PublicKeyCrypto Class

Properties   Methods   Events   Config Settings   Errors  

The PublicKeyCrypto class supports encrypting, decrypting, signing and verifying messages.

Syntax

secureblackbox.PublicKeyCrypto

Remarks

PublicKeyCrypto allows you to encrypt, decrypt, sign and verify uninterpreted data. It implements low-level, or "raw" cryptographic primitives, such as RSA-PKCS1. The cryptographic primitives are typically used internally in higher-level protocols, such as CMS or PGP.

Cryptographic primitives work on small quantities of data (up to a few kilobytes). If you are looking to encrypt or sign large blobs of data, it is very likely that you need to use higher-level classes, such as MessageEncryptor, CAdESSigner, or PGPWriter.

A code snippet below illustrates the use of PublicKeyCrypto to encrypt (and decrypt) a data piece with OpenSSL-generated RSA keypair. procedure TForm1.HandleKeyPasswordNeeded(Sender: TObject; const NeededFor: String; var Password: String; var Cancel: Boolean); begin Password := 'key-password'; end; procedure TForm1.btnRSAEncryptClick(Sender: TObject); var Crypto : TsbxPublicKeyCrypto; KeyMgr : TsbxCryptoKeyManager; Plaintext, Ciphertext, Decrypted : TBytes; begin // prep Plaintext := TEncoding.UTF8.GetBytes('Hello, World!'); // encryption KeyMgr := TsbxCryptoKeyManager.Create(nil); try KeyMgr.ImportFromFile('public.pem', kffPEM, '', '', '', ktPublic); Crypto := TsbxPublicKeyCrypto.Create(nil); try Crypto.Key := KeyMgr.Key; Ciphertext := Crypto.Encrypt(Plaintext); finally FreeAndNil(Crypto); end; finally FreeAndNil(KeyMgr); end; // decryption KeyMgr := TsbxCryptoKeyManager.Create(nil); try KeyMgr.OnPasswordNeeded := HandleKeyPasswordNeeded; KeyMgr.ImportFromFile('private.pem', kffPEM, '', '', '', ktSecret); Crypto := TsbxPublicKeyCrypto.Create(nil); try Crypto.Key := KeyMgr.Key; Decrypted := Crypto.Decrypt(Ciphertext); finally FreeAndNil(Crypto); end; finally FreeAndNil(KeyMgr); end; ShowMessage(TEncoding.UTF8.GetString(Decrypted)); end;

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

CanEncryptReturns true if the crypto object can be used for encryption.
CanSignReturns true if the crypto object is capable of data signing.
FIPSModeReserved.
HashAlgorithmThe hash algorithm to be used during the crypto operation.
InputEncodingThe encoding to apply to the input data.
InputIsHashIndicates whether the input data contains the hash or the actual data.
JsonDetailsProvides a container for JSON settings.
KeyThe key to employ for the crypto operation.
OutputEncodingThe encoding type to apply to the output data.
SchemeThe algorithm scheme to use.
SchemeParamsThe algorithm scheme parameters to employ.
SignatureValidationResultThe signature validation result.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

ConfigSets or retrieves a configuration setting.
DecryptDecrypts a buffer.
DecryptFileDecrypts a file.
DecryptStreamDecrypts a stream.
DoActionPerforms an additional action.
EncryptEncrypts a buffer.
EncryptFileEncrypts a file.
EncryptStreamEncrypts a stream.
ResetResets the class settings.
SignSigns a buffer.
SignFileSigns a file.
SignStreamSigns a stream.
VerifyVerifies an enveloped or enveloping signature contained in a buffer.
VerifyDetachedVerifies a detached signature.
VerifyDetachedFileVerifies a detached signature.
VerifyDetachedStreamVerifies a detached signature.
VerifyFileVerifies an enveloped or enveloping signature contained in a file.
VerifyStreamVerifies an enveloping or enveloped signature contained in a stream.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

ErrorReports error information during a crypto operation.
NotificationThis event notifies the application about an underlying control flow event.

