SymmetricCrypto Class
Properties Methods Events Config Settings Errors
The SymmetricCrypto class supports encrypting and decrypting messages.
Syntax
secureblackbox.SymmetricCrypto
Remarks
SymmetricCrypto allows you to encrypt and decrypt messages.
//encrypting a file
SymmetricCrypto symmetricCrypto = new SymmetricCrypto();
symmetricCrypto.setEncryptionAlgorithm("RC4"); // default AES256
// generating a key from a password
CryptoKeyManager keyManager = new CryptoKeyManager();
keyManager.deriveKey(256, "MyPassword","");
keyManager.getKey().setIV(new byte[16]);
symmetricCrypto.setKey(keyManager.getKey());
// the encoding to apply to the output data, default cetDefault which depends on
// the operation and type of key being used
symmetricCrypto.setOutputEncoding(SymmetricCrypto.cetBinary);
// first parameter is the path of the file you want to encrypt and the second is the path
// of where the encrypted file will be saved
symmetricCrypto.encryptFile("./message.txt","encryptedFile.bin");
// decrypting a file
symmetricCrypto.reset();
symmetricCrypto.setKey(keyManager.getKey());
// first parameter is the path of the file you want to decrypt and the second is the path
// of where the decrypted file will be saved
symmetricCrypto.decryptFile("encryptedFile.bin","decryptedFile.bin");
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
AssociatedData | Provides Associated Data for AEAD algorithms. |
BlockSize | The block size of the chosen symmetric cipher. |
EncryptionAlgorithm | The encryption algorithm to use for encrypting the data. |
FIPSMode | Reserved. |
HashAlgorithm | The hash algorithm to use during encryption. |
InputEncoding | The encoding to apply to the input data. |
Key | The key to use for the cryptographic operation. |
KeySize | Returns the cryptographic key size in bytes. |
MACAlgorithm | The (H)MAC algorithm to use during encryption. |
Mode | Specifies the symmetric cipher mode of operation. |
Nonce | Specifies the Nonce value to employ. |
OutputEncoding | The encoding to apply to the output data. |
Padding | The padding type to apply to the encrypted data. |
PayloadSize | Specifies the payload size, in bytes. |
StreamCipher | Returns true if the selected algorithms works as a stream cipher. |
TagSize | Specifies the AEAD tag size, in bytes. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
Decrypt | Decrypts a buffer. |
DecryptFile | Decrypts a file. |
DecryptFinal | Finalization of decryption by blocks. |
DecryptInit | Initializes a per-block decryption process. |
DecryptStream | Decrypts a stream. |
DecryptUpdate | Decrypts the next block of encrypted data. |
DoAction | Performs an additional action. |
Encrypt | Encrypts a buffer. |
EncryptFile | Encrypts a file. |
EncryptFinal | Finalization of encryption by blocks. |
EncryptInit | Initializes a per-block encryption process. |
EncryptStream | Encrypts a stream. |
EncryptUpdate | Encrypts the next block of data. |
Reset | Resets the class settings. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
Error | Reports errors during encryption or decryption. |
Notification | This event notifies the application about an underlying control flow event. |
Progress | Reports the data encryption/decryption progress. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
Compress | Specifies whether the JSON output should be compressed. |
CTRLittleEndian | Specifies whether the little-endian representation should be employed in CTR mode. |
KeyAlgorithm | Gets or sets a JWE key algorithm. |
TempPath | Path for storing temporary files. |
ASN1UseGlobalTagCache | Controls whether ASN.1 module should use a global object cache. |
AssignSystemSmartCardPins | Specifies whether CSP-level PINs should be assigned to CNG keys. |
CheckKeyIntegrityBeforeUse | Enables or disable private key integrity check before use. |
CookieCaching | Specifies whether a cookie cache should be used for HTTP(S) transports. |
Cookies | Gets or sets local cookies for the class. |
