MessageDecryptor Class
Properties Methods Events Config Settings Errors
The MessageDecryptor class decrypts data that is stored in the PKCS#7 format.
Syntax
secureblackbox.MessageDecryptor
Remarks
PKCS#7 (Public Key Cryptography Standard #7) is a common format used to store encrypted and signed data. It is used by a variety of protocols, including S/MIME and CMS.
MessageDecryptor is capable of decrypting encrypted PKCS#7 data stored in EnvelopedData (asymmetric encryption) and EncryptedData (symmetric encryption) subformats. RSA and ECDH key wrapping and all popular symmetric encryption algorithms are supported.
Setting up and using MessageDecryptor is easy:
- Set up your source and destination via InputFile (InputBytes) and OutputFile (OutputBytes) properties.
- For certificate-based (asymmetric) encryption, put the decryption certificate (with its private key included) to the Certificates collection.
- For key-based (symmetric) encryption, assign the symmetric key to Key property. Note: you can find out whether asymmetric or symmetric encryption was used on the input message using the CheckEncryptionType method.
- Call Decrypt to execute the operation.
Note that MessageDecryptor only works with binary PKCS#7-compliant encrypted messages. For processing encrypted S/MIME emails, see MailReader. For decrypting PGP messages, see PGPReader.
For raw symmetric encryption, see SymmetricCrypto. For processing XML-ENC messages, see XMLDecryptor.
MessageDecryptor decryptor = new MessageDecryptor();
// Select the file which contains the message that will be decrypted
decryptor.setInputFile("encryptedMessage.bin");
// Select the file where the decrypted message will be written
decryptor.setOutputFile("decryptedMessage.txt");
// Providing the certificate with its private key to decrypt data
CertificateList certificateList = new CertificateList();
certificateList.add(new Certificate("cert.pfx","password"));
decryptor.setCertificates(certificateList);
decryptor.decrypt(); // Decrypt
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
CertificateIndex | The index of certificate that was used to decrypt the message. |
Certificates | A collection of certificates that can be used for message decryption. |
EncryptionAlgorithm | The symmetric cipher that was used to encrypt the data. |
EncryptionType | Specifies the kind of encrypted message to create. |
ExternalCrypto | Provides access to external signing and DC parameters. |
FIPSMode | Reserved. |
InputBytes | Use this property to pass the input to class in byte array form. |
InputFile | Path to the file containing the encrypted message. |
InputStream | The stream containing the encrypted message. |
Key | The symmetric key to use for decryption. |
OutputBytes | Use this property to read the output the class object has produced. |
OutputFile | Path to the file to save the decrypted data to. |
OutputStream | The stream to save the decrypted data to. |
SignedAttributes | Custom signature attributes that are covered by the electronic signature. |
UnsignedAttributes | Custom unsigned attributes included in the electronic signature. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
CheckEncryptionType | Determines the type of encrypted message in the supplied file. |
Config | Sets or retrieves a configuration setting. |
Decrypt | Attempts to decrypt an encrypted PKCS#7 message. |
DoAction | Performs an additional action. |
Reset | Resets the class settings. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
Error | Information about errors during PKCS#7 message decryption. |
ExternalDecrypt | Handles remote or external decryption. |
Notification | This event notifies the application about an underlying control flow event. |
RecipientFound | Fires to report a message addressee parameters. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
NoOuterContentInfo | Whether the message has outer content. |
OAEPHashAlgorithm | Hash algorithm to be used in RSA-OAEP. |
TempPath | Path for storing temporary files. |
ASN1UseGlobalTagCache | Controls whether ASN.1 module should use a global object cache. |
AssignSystemSmartCardPins | Specifies whether CSP-level PINs should be assigned to CNG keys. |
CheckKeyIntegrityBeforeUse | Enables or disable private key integrity check before use. |
CookieCaching | Specifies whether a cookie cache should be used for HTTP(S) transports. |
Cookies | Gets or sets local cookies for the class. |
DefDeriveKeyIterations | Specifies the default key derivation algorithm iteration count. |
DNSLocalSuffix | The suffix to assign for TLD names. |
EnableClientSideSSLFFDHE | Enables or disables finite field DHE key exchange support in TLS clients. |
GlobalCookies | Gets or sets global cookies for all the HTTP transports. |
HardwareCryptoUsePolicy | The hardware crypto usage policy. |
HttpUserAgent | Specifies the user agent name to be used by all HTTP clients. |
HttpVersion | The HTTP version to use in any inner HTTP client classes created. |
IgnoreExpiredMSCTLSigningCert | Whether to tolerate the expired Windows Update signing certificate. |
ListDelimiter | The delimiter character for multi-element lists. |
LogDestination | Specifies the debug log destination. |
LogDetails | Specifies the debug log details to dump. |
LogFile | Specifies the debug log filename. |
LogFilters | Specifies the debug log filters. |
LogFlushMode | Specifies the log flush mode. |
LogLevel | Specifies the debug log level. |
LogMaxEventCount | Specifies the maximum number of events to cache before further action is taken. |
LogRotationMode | Specifies the log rotation mode. |
MaxASN1BufferLength | Specifies the maximal allowed length for ASN.1 primitive tag data. |
MaxASN1TreeDepth | Specifies the maximal depth for processed ASN.1 trees. |
OCSPHashAlgorithm | Specifies the hash algorithm to be used to identify certificates in OCSP requests. |
OldClientSideRSAFallback | Specifies whether the SSH client should use a SHA1 fallback. |
PKICache | Specifies which PKI elements (certificates, CRLs, OCSP responses) should be cached. |
PKICachePath | Specifies the file system path where cached PKI data is stored. |
ProductVersion | Returns the version of the SecureBlackbox library. |
ServerSSLDHKeyLength | Sets the size of the TLS DHE key exchange group. |
StaticDNS | Specifies whether static DNS rules should be used. |
StaticIPAddress[domain] | Gets or sets an IP address for the specified domain name. |
StaticIPAddresses | Gets or sets all the static DNS rules. |
Tag | Allows to store any custom data. |
TLSSessionGroup | Specifies the group name of TLS sessions to be used for session resumption. |
TLSSessionLifetime | Specifies lifetime in seconds of the cached TLS session. |
TLSSessionPurgeInterval | Specifies how often the session cache should remove the expired TLS sessions. |
UseCRLObjectCaching | Specifies whether reuse of loaded CRL objects is enabled. |
UseInternalRandom | Switches between SecureBlackbox-own and platform PRNGs. |
UseLegacyAdESValidation | Enables legacy AdES validation mode. |
UseOCSPResponseObjectCaching | Specifies whether reuse of loaded OCSP response objects is enabled. |
UseOwnDNSResolver | Specifies whether the client classes should use own DNS resolver. |
UseSharedSystemStorages | Specifies whether the validation engine should use a global per-process copy of the system certificate stores. |
UseSystemNativeSizeCalculation | An internal CryptoAPI access tweak. |
UseSystemOAEPAndPSS | Enforces or disables the use of system-driven RSA OAEP and PSS computations. |
UseSystemRandom | Enables or disables the use of the OS PRNG. |
XMLRDNDescriptorName[OID] | Defines an OID mapping to descriptor names for the certificate's IssuerRDN or SubjectRDN. |
XMLRDNDescriptorPriority[OID] | Specifies the priority of descriptor names associated with a specific OID. |
XMLRDNDescriptorReverseOrder | Specifies whether to reverse the order of descriptors in RDN. |
XMLRDNDescriptorSeparator | Specifies the separator used between descriptors in RDN. |
CertificateIndex Property (MessageDecryptor Class)
The index of certificate that was used to decrypt the message.
