Authenticator Component
Properties Methods Events Config Settings Errors
The Authenticator component specializes in user authentication.
Syntax
nsoftware.SecureBlackbox.Authenticator
Remarks
Authenticator provides capabilities for implementing the authenticating party (as opposed to the one being authenticated) of the authentication protocol.
Authenticator can be used in a variety of authentication scenarios, ranging from simple password checks to complicated multi-factor variants. It also supports authentication via a SBB-own DC protocol, which makes it a good pair for DCAuth control.
In default configuration the component uses the attached database of users to handle authentication requests. The authentication flow can be altered if needed to match specific authentication requirements.
In Authenticator's terms, the authentication process is divided into a sequence of atomic steps. Each step is characterized by a user providing an authentication token - such as a password or PIN - and the authenticator validating that token. Each validation step may result in one of the following outcomes:
- Authentication succeeded: the authentication has been completed with the positive outcome;
- Authentication failed: the authentication process has failed, the user didn't provide enough evidence to confirm they are who they claim they are;
- Further authentication is required: the authentication was partly successful, but the settings of the component or user details require further step(s) to be taken.
Use the following logic when integrating the Authenticator into your project:
- Whenever you receive an authentication request from a user, call the StartAuth method, passing the UserID as a parameter. This initiates the authentication procedure: the Authenticator control looks up the user in the Users database and picks the first authentication method. It then returns the Further authentication is required result and stores the details of the first authentication step in AuthInfo property. Apart from the information about the authentication method that is to be performed during this step, AuthInfo also contains a STATE> value, which accumulates parameters and progress of the user's authentication flow. You can save the state value on this stage, and restore it later when a response from the user is received. With that in mind, component is stateless; you can save the current authentication state in a database, and return to it from a different context.
- Now that you have obtained Further authentication needed from StartAuth, it's time to check the AUTHMETHOD> and request the corresponding token from the user. For example, if the method is 'password', you may present the user with a password dialog.
- Upon receiving a password (or other kind of authentication token) from the user, pass it to the ContinueAuth method, together with the state object
that you saved on the preceding step. The component will process the token and come up with one of the three results given above,
signifying the end of the first authentication step. If Further authentication is required result is returned, another authentication step
needs to be performed (either because a multi-factor authentication is configured for this user, or because an alternative authentication method
was chosen following failure of the previous attempt). If that is the case, follow the guidance for StartAuth-initiated step above.
Depending on the settings, many authentication steps may need to be performed, so your code may ultimately end up calling ContinueAuth many times.
component can be customized to use external user information sources instead of a predefined user database. AuthStart, AuthVerify, and AuthAttemptResult events provide an opportunity for your code to intervene into the authentication process by defining your own authentication procedures and validating authentication tokens manually.
Property List
The following is the full list of the properties of the component with short descriptions. Click on the links for further details.
AuthInfo | Contains details of the current authentication step. |
BlockedCertificates | The certificates that must be rejected as trust anchors. |
Certificates | A collection of certificates included in the electronic signature. |
ChainValidationDetails | The details of a certificate chain validation outcome. |
ChainValidationResult | The general outcome of a certificate chain validation routine. Use ChainValidationDetails to get information about the reasons that contributed to the validation result. |
DefaultAuthMethods | Contains the list of default authentication methods. |
ExternalCrypto | Provides access to external signing and DC parameters. |
FIPSMode | Reserved. |
IgnoreChainValidationErrors | Makes the component tolerant to chain validation errors. |
KnownCertificates | Additional certificates for chain validation. |
KnownCRLs | Additional CRLs for chain validation. |
KnownOCSPs | Additional OCSP responses for chain validation. |
OfflineMode | Switches the component to offline mode. |
Proxy | The proxy server settings. |
RevocationCheck | Specifies the kind(s) of revocation check to perform for all chain certificates. |
SigningCertificate | The certificate to be used for signing. |
SocketSettings | Manages network connection settings. |
TLSSettings | Manages TLS layer settings. |
TrustedCertificates | A list of trusted certificates for chain validation. |
Users | A collection of known users along with their authentication settings. |
ValidationLog | Contains the complete log of the certificate validation routine. |
ValidationMoment | The time point at which signature validity is to be established. |
Method List
The following is the full list of the methods of the component with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
ContinueAuth | Call this method to process an authentication token and proceed to the next authentication step. |
DoAction | Performs an additional action. |
Reset | Resets the component settings. |
StartAuth | Initiates an authentication process. |
Event List
The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.
AuthAttemptResult | Reports the outcome of an authentication attempt. |
AuthAttemptStart | Signifies the start of an authentication attempt. |
AuthStart | Signifies the start of an authentication process. |
AuthVerify | Requests the application to validate an authentication token. |
CustomAuthStart | Reports the beginning of a custom authentication method. |
Error | Reports information about errors during authentication. |
Notification | This event notifies the application about an underlying control flow event. |
Config Settings
The following is a list of config settings for the component with short descriptions. Click on the links for further details.
BaseTime | TBD. |
ChainCurrentCACert | Returns the current CA certificate. |
ChainCurrentCert | Returns the certificate that is currently being validated. |
ChainCurrentCRL | Returns the current CRL. |
ChainCurrentCRLSize | Returns the size of the current CRL. |
ChainCurrentOCSP | Returns the current OCSP response. |
ChainCurrentOCSPSigner | Returns the signer of the current OCSP object. |
ChainInterimDetails | Returns the current interim validation details. |
ChainInterimResult | Returns the current interim validation result. |
CheckValidityPeriodForTrusted | Whether to check validity period for trusted certificates. |
Delta | TBD. |
DislikeOpenEndedOCSPs | Tells the component to discourage OCSP responses without an explicit NextUpdate parameter. |
ForceCompleteChainValidation | Whether to check the CA certificates when the signing certificate is invalid. |
ForceCompleteChainValidationForTrusted | Whether to continue with the full validation up to the root CA certificate for mid-level trust anchors. |
GracePeriod | Specifies a grace period to apply during revocation information checks. |
IgnoreChainLoops | Whether chain loops should be ignored. |
IgnoreOCSPNoCheckExtension | Whether the OCSP NoCheck extension should be ignored. |
IgnoreSystemTrust | Whether trusted Windows Certificate Stores should be treated as trusted. |
ImplicitlyTrustSelfSignedCertificates | Whether to trust self-signed certificates. |
PromoteLongOCSPResponses | Whether long OCSP responses are requested. |
TolerateMinorChainIssues | Whether to tolerate minor chain issues. |
UseMicrosoftCTL | Enables or disables the automatic use of the Microsoft online certificate trust list. |
UseSystemCertificates | Enables or disables the use of the system certificates. |
UseValidationCache | Enables or disable the use of the product-wide certificate chain validation cache. |
ASN1UseGlobalTagCache | Controls whether ASN.1 module should use a global object cache. |
AssignSystemSmartCardPins | Specifies whether CSP-level PINs should be assigned to CNG keys. |
CheckKeyIntegrityBeforeUse | Enables or disable private key integrity check before use. |
CookieCaching | Specifies whether a cookie cache should be used for HTTP(S) transports. |
Cookies | Gets or sets local cookies for the component. |
DefDeriveKeyIterations | Specifies the default key derivation algorithm iteration count. |
DNSLocalSuffix | The suffix to assign for TLD names. |
EnableClientSideSSLFFDHE | Enables or disables finite field DHE key exchange support in TLS clients. |
GlobalCookies | Gets or sets global cookies for all the HTTP transports. |
HardwareCryptoUsePolicy | The hardware crypto usage policy. |
HttpUserAgent | Specifies the user agent name to be used by all HTTP clients. |
HttpVersion | The HTTP version to use in any inner HTTP client components created. |
IgnoreExpiredMSCTLSigningCert | Whether to tolerate the expired Windows Update signing certificate. |
ListDelimiter | The delimiter character for multi-element lists. |
LogDestination | Specifies the debug log destination. |
LogDetails | Specifies the debug log details to dump. |
LogFile | Specifies the debug log filename. |
LogFilters | Specifies the debug log filters. |
LogFlushMode | Specifies the log flush mode. |
LogLevel | Specifies the debug log level. |
LogMaxEventCount | Specifies the maximum number of events to cache before further action is taken. |
LogRotationMode | Specifies the log rotation mode. |
MaxASN1BufferLength | Specifies the maximal allowed length for ASN.1 primitive tag data. |
MaxASN1TreeDepth | Specifies the maximal depth for processed ASN.1 trees. |
OCSPHashAlgorithm | Specifies the hash algorithm to be used to identify certificates in OCSP requests. |
OldClientSideRSAFallback | Specifies whether the SSH client should use a SHA1 fallback. |
PKICache | Specifies which PKI elements (certificates, CRLs, OCSP responses) should be cached. |
PKICachePath | Specifies the file system path where cached PKI data is stored. |
ProductVersion | Returns the version of the SecureBlackbox library. |
ServerSSLDHKeyLength | Sets the size of the TLS DHE key exchange group. |
StaticDNS | Specifies whether static DNS rules should be used. |
StaticIPAddress[domain] | Gets or sets an IP address for the specified domain name. |
StaticIPAddresses | Gets or sets all the static DNS rules. |
Tag | Allows to store any custom data. |
TLSSessionGroup | Specifies the group name of TLS sessions to be used for session resumption. |
TLSSessionLifetime | Specifies lifetime in seconds of the cached TLS session. |
TLSSessionPurgeInterval | Specifies how often the session cache should remove the expired TLS sessions. |
UseCRLObjectCaching | Specifies whether reuse of loaded CRL objects is enabled. |
UseInternalRandom | Switches between SecureBlackbox-own and platform PRNGs. |
UseLegacyAdESValidation | Enables legacy AdES validation mode. |
UseOCSPResponseObjectCaching | Specifies whether reuse of loaded OCSP response objects is enabled. |
UseOwnDNSResolver | Specifies whether the client components should use own DNS resolver. |
UseSharedSystemStorages | Specifies whether the validation engine should use a global per-process copy of the system certificate stores. |
UseSystemNativeSizeCalculation | An internal CryptoAPI access tweak. |
UseSystemOAEPAndPSS | Enforces or disables the use of system-driven RSA OAEP and PSS computations. |
UseSystemRandom | Enables or disables the use of the OS PRNG. |
XMLRDNDescriptorName[OID] | Defines an OID mapping to descriptor names for the certificate's IssuerRDN or SubjectRDN. |
XMLRDNDescriptorPriority[OID] | Specifies the priority of descriptor names associated with a specific OID. |
XMLRDNDescriptorReverseOrder | Specifies whether to reverse the order of descriptors in RDN. |
XMLRDNDescriptorSeparator | Specifies the separator used between descriptors in RDN. |
AuthInfo Property (Authenticator Component)
Contains details of the current authentication step.
Syntax
Remarks
Check this object to get details about the current authentication step, such as authentication method, its parameters, the overall authentication state, and information about completed and pending authentication methods.
This property is read-only and not available at design time.
Please refer to the AuthInfo type for a complete list of fields.BlockedCertificates Property (Authenticator Component)
The certificates that must be rejected as trust anchors.
Syntax
public CertificateList BlockedCertificates { get; }
Public Property BlockedCertificates As CertificateList
Remarks
Use this property to provide a list of compromised or blocked certificates. Any chain containing a blocked certificate will fail validation.
This property is not available at design time.
Please refer to the Certificate type for a complete list of fields.Certificates Property (Authenticator Component)
A collection of certificates included in the electronic signature.
Syntax
public CertificateList Certificates { get; }
Public ReadOnly Property Certificates As CertificateList
Remarks
This property includes a collection of certificates of the currently selected info.
This collection is indexed from 0 to count -1.
This property is read-only and not available at design time.
Please refer to the Certificate type for a complete list of fields.ChainValidationDetails Property (Authenticator Component)
The details of a certificate chain validation outcome.
Syntax
public int ChainValidationDetails { get; }
Public ReadOnly Property ChainValidationDetails As Integer
Default Value
0
Remarks
Use the value(s) returned by this property to identify the reasons that contributed to the overall validation result.
