CAST128 | CAST128 | |
SB_SYMMETRIC_ALGORITHM_IDEA | IDEA | |
SB_SYMMETRIC_ALGORITHM_TWOFISH | Twofish | |
SB_SYMMETRIC_ALGORITHM_TWOFISH128 | Twofish128 | |
SB_SYMMETRIC_ALGORITHM_TWOFISH192 | Twofish192 | |
SB_SYMMETRIC_ALGORITHM_TWOFISH256 | Twofish256 | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA | Camellia | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA128 | Camellia128 | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA192 | Camellia192 | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA256 | Camellia256 | |
SB_SYMMETRIC_ALGORITHM_SERPENT | Serpent | |
SB_SYMMETRIC_ALGORITHM_SERPENT128 | Serpent128 | |
SB_SYMMETRIC_ALGORITHM_SERPENT192 | Serpent192 | |
SB_SYMMETRIC_ALGORITHM_SERPENT256 | Serpent256 | |
SB_SYMMETRIC_ALGORITHM_SEED | SEED | |
SB_SYMMETRIC_ALGORITHM_RABBIT | Rabbit | |
SB_SYMMETRIC_ALGORITHM_SYMMETRIC | Generic | |
SB_SYMMETRIC_ALGORITHM_GOST_28147_1989 | GOST-28147-1989 | |
SB_SYMMETRIC_ALGORITHM_CHACHA20 | ChaCha20 |
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
Bits
int (read-only)
Default Value: 0
The length of the key in bits.
Curve
char*
Default Value: ""
This property specifies the name of the curve the EC key is built on.
Exportable
int (read-only)
Default Value: FALSE
Returns True if the key is exportable (can be serialized into an array of bytes), and False otherwise.
Fingerprint
char* (read-only)
Default Value: ""
Contains the fingerprint (a hash imprint) of this key.
Handle
int64
Default Value: 0
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
ID
char*
Default Value:
Provides access to a storage-specific key identifier. Key identifiers are used by cryptographic providers to refer to a particular key and/or distinguish between different keys. They are typically unique within a storage, but there is no guarantee that a particular cryptoprovider will conform to that (or will assign any key IDs at all).
IV
char*
Default Value:
The initialization vector (IV) of a symmetric key. This is normally a public part of a symmetric key, the idea of which is to introduce randomness to the encrypted data and/or serve as a first block in chaining ciphers.
Key
char* (read-only)
Default Value:
The byte array representation of the key. This may not be available for non-Exportable keys.
Nonce
char*
Default Value:
A nonce value associated with a key. It is similar to IV, but its only purpose is to introduce randomness.
Private
int (read-only)
Default Value: FALSE
Returns True if the object hosts a private key, and False otherwise.
Public
int (read-only)
Default Value: FALSE
Returns True if the object hosts a public key, and False otherwise.
Subject
char*
Default Value:
Returns the key subject. This is a cryptoprovider-dependent value, which normally aims to provide some user-friendly insight into the key owner.
Symmetric
int (read-only)
Default Value: FALSE
Returns True if the object contains a symmetric key, and False otherwise.
Valid
int (read-only)
Default Value: FALSE
Returns True if this key is valid. The term Valid highly depends on the kind of the key being stored. A symmetric key is considered valid if its length fits the algorithm being set. The validity of an RSA key also ensures that the RSA key elements (primes, exponents, and modulus) are consistent.
Constructors
CryptoKey()
Creates an empty crypto key object.
ExternalCrypto Type
Specifies the parameters of external cryptographic calls.
Syntax
SecureBlackboxExternalCrypto (declared in secureblackbox.h)
Remarks
External cryptocalls are used in a Distributed Cryptography (DC) subsystem, which allows the delegation of security operations to the remote agent. For instance, it can be used to compute the signature value on the server, while retaining the client's private key locally.
Fields
AsyncDocumentID
char*
Default Value: ""
Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.
Use this property when working with multi-signature DCAuth requests and responses to uniquely identify documents signed within a larger batch. On the completion stage, this value helps the signing component identify the correct signature in the returned batch of responses.
If using batched requests, make sure to set this property to the same value on both the pre-signing (SignAsyncBegin) and completion (SignAsyncEnd) stages.
CustomParams
char*
Default Value: ""
Custom parameters to be passed to the signing service (uninterpreted).
Data
char*
Default Value: ""
Additional data to be included in the async state and mirrored back by the requestor.
ExternalHashCalculation
int
Default Value: FALSE
Specifies whether the message hash is to be calculated at the external endpoint. Please note that this mode is not supported by the DCAuth class.
If set to true, the class will pass a few kilobytes of to-be-signed data from the document to the OnExternalSign event. This only applies when SignExternal() is called.
HashAlgorithm
char*
Default Value: "SHA256"
Specifies the request's signature hash algorithm.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
KeyID
char*
Default Value: ""
The ID of the pre-shared key used for DC request authentication.
Asynchronous DCAuth-driven communication requires that parties authenticate each other with a secret pre-shared cryptographic key. This provides an extra protection layer for the protocol and diminishes the risk of the private key becoming abused by foreign parties. Use this property to provide the pre-shared key identifier, and use KeySecret to pass the key itself.
The same KeyID/KeySecret pair should be used on the DCAuth side for the signing requests to be accepted.
Note: The KeyID/KeySecret scheme is very similar to the AuthKey scheme used in various Cloud service providers to authenticate users.
