MessageVerifier Class
Properties Methods Events Config Settings Errors
The MessageVerifier class verifies digital signatures of data stored in the PKCS#7 format.
Syntax
secureblackbox.MessageVerifier
Remarks
PKCS#7 (Public Key Cryptography Standard #7) is a common format used to store encrypted and signed data.
It is used by a variety of protocols, including S/MIME and CMS.
MessageVerifier verifier = new MessageVerifier();
// Select the file which contains the signed message
verifier.setInputFile("signedMessage.bin");
if (verifier.checkSignatureType() == Constants.stPKCS7Detached)
{
// To verify a detached signature, we need
// to provide both the signature and the original data
verifier.setDataFile("message.txt");
verifier.verifyDetached();
}
else
{
// To verify an enveloping signature, we need
// to provide the location to extract the data
verifier.setOutputFile("output.txt");
verifier.verify();
}
System.out.println("Validation result: " + verifier.getSignatureValidationResult() + "\n" +
"Signing time: " + verifier.getValidatedSigningTime() + "\n" +
"TSA certificate: " + verifier.getSigningCertificate().getSubjectRDN());
// Output:
//
// Validation result: 0 // 0 == svtValid
// Signing time: 2024-05-16 15:18:35
// TSA certificate: /CN=Test Certificate
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
Certificates | A collection of certificates included in the electronic signature. |
ClaimedSigningTime | Returns a signature's claimed signing time. |
ContentType | A content type property of the signed message. |
DataBytes | Use this property to pass the original signed data to class in the byte array form. |
DataFile | The name of the file containing the original signed data. |
DataStream | A stream containing the originally signed data. |
FIPSMode | Reserved. |
HashAlgorithm | Hash algorithm which was used to calculate the signature. |
InputBytes | Use this property to pass the input to class in byte array form. |
InputFile | Path to the file containing the signed message. |
InputIsHash | Specifies whether the input source contains the hash of the data or the actual data. |
InputStream | The stream containing the signed message. |
KnownCertificates | Additional certificates for chain validation. |
MACAlgorithm | Specifies the hash algorithm to be used. |
OutputBytes | Use this property to read the output the class object has produced. |
OutputFile | Path to the file to save the extracted data to. |
OutputStream | The stream to save the extracted data to. |
SignatureType | The type of the processed signature. |
SignatureValidationResult | The signature validation result. |
SignedAttributes | Custom signature attributes that are covered by the electronic signature. |
SigningCertificate | The certificate that was used to create the signature. |
Timestamp | Contains the timestamp which is being validated. |
Timestamped | Indicates whether or not the signature is timestamped. |
TSACertificate | The certificate of the Time Stamping Authority. |
UnsignedAttributes | Custom unsigned attributes included in the electronic signature. |
ValidatedSigningTime | Contains the certified signing time. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
CheckSignatureType | Determines the signature kind. |
Config | Sets or retrieves a configuration setting. |
DoAction | Performs an additional action. |
Reset | Resets the class settings. |
Verify | Verifies digitally signed data. |
VerifyDetached | Verifies a detached signature. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
Error | Information about errors during PKCS#7 message verification. |
Notification | This event notifies the application about an underlying control flow event. |
RecipientFound | Fires to report a message addressee parameters. |
SignatureFound | Signifies the start of signature validation. |
SignatureValidated | Marks the completion of the signature validation routine. |
TimestampFound | Signifies the start of a timestamp validation routine. |
TimestampValidated | Reports the completion of the timestamp validation routine. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
TempPath | Path for storing temporary files. |
ASN1UseGlobalTagCache | Controls whether ASN.1 module should use a global object cache. |
AssignSystemSmartCardPins | Specifies whether CSP-level PINs should be assigned to CNG keys. |
CheckKeyIntegrityBeforeUse | Enables or disable private key integrity check before use. |
CookieCaching | Specifies whether a cookie cache should be used for HTTP(S) transports. |
Cookies | Gets or sets local cookies for the class. |
DefDeriveKeyIterations | Specifies the default key derivation algorithm iteration count. |
DNSLocalSuffix | The suffix to assign for TLD names. |
EnableClientSideSSLFFDHE | Enables or disables finite field DHE key exchange support in TLS clients. |
GlobalCookies | Gets or sets global cookies for all the HTTP transports. |
HardwareCryptoUsePolicy | The hardware crypto usage policy. |
HttpUserAgent | Specifies the user agent name to be used by all HTTP clients. |
HttpVersion | The HTTP version to use in any inner HTTP client classes created. |
IgnoreExpiredMSCTLSigningCert | Whether to tolerate the expired Windows Update signing certificate. |
ListDelimiter | The delimiter character for multi-element lists. |
LogDestination | Specifies the debug log destination. |
LogDetails | Specifies the debug log details to dump. |
LogFile | Specifies the debug log filename. |
LogFilters | Specifies the debug log filters. |
LogFlushMode | Specifies the log flush mode. |
LogLevel | Specifies the debug log level. |
LogMaxEventCount | Specifies the maximum number of events to cache before further action is taken. |
LogRotationMode | Specifies the log rotation mode. |
MaxASN1BufferLength | Specifies the maximal allowed length for ASN.1 primitive tag data. |
MaxASN1TreeDepth | Specifies the maximal depth for processed ASN.1 trees. |
OCSPHashAlgorithm | Specifies the hash algorithm to be used to identify certificates in OCSP requests. |
OldClientSideRSAFallback | Specifies whether the SSH client should use a SHA1 fallback. |
ProductVersion | Returns the version of the SecureBlackbox library. |
ServerSSLDHKeyLength | Sets the size of the TLS DHE key exchange group. |
StaticDNS | Specifies whether static DNS rules should be used. |
StaticIPAddress[domain] | Gets or sets an IP address for the specified domain name. |
StaticIPAddresses | Gets or sets all the static DNS rules. |
Tag | Allows to store any custom data. |
TLSSessionGroup | Specifies the group name of TLS sessions to be used for session resumption. |
TLSSessionLifetime | Specifies lifetime in seconds of the cached TLS session. |
TLSSessionPurgeInterval | Specifies how often the session cache should remove the expired TLS sessions. |
UseInternalRandom | Switches between SecureBlackbox-own and platform PRNGs. |
UseLegacyAdESValidation | Enables legacy AdES validation mode. |
UseOwnDNSResolver | Specifies whether the client classes should use own DNS resolver. |
UseSharedSystemStorages | Specifies whether the validation engine should use a global per-process copy of the system certificate stores. |
UseSystemNativeSizeCalculation | An internal CryptoAPI access tweak. |
UseSystemOAEPAndPSS | Enforces or disables the use of system-driven RSA OAEP and PSS computations. |
UseSystemRandom | Enables or disables the use of the OS PRNG. |
Certificates Property (MessageVerifier Class)
A collection of certificates included in the electronic signature.
Syntax
public CertificateList getCertificates();
Remarks
This property includes a collection of certificates of the currently selected info.
