WebSocketClient Component

Properties   Methods   Events   Config Settings   Errors  

The WebSocketClient component provides the client-side functionality of the WebSocket protocol.

Syntax

nsoftware.SecureBlackbox.WebSocketClient

Remarks

Use this component to set up secure connections from your application with a WebSocket server.

Property List


The following is the full list of the properties of the component with short descriptions. Click on the links for further details.

AuthTypesDefines allowed HTTP authentication types.
BlockedCertificatesThe certificates that must be rejected as trust anchors.
ConnectedIndicates whether the connection is active.
ConnectionInfoReturns the details of the underlying network connection.
ExternalCryptoProvides access to external signing and DC parameters.
FIPSModeReserved.
KnownCertificatesAdditional certificates for chain validation.
KnownCRLsAdditional CRLs for chain validation.
KnownOCSPsAdditional OCSP responses for chain validation.
ProxyThe proxy server settings.
RequestParametersProvides access to common HTTP request properties.
SocketSettingsManages network connection settings.
TLSClientChainThe TLS client certificate chain.
TLSServerChainThe TLS server's certificate chain.
TLSSettingsManages TLS layer settings.
TrustedCertificatesA list of trusted certificates for chain validation.

Method List


The following is the full list of the methods of the component with short descriptions. Click on the links for further details.

ConfigSets or retrieves a configuration setting.
ConnectEstablishes connection to the server.
DisconnectDisconnects from the server.
DoActionPerforms an additional action.
ResetResets the component settings.
SendDataSends a piece of binary data to the server.
SendKeepAliveSends a keep-alive message.
SendTextSends a piece of text data to the server.

Event List


The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.

BinaryDataPasses a received chunk of binary data to the application.
ConnectReports the setup of the connection.
DisconnectNotifies the application of websocket disconnection.
ErrorInformation about errors during data delivery.
ExternalSignHandles remote or external signing initiated by the SignExternal method or other source.
KeepAliveResponseReports a response to a keep-alive message.
NotificationThis event notifies the application about an underlying control flow event.
TextDataPasses a received chunk of text data to the application.
TLSCertNeededFires when a remote TLS party requests a client certificate.
TLSCertValidateThis event is fired upon receipt of the TLS server's certificate, allowing the user to control its acceptance.
TLSEstablishedFires when a TLS handshake with Host successfully completes.
TLSHandshakeFires when a new TLS handshake is initiated, before the handshake commences.
TLSPSKNotifies the application about the PSK key exchange.
TLSShutdownReports the graceful closure of a TLS connection.

Config Settings


The following is a list of config settings for the component with short descriptions. Click on the links for further details.

AuthStickToLastURLTBD.
CacheStreamOutputTells the component whether to cache stream- and file-bound responses in the component.
CookiesTBD.
DefClientCookieFmtTBD.
ExtensionsConfigures protocol extensions to use.
ForceNTLMAuthActivates and enforces NTLM authentication.
IgnoreCookieSecureFlagTBD.
IgnoreSystemTrustWhether trusted Windows Certificate Stores should be treated as trusted.
IgnoreUnknownTransferEncodingsAll incoming responses with unknown transfer encodings are ignored if this property is true.
KeepConnectionOpenTBD.
MaxRedirectionsThe maximum number of HTTP redirects.
OutputFileSpecifies the file where the received content should be saved to.
PersistentAuthHeaderWhether to resend NTLM negotiation on every request.
RequestCompressionGZipAsk server to use GZip compression.
RequestCompressionLevelAsk server to use the specified compression level.
SendBufferSizeSize of send buffer in bytes.
StaticDNSSpecifies whether static DNS rules should be used.
StaticIPAddress[domain]Gets or sets an IP address for the specified domain name.
StaticIPAddressesGets or sets all the static DNS rules.
SuppressRedirectionContentWhether to suppress the redirection content.
TempPathPath for storing temporary files.
TLSExtensionsTBD.
TLSPeerExtensionsTBD.
TLSSessionGroupSpecifies the group name of TLS sessions to be used for session resumption.
TLSSessionLifetimeSpecifies lifetime in seconds of the cached TLS session.
TLSSessionPurgeIntervalSpecifies how often the session cache should remove the expired TLS sessions.
TolerateMinorChainIssuesWhether to tolerate minor chain issues.
Use100ContinueWhether to use 100-continue for POST and PUT commands.
UseCompressionWhether to use GZip compression.
UseKerberosAuthTBD.
UseMicrosoftCTLEnables or disables the automatic use of the Microsoft online certificate trust list.
UseSystemCertificatesEnables or disables the use of the system certificates.
ASN1UseGlobalTagCacheControls whether ASN.1 module should use a global object cache.
AssignSystemSmartCardPinsSpecifies whether CSP-level PINs should be assigned to CNG keys.
CheckKeyIntegrityBeforeUseEnables or disable private key integrity check before use.
CookieCachingSpecifies whether a cookie cache should be used for HTTP(S) transports.
CookiesGets or sets local cookies for the component.
DefDeriveKeyIterationsSpecifies the default key derivation algorithm iteration count.
DNSLocalSuffixThe suffix to assign for TLD names.
EnableClientSideSSLFFDHEEnables or disables finite field DHE key exchange support in TLS clients.
GlobalCookiesGets or sets global cookies for all the HTTP transports.
HardwareCryptoUsePolicyThe hardware crypto usage policy.
HttpUserAgentSpecifies the user agent name to be used by all HTTP clients.
HttpVersionThe HTTP version to use in any inner HTTP client components created.
IgnoreExpiredMSCTLSigningCertWhether to tolerate the expired Windows Update signing certificate.
ListDelimiterThe delimiter character for multi-element lists.
LogDestinationSpecifies the debug log destination.
LogDetailsSpecifies the debug log details to dump.
LogFileSpecifies the debug log filename.
LogFiltersSpecifies the debug log filters.
LogFlushModeSpecifies the log flush mode.
LogLevelSpecifies the debug log level.
LogMaxEventCountSpecifies the maximum number of events to cache before further action is taken.
LogRotationModeSpecifies the log rotation mode.
MaxASN1BufferLengthSpecifies the maximal allowed length for ASN.1 primitive tag data.
MaxASN1TreeDepthSpecifies the maximal depth for processed ASN.1 trees.
OCSPHashAlgorithmSpecifies the hash algorithm to be used to identify certificates in OCSP requests.
OldClientSideRSAFallbackSpecifies whether the SSH client should use a SHA1 fallback.
ProductVersionReturns the version of the SecureBlackbox library.
ServerSSLDHKeyLengthSets the size of the TLS DHE key exchange group.
StaticDNSSpecifies whether static DNS rules should be used.
StaticIPAddress[domain]Gets or sets an IP address for the specified domain name.
StaticIPAddressesGets or sets all the static DNS rules.
TagAllows to store any custom data.
TLSSessionGroupSpecifies the group name of TLS sessions to be used for session resumption.
TLSSessionLifetimeSpecifies lifetime in seconds of the cached TLS session.
TLSSessionPurgeIntervalSpecifies how often the session cache should remove the expired TLS sessions.
UseInternalRandomSwitches between SecureBlackbox-own and platform PRNGs.
UseLegacyAdESValidationEnables legacy AdES validation mode.
UseOwnDNSResolverSpecifies whether the client components should use own DNS resolver.
UseSharedSystemStoragesSpecifies whether the validation engine should use a global per-process copy of the system certificate stores.
UseSystemNativeSizeCalculationAn internal CryptoAPI access tweak.
UseSystemOAEPAndPSSEnforces or disables the use of system-driven RSA OAEP and PSS computations.
UseSystemRandomEnables or disables the use of the OS PRNG.

AuthTypes Property (WebSocketClient Component)

Defines allowed HTTP authentication types.

Syntax

public int AuthTypes { get; set; }
Public Property AuthTypes As Integer

Default Value

0

Remarks

Use this property to define which authentication types the component should support or attempt to use by enabling the relevant bitmask flags:

haBasic0x01Basic authentication

haDigest0x02Digest authentication (RFC 2617)

haNTLM0x04Windows NTLM authentication

haKerberos0x08Kerberos (Negotiate) authentication

haOAuth20x10OAuth2 authentication

BlockedCertificates Property (WebSocketClient Component)

The certificates that must be rejected as trust anchors.

Syntax

public CertificateList BlockedCertificates { get; }
Public Property BlockedCertificates As CertificateList

Remarks

Use this property to provide a list of compromised or blocked certificates. Any chain containing a blocked certificate will fail validation.

This property is not available at design time.

Please refer to the Certificate type for a complete list of fields.

Connected Property (WebSocketClient Component)

Indicates whether the connection is active.

Syntax

public bool Connected { get; }
Public ReadOnly Property Connected As Boolean

Default Value

False

Remarks

Use this property to check if the connection is alive.

This property is read-only and not available at design time.

ConnectionInfo Property (WebSocketClient Component)

Returns the details of the underlying network connection.

Syntax

public TLSConnectionInfo ConnectionInfo { get; }
Public ReadOnly Property ConnectionInfo As TLSConnectionInfo

Remarks

Use this property to learn about the connection setup, such as the protocol security details and amounts of data transferred each way.

This property is read-only and not available at design time.

Please refer to the TLSConnectionInfo type for a complete list of fields.

ExternalCrypto Property (WebSocketClient Component)

Provides access to external signing and DC parameters.

Syntax

public ExternalCrypto ExternalCrypto { get; }
Public ReadOnly Property ExternalCrypto As ExternalCrypto

Remarks

Use this property to tune-up remote cryptography settings. SecureBlackbox supports two independent types of external cryptography: synchronous (based on the ExternalSign event) and asynchronous (based on the DC protocol and the DCAuth signing component).

This property is read-only.

Please refer to the ExternalCrypto type for a complete list of fields.

FIPSMode Property (WebSocketClient Component)

Reserved.

Syntax

public bool FIPSMode { get; set; }
Public Property FIPSMode As Boolean

Default Value

False

Remarks

This property is reserved for future use.

KnownCertificates Property (WebSocketClient Component)

Additional certificates for chain validation.

Syntax

public CertificateList KnownCertificates { get; }
Public Property KnownCertificates As CertificateList

Remarks

Use this property to supply a list of additional certificates that might be needed for chain validation. An example of a scenario where you might want to do that is when intermediary CA certificates are absent from the standard system locations (or when there are no standard system locations), and therefore should be supplied to the component manually.

The purpose of the certificates to be added to this collection is roughly equivalent to that of the Intermediate Certification Authorities system store in Windows.

Do not add trust anchors or root certificates to this collection: add them to TrustedCertificates instead.

This property is not available at design time.

Please refer to the Certificate type for a complete list of fields.

KnownCRLs Property (WebSocketClient Component)

Additional CRLs for chain validation.

Syntax

public CRLList KnownCRLs { get; }
Public Property KnownCRLs As CRLList

Remarks

Use this property to supply additional CRLs that might be needed for chain validation. This property may be helpful when a chain is validated in offline mode, and the associated CRLs are stored separately from the signed message or document.

This property is not available at design time.

Please refer to the CRL type for a complete list of fields.

KnownOCSPs Property (WebSocketClient Component)

Additional OCSP responses for chain validation.

Syntax

public OCSPResponseList KnownOCSPs { get; }
Public Property KnownOCSPs As OCSPResponseList

Remarks

Use this property to supply additional OCSP responses that might be needed for chain validation. This property may be helpful when a chain is validated in offline mode, and the associated OCSP responses are stored separately from the signed message or document.

This property is not available at design time.

Please refer to the OCSPResponse type for a complete list of fields.

Proxy Property (WebSocketClient Component)

The proxy server settings.

Syntax

public ProxySettings Proxy { get; }
Public ReadOnly Property Proxy As ProxySettings

Remarks

Use this property to tune up the proxy server settings.

This property is read-only.

Please refer to the ProxySettings type for a complete list of fields.

RequestParameters Property (WebSocketClient Component)

Provides access to common HTTP request properties.

Syntax

public HTTPRequestParameters RequestParameters { get; set; }
Public Property RequestParameters As HTTPRequestParameters

Remarks

Use this property to configure the HTTP request properties.

This property is not available at design time.

Please refer to the HTTPRequestParameters type for a complete list of fields.

SocketSettings Property (WebSocketClient Component)

Manages network connection settings.

Syntax

public SocketSettings SocketSettings { get; }
Public ReadOnly Property SocketSettings As SocketSettings

Remarks

Use this property to tune up network connection parameters.

This property is read-only.

Please refer to the SocketSettings type for a complete list of fields.

TLSClientChain Property (WebSocketClient Component)

The TLS client certificate chain.

Syntax

public CertificateList TLSClientChain { get; }
Public Property TLSClientChain As CertificateList

Remarks

Assign a certificate chain to this property to enable TLS client authentication in the component. Note that the client's end-entity certificate should have a private key associated with it.

Use the CertificateStorage or CertificateManager components to import the certificate from a file, system store, or PKCS11 device.

This property is not available at design time.

Please refer to the Certificate type for a complete list of fields.

TLSServerChain Property (WebSocketClient Component)

The TLS server's certificate chain.

Syntax

public CertificateList TLSServerChain { get; }
Public ReadOnly Property TLSServerChain As CertificateList

Remarks

Use this property to access the certificate chain sent by the TLS server. This property is ready to read when the TLSCertValidate event is fired by the client component.

This property is read-only and not available at design time.

Please refer to the Certificate type for a complete list of fields.

TLSSettings Property (WebSocketClient Component)

Manages TLS layer settings.

Syntax

public TLSSettings TLSSettings { get; }
Public ReadOnly Property TLSSettings As TLSSettings

Remarks

Use this property to tune up the TLS layer parameters.

This property is read-only.

Please refer to the TLSSettings type for a complete list of fields.

TrustedCertificates Property (WebSocketClient Component)

A list of trusted certificates for chain validation.