Syntax
public int getCertificateIndex();
Default Value
-1
Remarks
This property contains the index of certificate (one of those residing in Certificates collection) that was used to decrypt the message.
This property is read-only.
Certificates Property (MessageDecryptor Class)
A collection of certificates that can be used for message decryption.
Syntax
public CertificateList getCertificates(); public void setCertificates(CertificateList certificates);
Remarks
Use this collection to provide certificates that should be attempted to decrypt the message. The certificates can be provided before calling the Decrypt method, or later from RecipientFound event handler.
Note that the certificates need to have a private key associated with them to be usable for decryption.
This property is not available at design time.
Please refer to the Certificate type for a complete list of fields.EncryptionAlgorithm Property (MessageDecryptor Class)
The symmetric cipher that was used to encrypt the data.
Syntax
public String getEncryptionAlgorithm();
Default Value
""
Remarks
This property contains the symmetric algorithm that the creator had used to encrypt the message.
This property is read-only and not available at design time.
EncryptionType Property (MessageDecryptor Class)
Specifies the kind of encrypted message to create.
Syntax
public int getEncryptionType(); Enumerated values: public final static int metUnknown = 0; public final static int metCertEncrypted = 1; public final static int metKeyEncrypted = 2; public final static int metCertEncryptedAndAuthenticated = 3;
Default Value
0
Remarks
Possible values:
metUnknown | 0 | Unknown or unsupported encryption type |
metCertEncrypted | 1 | Certificate-based encryption |
metKeyEncrypted | 2 | Symmetric key-based encryption |
metCertEncryptedAndAuthenticated | 3 | Certificate-based encryption with authentication (AEAD) |
This property is read-only.
ExternalCrypto Property (MessageDecryptor Class)
Provides access to external signing and DC parameters.
Syntax
public ExternalCrypto getExternalCrypto();
Remarks
Use this property to tune-up remote cryptography settings. SecureBlackbox supports two independent types of external cryptography: synchronous (based on the ExternalSign event) and asynchronous (based on the DC protocol and the DCAuth signing component).
This property is read-only.
Please refer to the ExternalCrypto type for a complete list of fields.FIPSMode Property (MessageDecryptor Class)
Reserved.
Syntax
public boolean isFIPSMode(); public void setFIPSMode(boolean FIPSMode);
Default Value
False
Remarks
This property is reserved for future use.
InputBytes Property (MessageDecryptor Class)
Use this property to pass the input to class in byte array form.
Syntax
public byte[] getInputBytes(); public void setInputBytes(byte[] inputBytes);
Remarks
Assign a byte array containing the data to be processed to this property.
This property is not available at design time.
InputFile Property (MessageDecryptor Class)
Path to the file containing the encrypted message.
Syntax
public String getInputFile(); public void setInputFile(String inputFile);
Default Value
""
Remarks
Use this property to provide a file containing the encrypted data.
InputStream Property (MessageDecryptor Class)
The stream containing the encrypted message.
Syntax
public java.io.InputStream getInputStream(); public void setInputStream(java.io.InputStream inputStream);
Default Value
null
Remarks
Use this property to provide a stream containing the encrypted message.
This property is not available at design time.
Key Property (MessageDecryptor Class)
The symmetric key to use for decryption.
Syntax
public byte[] getKey(); public void setKey(byte[] key);
Remarks
Use this property to provide the symmetric key to decrypt the data. This property is only applicable for processing data of EncryptedData subtype.
Assign this property before calling Decrypt.
This property is not available at design time.
OutputBytes Property (MessageDecryptor Class)
Use this property to read the output the class object has produced.
Syntax
public byte[] getOutputBytes();
Remarks
Read the contents of this property after the operation has completed to read the produced output. This property will only be set if the OutputFile and OutputStream properties had not been assigned.
This property is read-only and not available at design time.
OutputFile Property (MessageDecryptor Class)
Path to the file to save the decrypted data to.
Syntax
public String getOutputFile(); public void setOutputFile(String outputFile);
Default Value
""
Remarks
Use this property to specify the output file where the decrypted message should be saved.
OutputStream Property (MessageDecryptor Class)
The stream to save the decrypted data to.
Syntax
public java.io.OutputStream getOutputStream(); public void setOutputStream(java.io.OutputStream outputStream);
Default Value
null
Remarks
Use this property to provide the stream to save the decrypted message to.
This property is not available at design time.
SignedAttributes Property (MessageDecryptor Class)
Custom signature attributes that are covered by the electronic signature.
Syntax
public SignatureAttributeList getSignedAttributes();
Remarks
Signature attributes are used to store auxiliary information in the signature. Values included as signed attributes are covered by the signature.
This property is read-only and not available at design time.
Please refer to the SignatureAttribute type for a complete list of fields.UnsignedAttributes Property (MessageDecryptor Class)
Custom unsigned attributes included in the electronic signature.