This collection is indexed from 0 to size -1.
This property is read-only and not available at design time.
Please refer to the Certificate type for a complete list of fields.ClaimedSigningTime Property (MessageVerifier Class)
Returns a signature's claimed signing time.
Syntax
public String getClaimedSigningTime();
Default Value
""
Remarks
Use this property to get the signature creation time from the signer's computer. Note that the claimed time is not covered by the signature and may be forfeited or wrong. Use ValidatedSigningTime to obtain the signing time figure verified by a trusted timestamping authority. The time is in UTC.
This property is read-only and not available at design time.
ContentType Property (MessageVerifier Class)
A content type property of the signed message.
Syntax
public String getContentType();
Default Value
""
Remarks
Use this property to check the content type property of the processed signed message.
This property is read-only and not available at design time.
DataBytes Property (MessageVerifier Class)
Use this property to pass the original signed data to class in the byte array form.
Syntax
public byte[] getDataBytes(); public void setDataBytes(byte[] dataBytes);
Remarks
When validating detached signatures, assign a byte array containing the signed data to this property.
This property is not available at design time.
DataFile Property (MessageVerifier Class)
The name of the file containing the original signed data.
Syntax
public String getDataFile(); public void setDataFile(String dataFile);
Default Value
""
Remarks
Use this property to provide the original data when validating detached signatures with VerifyDetached.
DataStream Property (MessageVerifier Class)
A stream containing the originally signed data.
Syntax
public java.io.InputStream getDataStream(); public void setDataStream(java.io.InputStream dataStream);
Default Value
null
Remarks
Use this property to provide the original data when validating detached signatures with VerifyDetached.
This property is not available at design time.
FIPSMode Property (MessageVerifier Class)
Reserved.
Syntax
public boolean isFIPSMode(); public void setFIPSMode(boolean FIPSMode);
Default Value
False
Remarks
This property is reserved for future use.
HashAlgorithm Property (MessageVerifier Class)
Hash algorithm which was used to calculate the signature.
Syntax
public String getHashAlgorithm(); public void setHashAlgorithm(String hashAlgorithm);
Default Value
""
Remarks
Check this property after calling Verify or VerifyDetached to get the hash algorithm that was used to calculate the signature message digest.
InputBytes Property (MessageVerifier Class)
Use this property to pass the input to class in byte array form.
Syntax
public byte[] getInputBytes(); public void setInputBytes(byte[] inputBytes);
Remarks
Assign a byte array containing the data to be processed to this property.
This property is not available at design time.
InputFile Property (MessageVerifier Class)
Path to the file containing the signed message.
Syntax
public String getInputFile(); public void setInputFile(String inputFile);
Default Value
""
Remarks
Use this property to provide a file containing the signed data, either enveloping or detached.
InputIsHash Property (MessageVerifier Class)
Specifies whether the input source contains the hash of the data or the actual data.
Syntax
public boolean isInputIsHash(); public void setInputIsHash(boolean inputIsHash);
Default Value
False
Remarks
Use this property to tell the component whether the input source contains the actual data or its hash.
This property is not available at design time.
InputStream Property (MessageVerifier Class)
The stream containing the signed message.
Syntax
public java.io.InputStream getInputStream(); public void setInputStream(java.io.InputStream inputStream);
Default Value
null
Remarks
Use this property to provide a stream containing the signed message.
This property is not available at design time.
KnownCertificates Property (MessageVerifier Class)
Additional certificates for chain validation.
Syntax
public CertificateList getKnownCertificates(); public void setKnownCertificates(CertificateList knownCertificates);
Remarks
Use this property to supply a list of additional certificates that might be needed for chain validation. An example of a scenario where you might want to do that is when intermediary CA certificates are absent from the standard system locations (or when there are no standard system locations), and therefore should be supplied to the class manually.
The purpose of the certificates to be added to this collection is roughly equivalent to that of the Intermediate Certification Authorities system store in Windows.
Do not add trust anchors or root certificates to this collection: add them to TrustedCertificates instead.
This property is not available at design time.
Please refer to the Certificate type for a complete list of fields.MACAlgorithm Property (MessageVerifier Class)
Specifies the hash algorithm to be used.
Syntax
public String getMACAlgorithm();
Default Value
"SHA256"
Remarks
This property specifies the MAC algorithm that was used to calculate an authenticated signature.
SB_MAC_ALGORITHM_HMAC_SHA1 | SHA1 | |
SB_MAC_ALGORITHM_HMAC_SHA256 | SHA256 | |
SB_MAC_ALGORITHM_HMAC_SHA512 | SHA512 |
This property is read-only.
OutputBytes Property (MessageVerifier Class)
Use this property to read the output the class object has produced.
Syntax
public byte[] getOutputBytes();
Remarks
Read the contents of this property after the operation has completed to read the produced output. This property will only be set if the OutputFile and OutputStream properties had not been assigned.
This property is read-only and not available at design time.
OutputFile Property (MessageVerifier Class)
Path to the file to save the extracted data to.
Syntax
public String getOutputFile(); public void setOutputFile(String outputFile);
Default Value
""
Remarks
Use this property when validating enveloping signatures to specify the output file where the extracted message should be saved.
OutputStream Property (MessageVerifier Class)
The stream to save the extracted data to.
Syntax
public java.io.OutputStream getOutputStream(); public void setOutputStream(java.io.OutputStream outputStream);
Default Value
null
Remarks
Use this property when verifying enveloping signatures to provide the stream to save the extracted data to.
This property is not available at design time.
SignatureType Property (MessageVerifier Class)
The type of the processed signature.
Syntax
public int getSignatureType(); Enumerated values: public final static int stUnknown = 0; public final static int stPKCS1Detached = 1; public final static int stPKCS7Detached = 2; public final static int stPKCS7Enveloping = 3; public final static int stPKCS7MACDetached = 4; public final static int stPKCS7MACEnveloping = 5;
Default Value
0
Remarks
Use this property to check the result of the most recent signature validation.
stUnknown | 0 | Unknown or unsupported signature types |
stPKCS1Detached | 1 | Detached PKCS#1 signature |
stPKCS7Detached | 2 | Detached PKCS#7 signature |
stPKCS7Enveloping | 3 | Enveloping PKCS#7 signature |
stPKCS7MACDetached | 4 | Detached PKCS#7 MAC signature |
stPKCS7MACEnveloping | 5 | Enveloping PKCS#7 MAC signature |
This property is read-only and not available at design time.
SignatureValidationResult Property (MessageVerifier Class)
The signature validation result.
Syntax
public int getSignatureValidationResult(); Enumerated values: public final static int svtValid = 0; public final static int svtUnknown = 1; public final static int svtCorrupted = 2; public final static int svtSignerNotFound = 3; public final static int svtFailure = 4; public final static int svtReferenceCorrupted = 5;
Default Value
0
Remarks
Use this property to check the result of the most recent signature validation.
svtValid | 0 | The signature is valid |
svtUnknown | 1 | Signature validity is unknown |
svtCorrupted | 2 | The signature is corrupted |
svtSignerNotFound | 3 | Failed to acquire the signing certificate. The signature cannot be validated. |
svtFailure | 4 | General failure |
svtReferenceCorrupted | 5 | Reference corrupted (XML-based signatures only) |
This property is read-only and not available at design time.