Syntax

public CertificateList TrustedCertificates { get; }
Public Property TrustedCertificates As CertificateList

Remarks

Use this property to supply a list of trusted certificates that might be needed for chain validation. An example of a scenario where you might want to do that is when root CA certificates are absent from the standard system locations (or when there are no standard system locations), and therefore should be supplied to the component manually.

The purpose of this certificate collection is largely the same as that of the Windows Trusted Root Certification Authorities system store.

Use this property with extreme care as it directly affects chain verifiability; a wrong certificate added to the trusted list may result in bad chains being accepted, and forfeited signatures being recognized as genuine. Only add certificates that originate from the parties that you know and trust.

This property is not available at design time.

Please refer to the Certificate type for a complete list of fields.

Config Method (WebSocketClient Component)

Sets or retrieves a configuration setting.

Syntax

public string Config(string configurationString);
Public Function Config(ByVal ConfigurationString As String) As String

Remarks

Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Connect Method (WebSocketClient Component)

Establishes connection to the server.

Syntax

public void Connect(string address, string protocols);
Public Sub Connect(ByVal Address As String, ByVal Protocols As String)

Remarks

Call this method to establish remote connection to a server at the provided web Address (URL).

Disconnect Method (WebSocketClient Component)

Disconnects from the server.

Syntax

public void Disconnect();
Public Sub Disconnect()

Remarks

Call this method to close the connection to the server.

DoAction Method (WebSocketClient Component)

Performs an additional action.

Syntax

public string DoAction(string actionID, string actionParams);
Public Function DoAction(ByVal ActionID As String, ByVal ActionParams As String) As String

Remarks

DoAction is a generic method available in every component. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.

The unique identifier (case insensitive) of the action is provided in the ActionID parameter.

ActionParams contains the value of a single parameter, or a list of multiple parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....

Reset Method (WebSocketClient Component)

Resets the component settings.

Syntax

public void Reset();
Public Sub Reset()

Remarks

Reset is a generic method available in every component.

SendData Method (WebSocketClient Component)

Sends a piece of binary data to the server.

Syntax

public void SendData(byte[] buffer);
Public Sub SendData(ByVal Buffer As Byte())

Remarks

Use this method to send a piece of binary data to the server.

SendKeepAlive Method (WebSocketClient Component)

Sends a keep-alive message.

Syntax

public void SendKeepAlive();
Public Sub SendKeepAlive()

Remarks

Use this method to send a keep-alive 'ping' to the server. The response, if it comes back, will be reported via the KeepAliveResponse event.

Keep-alive messages provide good means for keeping the connection alive and stay immune to timeouts.

SendText Method (WebSocketClient Component)

Sends a piece of text data to the server.

Syntax

public void SendText(string text);
Public Sub SendText(ByVal Text As String)

Remarks

Use this method to send a piece of text data to the server.

BinaryData Event (WebSocketClient Component)

Passes a received chunk of binary data to the application.

Syntax

public event OnBinaryDataHandler OnBinaryData;

public delegate void OnBinaryDataHandler(object sender, WebSocketClientBinaryDataEventArgs e);

public class WebSocketClientBinaryDataEventArgs : EventArgs {
  public byte[] Buffer { get; }
  public bool Last { get; }
}
Public Event OnBinaryData As OnBinaryDataHandler

Public Delegate Sub OnBinaryDataHandler(sender As Object, e As WebSocketClientBinaryDataEventArgs)

Public Class WebSocketClientBinaryDataEventArgs Inherits EventArgs
  Public ReadOnly Property Buffer As Byte()
  Public ReadOnly Property Last As Boolean
End Class

Remarks

The component fires this event repeatedly to pass incoming pieces of binary data to the application. The Last parameter indicates that this is the last chunk.

Connect Event (WebSocketClient Component)

Reports the setup of the connection.

Syntax

public event OnConnectHandler OnConnect;

public delegate void OnConnectHandler(object sender, WebSocketClientConnectEventArgs e);

public class WebSocketClientConnectEventArgs : EventArgs {
  public string Key { get; }
  public string SubProtocol { get; }
  public string Extensions { get; }
}
Public Event OnConnect As OnConnectHandler

Public Delegate Sub OnConnectHandler(sender As Object, e As WebSocketClientConnectEventArgs)

Public Class WebSocketClientConnectEventArgs Inherits EventArgs
  Public ReadOnly Property Key As String
  Public ReadOnly Property SubProtocol As String
  Public ReadOnly Property Extensions As String
End Class

Remarks

The component fires this event to notify of successful websocket connection setup.

Disconnect Event (WebSocketClient Component)

Notifies the application of websocket disconnection.

Syntax

Public Event OnDisconnect As OnDisconnectHandler

Public Delegate Sub OnDisconnectHandler(sender As Object, e As WebSocketClientDisconnectEventArgs)

Public Class WebSocketClientDisconnectEventArgs Inherits EventArgs
End Class

Remarks

Subscribe to this event to get notified of websocket disconnection.

Error Event (WebSocketClient Component)

Information about errors during data delivery.

Syntax

public event OnErrorHandler OnError;

public delegate void OnErrorHandler(object sender, WebSocketClientErrorEventArgs e);

public class WebSocketClientErrorEventArgs : EventArgs {
  public int ErrorCode { get; }
  public bool Fatal { get; }
  public bool Remote { get; }
  public string Description { get; }
}
Public Event OnError As OnErrorHandler

Public Delegate Sub OnErrorHandler(sender As Object, e As WebSocketClientErrorEventArgs)

Public Class WebSocketClientErrorEventArgs Inherits EventArgs
  Public ReadOnly Property ErrorCode As Integer
  Public ReadOnly Property Fatal As Boolean
  Public ReadOnly Property Remote As Boolean
  Public ReadOnly Property Description As String
End Class

Remarks

The event is fired in case of exceptional conditions during message processing.

ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the HTTPS section.

ExternalSign Event (WebSocketClient Component)

Handles remote or external signing initiated by the SignExternal method or other source.

Syntax

public event OnExternalSignHandler OnExternalSign;

public delegate void OnExternalSignHandler(object sender, WebSocketClientExternalSignEventArgs e);

public class WebSocketClientExternalSignEventArgs : EventArgs {
  public string OperationId { get; }
  public string HashAlgorithm { get; }
  public string Pars { get; }
  public string Data { get; }
  public string SignedData { get; set; }
}
Public Event OnExternalSign As OnExternalSignHandler

Public Delegate Sub OnExternalSignHandler(sender As Object, e As WebSocketClientExternalSignEventArgs)

Public Class WebSocketClientExternalSignEventArgs Inherits EventArgs
  Public ReadOnly Property OperationId As String
  Public ReadOnly Property HashAlgorithm As String
  Public ReadOnly Property Pars As String
  Public ReadOnly Property Data As String
  Public Property SignedData As String
End Class

Remarks

Assign a handler to this event if you need to delegate a low-level signing operation to an external, remote, or custom signing engine. Depending on the settings, the handler will receive a hashed or unhashed value to be signed.

The event handler must pass the value of Data to the signer, obtain the signature, and pass it back to the component via the SignedData parameter.

OperationId provides a comment about the operation and its origin. It depends on the exact component being used, and may be empty. HashAlgorithm specifies the hash algorithm being used for the operation, and Pars contains algorithm-dependent parameters.

The component uses base16 (hex) encoding for the Data, SignedData, and Pars parameters. If your signing engine uses a different input and output encoding, you may need to decode and/or encode the data before and/or after the signing.

A sample MD5 hash encoded in base16: a0dee2a0382afbb09120ffa7ccd8a152 - lower case base16 A0DEE2A0382AFBB09120FFA7CCD8A152 - upper case base16

A sample event handler that uses the .NET RSACryptoServiceProvider class may look like the following: signer.OnExternalSign += (s, e) => { var cert = new X509Certificate2("cert.pfx", "", X509KeyStorageFlags.Exportable); var key = (RSACryptoServiceProvider)cert.PrivateKey; var dataToSign = e.Data.FromBase16String(); var signedData = key.SignHash(dataToSign, "2.16.840.1.101.3.4.2.1"); e.SignedData = signedData.ToBase16String(); };

KeepAliveResponse Event (WebSocketClient Component)

Reports a response to a keep-alive message.

Syntax

Remarks

This event is triggered when a response to a previously sent keep-alive message is received.

Notification Event (WebSocketClient Component)

This event notifies the application about an underlying control flow event.

Syntax

public event OnNotificationHandler OnNotification;

public delegate void OnNotificationHandler(object sender, WebSocketClientNotificationEventArgs e);

public class WebSocketClientNotificationEventArgs : EventArgs {
  public string EventID { get; }
  public string EventParam { get; }
}
Public Event OnNotification As OnNotificationHandler

Public Delegate Sub OnNotificationHandler(sender As Object, e As WebSocketClientNotificationEventArgs)

Public Class WebSocketClientNotificationEventArgs Inherits EventArgs
  Public ReadOnly Property EventID As String
  Public ReadOnly Property EventParam As String
End Class

Remarks

The component fires this event to let the application know about some event, occurrence, or milestone in the component. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.

The unique identifier of the event is provided in the EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the component, the exact action it is performing, or the document being processed, one or both may be omitted.

TextData Event (WebSocketClient Component)

Passes a received chunk of text data to the application.

Syntax

public event OnTextDataHandler OnTextData;

public delegate void OnTextDataHandler(object sender, WebSocketClientTextDataEventArgs e);

public class WebSocketClientTextDataEventArgs : EventArgs {
  public string Text { get; }
  public bool Last { get; }
}
Public Event OnTextData As OnTextDataHandler

Public Delegate Sub OnTextDataHandler(sender As Object, e As WebSocketClientTextDataEventArgs)

Public Class WebSocketClientTextDataEventArgs Inherits EventArgs
  Public ReadOnly Property Text As String
  Public ReadOnly Property Last As Boolean
End Class

Remarks

The component fires this event repeatedly to pass incoming pieces of text data to the application. The Last parameter indicates that this is the last chunk.

TLSCertNeeded Event (WebSocketClient Component)

Fires when a remote TLS party requests a client certificate.

Syntax

public event OnTLSCertNeededHandler OnTLSCertNeeded;

public delegate void OnTLSCertNeededHandler(object sender, WebSocketClientTLSCertNeededEventArgs e);

public class WebSocketClientTLSCertNeededEventArgs : EventArgs {
  public string Host { get; }
  public string CANames { get; }
}
Public Event OnTLSCertNeeded As OnTLSCertNeededHandler

Public Delegate Sub OnTLSCertNeededHandler(sender As Object, e As WebSocketClientTLSCertNeededEventArgs)

Public Class WebSocketClientTLSCertNeededEventArgs Inherits EventArgs
  Public ReadOnly Property Host As String
  Public ReadOnly Property CANames As String
End Class

Remarks

This event fires to notify the implementation that a remote TLS server has requested a client certificate. The Host parameter identifies the host that makes a request, and the CANames parameter (optional, according to the TLS spec) advises on the accepted issuing CAs.

Use the TLSClientChain property in response to this event to provide the requested certificate. Please make sure the client certificate includes the associated private key. Note that you may set the certificates before the connection without waiting for this event to fire.

This event is preceded by the TLSHandshake event for the given host and, if the certificate was accepted, succeeded by the TLSEstablished event.

TLSCertValidate Event (WebSocketClient Component)

This event is fired upon receipt of the TLS server's certificate, allowing the user to control its acceptance.

Syntax

public event OnTLSCertValidateHandler OnTLSCertValidate;

public delegate void OnTLSCertValidateHandler(object sender, WebSocketClientTLSCertValidateEventArgs e);

public class WebSocketClientTLSCertValidateEventArgs : EventArgs {
  public string ServerHost { get; }
  public string ServerIP { get; }
  public bool Accept { get; set; }
}
Public Event OnTLSCertValidate As OnTLSCertValidateHandler

Public Delegate Sub OnTLSCertValidateHandler(sender As Object, e As WebSocketClientTLSCertValidateEventArgs)

Public Class WebSocketClientTLSCertValidateEventArgs Inherits EventArgs
  Public ReadOnly Property ServerHost As String
  Public ReadOnly Property ServerIP As String
  Public Property Accept As Boolean
End Class

Remarks

This event is fired during a TLS handshake. Use the TLSServerChain property to access the certificate chain. In general, components may contact a number of TLS endpoints during their work, depending on their configuration.

Accept is assigned in accordance with the outcome of the internal validation check performed by the component, and can be adjusted if needed.

TLSEstablished Event (WebSocketClient Component)

Fires when a TLS handshake with Host successfully completes.

Syntax

public event OnTLSEstablishedHandler OnTLSEstablished;

public delegate void OnTLSEstablishedHandler(object sender, WebSocketClientTLSEstablishedEventArgs e);

public class WebSocketClientTLSEstablishedEventArgs : EventArgs {
  public string Host { get; }
  public string Version { get; }
  public string Ciphersuite { get; }
  public byte[] ConnectionId { get; }
  public bool Abort { get; set; }
}
Public Event OnTLSEstablished As OnTLSEstablishedHandler

Public Delegate Sub OnTLSEstablishedHandler(sender As Object, e As WebSocketClientTLSEstablishedEventArgs)

Public Class WebSocketClientTLSEstablishedEventArgs Inherits EventArgs
  Public ReadOnly Property Host As String
  Public ReadOnly Property Version As String
  Public ReadOnly Property Ciphersuite As String
  Public ReadOnly Property ConnectionId As Byte()
  Public Property Abort As Boolean
End Class

Remarks

The component uses this event to notify the application about a successful completion of a TLS handshake.

The Version, Ciphersuite, and ConnectionId parameters indicate the security parameters of the new connection. Use the Abort parameter if you need to terminate the connection at this stage.

TLSHandshake Event (WebSocketClient Component)

Fires when a new TLS handshake is initiated, before the handshake commences.