Syntax
public SignatureAttributeList getUnsignedAttributes();
Remarks
Signature attributes are used to store auxiliary information in the signature. Values included as unsigned attributes are not covered by the signature and can be changed or removed without affecting the signature.
This property is read-only and not available at design time.
Please refer to the SignatureAttribute type for a complete list of fields.CheckEncryptionType Method (MessageDecryptor Class)
Determines the type of encrypted message in the supplied file.
Syntax
public int checkEncryptionType();
Remarks
Use this method to determine the kind of the signature stored in InputFile (InputStream).
metUnknown | 0 | Unknown or unsupported encryption type |
metCertEncrypted | 1 | Certificate-based encryption |
metKeyEncrypted | 2 | Symmetric key-based encryption |
metCertEncryptedAndAuthenticated | 3 | Certificate-based encryption with authentication (AEAD) |
Config Method (MessageDecryptor Class)
Sets or retrieves a configuration setting.
Syntax
public String config(String configurationString);
Remarks
Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Decrypt Method (MessageDecryptor Class)
Attempts to decrypt an encrypted PKCS#7 message.
Syntax
public void decrypt();
Remarks
Call this method to attempt to decrypt the PKCS#7 encrypted data. This call supports EnvelopedData and EncryptedData subtypes on input.
Use InputFile or InputStream property to provide the data, and either Certificates or Key to supply the decryption key material.
When processing enveloped data, the class may fire RecipientFound event to report recipient information.
DoAction Method (MessageDecryptor Class)
Performs an additional action.
Syntax
public String doAction(String actionID, String actionParams);
Remarks
DoAction is a generic method available in every class. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.
The unique identifier (case insensitive) of the action is provided in the ActionID parameter.
ActionParams contains the value of a single parameter, or a list of multiple parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....
Common ActionIDs:
Action | Parameters | Returned value | Description |
ResetTrustedListCache | none | none | Clears the cached list of trusted lists. |
ResetCertificateCache | none | none | Clears the cached certificates. |
ResetCRLCache | none | none | Clears the cached CRLs. |
ResetOCSPResponseCache | none | none | Clears the cached OCSP responses. |
Reset Method (MessageDecryptor Class)
Resets the class settings.
Syntax
public void reset();
Remarks
Reset is a generic method available in every class.
Error Event (MessageDecryptor Class)
Information about errors during PKCS#7 message decryption.
Syntax
public class DefaultMessageDecryptorEventListener implements MessageDecryptorEventListener { ... public void error(MessageDecryptorErrorEvent e) {} ... } public class MessageDecryptorErrorEvent { public int errorCode; public String description; }
Remarks
The event is fired in case of exceptional conditions during message processing.
ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Messages section.
ExternalDecrypt Event (MessageDecryptor Class)
Handles remote or external decryption.
Syntax
public class DefaultMessageDecryptorEventListener implements MessageDecryptorEventListener { ... public void externalDecrypt(MessageDecryptorExternalDecryptEvent e) {} ... } public class MessageDecryptorExternalDecryptEvent { public String operationId; public String algorithm; public String pars; public String encryptedData; public String data; //read-write }
Remarks
Assign a handler to this event if you need to delegate a low-level decryption operation to an external, remote, or custom decryption engine. The handler receives an encrypted value in the EncryptedData parameter, and is expected to decrypt it and place the decrypted value into the Data parameter.
OperationId provides a comment about the operation and its origin. It depends on the exact class being used, and may be empty. Algorithm specifies the encryption algorithm being used, and Pars contains algorithm-dependent parameters.
The class uses base16 (hex) encoding for the EncryptedData, Data, and Pars parameters. If your decryption engine uses a different input and output encoding, you may need to decode and/or encode the data before and/or after the decryption.
Sample data encoded in base16: a0dee2a0382afbb09120ffa7ccd8a152 - lower case base16 A0DEE2A0382AFBB09120FFA7CCD8A152 - upper case base16
Notification Event (MessageDecryptor Class)
This event notifies the application about an underlying control flow event.
Syntax
public class DefaultMessageDecryptorEventListener implements MessageDecryptorEventListener { ... public void notification(MessageDecryptorNotificationEvent e) {} ... } public class MessageDecryptorNotificationEvent { public String eventID; public String eventParam; }
Remarks
The class fires this event to let the application know about some event, occurrence, or milestone in the class. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.
The unique identifier of the event is provided in the EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the class, the exact action it is performing, or the document being processed, one or both may be omitted.
RecipientFound Event (MessageDecryptor Class)
Fires to report a message addressee parameters.
Syntax
public class DefaultMessageDecryptorEventListener implements MessageDecryptorEventListener { ... public void recipientFound(MessageDecryptorRecipientFoundEvent e) {} ... } public class MessageDecryptorRecipientFoundEvent { public String issuerRDN; public byte[] serialNumber; public byte[] subjectKeyID; public boolean certFound; }
Remarks
This event is fired for each addressee the message is encrypted for. It may fire several times in a row if the message is encrypted for more than one recipient.
The IssuerRDN, SerialNumber, and SubjectKeyID parameters to identify the recipient's certificate. CertFound indicates if the specified certificate has been located in Certificates collection. If it wasn't, you might want to look up the certificate manually, and add it to the collection inside the event handler.
Certificate Type
Encapsulates an individual X.509 certificate.
Remarks
This type keeps and provides access to X.509 certificate details.
Fields
Bytes
byte[] (read-only)
Default Value: ""
Returns the raw certificate data in DER format.
CA
boolean
Default Value: False
Indicates whether the certificate has a CA capability. For the certificate to be considered a CA, it must have its Basic Constraints extension set with the CA indicator enabled.
Set this field when generating a new certificate to have its Basic Constraints extension generated automatically.
CAKeyID
byte[] (read-only)
Default Value: ""
A unique identifier (fingerprint) of the CA certificate's cryptographic key.
Authority Key Identifier is a certificate extension which allows identification of certificates belonging to the same issuer, but with different public keys. It is a de-facto standard to include this extension in all certificates to facilitate chain building.
This setting cannot be set when generating a certificate as it always derives from another certificate property. CertificateManager generates this setting automatically if enough information is available to it: for self-signed certificates, this value is copied from the SubjectKeyID setting, and for lower-level certificates, from the parent certificate's subject key ID extension.