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

TempPathPath for storing temporary files.
UseAlgorithmPrefixEnables or disables the PKCS#1 ASN.1 algorithm prefix.
ASN1UseGlobalTagCacheControls whether ASN.1 module should use a global object cache.
AssignSystemSmartCardPinsSpecifies whether CSP-level PINs should be assigned to CNG keys.
CheckKeyIntegrityBeforeUseEnables or disable private key integrity check before use.
CookieCachingSpecifies whether a cookie cache should be used for HTTP(S) transports.
CookiesGets or sets local cookies for the class.
DefDeriveKeyIterationsSpecifies the default key derivation algorithm iteration count.
DNSLocalSuffixThe suffix to assign for TLD names.
EnableClientSideSSLFFDHEEnables or disables finite field DHE key exchange support in TLS clients.
GlobalCookiesGets or sets global cookies for all the HTTP transports.
HardwareCryptoUsePolicyThe hardware crypto usage policy.
HttpUserAgentSpecifies the user agent name to be used by all HTTP clients.
HttpVersionThe HTTP version to use in any inner HTTP client classes created.
IgnoreExpiredMSCTLSigningCertWhether to tolerate the expired Windows Update signing certificate.
ListDelimiterThe delimiter character for multi-element lists.
LogDestinationSpecifies the debug log destination.
LogDetailsSpecifies the debug log details to dump.
LogFileSpecifies the debug log filename.
LogFiltersSpecifies the debug log filters.
LogFlushModeSpecifies the log flush mode.
LogLevelSpecifies the debug log level.
LogMaxEventCountSpecifies the maximum number of events to cache before further action is taken.
LogRotationModeSpecifies the log rotation mode.
MaxASN1BufferLengthSpecifies the maximal allowed length for ASN.1 primitive tag data.
MaxASN1TreeDepthSpecifies the maximal depth for processed ASN.1 trees.
OCSPHashAlgorithmSpecifies the hash algorithm to be used to identify certificates in OCSP requests.
OldClientSideRSAFallbackSpecifies whether the SSH client should use a SHA1 fallback.
ProductVersionReturns the version of the SecureBlackbox library.
ServerSSLDHKeyLengthSets the size of the TLS DHE key exchange group.
StaticDNSSpecifies whether static DNS rules should be used.
StaticIPAddress[domain]Gets or sets an IP address for the specified domain name.
StaticIPAddressesGets or sets all the static DNS rules.
TagAllows to store any custom data.
TLSSessionGroupSpecifies the group name of TLS sessions to be used for session resumption.
TLSSessionLifetimeSpecifies lifetime in seconds of the cached TLS session.
TLSSessionPurgeIntervalSpecifies how often the session cache should remove the expired TLS sessions.
UseInternalRandomSwitches between SecureBlackbox-own and platform PRNGs.
UseLegacyAdESValidationEnables legacy AdES validation mode.
UseOwnDNSResolverSpecifies whether the client classes should use own DNS resolver.
UseSharedSystemStoragesSpecifies whether the validation engine should use a global per-process copy of the system certificate stores.
UseSystemNativeSizeCalculationAn internal CryptoAPI access tweak.
UseSystemOAEPAndPSSEnforces or disables the use of system-driven RSA OAEP and PSS computations.
UseSystemRandomEnables or disables the use of the OS PRNG.

CanEncrypt Property (PublicKeyCrypto Class)

Returns true if the crypto object can be used for encryption.

Syntax


public boolean isCanEncrypt();


Default Value

False

Remarks

This property returns true if the crypto object can be used for encryption and decryption. This capability depends on the cryptographic algorithm.

This property is read-only and not available at design time.

CanSign Property (PublicKeyCrypto Class)

Returns true if the crypto object is capable of data signing.

Syntax


public boolean isCanSign();


Default Value

False

Remarks

This property returns true if the crypto object can be used for signing data and validating signatures. This capability depends on the cryptographic algorithm.

This property is read-only and not available at design time.

FIPSMode Property (PublicKeyCrypto Class)

Reserved.

Syntax


public boolean isFIPSMode();


public void setFIPSMode(boolean FIPSMode);

Default Value

False

Remarks

This property is reserved for future use.

HashAlgorithm Property (PublicKeyCrypto Class)

The hash algorithm to be used during the crypto operation.

Syntax


public String getHashAlgorithm();


public void setHashAlgorithm(String hashAlgorithm);

Default Value

"SHA256"

Remarks

Use this property to adjust the hash to be used during the cryptographic operation. This typically applies to signing and verification, but can also apply to more complex encryption primitives, such as RSA-OEAP.

SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_MD2MD2
SB_HASH_ALGORITHM_MD4MD4
SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_CRC32CRC32
SB_HASH_ALGORITHM_SSL3SSL3
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_POLY1305POLY1305
SB_HASH_ALGORITHM_SHA3_224SHA3_224
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512
SB_HASH_ALGORITHM_BLAKE2S_128BLAKE2S_128
SB_HASH_ALGORITHM_BLAKE2S_160BLAKE2S_160
SB_HASH_ALGORITHM_BLAKE2S_224BLAKE2S_224
SB_HASH_ALGORITHM_BLAKE2S_256BLAKE2S_256
SB_HASH_ALGORITHM_BLAKE2B_160BLAKE2B_160
SB_HASH_ALGORITHM_BLAKE2B_256BLAKE2B_256
SB_HASH_ALGORITHM_BLAKE2B_384BLAKE2B_384
SB_HASH_ALGORITHM_BLAKE2B_512BLAKE2B_512
SB_HASH_ALGORITHM_SHAKE_128SHAKE_128
SB_HASH_ALGORITHM_SHAKE_256SHAKE_256
SB_HASH_ALGORITHM_SHAKE_128_LENSHAKE_128_LEN
SB_HASH_ALGORITHM_SHAKE_256_LENSHAKE_256_LEN

InputEncoding Property (PublicKeyCrypto Class)

The encoding to apply to the input data.