SignedAttributes Property (MessageVerifier Class)
Custom signature attributes that are covered by the electronic signature.
Syntax
public SignatureAttributeList getSignedAttributes();
Remarks
Signature attributes are used to store auxiliary information in the signature. Values included as signed attributes are covered by the signature.
This property is read-only and not available at design time.
Please refer to the SignatureAttribute type for a complete list of fields.SigningCertificate Property (MessageVerifier Class)
The certificate that was used to create the signature.
Syntax
public Certificate getSigningCertificate();
Remarks
Use this property to access the certificate that was used to create the signature. This property might not be available if the signer chose not to include the certificate into the signature.
This property is read-only and not available at design time.
Please refer to the Certificate type for a complete list of fields.Timestamp Property (MessageVerifier Class)
Contains the timestamp which is being validated.
Syntax
public TimestampInfo getTimestamp();
Remarks
Use this property to access the timestamp which is currently being validated.
This property is read-only and not available at design time.
Please refer to the TimestampInfo type for a complete list of fields.Timestamped Property (MessageVerifier Class)
Indicates whether or not the signature is timestamped.
Syntax
public boolean isTimestamped();
Default Value
False
Remarks
This property returns True if the signature is timestamped, and False otherwise.
This property is read-only and not available at design time.
TSACertificate Property (MessageVerifier Class)
The certificate of the Time Stamping Authority.
Syntax
public Certificate getTSACertificate();
Remarks
Use this property to access the certificate of the TSA that produced the timestamp.
Note that in some instances the TSA certificate might be unavailable, even for timestamped documents and signatures.
This property is read-only and not available at design time.
Please refer to the Certificate type for a complete list of fields.UnsignedAttributes Property (MessageVerifier Class)
Custom unsigned attributes included in the electronic signature.
Syntax
public SignatureAttributeList getUnsignedAttributes();
Remarks
Signature attributes are used to store auxiliary information in the signature. Values included as unsigned attributes are not covered by the signature and can be changed or removed without affecting the signature.
This property is read-only and not available at design time.
Please refer to the SignatureAttribute type for a complete list of fields.ValidatedSigningTime Property (MessageVerifier Class)
Contains the certified signing time.
Syntax
public String getValidatedSigningTime();
Default Value
""
Remarks
Use this property to obtain the signing time as certified by an external timestamp. The time is in UTC.
This property is read-only and not available at design time.
CheckSignatureType Method (MessageVerifier Class)
Determines the signature kind.
Syntax
public int checkSignatureType();
Remarks
Use this method to determine the kind of the signature stored in InputFile (InputStream).
stUnknown | 0 | Unknown or unsupported signature types |
stPKCS1Detached | 1 | Detached PKCS#1 signature |
stPKCS7Detached | 2 | Detached PKCS#7 signature |
stPKCS7Enveloping | 3 | Enveloping PKCS#7 signature |
stPKCS7MACDetached | 4 | Detached PKCS#7 MAC signature |
stPKCS7MACEnveloping | 5 | Enveloping PKCS#7 MAC signature |
Config Method (MessageVerifier Class)
Sets or retrieves a configuration setting.
Syntax
public String config(String configurationString);
Remarks
Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
DoAction Method (MessageVerifier Class)
Performs an additional action.
Syntax
public String doAction(String actionID, String actionParams);
Remarks
DoAction is a generic method available in every class. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.
The unique identifier (case insensitive) of the action is provided in the ActionID parameter.
ActionParams contains the value of a single parameter, or a list of multiple parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....
Reset Method (MessageVerifier Class)
Resets the class settings.
Syntax
public void reset();
Remarks
Reset is a generic method available in every class.
Verify Method (MessageVerifier Class)
Verifies digitally signed data.
Syntax
public void verify();
Remarks
PKCS#7 and its successor, CMS, support two types of signatures: (1) enveloping signatures, where the signed data and its signature are combined in the same message, and (2) detached signatures, where the signature is stored as a separate entity. This method verifies enveloped signatures and extracts data contained in them. Use VerifyDetached to verify detached signatures.
This method expects the enveloping signature to be provided via InputFile or InputStream properties.
Note that this method only checks the integrity of the signature, i.e., that it is signed with the claimed certificate and has not been altered. It does not validate the signing certificate chain. To validate the certificate chain, either use CertificateValidator component together with MessageVerifier, or consider using CAdESVerifier component instead.
VerifyDetached Method (MessageVerifier Class)
Verifies a detached signature.
Syntax
public void verifyDetached();
Remarks
Use this method to verify detached signatures. Pass the signature via InputFile (or InputStream) property, and the original data via DataFile (DataStream).
Error Event (MessageVerifier Class)
Information about errors during PKCS#7 message verification.
Syntax
public class DefaultMessageVerifierEventListener implements MessageVerifierEventListener { ... public void error(MessageVerifierErrorEvent e) {} ... } public class MessageVerifierErrorEvent { public int errorCode; public String description; }
Remarks
The event is fired in case of exceptional conditions during message processing.
ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Messages section.
Notification Event (MessageVerifier Class)
This event notifies the application about an underlying control flow event.
Syntax
public class DefaultMessageVerifierEventListener implements MessageVerifierEventListener { ... public void notification(MessageVerifierNotificationEvent e) {} ... } public class MessageVerifierNotificationEvent { public String eventID; public String eventParam; }
Remarks
The class fires this event to let the application know about some event, occurrence, or milestone in the class. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.
The unique identifier of the event is provided in the EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the class, the exact action it is performing, or the document being processed, one or both may be omitted.
RecipientFound Event (MessageVerifier Class)
Fires to report a message addressee parameters.
Syntax
public class DefaultMessageVerifierEventListener implements MessageVerifierEventListener { ... public void recipientFound(MessageVerifierRecipientFoundEvent e) {} ... } public class MessageVerifierRecipientFoundEvent { public String issuerRDN; public byte[] serialNumber; public byte[] subjectKeyID; public boolean certFound; }
Remarks
This event is fired for each addressee the message is encrypted for. It may fire several times in a row if the message is encrypted for more than one recipient.
The IssuerRDN, SerialNumber, and SubjectKeyID parameters to identify the recipient's certificate. CertFound indicates if the specified certificate has been located in Certificates collection. If it wasn't, you might want to look up the certificate manually, and add it to the collection inside the event handler.
SignatureFound Event (MessageVerifier Class)
Signifies the start of signature validation.