CertType
int (read-only)
Default Value: 0
Returns the type of the entity contained in the Certificate object.
A Certificate object can contain two types of cryptographic objects: a ready-to-use X.509 certificate, or a certificate request ("an unsigned certificate"). Certificate requests can be upgraded to full certificates by signing them with a CA certificate.
Use the CertificateManager class to load or create new certificate and certificate requests objects.
CRLDistributionPoints
String
Default Value: ""
Contains a list of locations of CRL distribution points used to check this certificate's validity. The list is taken from the respective certificate extension.
Use this field when generating a certificate to provide a list of CRL endpoints that should be made part of the new certificate.
The endpoints are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.
Curve
String
Default Value: ""
Specifies the elliptic curve associated with the certificate's public key. This setting only applies to certificates containing EC keys.
SB_EC_SECP112R1 | SECP112R1 | |
SB_EC_SECP112R2 | SECP112R2 | |
SB_EC_SECP128R1 | SECP128R1 | |
SB_EC_SECP128R2 | SECP128R2 | |
SB_EC_SECP160K1 | SECP160K1 | |
SB_EC_SECP160R1 | SECP160R1 | |
SB_EC_SECP160R2 | SECP160R2 | |
SB_EC_SECP192K1 | SECP192K1 | |
SB_EC_SECP192R1 | SECP192R1 | |
SB_EC_SECP224K1 | SECP224K1 | |
SB_EC_SECP224R1 | SECP224R1 | |
SB_EC_SECP256K1 | SECP256K1 | |
SB_EC_SECP256R1 | SECP256R1 | |
SB_EC_SECP384R1 | SECP384R1 | |
SB_EC_SECP521R1 | SECP521R1 | |
SB_EC_SECT113R1 | SECT113R1 | |
SB_EC_SECT113R2 | SECT113R2 | |
SB_EC_SECT131R1 | SECT131R1 | |
SB_EC_SECT131R2 | SECT131R2 | |
SB_EC_SECT163K1 | SECT163K1 | |
SB_EC_SECT163R1 | SECT163R1 | |
SB_EC_SECT163R2 | SECT163R2 | |
SB_EC_SECT193R1 | SECT193R1 | |
SB_EC_SECT193R2 | SECT193R2 | |
SB_EC_SECT233K1 | SECT233K1 | |
SB_EC_SECT233R1 | SECT233R1 | |
SB_EC_SECT239K1 | SECT239K1 | |
SB_EC_SECT283K1 | SECT283K1 | |
SB_EC_SECT283R1 | SECT283R1 | |
SB_EC_SECT409K1 | SECT409K1 | |
SB_EC_SECT409R1 | SECT409R1 | |
SB_EC_SECT571K1 | SECT571K1 | |
SB_EC_SECT571R1 | SECT571R1 | |
SB_EC_PRIME192V1 | PRIME192V1 | |
SB_EC_PRIME192V2 | PRIME192V2 | |
SB_EC_PRIME192V3 | PRIME192V3 | |
SB_EC_PRIME239V1 | PRIME239V1 | |
SB_EC_PRIME239V2 | PRIME239V2 | |
SB_EC_PRIME239V3 | PRIME239V3 | |
SB_EC_PRIME256V1 | PRIME256V1 | |
SB_EC_C2PNB163V1 | C2PNB163V1 | |
SB_EC_C2PNB163V2 | C2PNB163V2 | |
SB_EC_C2PNB163V3 | C2PNB163V3 | |
SB_EC_C2PNB176W1 | C2PNB176W1 | |
SB_EC_C2TNB191V1 | C2TNB191V1 | |
SB_EC_C2TNB191V2 | C2TNB191V2 | |
SB_EC_C2TNB191V3 | C2TNB191V3 | |
SB_EC_C2ONB191V4 | C2ONB191V4 | |
SB_EC_C2ONB191V5 | C2ONB191V5 | |
SB_EC_C2PNB208W1 | C2PNB208W1 | |
SB_EC_C2TNB239V1 | C2TNB239V1 | |
SB_EC_C2TNB239V2 | C2TNB239V2 | |
SB_EC_C2TNB239V3 | C2TNB239V3 | |
SB_EC_C2ONB239V4 | C2ONB239V4 | |
SB_EC_C2ONB239V5 | C2ONB239V5 | |
SB_EC_C2PNB272W1 | C2PNB272W1 | |
SB_EC_C2PNB304W1 | C2PNB304W1 | |
SB_EC_C2TNB359V1 | C2TNB359V1 | |
SB_EC_C2PNB368W1 | C2PNB368W1 | |
SB_EC_C2TNB431R1 | C2TNB431R1 | |
SB_EC_NISTP192 | NISTP192 | |
SB_EC_NISTP224 | NISTP224 | |
SB_EC_NISTP256 | NISTP256 | |
SB_EC_NISTP384 | NISTP384 | |
SB_EC_NISTP521 | NISTP521 | |
SB_EC_NISTB163 | NISTB163 | |
SB_EC_NISTB233 | NISTB233 | |
SB_EC_NISTB283 | NISTB283 | |
SB_EC_NISTB409 | NISTB409 | |
SB_EC_NISTB571 | NISTB571 | |
SB_EC_NISTK163 | NISTK163 | |
SB_EC_NISTK233 | NISTK233 | |
SB_EC_NISTK283 | NISTK283 | |
SB_EC_NISTK409 | NISTK409 | |
SB_EC_NISTK571 | NISTK571 | |
SB_EC_GOSTCPTEST | GOSTCPTEST | |
SB_EC_GOSTCPA | GOSTCPA | |
SB_EC_GOSTCPB | GOSTCPB | |
SB_EC_GOSTCPC | GOSTCPC | |
SB_EC_GOSTCPXCHA | GOSTCPXCHA | |
SB_EC_GOSTCPXCHB | GOSTCPXCHB | |
SB_EC_BRAINPOOLP160R1 | BRAINPOOLP160R1 | |
SB_EC_BRAINPOOLP160T1 | BRAINPOOLP160T1 | |
SB_EC_BRAINPOOLP192R1 | BRAINPOOLP192R1 | |
SB_EC_BRAINPOOLP192T1 | BRAINPOOLP192T1 | |
SB_EC_BRAINPOOLP224R1 | BRAINPOOLP224R1 | |
SB_EC_BRAINPOOLP224T1 | BRAINPOOLP224T1 | |
SB_EC_BRAINPOOLP256R1 | BRAINPOOLP256R1 | |
SB_EC_BRAINPOOLP256T1 | BRAINPOOLP256T1 | |
SB_EC_BRAINPOOLP320R1 | BRAINPOOLP320R1 | |
SB_EC_BRAINPOOLP320T1 | BRAINPOOLP320T1 | |
SB_EC_BRAINPOOLP384R1 | BRAINPOOLP384R1 | |
SB_EC_BRAINPOOLP384T1 | BRAINPOOLP384T1 | |
SB_EC_BRAINPOOLP512R1 | BRAINPOOLP512R1 | |
SB_EC_BRAINPOOLP512T1 | BRAINPOOLP512T1 | |
SB_EC_CURVE25519 | CURVE25519 | |
SB_EC_CURVE448 | CURVE448 |
Fingerprint
String (read-only)
Default Value: ""
Contains the fingerprint (a hash imprint) of this certificate.