Returns a bit mask of the following options:
cvrBadData | 0x0001 | One or more certificates in the validation path are malformed |
cvrRevoked | 0x0002 | One or more certificates are revoked |
cvrNotYetValid | 0x0004 | One or more certificates are not yet valid |
cvrExpired | 0x0008 | One or more certificates are expired |
cvrInvalidSignature | 0x0010 | A certificate contains a non-valid digital signature |
cvrUnknownCA | 0x0020 | A CA certificate for one or more certificates has not been found (chain incomplete) |
cvrCAUnauthorized | 0x0040 | One of the CA certificates are not authorized to act as CA |
cvrCRLNotVerified | 0x0080 | One or more CRLs could not be verified |
cvrOCSPNotVerified | 0x0100 | One or more OCSP responses could not be verified |
cvrIdentityMismatch | 0x0200 | The identity protected by the certificate (a TLS endpoint or an e-mail addressee) does not match what is recorded in the certificate |
cvrNoKeyUsage | 0x0400 | A mandatory key usage is not enabled in one of the chain certificates |
cvrBlocked | 0x0800 | One or more certificates are blocked |
cvrFailure | 0x1000 | General validation failure |
cvrChainLoop | 0x2000 | Chain loop: one of the CA certificates recursively signs itself |
cvrWeakAlgorithm | 0x4000 | A weak algorithm is used in one of certificates or revocation elements |
cvrUserEnforced | 0x8000 | The chain was considered invalid following intervention from a user code |
This property is read-only and not available at design time.
ChainValidationResult Property (Authenticator Component)
The general outcome of a certificate chain validation routine. Use ChainValidationDetails to get information about the reasons that contributed to the validation result.
Syntax
public AuthenticatorChainValidationResults ChainValidationResult { get; }
enum AuthenticatorChainValidationResults { cvtValid, cvtValidButUntrusted, cvtInvalid, cvtCantBeEstablished }
Public ReadOnly Property ChainValidationResult As AuthenticatorChainValidationResults
Enum AuthenticatorChainValidationResults cvtValid cvtValidButUntrusted cvtInvalid cvtCantBeEstablished End Enum
Default Value
0
Remarks
Available options:
cvtValid | 0 | The chain is valid |
cvtValidButUntrusted | 1 | The chain is valid, but the root certificate is not trusted |
cvtInvalid | 2 | The chain is not valid (some of certificates are revoked, expired, or contain an invalid signature) |
cvtCantBeEstablished | 3 | The validity of the chain cannot be established because of missing or unavailable validation information (certificates, CRLs, or OCSP responses) |
Use the ValidationLog property to access the detailed validation log.
This property is read-only and not available at design time.
DefaultAuthMethods Property (Authenticator Component)
Contains the list of default authentication methods.
Syntax
Default Value
""
Remarks
Use this property to specify a list of default authentication methods to apply to users that are not included in the Users database. Assign this property with a comma-separated list of standard and custom authentication methods.
The following standard authentication methods are supported by the component:
- password
- otp-h
- otp-t
- dcauth
You can use any names not clashing with the standard methods to indicate your own custom authentication methods. Use CustomAuthStart and AuthVerify events to handle custom authentication methods.
ExternalCrypto Property (Authenticator Component)
Provides access to external signing and DC parameters.
Syntax
public ExternalCrypto ExternalCrypto { get; }
Public ReadOnly Property ExternalCrypto As ExternalCrypto
Remarks
Use this property to tune-up remote cryptography settings. SecureBlackbox supports two independent types of external cryptography: synchronous (based on the ExternalSign event) and asynchronous (based on the DC protocol and the DCAuth signing component).
This property is read-only.
Please refer to the ExternalCrypto type for a complete list of fields.FIPSMode Property (Authenticator Component)
Reserved.
Syntax
Default Value
False
Remarks
This property is reserved for future use.
IgnoreChainValidationErrors Property (Authenticator Component)
Makes the component tolerant to chain validation errors.
Syntax
public bool IgnoreChainValidationErrors { get; set; }
Public Property IgnoreChainValidationErrors As Boolean
Default Value
False
Remarks
If this property is set to True, any errors emerging during certificate chain validation will be ignored. This setting may be handy if the purpose of validation is the creation of an LTV signature, and the validation is performed in an environment that doesn't trust the signer's certificate chain.
KnownCertificates Property (Authenticator Component)
Additional certificates for chain validation.
Syntax
public CertificateList KnownCertificates { get; }
Public Property KnownCertificates As CertificateList
Remarks
Use this property to supply a list of additional certificates that might be needed for chain validation. An example of a scenario where you might want to do that is when intermediary CA certificates are absent from the standard system locations (or when there are no standard system locations), and therefore should be supplied to the component manually.
The purpose of the certificates to be added to this collection is roughly equivalent to that of the Intermediate Certification Authorities system store in Windows.
Do not add trust anchors or root certificates to this collection: add them to TrustedCertificates instead.
This property is not available at design time.
Please refer to the Certificate type for a complete list of fields.KnownCRLs Property (Authenticator Component)
Additional CRLs for chain validation.
Syntax
Remarks
Use this property to supply additional CRLs that might be needed for chain validation. This property may be helpful when a chain is validated in offline mode, and the associated CRLs are stored separately from the signed message or document.
This property is not available at design time.
Please refer to the CRL type for a complete list of fields.KnownOCSPs Property (Authenticator Component)
Additional OCSP responses for chain validation.
Syntax
public OCSPResponseList KnownOCSPs { get; }
Public Property KnownOCSPs As OCSPResponseList
Remarks
Use this property to supply additional OCSP responses that might be needed for chain validation. This property may be helpful when a chain is validated in offline mode, and the associated OCSP responses are stored separately from the signed message or document.
This property is not available at design time.
Please refer to the OCSPResponse type for a complete list of fields.OfflineMode Property (Authenticator Component)
Switches the component to offline mode.
Syntax
Default Value
False
Remarks
When working in offline mode, the component restricts itself from using any online revocation information sources, such as CRL or OCSP responders.
Offline mode may be useful if there is a need to verify the completeness of the validation information included within the signature or provided via KnownCertificates, KnownCRLs, and other related properties.
Proxy Property (Authenticator Component)
The proxy server settings.
Syntax
public ProxySettings Proxy { get; }
Public ReadOnly Property Proxy As ProxySettings
Remarks
Use this property to tune up the proxy server settings.
This property is read-only.
Please refer to the ProxySettings type for a complete list of fields.RevocationCheck Property (Authenticator Component)
Specifies the kind(s) of revocation check to perform for all chain certificates.
Syntax
public AuthenticatorRevocationChecks RevocationCheck { get; set; }
enum AuthenticatorRevocationChecks { crcNone, crcAuto, crcAllCRL, crcAllOCSP, crcAllCRLAndOCSP, crcAnyCRL, crcAnyOCSP, crcAnyCRLOrOCSP, crcAnyOCSPOrCRL }
Public Property RevocationCheck As AuthenticatorRevocationChecks
Enum AuthenticatorRevocationChecks crcNone crcAuto crcAllCRL crcAllOCSP crcAllCRLAndOCSP crcAnyCRL crcAnyOCSP crcAnyCRLOrOCSP crcAnyOCSPOrCRL End Enum
Default Value
1
Remarks
Revocation checking is necessary to ensure the integrity of the chain and obtain up-to-date certificate validity and trustworthiness information.
Certificate Revocation Lists (CRLs) and Online Certificate Status Protocol (OCSP) responses serve the same purpose of ensuring that the certificate had not been revoked by the Certificate Authority (CA) at the time of use. Depending on your circumstances and security policy requirements, you may want to use either one or both of the revocation information source types.
crcNone | 0 | No revocation checking. |
crcAuto | 1 | Automatic mode selection. Currently this maps to crcAnyOCSPOrCRL, but it may change in the future. |
crcAllCRL | 2 | All provided CRL endpoints will be checked, and all checks must succeed. |
crcAllOCSP | 3 | All provided OCSP endpoints will be checked, and all checks must succeed. |
crcAllCRLAndOCSP | 4 | All provided CRL and OCSP endpoints will be checked, and all checks must succeed. |
crcAnyCRL | 5 | All provided CRL endpoints will be checked, and at least one check must succeed. |
crcAnyOCSP | 6 | All provided OCSP endpoints will be checked, and at least one check must succeed. |
crcAnyCRLOrOCSP | 7 | All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. CRL endpoints are checked first. |
crcAnyOCSPOrCRL | 8 | All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. OCSP endpoints are checked first. |
This setting controls the way the revocation checks are performed for every certificate in the chain. Typically certificates come with two types of revocation information sources: CRL (certificate revocation lists) and OCSP responders. CRLs are static objects periodically published by the CA at some online location. OCSP responders are active online services maintained by the CA that can provide up-to-date information on certificate statuses in near real time.
There are some conceptual differences between the two. CRLs are normally larger in size. Their use involves some latency because there is normally some delay between the time when a certificate was revoked and the time the subsequent CRL mentioning that is published. The benefits of CRL is that the same object can provide statuses for all certificates issued by a particular CA, and that the whole technology is much simpler than OCSP (and thus is supported by more CAs).
This setting lets you adjust the validation course by including or excluding certain types of revocation sources from the validation process. The crcAnyOCSPOrCRL setting (give preference to the faster OCSP route and only demand one source to succeed) is a good choice for most typical validation environments. The "crcAll*" modes are much stricter, and may be used in scenarios where bulletproof validity information is essential.
Note: If no CRL or OCSP endpoints are provided by the CA, the revocation check will be considered successful. This is because the CA chose not to supply revocation information for its certificates, meaning they are considered irrevocable.
Note: Within each of the above settings, if any retrieved CRL or OCSP response indicates that the certificate has been revoked, the revocation check fails.
SigningCertificate Property (Authenticator Component)
The certificate to be used for signing.
Syntax
public Certificate SigningCertificate { get; set; }
Public Property SigningCertificate As Certificate
Remarks
Use this property to specify the certificate that shall be used for signing the data. Note that this certificate should have a private key associated with it. Use SigningChain to supply the rest of the certificate chain for inclusion into the signature.
This property is not available at design time.
Please refer to the Certificate type for a complete list of fields.SocketSettings Property (Authenticator Component)
Manages network connection settings.
Syntax
public SocketSettings SocketSettings { get; }
Public ReadOnly Property SocketSettings As SocketSettings
Remarks
Use this property to tune up network connection parameters.
This property is read-only.
Please refer to the SocketSettings type for a complete list of fields.TLSSettings Property (Authenticator Component)
Manages TLS layer settings.
Syntax
public TLSSettings TLSSettings { get; }
Public ReadOnly Property TLSSettings As TLSSettings
Remarks
Use this property to tune up the TLS layer parameters.
This property is read-only.
Please refer to the TLSSettings type for a complete list of fields.TrustedCertificates Property (Authenticator Component)
A list of trusted certificates for chain validation.
Syntax
public CertificateList TrustedCertificates { get; }
Public Property TrustedCertificates As CertificateList
Remarks
Use this property to supply a list of trusted certificates that might be needed for chain validation. An example of a scenario where you might want to do that is when root CA certificates are absent from the standard system locations (or when there are no standard system locations), and therefore should be supplied to the component manually.
The purpose of this certificate collection is largely the same as that of the Windows Trusted Root Certification Authorities system store.
Use this property with extreme care as it directly affects chain verifiability; a wrong certificate added to the trusted list may result in bad chains being accepted, and forfeited signatures being recognized as genuine. Only add certificates that originate from the parties that you know and trust.
This property is not available at design time.
Please refer to the Certificate type for a complete list of fields.Users Property (Authenticator Component)
A collection of known users along with their authentication settings.
Syntax
public UserAccountList Users { get; }
Public Property Users As UserAccountList
Remarks
Use this property to access the database of known users and their authentication details.
This property is not available at design time.
Please refer to the UserAccount type for a complete list of fields.ValidationLog Property (Authenticator Component)
Contains the complete log of the certificate validation routine.
Syntax
Default Value
""
Remarks
Use this property to access the chain validation log produced by the component. The log can be very useful when investigating issues with chain validation, as it contains a step-by-step trace of the entire validation procedure.