Syntax

public event OnTLSHandshakeHandler OnTLSHandshake;

public delegate void OnTLSHandshakeHandler(object sender, WebSocketClientTLSHandshakeEventArgs e);

public class WebSocketClientTLSHandshakeEventArgs : EventArgs {
  public string Host { get; }
  public bool Abort { get; set; }
}
Public Event OnTLSHandshake As OnTLSHandshakeHandler

Public Delegate Sub OnTLSHandshakeHandler(sender As Object, e As WebSocketClientTLSHandshakeEventArgs)

Public Class WebSocketClientTLSHandshakeEventArgs Inherits EventArgs
  Public ReadOnly Property Host As String
  Public Property Abort As Boolean
End Class

Remarks

The component uses this event to notify the application about the start of a new TLS handshake to Host. If the handshake is successful, this event will be followed by the TLSEstablished event. If the server chooses to request a client certificate, the TLSCertNeeded event will also be fired.

TLSPSK Event (WebSocketClient Component)

Notifies the application about the PSK key exchange.

Syntax

public event OnTLSPSKHandler OnTLSPSK;

public delegate void OnTLSPSKHandler(object sender, WebSocketClientTLSPSKEventArgs e);

public class WebSocketClientTLSPSKEventArgs : EventArgs {
  public string Host { get; }
  public string Hint { get; }
}
Public Event OnTLSPSK As OnTLSPSKHandler

Public Delegate Sub OnTLSPSKHandler(sender As Object, e As WebSocketClientTLSPSKEventArgs)

Public Class WebSocketClientTLSPSKEventArgs Inherits EventArgs
  Public ReadOnly Property Host As String
  Public ReadOnly Property Hint As String
End Class

Remarks

The component fires this event to notify the application about the beginning of TLS-PSK key exchange with Host. The Hint parameter may be used by the server to identify the key or service to use. Use the PreSharedKey field of TLSSettings to provide the pre-shared key to the component.

TLSShutdown Event (WebSocketClient Component)

Reports the graceful closure of a TLS connection.

Syntax

public event OnTLSShutdownHandler OnTLSShutdown;

public delegate void OnTLSShutdownHandler(object sender, WebSocketClientTLSShutdownEventArgs e);

public class WebSocketClientTLSShutdownEventArgs : EventArgs {
  public string Host { get; }
}
Public Event OnTLSShutdown As OnTLSShutdownHandler

Public Delegate Sub OnTLSShutdownHandler(sender As Object, e As WebSocketClientTLSShutdownEventArgs)

Public Class WebSocketClientTLSShutdownEventArgs Inherits EventArgs
  Public ReadOnly Property Host As String
End Class

Remarks

This event notifies the application about the closure of an earlier established TLS connection. Note that only graceful connection closures are reported.

Certificate Type

Encapsulates an individual X.509 certificate.

Remarks

This type keeps and provides access to X.509 certificate details.

The following fields are available:

Fields

Bytes
byte[] (read-only)

Default: ""

Returns the raw certificate data in DER format.

CA
bool

Default: False

Indicates whether the certificate has a CA capability. For the certificate to be considered a CA, it must have its Basic Constraints extension set with the CA indicator enabled.

Set this field when generating a new certificate to have its Basic Constraints extension generated automatically.

CAKeyID
byte[] (read-only)

Default: ""

A unique identifier (fingerprint) of the CA certificate's cryptographic key.

Authority Key Identifier is a certificate extension which allows identification of certificates belonging to the same issuer, but with different public keys. It is a de-facto standard to include this extension in all certificates to facilitate chain building.

This setting cannot be set when generating a certificate as it always derives from another certificate property. CertificateManager generates this setting automatically if enough information is available to it: for self-signed certificates, this value is copied from the SubjectKeyID setting, and for lower-level certificates, from the parent certificate's subject key ID extension.

CertType
CertTypes (read-only)

Default: 0

Returns the type of the entity contained in the Certificate object.

A Certificate object can contain two types of cryptographic objects: a ready-to-use X.509 certificate, or a certificate request ("an unsigned certificate"). Certificate requests can be upgraded to full certificates by signing them with a CA certificate.

Use the CertificateManager component to load or create new certificate and certificate requests objects.

CRLDistributionPoints
string

Default: ""

Contains a list of locations of CRL distribution points used to check this certificate's validity. The list is taken from the respective certificate extension.

Use this field when generating a certificate to provide a list of CRL endpoints that should be made part of the new certificate.

The endpoints are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.

Curve
string

Default: ""

Specifies the elliptic curve associated with the certificate's public key. This setting only applies to certificates containing EC keys.

SB_EC_SECP112R1SECP112R1
SB_EC_SECP112R2SECP112R2
SB_EC_SECP128R1SECP128R1
SB_EC_SECP128R2SECP128R2
SB_EC_SECP160K1SECP160K1
SB_EC_SECP160R1SECP160R1
SB_EC_SECP160R2SECP160R2
SB_EC_SECP192K1SECP192K1
SB_EC_SECP192R1SECP192R1
SB_EC_SECP224K1SECP224K1
SB_EC_SECP224R1SECP224R1
SB_EC_SECP256K1SECP256K1
SB_EC_SECP256R1SECP256R1
SB_EC_SECP384R1SECP384R1
SB_EC_SECP521R1SECP521R1
SB_EC_SECT113R1SECT113R1
SB_EC_SECT113R2SECT113R2
SB_EC_SECT131R1SECT131R1
SB_EC_SECT131R2SECT131R2
SB_EC_SECT163K1SECT163K1
SB_EC_SECT163R1SECT163R1
SB_EC_SECT163R2SECT163R2
SB_EC_SECT193R1SECT193R1
SB_EC_SECT193R2SECT193R2
SB_EC_SECT233K1SECT233K1
SB_EC_SECT233R1SECT233R1
SB_EC_SECT239K1SECT239K1
SB_EC_SECT283K1SECT283K1
SB_EC_SECT283R1SECT283R1
SB_EC_SECT409K1SECT409K1
SB_EC_SECT409R1SECT409R1
SB_EC_SECT571K1SECT571K1
SB_EC_SECT571R1SECT571R1
SB_EC_PRIME192V1PRIME192V1
SB_EC_PRIME192V2PRIME192V2
SB_EC_PRIME192V3PRIME192V3
SB_EC_PRIME239V1PRIME239V1
SB_EC_PRIME239V2PRIME239V2
SB_EC_PRIME239V3PRIME239V3
SB_EC_PRIME256V1PRIME256V1
SB_EC_C2PNB163V1C2PNB163V1
SB_EC_C2PNB163V2C2PNB163V2
SB_EC_C2PNB163V3C2PNB163V3
SB_EC_C2PNB176W1C2PNB176W1
SB_EC_C2TNB191V1C2TNB191V1
SB_EC_C2TNB191V2C2TNB191V2
SB_EC_C2TNB191V3C2TNB191V3
SB_EC_C2ONB191V4C2ONB191V4
SB_EC_C2ONB191V5C2ONB191V5
SB_EC_C2PNB208W1C2PNB208W1
SB_EC_C2TNB239V1C2TNB239V1
SB_EC_C2TNB239V2C2TNB239V2
SB_EC_C2TNB239V3C2TNB239V3
SB_EC_C2ONB239V4C2ONB239V4
SB_EC_C2ONB239V5C2ONB239V5
SB_EC_C2PNB272W1C2PNB272W1
SB_EC_C2PNB304W1C2PNB304W1
SB_EC_C2TNB359V1C2TNB359V1
SB_EC_C2PNB368W1C2PNB368W1
SB_EC_C2TNB431R1C2TNB431R1
SB_EC_NISTP192NISTP192
SB_EC_NISTP224NISTP224
SB_EC_NISTP256NISTP256
SB_EC_NISTP384NISTP384
SB_EC_NISTP521NISTP521
SB_EC_NISTB163NISTB163
SB_EC_NISTB233NISTB233
SB_EC_NISTB283NISTB283
SB_EC_NISTB409NISTB409
SB_EC_NISTB571NISTB571
SB_EC_NISTK163NISTK163
SB_EC_NISTK233NISTK233
SB_EC_NISTK283NISTK283
SB_EC_NISTK409NISTK409
SB_EC_NISTK571NISTK571
SB_EC_GOSTCPTESTGOSTCPTEST
SB_EC_GOSTCPAGOSTCPA
SB_EC_GOSTCPBGOSTCPB
SB_EC_GOSTCPCGOSTCPC
SB_EC_GOSTCPXCHAGOSTCPXCHA
SB_EC_GOSTCPXCHBGOSTCPXCHB
SB_EC_BRAINPOOLP160R1BRAINPOOLP160R1
SB_EC_BRAINPOOLP160T1BRAINPOOLP160T1
SB_EC_BRAINPOOLP192R1BRAINPOOLP192R1
SB_EC_BRAINPOOLP192T1BRAINPOOLP192T1
SB_EC_BRAINPOOLP224R1BRAINPOOLP224R1
SB_EC_BRAINPOOLP224T1BRAINPOOLP224T1
SB_EC_BRAINPOOLP256R1BRAINPOOLP256R1
SB_EC_BRAINPOOLP256T1BRAINPOOLP256T1
SB_EC_BRAINPOOLP320R1BRAINPOOLP320R1
SB_EC_BRAINPOOLP320T1BRAINPOOLP320T1
SB_EC_BRAINPOOLP384R1BRAINPOOLP384R1
SB_EC_BRAINPOOLP384T1BRAINPOOLP384T1
SB_EC_BRAINPOOLP512R1BRAINPOOLP512R1
SB_EC_BRAINPOOLP512T1BRAINPOOLP512T1
SB_EC_CURVE25519CURVE25519
SB_EC_CURVE448CURVE448

Fingerprint
string (read-only)

Default: ""

Contains the fingerprint (a hash imprint) of this certificate.

While there is no formal standard defining what a fingerprint is, a SHA1 hash of the certificate's DER-encoded body is typically used.

FriendlyName
string (read-only)

Default: ""

Contains an associated alias (friendly name) of the certificate. The friendly name is not a property of a certificate: it is maintained by the certificate media rather than being included in its DER representation. Windows certificate stores are one example of media that does support friendly names.

HashAlgorithm
string

Default: ""

Provides means to set the hash algorithm to be used in the subsequent operation on the certificate (such as generation or key signing). It is not a property of a certificate; use SigAlgorithm to find out the hash algorithm that is part of the certificate signature.

SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_MD2MD2
SB_HASH_ALGORITHM_MD4MD4
SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_CRC32CRC32
SB_HASH_ALGORITHM_SSL3SSL3
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_POLY1305POLY1305
SB_HASH_ALGORITHM_SHA3_224SHA3_224
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512
SB_HASH_ALGORITHM_BLAKE2S_128BLAKE2S_128
SB_HASH_ALGORITHM_BLAKE2S_160BLAKE2S_160
SB_HASH_ALGORITHM_BLAKE2S_224BLAKE2S_224
SB_HASH_ALGORITHM_BLAKE2S_256BLAKE2S_256
SB_HASH_ALGORITHM_BLAKE2B_160BLAKE2B_160
SB_HASH_ALGORITHM_BLAKE2B_256BLAKE2B_256
SB_HASH_ALGORITHM_BLAKE2B_384BLAKE2B_384
SB_HASH_ALGORITHM_BLAKE2B_512BLAKE2B_512
SB_HASH_ALGORITHM_SHAKE_128SHAKE_128
SB_HASH_ALGORITHM_SHAKE_256SHAKE_256
SB_HASH_ALGORITHM_SHAKE_128_LENSHAKE_128_LEN
SB_HASH_ALGORITHM_SHAKE_256_LENSHAKE_256_LEN

Issuer
string (read-only)

Default: ""

The common name of the certificate issuer (CA), typically a company name. This is part of a larger set of credentials available via IssuerRDN.

IssuerRDN
string

Default: ""

A list of Property=Value pairs that uniquely identify the certificate issuer.

Example: /C=US/O=Nationwide CA/CN=Web Certification Authority

KeyAlgorithm
string

Default: "0"

Specifies the public key algorithm of this certificate.

SB_CERT_ALGORITHM_ID_RSA_ENCRYPTIONrsaEncryption
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTIONmd2withRSAEncryption
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTIONmd5withRSAEncryption
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTIONsha1withRSAEncryption
SB_CERT_ALGORITHM_ID_DSAid-dsa
SB_CERT_ALGORITHM_ID_DSA_SHA1id-dsa-with-sha1
SB_CERT_ALGORITHM_DH_PUBLICdhpublicnumber
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTIONsha224WithRSAEncryption
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTIONsha256WithRSAEncryption
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTIONsha384WithRSAEncryption
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTIONsha512WithRSAEncryption
SB_CERT_ALGORITHM_ID_RSAPSSid-RSASSA-PSS
SB_CERT_ALGORITHM_ID_RSAOAEPid-RSAES-OAEP
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160ripemd160withRSA
SB_CERT_ALGORITHM_ID_ELGAMALelGamal
SB_CERT_ALGORITHM_SHA1_ECDSAecdsa-with-SHA1
SB_CERT_ALGORITHM_RECOMMENDED_ECDSAecdsa-recommended
SB_CERT_ALGORITHM_SHA224_ECDSAecdsa-with-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSAecdsa-with-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSAecdsa-with-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSAecdsa-with-SHA512
SB_CERT_ALGORITHM_ECid-ecPublicKey
SB_CERT_ALGORITHM_SPECIFIED_ECDSAecdsa-specified
SB_CERT_ALGORITHM_GOST_R3410_1994id-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3410_2001id-GostR3410-2001
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994id-GostR3411-94-with-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001id-GostR3411-94-with-GostR3410-2001
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAINecdsa-plain-SHA1
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAINecdsa-plain-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAINecdsa-plain-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAINecdsa-plain-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAINecdsa-plain-SHA512
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAINecdsa-plain-RIPEMD160
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTIONwhirlpoolWithRSAEncryption
SB_CERT_ALGORITHM_ID_DSA_SHA224id-dsa-with-sha224
SB_CERT_ALGORITHM_ID_DSA_SHA256id-dsa-with-sha256
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSAid-ecdsa-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSAid-ecdsa-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSAid-ecdsa-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSAid-ecdsa-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAINid-ecdsa-plain-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAINid-ecdsa-plain-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAINid-ecdsa-plain-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAINid-ecdsa-plain-with-sha3-512
SB_CERT_ALGORITHM_ID_DSA_SHA3_224id-dsa-with-sha3-224
SB_CERT_ALGORITHM_ID_DSA_SHA3_256id-dsa-with-sha3-256
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSAid-ecdsa-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSAid-ecdsa-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSAid-ecdsa-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSAid-ecdsa-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSAid-ecdsa-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSAid-ecdsa-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSAid-ecdsa-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSAid-ecdsa-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAINid-ecdsa-plain-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAINid-ecdsa-plain-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAINid-ecdsa-plain-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAINid-ecdsa-plain-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAINid-ecdsa-plain-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAINid-ecdsa-plain-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAINid-ecdsa-plain-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAINid-ecdsa-plain-with-blake2b512
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224id-dsa-with-blake2s224
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256id-dsa-with-blake2s256
SB_CERT_ALGORITHM_EDDSA_ED25519id-Ed25519
SB_CERT_ALGORITHM_EDDSA_ED448id-Ed448
SB_CERT_ALGORITHM_EDDSA_ED25519_PHid-Ed25519ph
SB_CERT_ALGORITHM_EDDSA_ED448_PHid-Ed448ph
SB_CERT_ALGORITHM_EDDSAid-EdDSA
SB_CERT_ALGORITHM_EDDSA_SIGNATUREid-EdDSA-sig

Use the KeyBits, Curve, and PublicKeyBytes fields to get more details about the key the certificate contains.