While there is no formal standard defining what a fingerprint is, a SHA1 hash of the certificate's DER-encoded body is typically used.
FriendlyName
String (read-only)
Default Value: ""
Contains an associated alias (friendly name) of the certificate. The friendly name is not a property of a certificate: it is maintained by the certificate media rather than being included in its DER representation. Windows certificate stores are one example of media that does support friendly names.
HashAlgorithm
String
Default Value: ""
Provides means to set the hash algorithm to be used in the subsequent operation on the certificate (such as generation or key signing). It is not a property of a certificate; use SigAlgorithm to find out the hash algorithm that is part of the certificate signature.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
Issuer
String (read-only)
Default Value: ""
The common name of the certificate issuer (CA), typically a company name. This is part of a larger set of credentials available via IssuerRDN.
IssuerRDN
String
Default Value: ""
A list of Property=Value pairs that uniquely identify the certificate issuer.
Example: /C=US/O=Nationwide CA/CN=Web Certification Authority
KeyAlgorithm
String
Default Value: "0"
Specifies the public key algorithm of this certificate.
SB_CERT_ALGORITHM_ID_RSA_ENCRYPTION | rsaEncryption | |
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTION | md2withRSAEncryption | |
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTION | md5withRSAEncryption | |
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTION | sha1withRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA | id-dsa | |
SB_CERT_ALGORITHM_ID_DSA_SHA1 | id-dsa-with-sha1 | |
SB_CERT_ALGORITHM_DH_PUBLIC | dhpublicnumber | |
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTION | sha224WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTION | sha256WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTION | sha384WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTION | sha512WithRSAEncryption | |
SB_CERT_ALGORITHM_ID_RSAPSS | id-RSASSA-PSS | |
SB_CERT_ALGORITHM_ID_RSAOAEP | id-RSAES-OAEP | |
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160 | ripemd160withRSA | |
SB_CERT_ALGORITHM_ID_ELGAMAL | elGamal | |
SB_CERT_ALGORITHM_SHA1_ECDSA | ecdsa-with-SHA1 | |
SB_CERT_ALGORITHM_RECOMMENDED_ECDSA | ecdsa-recommended | |
SB_CERT_ALGORITHM_SHA224_ECDSA | ecdsa-with-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA | ecdsa-with-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA | ecdsa-with-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA | ecdsa-with-SHA512 | |
SB_CERT_ALGORITHM_EC | id-ecPublicKey | |
SB_CERT_ALGORITHM_SPECIFIED_ECDSA | ecdsa-specified | |
SB_CERT_ALGORITHM_GOST_R3410_1994 | id-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3410_2001 | id-GostR3410-2001 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994 | id-GostR3411-94-with-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001 | id-GostR3411-94-with-GostR3410-2001 | |
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAIN | ecdsa-plain-SHA1 | |
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAIN | ecdsa-plain-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAIN | ecdsa-plain-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAIN | ecdsa-plain-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAIN | ecdsa-plain-SHA512 | |
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAIN | ecdsa-plain-RIPEMD160 | |
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTION | whirlpoolWithRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA_SHA224 | id-dsa-with-sha224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA256 | id-dsa-with-sha256 | |
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA | id-ecdsa-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA | id-ecdsa-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA | id-ecdsa-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA | id-ecdsa-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-512 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_224 | id-dsa-with-sha3-224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_256 | id-dsa-with-sha3-256 | |
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA | id-ecdsa-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA | id-ecdsa-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA | id-ecdsa-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA | id-ecdsa-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA | id-ecdsa-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA | id-ecdsa-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA | id-ecdsa-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA | id-ecdsa-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b512 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224 | id-dsa-with-blake2s224 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256 | id-dsa-with-blake2s256 | |
SB_CERT_ALGORITHM_EDDSA_ED25519 | id-Ed25519 | |
SB_CERT_ALGORITHM_EDDSA_ED448 | id-Ed448 | |
SB_CERT_ALGORITHM_EDDSA_ED25519_PH | id-Ed25519ph | |
SB_CERT_ALGORITHM_EDDSA_ED448_PH | id-Ed448ph | |
SB_CERT_ALGORITHM_EDDSA | id-EdDSA | |
SB_CERT_ALGORITHM_EDDSA_SIGNATURE | id-EdDSA-sig |
Use the KeyBits, Curve, and PublicKeyBytes fields to get more details about the key the certificate contains.
KeyBits
int (read-only)
Default Value: 0
Returns the length of the public key in bits.
This value indicates the length of the principal cryptographic parameter of the key, such as the length of the RSA modulus or ECDSA field. The key data returned by the PublicKeyBytes or PrivateKeyBytes field would typically contain auxiliary values, and therefore be longer.
KeyFingerprint
String (read-only)
Default Value: ""
Returns a SHA1 fingerprint of the public key contained in the certificate.
Note that the key fingerprint is different from the certificate fingerprint accessible via the Fingerprint field. The key fingeprint uniquely identifies the public key, and so can be the same for multiple certificates containing the same key.
KeyUsage
int
Default Value: 0
Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.