Syntax
public class DefaultMessageVerifierEventListener implements MessageVerifierEventListener { ... public void signatureFound(MessageVerifierSignatureFoundEvent e) {} ... } public class MessageVerifierSignatureFoundEvent { public String issuerRDN; public byte[] serialNumber; public byte[] subjectKeyID; public boolean certFound; public boolean validateSignature; //read-write public boolean validateChain; //read-write }
Remarks
This event tells the application that signature validation is about to start, and provides the details about the signer's certificate via its IssuerRDN, SerialNumber, and SubjectKeyID parameters. It fires for every signature located in the verified document or message.
The CertFound parameter is set to True if the class has found the needed certificate in one of the known locations, and to False otherwise, in which case you must provide it manually via the KnownCertificates property.
Signature validation consists of two independent stages: cryptographic signature validation and chain validation. Separate validation results are reported for each, with the SignatureValidationResult and ChainValidationResult properties respectively.
Use the ValidateSignature and ValidateChain parameters to tell the verifier which stages to include in the validation.
SignatureValidated Event (MessageVerifier Class)
Marks the completion of the signature validation routine.
Syntax
public class DefaultMessageVerifierEventListener implements MessageVerifierEventListener { ... public void signatureValidated(MessageVerifierSignatureValidatedEvent e) {} ... } public class MessageVerifierSignatureValidatedEvent { public String issuerRDN; public byte[] serialNumber; public byte[] subjectKeyID; public int validationResult; }
Remarks
This event is fired upon the completion of the signature validation routine, and reports the respective validation result.
Use the IssuerRDN, SerialNumber, and/or SubjectKeyID parameters to identify the signing certificate.
ValidationResult is set to 0 if the validation has been successful, or to a non-zero value in case of a validation failure.
svtValid | 0 | The signature is valid |
svtUnknown | 1 | Signature validity is unknown |
svtCorrupted | 2 | The signature is corrupted |
svtSignerNotFound | 3 | Failed to acquire the signing certificate. The signature cannot be validated. |
svtFailure | 4 | General failure |
svtReferenceCorrupted | 5 | Reference corrupted (XML-based signatures only) |
TimestampFound Event (MessageVerifier Class)
Signifies the start of a timestamp validation routine.
Syntax
public class DefaultMessageVerifierEventListener implements MessageVerifierEventListener { ... public void timestampFound(MessageVerifierTimestampFoundEvent e) {} ... } public class MessageVerifierTimestampFoundEvent { public String issuerRDN; public byte[] serialNumber; public byte[] subjectKeyID; public boolean certFound; public boolean validateTimestamp; //read-write public boolean validateChain; //read-write }
Remarks
This event fires for every timestamp identified during signature processing, and reports the details about the signer's certificate via its IssuerRDN, SerialNumber, and SubjectKeyID parameters.
The CertFound parameter is set to True if the class has found the needed certificate in one of the known locations, and to False otherwise, in which case you must provide it manually via the KnownCertificates property.
Just like with signature validation, timestamp validation consists of two independent stages: cryptographic signature validation and chain validation. Separate validation results are reported for each, with the ValidationResult and ChainValidationResult properties respectively.
Use the ValidateSignature and ValidateChain parameters to tell the verifier which stages to include in the validation.
TimestampValidated Event (MessageVerifier Class)
Reports the completion of the timestamp validation routine.
Syntax
public class DefaultMessageVerifierEventListener implements MessageVerifierEventListener { ... public void timestampValidated(MessageVerifierTimestampValidatedEvent e) {} ... } public class MessageVerifierTimestampValidatedEvent { public String issuerRDN; public byte[] serialNumber; public byte[] subjectKeyID; public String time; public int validationResult; public int chainValidationResult; public int chainValidationDetails; }
Remarks
This event is fired upon the completion of the timestamp validation routine, and reports the respective validation result.
ValidationResult is set to 0 if the validation has been successful, or to a non-zero value in case of a failure.
svtValid | 0 | The signature is valid |
svtUnknown | 1 | Signature validity is unknown |
svtCorrupted | 2 | The signature is corrupted |
svtSignerNotFound | 3 | Failed to acquire the signing certificate. The signature cannot be validated. |
svtFailure | 4 | General failure |
svtReferenceCorrupted | 5 | Reference corrupted (XML-based signatures only) |
Certificate Type
Encapsulates an individual X.509 certificate.
Remarks
This type keeps and provides access to X.509 certificate details.
Fields
Bytes
byte[] (read-only)
Default Value: ""
Returns the raw certificate data in DER format.
CA
boolean
Default Value: False
Indicates whether the certificate has a CA capability. For the certificate to be considered a CA, it must have its Basic Constraints extension set with the CA indicator enabled.
Set this field when generating a new certificate to have its Basic Constraints extension generated automatically.
CAKeyID
byte[] (read-only)
Default Value: ""
A unique identifier (fingerprint) of the CA certificate's cryptographic key.
Authority Key Identifier is a certificate extension which allows identification of certificates belonging to the same issuer, but with different public keys. It is a de-facto standard to include this extension in all certificates to facilitate chain building.
This setting cannot be set when generating a certificate as it always derives from another certificate property. CertificateManager generates this setting automatically if enough information is available to it: for self-signed certificates, this value is copied from the SubjectKeyID setting, and for lower-level certificates, from the parent certificate's subject key ID extension.
CertType
int (read-only)
Default Value: 0
Returns the type of the entity contained in the Certificate object.
A Certificate object can contain two types of cryptographic objects: a ready-to-use X.509 certificate, or a certificate request ("an unsigned certificate"). Certificate requests can be upgraded to full certificates by signing them with a CA certificate.
Use the CertificateManager class to load or create new certificate and certificate requests objects.
CRLDistributionPoints
String
Default Value: ""
Contains a list of locations of CRL distribution points used to check this certificate's validity. The list is taken from the respective certificate extension.
Use this field when generating a certificate to provide a list of CRL endpoints that should be made part of the new certificate.
The endpoints are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.
Curve
String
Default Value: ""
Specifies the elliptic curve associated with the certificate's public key. This setting only applies to certificates containing EC keys.