This property is read-only and not available at design time.
ValidationMoment Property (Authenticator Component)
The time point at which signature validity is to be established.
Syntax
Default Value
""
Remarks
Use this property to specify the moment in time at which signature validity should be established. The time is in UTC. Leave the setting empty to stick to the default moment (either the signature creation time or the current time).
The validity of the same signature may differ depending on the time point chosen due to temporal changes in chain validities, revocation statuses, and timestamp times.
Config Method (Authenticator Component)
Sets or retrieves a configuration setting.
Syntax
Remarks
Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
ContinueAuth Method (Authenticator Component)
Call this method to process an authentication token and proceed to the next authentication step.
Syntax
Remarks
Call this method upon receiving an authentication token from the user to validate it and proceed to the next authentication step (or complete the authentication).
Pass the authentication state blob that you obtained at the beginning of the authentication step to the State parameter, and the authentication credential received from the user to the AuthToken parameter. The method will validate the token and return one of the following results:
arAuthFurtherAuthNeeded | 0 |
arAuthSucceeded | 1 |
arAuthFailed | 2 |
The further authentication needed result indicates that the user is expected to go through at least one more authentication step. Check AuthInfo property to find out which authentication method should be used on that step, and request the relevant authentication token from the user. Upon receiving that new token, call ContinueAuth again - and continue running this loop until authentication succeeded or authentication failed result is returned.
DoAction Method (Authenticator Component)
Performs an additional action.
Syntax
Remarks
DoAction is a generic method available in every component. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.
The unique identifier (case insensitive) of the action is provided in the ActionID parameter.
ActionParams contains the value of a single parameter, or a list of multiple parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....
Common ActionIDs:
Action | Parameters | Returned value | Description |
ResetTrustedListCache | none | none | Clears the cached list of trusted lists. |
ResetCertificateCache | none | none | Clears the cached certificates. |
ResetCRLCache | none | none | Clears the cached CRLs. |
ResetOCSPResponseCache | none | none | Clears the cached OCSP responses. |
Reset Method (Authenticator Component)
Resets the component settings.
Syntax
public void Reset();
Public Sub Reset()
Remarks
Reset is a generic method available in every component.
StartAuth Method (Authenticator Component)
Initiates an authentication process.
Syntax
Remarks
Call this method to start an authentication process for UserID.
The authentication process may consist of multiple atomic steps. Each step represents a single authentication transaction, such as provision of a password, a PIN, or a one-time token. The exact authentication step sequence for the user is chosen according to the following rules:
- If the user is found in the Users database, all authentication methods specified for that user are activated;
- otherwise, the methods assigned to DefaultAuthMethods are activated;
- AuthStart event is thrown, allowing the application to tune up the selection of authentication methods if needed.
- the first method from the list is initiated.
This method may return one of the three results:
arAuthFurtherAuthNeeded | 0 |
arAuthSucceeded | 1 |
arAuthFailed | 2 |
The authentication succeeded result is returned if the authentication method selection procedure completed with an empty method list. A typical result of this method though is further authentication required, which indicates that the next authentication method has kicked off. Use rpAuthInfo; property to find out which authentication method should be used on this step, and solicit the relevant authentication token from the user. Pass the received token to the ContinueAuth method for validation.
AuthAttemptResult Event (Authenticator Component)
Reports the outcome of an authentication attempt.
Syntax
public event OnAuthAttemptResultHandler OnAuthAttemptResult; public delegate void OnAuthAttemptResultHandler(object sender, AuthenticatorAuthAttemptResultEventArgs e); public class AuthenticatorAuthAttemptResultEventArgs : EventArgs { public string UserID { get; } public string AuthMethod { get; } public int AuthRes { get; set; } public string RemainingAuthMethods { get; set; } }
Public Event OnAuthAttemptResult As OnAuthAttemptResultHandler Public Delegate Sub OnAuthAttemptResultHandler(sender As Object, e As AuthenticatorAuthAttemptResultEventArgs) Public Class AuthenticatorAuthAttemptResultEventArgs Inherits EventArgs Public ReadOnly Property UserID As String Public ReadOnly Property AuthMethod As String Public Property AuthRes As Integer Public Property RemainingAuthMethods As String End Class
Remarks
This event follows a call to ContinueAuth method and reports the user's updated authentication status following the token verification.
The updated status is reported via the AuthRes parameter, and can take one of the following values:
arAuthFurtherAuthNeeded | 0 |
arAuthSucceeded | 1 |
arAuthFailed | 2 |
The RemainingAuthMethods parameter lists the authentication methods that the user is yet to go through. The application can change either of AuthRes and RemainingAuthMethods in the event handler to alter the authentication flow.
AuthAttemptStart Event (Authenticator Component)
Signifies the start of an authentication attempt.
Syntax
public event OnAuthAttemptStartHandler OnAuthAttemptStart; public delegate void OnAuthAttemptStartHandler(object sender, AuthenticatorAuthAttemptStartEventArgs e); public class AuthenticatorAuthAttemptStartEventArgs : EventArgs { public string UserID { get; } public string AuthMethod { get; } public string RemainingAuthMethods { get; } }
Public Event OnAuthAttemptStart As OnAuthAttemptStartHandler Public Delegate Sub OnAuthAttemptStartHandler(sender As Object, e As AuthenticatorAuthAttemptStartEventArgs) Public Class AuthenticatorAuthAttemptStartEventArgs Inherits EventArgs Public ReadOnly Property UserID As String Public ReadOnly Property AuthMethod As String Public ReadOnly Property RemainingAuthMethods As String End Class
Remarks
This event reports the start of an atomic authentication step. The AuthMethod parameter contains the authentication method that has started. The following authentication methods are currently supported, but the application may define its own methods in AuthStart, and tune them up in CustomAuthStart:
- password
- otp-h
- otp-t
- dcauth
This event is thrown from StartAuth and ContinueAuth methods.
AuthStart Event (Authenticator Component)
Signifies the start of an authentication process.
Syntax
public event OnAuthStartHandler OnAuthStart; public delegate void OnAuthStartHandler(object sender, AuthenticatorAuthStartEventArgs e); public class AuthenticatorAuthStartEventArgs : EventArgs { public string UserID { get; } public string AuthMethods { get; set; } }
Public Event OnAuthStart As OnAuthStartHandler Public Delegate Sub OnAuthStartHandler(sender As Object, e As AuthenticatorAuthStartEventArgs) Public Class AuthenticatorAuthStartEventArgs Inherits EventArgs Public ReadOnly Property UserID As String Public Property AuthMethods As String End Class
Remarks
This event is fired in response to a StartAuth call, and signifies the start of a (potentially, multi-step) authentication process for UserID. The AuthMethods parameter list the methods to be performed for the user. The application may customize them as needed.
The following default authentication methods are supported:
- password
- otp-h
- otp-t
- dcauth
The application can define its own authentication methods if needed.
This event is only fired once per user authentication process, at the very start of it. See AuthAttemptStart for per-step notification.
AuthVerify Event (Authenticator Component)
Requests the application to validate an authentication token.
Syntax
public event OnAuthVerifyHandler OnAuthVerify; public delegate void OnAuthVerifyHandler(object sender, AuthenticatorAuthVerifyEventArgs e); public class AuthenticatorAuthVerifyEventArgs : EventArgs { public string UserID { get; } public string AuthMethod { get; } public string AuthToken { get; } public string AuthMethodData { get; } public bool Valid { get; set; } }
Public Event OnAuthVerify As OnAuthVerifyHandler Public Delegate Sub OnAuthVerifyHandler(sender As Object, e As AuthenticatorAuthVerifyEventArgs) Public Class AuthenticatorAuthVerifyEventArgs Inherits EventArgs Public ReadOnly Property UserID As String Public ReadOnly Property AuthMethod As String Public ReadOnly Property AuthToken As String Public ReadOnly Property AuthMethodData As String Public Property Valid As Boolean End Class
Remarks
Component fires this event to ask the application to validate an authentication token that it can't validate automatically. This can happen if UserID was not found in the user database or a custom authentication method is used.
AuthMethod and AuthToken specify the authentication method being used and the authentication token provided by the user. AuthMethodData contains an application-specific data provided by the application at the beginning of the authentication step.
An event handler subscribed to this event should validate the authentication token provided by the user and set the Valid parameter accordingly.
CustomAuthStart Event (Authenticator Component)
Reports the beginning of a custom authentication method.
Syntax
public event OnCustomAuthStartHandler OnCustomAuthStart; public delegate void OnCustomAuthStartHandler(object sender, AuthenticatorCustomAuthStartEventArgs e); public class AuthenticatorCustomAuthStartEventArgs : EventArgs { public string UserID { get; } public string AuthMethod { get; } public string AuthMethodPars { get; set; } public string AuthMethodData { get; set; } }
Public Event OnCustomAuthStart As OnCustomAuthStartHandler Public Delegate Sub OnCustomAuthStartHandler(sender As Object, e As AuthenticatorCustomAuthStartEventArgs) Public Class AuthenticatorCustomAuthStartEventArgs Inherits EventArgs Public ReadOnly Property UserID As String Public ReadOnly Property AuthMethod As String Public Property AuthMethodPars As String Public Property AuthMethodData As String End Class
Remarks
This event marks the start of an authentication method not supported by component internally and requests authentication parameters from the application.
Component currently supports the following authentication methods:
- password
- otp-h
- otp-t
- dcauth
The application may also use any number of custom authentication method it wants. Each such method is identified by a unique string name (such as 'pin', 'fingerprint', or 'fingerprint-v2'). It may specify them in DefaultAuthMethods property, or provide on the fly via AuthStart event.
The event handler may return authentication parameters and application-specific data to be associated with the authentication attempt via AuthMethodPars and AuthMethodData parameters.
Error Event (Authenticator Component)
Reports information about errors during authentication.
Syntax
public event OnErrorHandler OnError; public delegate void OnErrorHandler(object sender, AuthenticatorErrorEventArgs e); public class AuthenticatorErrorEventArgs : EventArgs { public int ErrorCode { get; } public string Description { get; } }
Public Event OnError As OnErrorHandler Public Delegate Sub OnErrorHandler(sender As Object, e As AuthenticatorErrorEventArgs) Public Class AuthenticatorErrorEventArgs Inherits EventArgs Public ReadOnly Property ErrorCode As Integer Public ReadOnly Property Description As String End Class
Remarks
The event is fired in case of exceptional conditions during user authentication.
ErrorCode contains an error code and Description contains a textual description of the error.
Notification Event (Authenticator Component)
This event notifies the application about an underlying control flow event.
Syntax
public event OnNotificationHandler OnNotification; public delegate void OnNotificationHandler(object sender, AuthenticatorNotificationEventArgs e); public class AuthenticatorNotificationEventArgs : EventArgs { public string EventID { get; } public string EventParam { get; } }
Public Event OnNotification As OnNotificationHandler Public Delegate Sub OnNotificationHandler(sender As Object, e As AuthenticatorNotificationEventArgs) Public Class AuthenticatorNotificationEventArgs Inherits EventArgs Public ReadOnly Property EventID As String Public ReadOnly Property EventParam As String End Class
Remarks
The component fires this event to let the application know about some event, occurrence, or milestone in the component. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.
The unique identifier of the event is provided in the EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the component, the exact action it is performing, or the document being processed, one or both may be omitted.
AuthInfo Type
A container for authentication step information.
Remarks
AuthInfo objects are used to store current authentication information, such as userid and state.
Fields
AuthLog
string (read-only)
Default: ""
Contains the authentication log. This can be used for accountability purposes.
AuthMethod
string (read-only)
Default: ""
Contains the current authentication method.
AuthMethodPars
string (read-only)
Default: ""
Contains the authentication method parameters. These are method-dependent. For example, the dcauth method will have a DC request in this property.
CompletedMethods
string (read-only)
Default: ""
Contains a comma-separated list of completed authentication methods.
LastAuthMessage
string (read-only)
Default: ""
Contains an uninterpreted authentication message to be displayed to the authenticating user.
LastAuthResult
int (read-only)
Default: -1
Contains the result of the last authentication token validation.