Syntax


public int getInputEncoding();


public void setInputEncoding(int inputEncoding);


Enumerated values:
  public final static int cetDefault = 0;
  public final static int cetBinary = 1;
  public final static int cetBase64 = 2;
  public final static int cetCompact = 3;
  public final static int cetJSON = 4;

Default Value

0

Remarks

Use this property to specify the encoding to apply to the input data.

cetDefault0The default encoding type in current circumstances. This depends on the operation and the type of the key being used.

cetBinary1Raw binary encoding (no encoding)

cetBase642Base64 encoding (armouring)

cetCompact3JSON compact encoding

cetJSON4JSON standard encoding

InputIsHash Property (PublicKeyCrypto Class)

Indicates whether the input data contains the hash or the actual data.

Syntax


public boolean isInputIsHash();


public void setInputIsHash(boolean inputIsHash);

Default Value

False

Remarks

Set this property to true to tell the class that the data you are passing to it is the hash of the data, rather than the actual (unhashed) data. If this property is set to false, class will hash the provided data internally if it is assumed by the algorithm.

This property is not available at design time.

JsonDetails Property (PublicKeyCrypto Class)

Provides a container for JSON settings.

Syntax


public JWSettings getJsonDetails();


Remarks

Use this property when using JSON Web Encryption/Signature to tune up the JSON parameters.

This property is read-only.

Please refer to the JWSettings type for a complete list of fields.

Key Property (PublicKeyCrypto Class)

The key to employ for the crypto operation.

Syntax


public CryptoKey getKey();


public void setKey(CryptoKey key);

Remarks

Use this property to specify the key to perform the crypto operation with.

Please note that the key assigned should be of a proper type (a public key, not a symmetric key), have a proper set of capabilities (signing and/or encryption), and include its private part for signing and decryption operations.

This property is not available at design time.

Please refer to the CryptoKey type for a complete list of fields.

OutputEncoding Property (PublicKeyCrypto Class)

The encoding type to apply to the output data.

Syntax


public int getOutputEncoding();


public void setOutputEncoding(int outputEncoding);


Enumerated values:
  public final static int cetDefault = 0;
  public final static int cetBinary = 1;
  public final static int cetBase64 = 2;
  public final static int cetCompact = 3;
  public final static int cetJSON = 4;

Default Value

0

Remarks

Use this property to specify the encoding type to apply to the protected data.

cetDefault0The default encoding type in current circumstances. This depends on the operation and the type of the key being used.

cetBinary1Raw binary encoding (no encoding)

cetBase642Base64 encoding (armouring)

cetCompact3JSON compact encoding

cetJSON4JSON standard encoding

Scheme Property (PublicKeyCrypto Class)

The algorithm scheme to use.

Syntax


public String getScheme();


public void setScheme(String scheme);

Default Value

""

Remarks

Certain asymmetric algorithms are often accompanied with a specific algorithm scheme. Two typical examples are RSA's own OAEP and PSS schemes. Use this property to tune up the scheme to use. Leave it empty to proceed with the standard scheme (such as PKCS#1-v1.5 for RSA). Supported schemes:

RSA: PKCS#1, PSS, OAEP, SSL3

ECDSA: ed25519, ed448, ed25519ph, ed448ph

SchemeParams Property (PublicKeyCrypto Class)

The algorithm scheme parameters to employ.

Syntax


public String getSchemeParams();


public void setSchemeParams(String schemeParams);

Default Value

""

Remarks

Use this property to specify the parameters of the algorithm scheme if needed.

SignatureValidationResult Property (PublicKeyCrypto Class)

The signature validation result.

Syntax


public int getSignatureValidationResult();



Enumerated values:
  public final static int svtValid = 0;
  public final static int svtUnknown = 1;
  public final static int svtCorrupted = 2;
  public final static int svtSignerNotFound = 3;
  public final static int svtFailure = 4;
  public final static int svtReferenceCorrupted = 5;

Default Value

0

Remarks

Use this property to check the result of the most recent signature validation.

svtValid0The signature is valid

svtUnknown1Signature validity is unknown

svtCorrupted2The signature is corrupted

svtSignerNotFound3Failed to acquire the signing certificate. The signature cannot be validated.

svtFailure4General failure

svtReferenceCorrupted5Reference corrupted (XML-based signatures only)

This property is read-only and not available at design time.

Config Method (PublicKeyCrypto Class)

Sets or retrieves a configuration setting.

Syntax

public String config(String configurationString);

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Decrypt Method (PublicKeyCrypto Class)

Decrypts a buffer.

Syntax

public byte[] decrypt(byte[] buffer);

Remarks

Use this method to decrypt a byte array and get the encrypted message in another byte array.