Example:
signer.ExternalCrypto.KeyID = "MainSigningKey";
signer.ExternalCrypto.KeySecret = "abcdef0123456789";
KeySecret
char*
Default Value: ""
The pre-shared key used for DC request authentication. This key must be set and match the key used by the DCAuth counterpart for the scheme to work.
Read more about configuring authentication in the KeyID topic.
Method
int
Default Value: 0
Specifies the asynchronous signing method. This is typically defined by the DC server capabilities and setup.
Available options:
asmdPKCS1 | 0 |
asmdPKCS7 | 1 |
Mode
int
Default Value: 0
Specifies the external cryptography mode.
Available options:
ecmDefault | The default value (0) |
ecmDisabled | Do not use DC or external signing (1) |
ecmGeneric | Generic external signing with the OnExternalSign event (2) |
ecmDCAuth | DCAuth signing (3) |
ecmDCAuthJSON | DCAuth signing in JSON format (4) |
PublicKeyAlgorithm
char*
Default Value: ""
Provide the public key algorithm here if the certificate is not available on the pre-signing stage.
SB_CERT_ALGORITHM_ID_RSA_ENCRYPTION | rsaEncryption | |
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTION | md2withRSAEncryption | |
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTION | md5withRSAEncryption | |
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTION | sha1withRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA | id-dsa | |
SB_CERT_ALGORITHM_ID_DSA_SHA1 | id-dsa-with-sha1 | |
SB_CERT_ALGORITHM_DH_PUBLIC | dhpublicnumber | |
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTION | sha224WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTION | sha256WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTION | sha384WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTION | sha512WithRSAEncryption | |
SB_CERT_ALGORITHM_ID_RSAPSS | id-RSASSA-PSS | |
SB_CERT_ALGORITHM_ID_RSAOAEP | id-RSAES-OAEP | |
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160 | ripemd160withRSA | |
SB_CERT_ALGORITHM_ID_ELGAMAL | elGamal | |
SB_CERT_ALGORITHM_SHA1_ECDSA | ecdsa-with-SHA1 | |
SB_CERT_ALGORITHM_RECOMMENDED_ECDSA | ecdsa-recommended | |
SB_CERT_ALGORITHM_SHA224_ECDSA | ecdsa-with-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA | ecdsa-with-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA | ecdsa-with-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA | ecdsa-with-SHA512 | |
SB_CERT_ALGORITHM_EC | id-ecPublicKey | |
SB_CERT_ALGORITHM_SPECIFIED_ECDSA | ecdsa-specified | |
SB_CERT_ALGORITHM_GOST_R3410_1994 | id-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3410_2001 | id-GostR3410-2001 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994 | id-GostR3411-94-with-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001 | id-GostR3411-94-with-GostR3410-2001 | |
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAIN | ecdsa-plain-SHA1 | |
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAIN | ecdsa-plain-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAIN | ecdsa-plain-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAIN | ecdsa-plain-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAIN | ecdsa-plain-SHA512 | |
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAIN | ecdsa-plain-RIPEMD160 | |
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTION | whirlpoolWithRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA_SHA224 | id-dsa-with-sha224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA256 | id-dsa-with-sha256 | |
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA | id-ecdsa-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA | id-ecdsa-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA | id-ecdsa-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA | id-ecdsa-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-512 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_224 | id-dsa-with-sha3-224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_256 | id-dsa-with-sha3-256 | |
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA | id-ecdsa-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA | id-ecdsa-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA | id-ecdsa-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA | id-ecdsa-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA | id-ecdsa-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA | id-ecdsa-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA | id-ecdsa-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA | id-ecdsa-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b512 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224 | id-dsa-with-blake2s224 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256 | id-dsa-with-blake2s256 | |
SB_CERT_ALGORITHM_EDDSA_ED25519 | id-Ed25519 | |
SB_CERT_ALGORITHM_EDDSA_ED448 | id-Ed448 | |
SB_CERT_ALGORITHM_EDDSA_ED25519_PH | id-Ed25519ph | |
SB_CERT_ALGORITHM_EDDSA_ED448_PH | id-Ed448ph | |
SB_CERT_ALGORITHM_EDDSA | id-EdDSA | |
SB_CERT_ALGORITHM_EDDSA_SIGNATURE | id-EdDSA-sig |
Constructors
ExternalCrypto()
Creates a new ExternalCrypto object with default field values.
SocketSettings Type
A container for the socket settings.
Syntax
SecureBlackboxSocketSettings (declared in secureblackbox.h)
Remarks
This type is a container for socket-layer parameters.
Fields
DNSMode
int
Default Value: 0
Selects the DNS resolver to use: the component's (secure) built-in one, or the one provided by the system.
dmAuto | 0 |
dmPlatform | 1 |
dmOwn | 2 |
dmOwnSecure | 3 |
DNSPort
int
Default Value: 0
Specifies the port number to be used for sending queries to the DNS server.
DNSQueryTimeout
int
Default Value: 0
The timeout (in milliseconds) for each DNS query. The value of 0 indicates an infinite timeout.
DNSServers
char*
Default Value: ""
The addresses of DNS servers to use for address resolution, separated by commas or semicolons.
DNSTotalTimeout
int
Default Value: 0
The timeout (in milliseconds) for the whole resolution process. The value of 0 indicates an infinite timeout.
IncomingSpeedLimit
int
Default Value: 0
The maximum number of bytes to read from the socket, per second.
LocalAddress
char*
Default Value: ""
The local network interface to bind the socket to.
LocalPort
int
Default Value: 0
The local port number to bind the socket to.