KeyBits
int (read-only)

Default: 0

Returns the length of the public key in bits.

This value indicates the length of the principal cryptographic parameter of the key, such as the length of the RSA modulus or ECDSA field. The key data returned by the PublicKeyBytes or PrivateKeyBytes field would typically contain auxiliary values, and therefore be longer.

KeyFingerprint
string (read-only)

Default: ""

Returns a SHA1 fingerprint of the public key contained in the certificate.

Note that the key fingerprint is different from the certificate fingerprint accessible via the Fingerprint field. The key fingeprint uniquely identifies the public key, and so can be the same for multiple certificates containing the same key.

KeyUsage
int

Default: 0

Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.

This value is a bit mask of the following values:

ckuUnknown0x00000Unknown key usage

ckuDigitalSignature0x00001Digital signature

ckuNonRepudiation0x00002Non-repudiation

ckuKeyEncipherment0x00004Key encipherment

ckuDataEncipherment0x00008Data encipherment

ckuKeyAgreement0x00010Key agreement

ckuKeyCertSign0x00020Certificate signing

ckuCRLSign0x00040Revocation signing

ckuEncipherOnly0x00080Encipher only

ckuDecipherOnly0x00100Decipher only

ckuServerAuthentication0x00200Server authentication

ckuClientAuthentication0x00400Client authentication

ckuCodeSigning0x00800Code signing

ckuEmailProtection0x01000Email protection

ckuTimeStamping0x02000Timestamping

ckuOCSPSigning0x04000OCSP signing

ckuSmartCardLogon0x08000Smartcard logon

ckuKeyPurposeClientAuth0x10000Kerberos - client authentication

ckuKeyPurposeKDC0x20000Kerberos - KDC

Set this field before generating the certificate to propagate the key usage flags to the new certificate.

KeyValid
bool (read-only)

Default: False

Returns True if the certificate's key is cryptographically valid, and False otherwise.

OCSPLocations
string

Default: ""

Locations of OCSP services that can be used to check this certificate's validity in real time, as recorded by the CA.

Set this field before calling the certificate manager's Generate method to propagate it to the new certificate.

The OCSP locations are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.

OCSPNoCheck
bool

Default: False

Accessor to the value of the certificate's ocsp-no-check extension.

Origin
int (read-only)

Default: 0

Returns the location that the certificate was taken or loaded from.

PolicyIDs
string

Default: ""

Contains identifiers (OIDs) of the applicable certificate policies.

The Certificate Policies extension identifies a sequence of policies under which the certificate has been issued, and which regulate its usage.

Set this field when generating a certificate to propagate the policies information to the new certificate.

The policies are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the policy element separator.

PrivateKeyBytes
byte[] (read-only)

Default: ""

Returns the certificate's private key in DER-encoded format. It is normal for this field to be empty if the private key is non-exportable, which, for example, is typical for certificates originating from hardware security devices.

PrivateKeyExists
bool (read-only)

Default: False

Indicates whether the certificate has a usable private key associated with it. If it is set to True, the certificate can be used for private key operations, such as signing or decryption.

This field is independent from PrivateKeyBytes, and can be set to True even if the former is empty. This would imply that the private key is non-exportable, but still can be used for cryptographic operations.

PrivateKeyExtractable
bool (read-only)

Default: False

Indicates whether the private key is extractable (exportable).

PublicKeyBytes
byte[] (read-only)

Default: ""

Contains the certificate's public key in DER format.

This typically would contain an ASN.1-encoded public key value. The exact format depends on the type of the public key contained in the certificate.

Qualified
bool (read-only)

Default: False

Indicates whether the certificate is qualified.

This property is set to True if the certificate is confirmed by a Trusted List to be qualified.

QualifiedStatements
QualifiedStatementsTypes

Default: 0

Returns a simplified qualified status of the certificate.

Qualifiers
string (read-only)

Default: ""

A list of qualifiers.

Contains a comma-separated list of qualifier aliases for the certificate, for example QCP-n-qscd,QCWithSSCD.

SelfSigned
bool (read-only)

Default: False

Indicates whether the certificate is self-signed (root) or signed by an external CA.

SerialNumber
byte[]

Default: ""

Returns the certificate's serial number.

The serial number is a binary string that uniquely identifies a certificate among others issued by the same CA. According to the X.509 standard, the (issuer, serial number) pair should be globally unique to facilitate chain building.

SigAlgorithm
string (read-only)

Default: ""

Indicates the algorithm that was used by the CA to sign this certificate.

A signature algorithm typically combines hash and public key algorithms together, such as sha256WithRSAEncryption or ecdsa-with-SHA256.

Source
PKISources (read-only)

Default: 0

Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.

Subject
string (read-only)

Default: ""

The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name. This is part of a larger set of credentials available via SubjectRDN.

SubjectAlternativeName
string

Default: ""

Returns or sets the value of the Subject Alternative Name extension of the certificate.

Subject alternative names are used to provide additional names that are impractical to store in the main SubjectRDN field. For example, it is often used to store all the domain names that a TLS certificate is authorized to protect.

The alternative names are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the element separator.

SubjectKeyID
byte[]

Default: ""

Contains a unique identifier of the certificate's cryptographic key.

Subject Key Identifier is a certificate extension which allows a specific public key to be associated with a certificate holder. Typically, subject key identifiers of CA certificates are recorded as respective CA key identifiers in the subordinate certificates that they issue, which facilitates chain building.

The SubjectKeyID and CAKeyID fields of self-signed certificates typically contain identical values, as in that specific case, the issuer and the subject are the same entity.

SubjectRDN
string

Default: ""

A list of Property=Value pairs that uniquely identify the certificate holder (subject).

Depending on the purpose of the certificate and the policies of the CA that issued it, the values included in the subject record may differ drastically and contain business or personal names, web URLs, email addresses, and other data.

Example: /C=US/O=Oranges and Apples, Inc./OU=Accounts Receivable/1.2.3.4.5=Value with unknown OID/CN=Margaret Watkins.

Valid
bool (read-only)

Default: False

Indicates whether or not the signature over the certificate or the request is valid and matches the public key contained in the CA certificate/request.

ValidFrom
string

Default: ""

The time point at which the certificate becomes valid, in UTC.

ValidTo
string

Default: ""

The time point at which the certificate expires, in UTC.

Constructors

public Certificate(byte[] bytes, int startIndex, int count, string password);
Public Certificate(ByVal Bytes As Byte(), ByVal StartIndex As Integer, ByVal Count As Integer, ByVal Password As String)

Loads the X.509 certificate from a memory buffer. Bytes is a buffer containing the raw certificate data. StartIndex and Count specify the starting position and number of bytes to be read from the buffer, respectively. Password is a password encrypting the certificate.

public Certificate(byte[] certBytes, int certStartIndex, int certCount, byte[] keyBytes, int keyStartIndex, int keyCount, string password);
Public Certificate(ByVal CertBytes As Byte(), ByVal CertStartIndex As Integer, ByVal CertCount As Integer, ByVal KeyBytes As Byte(), ByVal KeyStartIndex As Integer, ByVal KeyCount As Integer, ByVal Password As String)

Loads the X.509 certificate from a memory buffer.

CertBytes is a buffer containing the raw certificate data. CertStartIndex and CertCount specify the starting position and number of bytes to be read from the buffer, respectively.

KeyBytes is a buffer containing the private key data. KeyStartIndex and KeyCount specify the starting position and number of bytes to be read from the buffer, respectively.

Password is a password encrypting the certificate.

public Certificate(byte[] bytes, int startIndex, int count);
Public Certificate(ByVal Bytes As Byte(), ByVal StartIndex As Integer, ByVal Count As Integer)

Loads the X.509 certificate from a memory buffer. Bytes is a buffer containing the raw certificate data. StartIndex and Count specify the starting position and number of bytes to be read from the buffer, respectively.

public Certificate(string path, string password);
Public Certificate(ByVal Path As String, ByVal Password As String)

Loads the X.509 certificate from a file. Path specifies the full path to the file containing the certificate data. Password is a password encrypting the certificate.

public Certificate(string certPath, string keyPath, string password);
Public Certificate(ByVal CertPath As String, ByVal KeyPath As String, ByVal Password As String)

Loads the X.509 certificate from a file. CertPath specifies the full path to the file containing the certificate data. KeyPath specifies the full path to the file containing the private key. Password is a password encrypting the certificate.

public Certificate(string path);
Public Certificate(ByVal Path As String)

Loads the X.509 certificate from a file. Path specifies the full path to the file containing the certificate data.

Public Certificate(ByVal Stream As System.IO.Stream)

Loads the X.509 certificate from a stream. Stream is a stream containing the certificate data.

public Certificate(System.IO.Stream stream, string password);
Public Certificate(ByVal Stream As System.IO.Stream, ByVal Password As String)

Loads the X.509 certificate from a stream. Stream is a stream containing the certificate data. Password is a password encrypting the certificate.

public Certificate(System.IO.Stream certStream, System.IO.Stream keyStream, string password);
Public Certificate(ByVal CertStream As System.IO.Stream, ByVal KeyStream As System.IO.Stream, ByVal Password As String)

Loads the X.509 certificate from a stream. CertStream is a stream containing the certificate data. KeyStream is a stream containing the private key. Password is a password encrypting the certificate.

public Certificate();
Public Certificate()

Creates a new object with default field values.

CRL Type

Represents a Certificate Revocation List.

Remarks

CRLs store information about revoked certificates, i.e., certificates that have been identified as invalid by their issuing certificate authority (CA) for any number of reasons.

Each CRL object lists certificates from a single CA and identifies them by their serial numbers. A CA may or may not publish a CRL, may publish several CRLs, or may publish the same CRL in multiple locations.

Unlike OCSP responses, CRLs only list certificates that have been revoked. They do not list certificates that are still valid.

The following fields are available:

Fields

Bytes
byte[] (read-only)

Default: ""

Returns the raw CRL data in DER format.

CAKeyID
byte[]

Default: ""

A unique identifier (fingerprint) of the CA certificate's private key, if present in the CRL.

EntryCount
int (read-only)

Default: 0

Returns the number of certificate status entries in the CRL.

Issuer
string (read-only)

Default: ""

The common name of the CRL issuer (CA), typically a company name.

IssuerRDN
string (read-only)

Default: ""

A collection of information, in the form of [OID, Value] pairs, uniquely identifying the CRL issuer.

Location
string (read-only)

Default: ""

The URL that the CRL was downloaded from.

NextUpdate
string

Default: ""

The planned time and date of the next version of this CRL to be published.

SigAlgorithm
string

Default: "0"

The public key algorithm that was used by the CA to sign this CRL.

Source
PKISources (read-only)

Default: 0

Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.

TBS
byte[] (read-only)

Default: ""

The to-be-signed part of the CRL (the CRL without the signature part).

ThisUpdate
string

Default: ""

The date and time at which this version of the CRL was published.

Constructors

public CRL(byte[] bytes, int startIndex, int count);
Public CRL(ByVal Bytes As Byte(), ByVal StartIndex As Integer, ByVal Count As Integer)

Creates a CRL object from a memory buffer. Bytes is a buffer containing raw (DER) CRL data, StartIndex and Count specify the starting position and the length of the CRL data in the buffer, respectively.

public CRL(string location);
Public CRL(ByVal Location As String)

Creates a CRL object by downloading it from a remote location.

public CRL(System.IO.Stream stream);
Public CRL(ByVal Stream As System.IO.Stream)

Creates a CRL object from data contained in a stream.

public CRL();
Public CRL()

Creates an empty CRL object.

ExternalCrypto Type

Specifies the parameters of external cryptographic calls.

Remarks

External cryptocalls are used in a Distributed Cryptography (DC) subsystem, which allows the delegation of security operations to the remote agent. For instance, it can be used to compute the signature value on the server, while retaining the client's private key locally.

The following fields are available:

Fields

AsyncDocumentID
string

Default: ""

Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.

Use this property when working with multi-signature DCAuth requests and responses to uniquely identify documents signed within a larger batch. On the completion stage, this value helps the signing component identify the correct signature in the returned batch of responses.

If using batched requests, make sure to set this property to the same value on both the pre-signing (SignAsyncBegin) and completion (SignAsyncEnd) stages.

CustomParams
string

Default: ""

Custom parameters to be passed to the signing service (uninterpreted).

Data
string

Default: ""

Additional data to be included in the async state and mirrored back by the requestor.