DefDeriveKeyIterations | Specifies the default key derivation algorithm iteration count. |
DNSLocalSuffix | The suffix to assign for TLD names. |
EnableClientSideSSLFFDHE | Enables or disables finite field DHE key exchange support in TLS clients. |
GlobalCookies | Gets or sets global cookies for all the HTTP transports. |
HardwareCryptoUsePolicy | The hardware crypto usage policy. |
HttpUserAgent | Specifies the user agent name to be used by all HTTP clients. |
HttpVersion | The HTTP version to use in any inner HTTP client classes created. |
IgnoreExpiredMSCTLSigningCert | Whether to tolerate the expired Windows Update signing certificate. |
ListDelimiter | The delimiter character for multi-element lists. |
LogDestination | Specifies the debug log destination. |
LogDetails | Specifies the debug log details to dump. |
LogFile | Specifies the debug log filename. |
LogFilters | Specifies the debug log filters. |
LogFlushMode | Specifies the log flush mode. |
LogLevel | Specifies the debug log level. |
LogMaxEventCount | Specifies the maximum number of events to cache before further action is taken. |
LogRotationMode | Specifies the log rotation mode. |
MaxASN1BufferLength | Specifies the maximal allowed length for ASN.1 primitive tag data. |
MaxASN1TreeDepth | Specifies the maximal depth for processed ASN.1 trees. |
OCSPHashAlgorithm | Specifies the hash algorithm to be used to identify certificates in OCSP requests. |
OldClientSideRSAFallback | Specifies whether the SSH client should use a SHA1 fallback. |
ProductVersion | Returns the version of the SecureBlackbox library. |
ServerSSLDHKeyLength | Sets the size of the TLS DHE key exchange group. |
StaticDNS | Specifies whether static DNS rules should be used. |
StaticIPAddress[domain] | Gets or sets an IP address for the specified domain name. |
StaticIPAddresses | Gets or sets all the static DNS rules. |
Tag | Allows to store any custom data. |
TLSSessionGroup | Specifies the group name of TLS sessions to be used for session resumption. |
TLSSessionLifetime | Specifies lifetime in seconds of the cached TLS session. |
TLSSessionPurgeInterval | Specifies how often the session cache should remove the expired TLS sessions. |
UseInternalRandom | Switches between SecureBlackbox-own and platform PRNGs. |
UseLegacyAdESValidation | Enables legacy AdES validation mode. |
UseOwnDNSResolver | Specifies whether the client classes should use own DNS resolver. |
UseSharedSystemStorages | Specifies whether the validation engine should use a global per-process copy of the system certificate stores. |
UseSystemNativeSizeCalculation | An internal CryptoAPI access tweak. |
UseSystemOAEPAndPSS | Enforces or disables the use of system-driven RSA OAEP and PSS computations. |
UseSystemRandom | Enables or disables the use of the OS PRNG. |
AssociatedData Property (SymmetricCrypto Class)
Provides Associated Data for AEAD algorithms.
Syntax
public byte[] getAssociatedData(); public void setAssociatedData(byte[] associatedData);
Remarks
Use this property to set up Associated Data for AEAD encryption algorithms.
This property is not available at design time.
BlockSize Property (SymmetricCrypto Class)
The block size of the chosen symmetric cipher.
Syntax
public int getBlockSize();
Default Value
0
Remarks
This property returns the block size of the chosen symmetric cipher.
Modern symmetric algorithms typically use blocks of 16 bytes. Some older algorithms, such as DES or Blowfish, use 8-byte blocks.
This property is read-only.
EncryptionAlgorithm Property (SymmetricCrypto Class)
The encryption algorithm to use for encrypting the data.
Syntax
public String getEncryptionAlgorithm(); public void setEncryptionAlgorithm(String encryptionAlgorithm);
Default Value
"AES256"
Remarks
This property specifies the base symmetric algorithm to use (e.g. AES128). Use it in conjunction with Mode to set up the complete encryption scheme (such as AES128-CBC or AES128-GCM).