SB_EC_SECP112R1 | SECP112R1 | |
SB_EC_SECP112R2 | SECP112R2 | |
SB_EC_SECP128R1 | SECP128R1 | |
SB_EC_SECP128R2 | SECP128R2 | |
SB_EC_SECP160K1 | SECP160K1 | |
SB_EC_SECP160R1 | SECP160R1 | |
SB_EC_SECP160R2 | SECP160R2 | |
SB_EC_SECP192K1 | SECP192K1 | |
SB_EC_SECP192R1 | SECP192R1 | |
SB_EC_SECP224K1 | SECP224K1 | |
SB_EC_SECP224R1 | SECP224R1 | |
SB_EC_SECP256K1 | SECP256K1 | |
SB_EC_SECP256R1 | SECP256R1 | |
SB_EC_SECP384R1 | SECP384R1 | |
SB_EC_SECP521R1 | SECP521R1 | |
SB_EC_SECT113R1 | SECT113R1 | |
SB_EC_SECT113R2 | SECT113R2 | |
SB_EC_SECT131R1 | SECT131R1 | |
SB_EC_SECT131R2 | SECT131R2 | |
SB_EC_SECT163K1 | SECT163K1 | |
SB_EC_SECT163R1 | SECT163R1 | |
SB_EC_SECT163R2 | SECT163R2 | |
SB_EC_SECT193R1 | SECT193R1 | |
SB_EC_SECT193R2 | SECT193R2 | |
SB_EC_SECT233K1 | SECT233K1 | |
SB_EC_SECT233R1 | SECT233R1 | |
SB_EC_SECT239K1 | SECT239K1 | |
SB_EC_SECT283K1 | SECT283K1 | |
SB_EC_SECT283R1 | SECT283R1 | |
SB_EC_SECT409K1 | SECT409K1 | |
SB_EC_SECT409R1 | SECT409R1 | |
SB_EC_SECT571K1 | SECT571K1 | |
SB_EC_SECT571R1 | SECT571R1 | |
SB_EC_PRIME192V1 | PRIME192V1 | |
SB_EC_PRIME192V2 | PRIME192V2 | |
SB_EC_PRIME192V3 | PRIME192V3 | |
SB_EC_PRIME239V1 | PRIME239V1 | |
SB_EC_PRIME239V2 | PRIME239V2 | |
SB_EC_PRIME239V3 | PRIME239V3 | |
SB_EC_PRIME256V1 | PRIME256V1 | |
SB_EC_C2PNB163V1 | C2PNB163V1 | |
SB_EC_C2PNB163V2 | C2PNB163V2 | |
SB_EC_C2PNB163V3 | C2PNB163V3 | |
SB_EC_C2PNB176W1 | C2PNB176W1 | |
SB_EC_C2TNB191V1 | C2TNB191V1 | |
SB_EC_C2TNB191V2 | C2TNB191V2 | |
SB_EC_C2TNB191V3 | C2TNB191V3 | |
SB_EC_C2ONB191V4 | C2ONB191V4 | |
SB_EC_C2ONB191V5 | C2ONB191V5 | |
SB_EC_C2PNB208W1 | C2PNB208W1 | |
SB_EC_C2TNB239V1 | C2TNB239V1 | |
SB_EC_C2TNB239V2 | C2TNB239V2 | |
SB_EC_C2TNB239V3 | C2TNB239V3 | |
SB_EC_C2ONB239V4 | C2ONB239V4 | |
SB_EC_C2ONB239V5 | C2ONB239V5 | |
SB_EC_C2PNB272W1 | C2PNB272W1 | |
SB_EC_C2PNB304W1 | C2PNB304W1 | |
SB_EC_C2TNB359V1 | C2TNB359V1 | |
SB_EC_C2PNB368W1 | C2PNB368W1 | |
SB_EC_C2TNB431R1 | C2TNB431R1 | |
SB_EC_NISTP192 | NISTP192 | |
SB_EC_NISTP224 | NISTP224 | |
SB_EC_NISTP256 | NISTP256 | |
SB_EC_NISTP384 | NISTP384 | |
SB_EC_NISTP521 | NISTP521 | |
SB_EC_NISTB163 | NISTB163 | |
SB_EC_NISTB233 | NISTB233 | |
SB_EC_NISTB283 | NISTB283 | |
SB_EC_NISTB409 | NISTB409 | |
SB_EC_NISTB571 | NISTB571 | |
SB_EC_NISTK163 | NISTK163 | |
SB_EC_NISTK233 | NISTK233 | |
SB_EC_NISTK283 | NISTK283 | |
SB_EC_NISTK409 | NISTK409 | |
SB_EC_NISTK571 | NISTK571 | |
SB_EC_GOSTCPTEST | GOSTCPTEST | |
SB_EC_GOSTCPA | GOSTCPA | |
SB_EC_GOSTCPB | GOSTCPB | |
SB_EC_GOSTCPC | GOSTCPC | |
SB_EC_GOSTCPXCHA | GOSTCPXCHA | |
SB_EC_GOSTCPXCHB | GOSTCPXCHB | |
SB_EC_BRAINPOOLP160R1 | BRAINPOOLP160R1 | |
SB_EC_BRAINPOOLP160T1 | BRAINPOOLP160T1 | |
SB_EC_BRAINPOOLP192R1 | BRAINPOOLP192R1 | |
SB_EC_BRAINPOOLP192T1 | BRAINPOOLP192T1 | |
SB_EC_BRAINPOOLP224R1 | BRAINPOOLP224R1 | |
SB_EC_BRAINPOOLP224T1 | BRAINPOOLP224T1 | |
SB_EC_BRAINPOOLP256R1 | BRAINPOOLP256R1 | |
SB_EC_BRAINPOOLP256T1 | BRAINPOOLP256T1 | |
SB_EC_BRAINPOOLP320R1 | BRAINPOOLP320R1 | |
SB_EC_BRAINPOOLP320T1 | BRAINPOOLP320T1 | |
SB_EC_BRAINPOOLP384R1 | BRAINPOOLP384R1 | |
SB_EC_BRAINPOOLP384T1 | BRAINPOOLP384T1 | |
SB_EC_BRAINPOOLP512R1 | BRAINPOOLP512R1 | |
SB_EC_BRAINPOOLP512T1 | BRAINPOOLP512T1 | |
SB_EC_CURVE25519 | CURVE25519 | |
SB_EC_CURVE448 | CURVE448 |
Fingerprint
String (read-only)
Default Value: ""
Contains the fingerprint (a hash imprint) of this certificate.
While there is no formal standard defining what a fingerprint is, a SHA1 hash of the certificate's DER-encoded body is typically used.
FriendlyName
String (read-only)
Default Value: ""
Contains an associated alias (friendly name) of the certificate. The friendly name is not a property of a certificate: it is maintained by the certificate media rather than being included in its DER representation. Windows certificate stores are one example of media that does support friendly names.
HashAlgorithm
String
Default Value: ""
Provides means to set the hash algorithm to be used in the subsequent operation on the certificate (such as generation or key signing). It is not a property of a certificate; use SigAlgorithm to find out the hash algorithm that is part of the certificate signature.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
Issuer
String (read-only)
Default Value: ""
The common name of the certificate issuer (CA), typically a company name. This is part of a larger set of credentials available via IssuerRDN.
IssuerRDN
String
Default Value: ""
A list of Property=Value pairs that uniquely identify the certificate issuer.
Example: /C=US/O=Nationwide CA/CN=Web Certification Authority
KeyAlgorithm
String
Default Value: "0"
Specifies the public key algorithm of this certificate.