OutgoingSpeedLimit
int
Default Value: 0
The maximum number of bytes to write to the socket, per second.
Timeout
int
Default Value: 60000
The maximum period of waiting, in milliseconds, after which the socket operation is considered unsuccessful.
If Timeout is set to 0, a socket operation will expire after the system-default timeout (2 hrs 8 min for TCP stack).
UseIPv6
int
Default Value: FALSE
Enables or disables IP protocol version 6.
Constructors
SocketSettings()
Creates a new SocketSettings object.
TLSConnectionInfo Type
Contains information about a network connection.
Syntax
SecureBlackboxTLSConnectionInfo (declared in secureblackbox.h)
Remarks
Use this property to check various details of the network connection. These include the total amounts of data transferred, the availability of TLS, and its parameters.
Fields
AEADCipher
int (read-only)
Default Value: FALSE
Indicates whether the encryption algorithm used is an AEAD cipher.
ChainValidationDetails
int (read-only)
Default Value: 0
The details of a certificate chain validation outcome. They may often suggest the reasons that contributed to the overall validation result.
Returns a bit mask of the following options:
cvrBadData | 0x0001 | One or more certificates in the validation path are malformed |
cvrRevoked | 0x0002 | One or more certificates are revoked |
cvrNotYetValid | 0x0004 | One or more certificates are not yet valid |
cvrExpired | 0x0008 | One or more certificates are expired |
cvrInvalidSignature | 0x0010 | A certificate contains a non-valid digital signature |
cvrUnknownCA | 0x0020 | A CA certificate for one or more certificates has not been found (chain incomplete) |
cvrCAUnauthorized | 0x0040 | One of the CA certificates are not authorized to act as CA |
cvrCRLNotVerified | 0x0080 | One or more CRLs could not be verified |
cvrOCSPNotVerified | 0x0100 | One or more OCSP responses could not be verified |
cvrIdentityMismatch | 0x0200 | The identity protected by the certificate (a TLS endpoint or an e-mail addressee) does not match what is recorded in the certificate |
cvrNoKeyUsage | 0x0400 | A mandatory key usage is not enabled in one of the chain certificates |
cvrBlocked | 0x0800 | One or more certificates are blocked |
cvrFailure | 0x1000 | General validation failure |
cvrChainLoop | 0x2000 | Chain loop: one of the CA certificates recursively signs itself |
cvrWeakAlgorithm | 0x4000 | A weak algorithm is used in one of certificates or revocation elements |
cvrUserEnforced | 0x8000 | The chain was considered invalid following intervention from a user code |
ChainValidationResult
int (read-only)
Default Value: 0
The outcome of a certificate chain validation routine.
Available options:
cvtValid | 0 | The chain is valid |
cvtValidButUntrusted | 1 | The chain is valid, but the root certificate is not trusted |
cvtInvalid | 2 | The chain is not valid (some of certificates are revoked, expired, or contain an invalid signature) |
cvtCantBeEstablished | 3 | The validity of the chain cannot be established because of missing or unavailable validation information (certificates, CRLs, or OCSP responses) |
Use the ValidationLog property to access the detailed validation log.
Ciphersuite
char* (read-only)
Default Value: ""
The cipher suite employed by this connection.
For TLS connections, this property returns the ciphersuite that was/is employed by the connection.
ClientAuthenticated
int (read-only)
Default Value: FALSE
Specifies whether client authentication was performed during this connection.
ClientAuthRequested
int (read-only)
Default Value: FALSE
Specifies whether client authentication was requested during this connection.
ConnectionEstablished
int (read-only)
Default Value: FALSE
Indicates whether the connection has been established fully.
ConnectionID
char* (read-only)
Default Value:
The unique identifier assigned to this connection.
DigestAlgorithm
char* (read-only)
Default Value: ""
The digest algorithm used in a TLS-enabled connection.
EncryptionAlgorithm
char* (read-only)
Default Value: ""
The symmetric encryption algorithm used in a TLS-enabled connection.
Exportable
int (read-only)
Default Value: FALSE
Indicates whether a TLS connection uses a reduced-strength exportable cipher.
ID
int64 (read-only)
Default Value: -1
The client connection's unique identifier. This value is used throughout to refer to a particular client connection.
KeyExchangeAlgorithm
char* (read-only)
Default Value: ""
The key exchange algorithm used in a TLS-enabled connection.
KeyExchangeKeyBits
int (read-only)
Default Value: 0
The length of the key exchange key of a TLS-enabled connection.
NamedECCurve
char* (read-only)
Default Value: ""
The elliptic curve used in this connection.
PFSCipher
int (read-only)
Default Value: FALSE
Indicates whether the chosen ciphersuite provides perfect forward secrecy (PFS).
PreSharedIdentity
char*
Default Value: ""
Specifies the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.
PreSharedIdentityHint
char* (read-only)
Default Value: ""
A hint professed by the server to help the client select the PSK identity to use.
PublicKeyBits
int (read-only)
Default Value: 0
The length of the public key.
RemoteAddress
char* (read-only)
Default Value: ""
The client's IP address.
RemotePort
int (read-only)
Default Value: 0
The remote port of the client connection.
ResumedSession
int (read-only)
Default Value: FALSE
Indicates whether a TLS-enabled connection was spawned from another TLS connection
SecureConnection
int (read-only)
Default Value: FALSE
Indicates whether TLS or SSL is enabled for this connection.
ServerAuthenticated
int (read-only)
Default Value: FALSE
Indicates whether server authentication was performed during a TLS-enabled connection.