SB_SYMMETRIC_ALGORITHM_RC4 | RC4 | |
SB_SYMMETRIC_ALGORITHM_DES | DES | |
SB_SYMMETRIC_ALGORITHM_3DES | 3DES | |
SB_SYMMETRIC_ALGORITHM_RC2 | RC2 | |
SB_SYMMETRIC_ALGORITHM_AES128 | AES128 | |
SB_SYMMETRIC_ALGORITHM_AES192 | AES192 | |
SB_SYMMETRIC_ALGORITHM_AES256 | AES256 | |
SB_SYMMETRIC_ALGORITHM_IDENTITY | Identity | |
SB_SYMMETRIC_ALGORITHM_BLOWFISH | Blowfish | |
SB_SYMMETRIC_ALGORITHM_CAST128 | CAST128 | |
SB_SYMMETRIC_ALGORITHM_IDEA | IDEA | |
SB_SYMMETRIC_ALGORITHM_TWOFISH | Twofish | |
SB_SYMMETRIC_ALGORITHM_TWOFISH128 | Twofish128 | |
SB_SYMMETRIC_ALGORITHM_TWOFISH192 | Twofish192 | |
SB_SYMMETRIC_ALGORITHM_TWOFISH256 | Twofish256 | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA | Camellia | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA128 | Camellia128 | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA192 | Camellia192 | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA256 | Camellia256 | |
SB_SYMMETRIC_ALGORITHM_SERPENT | Serpent | |
SB_SYMMETRIC_ALGORITHM_SERPENT128 | Serpent128 | |
SB_SYMMETRIC_ALGORITHM_SERPENT192 | Serpent192 | |
SB_SYMMETRIC_ALGORITHM_SERPENT256 | Serpent256 | |
SB_SYMMETRIC_ALGORITHM_SEED | SEED | |
SB_SYMMETRIC_ALGORITHM_RABBIT | Rabbit | |
SB_SYMMETRIC_ALGORITHM_SYMMETRIC | Generic | |
SB_SYMMETRIC_ALGORITHM_GOST_28147_1989 | GOST-28147-1989 | |
SB_SYMMETRIC_ALGORITHM_CHACHA20 | ChaCha20 |
FIPSMode Property (SymmetricCrypto Class)
Reserved.
Syntax
public boolean isFIPSMode(); public void setFIPSMode(boolean FIPSMode);
Default Value
False
Remarks
This property is reserved for future use.
HashAlgorithm Property (SymmetricCrypto Class)
The hash algorithm to use during encryption.
Syntax
public String getHashAlgorithm(); public void setHashAlgorithm(String hashAlgorithm);
Default Value
"SHA256"
Remarks
Use this property to provide the hash algorithm to be used with the encryption operation. This only applies to certain encryption algorithms/modes.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
InputEncoding Property (SymmetricCrypto Class)
The encoding to apply to the input data.
Syntax
public int getInputEncoding(); public void setInputEncoding(int inputEncoding); Enumerated values: public final static int cetDefault = 0; public final static int cetBinary = 1; public final static int cetBase64 = 2; public final static int cetCompact = 3; public final static int cetJSON = 4;
Default Value
0
Remarks
cetDefault | 0 | The default encoding type in current circumstances. This depends on the operation and the type of the key being used. |
cetBinary | 1 | Raw binary encoding (no encoding) |
cetBase64 | 2 | Base64 encoding (armouring) |
cetCompact | 3 | JSON compact encoding |
cetJSON | 4 | JSON standard encoding |
Key Property (SymmetricCrypto Class)
The key to use for the cryptographic operation.
Syntax
public CryptoKey getKey(); public void setKey(CryptoKey key);
Remarks
Use this property to provide the symmetric key to use for the cryptographic operation. Remember that this key should be of appropriate type and length, and any required additional settings (such as IV or Nonce) should be adjusted where appropriate.
This property is not available at design time.
Please refer to the CryptoKey type for a complete list of fields.KeySize Property (SymmetricCrypto Class)
Returns the cryptographic key size in bytes.
Syntax
public int getKeySize();
Default Value
0
Remarks
Use this property to read the cryptographic key size. For the majority of the symmetric algorithms this is hard-coded in the algorithm itself (such as 16 bytes for AES128), but may be variable for certain exceptions, such as Blowfish or RC4.
This property is read-only.
MACAlgorithm Property (SymmetricCrypto Class)
The (H)MAC algorithm to use during encryption.
Syntax
public String getMACAlgorithm(); public void setMACAlgorithm(String MACAlgorithm);
Default Value
""
Remarks
Use this property to configure the HMAC algorithm to use with the encryption operation. This only applies to a small subset of algorithms/modes.
SB_MAC_ALGORITHM_HMAC_SHA1 | SHA1 | |
SB_MAC_ALGORITHM_HMAC_SHA256 | SHA256 | |
SB_MAC_ALGORITHM_HMAC_SHA512 | SHA512 |
Mode Property (SymmetricCrypto Class)
Specifies the symmetric cipher mode of operation.