ExternalHashCalculation
bool

Default: False

Specifies whether the message hash is to be calculated at the external endpoint. Please note that this mode is not supported by the DCAuth component.

If set to true, the component will pass a few kilobytes of to-be-signed data from the document to the OnExternalSign event. This only applies when SignExternal() is called.

HashAlgorithm
string

Default: "SHA256"

Specifies the request's signature hash algorithm.

SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_MD2MD2
SB_HASH_ALGORITHM_MD4MD4
SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_CRC32CRC32
SB_HASH_ALGORITHM_SSL3SSL3
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_POLY1305POLY1305
SB_HASH_ALGORITHM_SHA3_224SHA3_224
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512
SB_HASH_ALGORITHM_BLAKE2S_128BLAKE2S_128
SB_HASH_ALGORITHM_BLAKE2S_160BLAKE2S_160
SB_HASH_ALGORITHM_BLAKE2S_224BLAKE2S_224
SB_HASH_ALGORITHM_BLAKE2S_256BLAKE2S_256
SB_HASH_ALGORITHM_BLAKE2B_160BLAKE2B_160
SB_HASH_ALGORITHM_BLAKE2B_256BLAKE2B_256
SB_HASH_ALGORITHM_BLAKE2B_384BLAKE2B_384
SB_HASH_ALGORITHM_BLAKE2B_512BLAKE2B_512
SB_HASH_ALGORITHM_SHAKE_128SHAKE_128
SB_HASH_ALGORITHM_SHAKE_256SHAKE_256
SB_HASH_ALGORITHM_SHAKE_128_LENSHAKE_128_LEN
SB_HASH_ALGORITHM_SHAKE_256_LENSHAKE_256_LEN

KeyID
string

Default: ""

The ID of the pre-shared key used for DC request authentication.

Asynchronous DCAuth-driven communication requires that parties authenticate each other with a secret pre-shared cryptographic key. This provides an extra protection layer for the protocol and diminishes the risk of the private key becoming abused by foreign parties. Use this property to provide the pre-shared key identifier, and use KeySecret to pass the key itself.

The same KeyID/KeySecret pair should be used on the DCAuth side for the signing requests to be accepted.

Note: The KeyID/KeySecret scheme is very similar to the AuthKey scheme used in various Cloud service providers to authenticate users.

Example: signer.ExternalCrypto.KeyID = "MainSigningKey"; signer.ExternalCrypto.KeySecret = "abcdef0123456789";

KeySecret
string

Default: ""

The pre-shared key used for DC request authentication. This key must be set and match the key used by the DCAuth counterpart for the scheme to work.

Read more about configuring authentication in the KeyID topic.

Method
AsyncSignMethods

Default: 0

Specifies the asynchronous signing method. This is typically defined by the DC server capabilities and setup.

Available options:

asmdPKCS10
asmdPKCS71

Mode
ExternalCryptoModes

Default: 0

Specifies the external cryptography mode.

Available options:

ecmDefaultThe default value (0)
ecmDisabledDo not use DC or external signing (1)
ecmGenericGeneric external signing with the OnExternalSign event (2)
ecmDCAuthDCAuth signing (3)
ecmDCAuthJSONDCAuth signing in JSON format (4)

PublicKeyAlgorithm
string

Default: ""

Provide the public key algorithm here if the certificate is not available on the pre-signing stage.

SB_CERT_ALGORITHM_ID_RSA_ENCRYPTIONrsaEncryption
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTIONmd2withRSAEncryption
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTIONmd5withRSAEncryption
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTIONsha1withRSAEncryption
SB_CERT_ALGORITHM_ID_DSAid-dsa
SB_CERT_ALGORITHM_ID_DSA_SHA1id-dsa-with-sha1
SB_CERT_ALGORITHM_DH_PUBLICdhpublicnumber
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTIONsha224WithRSAEncryption
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTIONsha256WithRSAEncryption
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTIONsha384WithRSAEncryption
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTIONsha512WithRSAEncryption
SB_CERT_ALGORITHM_ID_RSAPSSid-RSASSA-PSS
SB_CERT_ALGORITHM_ID_RSAOAEPid-RSAES-OAEP
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160ripemd160withRSA
SB_CERT_ALGORITHM_ID_ELGAMALelGamal
SB_CERT_ALGORITHM_SHA1_ECDSAecdsa-with-SHA1
SB_CERT_ALGORITHM_RECOMMENDED_ECDSAecdsa-recommended
SB_CERT_ALGORITHM_SHA224_ECDSAecdsa-with-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSAecdsa-with-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSAecdsa-with-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSAecdsa-with-SHA512
SB_CERT_ALGORITHM_ECid-ecPublicKey
SB_CERT_ALGORITHM_SPECIFIED_ECDSAecdsa-specified
SB_CERT_ALGORITHM_GOST_R3410_1994id-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3410_2001id-GostR3410-2001
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994id-GostR3411-94-with-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001id-GostR3411-94-with-GostR3410-2001
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAINecdsa-plain-SHA1
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAINecdsa-plain-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAINecdsa-plain-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAINecdsa-plain-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAINecdsa-plain-SHA512
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAINecdsa-plain-RIPEMD160
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTIONwhirlpoolWithRSAEncryption
SB_CERT_ALGORITHM_ID_DSA_SHA224id-dsa-with-sha224
SB_CERT_ALGORITHM_ID_DSA_SHA256id-dsa-with-sha256
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSAid-ecdsa-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSAid-ecdsa-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSAid-ecdsa-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSAid-ecdsa-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAINid-ecdsa-plain-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAINid-ecdsa-plain-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAINid-ecdsa-plain-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAINid-ecdsa-plain-with-sha3-512
SB_CERT_ALGORITHM_ID_DSA_SHA3_224id-dsa-with-sha3-224
SB_CERT_ALGORITHM_ID_DSA_SHA3_256id-dsa-with-sha3-256
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSAid-ecdsa-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSAid-ecdsa-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSAid-ecdsa-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSAid-ecdsa-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSAid-ecdsa-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSAid-ecdsa-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSAid-ecdsa-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSAid-ecdsa-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAINid-ecdsa-plain-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAINid-ecdsa-plain-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAINid-ecdsa-plain-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAINid-ecdsa-plain-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAINid-ecdsa-plain-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAINid-ecdsa-plain-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAINid-ecdsa-plain-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAINid-ecdsa-plain-with-blake2b512
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224id-dsa-with-blake2s224
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256id-dsa-with-blake2s256
SB_CERT_ALGORITHM_EDDSA_ED25519id-Ed25519
SB_CERT_ALGORITHM_EDDSA_ED448id-Ed448
SB_CERT_ALGORITHM_EDDSA_ED25519_PHid-Ed25519ph
SB_CERT_ALGORITHM_EDDSA_ED448_PHid-Ed448ph
SB_CERT_ALGORITHM_EDDSAid-EdDSA
SB_CERT_ALGORITHM_EDDSA_SIGNATUREid-EdDSA-sig

Constructors

public ExternalCrypto();
Public ExternalCrypto()

Creates a new ExternalCrypto object with default field values.

HTTPRequestParameters Type

Represents the headers of the HTTP request to make.

Remarks

If a header is not assigned but required for a successful request (such as Connection or Host), it will be generated automatically by the component.

The following fields are available:

Fields

Accept
string

Default: ""

Specifies the Accept header field of the HTTP request. The Accept field defines which media types are accepted in the response.

AcceptCharset
string

Default: ""

Specifies the Accept-Charset header field of the HTTP request. The Accept-Charset field specifies the character set which the client can understand.

AcceptLanguage
string

Default: ""

Specifies the Accept-Language header field of the HTTP request. The Accept-Language field specifies the language (and locale) which the client can understand.

AcceptRangeEnd
long

Default: 0

This property, in combination with AcceptRangeStart, defines the media-range of the HTTP request.

AcceptRangeStart
long

Default: 0

This property, in combination with AcceptRangeEnd, defines the media-range of the HTTP request.

Authorization
string

Default: ""

Specifies the Authorization header of the HTTP request. This header contains the credentials to authenticate a user with a server.

Connection
string

Default: ""

Specifies the value to pass to the Connection header field of HTTP request.

ContentLength
long

Default: 0

Specifies the size of the entity-body of the HTTP request. Leave this field set to 0 to make the component calculate it automatically.

ContentRangeEnd
long

Default: 0

Specifies the upper bound used in the Content-Range header of the HTTP request.

ContentRangeFullSize
long

Default: 0

Specifies the total length of the full entity-body of the HTTP request.

ContentRangeStart
long

Default: 0

Specifies the lower bound used in the Content-Range header of the HTTP request.

ContentType
string

Default: ""

The Content-Type header field of the HTTP request.

Cookie
string

Default: ""

This header is expected to be assigned with cookies previously received from the server and stored by the client.

CustomHeaders
string

Default: ""

Assign any custom HTTP headers to be passed to the server to this property.

Date
string

Default: ""

The date and time of the request.

From
string

Default: ""

Contains the From header field of the HTTP request. It specifies the e-mail address for the human user who controls the requesting user agent.

Host
string

Default: ""

This field contains the Host header field of the HTTP request. It specifies the host and port number of the resource being requested.

HTTPVersion
HTTPVersions

Default: 1

Specifies the version of HTTP protocol to use: 1.0 or 1.1.

chvHTTP10HTTP/1.0 (0)
chvHTTP11HTTP/1.1 (1)

IfMatch
string

Default: ""

Contains the If-Match request header field. This field makes the requested method conditional: when If-Match field is set, only the entities matching the included entity tags will be returned by the server.

IfModifiedSince
string

Default: ""

Contains the If-Modified-Since request header field. This field makes the requested method conditional: when If-Modified-Since field is set, only the modified entities will be returned by the server.

IfNoneMatch
string

Default: ""

Contains the If-None-Match request header field. This field makes the requested method conditional: when If-None-Match field is set, only the entities which doesn't match the included entity tags will be returned by the server.

IfUnmodifiedSince
string

Default: ""

Contains the If-Unmodified-Since request header field. This field makes the requested method conditional: when If-Unmodified-Since field is set, only the unmodified entities will be returned by the server.

Password
string

Default: ""

Assign this property with the user's password.

Referer
string

Default: ""

The Referer field of the HTTP request header specifies the address of the resource from which the Request-URI was obtained (the referrer).

UserAgent
string

Default: ""

The User-Agent field of the HTTP request provides information about the software that initiates the request.

Username
string

Default: ""

Assign this property with the user's login name.

Constructors

Creates a new HTTPRequestParameters object.

OCSPResponse Type

Represents a single OCSP response originating from an OCSP responder.

Remarks

OCSP is a protocol that allows verification of certificate status in real-time, and is an alternative to Certificate Revocation Lists (CRLs).

An OCSP response is a snapshot of the certificate status at a given time.

The following fields are available:

Fields

Bytes
byte[] (read-only)

Default: ""

A buffer containing the raw OCSP response data.

EntryCount
int (read-only)

Default: 0

The number of SingleResponse elements contained in this OCSP response. Each SingleResponse element corresponds to a certificate status.

Issuer
string (read-only)

Default: ""

Indicates the issuer of this response (a CA or its authorized representative).

IssuerRDN
string (read-only)

Default: ""

Indicates the RDN of the issuer of this response (a CA or its authorized representative).

Location
string (read-only)

Default: ""

The location of the OCSP responder.

ProducedAt
string

Default: ""

Specifies the time when the response was produced, in UTC.

SigAlgorithm
string

Default: "0"

The public key algorithm that was used by the CA to sign this OCSP response.

Source
PKISources (read-only)

Default: 0

Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.

Constructors

public OCSPResponse(byte[] bytes, int startIndex, int count);
Public OCSPResponse(ByVal Bytes As Byte(), ByVal StartIndex As Integer, ByVal Count As Integer)

Initializes the response from a memory buffer. Bytes is a buffer containing raw OCSP response data, StartIndex and Count specify the starting position and the number of bytes to be read from this buffer.

public OCSPResponse(string location);
Public OCSPResponse(ByVal Location As String)

Downloads an OCSP response from a remote location.

Public OCSPResponse(ByVal Stream As System.IO.Stream)

Initializes the response with the data from a stream.

public OCSPResponse();
Public OCSPResponse()

Creates an empty OCSP response object.

ProxySettings Type

A container for proxy server settings.

Remarks

This type exposes a collection of properties for tuning up the proxy server configuration.

The following fields are available:

Fields

Address
string

Default: ""

The IP address of the proxy server.

Authentication
ProxyAuthTypes

Default: 0

The authentication type used by the proxy server.

patNoAuthentication0
patBasic1
patDigest2
patNTLM3

Password
string

Default: ""

The password to authenticate to the proxy server.

Port
int

Default: 0

The port on the proxy server to connect to.

ProxyType
ProxyTypes

Default: 0

The type of the proxy server.

cptNone0
cptSocks41
cptSocks52
cptWebTunnel3
cptHTTP4

RequestHeaders
string

Default: ""

Contains HTTP request headers for WebTunnel and HTTP proxy.

ResponseBody
string

Default: ""

Contains the HTTP or HTTPS (WebTunnel) proxy response body.

ResponseHeaders
string

Default: ""

Contains response headers received from an HTTP or HTTPS (WebTunnel) proxy server.

UseIPv6
bool

Default: False

Specifies whether IPv6 should be used when connecting through the proxy.

Username
string

Default: ""

Specifies the username credential for proxy authentication.

Constructors

public ProxySettings();
Public ProxySettings()

Creates a new ProxySettings object.

SocketSettings Type

A container for the socket settings.

Remarks

This type is a container for socket-layer parameters.

The following fields are available:

Fields

DNSMode
DNSResolveModes

Default: 0

Selects the DNS resolver to use: the component's (secure) built-in one, or the one provided by the system.

dmAuto0
dmPlatform1
dmOwn2
dmOwnSecure3

DNSPort
int

Default: 0

Specifies the port number to be used for sending queries to the DNS server.

DNSQueryTimeout
int

Default: 0

The timeout (in milliseconds) for each DNS query. The value of 0 indicates an infinite timeout.