SignatureAlgorithm
char* (read-only)
Default Value: ""
The signature algorithm used in a TLS handshake.
SymmetricBlockSize
int (read-only)
Default Value: 0
The block size of the symmetric algorithm used.
SymmetricKeyBits
int (read-only)
Default Value: 0
The key length of the symmetric algorithm used.
TotalBytesReceived
int64 (read-only)
Default Value: 0
The total number of bytes received over this connection.
TotalBytesSent
int64 (read-only)
Default Value: 0
The total number of bytes sent over this connection.
ValidationLog
char* (read-only)
Default Value: ""
Contains the server certificate's chain validation log. This information may be very useful in investigating chain validation failures.
Version
char* (read-only)
Default Value: ""
Indicates the version of SSL/TLS protocol negotiated during this connection.
Constructors
TLSConnectionInfo()
Creates a new TLSConnectionInfo object.
TLSSettings Type
A container for TLS connection settings.
Syntax
SecureBlackboxTLSSettings (declared in secureblackbox.h)
Remarks
The TLS (Transport Layer Security) protocol provides security for information exchanged over insecure connections such as TCP/IP.
Fields
AutoValidateCertificates
int
Default Value: TRUE
Specifies whether server-side TLS certificates should be validated automatically using internal validation rules.
BaseConfiguration
int
Default Value: 0
Selects the base configuration for the TLS settings. Several profiles are offered and tuned up for different purposes, such as high security or higher compatibility.
stpcDefault | 0 | |
stpcCompatible | 1 | |
stpcComprehensiveInsecure | 2 | |
stpcHighlySecure | 3 |
Ciphersuites
char*
Default Value: ""
A list of ciphersuites separated with commas or semicolons. Each ciphersuite in the list may be prefixed with a minus sign (-) to indicate that the ciphersuite should be disabled rather than enabled. Besides the specific ciphersuite modifiers, this property supports the all (and -all) aliases, allowing all ciphersuites to be blanketly enabled or disabled at once.
Note: the list of ciphersuites provided to this property alters the baseline list of ciphersuites as defined by BaseConfiguration. Remember to start your ciphersuite string with -all; if you need to only enable a specific fixed set of ciphersuites. The list of supported ciphersuites is provided below:
- NULL_NULL_NULL
- RSA_NULL_MD5
- RSA_NULL_SHA
- RSA_RC4_MD5
- RSA_RC4_SHA
- RSA_RC2_MD5
- RSA_IDEA_MD5
- RSA_IDEA_SHA
- RSA_DES_MD5
- RSA_DES_SHA
- RSA_3DES_MD5
- RSA_3DES_SHA
- RSA_AES128_SHA
- RSA_AES256_SHA
- DH_DSS_DES_SHA
- DH_DSS_3DES_SHA
- DH_DSS_AES128_SHA
- DH_DSS_AES256_SHA
- DH_RSA_DES_SHA
- DH_RSA_3DES_SHA
- DH_RSA_AES128_SHA
- DH_RSA_AES256_SHA
- DHE_DSS_DES_SHA
- DHE_DSS_3DES_SHA
- DHE_DSS_AES128_SHA
- DHE_DSS_AES256_SHA
- DHE_RSA_DES_SHA
- DHE_RSA_3DES_SHA
- DHE_RSA_AES128_SHA
- DHE_RSA_AES256_SHA
- DH_ANON_RC4_MD5
- DH_ANON_DES_SHA
- DH_ANON_3DES_SHA
- DH_ANON_AES128_SHA
- DH_ANON_AES256_SHA
- RSA_RC2_MD5_EXPORT
- RSA_RC4_MD5_EXPORT
- RSA_DES_SHA_EXPORT
- DH_DSS_DES_SHA_EXPORT
- DH_RSA_DES_SHA_EXPORT
- DHE_DSS_DES_SHA_EXPORT
- DHE_RSA_DES_SHA_EXPORT
- DH_ANON_RC4_MD5_EXPORT
- DH_ANON_DES_SHA_EXPORT
- RSA_CAMELLIA128_SHA
- DH_DSS_CAMELLIA128_SHA
- DH_RSA_CAMELLIA128_SHA
- DHE_DSS_CAMELLIA128_SHA
- DHE_RSA_CAMELLIA128_SHA
- DH_ANON_CAMELLIA128_SHA
- RSA_CAMELLIA256_SHA
- DH_DSS_CAMELLIA256_SHA
- DH_RSA_CAMELLIA256_SHA
- DHE_DSS_CAMELLIA256_SHA
- DHE_RSA_CAMELLIA256_SHA
- DH_ANON_CAMELLIA256_SHA
- PSK_RC4_SHA
- PSK_3DES_SHA
- PSK_AES128_SHA
- PSK_AES256_SHA
- DHE_PSK_RC4_SHA
- DHE_PSK_3DES_SHA
- DHE_PSK_AES128_SHA
- DHE_PSK_AES256_SHA
- RSA_PSK_RC4_SHA
- RSA_PSK_3DES_SHA
- RSA_PSK_AES128_SHA
- RSA_PSK_AES256_SHA
- RSA_SEED_SHA
- DH_DSS_SEED_SHA