Syntax
public int getMode(); public void setMode(int mode); Enumerated values: public final static int scmDefault = 0; public final static int scmECB = 1; public final static int scmCBC = 2; public final static int scmCTR = 3; public final static int scmCFB8 = 4; public final static int scmGCM = 5; public final static int scmCCM = 6; public final static int scmPoly1305 = 7; public final static int scmOCB = 8;
Default Value
0
Remarks
Use this property to specify the mode of operation as required by your environment. The default setting is CBC.
scmDefault | 0 | The default mode in current circumstances. |
scmECB | 1 | ECB (electronic code book) mode. This is insecure, unless you know how to use it right. |
scmCBC | 2 | CBC (cipher block chaining mode) |
scmCTR | 3 | Counter mode |
scmCFB8 | 4 | Cipher feedback mode |
scmGCM | 5 | Galois counter mode |
scmCCM | 6 | CCM mode |
scmPoly1305 | 7 | Poly1305 mode (only to be used with ChaCha20 algorithm) |
scmOCB | 8 | OCB mode |
Nonce Property (SymmetricCrypto Class)
Specifies the Nonce value to employ.
Syntax
public byte[] getNonce(); public void setNonce(byte[] nonce);
Remarks
Use this property to specify the Nonce value for the symmetric operation. Not every algorithm or mode uses nonce.
This property is not available at design time.
OutputEncoding Property (SymmetricCrypto Class)
The encoding to apply to the output data.
Syntax
public int getOutputEncoding(); public void setOutputEncoding(int outputEncoding); Enumerated values: public final static int cetDefault = 0; public final static int cetBinary = 1; public final static int cetBase64 = 2; public final static int cetCompact = 3; public final static int cetJSON = 4;
Default Value
0
Remarks
cetDefault | 0 | The default encoding type in current circumstances. This depends on the operation and the type of the key being used. |
cetBinary | 1 | Raw binary encoding (no encoding) |
cetBase64 | 2 | Base64 encoding (armouring) |
cetCompact | 3 | JSON compact encoding |
cetJSON | 4 | JSON standard encoding |
Padding Property (SymmetricCrypto Class)
The padding type to apply to the encrypted data.
Syntax
public int getPadding(); public void setPadding(int padding); Enumerated values: public final static int scpNone = 0; public final static int scpPKCS5 = 1; public final static int scpANSIX923 = 2;
Default Value
1
Remarks
Use this property to specify the padding type to use with the encrypted data. A padding type commonly used in modern security environments is PKCS#5.
scpNone | 0 | No padding. You might need to adjust the length of the input data to align it by the encryption block boundary. |
scpPKCS5 | 1 | Standard PKCS5 (sometimes also referred to as PKCS7) padding |
scpANSIX923 | 2 | ANSI X.923 padding |
PayloadSize Property (SymmetricCrypto Class)
Specifies the payload size, in bytes.
Syntax
public int getPayloadSize(); public void setPayloadSize(int payloadSize);
Default Value
0
Remarks
Use this property to specify the size of the input data in bytes. This is only used by a subset of algorithms/modes, such as CCM.
StreamCipher Property (SymmetricCrypto Class)
Returns true if the selected algorithms works as a stream cipher.
Syntax
public boolean isStreamCipher();
Default Value
False
Remarks
This property returns true if the selected algorithm processes data as a stream (byte-by-byte), rather than block-by-block. This affects the need to use a proper padding settings.
This property is read-only and not available at design time.
TagSize Property (SymmetricCrypto Class)
Specifies the AEAD tag size, in bytes.
Syntax
public int getTagSize(); public void setTagSize(int tagSize);
Default Value
16
Remarks
Use this property to specify/customize the tag size for AEAD encryption.
Config Method (SymmetricCrypto Class)
Sets or retrieves a configuration setting.
Syntax
public String config(String configurationString);
Remarks
Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Decrypt Method (SymmetricCrypto Class)
Decrypts a buffer.
Syntax
public byte[] decrypt(byte[] buffer);
Remarks
Use this method to decrypt a byte array and get the encrypted message in another byte array.
Specify the decryption key in Key property.
DecryptFile Method (SymmetricCrypto Class)
Decrypts a file.
Syntax
public void decryptFile(String sourceFile, String destFile);
Remarks
Use this method to decrypt an encrypted file and save the decrypted data to another file.
Specify the decryption key in Key property before calling this method.
DecryptFinal Method (SymmetricCrypto Class)
Finalization of decryption by blocks.
Syntax
public byte[] decryptFinal();
Remarks
Use this method to finalize of decryption by blocks.