This value is a bit mask of the following values:
ckuUnknown | 0x00000 | Unknown key usage |
ckuDigitalSignature | 0x00001 | Digital signature |
ckuNonRepudiation | 0x00002 | Non-repudiation |
ckuKeyEncipherment | 0x00004 | Key encipherment |
ckuDataEncipherment | 0x00008 | Data encipherment |
ckuKeyAgreement | 0x00010 | Key agreement |
ckuKeyCertSign | 0x00020 | Certificate signing |
ckuCRLSign | 0x00040 | Revocation signing |
ckuEncipherOnly | 0x00080 | Encipher only |
ckuDecipherOnly | 0x00100 | Decipher only |
ckuServerAuthentication | 0x00200 | Server authentication |
ckuClientAuthentication | 0x00400 | Client authentication |
ckuCodeSigning | 0x00800 | Code signing |
ckuEmailProtection | 0x01000 | Email protection |
ckuTimeStamping | 0x02000 | Timestamping |
ckuOCSPSigning | 0x04000 | OCSP signing |
ckuSmartCardLogon | 0x08000 | Smartcard logon |
ckuKeyPurposeClientAuth | 0x10000 | Kerberos - client authentication |
ckuKeyPurposeKDC | 0x20000 | Kerberos - KDC |
Set this field before generating the certificate to propagate the key usage flags to the new certificate.
KeyValid
boolean (read-only)
Default Value: False
Returns True if the certificate's key is cryptographically valid, and False otherwise.
OCSPLocations
String
Default Value: ""
Locations of OCSP services that can be used to check this certificate's validity in real time, as recorded by the CA.
Set this field before calling the certificate manager's Generate method to propagate it to the new certificate.
The OCSP locations are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.
OCSPNoCheck
boolean
Default Value: False
Accessor to the value of the certificate's ocsp-no-check extension.
Origin
int (read-only)
Default Value: 0
Returns the location that the certificate was taken or loaded from.
PolicyIDs
String
Default Value: ""
Contains identifiers (OIDs) of the applicable certificate policies.
The Certificate Policies extension identifies a sequence of policies under which the certificate has been issued, and which regulate its usage.
Set this field when generating a certificate to propagate the policies information to the new certificate.
The policies are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the policy element separator.
PrivateKeyBytes
byte[] (read-only)
Default Value: ""
Returns the certificate's private key in DER-encoded format. It is normal for this field to be empty if the private key is non-exportable, which, for example, is typical for certificates originating from hardware security devices.
PrivateKeyExists
boolean (read-only)
Default Value: False
Indicates whether the certificate has a usable private key associated with it. If it is set to True, the certificate can be used for private key operations, such as signing or decryption.
This field is independent from PrivateKeyBytes, and can be set to True even if the former is empty. This would imply that the private key is non-exportable, but still can be used for cryptographic operations.
PrivateKeyExtractable
boolean (read-only)
Default Value: False
Indicates whether the private key is extractable (exportable).
PublicKeyBytes
byte[] (read-only)
Default Value: ""
Contains the certificate's public key in DER format.
This typically would contain an ASN.1-encoded public key value. The exact format depends on the type of the public key contained in the certificate.
Qualified
boolean (read-only)
Default Value: False
Indicates whether the certificate is qualified.
This property is set to True if the certificate is confirmed by a Trusted List to be qualified.
QualifiedStatements
int
Default Value: 0
Returns a simplified qualified status of the certificate.
Qualifiers
String (read-only)
Default Value: ""
A list of qualifiers.
Contains a comma-separated list of qualifier aliases for the certificate, for example QCP-n-qscd,QCWithSSCD.
SelfSigned
boolean (read-only)
Default Value: False
Indicates whether the certificate is self-signed (root) or signed by an external CA.
SerialNumber
byte[]
Default Value: ""
Returns the certificate's serial number.
The serial number is a binary string that uniquely identifies a certificate among others issued by the same CA. According to the X.509 standard, the (issuer, serial number) pair should be globally unique to facilitate chain building.
SigAlgorithm
String (read-only)
Default Value: ""
Indicates the algorithm that was used by the CA to sign this certificate.
A signature algorithm typically combines hash and public key algorithms together, such as sha256WithRSAEncryption or ecdsa-with-SHA256.
Source
int (read-only)
Default Value: 0
Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.
Subject
String (read-only)
Default Value: ""
The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name. This is part of a larger set of credentials available via SubjectRDN.
SubjectAlternativeName
String
Default Value: ""
Returns or sets the value of the Subject Alternative Name extension of the certificate.
Subject alternative names are used to provide additional names that are impractical to store in the main SubjectRDN field. For example, it is often used to store all the domain names that a TLS certificate is authorized to protect.
The alternative names are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the element separator.
SubjectKeyID
byte[]
Default Value: ""
Contains a unique identifier of the certificate's cryptographic key.
Subject Key Identifier is a certificate extension which allows a specific public key to be associated with a certificate holder. Typically, subject key identifiers of CA certificates are recorded as respective CA key identifiers in the subordinate certificates that they issue, which facilitates chain building.
The SubjectKeyID and CAKeyID fields of self-signed certificates typically contain identical values, as in that specific case, the issuer and the subject are the same entity.
SubjectRDN
String
Default Value: ""
A list of Property=Value pairs that uniquely identify the certificate holder (subject).
Depending on the purpose of the certificate and the policies of the CA that issued it, the values included in the subject record may differ drastically and contain business or personal names, web URLs, email addresses, and other data.
Example: /C=US/O=Oranges and Apples, Inc./OU=Accounts Receivable/1.2.3.4.5=Value with unknown OID/CN=Margaret Watkins.
Valid
boolean (read-only)
Default Value: False
Indicates whether or not the signature over the certificate or the request is valid and matches the public key contained in the CA certificate/request.
ValidFrom
String
Default Value: ""
The time point at which the certificate becomes valid, in UTC.
ValidTo
String
Default Value: ""
The time point at which the certificate expires, in UTC.
Constructors
public Certificate( bytes, startIndex, count, password);
Loads the X.509 certificate from a memory buffer. Bytes is a buffer containing the raw certificate data. StartIndex and Count specify the starting position and number of bytes to be read from the buffer, respectively. Password is a password encrypting the certificate.
public Certificate( certBytes, certStartIndex, certCount, keyBytes, keyStartIndex, keyCount, password);
Loads the X.509 certificate from a memory buffer.