RemainingMethods
string (read-only)
Default: ""
Contains a comma-separated list of authentication methods yet to perform.
State
string (read-only)
Default: ""
Contains a state of the overall authentication process. Save the content of this property after calling StartAuth or ContinueAuth to remember the setup of the authenticator control, and pass it to the next ContinueAuth call to resume from the same stage.
UserID
string (read-only)
Default: ""
Returns the ID of the user being authenticated, as passed to StartAuth.
Constructors
Creates a new AuthInfo object.
Certificate Type
Encapsulates an individual X.509 certificate.
Remarks
This type keeps and provides access to X.509 certificate details.
Fields
Bytes
byte[] (read-only)
Default: ""
Returns the raw certificate data in DER format.
CA
bool
Default: False
Indicates whether the certificate has a CA capability. For the certificate to be considered a CA, it must have its Basic Constraints extension set with the CA indicator enabled.
Set this field when generating a new certificate to have its Basic Constraints extension generated automatically.
CAKeyID
byte[] (read-only)
Default: ""
A unique identifier (fingerprint) of the CA certificate's cryptographic key.
Authority Key Identifier is a certificate extension which allows identification of certificates belonging to the same issuer, but with different public keys. It is a de-facto standard to include this extension in all certificates to facilitate chain building.
This setting cannot be set when generating a certificate as it always derives from another certificate property. CertificateManager generates this setting automatically if enough information is available to it: for self-signed certificates, this value is copied from the SubjectKeyID setting, and for lower-level certificates, from the parent certificate's subject key ID extension.
CertType
CertTypes (read-only)
Default: 0
Returns the type of the entity contained in the Certificate object.
A Certificate object can contain two types of cryptographic objects: a ready-to-use X.509 certificate, or a certificate request ("an unsigned certificate"). Certificate requests can be upgraded to full certificates by signing them with a CA certificate.
Use the CertificateManager component to load or create new certificate and certificate requests objects.
CRLDistributionPoints
string
Default: ""
Contains a list of locations of CRL distribution points used to check this certificate's validity. The list is taken from the respective certificate extension.
Use this field when generating a certificate to provide a list of CRL endpoints that should be made part of the new certificate.
The endpoints are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.
Curve
string
Default: ""
Specifies the elliptic curve associated with the certificate's public key. This setting only applies to certificates containing EC keys.
SB_EC_SECP112R1 | SECP112R1 | |
SB_EC_SECP112R2 | SECP112R2 | |
SB_EC_SECP128R1 | SECP128R1 | |
SB_EC_SECP128R2 | SECP128R2 | |
SB_EC_SECP160K1 | SECP160K1 | |
SB_EC_SECP160R1 | SECP160R1 | |
SB_EC_SECP160R2 | SECP160R2 | |
SB_EC_SECP192K1 | SECP192K1 | |
SB_EC_SECP192R1 | SECP192R1 | |
SB_EC_SECP224K1 | SECP224K1 | |
SB_EC_SECP224R1 | SECP224R1 | |
SB_EC_SECP256K1 | SECP256K1 | |
SB_EC_SECP256R1 | SECP256R1 | |
SB_EC_SECP384R1 | SECP384R1 | |
SB_EC_SECP521R1 | SECP521R1 | |
SB_EC_SECT113R1 | SECT113R1 | |
SB_EC_SECT113R2 | SECT113R2 | |
SB_EC_SECT131R1 | SECT131R1 | |
SB_EC_SECT131R2 | SECT131R2 | |
SB_EC_SECT163K1 | SECT163K1 | |
SB_EC_SECT163R1 | SECT163R1 | |
SB_EC_SECT163R2 | SECT163R2 | |
SB_EC_SECT193R1 | SECT193R1 | |
SB_EC_SECT193R2 | SECT193R2 | |
SB_EC_SECT233K1 | SECT233K1 | |
SB_EC_SECT233R1 | SECT233R1 | |
SB_EC_SECT239K1 | SECT239K1 | |
SB_EC_SECT283K1 | SECT283K1 | |
SB_EC_SECT283R1 | SECT283R1 | |
SB_EC_SECT409K1 | SECT409K1 | |
SB_EC_SECT409R1 | SECT409R1 | |
SB_EC_SECT571K1 | SECT571K1 | |
SB_EC_SECT571R1 | SECT571R1 | |
SB_EC_PRIME192V1 | PRIME192V1 | |
SB_EC_PRIME192V2 | PRIME192V2 | |
SB_EC_PRIME192V3 | PRIME192V3 | |
SB_EC_PRIME239V1 | PRIME239V1 | |
SB_EC_PRIME239V2 | PRIME239V2 | |
SB_EC_PRIME239V3 | PRIME239V3 | |
SB_EC_PRIME256V1 | PRIME256V1 | |
SB_EC_C2PNB163V1 | C2PNB163V1 | |
SB_EC_C2PNB163V2 | C2PNB163V2 | |
SB_EC_C2PNB163V3 | C2PNB163V3 | |
SB_EC_C2PNB176W1 | C2PNB176W1 | |
SB_EC_C2TNB191V1 | C2TNB191V1 | |
SB_EC_C2TNB191V2 | C2TNB191V2 | |
SB_EC_C2TNB191V3 | C2TNB191V3 | |
SB_EC_C2ONB191V4 | C2ONB191V4 | |
SB_EC_C2ONB191V5 | C2ONB191V5 | |
SB_EC_C2PNB208W1 | C2PNB208W1 | |
SB_EC_C2TNB239V1 | C2TNB239V1 | |
SB_EC_C2TNB239V2 | C2TNB239V2 | |
SB_EC_C2TNB239V3 | C2TNB239V3 | |
SB_EC_C2ONB239V4 | C2ONB239V4 | |
SB_EC_C2ONB239V5 | C2ONB239V5 | |
SB_EC_C2PNB272W1 | C2PNB272W1 | |
SB_EC_C2PNB304W1 | C2PNB304W1 | |
SB_EC_C2TNB359V1 | C2TNB359V1 | |
SB_EC_C2PNB368W1 | C2PNB368W1 | |
SB_EC_C2TNB431R1 | C2TNB431R1 | |
SB_EC_NISTP192 | NISTP192 | |
SB_EC_NISTP224 | NISTP224 | |
SB_EC_NISTP256 | NISTP256 | |
SB_EC_NISTP384 | NISTP384 | |
SB_EC_NISTP521 | NISTP521 | |
SB_EC_NISTB163 | NISTB163 | |
SB_EC_NISTB233 | NISTB233 | |
SB_EC_NISTB283 | NISTB283 | |
SB_EC_NISTB409 | NISTB409 | |
SB_EC_NISTB571 | NISTB571 | |
SB_EC_NISTK163 | NISTK163 | |
SB_EC_NISTK233 | NISTK233 | |
SB_EC_NISTK283 | NISTK283 | |
SB_EC_NISTK409 | NISTK409 | |
SB_EC_NISTK571 | NISTK571 | |
SB_EC_GOSTCPTEST | GOSTCPTEST | |
SB_EC_GOSTCPA | GOSTCPA | |
SB_EC_GOSTCPB | GOSTCPB | |
SB_EC_GOSTCPC | GOSTCPC | |
SB_EC_GOSTCPXCHA | GOSTCPXCHA | |
SB_EC_GOSTCPXCHB | GOSTCPXCHB | |
SB_EC_BRAINPOOLP160R1 | BRAINPOOLP160R1 | |
SB_EC_BRAINPOOLP160T1 | BRAINPOOLP160T1 | |
SB_EC_BRAINPOOLP192R1 | BRAINPOOLP192R1 | |
SB_EC_BRAINPOOLP192T1 | BRAINPOOLP192T1 | |
SB_EC_BRAINPOOLP224R1 | BRAINPOOLP224R1 | |
SB_EC_BRAINPOOLP224T1 | BRAINPOOLP224T1 | |
SB_EC_BRAINPOOLP256R1 | BRAINPOOLP256R1 | |
SB_EC_BRAINPOOLP256T1 | BRAINPOOLP256T1 | |
SB_EC_BRAINPOOLP320R1 | BRAINPOOLP320R1 | |
SB_EC_BRAINPOOLP320T1 | BRAINPOOLP320T1 | |
SB_EC_BRAINPOOLP384R1 | BRAINPOOLP384R1 | |
SB_EC_BRAINPOOLP384T1 | BRAINPOOLP384T1 | |
SB_EC_BRAINPOOLP512R1 | BRAINPOOLP512R1 | |
SB_EC_BRAINPOOLP512T1 | BRAINPOOLP512T1 | |
SB_EC_CURVE25519 | CURVE25519 | |
SB_EC_CURVE448 | CURVE448 |
Fingerprint
string (read-only)
Default: ""
Contains the fingerprint (a hash imprint) of this certificate.
While there is no formal standard defining what a fingerprint is, a SHA1 hash of the certificate's DER-encoded body is typically used.
FriendlyName
string (read-only)
Default: ""
Contains an associated alias (friendly name) of the certificate. The friendly name is not a property of a certificate: it is maintained by the certificate media rather than being included in its DER representation. Windows certificate stores are one example of media that does support friendly names.
HashAlgorithm
string
Default: ""
Provides means to set the hash algorithm to be used in the subsequent operation on the certificate (such as generation or key signing). It is not a property of a certificate; use SigAlgorithm to find out the hash algorithm that is part of the certificate signature.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
Issuer
string (read-only)
Default: ""
The common name of the certificate issuer (CA), typically a company name. This is part of a larger set of credentials available via IssuerRDN.
IssuerRDN
string
Default: ""
A list of Property=Value pairs that uniquely identify the certificate issuer.
Example: /C=US/O=Nationwide CA/CN=Web Certification Authority
KeyAlgorithm
string
Default: "0"
Specifies the public key algorithm of this certificate.
SB_CERT_ALGORITHM_ID_RSA_ENCRYPTION | rsaEncryption | |
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTION | md2withRSAEncryption | |
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTION | md5withRSAEncryption | |
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTION | sha1withRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA | id-dsa | |
SB_CERT_ALGORITHM_ID_DSA_SHA1 | id-dsa-with-sha1 | |
SB_CERT_ALGORITHM_DH_PUBLIC | dhpublicnumber | |
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTION | sha224WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTION | sha256WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTION | sha384WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTION | sha512WithRSAEncryption | |
SB_CERT_ALGORITHM_ID_RSAPSS | id-RSASSA-PSS | |
SB_CERT_ALGORITHM_ID_RSAOAEP | id-RSAES-OAEP | |
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160 | ripemd160withRSA | |
SB_CERT_ALGORITHM_ID_ELGAMAL | elGamal | |
SB_CERT_ALGORITHM_SHA1_ECDSA | ecdsa-with-SHA1 | |
SB_CERT_ALGORITHM_RECOMMENDED_ECDSA | ecdsa-recommended | |
SB_CERT_ALGORITHM_SHA224_ECDSA | ecdsa-with-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA | ecdsa-with-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA | ecdsa-with-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA | ecdsa-with-SHA512 | |
SB_CERT_ALGORITHM_EC | id-ecPublicKey | |
SB_CERT_ALGORITHM_SPECIFIED_ECDSA | ecdsa-specified | |
SB_CERT_ALGORITHM_GOST_R3410_1994 | id-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3410_2001 | id-GostR3410-2001 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994 | id-GostR3411-94-with-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001 | id-GostR3411-94-with-GostR3410-2001 | |
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAIN | ecdsa-plain-SHA1 | |
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAIN | ecdsa-plain-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAIN | ecdsa-plain-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAIN | ecdsa-plain-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAIN | ecdsa-plain-SHA512 | |
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAIN | ecdsa-plain-RIPEMD160 | |
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTION | whirlpoolWithRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA_SHA224 | id-dsa-with-sha224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA256 | id-dsa-with-sha256 | |
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA | id-ecdsa-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA | id-ecdsa-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA | id-ecdsa-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA | id-ecdsa-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-512 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_224 | id-dsa-with-sha3-224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_256 | id-dsa-with-sha3-256 | |
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA | id-ecdsa-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA | id-ecdsa-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA | id-ecdsa-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA | id-ecdsa-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA | id-ecdsa-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA | id-ecdsa-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA | id-ecdsa-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA | id-ecdsa-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b512 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224 | id-dsa-with-blake2s224 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256 | id-dsa-with-blake2s256 | |
SB_CERT_ALGORITHM_EDDSA_ED25519 | id-Ed25519 | |
SB_CERT_ALGORITHM_EDDSA_ED448 | id-Ed448 | |
SB_CERT_ALGORITHM_EDDSA_ED25519_PH | id-Ed25519ph | |
SB_CERT_ALGORITHM_EDDSA_ED448_PH | id-Ed448ph | |
SB_CERT_ALGORITHM_EDDSA | id-EdDSA | |
SB_CERT_ALGORITHM_EDDSA_SIGNATURE | id-EdDSA-sig |
Use the KeyBits, Curve, and PublicKeyBytes fields to get more details about the key the certificate contains.