Specify decryption key in Key property.
DecryptInit Method (SymmetricCrypto Class)
Initializes a per-block decryption process.
Syntax
public void decryptInit();
Remarks
Use this method to start a block-by-block decryption process.
Specify the decryption key in Key property before starting the decryption.
DecryptStream Method (SymmetricCrypto Class)
Decrypts a stream.
Syntax
public void decryptStream(java.io.InputStream sourceStream, java.io.OutputStream destStream);
Remarks
Use this method to decrypt a stream and save the decrypted message to another stream.
Specify the decryption key in Key property before commencing the decryption.
DecryptUpdate Method (SymmetricCrypto Class)
Decrypts the next block of encrypted data.
Syntax
public byte[] decryptUpdate(byte[] buffer);
Remarks
When using block-by-block decryption, pass every subsequent block of the encrypted message to this method until the entire message is processed. For each encrypted block the method returns a piece of decrypted data.
Please note that in general case there is no direct correspondence between the data actually contained in the encrypted block with the output of this method. The component may choose to cache a piece of the provided buffer internally if it doesn't constitute a full block of encrypted data.
Remember to call DecryptInit before calling this method to prepare the control for the decryption process.
DoAction Method (SymmetricCrypto Class)
Performs an additional action.
Syntax
public String doAction(String actionID, String actionParams);
Remarks
DoAction is a generic method available in every class. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.
The unique identifier (case insensitive) of the action is provided in the ActionID parameter.
ActionParams contains the value of a single parameter, or a list of multiple parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....
Encrypt Method (SymmetricCrypto Class)
Encrypts a buffer.
Syntax
public byte[] encrypt(byte[] buffer);
Remarks
Use this method to encrypt a byte array and get the protected message in another byte array.
Specify the encryption key in Key property before calling this method.
This is a one-off encryption method. Don't use it with granular per-block methods (EncryptInit, EncryptUpdate, EncryptFinal).
EncryptFile Method (SymmetricCrypto Class)
Encrypts a file.
Syntax
public void encryptFile(String sourceFile, String destFile);
Remarks
Use this method to encrypt a file and save the protected message in another file.
Specify the encryption key in Key property before commencing encryption.
EncryptFinal Method (SymmetricCrypto Class)
Finalization of encryption by blocks.
Syntax
public byte[] encryptFinal();
Remarks
Use this method to finalize of encryption by blocks.
Specify encryption key in Key property.
EncryptInit Method (SymmetricCrypto Class)
Initializes a per-block encryption process.
Syntax
public void encryptInit();
Remarks
Use this method to initialize a block-by-block encryption process. Follow it with calls to EncryptUpdate (as many as needed), and complete the encryption with an EncryptFinal call.
Specify the encryption key in Key property before calling this method.
EncryptStream Method (SymmetricCrypto Class)
Encrypts a stream.
Syntax
public void encryptStream(java.io.InputStream sourceStream, java.io.OutputStream destStream);
Remarks
Use this method to encrypt a stream and save the protected message into another stream.
Specify the encryption key in the Key property before calling this method.
This is a one-off encryption method. Don't use it together with granular per-block encryption methods such as EncryptInit, EncryptUpdate, and EncryptFinal.
EncryptUpdate Method (SymmetricCrypto Class)
Encrypts the next block of data.
Syntax
public byte[] encryptUpdate(byte[] buffer);
Remarks
Use this method to encrypt the next block of data contained in Buffer.
Call this method after calling EncryptInit for as many times as needed, until the whole volume of data is processed. Having done that, call EncryptFinal to complete the encryption and get the terminating encrypted trailer.
Reset Method (SymmetricCrypto Class)
Resets the class settings.
Syntax
public void reset();
Remarks
Reset is a generic method available in every class.
Error Event (SymmetricCrypto Class)
Reports errors during encryption or decryption.
Syntax
public class DefaultSymmetricCryptoEventListener implements SymmetricCryptoEventListener { ... public void error(SymmetricCryptoErrorEvent e) {} ... } public class SymmetricCryptoErrorEvent { public int errorCode; public String description; }
Remarks
class fires this event in case of exceptional conditions during a cryptographic operation.
ErrorCode contains an error code and Description contains a textual description of the error.
Notification Event (SymmetricCrypto Class)
This event notifies the application about an underlying control flow event.