SB_CERT_ALGORITHM_ID_RSA_ENCRYPTION | rsaEncryption | |
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTION | md2withRSAEncryption | |
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTION | md5withRSAEncryption | |
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTION | sha1withRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA | id-dsa | |
SB_CERT_ALGORITHM_ID_DSA_SHA1 | id-dsa-with-sha1 | |
SB_CERT_ALGORITHM_DH_PUBLIC | dhpublicnumber | |
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTION | sha224WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTION | sha256WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTION | sha384WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTION | sha512WithRSAEncryption | |
SB_CERT_ALGORITHM_ID_RSAPSS | id-RSASSA-PSS | |
SB_CERT_ALGORITHM_ID_RSAOAEP | id-RSAES-OAEP | |
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160 | ripemd160withRSA | |
SB_CERT_ALGORITHM_ID_ELGAMAL | elGamal | |
SB_CERT_ALGORITHM_SHA1_ECDSA | ecdsa-with-SHA1 | |
SB_CERT_ALGORITHM_RECOMMENDED_ECDSA | ecdsa-recommended | |
SB_CERT_ALGORITHM_SHA224_ECDSA | ecdsa-with-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA | ecdsa-with-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA | ecdsa-with-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA | ecdsa-with-SHA512 | |
SB_CERT_ALGORITHM_EC | id-ecPublicKey | |
SB_CERT_ALGORITHM_SPECIFIED_ECDSA | ecdsa-specified | |
SB_CERT_ALGORITHM_GOST_R3410_1994 | id-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3410_2001 | id-GostR3410-2001 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994 | id-GostR3411-94-with-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001 | id-GostR3411-94-with-GostR3410-2001 | |
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAIN | ecdsa-plain-SHA1 | |
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAIN | ecdsa-plain-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAIN | ecdsa-plain-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAIN | ecdsa-plain-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAIN | ecdsa-plain-SHA512 | |
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAIN | ecdsa-plain-RIPEMD160 | |
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTION | whirlpoolWithRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA_SHA224 | id-dsa-with-sha224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA256 | id-dsa-with-sha256 | |
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA | id-ecdsa-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA | id-ecdsa-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA | id-ecdsa-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA | id-ecdsa-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-512 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_224 | id-dsa-with-sha3-224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_256 | id-dsa-with-sha3-256 | |
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA | id-ecdsa-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA | id-ecdsa-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA | id-ecdsa-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA | id-ecdsa-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA | id-ecdsa-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA | id-ecdsa-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA | id-ecdsa-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA | id-ecdsa-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b512 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224 | id-dsa-with-blake2s224 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256 | id-dsa-with-blake2s256 | |
SB_CERT_ALGORITHM_EDDSA_ED25519 | id-Ed25519 | |
SB_CERT_ALGORITHM_EDDSA_ED448 | id-Ed448 | |
SB_CERT_ALGORITHM_EDDSA_ED25519_PH | id-Ed25519ph | |
SB_CERT_ALGORITHM_EDDSA_ED448_PH | id-Ed448ph | |
SB_CERT_ALGORITHM_EDDSA | id-EdDSA | |
SB_CERT_ALGORITHM_EDDSA_SIGNATURE | id-EdDSA-sig |
Use the KeyBits, Curve, and PublicKeyBytes fields to get more details about the key the certificate contains.
KeyBits
int (read-only)
Default Value: 0
Returns the length of the public key in bits.
This value indicates the length of the principal cryptographic parameter of the key, such as the length of the RSA modulus or ECDSA field. The key data returned by the PublicKeyBytes or PrivateKeyBytes field would typically contain auxiliary values, and therefore be longer.
KeyFingerprint
String (read-only)
Default Value: ""
Returns a SHA1 fingerprint of the public key contained in the certificate.
Note that the key fingerprint is different from the certificate fingerprint accessible via the Fingerprint field. The key fingeprint uniquely identifies the public key, and so can be the same for multiple certificates containing the same key.
KeyUsage
int
Default Value: 0
Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.
This value is a bit mask of the following values:
ckuUnknown | 0x00000 | Unknown key usage |
ckuDigitalSignature | 0x00001 | Digital signature |
ckuNonRepudiation | 0x00002 | Non-repudiation |
ckuKeyEncipherment | 0x00004 | Key encipherment |
ckuDataEncipherment | 0x00008 | Data encipherment |
ckuKeyAgreement | 0x00010 | Key agreement |
ckuKeyCertSign | 0x00020 | Certificate signing |
ckuCRLSign | 0x00040 | Revocation signing |
ckuEncipherOnly | 0x00080 | Encipher only |
ckuDecipherOnly | 0x00100 | Decipher only |
ckuServerAuthentication | 0x00200 | Server authentication |
ckuClientAuthentication | 0x00400 | Client authentication |
ckuCodeSigning | 0x00800 | Code signing |
ckuEmailProtection | 0x01000 | Email protection |
ckuTimeStamping | 0x02000 | Timestamping |
ckuOCSPSigning | 0x04000 | OCSP signing |
ckuSmartCardLogon | 0x08000 | Smartcard logon |
ckuKeyPurposeClientAuth | 0x10000 | Kerberos - client authentication |
ckuKeyPurposeKDC | 0x20000 | Kerberos - KDC |
Set this field before generating the certificate to propagate the key usage flags to the new certificate.
KeyValid
boolean (read-only)
Default Value: False
Returns True if the certificate's key is cryptographically valid, and False otherwise.
OCSPLocations
String
Default Value: ""
Locations of OCSP services that can be used to check this certificate's validity in real time, as recorded by the CA.
Set this field before calling the certificate manager's Generate method to propagate it to the new certificate.
The OCSP locations are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.
OCSPNoCheck
boolean
Default Value: False
Accessor to the value of the certificate's ocsp-no-check extension.
Origin
int (read-only)
Default Value: 0
Returns the location that the certificate was taken or loaded from.
PolicyIDs
String
Default Value: ""
Contains identifiers (OIDs) of the applicable certificate policies.
The Certificate Policies extension identifies a sequence of policies under which the certificate has been issued, and which regulate its usage.
Set this field when generating a certificate to propagate the policies information to the new certificate.
The policies are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the policy element separator.
PrivateKeyBytes
byte[] (read-only)
Default Value: ""
Returns the certificate's private key in DER-encoded format. It is normal for this field to be empty if the private key is non-exportable, which, for example, is typical for certificates originating from hardware security devices.
PrivateKeyExists
boolean (read-only)
Default Value: False
Indicates whether the certificate has a usable private key associated with it. If it is set to True, the certificate can be used for private key operations, such as signing or decryption.
This field is independent from PrivateKeyBytes, and can be set to True even if the former is empty. This would imply that the private key is non-exportable, but still can be used for cryptographic operations.
PrivateKeyExtractable
boolean (read-only)
Default Value: False
Indicates whether the private key is extractable (exportable).
PublicKeyBytes
byte[] (read-only)
Default Value: ""
Contains the certificate's public key in DER format.
This typically would contain an ASN.1-encoded public key value. The exact format depends on the type of the public key contained in the certificate.
Qualified
boolean (read-only)
Default Value: False
Indicates whether the certificate is qualified.
This property is set to True if the certificate is confirmed by a Trusted List to be qualified.
QualifiedStatements
int
Default Value: 0
Returns a simplified qualified status of the certificate.
Qualifiers
String (read-only)
Default Value: ""
A list of qualifiers.