KeyBits
int (read-only)
Default: 0
Returns the length of the public key in bits.
This value indicates the length of the principal cryptographic parameter of the key, such as the length of the RSA modulus or ECDSA field. The key data returned by the PublicKeyBytes or PrivateKeyBytes field would typically contain auxiliary values, and therefore be longer.
KeyFingerprint
string (read-only)
Default: ""
Returns a SHA1 fingerprint of the public key contained in the certificate.
Note that the key fingerprint is different from the certificate fingerprint accessible via the Fingerprint field. The key fingeprint uniquely identifies the public key, and so can be the same for multiple certificates containing the same key.
KeyUsage
int
Default: 0
Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.
This value is a bit mask of the following values:
ckuUnknown | 0x00000 | Unknown key usage |
ckuDigitalSignature | 0x00001 | Digital signature |
ckuNonRepudiation | 0x00002 | Non-repudiation |
ckuKeyEncipherment | 0x00004 | Key encipherment |
ckuDataEncipherment | 0x00008 | Data encipherment |
ckuKeyAgreement | 0x00010 | Key agreement |
ckuKeyCertSign | 0x00020 | Certificate signing |
ckuCRLSign | 0x00040 | Revocation signing |
ckuEncipherOnly | 0x00080 | Encipher only |
ckuDecipherOnly | 0x00100 | Decipher only |
ckuServerAuthentication | 0x00200 | Server authentication |
ckuClientAuthentication | 0x00400 | Client authentication |
ckuCodeSigning | 0x00800 | Code signing |
ckuEmailProtection | 0x01000 | Email protection |
ckuTimeStamping | 0x02000 | Timestamping |
ckuOCSPSigning | 0x04000 | OCSP signing |
ckuSmartCardLogon | 0x08000 | Smartcard logon |
ckuKeyPurposeClientAuth | 0x10000 | Kerberos - client authentication |
ckuKeyPurposeKDC | 0x20000 | Kerberos - KDC |
Set this field before generating the certificate to propagate the key usage flags to the new certificate.
KeyValid
bool (read-only)
Default: False
Returns True if the certificate's key is cryptographically valid, and False otherwise.
OCSPLocations
string
Default: ""
Locations of OCSP services that can be used to check this certificate's validity in real time, as recorded by the CA.
Set this field before calling the certificate manager's Generate method to propagate it to the new certificate.
The OCSP locations are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.
OCSPNoCheck
bool
Default: False
Accessor to the value of the certificate's ocsp-no-check extension.
Origin
int (read-only)
Default: 0
Returns the location that the certificate was taken or loaded from.
PolicyIDs
string
Default: ""
Contains identifiers (OIDs) of the applicable certificate policies.
The Certificate Policies extension identifies a sequence of policies under which the certificate has been issued, and which regulate its usage.
Set this field when generating a certificate to propagate the policies information to the new certificate.
The policies are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the policy element separator.
PrivateKeyBytes
byte[] (read-only)
Default: ""
Returns the certificate's private key in DER-encoded format. It is normal for this field to be empty if the private key is non-exportable, which, for example, is typical for certificates originating from hardware security devices.
PrivateKeyExists
bool (read-only)
Default: False
Indicates whether the certificate has a usable private key associated with it. If it is set to True, the certificate can be used for private key operations, such as signing or decryption.
This field is independent from PrivateKeyBytes, and can be set to True even if the former is empty. This would imply that the private key is non-exportable, but still can be used for cryptographic operations.
PrivateKeyExtractable
bool (read-only)
Default: False
Indicates whether the private key is extractable (exportable).
PublicKeyBytes
byte[] (read-only)
Default: ""
Contains the certificate's public key in DER format.
This typically would contain an ASN.1-encoded public key value. The exact format depends on the type of the public key contained in the certificate.
Qualified
bool (read-only)
Default: False
Indicates whether the certificate is qualified.
This property is set to True if the certificate is confirmed by a Trusted List to be qualified.
QualifiedStatements
QualifiedStatementsTypes
Default: 0
Returns a simplified qualified status of the certificate.
Qualifiers
string (read-only)
Default: ""
A list of qualifiers.
Contains a comma-separated list of qualifier aliases for the certificate, for example QCP-n-qscd,QCWithSSCD.
SelfSigned
bool (read-only)
Default: False
Indicates whether the certificate is self-signed (root) or signed by an external CA.
SerialNumber
byte[]
Default: ""
Returns the certificate's serial number.
The serial number is a binary string that uniquely identifies a certificate among others issued by the same CA. According to the X.509 standard, the (issuer, serial number) pair should be globally unique to facilitate chain building.
SigAlgorithm
string (read-only)
Default: ""
Indicates the algorithm that was used by the CA to sign this certificate.
A signature algorithm typically combines hash and public key algorithms together, such as sha256WithRSAEncryption or ecdsa-with-SHA256.
Source
PKISources (read-only)
Default: 0
Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.
Subject
string (read-only)
Default: ""
The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name. This is part of a larger set of credentials available via SubjectRDN.
SubjectAlternativeName
string
Default: ""
Returns or sets the value of the Subject Alternative Name extension of the certificate.
Subject alternative names are used to provide additional names that are impractical to store in the main SubjectRDN field. For example, it is often used to store all the domain names that a TLS certificate is authorized to protect.
The alternative names are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the element separator.
SubjectKeyID
byte[]
Default: ""
Contains a unique identifier of the certificate's cryptographic key.
Subject Key Identifier is a certificate extension which allows a specific public key to be associated with a certificate holder. Typically, subject key identifiers of CA certificates are recorded as respective CA key identifiers in the subordinate certificates that they issue, which facilitates chain building.
The SubjectKeyID and CAKeyID fields of self-signed certificates typically contain identical values, as in that specific case, the issuer and the subject are the same entity.
SubjectRDN
string
Default: ""
A list of Property=Value pairs that uniquely identify the certificate holder (subject).
Depending on the purpose of the certificate and the policies of the CA that issued it, the values included in the subject record may differ drastically and contain business or personal names, web URLs, email addresses, and other data.
Example: /C=US/O=Oranges and Apples, Inc./OU=Accounts Receivable/1.2.3.4.5=Value with unknown OID/CN=Margaret Watkins.
Valid
bool (read-only)
Default: False
Indicates whether or not the signature over the certificate or the request is valid and matches the public key contained in the CA certificate/request.
ValidFrom
string
Default: ""
The time point at which the certificate becomes valid, in UTC.
ValidTo
string
Default: ""
The time point at which the certificate expires, in UTC.
Constructors
public Certificate(byte[] bytes, int startIndex, int count, string password);
Public Certificate(ByVal Bytes As Byte(), ByVal StartIndex As Integer, ByVal Count As Integer, ByVal Password As String)
Loads the X.509 certificate from a memory buffer. Bytes is a buffer containing the raw certificate data. StartIndex and Count specify the starting position and number of bytes to be read from the buffer, respectively. Password is a password encrypting the certificate.
Loads the X.509 certificate from a memory buffer.
CertBytes is a buffer containing the raw certificate data. CertStartIndex and CertCount specify the starting position and number of bytes to be read from the buffer, respectively.
KeyBytes is a buffer containing the private key data. KeyStartIndex and KeyCount specify the starting position and number of bytes to be read from the buffer, respectively.
Password is a password encrypting the certificate.
public Certificate(byte[] bytes, int startIndex, int count);
Public Certificate(ByVal Bytes As Byte(), ByVal StartIndex As Integer, ByVal Count As Integer)
Loads the X.509 certificate from a memory buffer. Bytes is a buffer containing the raw certificate data. StartIndex and Count specify the starting position and number of bytes to be read from the buffer, respectively.
public Certificate(string path, string password);
Public Certificate(ByVal Path As String, ByVal Password As String)
Loads the X.509 certificate from a file. Path specifies the full path to the file containing the certificate data. Password is a password encrypting the certificate.
public Certificate(string certPath, string keyPath, string password);
Public Certificate(ByVal CertPath As String, ByVal KeyPath As String, ByVal Password As String)
Loads the X.509 certificate from a file. CertPath specifies the full path to the file containing the certificate data. KeyPath specifies the full path to the file containing the private key. Password is a password encrypting the certificate.
public Certificate(string path);
Public Certificate(ByVal Path As String)
Loads the X.509 certificate from a file. Path specifies the full path to the file containing the certificate data.
public Certificate(System.IO.Stream stream);
Public Certificate(ByVal Stream As System.IO.Stream)
Loads the X.509 certificate from a stream. Stream is a stream containing the certificate data.
public Certificate(System.IO.Stream stream, string password);
Public Certificate(ByVal Stream As System.IO.Stream, ByVal Password As String)
Loads the X.509 certificate from a stream. Stream is a stream containing the certificate data. Password is a password encrypting the certificate.
public Certificate(System.IO.Stream certStream, System.IO.Stream keyStream, string password);
Public Certificate(ByVal CertStream As System.IO.Stream, ByVal KeyStream As System.IO.Stream, ByVal Password As String)
Loads the X.509 certificate from a stream. CertStream is a stream containing the certificate data. KeyStream is a stream containing the private key. Password is a password encrypting the certificate.
public Certificate();
Public Certificate()
Creates a new object with default field values.
CRL Type
Represents a Certificate Revocation List.
Remarks
CRLs store information about revoked certificates, i.e., certificates that have been identified as invalid by their issuing certificate authority (CA) for any number of reasons.
Each CRL object lists certificates from a single CA and identifies them by their serial numbers. A CA may or may not publish a CRL, may publish several CRLs, or may publish the same CRL in multiple locations.
Unlike OCSP responses, CRLs only list certificates that have been revoked. They do not list certificates that are still valid.
Fields
Bytes
byte[] (read-only)
Default: ""
Returns the raw CRL data in DER format.
CAKeyID
byte[]
Default: ""
A unique identifier (fingerprint) of the CA certificate's private key, if present in the CRL.
EntryCount
int (read-only)
Default: 0
Returns the number of certificate status entries in the CRL.
Issuer
string (read-only)
Default: ""
The common name of the CRL issuer (CA), typically a company name.
IssuerRDN
string (read-only)
Default: ""
A collection of information, in the form of [OID, Value] pairs, uniquely identifying the CRL issuer.
Location
string (read-only)
Default: ""
The URL that the CRL was downloaded from.
NextUpdate
string
Default: ""
The planned time and date of the next version of this CRL to be published.
SigAlgorithm
string
Default: "0"
The public key algorithm that was used by the CA to sign this CRL.
Source
PKISources (read-only)
Default: 0
Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.
TBS
byte[] (read-only)
Default: ""
The to-be-signed part of the CRL (the CRL without the signature part).
ThisUpdate
string
Default: ""
The date and time at which this version of the CRL was published.
Constructors
Creates a CRL object from a memory buffer. Bytes is a buffer containing raw (DER) CRL data, StartIndex and Count specify the starting position and the length of the CRL data in the buffer, respectively.
Creates a CRL object by downloading it from a remote location.
public CRL(System.IO.Stream stream);
Public CRL(ByVal Stream As System.IO.Stream)
Creates a CRL object from data contained in a stream.
Creates an empty CRL object.
ExternalCrypto Type
Specifies the parameters of external cryptographic calls.