Syntax
public class DefaultSymmetricCryptoEventListener implements SymmetricCryptoEventListener { ... public void notification(SymmetricCryptoNotificationEvent e) {} ... } public class SymmetricCryptoNotificationEvent { public String eventID; public String eventParam; }
Remarks
The class fires this event to let the application know about some event, occurrence, or milestone in the class. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.
The unique identifier of the event is provided in the EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the class, the exact action it is performing, or the document being processed, one or both may be omitted.
Progress Event (SymmetricCrypto Class)
Reports the data encryption/decryption progress.
Syntax
public class DefaultSymmetricCryptoEventListener implements SymmetricCryptoEventListener { ... public void progress(SymmetricCryptoProgressEvent e) {} ... } public class SymmetricCryptoProgressEvent { public long total; public long current; public boolean cancel; //read-write }
Remarks
This event fires periodically during a file encrypt/decrypt operation to report its progress.
Use the Cancel parameter to terminate the encryption/decryption if needed.
CryptoKey Type
This container represents a cryptographic key.
Remarks
This type is a universal placeholder for cryptographic keys.
Fields
Algorithm
String
Default Value: ""
The algorithm of the cryptographic key. A cryptokey object may hold either symmetric, MAC, or public key. Public key algorithms: RSA, ECDSA, Elgamal, DH.
SB_SYMMETRIC_ALGORITHM_RC4 | RC4 | |
SB_SYMMETRIC_ALGORITHM_DES | DES | |
SB_SYMMETRIC_ALGORITHM_3DES | 3DES | |
SB_SYMMETRIC_ALGORITHM_RC2 | RC2 | |
SB_SYMMETRIC_ALGORITHM_AES128 | AES128 | |
SB_SYMMETRIC_ALGORITHM_AES192 | AES192 | |
SB_SYMMETRIC_ALGORITHM_AES256 | AES256 | |
SB_SYMMETRIC_ALGORITHM_IDENTITY | Identity | |
SB_SYMMETRIC_ALGORITHM_BLOWFISH | Blowfish | |
SB_SYMMETRIC_ALGORITHM_CAST128 | CAST128 | |
SB_SYMMETRIC_ALGORITHM_IDEA | IDEA | |
SB_SYMMETRIC_ALGORITHM_TWOFISH | Twofish | |
SB_SYMMETRIC_ALGORITHM_TWOFISH128 | Twofish128 | |
SB_SYMMETRIC_ALGORITHM_TWOFISH192 | Twofish192 | |
SB_SYMMETRIC_ALGORITHM_TWOFISH256 | Twofish256 | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA | Camellia | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA128 | Camellia128 | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA192 | Camellia192 | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA256 | Camellia256 | |
SB_SYMMETRIC_ALGORITHM_SERPENT | Serpent | |
SB_SYMMETRIC_ALGORITHM_SERPENT128 | Serpent128 | |
SB_SYMMETRIC_ALGORITHM_SERPENT192 | Serpent192 | |
SB_SYMMETRIC_ALGORITHM_SERPENT256 | Serpent256 | |
SB_SYMMETRIC_ALGORITHM_SEED | SEED | |
SB_SYMMETRIC_ALGORITHM_RABBIT | Rabbit | |
SB_SYMMETRIC_ALGORITHM_SYMMETRIC | Generic | |
SB_SYMMETRIC_ALGORITHM_GOST_28147_1989 | GOST-28147-1989 | |
SB_SYMMETRIC_ALGORITHM_CHACHA20 | ChaCha20 |
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
Bits
int (read-only)
Default Value: 0
The length of the key in bits.
Curve
String
Default Value: ""
This property specifies the name of the curve the EC key is built on.
Exportable
boolean (read-only)
Default Value: False
Returns True if the key is exportable (can be serialized into an array of bytes), and False otherwise.
Fingerprint
String (read-only)
Default Value: ""
Contains the fingerprint (a hash imprint) of this key.
ID
byte[]
Default Value: ""
Provides access to a storage-specific key identifier. Key identifiers are used by cryptographic providers to refer to a particular key and/or distinguish between different keys. They are typically unique within a storage, but there is no guarantee that a particular cryptoprovider will conform to that (or will assign any key IDs at all).
IV
byte[]
Default Value: ""
The initialization vector (IV) of a symmetric key. This is normally a public part of a symmetric key, the idea of which is to introduce randomness to the encrypted data and/or serve as a first block in chaining ciphers.