Specify the decryption key in Key property before calling this method.

DecryptFile Method (PublicKeyCrypto Class)

Decrypts a file.

Syntax

public void decryptFile(String sourceFile, String destFile);

Remarks

Use this method to decrypt an encrypted file and save the decrypted data to another file.

Specify the decryption key in Key property before calling this method.

DecryptStream Method (PublicKeyCrypto Class)

Decrypts a stream.

Syntax

public void decryptStream(java.io.InputStream sourceStream, java.io.OutputStream destStream);

Remarks

Use this method to decrypt a stream and save the decrypted message into another stream.

Specify the decryption key in Key property before calling this method.

DoAction Method (PublicKeyCrypto Class)

Performs an additional action.

Syntax

public String doAction(String actionID, String actionParams);

Remarks

DoAction is a generic method available in every class. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.

The unique identifier (case insensitive) of the action is provided in the ActionID parameter.

ActionParams contains the value of a single parameter, or a list of multiple parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....

Encrypt Method (PublicKeyCrypto Class)

Encrypts a buffer.

Syntax

public byte[] encrypt(byte[] buffer);

Remarks

Use this method to encrypt a byte array and get the protected message in another byte array.

Specify the encryption key in the Key property before commencing encryption.

EncryptFile Method (PublicKeyCrypto Class)

Encrypts a file.

Syntax

public void encryptFile(String sourceFile, String destFile);

Remarks

Use this method to encrypt a file and save the protected message to another file.

Specify the encryption key in Key property before commencing encryption.

EncryptStream Method (PublicKeyCrypto Class)

Encrypts a stream.

Syntax

public void encryptStream(java.io.InputStream sourceStream, java.io.OutputStream destStream);

Remarks

Use this method to encrypt a stream and save the protected message into another stream.

Specify the encryption key in Key property before commencing encryption.

Reset Method (PublicKeyCrypto Class)

Resets the class settings.

Syntax

public void reset();

Remarks

Reset is a generic method available in every class.

Sign Method (PublicKeyCrypto Class)

Signs a buffer.

Syntax

public byte[] sign(byte[] buffer, boolean detached);

Remarks

Use this method to sign a byte array and get the protected message in another byte array. Set the Detached parameter to false to create an enveloped/enveloping, rather than detached signature. Please note that certain signature algorithms/kinds only support detached signing.

Specify the signing key in Key property before commencing the signing.

Please note that the key assigned must have a private key part.

SignFile Method (PublicKeyCrypto Class)

Signs a file.

Syntax

public void signFile(String sourceFile, String destFile, boolean detached);

Remarks

Use this method to sign a file and save the protected message to another file.

Specify the signing key in Key property before the signing. Please make sure the assigned key has a private key associated with it.

Set Detached parameter to false to create an enveloped/enveloping signature. This may not be supported by certain algorithms or encryption modes.

SignStream Method (PublicKeyCrypto Class)

Signs a stream.

Syntax

public void signStream(java.io.InputStream sourceStream, java.io.OutputStream destStream, boolean detached);

Remarks

Use this method to sign a stream and save the protected message to another stream.

Specify the signing key in Key property before commencing the signing. Note that the signing key must come with its private key.

Set Detached parameter to false to produce enveloped/enveloping, and not detached signature. Many encryption algorithms/modes do not support non-detached signatures.

Verify Method (PublicKeyCrypto Class)

Verifies an enveloped or enveloping signature contained in a buffer.

Syntax

public byte[] verify(byte[] buffer);

Remarks

Use this method to verify an enveloped or enveloping signature contained in a byte array. The method verifies the signature and extracts the original signed content into another byte array.

The validation result is stored in SignatureValidationResult property.

Use VerifyDetached to verify detached signatures.

Specify the verification key in the Key property before commencing verification.

VerifyDetached Method (PublicKeyCrypto Class)

Verifies a detached signature.

Syntax

public void verifyDetached(byte[] signedData, byte[] signature);

Remarks

Use this method to verify a detached signature. Pass the original message via the SignedData parameter, and the signature via the Signature parameter.

The validation result is stored in SignatureValidationResult property.

Provide the verification key in Key property before commencing verification.

VerifyDetachedFile Method (PublicKeyCrypto Class)

Verifies a detached signature.

Syntax

public void verifyDetachedFile(String signedDataFile, String signatureFile);

Remarks

Use this method to verify a detached signature. Pass the original data via the SignedDataFile parameter, and the signature via the SignatureFile parameter.

The validation result is stored in SignatureValidationResult property.

Provide the verification key in Key property.

VerifyDetachedStream Method (PublicKeyCrypto Class)

Verifies a detached signature.

Syntax

public void verifyDetachedStream(java.io.InputStream signedDataStream, java.io.InputStream signatureStream);

Remarks

Use this method to verify a detached signature. Provide the original signed data via the SignedDataStream parameter, and the signature via the SignatureStream parameter.