Remarks
External cryptocalls are used in a Distributed Cryptography (DC) subsystem, which allows the delegation of security operations to the remote agent. For instance, it can be used to compute the signature value on the server, while retaining the client's private key locally.
Fields
AsyncDocumentID
string
Default: ""
Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.
Use this property when working with multi-signature DCAuth requests and responses to uniquely identify documents signed within a larger batch. On the completion stage, this value helps the signing component identify the correct signature in the returned batch of responses.
If using batched requests, make sure to set this property to the same value on both the pre-signing (SignAsyncBegin) and completion (SignAsyncEnd) stages.
CustomParams
string
Default: ""
Custom parameters to be passed to the signing service (uninterpreted).
Data
string
Default: ""
Additional data to be included in the async state and mirrored back by the requestor.
ExternalHashCalculation
bool
Default: False
Specifies whether the message hash is to be calculated at the external endpoint. Please note that this mode is not supported by the DCAuth component.
If set to true, the component will pass a few kilobytes of to-be-signed data from the document to the OnExternalSign event. This only applies when SignExternal() is called.
HashAlgorithm
string
Default: "SHA256"
Specifies the request's signature hash algorithm.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
KeyID
string
Default: ""
The ID of the pre-shared key used for DC request authentication.
Asynchronous DCAuth-driven communication requires that parties authenticate each other with a secret pre-shared cryptographic key. This provides an extra protection layer for the protocol and diminishes the risk of the private key becoming abused by foreign parties. Use this property to provide the pre-shared key identifier, and use KeySecret to pass the key itself.
The same KeyID/KeySecret pair should be used on the DCAuth side for the signing requests to be accepted.
Note: The KeyID/KeySecret scheme is very similar to the AuthKey scheme used in various Cloud service providers to authenticate users.
Example:
signer.ExternalCrypto.KeyID = "MainSigningKey";
signer.ExternalCrypto.KeySecret = "abcdef0123456789";
KeySecret
string
Default: ""
The pre-shared key used for DC request authentication. This key must be set and match the key used by the DCAuth counterpart for the scheme to work.
Read more about configuring authentication in the KeyID topic.
Method
AsyncSignMethods
Default: 0
Specifies the asynchronous signing method. This is typically defined by the DC server capabilities and setup.
Available options:
asmdPKCS1 | 0 |
asmdPKCS7 | 1 |
Mode
ExternalCryptoModes
Default: 0
Specifies the external cryptography mode.
Available options:
ecmDefault | The default value (0) |
ecmDisabled | Do not use DC or external signing (1) |
ecmGeneric | Generic external signing with the OnExternalSign event (2) |
ecmDCAuth | DCAuth signing (3) |
ecmDCAuthJSON | DCAuth signing in JSON format (4) |
PublicKeyAlgorithm
string
Default: ""
Provide the public key algorithm here if the certificate is not available on the pre-signing stage.
SB_CERT_ALGORITHM_ID_RSA_ENCRYPTION | rsaEncryption | |
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTION | md2withRSAEncryption | |
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTION | md5withRSAEncryption | |
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTION | sha1withRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA | id-dsa | |
SB_CERT_ALGORITHM_ID_DSA_SHA1 | id-dsa-with-sha1 | |
SB_CERT_ALGORITHM_DH_PUBLIC | dhpublicnumber | |
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTION | sha224WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTION | sha256WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTION | sha384WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTION | sha512WithRSAEncryption | |
SB_CERT_ALGORITHM_ID_RSAPSS | id-RSASSA-PSS | |
SB_CERT_ALGORITHM_ID_RSAOAEP | id-RSAES-OAEP | |
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160 | ripemd160withRSA | |
SB_CERT_ALGORITHM_ID_ELGAMAL | elGamal | |
SB_CERT_ALGORITHM_SHA1_ECDSA | ecdsa-with-SHA1 | |
SB_CERT_ALGORITHM_RECOMMENDED_ECDSA | ecdsa-recommended | |
SB_CERT_ALGORITHM_SHA224_ECDSA | ecdsa-with-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA | ecdsa-with-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA | ecdsa-with-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA | ecdsa-with-SHA512 | |
SB_CERT_ALGORITHM_EC | id-ecPublicKey | |
SB_CERT_ALGORITHM_SPECIFIED_ECDSA | ecdsa-specified | |
SB_CERT_ALGORITHM_GOST_R3410_1994 | id-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3410_2001 | id-GostR3410-2001 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994 | id-GostR3411-94-with-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001 | id-GostR3411-94-with-GostR3410-2001 | |
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAIN | ecdsa-plain-SHA1 | |
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAIN | ecdsa-plain-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAIN | ecdsa-plain-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAIN | ecdsa-plain-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAIN | ecdsa-plain-SHA512 | |
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAIN | ecdsa-plain-RIPEMD160 | |
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTION | whirlpoolWithRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA_SHA224 | id-dsa-with-sha224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA256 | id-dsa-with-sha256 | |
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA | id-ecdsa-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA | id-ecdsa-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA | id-ecdsa-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA | id-ecdsa-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-512 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_224 | id-dsa-with-sha3-224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_256 | id-dsa-with-sha3-256 | |
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA | id-ecdsa-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA | id-ecdsa-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA | id-ecdsa-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA | id-ecdsa-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA | id-ecdsa-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA | id-ecdsa-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA | id-ecdsa-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA | id-ecdsa-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b512 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224 | id-dsa-with-blake2s224 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256 | id-dsa-with-blake2s256 | |
SB_CERT_ALGORITHM_EDDSA_ED25519 | id-Ed25519 | |
SB_CERT_ALGORITHM_EDDSA_ED448 | id-Ed448 | |
SB_CERT_ALGORITHM_EDDSA_ED25519_PH | id-Ed25519ph | |
SB_CERT_ALGORITHM_EDDSA_ED448_PH | id-Ed448ph | |
SB_CERT_ALGORITHM_EDDSA | id-EdDSA | |
SB_CERT_ALGORITHM_EDDSA_SIGNATURE | id-EdDSA-sig |
Constructors
public ExternalCrypto();
Public ExternalCrypto()
Creates a new ExternalCrypto object with default field values.
OCSPResponse Type
Represents a single OCSP response originating from an OCSP responder.
Remarks
OCSP is a protocol that allows verification of certificate status in real-time, and is an alternative to Certificate Revocation Lists (CRLs).
An OCSP response is a snapshot of the certificate status at a given time.
Fields
Bytes
byte[] (read-only)
Default: ""
A buffer containing the raw OCSP response data.
EntryCount
int (read-only)
Default: 0
The number of SingleResponse elements contained in this OCSP response. Each SingleResponse element corresponds to a certificate status.
Issuer
string (read-only)
Default: ""
Indicates the issuer of this response (a CA or its authorized representative).
IssuerRDN
string (read-only)
Default: ""
Indicates the RDN of the issuer of this response (a CA or its authorized representative).
Location
string (read-only)
Default: ""
The location of the OCSP responder.
ProducedAt
string
Default: ""
Specifies the time when the response was produced, in UTC.
SigAlgorithm
string
Default: "0"
The public key algorithm that was used by the CA to sign this OCSP response.
Source
PKISources (read-only)
Default: 0
Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.
Constructors
public OCSPResponse(byte[] bytes, int startIndex, int count);
Public OCSPResponse(ByVal Bytes As Byte(), ByVal StartIndex As Integer, ByVal Count As Integer)
Initializes the response from a memory buffer. Bytes is a buffer containing raw OCSP response data, StartIndex and Count specify the starting position and the number of bytes to be read from this buffer.
public OCSPResponse(string location);
Public OCSPResponse(ByVal Location As String)
Downloads an OCSP response from a remote location.
public OCSPResponse(System.IO.Stream stream);
Public OCSPResponse(ByVal Stream As System.IO.Stream)
Initializes the response with the data from a stream.
public OCSPResponse();
Public OCSPResponse()
Creates an empty OCSP response object.
ProxySettings Type
A container for proxy server settings.
Remarks
This type exposes a collection of properties for tuning up the proxy server configuration.
Fields
Address
string
Default: ""
The IP address of the proxy server.
Authentication
ProxyAuthTypes
Default: 0
The authentication type used by the proxy server.
patNoAuthentication | 0 |
patBasic | 1 |
patDigest | 2 |
patNTLM | 3 |
Password
string
Default: ""
The password to authenticate to the proxy server.
Port
int
Default: 0
The port on the proxy server to connect to.
ProxyType
ProxyTypes
Default: 0
The type of the proxy server.
cptNone | 0 |
cptSocks4 | 1 |
cptSocks5 | 2 |
cptWebTunnel | 3 |
cptHTTP | 4 |
RequestHeaders
string
Default: ""
Contains HTTP request headers for WebTunnel and HTTP proxy.
ResponseBody
string
Default: ""
Contains the HTTP or HTTPS (WebTunnel) proxy response body.
ResponseHeaders
string
Default: ""
Contains response headers received from an HTTP or HTTPS (WebTunnel) proxy server.
UseIPv6
bool
Default: False
Specifies whether IPv6 should be used when connecting through the proxy.
Username
string
Default: ""
Specifies the username credential for proxy authentication.
Constructors
public ProxySettings();
Public ProxySettings()
Creates a new ProxySettings object.
SocketSettings Type
A container for the socket settings.
Remarks
This type is a container for socket-layer parameters.
Fields
DNSMode
DNSResolveModes
Default: 0
Selects the DNS resolver to use: the component's (secure) built-in one, or the one provided by the system.
dmAuto | 0 |
dmPlatform | 1 |
dmOwn | 2 |
dmOwnSecure | 3 |
DNSPort
int
Default: 0
Specifies the port number to be used for sending queries to the DNS server.
DNSQueryTimeout
int
Default: 0
The timeout (in milliseconds) for each DNS query. The value of 0 indicates an infinite timeout.
DNSServers
string
Default: ""
The addresses of DNS servers to use for address resolution, separated by commas or semicolons.
DNSTotalTimeout
int
Default: 0
The timeout (in milliseconds) for the whole resolution process. The value of 0 indicates an infinite timeout.
IncomingSpeedLimit
int
Default: 0
The maximum number of bytes to read from the socket, per second.
LocalAddress
string
Default: ""
The local network interface to bind the socket to.
LocalPort
int
Default: 0
The local port number to bind the socket to.
OutgoingSpeedLimit
int
Default: 0
The maximum number of bytes to write to the socket, per second.
Timeout
int
Default: 60000
The maximum period of waiting, in milliseconds, after which the socket operation is considered unsuccessful.
If Timeout is set to 0, a socket operation will expire after the system-default timeout (2 hrs 8 min for TCP stack).
UseIPv6
bool
Default: False
Enables or disables IP protocol version 6.
Constructors
public SocketSettings();
Public SocketSettings()
Creates a new SocketSettings object.
TLSSettings Type
A container for TLS connection settings.
Remarks
The TLS (Transport Layer Security) protocol provides security for information exchanged over insecure connections such as TCP/IP.
Fields
AutoValidateCertificates
bool
Default: True
Specifies whether server-side TLS certificates should be validated automatically using internal validation rules.
BaseConfiguration
SecureTransportPredefinedConfigurations
Default: 0
Selects the base configuration for the TLS settings. Several profiles are offered and tuned up for different purposes, such as high security or higher compatibility.
stpcDefault | 0 | |
stpcCompatible | 1 | |
stpcComprehensiveInsecure | 2 | |
stpcHighlySecure | 3 |
Ciphersuites
string
Default: ""
A list of ciphersuites separated with commas or semicolons. Each ciphersuite in the list may be prefixed with a minus sign (-) to indicate that the ciphersuite should be disabled rather than enabled. Besides the specific ciphersuite modifiers, this property supports the all (and -all) aliases, allowing all ciphersuites to be blanketly enabled or disabled at once.