DNSServers
string

Default: ""

The addresses of DNS servers to use for address resolution, separated by commas or semicolons.

DNSTotalTimeout
int

Default: 0

The timeout (in milliseconds) for the whole resolution process. The value of 0 indicates an infinite timeout.

IncomingSpeedLimit
int

Default: 0

The maximum number of bytes to read from the socket, per second.

LocalAddress
string

Default: ""

The local network interface to bind the socket to.

LocalPort
int

Default: 0

The local port number to bind the socket to.

OutgoingSpeedLimit
int

Default: 0

The maximum number of bytes to write to the socket, per second.

Timeout
int

Default: 60000

The maximum period of waiting, in milliseconds, after which the socket operation is considered unsuccessful.

If Timeout is set to 0, a socket operation will expire after the system-default timeout (2 hrs 8 min for TCP stack).

UseIPv6
bool

Default: False

Enables or disables IP protocol version 6.

Constructors

public SocketSettings();
Public SocketSettings()

Creates a new SocketSettings object.

TLSConnectionInfo Type

Contains information about a network connection.

Remarks

Use this property to check various details of the network connection. These include the total amounts of data transferred, the availability of TLS, and its parameters.

The following fields are available:

Fields

AEADCipher
bool (read-only)

Default: False

Indicates whether the encryption algorithm used is an AEAD cipher.

ChainValidationDetails
int (read-only)

Default: 0

The details of a certificate chain validation outcome. They may often suggest the reasons that contributed to the overall validation result.

Returns a bit mask of the following options:

cvrBadData0x0001One or more certificates in the validation path are malformed

cvrRevoked0x0002One or more certificates are revoked

cvrNotYetValid0x0004One or more certificates are not yet valid

cvrExpired0x0008One or more certificates are expired

cvrInvalidSignature0x0010A certificate contains a non-valid digital signature

cvrUnknownCA0x0020A CA certificate for one or more certificates has not been found (chain incomplete)

cvrCAUnauthorized0x0040One of the CA certificates are not authorized to act as CA

cvrCRLNotVerified0x0080One or more CRLs could not be verified

cvrOCSPNotVerified0x0100One or more OCSP responses could not be verified

cvrIdentityMismatch0x0200The identity protected by the certificate (a TLS endpoint or an e-mail addressee) does not match what is recorded in the certificate

cvrNoKeyUsage0x0400A mandatory key usage is not enabled in one of the chain certificates

cvrBlocked0x0800One or more certificates are blocked

cvrFailure0x1000General validation failure

cvrChainLoop0x2000Chain loop: one of the CA certificates recursively signs itself

cvrWeakAlgorithm0x4000A weak algorithm is used in one of certificates or revocation elements

cvrUserEnforced0x8000The chain was considered invalid following intervention from a user code

ChainValidationResult
ChainValidities (read-only)

Default: 0

The outcome of a certificate chain validation routine.

Available options:

cvtValid0The chain is valid

cvtValidButUntrusted1The chain is valid, but the root certificate is not trusted

cvtInvalid2The chain is not valid (some of certificates are revoked, expired, or contain an invalid signature)

cvtCantBeEstablished3The validity of the chain cannot be established because of missing or unavailable validation information (certificates, CRLs, or OCSP responses)

Use the ValidationLog property to access the detailed validation log.

Ciphersuite
string (read-only)

Default: ""

The cipher suite employed by this connection.

For TLS connections, this property returns the ciphersuite that was/is employed by the connection.

ClientAuthenticated
bool (read-only)

Default: False

Specifies whether client authentication was performed during this connection.

ClientAuthRequested
bool (read-only)

Default: False

Specifies whether client authentication was requested during this connection.

ConnectionEstablished
bool (read-only)

Default: False

Indicates whether the connection has been established fully.

ConnectionID
byte[] (read-only)

Default: ""

The unique identifier assigned to this connection.

DigestAlgorithm
string (read-only)

Default: ""

The digest algorithm used in a TLS-enabled connection.

EncryptionAlgorithm
string (read-only)

Default: ""

The symmetric encryption algorithm used in a TLS-enabled connection.

Exportable
bool (read-only)

Default: False

Indicates whether a TLS connection uses a reduced-strength exportable cipher.

ID
long (read-only)

Default: -1

The client connection's unique identifier. This value is used throughout to refer to a particular client connection.

KeyExchangeAlgorithm
string (read-only)

Default: ""

The key exchange algorithm used in a TLS-enabled connection.

KeyExchangeKeyBits
int (read-only)

Default: 0

The length of the key exchange key of a TLS-enabled connection.

NamedECCurve
string (read-only)

Default: ""

The elliptic curve used in this connection.

PFSCipher
bool (read-only)

Default: False

Indicates whether the chosen ciphersuite provides perfect forward secrecy (PFS).

PreSharedIdentity
string

Default: ""

Specifies the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.

PreSharedIdentityHint
string (read-only)

Default: ""

A hint professed by the server to help the client select the PSK identity to use.

PublicKeyBits
int (read-only)

Default: 0

The length of the public key.

RemoteAddress
string (read-only)

Default: ""

The client's IP address.

RemotePort
int (read-only)

Default: 0

The remote port of the client connection.

ResumedSession
bool (read-only)

Default: False

Indicates whether a TLS-enabled connection was spawned from another TLS connection

SecureConnection
bool (read-only)

Default: False

Indicates whether TLS or SSL is enabled for this connection.

ServerAuthenticated
bool (read-only)

Default: False

Indicates whether server authentication was performed during a TLS-enabled connection.

SignatureAlgorithm
string (read-only)

Default: ""

The signature algorithm used in a TLS handshake.

SymmetricBlockSize
int (read-only)

Default: 0

The block size of the symmetric algorithm used.

SymmetricKeyBits
int (read-only)

Default: 0

The key length of the symmetric algorithm used.

TotalBytesReceived
long (read-only)

Default: 0

The total number of bytes received over this connection.

TotalBytesSent
long (read-only)

Default: 0

The total number of bytes sent over this connection.

ValidationLog
string (read-only)

Default: ""

Contains the server certificate's chain validation log. This information may be very useful in investigating chain validation failures.

Version
string (read-only)

Default: ""

Indicates the version of SSL/TLS protocol negotiated during this connection.

Constructors

Creates a new TLSConnectionInfo object.

TLSSettings Type

A container for TLS connection settings.

Remarks

The TLS (Transport Layer Security) protocol provides security for information exchanged over insecure connections such as TCP/IP.

The following fields are available:

Fields

AutoValidateCertificates
bool

Default: True

Specifies whether server-side TLS certificates should be validated automatically using internal validation rules.

BaseConfiguration
SecureTransportPredefinedConfigurations

Default: 0

Selects the base configuration for the TLS settings. Several profiles are offered and tuned up for different purposes, such as high security or higher compatibility.

stpcDefault0
stpcCompatible1
stpcComprehensiveInsecure2
stpcHighlySecure3

Ciphersuites
string

Default: ""

A list of ciphersuites separated with commas or semicolons. Each ciphersuite in the list may be prefixed with a minus sign (-) to indicate that the ciphersuite should be disabled rather than enabled. Besides the specific ciphersuite modifiers, this property supports the all (and -all) aliases, allowing all ciphersuites to be blanketly enabled or disabled at once.

Note: the list of ciphersuites provided to this property alters the baseline list of ciphersuites as defined by BaseConfiguration. Remember to start your ciphersuite string with -all; if you need to only enable a specific fixed set of ciphersuites. The list of supported ciphersuites is provided below:

  • NULL_NULL_NULL
  • RSA_NULL_MD5
  • RSA_NULL_SHA
  • RSA_RC4_MD5
  • RSA_RC4_SHA
  • RSA_RC2_MD5
  • RSA_IDEA_MD5
  • RSA_IDEA_SHA
  • RSA_DES_MD5
  • RSA_DES_SHA
  • RSA_3DES_MD5
  • RSA_3DES_SHA
  • RSA_AES128_SHA
  • RSA_AES256_SHA
  • DH_DSS_DES_SHA
  • DH_DSS_3DES_SHA
  • DH_DSS_AES128_SHA
  • DH_DSS_AES256_SHA
  • DH_RSA_DES_SHA
  • DH_RSA_3DES_SHA
  • DH_RSA_AES128_SHA
  • DH_RSA_AES256_SHA
  • DHE_DSS_DES_SHA
  • DHE_DSS_3DES_SHA
  • DHE_DSS_AES128_SHA
  • DHE_DSS_AES256_SHA
  • DHE_RSA_DES_SHA
  • DHE_RSA_3DES_SHA
  • DHE_RSA_AES128_SHA
  • DHE_RSA_AES256_SHA
  • DH_ANON_RC4_MD5
  • DH_ANON_DES_SHA
  • DH_ANON_3DES_SHA
  • DH_ANON_AES128_SHA
  • DH_ANON_AES256_SHA
  • RSA_RC2_MD5_EXPORT
  • RSA_RC4_MD5_EXPORT
  • RSA_DES_SHA_EXPORT
  • DH_DSS_DES_SHA_EXPORT
  • DH_RSA_DES_SHA_EXPORT
  • DHE_DSS_DES_SHA_EXPORT
  • DHE_RSA_DES_SHA_EXPORT
  • DH_ANON_RC4_MD5_EXPORT
  • DH_ANON_DES_SHA_EXPORT
  • RSA_CAMELLIA128_SHA
  • DH_DSS_CAMELLIA128_SHA
  • DH_RSA_CAMELLIA128_SHA
  • DHE_DSS_CAMELLIA128_SHA
  • DHE_RSA_CAMELLIA128_SHA
  • DH_ANON_CAMELLIA128_SHA
  • RSA_CAMELLIA256_SHA
  • DH_DSS_CAMELLIA256_SHA
  • DH_RSA_CAMELLIA256_SHA
  • DHE_DSS_CAMELLIA256_SHA
  • DHE_RSA_CAMELLIA256_SHA
  • DH_ANON_CAMELLIA256_SHA
  • PSK_RC4_SHA
  • PSK_3DES_SHA
  • PSK_AES128_SHA
  • PSK_AES256_SHA
  • DHE_PSK_RC4_SHA
  • DHE_PSK_3DES_SHA
  • DHE_PSK_AES128_SHA
  • DHE_PSK_AES256_SHA
  • RSA_PSK_RC4_SHA
  • RSA_PSK_3DES_SHA
  • RSA_PSK_AES128_SHA
  • RSA_PSK_AES256_SHA
  • RSA_SEED_SHA
  • DH_DSS_SEED_SHA
  • DH_RSA_SEED_SHA
  • DHE_DSS_SEED_SHA
  • DHE_RSA_SEED_SHA
  • DH_ANON_SEED_SHA
  • SRP_SHA_3DES_SHA
  • SRP_SHA_RSA_3DES_SHA
  • SRP_SHA_DSS_3DES_SHA
  • SRP_SHA_AES128_SHA
  • SRP_SHA_RSA_AES128_SHA
  • SRP_SHA_DSS_AES128_SHA
  • SRP_SHA_AES256_SHA
  • SRP_SHA_RSA_AES256_SHA
  • SRP_SHA_DSS_AES256_SHA
  • ECDH_ECDSA_NULL_SHA
  • ECDH_ECDSA_RC4_SHA
  • ECDH_ECDSA_3DES_SHA
  • ECDH_ECDSA_AES128_SHA
  • ECDH_ECDSA_AES256_SHA
  • ECDHE_ECDSA_NULL_SHA
  • ECDHE_ECDSA_RC4_SHA
  • ECDHE_ECDSA_3DES_SHA
  • ECDHE_ECDSA_AES128_SHA
  • ECDHE_ECDSA_AES256_SHA
  • ECDH_RSA_NULL_SHA
  • ECDH_RSA_RC4_SHA
  • ECDH_RSA_3DES_SHA
  • ECDH_RSA_AES128_SHA
  • ECDH_RSA_AES256_SHA
  • ECDHE_RSA_NULL_SHA
  • ECDHE_RSA_RC4_SHA
  • ECDHE_RSA_3DES_SHA
  • ECDHE_RSA_AES128_SHA
  • ECDHE_RSA_AES256_SHA
  • ECDH_ANON_NULL_SHA
  • ECDH_ANON_RC4_SHA
  • ECDH_ANON_3DES_SHA
  • ECDH_ANON_AES128_SHA
  • ECDH_ANON_AES256_SHA
  • RSA_NULL_SHA256
  • RSA_AES128_SHA256
  • RSA_AES256_SHA256
  • DH_DSS_AES128_SHA256
  • DH_RSA_AES128_SHA256
  • DHE_DSS_AES128_SHA256
  • DHE_RSA_AES128_SHA256
  • DH_DSS_AES256_SHA256
  • DH_RSA_AES256_SHA256
  • DHE_DSS_AES256_SHA256
  • DHE_RSA_AES256_SHA256
  • DH_ANON_AES128_SHA256
  • DH_ANON_AES256_SHA256
  • RSA_AES128_GCM_SHA256
  • RSA_AES256_GCM_SHA384
  • DHE_RSA_AES128_GCM_SHA256
  • DHE_RSA_AES256_GCM_SHA384
  • DH_RSA_AES128_GCM_SHA256
  • DH_RSA_AES256_GCM_SHA384
  • DHE_DSS_AES128_GCM_SHA256
  • DHE_DSS_AES256_GCM_SHA384
  • DH_DSS_AES128_GCM_SHA256
  • DH_DSS_AES256_GCM_SHA384
  • DH_ANON_AES128_GCM_SHA256
  • DH_ANON_AES256_GCM_SHA384
  • ECDHE_ECDSA_AES128_SHA256
  • ECDHE_ECDSA_AES256_SHA384
  • ECDH_ECDSA_AES128_SHA256
  • ECDH_ECDSA_AES256_SHA384
  • ECDHE_RSA_AES128_SHA256
  • ECDHE_RSA_AES256_SHA384
  • ECDH_RSA_AES128_SHA256
  • ECDH_RSA_AES256_SHA384
  • ECDHE_ECDSA_AES128_GCM_SHA256
  • ECDHE_ECDSA_AES256_GCM_SHA384
  • ECDH_ECDSA_AES128_GCM_SHA256
  • ECDH_ECDSA_AES256_GCM_SHA384
  • ECDHE_RSA_AES128_GCM_SHA256
  • ECDHE_RSA_AES256_GCM_SHA384
  • ECDH_RSA_AES128_GCM_SHA256
  • ECDH_RSA_AES256_GCM_SHA384
  • PSK_AES128_GCM_SHA256
  • PSK_AES256_GCM_SHA384
  • DHE_PSK_AES128_GCM_SHA256
  • DHE_PSK_AES256_GCM_SHA384
  • RSA_PSK_AES128_GCM_SHA256
  • RSA_PSK_AES256_GCM_SHA384
  • PSK_AES128_SHA256
  • PSK_AES256_SHA384
  • PSK_NULL_SHA256
  • PSK_NULL_SHA384
  • DHE_PSK_AES128_SHA256
  • DHE_PSK_AES256_SHA384
  • DHE_PSK_NULL_SHA256
  • DHE_PSK_NULL_SHA384
  • RSA_PSK_AES128_SHA256
  • RSA_PSK_AES256_SHA384
  • RSA_PSK_NULL_SHA256
  • RSA_PSK_NULL_SHA384
  • RSA_CAMELLIA128_SHA256
  • DH_DSS_CAMELLIA128_SHA256
  • DH_RSA_CAMELLIA128_SHA256
  • DHE_DSS_CAMELLIA128_SHA256
  • DHE_RSA_CAMELLIA128_SHA256
  • DH_ANON_CAMELLIA128_SHA256
  • RSA_CAMELLIA256_SHA256
  • DH_DSS_CAMELLIA256_SHA256
  • DH_RSA_CAMELLIA256_SHA256
  • DHE_DSS_CAMELLIA256_SHA256
  • DHE_RSA_CAMELLIA256_SHA256
  • DH_ANON_CAMELLIA256_SHA256
  • ECDHE_ECDSA_CAMELLIA128_SHA256
  • ECDHE_ECDSA_CAMELLIA256_SHA384
  • ECDH_ECDSA_CAMELLIA128_SHA256
  • ECDH_ECDSA_CAMELLIA256_SHA384
  • ECDHE_RSA_CAMELLIA128_SHA256
  • ECDHE_RSA_CAMELLIA256_SHA384
  • ECDH_RSA_CAMELLIA128_SHA256
  • ECDH_RSA_CAMELLIA256_SHA384
  • RSA_CAMELLIA128_GCM_SHA256
  • RSA_CAMELLIA256_GCM_SHA384
  • DHE_RSA_CAMELLIA128_GCM_SHA256
  • DHE_RSA_CAMELLIA256_GCM_SHA384
  • DH_RSA_CAMELLIA128_GCM_SHA256
  • DH_RSA_CAMELLIA256_GCM_SHA384
  • DHE_DSS_CAMELLIA128_GCM_SHA256
  • DHE_DSS_CAMELLIA256_GCM_SHA384
  • DH_DSS_CAMELLIA128_GCM_SHA256
  • DH_DSS_CAMELLIA256_GCM_SHA384
  • DH_anon_CAMELLIA128_GCM_SHA256
  • DH_anon_CAMELLIA256_GCM_SHA384
  • ECDHE_ECDSA_CAMELLIA128_GCM_SHA256
  • ECDHE_ECDSA_CAMELLIA256_GCM_SHA384
  • ECDH_ECDSA_CAMELLIA128_GCM_SHA256
  • ECDH_ECDSA_CAMELLIA256_GCM_SHA384
  • ECDHE_RSA_CAMELLIA128_GCM_SHA256
  • ECDHE_RSA_CAMELLIA256_GCM_SHA384
  • ECDH_RSA_CAMELLIA128_GCM_SHA256
  • ECDH_RSA_CAMELLIA256_GCM_SHA384
  • PSK_CAMELLIA128_GCM_SHA256
  • PSK_CAMELLIA256_GCM_SHA384
  • DHE_PSK_CAMELLIA128_GCM_SHA256
  • DHE_PSK_CAMELLIA256_GCM_SHA384
  • RSA_PSK_CAMELLIA128_GCM_SHA256
  • RSA_PSK_CAMELLIA256_GCM_SHA384
  • PSK_CAMELLIA128_SHA256
  • PSK_CAMELLIA256_SHA384
  • DHE_PSK_CAMELLIA128_SHA256
  • DHE_PSK_CAMELLIA256_SHA384
  • RSA_PSK_CAMELLIA128_SHA256
  • RSA_PSK_CAMELLIA256_SHA384
  • ECDHE_PSK_CAMELLIA128_SHA256
  • ECDHE_PSK_CAMELLIA256_SHA384
  • ECDHE_PSK_RC4_SHA
  • ECDHE_PSK_3DES_SHA
  • ECDHE_PSK_AES128_SHA
  • ECDHE_PSK_AES256_SHA
  • ECDHE_PSK_AES128_SHA256
  • ECDHE_PSK_AES256_SHA384
  • ECDHE_PSK_NULL_SHA
  • ECDHE_PSK_NULL_SHA256
  • ECDHE_PSK_NULL_SHA384
  • ECDHE_RSA_CHACHA20_POLY1305_SHA256
  • ECDHE_ECDSA_CHACHA20_POLY1305_SHA256
  • DHE_RSA_CHACHA20_POLY1305_SHA256
  • PSK_CHACHA20_POLY1305_SHA256
  • ECDHE_PSK_CHACHA20_POLY1305_SHA256
  • DHE_PSK_CHACHA20_POLY1305_SHA256
  • RSA_PSK_CHACHA20_POLY1305_SHA256
  • AES128_GCM_SHA256
  • AES256_GCM_SHA384
  • CHACHA20_POLY1305_SHA256
  • AES128_CCM_SHA256
  • AES128_CCM8_SHA256