The validation result will be stored in SignatureValidationResult property.

Specify the verification public key in Key property before commencing validation.

VerifyFile Method (PublicKeyCrypto Class)

Verifies an enveloped or enveloping signature contained in a file.

Syntax

public void verifyFile(String sourceFile, String destFile);

Remarks

Use this method to verify an enveloped or enveloping signature and extract the original signed message to another file.

The validation result is stored in SignatureValidationResult property.

Specify the public verification key in Key property before commencing the validation.

VerifyStream Method (PublicKeyCrypto Class)

Verifies an enveloping or enveloped signature contained in a stream.

Syntax

public void verifyStream(java.io.InputStream sourceStream, java.io.OutputStream destStream);

Remarks

Use this method to verify an enveloping or enveloped signature and extract the original data into a stream.

The outcome of the validation is stored in SignatureValidationResult property.

Provide the public verification key via the Key property before commencing the validation.

Error Event (PublicKeyCrypto Class)

Reports error information during a crypto operation.

Syntax

public class DefaultPublicKeyCryptoEventListener implements PublicKeyCryptoEventListener {
  ...
  public void error(PublicKeyCryptoErrorEvent e) {}
  ...
}

public class PublicKeyCryptoErrorEvent {
  public int errorCode;
  public String description;
}

Remarks

Class fires this event if an error is encountered during a cryptographic operation.

ErrorCode contains an error code and Description contains a textual description of the error that happened.

Notification Event (PublicKeyCrypto Class)

This event notifies the application about an underlying control flow event.

Syntax

public class DefaultPublicKeyCryptoEventListener implements PublicKeyCryptoEventListener {
  ...
  public void notification(PublicKeyCryptoNotificationEvent e) {}
  ...
}

public class PublicKeyCryptoNotificationEvent {
  public String eventID;
  public String eventParam;
}

Remarks

The class fires this event to let the application know about some event, occurrence, or milestone in the class. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.

The unique identifier of the event is provided in the EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the class, the exact action it is performing, or the document being processed, one or both may be omitted.

CryptoKey Type

This container represents a cryptographic key.

Remarks

This type is a universal placeholder for cryptographic keys.

The following fields are available:

Fields

Algorithm
String

Default Value: ""

The algorithm of the cryptographic key. A cryptokey object may hold either symmetric, MAC, or public key. Public key algorithms: RSA, ECDSA, Elgamal, DH.

SB_SYMMETRIC_ALGORITHM_RC4RC4
SB_SYMMETRIC_ALGORITHM_DESDES
SB_SYMMETRIC_ALGORITHM_3DES3DES
SB_SYMMETRIC_ALGORITHM_RC2RC2
SB_SYMMETRIC_ALGORITHM_AES128AES128
SB_SYMMETRIC_ALGORITHM_AES192AES192
SB_SYMMETRIC_ALGORITHM_AES256AES256
SB_SYMMETRIC_ALGORITHM_IDENTITYIdentity
SB_SYMMETRIC_ALGORITHM_BLOWFISHBlowfish
SB_SYMMETRIC_ALGORITHM_CAST128CAST128
SB_SYMMETRIC_ALGORITHM_IDEAIDEA
SB_SYMMETRIC_ALGORITHM_TWOFISHTwofish
SB_SYMMETRIC_ALGORITHM_TWOFISH128Twofish128
SB_SYMMETRIC_ALGORITHM_TWOFISH192Twofish192
SB_SYMMETRIC_ALGORITHM_TWOFISH256Twofish256
SB_SYMMETRIC_ALGORITHM_CAMELLIACamellia
SB_SYMMETRIC_ALGORITHM_CAMELLIA128Camellia128
SB_SYMMETRIC_ALGORITHM_CAMELLIA192Camellia192
SB_SYMMETRIC_ALGORITHM_CAMELLIA256Camellia256
SB_SYMMETRIC_ALGORITHM_SERPENTSerpent
SB_SYMMETRIC_ALGORITHM_SERPENT128Serpent128
SB_SYMMETRIC_ALGORITHM_SERPENT192Serpent192
SB_SYMMETRIC_ALGORITHM_SERPENT256Serpent256
SB_SYMMETRIC_ALGORITHM_SEEDSEED
SB_SYMMETRIC_ALGORITHM_RABBITRabbit
SB_SYMMETRIC_ALGORITHM_SYMMETRICGeneric
SB_SYMMETRIC_ALGORITHM_GOST_28147_1989GOST-28147-1989
SB_SYMMETRIC_ALGORITHM_CHACHA20ChaCha20
SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_MD2MD2
SB_HASH_ALGORITHM_MD4MD4
SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_CRC32CRC32
SB_HASH_ALGORITHM_SSL3SSL3
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_POLY1305POLY1305
SB_HASH_ALGORITHM_SHA3_224SHA3_224
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512
SB_HASH_ALGORITHM_BLAKE2S_128BLAKE2S_128
SB_HASH_ALGORITHM_BLAKE2S_160BLAKE2S_160
SB_HASH_ALGORITHM_BLAKE2S_224BLAKE2S_224
SB_HASH_ALGORITHM_BLAKE2S_256BLAKE2S_256
SB_HASH_ALGORITHM_BLAKE2B_160BLAKE2B_160
SB_HASH_ALGORITHM_BLAKE2B_256BLAKE2B_256
SB_HASH_ALGORITHM_BLAKE2B_384BLAKE2B_384
SB_HASH_ALGORITHM_BLAKE2B_512BLAKE2B_512
SB_HASH_ALGORITHM_SHAKE_128SHAKE_128
SB_HASH_ALGORITHM_SHAKE_256SHAKE_256
SB_HASH_ALGORITHM_SHAKE_128_LENSHAKE_128_LEN
SB_HASH_ALGORITHM_SHAKE_256_LENSHAKE_256_LEN