- DH_RSA_SEED_SHA
- DHE_DSS_SEED_SHA
- DHE_RSA_SEED_SHA
- DH_ANON_SEED_SHA
- SRP_SHA_3DES_SHA
- SRP_SHA_RSA_3DES_SHA
- SRP_SHA_DSS_3DES_SHA
- SRP_SHA_AES128_SHA
- SRP_SHA_RSA_AES128_SHA
- SRP_SHA_DSS_AES128_SHA
- SRP_SHA_AES256_SHA
- SRP_SHA_RSA_AES256_SHA
- SRP_SHA_DSS_AES256_SHA
- ECDH_ECDSA_NULL_SHA
- ECDH_ECDSA_RC4_SHA
- ECDH_ECDSA_3DES_SHA
- ECDH_ECDSA_AES128_SHA
- ECDH_ECDSA_AES256_SHA
- ECDHE_ECDSA_NULL_SHA
- ECDHE_ECDSA_RC4_SHA
- ECDHE_ECDSA_3DES_SHA
- ECDHE_ECDSA_AES128_SHA
- ECDHE_ECDSA_AES256_SHA
- ECDH_RSA_NULL_SHA
- ECDH_RSA_RC4_SHA
- ECDH_RSA_3DES_SHA
- ECDH_RSA_AES128_SHA
- ECDH_RSA_AES256_SHA
- ECDHE_RSA_NULL_SHA
- ECDHE_RSA_RC4_SHA
- ECDHE_RSA_3DES_SHA
- ECDHE_RSA_AES128_SHA
- ECDHE_RSA_AES256_SHA
- ECDH_ANON_NULL_SHA
- ECDH_ANON_RC4_SHA
- ECDH_ANON_3DES_SHA
- ECDH_ANON_AES128_SHA
- ECDH_ANON_AES256_SHA
- RSA_NULL_SHA256
- RSA_AES128_SHA256
- RSA_AES256_SHA256
- DH_DSS_AES128_SHA256
- DH_RSA_AES128_SHA256
- DHE_DSS_AES128_SHA256
- DHE_RSA_AES128_SHA256
- DH_DSS_AES256_SHA256
- DH_RSA_AES256_SHA256
- DHE_DSS_AES256_SHA256
- DHE_RSA_AES256_SHA256
- DH_ANON_AES128_SHA256
- DH_ANON_AES256_SHA256
- RSA_AES128_GCM_SHA256
- RSA_AES256_GCM_SHA384
- DHE_RSA_AES128_GCM_SHA256
- DHE_RSA_AES256_GCM_SHA384
- DH_RSA_AES128_GCM_SHA256
- DH_RSA_AES256_GCM_SHA384
- DHE_DSS_AES128_GCM_SHA256
- DHE_DSS_AES256_GCM_SHA384
- DH_DSS_AES128_GCM_SHA256
- DH_DSS_AES256_GCM_SHA384
- DH_ANON_AES128_GCM_SHA256
- DH_ANON_AES256_GCM_SHA384
- ECDHE_ECDSA_AES128_SHA256
- ECDHE_ECDSA_AES256_SHA384
- ECDH_ECDSA_AES128_SHA256
- ECDH_ECDSA_AES256_SHA384
- ECDHE_RSA_AES128_SHA256
- ECDHE_RSA_AES256_SHA384
- ECDH_RSA_AES128_SHA256
- ECDH_RSA_AES256_SHA384
- ECDHE_ECDSA_AES128_GCM_SHA256
- ECDHE_ECDSA_AES256_GCM_SHA384
- ECDH_ECDSA_AES128_GCM_SHA256
- ECDH_ECDSA_AES256_GCM_SHA384
- ECDHE_RSA_AES128_GCM_SHA256
- ECDHE_RSA_AES256_GCM_SHA384
- ECDH_RSA_AES128_GCM_SHA256
- ECDH_RSA_AES256_GCM_SHA384
- PSK_AES128_GCM_SHA256
- PSK_AES256_GCM_SHA384
- DHE_PSK_AES128_GCM_SHA256
- DHE_PSK_AES256_GCM_SHA384
- RSA_PSK_AES128_GCM_SHA256
- RSA_PSK_AES256_GCM_SHA384
- PSK_AES128_SHA256
- PSK_AES256_SHA384
- PSK_NULL_SHA256
- PSK_NULL_SHA384
- DHE_PSK_AES128_SHA256
- DHE_PSK_AES256_SHA384
- DHE_PSK_NULL_SHA256
- DHE_PSK_NULL_SHA384
- RSA_PSK_AES128_SHA256
- RSA_PSK_AES256_SHA384
- RSA_PSK_NULL_SHA256
- RSA_PSK_NULL_SHA384
- RSA_CAMELLIA128_SHA256
- DH_DSS_CAMELLIA128_SHA256
- DH_RSA_CAMELLIA128_SHA256
- DHE_DSS_CAMELLIA128_SHA256
- DHE_RSA_CAMELLIA128_SHA256
- DH_ANON_CAMELLIA128_SHA256
- RSA_CAMELLIA256_SHA256
- DH_DSS_CAMELLIA256_SHA256
- DH_RSA_CAMELLIA256_SHA256
- DHE_DSS_CAMELLIA256_SHA256
- DHE_RSA_CAMELLIA256_SHA256
- DH_ANON_CAMELLIA256_SHA256
- ECDHE_ECDSA_CAMELLIA128_SHA256
- ECDHE_ECDSA_CAMELLIA256_SHA384
- ECDH_ECDSA_CAMELLIA128_SHA256
- ECDH_ECDSA_CAMELLIA256_SHA384
- ECDHE_RSA_CAMELLIA128_SHA256
- ECDHE_RSA_CAMELLIA256_SHA384
- ECDH_RSA_CAMELLIA128_SHA256
- ECDH_RSA_CAMELLIA256_SHA384
- RSA_CAMELLIA128_GCM_SHA256
- RSA_CAMELLIA256_GCM_SHA384
- DHE_RSA_CAMELLIA128_GCM_SHA256
- DHE_RSA_CAMELLIA256_GCM_SHA384
- DH_RSA_CAMELLIA128_GCM_SHA256
- DH_RSA_CAMELLIA256_GCM_SHA384
- DHE_DSS_CAMELLIA128_GCM_SHA256
- DHE_DSS_CAMELLIA256_GCM_SHA384
- DH_DSS_CAMELLIA128_GCM_SHA256
- DH_DSS_CAMELLIA256_GCM_SHA384
- DH_anon_CAMELLIA128_GCM_SHA256
- DH_anon_CAMELLIA256_GCM_SHA384
- ECDHE_ECDSA_CAMELLIA128_GCM_SHA256
- ECDHE_ECDSA_CAMELLIA256_GCM_SHA384
- ECDH_ECDSA_CAMELLIA128_GCM_SHA256
- ECDH_ECDSA_CAMELLIA256_GCM_SHA384
- ECDHE_RSA_CAMELLIA128_GCM_SHA256
- ECDHE_RSA_CAMELLIA256_GCM_SHA384
- ECDH_RSA_CAMELLIA128_GCM_SHA256
- ECDH_RSA_CAMELLIA256_GCM_SHA384
- PSK_CAMELLIA128_GCM_SHA256
- PSK_CAMELLIA256_GCM_SHA384
- DHE_PSK_CAMELLIA128_GCM_SHA256
- DHE_PSK_CAMELLIA256_GCM_SHA384
- RSA_PSK_CAMELLIA128_GCM_SHA256