Note: the list of ciphersuites provided to this property alters the baseline list of ciphersuites as defined by BaseConfiguration. Remember to start your ciphersuite string with -all; if you need to only enable a specific fixed set of ciphersuites. The list of supported ciphersuites is provided below:
- NULL_NULL_NULL
- RSA_NULL_MD5
- RSA_NULL_SHA
- RSA_RC4_MD5
- RSA_RC4_SHA
- RSA_RC2_MD5
- RSA_IDEA_MD5
- RSA_IDEA_SHA
- RSA_DES_MD5
- RSA_DES_SHA
- RSA_3DES_MD5
- RSA_3DES_SHA
- RSA_AES128_SHA
- RSA_AES256_SHA
- DH_DSS_DES_SHA
- DH_DSS_3DES_SHA
- DH_DSS_AES128_SHA
- DH_DSS_AES256_SHA
- DH_RSA_DES_SHA
- DH_RSA_3DES_SHA
- DH_RSA_AES128_SHA
- DH_RSA_AES256_SHA
- DHE_DSS_DES_SHA
- DHE_DSS_3DES_SHA
- DHE_DSS_AES128_SHA
- DHE_DSS_AES256_SHA
- DHE_RSA_DES_SHA
- DHE_RSA_3DES_SHA
- DHE_RSA_AES128_SHA
- DHE_RSA_AES256_SHA
- DH_ANON_RC4_MD5
- DH_ANON_DES_SHA
- DH_ANON_3DES_SHA
- DH_ANON_AES128_SHA
- DH_ANON_AES256_SHA
- RSA_RC2_MD5_EXPORT
- RSA_RC4_MD5_EXPORT
- RSA_DES_SHA_EXPORT
- DH_DSS_DES_SHA_EXPORT
- DH_RSA_DES_SHA_EXPORT
- DHE_DSS_DES_SHA_EXPORT
- DHE_RSA_DES_SHA_EXPORT
- DH_ANON_RC4_MD5_EXPORT
- DH_ANON_DES_SHA_EXPORT
- RSA_CAMELLIA128_SHA
- DH_DSS_CAMELLIA128_SHA
- DH_RSA_CAMELLIA128_SHA
- DHE_DSS_CAMELLIA128_SHA
- DHE_RSA_CAMELLIA128_SHA
- DH_ANON_CAMELLIA128_SHA
- RSA_CAMELLIA256_SHA
- DH_DSS_CAMELLIA256_SHA
- DH_RSA_CAMELLIA256_SHA
- DHE_DSS_CAMELLIA256_SHA
- DHE_RSA_CAMELLIA256_SHA
- DH_ANON_CAMELLIA256_SHA
- PSK_RC4_SHA
- PSK_3DES_SHA
- PSK_AES128_SHA
- PSK_AES256_SHA
- DHE_PSK_RC4_SHA
- DHE_PSK_3DES_SHA
- DHE_PSK_AES128_SHA
- DHE_PSK_AES256_SHA
- RSA_PSK_RC4_SHA
- RSA_PSK_3DES_SHA
- RSA_PSK_AES128_SHA
- RSA_PSK_AES256_SHA
- RSA_SEED_SHA
- DH_DSS_SEED_SHA
- DH_RSA_SEED_SHA
- DHE_DSS_SEED_SHA
- DHE_RSA_SEED_SHA
- DH_ANON_SEED_SHA
- SRP_SHA_3DES_SHA
- SRP_SHA_RSA_3DES_SHA
- SRP_SHA_DSS_3DES_SHA
- SRP_SHA_AES128_SHA
- SRP_SHA_RSA_AES128_SHA
- SRP_SHA_DSS_AES128_SHA
- SRP_SHA_AES256_SHA
- SRP_SHA_RSA_AES256_SHA
- SRP_SHA_DSS_AES256_SHA
- ECDH_ECDSA_NULL_SHA
- ECDH_ECDSA_RC4_SHA
- ECDH_ECDSA_3DES_SHA
- ECDH_ECDSA_AES128_SHA
- ECDH_ECDSA_AES256_SHA
- ECDHE_ECDSA_NULL_SHA
- ECDHE_ECDSA_RC4_SHA
- ECDHE_ECDSA_3DES_SHA
- ECDHE_ECDSA_AES128_SHA
- ECDHE_ECDSA_AES256_SHA
- ECDH_RSA_NULL_SHA
- ECDH_RSA_RC4_SHA
- ECDH_RSA_3DES_SHA
- ECDH_RSA_AES128_SHA
- ECDH_RSA_AES256_SHA
- ECDHE_RSA_NULL_SHA
- ECDHE_RSA_RC4_SHA
- ECDHE_RSA_3DES_SHA
- ECDHE_RSA_AES128_SHA
- ECDHE_RSA_AES256_SHA
- ECDH_ANON_NULL_SHA
- ECDH_ANON_RC4_SHA
- ECDH_ANON_3DES_SHA
- ECDH_ANON_AES128_SHA
- ECDH_ANON_AES256_SHA
- RSA_NULL_SHA256
- RSA_AES128_SHA256
- RSA_AES256_SHA256
- DH_DSS_AES128_SHA256
- DH_RSA_AES128_SHA256
- DHE_DSS_AES128_SHA256
- DHE_RSA_AES128_SHA256
- DH_DSS_AES256_SHA256
- DH_RSA_AES256_SHA256
- DHE_DSS_AES256_SHA256
- DHE_RSA_AES256_SHA256
- DH_ANON_AES128_SHA256
- DH_ANON_AES256_SHA256
- RSA_AES128_GCM_SHA256
- RSA_AES256_GCM_SHA384
- DHE_RSA_AES128_GCM_SHA256
- DHE_RSA_AES256_GCM_SHA384
- DH_RSA_AES128_GCM_SHA256
- DH_RSA_AES256_GCM_SHA384
- DHE_DSS_AES128_GCM_SHA256
- DHE_DSS_AES256_GCM_SHA384
- DH_DSS_AES128_GCM_SHA256
- DH_DSS_AES256_GCM_SHA384
- DH_ANON_AES128_GCM_SHA256
- DH_ANON_AES256_GCM_SHA384
- ECDHE_ECDSA_AES128_SHA256
- ECDHE_ECDSA_AES256_SHA384
- ECDH_ECDSA_AES128_SHA256
- ECDH_ECDSA_AES256_SHA384
- ECDHE_RSA_AES128_SHA256
- ECDHE_RSA_AES256_SHA384
- ECDH_RSA_AES128_SHA256
- ECDH_RSA_AES256_SHA384
- ECDHE_ECDSA_AES128_GCM_SHA256
- ECDHE_ECDSA_AES256_GCM_SHA384
- ECDH_ECDSA_AES128_GCM_SHA256
- ECDH_ECDSA_AES256_GCM_SHA384
- ECDHE_RSA_AES128_GCM_SHA256
- ECDHE_RSA_AES256_GCM_SHA384
- ECDH_RSA_AES128_GCM_SHA256
- ECDH_RSA_AES256_GCM_SHA384
- PSK_AES128_GCM_SHA256
- PSK_AES256_GCM_SHA384
- DHE_PSK_AES128_GCM_SHA256
- DHE_PSK_AES256_GCM_SHA384
- RSA_PSK_AES128_GCM_SHA256
- RSA_PSK_AES256_GCM_SHA384
- PSK_AES128_SHA256
- PSK_AES256_SHA384
- PSK_NULL_SHA256
- PSK_NULL_SHA384
- DHE_PSK_AES128_SHA256
- DHE_PSK_AES256_SHA384
- DHE_PSK_NULL_SHA256
- DHE_PSK_NULL_SHA384
- RSA_PSK_AES128_SHA256
- RSA_PSK_AES256_SHA384
- RSA_PSK_NULL_SHA256
- RSA_PSK_NULL_SHA384
- RSA_CAMELLIA128_SHA256
- DH_DSS_CAMELLIA128_SHA256
- DH_RSA_CAMELLIA128_SHA256
- DHE_DSS_CAMELLIA128_SHA256
- DHE_RSA_CAMELLIA128_SHA256
- DH_ANON_CAMELLIA128_SHA256
- RSA_CAMELLIA256_SHA256
- DH_DSS_CAMELLIA256_SHA256
- DH_RSA_CAMELLIA256_SHA256
- DHE_DSS_CAMELLIA256_SHA256
- DHE_RSA_CAMELLIA256_SHA256
- DH_ANON_CAMELLIA256_SHA256
- ECDHE_ECDSA_CAMELLIA128_SHA256
- ECDHE_ECDSA_CAMELLIA256_SHA384
- ECDH_ECDSA_CAMELLIA128_SHA256
- ECDH_ECDSA_CAMELLIA256_SHA384
- ECDHE_RSA_CAMELLIA128_SHA256
- ECDHE_RSA_CAMELLIA256_SHA384
- ECDH_RSA_CAMELLIA128_SHA256
- ECDH_RSA_CAMELLIA256_SHA384
- RSA_CAMELLIA128_GCM_SHA256
- RSA_CAMELLIA256_GCM_SHA384
- DHE_RSA_CAMELLIA128_GCM_SHA256
- DHE_RSA_CAMELLIA256_GCM_SHA384
- DH_RSA_CAMELLIA128_GCM_SHA256
- DH_RSA_CAMELLIA256_GCM_SHA384
- DHE_DSS_CAMELLIA128_GCM_SHA256
- DHE_DSS_CAMELLIA256_GCM_SHA384
- DH_DSS_CAMELLIA128_GCM_SHA256
- DH_DSS_CAMELLIA256_GCM_SHA384
- DH_anon_CAMELLIA128_GCM_SHA256
- DH_anon_CAMELLIA256_GCM_SHA384
- ECDHE_ECDSA_CAMELLIA128_GCM_SHA256
- ECDHE_ECDSA_CAMELLIA256_GCM_SHA384
- ECDH_ECDSA_CAMELLIA128_GCM_SHA256
- ECDH_ECDSA_CAMELLIA256_GCM_SHA384
- ECDHE_RSA_CAMELLIA128_GCM_SHA256
- ECDHE_RSA_CAMELLIA256_GCM_SHA384
- ECDH_RSA_CAMELLIA128_GCM_SHA256
- ECDH_RSA_CAMELLIA256_GCM_SHA384
- PSK_CAMELLIA128_GCM_SHA256
- PSK_CAMELLIA256_GCM_SHA384
- DHE_PSK_CAMELLIA128_GCM_SHA256
- DHE_PSK_CAMELLIA256_GCM_SHA384
- RSA_PSK_CAMELLIA128_GCM_SHA256
- RSA_PSK_CAMELLIA256_GCM_SHA384
- PSK_CAMELLIA128_SHA256
- PSK_CAMELLIA256_SHA384
- DHE_PSK_CAMELLIA128_SHA256
- DHE_PSK_CAMELLIA256_SHA384
- RSA_PSK_CAMELLIA128_SHA256
- RSA_PSK_CAMELLIA256_SHA384
- ECDHE_PSK_CAMELLIA128_SHA256
- ECDHE_PSK_CAMELLIA256_SHA384
- ECDHE_PSK_RC4_SHA
- ECDHE_PSK_3DES_SHA
- ECDHE_PSK_AES128_SHA
- ECDHE_PSK_AES256_SHA
- ECDHE_PSK_AES128_SHA256
- ECDHE_PSK_AES256_SHA384
- ECDHE_PSK_NULL_SHA
- ECDHE_PSK_NULL_SHA256
- ECDHE_PSK_NULL_SHA384
- ECDHE_RSA_CHACHA20_POLY1305_SHA256
- ECDHE_ECDSA_CHACHA20_POLY1305_SHA256
- DHE_RSA_CHACHA20_POLY1305_SHA256
- PSK_CHACHA20_POLY1305_SHA256
- ECDHE_PSK_CHACHA20_POLY1305_SHA256
- DHE_PSK_CHACHA20_POLY1305_SHA256
- RSA_PSK_CHACHA20_POLY1305_SHA256
- AES128_GCM_SHA256
- AES256_GCM_SHA384
- CHACHA20_POLY1305_SHA256
- AES128_CCM_SHA256
- AES128_CCM8_SHA256
ClientAuth
ClientAuthTypes
Default: 0
Enables or disables certificate-based client authentication.
Set this property to true to tune up the client authentication type:
ccatNoAuth | 0 | |
ccatRequestCert | 1 | |
ccatRequireCert | 2 |
ECCurves
string
Default: ""
Defines the elliptic curves to enable.