Key
byte[] (read-only)
Default Value: ""
The byte array representation of the key. This may not be available for non-Exportable keys.
Nonce
byte[]
Default Value: ""
A nonce value associated with a key. It is similar to IV, but its only purpose is to introduce randomness.
Private
boolean (read-only)
Default Value: False
Returns True if the object hosts a private key, and False otherwise.
Public
boolean (read-only)
Default Value: False
Returns True if the object hosts a public key, and False otherwise.
Subject
byte[]
Default Value: ""
Returns the key subject. This is a cryptoprovider-dependent value, which normally aims to provide some user-friendly insight into the key owner.
Symmetric
boolean (read-only)
Default Value: False
Returns True if the object contains a symmetric key, and False otherwise.
Valid
boolean (read-only)
Default Value: False
Returns True if this key is valid. The term Valid highly depends on the kind of the key being stored. A symmetric key is considered valid if its length fits the algorithm being set. The validity of an RSA key also ensures that the RSA key elements (primes, exponents, and modulus) are consistent.
Constructors
public CryptoKey();
Creates an empty crypto key object.
Config Settings (SymmetricCrypto Class)
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.SymmetricCrypto Config Settings
- dir ("direct")
- RSA1_5
- RSA-OAEP
- RSA-OAEP-256
- A128KW
- A192KW
- A256KW
- ECDH-ES
- ECDH-ES+A128KW
- ECDH-ES+A192KW
- ECDH-ES+A256KW
- A128GCMKW
- A192GCMKW
- A256GCMKW
- PBES2-HS256+A128KW
- PBES2-HS384+A192KW
- PBES2-HS512+A256KW
Base Config Settings
You can switch this property off to improve performance if your project only uses known, good private keys.
Supported values are:
off | No caching (default) | |
local | Local caching | |
global | Global caching |
This setting only applies to sessions negotiated with TLS version 1.3.
Supported values are:
file | File | |
console | Console | |
systemlog | System Log (supported for Android only) | |
debugger | Debugger (supported for VCL for Windows and .Net) |
Supported values are:
time | Current time | |
level | Level | |
package | Package name | |
module | Module name | |
class | Class name | |
method | Method name | |
threadid | Thread Id | |
contenttype | Content type | |
content | Content | |
all | All details |
Supported filter names are:
exclude-package | Exclude a package specified in the value | |
exclude-module | Exclude a module specified in the value | |
exclude-class | Exclude a class specified in the value | |
exclude-method | Exclude a method specified in the value | |
include-package | Include a package specified in the value | |
include-module | Include a module specified in the value | |
include-class | Include a class specified in the value | |
include-method | Include a method specified in the value |
none | No flush (caching only) | |
immediate | Immediate flush (real-time logging) | |
maxcount | Flush cached entries upon reaching LogMaxEventCount entries in the cache. |
Supported values are:
none | None (by default) | |
fatal | Severe errors that cause premature termination. | |
error | Other runtime errors or unexpected conditions. | |
warning | Use of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong". | |
info | Interesting runtime events (startup/shutdown). | |
debug | Detailed information on flow of through the system. | |
trace | More detailed information. |
The default value of this setting is 100.
none | No rotation | |
deleteolder | Delete older entries from the cache upon reaching LogMaxEventCount | |
keepolder | Keep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded) |
Supported values are:
none | No static DNS rules (default) | |
local | Local static DNS rules | |
global | Global static DNS rules |
This setting only applies to certificates originating from a Windows system store.
Trappable Errors (SymmetricCrypto Class)
SymmetricCrypto Errors
1048577 | Invalid parameter (SB_ERROR_INVALID_PARAMETER) |
1048578 | Invalid configuration (SB_ERROR_INVALID_SETUP) |
1048579 | Invalid state (SB_ERROR_INVALID_STATE) |
1048580 | Invalid value (SB_ERROR_INVALID_VALUE) |
1048581 | Private key not found (SB_ERROR_NO_PRIVATE_KEY) |
1048582 | Cancelled by the user (SB_ERROR_CANCELLED_BY_USER) |
1048583 | The file was not found (SB_ERROR_NO_SUCH_FILE) |
1048584 | Unsupported feature or operation (SB_ERROR_UNSUPPORTED_FEATURE) |
1048585 | General error (SB_ERROR_GENERAL_ERROR) |