- RSA_PSK_CAMELLIA256_GCM_SHA384
- PSK_CAMELLIA128_SHA256
- PSK_CAMELLIA256_SHA384
- DHE_PSK_CAMELLIA128_SHA256
- DHE_PSK_CAMELLIA256_SHA384
- RSA_PSK_CAMELLIA128_SHA256
- RSA_PSK_CAMELLIA256_SHA384
- ECDHE_PSK_CAMELLIA128_SHA256
- ECDHE_PSK_CAMELLIA256_SHA384
- ECDHE_PSK_RC4_SHA
- ECDHE_PSK_3DES_SHA
- ECDHE_PSK_AES128_SHA
- ECDHE_PSK_AES256_SHA
- ECDHE_PSK_AES128_SHA256
- ECDHE_PSK_AES256_SHA384
- ECDHE_PSK_NULL_SHA
- ECDHE_PSK_NULL_SHA256
- ECDHE_PSK_NULL_SHA384
- ECDHE_RSA_CHACHA20_POLY1305_SHA256
- ECDHE_ECDSA_CHACHA20_POLY1305_SHA256
- DHE_RSA_CHACHA20_POLY1305_SHA256
- PSK_CHACHA20_POLY1305_SHA256
- ECDHE_PSK_CHACHA20_POLY1305_SHA256
- DHE_PSK_CHACHA20_POLY1305_SHA256
- RSA_PSK_CHACHA20_POLY1305_SHA256
- AES128_GCM_SHA256
- AES256_GCM_SHA384
- CHACHA20_POLY1305_SHA256
- AES128_CCM_SHA256
- AES128_CCM8_SHA256
ClientAuth
int
Default Value: 0
Enables or disables certificate-based client authentication.
Set this property to true to tune up the client authentication type:
ccatNoAuth | 0 | |
ccatRequestCert | 1 | |
ccatRequireCert | 2 |
ECCurves
char*
Default Value: ""
Defines the elliptic curves to enable.
Extensions
char*
Default Value: ""
Provides access to TLS extensions.
ForceResumeIfDestinationChanges
int
Default Value: FALSE
Whether to force TLS session resumption when the destination address changes.
PreSharedIdentity
char*
Default Value: ""
Defines the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.
PreSharedKey
char*
Default Value: ""
Contains the pre-shared key for the PSK (Pre-Shared Key) key-exchange mechanism, encoded with base16.
PreSharedKeyCiphersuite
char*
Default Value: ""
Defines the ciphersuite used for PSK (Pre-Shared Key) negotiation.
RenegotiationAttackPreventionMode
int
Default Value: 2
Selects the renegotiation attack prevention mechanism.
The following options are available:
crapmCompatible | 0 | TLS 1.0 and 1.1 compatibility mode (renegotiation indication extension is disabled). |
crapmStrict | 1 | Renegotiation attack prevention is enabled and enforced. |
crapmAuto | 2 | Automatically choose whether to enable or disable renegotiation attack prevention. |
RevocationCheck
int
Default Value: 1
Specifies the kind(s) of revocation check to perform.
Revocation checking is necessary to ensure the integrity of the chain and obtain up-to-date certificate validity and trustworthiness information.
crcNone | 0 | No revocation checking. |
crcAuto | 1 | Automatic mode selection. Currently this maps to crcAnyOCSPOrCRL, but it may change in the future. |
crcAllCRL | 2 | All provided CRL endpoints will be checked, and all checks must succeed. |
crcAllOCSP | 3 | All provided OCSP endpoints will be checked, and all checks must succeed. |
crcAllCRLAndOCSP | 4 | All provided CRL and OCSP endpoints will be checked, and all checks must succeed. |
crcAnyCRL | 5 | All provided CRL endpoints will be checked, and at least one check must succeed. |
crcAnyOCSP | 6 | All provided OCSP endpoints will be checked, and at least one check must succeed. |
crcAnyCRLOrOCSP | 7 | All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. CRL endpoints are checked first. |
crcAnyOCSPOrCRL | 8 | All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. OCSP endpoints are checked first. |
This setting controls the way the revocation checks are performed for every certificate in the chain. Typically certificates come with two types of revocation information sources: CRL (certificate revocation lists) and OCSP responders. CRLs are static objects periodically published by the CA at some online location. OCSP responders are active online services maintained by the CA that can provide up-to-date information on certificate statuses in near real time.