ClientAuth
ClientAuthTypes

Default: 0

Enables or disables certificate-based client authentication.

Set this property to true to tune up the client authentication type:

ccatNoAuth0
ccatRequestCert1
ccatRequireCert2

ECCurves
string

Default: ""

Defines the elliptic curves to enable.

Extensions
string

Default: ""

Provides access to TLS extensions.

ForceResumeIfDestinationChanges
bool

Default: False

Whether to force TLS session resumption when the destination address changes.

PreSharedIdentity
string

Default: ""

Defines the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.

PreSharedKey
string

Default: ""

Contains the pre-shared key for the PSK (Pre-Shared Key) key-exchange mechanism, encoded with base16.

PreSharedKeyCiphersuite
string

Default: ""

Defines the ciphersuite used for PSK (Pre-Shared Key) negotiation.

RenegotiationAttackPreventionMode
RenegotiationAttackPreventionModes

Default: 2

Selects the renegotiation attack prevention mechanism.

The following options are available:

crapmCompatible0TLS 1.0 and 1.1 compatibility mode (renegotiation indication extension is disabled).
crapmStrict1Renegotiation attack prevention is enabled and enforced.
crapmAuto2Automatically choose whether to enable or disable renegotiation attack prevention.

RevocationCheck
RevocationCheckKinds

Default: 1

Specifies the kind(s) of revocation check to perform.

Revocation checking is necessary to ensure the integrity of the chain and obtain up-to-date certificate validity and trustworthiness information.

crcNone0No revocation checking.
crcAuto1Automatic mode selection. Currently this maps to crcAnyOCSPOrCRL, but it may change in the future.
crcAllCRL2All provided CRL endpoints will be checked, and all checks must succeed.
crcAllOCSP3All provided OCSP endpoints will be checked, and all checks must succeed.
crcAllCRLAndOCSP4All provided CRL and OCSP endpoints will be checked, and all checks must succeed.
crcAnyCRL5All provided CRL endpoints will be checked, and at least one check must succeed.
crcAnyOCSP6All provided OCSP endpoints will be checked, and at least one check must succeed.
crcAnyCRLOrOCSP7All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. CRL endpoints are checked first.
crcAnyOCSPOrCRL8All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. OCSP endpoints are checked first.

This setting controls the way the revocation checks are performed for every certificate in the chain. Typically certificates come with two types of revocation information sources: CRL (certificate revocation lists) and OCSP responders. CRLs are static objects periodically published by the CA at some online location. OCSP responders are active online services maintained by the CA that can provide up-to-date information on certificate statuses in near real time.

There are some conceptual differences between the two. CRLs are normally larger in size. Their use involves some latency because there is normally some delay between the time when a certificate was revoked and the time the subsequent CRL mentioning that is published. The benefits of CRL is that the same object can provide statuses for all certificates issued by a particular CA, and that the whole technology is much simpler than OCSP (and thus is supported by more CAs).

This setting lets you adjust the validation course by including or excluding certain types of revocation sources from the validation process. The crcAnyOCSPOrCRL setting (give preference to the faster OCSP route and only demand one source to succeed) is a good choice for most typical validation environments. The "crcAll*" modes are much stricter, and may be used in scenarios where bulletproof validity information is essential.

Note: If no CRL or OCSP endpoints are provided by the CA, the revocation check will be considered successful. This is because the CA chose not to supply revocation information for its certificates, meaning they are considered irrevocable.

Note: Within each of the above settings, if any retrieved CRL or OCSP response indicates that the certificate has been revoked, the revocation check fails.

SSLOptions
int

Default: 16

Various SSL (TLS) protocol options, set of

cssloExpectShutdownMessage0x001Wait for the close-notify message when shutting down the connection

cssloOpenSSLDTLSWorkaround0x002(DEPRECATED) Use a DTLS version workaround when talking to very old OpenSSL versions

cssloDisableKexLengthAlignment0x004Do not align the client-side PMS by the RSA modulus size. It is unlikely that you will ever need to adjust it.

cssloForceUseOfClientCertHashAlg0x008Enforce the use of the client certificate hash algorithm. It is unlikely that you will ever need to adjust it.

cssloAutoAddServerNameExtension0x010Automatically add the server name extension when known

cssloAcceptTrustedSRPPrimesOnly0x020Accept trusted SRP primes only

cssloDisableSignatureAlgorithmsExtension0x040Disable (do not send) the signature algorithms extension. It is unlikely that you will ever need to adjust it.

cssloIntolerateHigherProtocolVersions0x080(server option) Do not allow fallback from TLS versions higher than currently enabled

cssloStickToPrefCertHashAlg0x100Stick to preferred certificate hash algorithms

cssloNoImplicitTLS12Fallback0x200Disable implicit TLS 1.3 to 1.2 fallbacks

cssloUseHandshakeBatches0x400Send the handshake message as large batches rather than individually

TLSMode
SSLModes

Default: 0

Specifies the TLS mode to use.

smDefault0
smNoTLS1Do not use TLS
smExplicitTLS2Connect to the server without any encryption and then request an SSL session.
smImplicitTLS3Connect to the specified port, and establish the SSL session at once.
smMixedTLS4Connect to the specified port, and establish the SSL session at once, but allow plain data.

UseExtendedMasterSecret
bool

Default: False

Enables the Extended Master Secret Extension, as defined in RFC 7627.

UseSessionResumption
bool

Default: False

Enables or disables the TLS session resumption capability.

Versions
int

Default: 16

The SSL/TLS versions to enable by default.

csbSSL20x01SSL 2

csbSSL30x02SSL 3

csbTLS10x04TLS 1.0

csbTLS110x08TLS 1.1

csbTLS120x10TLS 1.2

csbTLS130x20TLS 1.3

Constructors

public TLSSettings();
Public TLSSettings()

Creates a new TLSSettings object.

Config Settings (WebSocketClient Component)

The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

WebSocketClient Config Settings

AuthStickToLastURL:   TBD.

TBD

CacheStreamOutput:   Tells the component whether to cache stream- and file-bound responses in the component.

Set this property to true to enable caching of potentially long responses obtained with Get method. If the response is cached, it will be available via OutputBytes and OutputString properties after the request is completed, but may occupy extra memory resources.

Cookies:   TBD.

TBD

DefClientCookieFmt:   TBD.

TBD

Extensions:   Configures protocol extensions to use.

Provide the extensions in the form of NAME1;VALUE1,NAME2;VALUE2,NAME3;VALUE3 and so on. The VALUE part can be empty: NAME1,NAME2;VALUE2,NAME3.

ForceNTLMAuth:   Activates and enforces NTLM authentication.

Set this property to True to force NTLM (Windows Integrated) authentication.

IgnoreSystemTrust:   Whether trusted Windows Certificate Stores should be treated as trusted.

Specifies whether, during chain validation, the component should respect the trust to CA certificates as configured in the operating system. In Windows this effectively defines whether the component should trust the certificates residing in the Trusted Root Certification Authorities store.

If IgnoreSystemTrust is True, certificates residing in the trusted root store are treated as if they are known, rather than trusted. Only certificates provided via other means (such as the TrustedCertificates property) are considered trusted.

IgnoreUnknownTransferEncodings:   All incoming responses with unknown transfer encodings are ignored if this property is true.

All incoming responses with unknown transfer encodings are ignored if this property is true.

KeepConnectionOpen:   TBD.

TBD

MaxRedirections:   The maximum number of HTTP redirects.

Specifies the maximum number of HTTP redirects. Value 0 prevents any redirections, and -1 allows unlimited redirections.

OutputFile:   Specifies the file where the received content should be saved to.

This is a backward-compatibility duplicate of the OutputFile property. Use OutputFile instead.

PersistentAuthHeader:   Whether to resend NTLM negotiation on every request.

Specifies whether to resend NTLM negotiation on every request.

RequestCompressionGZip:   Ask server to use GZip compression.

Ask server to use GZip compression.

RequestCompressionLevel:   Ask server to use the specified compression level.

Ask server to use the specified compression level.

SendBufferSize:   Size of send buffer in bytes.

The size of blocks used to send data to the server.