Contains a comma-separated list of qualifier aliases for the certificate, for example QCP-n-qscd,QCWithSSCD.
SelfSigned
boolean (read-only)
Default Value: False
Indicates whether the certificate is self-signed (root) or signed by an external CA.
SerialNumber
byte[]
Default Value: ""
Returns the certificate's serial number.
The serial number is a binary string that uniquely identifies a certificate among others issued by the same CA. According to the X.509 standard, the (issuer, serial number) pair should be globally unique to facilitate chain building.
SigAlgorithm
String (read-only)
Default Value: ""
Indicates the algorithm that was used by the CA to sign this certificate.
A signature algorithm typically combines hash and public key algorithms together, such as sha256WithRSAEncryption or ecdsa-with-SHA256.
Source
int (read-only)
Default Value: 0
Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.
Subject
String (read-only)
Default Value: ""
The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name. This is part of a larger set of credentials available via SubjectRDN.
SubjectAlternativeName
String
Default Value: ""
Returns or sets the value of the Subject Alternative Name extension of the certificate.
Subject alternative names are used to provide additional names that are impractical to store in the main SubjectRDN field. For example, it is often used to store all the domain names that a TLS certificate is authorized to protect.
The alternative names are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the element separator.
SubjectKeyID
byte[]
Default Value: ""
Contains a unique identifier of the certificate's cryptographic key.
Subject Key Identifier is a certificate extension which allows a specific public key to be associated with a certificate holder. Typically, subject key identifiers of CA certificates are recorded as respective CA key identifiers in the subordinate certificates that they issue, which facilitates chain building.
The SubjectKeyID and CAKeyID fields of self-signed certificates typically contain identical values, as in that specific case, the issuer and the subject are the same entity.
SubjectRDN
String
Default Value: ""
A list of Property=Value pairs that uniquely identify the certificate holder (subject).
Depending on the purpose of the certificate and the policies of the CA that issued it, the values included in the subject record may differ drastically and contain business or personal names, web URLs, email addresses, and other data.
Example: /C=US/O=Oranges and Apples, Inc./OU=Accounts Receivable/1.2.3.4.5=Value with unknown OID/CN=Margaret Watkins.
Valid
boolean (read-only)
Default Value: False
Indicates whether or not the signature over the certificate or the request is valid and matches the public key contained in the CA certificate/request.
ValidFrom
String
Default Value: ""
The time point at which the certificate becomes valid, in UTC.
ValidTo
String
Default Value: ""
The time point at which the certificate expires, in UTC.
Constructors
public Certificate( bytes, startIndex, count, password);
Loads the X.509 certificate from a memory buffer. Bytes is a buffer containing the raw certificate data. StartIndex and Count specify the starting position and number of bytes to be read from the buffer, respectively. Password is a password encrypting the certificate.
public Certificate( certBytes, certStartIndex, certCount, keyBytes, keyStartIndex, keyCount, password);
Loads the X.509 certificate from a memory buffer.
CertBytes is a buffer containing the raw certificate data. CertStartIndex and CertCount specify the starting position and number of bytes to be read from the buffer, respectively.
KeyBytes is a buffer containing the private key data. KeyStartIndex and KeyCount specify the starting position and number of bytes to be read from the buffer, respectively.
Password is a password encrypting the certificate.
public Certificate( bytes, startIndex, count);
Loads the X.509 certificate from a memory buffer. Bytes is a buffer containing the raw certificate data. StartIndex and Count specify the starting position and number of bytes to be read from the buffer, respectively.
public Certificate( path, password);
Loads the X.509 certificate from a file. Path specifies the full path to the file containing the certificate data. Password is a password encrypting the certificate.
public Certificate( certPath, keyPath, password);
Loads the X.509 certificate from a file. CertPath specifies the full path to the file containing the certificate data. KeyPath specifies the full path to the file containing the private key. Password is a password encrypting the certificate.
public Certificate( path);
Loads the X.509 certificate from a file. Path specifies the full path to the file containing the certificate data.
public Certificate( stream);
Loads the X.509 certificate from a stream. Stream is a stream containing the certificate data.
public Certificate( stream, password);
Loads the X.509 certificate from a stream. Stream is a stream containing the certificate data. Password is a password encrypting the certificate.
public Certificate( certStream, keyStream, password);
Loads the X.509 certificate from a stream. CertStream is a stream containing the certificate data. KeyStream is a stream containing the private key. Password is a password encrypting the certificate.
public Certificate();
Creates a new object with default field values.
SignatureAttribute Type
Represents an attribute of a digital PKCS#7/CMS signature.
Remarks
Attributes store auxiliary information about the signed message, the signature, or the owner. Each attribute is a OID=Value pair.
Common attributes are signing time, a content type, a policy identifier, and a signature timestamp.
Fields
OID
String
Default Value: ""
The object identifier of the attribute.
Value
byte[]
Default Value: ""
The value of the attribute.
Constructors
public SignatureAttribute();
Creates a new, empty, signature attribute.
TimestampInfo Type
A container for timestamp information.
Remarks
The TimestampInfo object contains details of a third-party timestamp and the outcome of its validation.
Fields
Accuracy
long (read-only)
Default Value: 0
This field indicates the accuracy of the included time mark, in microseconds.
Bytes
byte[] (read-only)
Default Value: ""
Returns the raw timestamp data in DER format.
CertificateIndex
int (read-only)
Default Value: -1
Returns the index of the TSA certificate in the Certificates collection.
Use this property to look up the TSA certificate in the Certificates collection.
ChainValidationDetails
int (read-only)
Default Value: 0
The details of a certificate chain validation outcome. They may often suggest the reasons that contributed to the overall validation result.
Returns a bit mask of the following options:
cvrBadData | 0x0001 | One or more certificates in the validation path are malformed |
cvrRevoked | 0x0002 | One or more certificates are revoked |
cvrNotYetValid | 0x0004 | One or more certificates are not yet valid |
cvrExpired | 0x0008 | One or more certificates are expired |
cvrInvalidSignature | 0x0010 | A certificate contains a non-valid digital signature |
cvrUnknownCA | 0x0020 | A CA certificate for one or more certificates has not been found (chain incomplete) |
cvrCAUnauthorized | 0x0040 | One of the CA certificates are not authorized to act as CA |
cvrCRLNotVerified | 0x0080 | One or more CRLs could not be verified |
cvrOCSPNotVerified | 0x0100 | One or more OCSP responses could not be verified |
cvrIdentityMismatch | 0x0200 | The identity protected by the certificate (a TLS endpoint or an e-mail addressee) does not match what is recorded in the certificate |
cvrNoKeyUsage | 0x0400 | A mandatory key usage is not enabled in one of the chain certificates |
cvrBlocked | 0x0800 | One or more certificates are blocked |
cvrFailure | 0x1000 | General validation failure |
cvrChainLoop | 0x2000 | Chain loop: one of the CA certificates recursively signs itself |
cvrWeakAlgorithm | 0x4000 | A weak algorithm is used in one of certificates or revocation elements |
cvrUserEnforced | 0x8000 | The chain was considered invalid following intervention from a user code |
ChainValidationResult
int (read-only)
Default Value: 0
The outcome of a certificate chain validation routine.