CertBytes is a buffer containing the raw certificate data. CertStartIndex and CertCount specify the starting position and number of bytes to be read from the buffer, respectively.
KeyBytes is a buffer containing the private key data. KeyStartIndex and KeyCount specify the starting position and number of bytes to be read from the buffer, respectively.
Password is a password encrypting the certificate.
public Certificate( bytes, startIndex, count);
Loads the X.509 certificate from a memory buffer. Bytes is a buffer containing the raw certificate data. StartIndex and Count specify the starting position and number of bytes to be read from the buffer, respectively.
public Certificate( path, password);
Loads the X.509 certificate from a file. Path specifies the full path to the file containing the certificate data. Password is a password encrypting the certificate.
public Certificate( certPath, keyPath, password);
Loads the X.509 certificate from a file. CertPath specifies the full path to the file containing the certificate data. KeyPath specifies the full path to the file containing the private key. Password is a password encrypting the certificate.
public Certificate( path);
Loads the X.509 certificate from a file. Path specifies the full path to the file containing the certificate data.
public Certificate( stream);
Loads the X.509 certificate from a stream. Stream is a stream containing the certificate data.
public Certificate( stream, password);
Loads the X.509 certificate from a stream. Stream is a stream containing the certificate data. Password is a password encrypting the certificate.
public Certificate( certStream, keyStream, password);
Loads the X.509 certificate from a stream. CertStream is a stream containing the certificate data. KeyStream is a stream containing the private key. Password is a password encrypting the certificate.
public Certificate();
Creates a new object with default field values.
ExternalCrypto Type
Specifies the parameters of external cryptographic calls.
Remarks
External cryptocalls are used in a Distributed Cryptography (DC) subsystem, which allows the delegation of security operations to the remote agent. For instance, it can be used to compute the signature value on the server, while retaining the client's private key locally.
Fields
AsyncDocumentID
String
Default Value: ""
Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.
Use this property when working with multi-signature DCAuth requests and responses to uniquely identify documents signed within a larger batch. On the completion stage, this value helps the signing component identify the correct signature in the returned batch of responses.
If using batched requests, make sure to set this property to the same value on both the pre-signing (SignAsyncBegin) and completion (SignAsyncEnd) stages.
CustomParams
String
Default Value: ""
Custom parameters to be passed to the signing service (uninterpreted).
Data
String
Default Value: ""
Additional data to be included in the async state and mirrored back by the requestor.
ExternalHashCalculation
boolean
Default Value: False
Specifies whether the message hash is to be calculated at the external endpoint. Please note that this mode is not supported by the DCAuth class.
If set to true, the class will pass a few kilobytes of to-be-signed data from the document to the OnExternalSign event. This only applies when SignExternal() is called.
HashAlgorithm
String
Default Value: "SHA256"
Specifies the request's signature hash algorithm.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
KeyID
String
Default Value: ""
The ID of the pre-shared key used for DC request authentication.
Asynchronous DCAuth-driven communication requires that parties authenticate each other with a secret pre-shared cryptographic key. This provides an extra protection layer for the protocol and diminishes the risk of the private key becoming abused by foreign parties. Use this property to provide the pre-shared key identifier, and use KeySecret to pass the key itself.
The same KeyID/KeySecret pair should be used on the DCAuth side for the signing requests to be accepted.
Note: The KeyID/KeySecret scheme is very similar to the AuthKey scheme used in various Cloud service providers to authenticate users.
Example:
signer.ExternalCrypto.KeyID = "MainSigningKey";
signer.ExternalCrypto.KeySecret = "abcdef0123456789";
KeySecret
String
Default Value: ""
The pre-shared key used for DC request authentication. This key must be set and match the key used by the DCAuth counterpart for the scheme to work.
Read more about configuring authentication in the KeyID topic.
Method
int
Default Value: 0
Specifies the asynchronous signing method. This is typically defined by the DC server capabilities and setup.
Available options:
asmdPKCS1 | 0 |
asmdPKCS7 | 1 |
Mode
int
Default Value: 0
Specifies the external cryptography mode.
Available options:
ecmDefault | The default value (0) |
ecmDisabled | Do not use DC or external signing (1) |
ecmGeneric | Generic external signing with the OnExternalSign event (2) |
ecmDCAuth | DCAuth signing (3) |
ecmDCAuthJSON | DCAuth signing in JSON format (4) |
PublicKeyAlgorithm
String
Default Value: ""
Provide the public key algorithm here if the certificate is not available on the pre-signing stage.
SB_CERT_ALGORITHM_ID_RSA_ENCRYPTION | rsaEncryption | |
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTION | md2withRSAEncryption | |
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTION | md5withRSAEncryption | |
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTION | sha1withRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA | id-dsa | |
SB_CERT_ALGORITHM_ID_DSA_SHA1 | id-dsa-with-sha1 | |
SB_CERT_ALGORITHM_DH_PUBLIC | dhpublicnumber | |
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTION | sha224WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTION | sha256WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTION | sha384WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTION | sha512WithRSAEncryption | |
SB_CERT_ALGORITHM_ID_RSAPSS | id-RSASSA-PSS | |
SB_CERT_ALGORITHM_ID_RSAOAEP | id-RSAES-OAEP | |
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160 | ripemd160withRSA | |
SB_CERT_ALGORITHM_ID_ELGAMAL | elGamal | |
SB_CERT_ALGORITHM_SHA1_ECDSA | ecdsa-with-SHA1 | |
SB_CERT_ALGORITHM_RECOMMENDED_ECDSA | ecdsa-recommended | |
SB_CERT_ALGORITHM_SHA224_ECDSA | ecdsa-with-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA | ecdsa-with-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA | ecdsa-with-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA | ecdsa-with-SHA512 | |
SB_CERT_ALGORITHM_EC | id-ecPublicKey | |
SB_CERT_ALGORITHM_SPECIFIED_ECDSA | ecdsa-specified | |
SB_CERT_ALGORITHM_GOST_R3410_1994 | id-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3410_2001 | id-GostR3410-2001 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994 | id-GostR3411-94-with-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001 | id-GostR3411-94-with-GostR3410-2001 | |
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAIN | ecdsa-plain-SHA1 | |
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAIN | ecdsa-plain-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAIN | ecdsa-plain-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAIN | ecdsa-plain-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAIN | ecdsa-plain-SHA512 | |
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAIN | ecdsa-plain-RIPEMD160 | |
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTION | whirlpoolWithRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA_SHA224 | id-dsa-with-sha224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA256 | id-dsa-with-sha256 | |
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA | id-ecdsa-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA | id-ecdsa-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA | id-ecdsa-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA | id-ecdsa-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-512 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_224 | id-dsa-with-sha3-224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_256 | id-dsa-with-sha3-256 | |
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA | id-ecdsa-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA | id-ecdsa-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA | id-ecdsa-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA | id-ecdsa-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA | id-ecdsa-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA | id-ecdsa-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA | id-ecdsa-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA | id-ecdsa-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b512 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224 | id-dsa-with-blake2s224 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256 | id-dsa-with-blake2s256 | |
SB_CERT_ALGORITHM_EDDSA_ED25519 | id-Ed25519 | |
SB_CERT_ALGORITHM_EDDSA_ED448 | id-Ed448 | |
SB_CERT_ALGORITHM_EDDSA_ED25519_PH | id-Ed25519ph | |
SB_CERT_ALGORITHM_EDDSA_ED448_PH | id-Ed448ph | |
SB_CERT_ALGORITHM_EDDSA | id-EdDSA | |
SB_CERT_ALGORITHM_EDDSA_SIGNATURE | id-EdDSA-sig |
Constructors
public ExternalCrypto();
Creates a new ExternalCrypto object with default field values.