Extensions
string
Default: ""
Provides access to TLS extensions.
ForceResumeIfDestinationChanges
bool
Default: False
Whether to force TLS session resumption when the destination address changes.
PreSharedIdentity
string
Default: ""
Defines the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.
PreSharedKey
string
Default: ""
Contains the pre-shared key for the PSK (Pre-Shared Key) key-exchange mechanism, encoded with base16.
PreSharedKeyCiphersuite
string
Default: ""
Defines the ciphersuite used for PSK (Pre-Shared Key) negotiation.
RenegotiationAttackPreventionMode
RenegotiationAttackPreventionModes
Default: 2
Selects the renegotiation attack prevention mechanism.
The following options are available:
crapmCompatible | 0 | TLS 1.0 and 1.1 compatibility mode (renegotiation indication extension is disabled). |
crapmStrict | 1 | Renegotiation attack prevention is enabled and enforced. |
crapmAuto | 2 | Automatically choose whether to enable or disable renegotiation attack prevention. |
RevocationCheck
RevocationCheckKinds
Default: 1
Specifies the kind(s) of revocation check to perform.
Revocation checking is necessary to ensure the integrity of the chain and obtain up-to-date certificate validity and trustworthiness information.
crcNone | 0 | No revocation checking. |
crcAuto | 1 | Automatic mode selection. Currently this maps to crcAnyOCSPOrCRL, but it may change in the future. |
crcAllCRL | 2 | All provided CRL endpoints will be checked, and all checks must succeed. |
crcAllOCSP | 3 | All provided OCSP endpoints will be checked, and all checks must succeed. |
crcAllCRLAndOCSP | 4 | All provided CRL and OCSP endpoints will be checked, and all checks must succeed. |
crcAnyCRL | 5 | All provided CRL endpoints will be checked, and at least one check must succeed. |
crcAnyOCSP | 6 | All provided OCSP endpoints will be checked, and at least one check must succeed. |
crcAnyCRLOrOCSP | 7 | All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. CRL endpoints are checked first. |
crcAnyOCSPOrCRL | 8 | All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. OCSP endpoints are checked first. |
This setting controls the way the revocation checks are performed for every certificate in the chain. Typically certificates come with two types of revocation information sources: CRL (certificate revocation lists) and OCSP responders. CRLs are static objects periodically published by the CA at some online location. OCSP responders are active online services maintained by the CA that can provide up-to-date information on certificate statuses in near real time.
There are some conceptual differences between the two. CRLs are normally larger in size. Their use involves some latency because there is normally some delay between the time when a certificate was revoked and the time the subsequent CRL mentioning that is published. The benefits of CRL is that the same object can provide statuses for all certificates issued by a particular CA, and that the whole technology is much simpler than OCSP (and thus is supported by more CAs).
This setting lets you adjust the validation course by including or excluding certain types of revocation sources from the validation process. The crcAnyOCSPOrCRL setting (give preference to the faster OCSP route and only demand one source to succeed) is a good choice for most typical validation environments. The "crcAll*" modes are much stricter, and may be used in scenarios where bulletproof validity information is essential.
Note: If no CRL or OCSP endpoints are provided by the CA, the revocation check will be considered successful. This is because the CA chose not to supply revocation information for its certificates, meaning they are considered irrevocable.
Note: Within each of the above settings, if any retrieved CRL or OCSP response indicates that the certificate has been revoked, the revocation check fails.
SSLOptions
int
Default: 16
Various SSL (TLS) protocol options, set of
cssloExpectShutdownMessage | 0x001 | Wait for the close-notify message when shutting down the connection |
cssloOpenSSLDTLSWorkaround | 0x002 | (DEPRECATED) Use a DTLS version workaround when talking to very old OpenSSL versions |
cssloDisableKexLengthAlignment | 0x004 | Do not align the client-side PMS by the RSA modulus size. It is unlikely that you will ever need to adjust it. |
cssloForceUseOfClientCertHashAlg | 0x008 | Enforce the use of the client certificate hash algorithm. It is unlikely that you will ever need to adjust it. |
cssloAutoAddServerNameExtension | 0x010 | Automatically add the server name extension when known |
cssloAcceptTrustedSRPPrimesOnly | 0x020 | Accept trusted SRP primes only |
cssloDisableSignatureAlgorithmsExtension | 0x040 | Disable (do not send) the signature algorithms extension. It is unlikely that you will ever need to adjust it. |
cssloIntolerateHigherProtocolVersions | 0x080 | (server option) Do not allow fallback from TLS versions higher than currently enabled |
cssloStickToPrefCertHashAlg | 0x100 | Stick to preferred certificate hash algorithms |
cssloNoImplicitTLS12Fallback | 0x200 | Disable implicit TLS 1.3 to 1.2 fallbacks |
cssloUseHandshakeBatches | 0x400 | Send the handshake message as large batches rather than individually |
TLSMode
SSLModes
Default: 0
Specifies the TLS mode to use.
smDefault | 0 | |
smNoTLS | 1 | Do not use TLS |
smExplicitTLS | 2 | Connect to the server without any encryption and then request an SSL session. |
smImplicitTLS | 3 | Connect to the specified port, and establish the SSL session at once. |
smMixedTLS | 4 | Connect to the specified port, and establish the SSL session at once, but allow plain data. |
UseExtendedMasterSecret
bool
Default: False
Enables the Extended Master Secret Extension, as defined in RFC 7627.
UseSessionResumption
bool
Default: False
Enables or disables the TLS session resumption capability.
Versions
int
Default: 16
The SSL/TLS versions to enable by default.
csbSSL2 | 0x01 | SSL 2 |
csbSSL3 | 0x02 | SSL 3 |
csbTLS1 | 0x04 | TLS 1.0 |
csbTLS11 | 0x08 | TLS 1.1 |
csbTLS12 | 0x10 | TLS 1.2 |
csbTLS13 | 0x20 | TLS 1.3 |
Constructors
public TLSSettings();
Public TLSSettings()
Creates a new TLSSettings object.
UserAccount Type
A container for user account information.
Remarks
UserAccount objects are used to store user account information, such as logins and passwords.
Fields
AssociatedData
byte[]
Default: ""
Contains the user's Associated Data when SSH AEAD (Authenticated Encryption with Associated Data) algorithm is used.
BasePath
string
Default: ""
Base path for this user in the server's file system.
Certificate
byte[]
Default: ""
Contains the user's certificate.
Data
string
Default: ""
Contains uninterpreted user-defined data that should be associated with the user account, such as comments or custom settings.
Email
string
Default: ""
The user's email address.
HashAlgorithm
string
Default: ""
Specifies the hash algorithm used to generate TOTP (Time-based One-Time Passwords) passwords for this user. Three HMAC algorithms are supported, with SHA-1, SHA-256, and SHA-512 digests:
SB_MAC_ALGORITHM_HMAC_SHA1 | SHA1 | |
SB_MAC_ALGORITHM_HMAC_SHA256 | SHA256 | |
SB_MAC_ALGORITHM_HMAC_SHA512 | SHA512 |
IncomingSpeedLimit
int
Default: 0
Specifies the incoming speed limit for this user. The value of 0 (zero) means "no limitation".
OtpAlgorithm
OTPAlgorithms
Default: 0
The algorithm used to generate one-time passwords (OTP) for this user, either HOTP (Hash-based OTP) or TOTP (Time-based OTP). In the former case, a value of a dedicated counter is used to generate a unique password, while in the latter the password is generated on the basis of the current time value.
oaHmac | 0 | |
oaTime | 1 |
OTPLen
int
Default: 0
Specifies the length of the user's OTP password.
OtpValue
int
Default: 0
The user's time interval (TOTP) or Counter (HOTP).
OutgoingSpeedLimit
int
Default: 0
Specifies the outgoing speed limit for this user. The value of 0 (zero) means "no limitation".
Password
string
Default: ""
The user's authentication password.
SharedSecret
byte[]
Default: ""
Contains the user's secret key, which is essentially a shared secret between the client and server.
Shared secrets can be used in TLS-driven protocols, as well as in OTP (where it is called a 'key secret') for generating one-time passwords on one side, and validate them on the other.
SSHKey
byte[]
Default: ""
Contains the user's SSH key.
Username
string
Default: ""
The registered name (login) of the user.
Constructors
public UserAccount();
Public UserAccount()
Creates a new UserAccount object
Config Settings (Authenticator Component)
The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.DCAuthenticator Config Settings
If IgnoreSystemTrust is True, certificates residing in the trusted root store are treated as if they are known, rather than trusted. Only certificates provided via other means (such as the TrustedCertificates property) are considered trusted.
- CA, revocation source, TLS key usage requirements are not mandated
- Violation of OCSP issuer requirements are ignored
- The AuthorityKeyID extension in CRL- and certificate-issuing CAs are ignored (helps with incorrectly renewed certificates)
- Basic constraints and name constraints of CA certificates are ignored
- Some weaker algorithms are tolerated
Base Config Settings
You can switch this property off to improve performance if your project only uses known, good private keys.
Supported values are:
off | No caching (default) | |
local | Local caching | |
global | Global caching |
This setting only applies to sessions negotiated with TLS version 1.3.
Supported values are:
file | File | |
console | Console | |
systemlog | System Log (supported for Android only) | |
debugger | Debugger (supported for VCL for Windows and .Net) |
Supported values are:
time | Current time | |
level | Level | |
package | Package name | |
module | Module name | |
class | Class name | |
method | Method name | |
threadid | Thread Id | |
contenttype | Content type | |
content | Content | |
all | All details |
Supported filter names are:
exclude-package | Exclude a package specified in the value | |
exclude-module | Exclude a module specified in the value | |
exclude-class | Exclude a class specified in the value | |
exclude-method | Exclude a method specified in the value | |
include-package | Include a package specified in the value | |
include-module | Include a module specified in the value | |
include-class | Include a class specified in the value | |
include-method | Include a method specified in the value |
none | No flush (caching only) | |
immediate | Immediate flush (real-time logging) | |
maxcount | Flush cached entries upon reaching LogMaxEventCount entries in the cache. |
Supported values are:
none | None (by default) | |
fatal | Severe errors that cause premature termination. | |
error | Other runtime errors or unexpected conditions. | |
warning | Use of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong". | |
info | Interesting runtime events (startup/shutdown). | |
debug | Detailed information on flow of through the system. | |
trace | More detailed information. |
The default value of this setting is 100.
none | No rotation | |
deleteolder | Delete older entries from the cache upon reaching LogMaxEventCount | |
keepolder | Keep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded) |
Supported Values:
certificate | Enables caching of certificates. |
crl | Enables caching of Certificate Revocation Lists (CRLs). |
ocsp | Enables caching of OCSP (Online Certificate Status Protocol) responses. |
Example (default value):
PKICache=certificate,crl,ocsp
In this example, the component caches certificates, CRLs, and OCSP responses.
The default value is an empty string - no cached PKI data is stored on disk.
Example:
PKICachePath=C:\Temp\cache
In this example, the cached PKI data is stored in the C:\Temp\cache directory.
Supported values are:
none | No static DNS rules (default) | |
local | Local static DNS rules | |
global | Global static DNS rules |
This setting only applies to certificates originating from a Windows system store.
The property accepts comma-separated values where the first descriptor name is used when the OID is mapped, and subsequent values act as aliases for parsing.
Syntax:
Config("XMLRDNDescriptorName[OID]=PrimaryName,Alias1,Alias2");
Where:
OID: The Object Identifier from the certificate's IssuerRDN or SubjectRDN that you want to map.
PrimaryName: The main descriptor name used in the XML signature when the OID is encountered.
Alias1, Alias2, ...: Optional alternative names recognized during parsing.
Usage Examples:
Map OID 2.5.4.5 to SERIALNUMBER:
Config("XMLRDNDescriptorName[2.5.4.5]=SERIALNUMBER");
Map OID 1.2.840.113549.1.9.1 to E, with aliases EMAIL and EMAILADDRESS:
Config("XMLRDNDescriptorName[1.2.840.113549.1.9.1]=E,EMAIL,EMAILADDRESS");