Available options:
cvtValid | 0 | The chain is valid |
cvtValidButUntrusted | 1 | The chain is valid, but the root certificate is not trusted |
cvtInvalid | 2 | The chain is not valid (some of certificates are revoked, expired, or contain an invalid signature) |
cvtCantBeEstablished | 3 | The validity of the chain cannot be established because of missing or unavailable validation information (certificates, CRLs, or OCSP responses) |
Use the ValidationLog property to access the detailed validation log.
ContainsLongTermInfo
boolean (read-only)
Default Value: False
Returns true if the signature was found to contain long-term validation details (certificates, CRLs, and OCSP response).
EntityLabel
String (read-only)
Default Value: ""
Use this property to get the timestamp entity label.
This property returns a string label that uniquely identifies the timestamp. The label can be used to establish the signature target in the SignatureFound event or to select the signing chain via the SelectInfo method.
HashAlgorithm
String (read-only)
Default Value: ""
Returns the timestamp's hash algorithm.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
ParentEntity
String (read-only)
Default Value: ""
Use this property to get the label of the timestamp's parent entity.
This property references the EntityLabel of the object that the timestamp covers, typically a signature.
SerialNumber
byte[] (read-only)
Default Value: ""
Returns the timestamp's serial number.
Time
String (read-only)
Default Value: ""
The time point incorporated into the timestamp.
TimestampType
int (read-only)
Default Value: 0
Returns the type of the timestamp.
Available options:
tstUnknown | 0 | |
tstLegacy | 1 | Supported by: Authenticode components |
tstTrusted | 2 | Supported by: Authenticode components |
tstGeneric | 3 | Supported by: CAdES components |
tstESC | 4 | Supported by: CAdES components |
tstContent | 5 | Supported by: CAdES components |
tstCertsAndCRLs | 6 | Supported by: CAdES components |
tstArchive | 7 | Archive timestamp. Supported by: ASiC, CAdES, JAdES, Office, SOAP, XAdES components |
tstArchive2 | 8 | Archive v2 timestamp. Supported by: ASiC, CAdES components |
tstArchive3 | 9 | Archive v3 timestamp. Supported by: ASiC, CAdES components |
tstIndividualDataObjects | 10 | Individual data objects timetamp. Supported by: ASiC, Office, SOAP, XAdES components |
tstAllDataObjects | 11 | All data objects timestamp. Supported by: ASiC, Office, SOAP, XAdES components |
tstSignature | 12 | Signature timestamp. Supported by: ASiC, JAdES, Office, SOAP, XAdES components |
tstRefsOnly | 13 | RefsOnly timestamp. Supported by: ASiC, JAdES, Office, SOAP, XAdES components |
tstSigAndRefs | 14 | SigAndRefs timestamp. Supported by: ASiC, JAdES, Office, SOAP, XAdES components |
tstSignedData | 15 | SignedData timestamp. Supported by: JAdES components |
tstArchive141 | 16 | Archive timestamp v1.4.1. Supported by: ASiC, Office, SOAP, XAdES components |
Not all of the above timestamp types can be supported by a specific signature technology used (CAdES, PDF, XAdES).
TSAName
String (read-only)
Default Value: ""
This value uniquely identifies the Timestamp Authority (TSA).
This property provides information about the entity that manages the TSA.
ValidationLog
String (read-only)
Default Value: ""
Contains the TSA certificate chain validation log. This information is extremely useful if the timestamp validation fails.
ValidationResult
int (read-only)
Default Value: 0
Contains the timestamp validation outcome.
Use this property to check the result of the most recent timestamp validation.
svtValid | 0 | The signature is valid |
svtUnknown | 1 | Signature validity is unknown |
svtCorrupted | 2 | The signature is corrupted |
svtSignerNotFound | 3 | Failed to acquire the signing certificate. The signature cannot be validated. |
svtFailure | 4 | General failure |
svtReferenceCorrupted | 5 | Reference corrupted (XML-based signatures only) |
Constructors
public TimestampInfo();
Creates a new TimestampInfo object with default field values.
Config Settings (MessageVerifier Class)
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.MessageVerifier Config Settings
Base Config Settings
You can switch this property off to improve performance if your project only uses known, good private keys.
Supported values are:
off | No caching (default) | |
local | Local caching | |
global | Global caching |
This setting only applies to sessions negotiated with TLS version 1.3.
Supported values are:
file | File | |
console | Console | |
systemlog | System Log (supported for Android only) | |
debugger | Debugger (supported for VCL for Windows and .Net) |
Supported values are:
time | Current time | |
level | Level | |
package | Package name | |
module | Module name | |
class | Class name | |
method | Method name | |
threadid | Thread Id | |
contenttype | Content type | |
content | Content | |
all | All details |
Supported filter names are:
exclude-package | Exclude a package specified in the value | |
exclude-module | Exclude a module specified in the value | |
exclude-class | Exclude a class specified in the value | |
exclude-method | Exclude a method specified in the value | |
include-package | Include a package specified in the value | |
include-module | Include a module specified in the value | |
include-class | Include a class specified in the value | |
include-method | Include a method specified in the value |
none | No flush (caching only) | |
immediate | Immediate flush (real-time logging) | |
maxcount | Flush cached entries upon reaching LogMaxEventCount entries in the cache. |
Supported values are:
none | None (by default) | |
fatal | Severe errors that cause premature termination. | |
error | Other runtime errors or unexpected conditions. | |
warning | Use of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong". | |
info | Interesting runtime events (startup/shutdown). | |
debug | Detailed information on flow of through the system. | |
trace | More detailed information. |
The default value of this setting is 100.
none | No rotation | |
deleteolder | Delete older entries from the cache upon reaching LogMaxEventCount | |
keepolder | Keep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded) |
Supported values are:
none | No static DNS rules (default) | |
local | Local static DNS rules | |
global | Global static DNS rules |
This setting only applies to certificates originating from a Windows system store.
Trappable Errors (MessageVerifier Class)
MessageVerifier Errors
1048577 | Invalid parameter (SB_ERROR_INVALID_PARAMETER) |
1048578 | Invalid configuration (SB_ERROR_INVALID_SETUP) |
1048579 | Invalid state (SB_ERROR_INVALID_STATE) |
1048580 | Invalid value (SB_ERROR_INVALID_VALUE) |
1048581 | Private key not found (SB_ERROR_NO_PRIVATE_KEY) |
1048582 | Cancelled by the user (SB_ERROR_CANCELLED_BY_USER) |
1048583 | The file was not found (SB_ERROR_NO_SUCH_FILE) |
1048584 | Unsupported feature or operation (SB_ERROR_UNSUPPORTED_FEATURE) |
1048585 | General error (SB_ERROR_GENERAL_ERROR) |