There are some conceptual differences between the two. CRLs are normally larger in size. Their use involves some latency because there is normally some delay between the time when a certificate was revoked and the time the subsequent CRL mentioning that is published. The benefits of CRL is that the same object can provide statuses for all certificates issued by a particular CA, and that the whole technology is much simpler than OCSP (and thus is supported by more CAs).
This setting lets you adjust the validation course by including or excluding certain types of revocation sources from the validation process. The crcAnyOCSPOrCRL setting (give preference to the faster OCSP route and only demand one source to succeed) is a good choice for most typical validation environments. The "crcAll*" modes are much stricter, and may be used in scenarios where bulletproof validity information is essential.
Note: If no CRL or OCSP endpoints are provided by the CA, the revocation check will be considered successful. This is because the CA chose not to supply revocation information for its certificates, meaning they are considered irrevocable.
Note: Within each of the above settings, if any retrieved CRL or OCSP response indicates that the certificate has been revoked, the revocation check fails.
SSLOptions
int
Default Value: 16
Various SSL (TLS) protocol options, set of
cssloExpectShutdownMessage | 0x001 | Wait for the close-notify message when shutting down the connection |
cssloOpenSSLDTLSWorkaround | 0x002 | (DEPRECATED) Use a DTLS version workaround when talking to very old OpenSSL versions |
cssloDisableKexLengthAlignment | 0x004 | Do not align the client-side PMS by the RSA modulus size. It is unlikely that you will ever need to adjust it. |
cssloForceUseOfClientCertHashAlg | 0x008 | Enforce the use of the client certificate hash algorithm. It is unlikely that you will ever need to adjust it. |
cssloAutoAddServerNameExtension | 0x010 | Automatically add the server name extension when known |
cssloAcceptTrustedSRPPrimesOnly | 0x020 | Accept trusted SRP primes only |
cssloDisableSignatureAlgorithmsExtension | 0x040 | Disable (do not send) the signature algorithms extension. It is unlikely that you will ever need to adjust it. |
cssloIntolerateHigherProtocolVersions | 0x080 | (server option) Do not allow fallback from TLS versions higher than currently enabled |
cssloStickToPrefCertHashAlg | 0x100 | Stick to preferred certificate hash algorithms |
cssloNoImplicitTLS12Fallback | 0x200 | Disable implicit TLS 1.3 to 1.2 fallbacks |
cssloUseHandshakeBatches | 0x400 | Send the handshake message as large batches rather than individually |
TLSMode
int
Default Value: 0
Specifies the TLS mode to use.
smDefault | 0 | |
smNoTLS | 1 | Do not use TLS |
smExplicitTLS | 2 | Connect to the server without any encryption and then request an SSL session. |
smImplicitTLS | 3 | Connect to the specified port, and establish the SSL session at once. |
smMixedTLS | 4 | Connect to the specified port, and establish the SSL session at once, but allow plain data. |
UseExtendedMasterSecret
int
Default Value: FALSE
Enables the Extended Master Secret Extension, as defined in RFC 7627.
UseSessionResumption
int
Default Value: FALSE
Enables or disables the TLS session resumption capability.
Versions
int
Default Value: 16
The SSL/TLS versions to enable by default.
csbSSL2 | 0x01 | SSL 2 |
csbSSL3 | 0x02 | SSL 3 |
csbTLS1 | 0x04 | TLS 1.0 |
csbTLS11 | 0x08 | TLS 1.1 |
csbTLS12 | 0x10 | TLS 1.2 |
csbTLS13 | 0x20 | TLS 1.3 |
Constructors
TLSSettings()
Creates a new TLSSettings object.
UserAccount Type
A container for user account information.
Syntax
SecureBlackboxUserAccount (declared in secureblackbox.h)
Remarks
UserAccount objects are used to store user account information, such as logins and passwords.
Fields
AssociatedData
char*
Default Value:
Contains the user's Associated Data when SSH AEAD (Authenticated Encryption with Associated Data) algorithm is used.
BasePath
char*
Default Value: ""
Base path for this user in the server's file system.
Certificate
char*
Default Value:
Contains the user's certificate.
Data
char*
Default Value: ""
Contains uninterpreted user-defined data that should be associated with the user account, such as comments or custom settings.
Email
char*
Default Value: ""
The user's email address.
Handle
int64
Default Value: 0
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
HashAlgorithm
char*
Default Value: ""
Specifies the hash algorithm used to generate TOTP (Time-based One-Time Passwords) passwords for this user. Three HMAC algorithms are supported, with SHA-1, SHA-256, and SHA-512 digests:
SB_MAC_ALGORITHM_HMAC_SHA1 | SHA1 | |
SB_MAC_ALGORITHM_HMAC_SHA256 | SHA256 | |
SB_MAC_ALGORITHM_HMAC_SHA512 | SHA512 |
IncomingSpeedLimit
int
Default Value: 0
Specifies the incoming speed limit for this user. The value of 0 (zero) means "no limitation".