Bits
int (read-only)

Default Value: 0

The length of the key in bits.

Curve
String

Default Value: ""

This property specifies the name of the curve the EC key is built on.

Exportable
boolean (read-only)

Default Value: False

Returns True if the key is exportable (can be serialized into an array of bytes), and False otherwise.

Fingerprint
String (read-only)

Default Value: ""

Contains the fingerprint (a hash imprint) of this key.

ID
byte[]

Default Value: ""

Provides access to a storage-specific key identifier. Key identifiers are used by cryptographic providers to refer to a particular key and/or distinguish between different keys. They are typically unique within a storage, but there is no guarantee that a particular cryptoprovider will conform to that (or will assign any key IDs at all).

IV
byte[]

Default Value: ""

The initialization vector (IV) of a symmetric key. This is normally a public part of a symmetric key, the idea of which is to introduce randomness to the encrypted data and/or serve as a first block in chaining ciphers.

Key
byte[] (read-only)

Default Value: ""

The byte array representation of the key. This may not be available for non-Exportable keys.

Nonce
byte[]

Default Value: ""

A nonce value associated with a key. It is similar to IV, but its only purpose is to introduce randomness.

Private
boolean (read-only)

Default Value: False

Returns True if the object hosts a private key, and False otherwise.

Public
boolean (read-only)

Default Value: False

Returns True if the object hosts a public key, and False otherwise.

Subject
byte[]

Default Value: ""

Returns the key subject. This is a cryptoprovider-dependent value, which normally aims to provide some user-friendly insight into the key owner.

Symmetric
boolean (read-only)

Default Value: False

Returns True if the object contains a symmetric key, and False otherwise.

Valid
boolean (read-only)

Default Value: False

Returns True if this key is valid. The term Valid highly depends on the kind of the key being stored. A symmetric key is considered valid if its length fits the algorithm being set. The validity of an RSA key also ensures that the RSA key elements (primes, exponents, and modulus) are consistent.

Constructors

public CryptoKey();

Creates an empty crypto key object.

JWSettings Type

This container represents JSON web security settings.

Remarks

This type contains properties specific to JSON Web Security.

The following fields are available:

Fields

KeyHeaderParams
String

Default Value: "kid"

Contains key header parameters.

ProtectedHeader
String

Default Value: ""

Provides access to the header being protected.

UnprotectedHeader
String

Default Value: ""

Provides access to the unprotected part of the header.

UnprotectedHeaderParams
String

Default Value: ""

Contains unprotected header parameters.

Constructors

public JWSettings();

Creates an json settings object.

Config Settings (PublicKeyCrypto Class)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

PublicKeyCrypto Config Settings

TempPath:   Path for storing temporary files.

This setting specifies an absolute path to the location on disk where temporary files are stored.

UseAlgorithmPrefix:   Enables or disables the PKCS#1 ASN.1 algorithm prefix.

Use this property to enable or disable the use of ASN.1 hash algorithm prefix. This may be useful if you work with an external signing service that adds this prefix itself.

Base Config Settings

ASN1UseGlobalTagCache:   Controls whether ASN.1 module should use a global object cache.

This is a performance setting. It is unlikely that you will ever need to adjust it.

AssignSystemSmartCardPins:   Specifies whether CSP-level PINs should be assigned to CNG keys.

This is a low-level tweak for certain cryptographic providers. It is unlikely that you will ever need to adjust it.

CheckKeyIntegrityBeforeUse:   Enables or disable private key integrity check before use.

This global property enables or disables private key material check before each signing operation. This slows down performance a bit, but prevents a selection of attacks on RSA keys where keys with unknown origins are used.

You can switch this property off to improve performance if your project only uses known, good private keys.

CookieCaching:   Specifies whether a cookie cache should be used for HTTP(S) transports.

Set this property to enable or disable cookies caching for the class.

Supported values are:

offNo caching (default)
localLocal caching
globalGlobal caching

Cookies:   Gets or sets local cookies for the class.