SignatureAttribute Type
Represents an attribute of a digital PKCS#7/CMS signature.
Remarks
Attributes store auxiliary information about the signed message, the signature, or the owner. Each attribute is a OID=Value pair.
Common attributes are signing time, a content type, a policy identifier, and a signature timestamp.
Fields
OID
String
Default Value: ""
The object identifier of the attribute.
Value
byte[]
Default Value: ""
The value of the attribute.
Constructors
public SignatureAttribute();
Creates a new, empty, signature attribute.
Config Settings (MessageDecryptor Class)
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.MessageDecryptor Config Settings
Base Config Settings
You can switch this property off to improve performance if your project only uses known, good private keys.
Supported values are:
off | No caching (default) | |
local | Local caching | |
global | Global caching |
This setting only applies to sessions negotiated with TLS version 1.3.
Supported values are:
file | File | |
console | Console | |
systemlog | System Log (supported for Android only) | |
debugger | Debugger (supported for VCL for Windows and .Net) |
Supported values are:
time | Current time | |
level | Level | |
package | Package name | |
module | Module name | |
class | Class name | |
method | Method name | |
threadid | Thread Id | |
contenttype | Content type | |
content | Content | |
all | All details |
Supported filter names are:
exclude-package | Exclude a package specified in the value | |
exclude-module | Exclude a module specified in the value | |
exclude-class | Exclude a class specified in the value | |
exclude-method | Exclude a method specified in the value | |
include-package | Include a package specified in the value | |
include-module | Include a module specified in the value | |
include-class | Include a class specified in the value | |
include-method | Include a method specified in the value |
none | No flush (caching only) | |
immediate | Immediate flush (real-time logging) | |
maxcount | Flush cached entries upon reaching LogMaxEventCount entries in the cache. |
Supported values are:
none | None (by default) | |
fatal | Severe errors that cause premature termination. | |
error | Other runtime errors or unexpected conditions. | |
warning | Use of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong". | |
info | Interesting runtime events (startup/shutdown). | |
debug | Detailed information on flow of through the system. | |
trace | More detailed information. |
The default value of this setting is 100.
none | No rotation | |
deleteolder | Delete older entries from the cache upon reaching LogMaxEventCount | |
keepolder | Keep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded) |
Supported Values:
certificate | Enables caching of certificates. |
crl | Enables caching of Certificate Revocation Lists (CRLs). |
ocsp | Enables caching of OCSP (Online Certificate Status Protocol) responses. |
Example (default value):
PKICache=certificate,crl,ocsp
In this example, the component caches certificates, CRLs, and OCSP responses.
The default value is an empty string - no cached PKI data is stored on disk.
Example:
PKICachePath=C:\Temp\cache
In this example, the cached PKI data is stored in the C:\Temp\cache directory.
Supported values are:
none | No static DNS rules (default) | |
local | Local static DNS rules | |
global | Global static DNS rules |
This setting only applies to certificates originating from a Windows system store.
The property accepts comma-separated values where the first descriptor name is used when the OID is mapped, and subsequent values act as aliases for parsing.
Syntax:
Config("XMLRDNDescriptorName[OID]=PrimaryName,Alias1,Alias2");
Where:
OID: The Object Identifier from the certificate's IssuerRDN or SubjectRDN that you want to map.
PrimaryName: The main descriptor name used in the XML signature when the OID is encountered.
Alias1, Alias2, ...: Optional alternative names recognized during parsing.
Usage Examples:
Map OID 2.5.4.5 to SERIALNUMBER:
Config("XMLRDNDescriptorName[2.5.4.5]=SERIALNUMBER");
Map OID 1.2.840.113549.1.9.1 to E, with aliases EMAIL and EMAILADDRESS:
Config("XMLRDNDescriptorName[1.2.840.113549.1.9.1]=E,EMAIL,EMAILADDRESS");
Trappable Errors (MessageDecryptor Class)
MessageDecryptor Errors
1048577 | Invalid parameter (SB_ERROR_INVALID_PARAMETER) |
1048578 | Invalid configuration (SB_ERROR_INVALID_SETUP) |
1048579 | Invalid state (SB_ERROR_INVALID_STATE) |
1048580 | Invalid value (SB_ERROR_INVALID_VALUE) |
1048581 | Private key not found (SB_ERROR_NO_PRIVATE_KEY) |
1048582 | Cancelled by the user (SB_ERROR_CANCELLED_BY_USER) |
1048583 | The file was not found (SB_ERROR_NO_SUCH_FILE) |
1048584 | Unsupported feature or operation (SB_ERROR_UNSUPPORTED_FEATURE) |
1048585 | General error (SB_ERROR_GENERAL_ERROR) |