OtpAlgorithm
int
Default Value: 0
The algorithm used to generate one-time passwords (OTP) for this user, either HOTP (Hash-based OTP) or TOTP (Time-based OTP). In the former case, a value of a dedicated counter is used to generate a unique password, while in the latter the password is generated on the basis of the current time value.
oaHmac | 0 | |
oaTime | 1 |
OTPLen
int
Default Value: 0
Specifies the length of the user's OTP password.
OtpValue
int
Default Value: 0
The user's time interval (TOTP) or Counter (HOTP).
OutgoingSpeedLimit
int
Default Value: 0
Specifies the outgoing speed limit for this user. The value of 0 (zero) means "no limitation".
Password
char*
Default Value: ""
The user's authentication password.
SharedSecret
char*
Default Value:
Contains the user's secret key, which is essentially a shared secret between the client and server.
Shared secrets can be used in TLS-driven protocols, as well as in OTP (where it is called a 'key secret') for generating one-time passwords on one side, and validate them on the other.
SSHKey
char*
Default Value:
Contains the user's SSH key.
Username
char*
Default Value: ""
The registered name (login) of the user.
Constructors
UserAccount()
Creates a new UserAccount object
SecureBlackboxList Type
Syntax
SecureBlackboxList<T> (declared in secureblackbox.h)
Remarks
SecureBlackboxList is a generic class that is used to hold a collection of objects of type T, where T is one of the custom types supported by the KMIPServer class.
Methods | |
GetCount |
This method returns the current size of the collection.
int GetCount() {}
|
SetCount |
This method sets the size of the collection. This method returns 0 if setting the size was successful; or -1 if the collection is ReadOnly. When adding additional objects to a collection call this method to specify the new size. Increasing the size of the collection preserves existing objects in the collection.
int SetCount(int count) {}
|
Get |
This method gets the item at the specified position. The index parameter specifies the index of the item in the collection. This method returns NULL if an invalid index is specified.
T* Get(int index) {}
|
Set |
This method sets the item at the specified position. The index parameter specifies the index of the item in the collection that is being set. This method returns -1 if an invalid index is specified. Note: Objects created using the new operator must be freed using the delete operator; they will not be automatically freed by the class.
T* Set(int index, T* value) {}
|
Config Settings (KMIPServer Class)
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.KMIPServer Config Settings
Base Config Settings
You can switch this property off to improve performance if your project only uses known, good private keys.
Supported values are:
off | No caching (default) | |
local | Local caching | |
global | Global caching |
This setting only applies to sessions negotiated with TLS version 1.3.
Supported values are:
file | File | |
console | Console | |
systemlog | System Log (supported for Android only) | |
debugger | Debugger (supported for VCL for Windows and .Net) |
Supported values are:
time | Current time | |
level | Level | |
package | Package name | |
module | Module name | |
class | Class name | |
method | Method name | |
threadid | Thread Id | |
contenttype | Content type | |
content | Content | |
all | All details |
Supported filter names are:
exclude-package | Exclude a package specified in the value | |
exclude-module | Exclude a module specified in the value | |
exclude-class | Exclude a class specified in the value | |
exclude-method | Exclude a method specified in the value | |
include-package | Include a package specified in the value | |
include-module | Include a module specified in the value | |
include-class | Include a class specified in the value | |
include-method | Include a method specified in the value |
none | No flush (caching only) | |
immediate | Immediate flush (real-time logging) | |
maxcount | Flush cached entries upon reaching LogMaxEventCount entries in the cache. |
Supported values are:
none | None (by default) | |
fatal | Severe errors that cause premature termination. | |
error | Other runtime errors or unexpected conditions. | |
warning | Use of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong". | |
info | Interesting runtime events (startup/shutdown). | |
debug | Detailed information on flow of through the system. | |
trace | More detailed information. |
The default value of this setting is 100.
none | No rotation | |
deleteolder | Delete older entries from the cache upon reaching LogMaxEventCount | |
keepolder | Keep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded) |
Supported values are:
none | No static DNS rules (default) | |
local | Local static DNS rules | |
global | Global static DNS rules |
This setting only applies to certificates originating from a Windows system store.
Trappable Errors (KMIPServer Class)
Error Handling (C++)
Call the GetLastErrorCode() method to obtain the last called method's result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. Known error codes are listed below. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
KMIPServer Errors
1048577 | Invalid parameter (SB_ERROR_INVALID_PARAMETER) |
1048578 | Invalid configuration (SB_ERROR_INVALID_SETUP) |
1048579 | Invalid state (SB_ERROR_INVALID_STATE) |
1048580 | Invalid value (SB_ERROR_INVALID_VALUE) |
1048581 | Private key not found (SB_ERROR_NO_PRIVATE_KEY) |
1048582 | Cancelled by the user (SB_ERROR_CANCELLED_BY_USER) |
1048583 | The file was not found (SB_ERROR_NO_SUCH_FILE) |
1048584 | Unsupported feature or operation (SB_ERROR_UNSUPPORTED_FEATURE) |
1048585 | General error (SB_ERROR_GENERAL_ERROR) |
20971521 | KMIP request failed (SB_ERROR_KMIP_REQUEST_FAILED) |
20971522 | The input file does not exist (SB_ERROR_KMIP_INPUTFILE_NOT_EXISTS) |
20971523 | Unsupported key algorithm (SB_ERROR_KMIP_UNSUPPORTED_KEY_ALGORITHM) |
20971524 | Invalid key (SB_ERROR_KMIP_INVALID_KEY) |