Use this property to get cookies from the internal cookie storage of the class and/or restore them back between application sessions.

DefDeriveKeyIterations:   Specifies the default key derivation algorithm iteration count.

This global property sets the default number of iterations for all supported key derivation algorithms. Note that you can provide the required number of iterations by using properties of the relevant key generation component; this global setting is used in scenarios where specific iteration count is not or cannot be provided.

DNSLocalSuffix:   The suffix to assign for TLD names.

Use this global setting to adjust the default suffix to assign to top-level domain names. The default is .local.

EnableClientSideSSLFFDHE:   Enables or disables finite field DHE key exchange support in TLS clients.

This global property enables or disables support for finite field DHE key exchange methods in TLS clients. FF DHE is a slower algorithm if compared to EC DHE; enabling it may result in slower connections.

This setting only applies to sessions negotiated with TLS version 1.3.

GlobalCookies:   Gets or sets global cookies for all the HTTP transports.

Use this property to get cookies from the GLOBAL cookie storage or restore them back between application sessions. These cookies will be used by all the classes that have its CookieCaching property set to "global".

HardwareCryptoUsePolicy:   The hardware crypto usage policy.

This global setting controls the hardware cryptography usage policy: auto, enable, or disable.

HttpUserAgent:   Specifies the user agent name to be used by all HTTP clients.

This global setting defines the User-Agent field of the HTTP request provides information about the software that initiates the request. This value will be used by all the HTTP clients including the ones used internally in other classes.

HttpVersion:   The HTTP version to use in any inner HTTP client components created.

Set this property to 1.0 or 1.1 to indicate the HTTP version that any internal HTTP clients should use.

IgnoreExpiredMSCTLSigningCert:   Whether to tolerate the expired Windows Update signing certificate.

It is not uncommon for Microsoft Windows Update Certificate Trust List to be signed with an expired Microsoft certificate. Setting this global property to true makes SBB ignore the expired factor and take the Trust List into account.

ListDelimiter:   The delimiter character for multi-element lists.

Allows to set the delimiter for any multi-entry values returned by the component as a string object, such as file lists. For most of the components, this property is set to a newline sequence.

LogDestination:   Specifies the debug log destination.

Contains a comma-separated list of values that specifies where debug log should be dumped.

Supported values are:

fileFile
consoleConsole
systemlogSystem Log (supported for Android only)
debuggerDebugger (supported for VCL for Windows and .Net)

LogDetails:   Specifies the debug log details to dump.

Contains a comma-separated list of values that specifies which debug log details to dump.

Supported values are:

timeCurrent time
levelLevel
packagePackage name
moduleModule name
classClass name
methodMethod name
threadidThread Id
contenttypeContent type
contentContent
allAll details

LogFile:   Specifies the debug log filename.

Use this property to provide a path to the log file.

LogFilters:   Specifies the debug log filters.

Contains a comma-separated list of value pairs ("name:value") that describe filters.

Supported filter names are:

exclude-packageExclude a package specified in the value
exclude-moduleExclude a module specified in the value
exclude-classExclude a class specified in the value
exclude-methodExclude a method specified in the value
include-packageInclude a package specified in the value
include-moduleInclude a module specified in the value
include-classInclude a class specified in the value
include-methodInclude a method specified in the value

LogFlushMode:   Specifies the log flush mode.

Use this property to set the log flush mode. The following values are defined:

noneNo flush (caching only)
immediateImmediate flush (real-time logging)
maxcountFlush cached entries upon reaching LogMaxEventCount entries in the cache.

LogLevel:   Specifies the debug log level.

Use this property to provide the desired debug log level.

Supported values are:

noneNone (by default)
fatalSevere errors that cause premature termination.
errorOther runtime errors or unexpected conditions.
warningUse of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong".
infoInteresting runtime events (startup/shutdown).
debugDetailed information on flow of through the system.
traceMore detailed information.

LogMaxEventCount:   Specifies the maximum number of events to cache before further action is taken.

Use this property to specify the log event number threshold. This threshold may have different effects, depending on the rotation setting and/or the flush mode.

The default value of this setting is 100.

LogRotationMode:   Specifies the log rotation mode.

Use this property to set the log rotation mode. The following values are defined:

noneNo rotation
deleteolderDelete older entries from the cache upon reaching LogMaxEventCount
keepolderKeep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded)

MaxASN1BufferLength:   Specifies the maximal allowed length for ASN.1 primitive tag data.

This global property limits the maximal allowed length for ASN.1 tag data for non-content-carrying structures, such as certificates, CRLs, or timestamps. It does not affect structures that can carry content, such as CMS/CAdES messages. This is a security property aiming at preventing DoS attacks.

MaxASN1TreeDepth:   Specifies the maximal depth for processed ASN.1 trees.

This global property limits the maximal depth of ASN.1 trees that the component can handle without throwing an error. This is a security property aiming at preventing DoS attacks.