StaticDNS:   Specifies whether static DNS rules should be used.

Set this property to enable or disable static DNS rules for the component. Works only if UseOwnDNSResolver is set to true.

Supported values are:

noneNo static DNS rules (default)
localLocal static DNS rules
globalGlobal static DNS rules

StaticIPAddress[domain]:   Gets or sets an IP address for the specified domain name.

Use this property to get or set an IP address for the specified domain name in the internal (of the component) or global DNS rules storage depending on the StaticDNS value. The type of the IP address (IPv4 or IPv6) is determined automatically. If both addresses are available, they are devided by the | (pipe) character.

StaticIPAddresses:   Gets or sets all the static DNS rules.

Use this property to get static DNS rules from the current rules storage or restore them back between application sessions. If StaticDNS of the component is set to "local", the property returns/restores the rules from/to the internal storage of the component. If StaticDNS of the component is set to "global", the property returns/restores the rules from/to the GLOBAL storage. The rules list is returned and accepted in JSON format.

SuppressRedirectionContent:   Whether to suppress the redirection content.

If this property is set to True, the redirection content will be silently suppressed by the component. Otherwise the message containing a redirection code will be processed as usual, the Redirection event will be fired, and the data will be written to OutputString or OutputBytes.

TempPath:   Path for storing temporary files.

This setting specifies an absolute path to the location on disk where temporary files are stored.

TLSExtensions:   TBD.

TBD

TLSPeerExtensions:   TBD.

TBD

TLSSessionGroup:   Specifies the group name of TLS sessions to be used for session resumption.

Use this property to limit the search of chached TLS sessions to the specified group. Sessions from other groups will be ignored. By default, all sessions are cached with an empty group name and available to all the components.

TLSSessionLifetime:   Specifies lifetime in seconds of the cached TLS session.

Use this property to specify how much time the TLS session should be kept in the session cache. After this time, the session expires and will be automatically removed from the cache. Default value is 300 seconds (5 minutes).

TLSSessionPurgeInterval:   Specifies how often the session cache should remove the expired TLS sessions.

Use this property to specify the time interval of purging the expired TLS sessions from the session cache. Default value is 60 seconds (1 minute).

TolerateMinorChainIssues:   Whether to tolerate minor chain issues.

This parameter controls whether the chain validator should tolerate minor technical issues when validating the chain. Those are:

  • CA, revocation source, TLS key usage requirements are not mandated
  • Violation of OCSP issuer requirements are ignored
  • The AuthorityKeyID extension in CRL- and certificate-issuing CAs are ignored (helps with incorrectly renewed certificates)
  • Basic constraints and name constraints of CA certificates are ignored
  • Some weaker algorithms are tolerated
Use100Continue:   Whether to use 100-continue for POST and PUT commands.

Set this property to True to use the 100-continue approach for POST and PUT commands. In this approach, prior to sending the request body, the client sends a request message asking the server whether it is willing to accept the request body. The request body is sent only if the server accepts it.

UseCompression:   Whether to use GZip compression.

Use this property to tell the server that it can transfer GZIPped data (if the server supports it).

UseKerberosAuth:   TBD.

TBD

UseMicrosoftCTL:   Enables or disables the automatic use of the Microsoft online certificate trust list.

Enable this property to make the chain validation module automatically look up missing CA certificates in the public Windows Update repository.

UseSystemCertificates:   Enables or disables the use of the system certificates.

Use this property to tell the chain validation module to automatically look up missing CA certificates in the system certificates. In many cases it is beneficial to switch this property on, as the operating system certificate configuration provides a representative trust framework.

Base Config Settings

ASN1UseGlobalTagCache:   Controls whether ASN.1 module should use a global object cache.

This is a performance setting. It is unlikely that you will ever need to adjust it.

AssignSystemSmartCardPins:   Specifies whether CSP-level PINs should be assigned to CNG keys.

This is a low-level tweak for certain cryptographic providers. It is unlikely that you will ever need to adjust it.

CheckKeyIntegrityBeforeUse:   Enables or disable private key integrity check before use.

This global property enables or disables private key material check before each signing operation. This slows down performance a bit, but prevents a selection of attacks on RSA keys where keys with unknown origins are used.

You can switch this property off to improve performance if your project only uses known, good private keys.

CookieCaching:   Specifies whether a cookie cache should be used for HTTP(S) transports.

Set this property to enable or disable cookies caching for the component.

Supported values are:

offNo caching (default)
localLocal caching
globalGlobal caching

Cookies:   Gets or sets local cookies for the component.

Use this property to get cookies from the internal cookie storage of the component and/or restore them back between application sessions.

DefDeriveKeyIterations:   Specifies the default key derivation algorithm iteration count.

This global property sets the default number of iterations for all supported key derivation algorithms. Note that you can provide the required number of iterations by using properties of the relevant key generation component; this global setting is used in scenarios where specific iteration count is not or cannot be provided.

DNSLocalSuffix:   The suffix to assign for TLD names.

Use this global setting to adjust the default suffix to assign to top-level domain names. The default is .local.

EnableClientSideSSLFFDHE:   Enables or disables finite field DHE key exchange support in TLS clients.

This global property enables or disables support for finite field DHE key exchange methods in TLS clients. FF DHE is a slower algorithm if compared to EC DHE; enabling it may result in slower connections.

This setting only applies to sessions negotiated with TLS version 1.3.

GlobalCookies:   Gets or sets global cookies for all the HTTP transports.

Use this property to get cookies from the GLOBAL cookie storage or restore them back between application sessions. These cookies will be used by all the components that have its CookieCaching property set to "global".

HardwareCryptoUsePolicy:   The hardware crypto usage policy.

This global setting controls the hardware cryptography usage policy: auto, enable, or disable.

HttpUserAgent:   Specifies the user agent name to be used by all HTTP clients.

This global setting defines the User-Agent field of the HTTP request provides information about the software that initiates the request. This value will be used by all the HTTP clients including the ones used internally in other components.

HttpVersion:   The HTTP version to use in any inner HTTP client components created.

Set this property to 1.0 or 1.1 to indicate the HTTP version that any internal HTTP clients should use.

IgnoreExpiredMSCTLSigningCert:   Whether to tolerate the expired Windows Update signing certificate.

It is not uncommon for Microsoft Windows Update Certificate Trust List to be signed with an expired Microsoft certificate. Setting this global property to true makes SBB ignore the expired factor and take the Trust List into account.

ListDelimiter:   The delimiter character for multi-element lists.

Allows to set the delimiter for any multi-entry values returned by the component as a string object, such as file lists. For most of the components, this property is set to a newline sequence.

LogDestination:   Specifies the debug log destination.

Contains a comma-separated list of values that specifies where debug log should be dumped.

Supported values are:

fileFile
consoleConsole
systemlogSystem Log (supported for Android only)
debuggerDebugger (supported for VCL for Windows and .Net)

LogDetails:   Specifies the debug log details to dump.

Contains a comma-separated list of values that specifies which debug log details to dump.

Supported values are:

timeCurrent time
levelLevel
packagePackage name
moduleModule name
classClass name
methodMethod name
threadidThread Id
contenttypeContent type
contentContent
allAll details

LogFile:   Specifies the debug log filename.

Use this property to provide a path to the log file.

LogFilters:   Specifies the debug log filters.

Contains a comma-separated list of value pairs ("name:value") that describe filters.

Supported filter names are:

exclude-packageExclude a package specified in the value
exclude-moduleExclude a module specified in the value
exclude-classExclude a class specified in the value
exclude-methodExclude a method specified in the value
include-packageInclude a package specified in the value
include-moduleInclude a module specified in the value
include-classInclude a class specified in the value
include-methodInclude a method specified in the value

LogFlushMode:   Specifies the log flush mode.

Use this property to set the log flush mode. The following values are defined:

noneNo flush (caching only)
immediateImmediate flush (real-time logging)
maxcountFlush cached entries upon reaching LogMaxEventCount entries in the cache.

LogLevel:   Specifies the debug log level.

Use this property to provide the desired debug log level.

Supported values are:

noneNone (by default)
fatalSevere errors that cause premature termination.
errorOther runtime errors or unexpected conditions.
warningUse of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong".
infoInteresting runtime events (startup/shutdown).
debugDetailed information on flow of through the system.
traceMore detailed information.

LogMaxEventCount:   Specifies the maximum number of events to cache before further action is taken.

Use this property to specify the log event number threshold. This threshold may have different effects, depending on the rotation setting and/or the flush mode.

The default value of this setting is 100.

LogRotationMode:   Specifies the log rotation mode.

Use this property to set the log rotation mode. The following values are defined:

noneNo rotation
deleteolderDelete older entries from the cache upon reaching LogMaxEventCount
keepolderKeep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded)

MaxASN1BufferLength:   Specifies the maximal allowed length for ASN.1 primitive tag data.

This global property limits the maximal allowed length for ASN.1 tag data for non-content-carrying structures, such as certificates, CRLs, or timestamps. It does not affect structures that can carry content, such as CMS/CAdES messages. This is a security property aiming at preventing DoS attacks.

MaxASN1TreeDepth:   Specifies the maximal depth for processed ASN.1 trees.

This global property limits the maximal depth of ASN.1 trees that the component can handle without throwing an error. This is a security property aiming at preventing DoS attacks.

OCSPHashAlgorithm:   Specifies the hash algorithm to be used to identify certificates in OCSP requests.

This global setting defines the hash algorithm to use in OCSP requests during chain validation. Some OCSP responders can only use older algorithms, in which case setting this property to SHA1 may be helpful.

OldClientSideRSAFallback:   Specifies whether the SSH client should use a SHA1 fallback.

Tells the SSH client to use a legacy ssh-rsa authentication even if the server indicates support for newer algorithms, such as rsa-sha-256. This is a backward-compatibility tweak.

ProductVersion:   Returns the version of the SecureBlackbox library.

This property returns the long version string of the SecureBlackbox library being used (major.minor.build.revision).

ServerSSLDHKeyLength:   Sets the size of the TLS DHE key exchange group.

Use this property to adjust the length, in bits, of the DHE prime to be used by the TLS server.

StaticDNS:   Specifies whether static DNS rules should be used.

Set this property to enable or disable static DNS rules for the component. Works only if UseOwnDNSResolver is set to true.

Supported values are:

noneNo static DNS rules (default)
localLocal static DNS rules
globalGlobal static DNS rules

StaticIPAddress[domain]:   Gets or sets an IP address for the specified domain name.

Use this property to get or set an IP address for the specified domain name in the internal (of the component) or global DNS rules storage depending on the StaticDNS value. The type of the IP address (IPv4 or IPv6) is determined automatically. If both addresses are available, they are devided by the | (pipe) character.

StaticIPAddresses:   Gets or sets all the static DNS rules.

Use this property to get static DNS rules from the current rules storage or restore them back between application sessions. If StaticDNS of the component is set to "local", the property returns/restores the rules from/to the internal storage of the component. If StaticDNS of the component is set to "global", the property returns/restores the rules from/to the GLOBAL storage. The rules list is returned and accepted in JSON format.

Tag:   Allows to store any custom data.

Use this config property to store any custom data.

TLSSessionGroup:   Specifies the group name of TLS sessions to be used for session resumption.

Use this property to limit the search of chached TLS sessions to the specified group. Sessions from other groups will be ignored. By default, all sessions are cached with an empty group name and available to all the components.

TLSSessionLifetime:   Specifies lifetime in seconds of the cached TLS session.

Use this property to specify how much time the TLS session should be kept in the session cache. After this time, the session expires and will be automatically removed from the cache. Default value is 300 seconds (5 minutes).

TLSSessionPurgeInterval:   Specifies how often the session cache should remove the expired TLS sessions.

Use this property to specify the time interval of purging the expired TLS sessions from the session cache. Default value is 60 seconds (1 minute).

UseInternalRandom:   Switches between SecureBlackbox-own and platform PRNGs.

Allows to switch between internal/native PRNG implementation and the one provided by the platform.

UseLegacyAdESValidation:   Enables legacy AdES validation mode.

Use this setting to switch the AdES component to the validation approach that was used in SBB 2020/SBB 2022 (less attention to temporal details).

UseOwnDNSResolver:   Specifies whether the client components should use own DNS resolver.

Set this global property to false to force all the client components to use the DNS resolver provided by the target OS instead of using own one.

UseSharedSystemStorages:   Specifies whether the validation engine should use a global per-process copy of the system certificate stores.

Set this global property to false to make each validation run use its own copy of system certificate stores.

UseSystemNativeSizeCalculation:   An internal CryptoAPI access tweak.

This is an internal setting. Please do not use it unless instructed by the support team.

UseSystemOAEPAndPSS:   Enforces or disables the use of system-driven RSA OAEP and PSS computations.

This global setting defines who is responsible for performing RSA-OAEP and RSA-PSS computations where the private key is stored in a Windows system store and is exportable. If set to true, SBB will delegate the computations to Windows via a CryptoAPI call. Otherwise, it will export the key material and perform the computations using its own OAEP/PSS implementation.

This setting only applies to certificates originating from a Windows system store.

UseSystemRandom:   Enables or disables the use of the OS PRNG.

Use this global property to enable or disable the use of operating system-driven pseudorandom number generation.

Trappable Errors (WebSocketClient Component)

WebSocketClient Errors

1048577   Invalid parameter (SB_ERROR_INVALID_PARAMETER)
1048578   Invalid configuration (SB_ERROR_INVALID_SETUP)
1048579   Invalid state (SB_ERROR_INVALID_STATE)
1048580   Invalid value (SB_ERROR_INVALID_VALUE)
1048581   Private key not found (SB_ERROR_NO_PRIVATE_KEY)
1048582   Cancelled by the user (SB_ERROR_CANCELLED_BY_USER)
1048583   The file was not found (SB_ERROR_NO_SUCH_FILE)
1048584   Unsupported feature or operation (SB_ERROR_UNSUPPORTED_FEATURE)
1048585   General error (SB_ERROR_GENERAL_ERROR)