OCSPHashAlgorithm:   Specifies the hash algorithm to be used to identify certificates in OCSP requests.

This global setting defines the hash algorithm to use in OCSP requests during chain validation. Some OCSP responders can only use older algorithms, in which case setting this property to SHA1 may be helpful.

OldClientSideRSAFallback:   Specifies whether the SSH client should use a SHA1 fallback.

Tells the SSH client to use a legacy ssh-rsa authentication even if the server indicates support for newer algorithms, such as rsa-sha-256. This is a backward-compatibility tweak.

ProductVersion:   Returns the version of the SecureBlackbox library.

This property returns the long version string of the SecureBlackbox library being used (major.minor.build.revision).

ServerSSLDHKeyLength:   Sets the size of the TLS DHE key exchange group.

Use this property to adjust the length, in bits, of the DHE prime to be used by the TLS server.

StaticDNS:   Specifies whether static DNS rules should be used.

Set this property to enable or disable static DNS rules for the class. Works only if UseOwnDNSResolver is set to true.

Supported values are:

noneNo static DNS rules (default)
localLocal static DNS rules
globalGlobal static DNS rules

StaticIPAddress[domain]:   Gets or sets an IP address for the specified domain name.

Use this property to get or set an IP address for the specified domain name in the internal (of the class) or global DNS rules storage depending on the StaticDNS value. The type of the IP address (IPv4 or IPv6) is determined automatically. If both addresses are available, they are devided by the | (pipe) character.

StaticIPAddresses:   Gets or sets all the static DNS rules.

Use this property to get static DNS rules from the current rules storage or restore them back between application sessions. If StaticDNS of the class is set to "local", the property returns/restores the rules from/to the internal storage of the class. If StaticDNS of the class is set to "global", the property returns/restores the rules from/to the GLOBAL storage. The rules list is returned and accepted in JSON format.

Tag:   Allows to store any custom data.

Use this config property to store any custom data.

TLSSessionGroup:   Specifies the group name of TLS sessions to be used for session resumption.

Use this property to limit the search of chached TLS sessions to the specified group. Sessions from other groups will be ignored. By default, all sessions are cached with an empty group name and available to all the classes.

TLSSessionLifetime:   Specifies lifetime in seconds of the cached TLS session.

Use this property to specify how much time the TLS session should be kept in the session cache. After this time, the session expires and will be automatically removed from the cache. Default value is 300 seconds (5 minutes).

TLSSessionPurgeInterval:   Specifies how often the session cache should remove the expired TLS sessions.

Use this property to specify the time interval of purging the expired TLS sessions from the session cache. Default value is 60 seconds (1 minute).

UseInternalRandom:   Switches between SecureBlackbox-own and platform PRNGs.

Allows to switch between internal/native PRNG implementation and the one provided by the platform.

UseLegacyAdESValidation:   Enables legacy AdES validation mode.

Use this setting to switch the AdES component to the validation approach that was used in SBB 2020/SBB 2022 (less attention to temporal details).

UseOwnDNSResolver:   Specifies whether the client components should use own DNS resolver.

Set this global property to false to force all the client components to use the DNS resolver provided by the target OS instead of using own one.

UseSharedSystemStorages:   Specifies whether the validation engine should use a global per-process copy of the system certificate stores.

Set this global property to false to make each validation run use its own copy of system certificate stores.

UseSystemNativeSizeCalculation:   An internal CryptoAPI access tweak.

This is an internal setting. Please do not use it unless instructed by the support team.

UseSystemOAEPAndPSS:   Enforces or disables the use of system-driven RSA OAEP and PSS computations.

This global setting defines who is responsible for performing RSA-OAEP and RSA-PSS computations where the private key is stored in a Windows system store and is exportable. If set to true, SBB will delegate the computations to Windows via a CryptoAPI call. Otherwise, it will export the key material and perform the computations using its own OAEP/PSS implementation.

This setting only applies to certificates originating from a Windows system store.

UseSystemRandom:   Enables or disables the use of the OS PRNG.

Use this global property to enable or disable the use of operating system-driven pseudorandom number generation.

Trappable Errors (PublicKeyCrypto Class)

PublicKeyCrypto Errors

1048577   Invalid parameter (SB_ERROR_INVALID_PARAMETER)
1048578   Invalid configuration (SB_ERROR_INVALID_SETUP)
1048579   Invalid state (SB_ERROR_INVALID_STATE)
1048580   Invalid value (SB_ERROR_INVALID_VALUE)
1048581   Private key not found (SB_ERROR_NO_PRIVATE_KEY)
1048582   Cancelled by the user (SB_ERROR_CANCELLED_BY_USER)
1048583   The file was not found (SB_ERROR_NO_SUCH_FILE)
1048584   Unsupported feature or operation (SB_ERROR_UNSUPPORTED_FEATURE)
1048585   General error (SB_ERROR_GENERAL_ERROR)