KMIPClient Module

Properties   Methods   Events   Config Settings   Errors  

The KMIPClient module provides client-side functionality for KMIP protocol.

Syntax

SecureBlackbox.KMIPClient

Remarks

The KMIPClient component implements the client-side counterpart of the KMIP environment. KMIP, or the Key Management Interoperability Protocol, is an OASIS standard of communication between applications that need to use or manage cryptographic keys over the network. A typical example of a KMIP client is an application that needs to access a remotely stored cryptographic key (shared by a KMIP server) - for example, to solicit a digital signature or decrypt an encrypted document.

Capabilities

KMIPClient supports the majority of the features defined by the KMIP specification, both on the key management and cryptographic operations fronts. While the KMIP version implemented in KMIPClient is 1.3, the KMIP approach to version sequencing allows KMIPClient to communicate equally efficiently with implementations supporting earlier and newer protocol versions. All the three encoding types (TTLV, JSON, and XML) are supported, which can be used over TCP, TLS, or HTTP(S) transports.

Working with KMIPClient

Setting up the component

KMIP servers can come in a variety of configurations, many of which cannot be detected or applied automatically. That's why the first stage is about configuring the component in such way that it knows how to talk to a specific server that you need to work with. Below are the key settings that you need to tune up. You can get most or all of this information from the administrator of the KMIP server:

Network access parameters

This is the network address and port that the KMIP server is listening on - for example, 10.0.1.110:5696 or kmip.server.com:25696.

The transport type

This could be one of TCP (unencrypted low-level connection), TLS (encrypted low-level connection), HTTP (unencrypted HTTP), HTTPS (encrypted HTTP). Transport type is not negotiable: the client must use exactly the same transport as the server expects. You specify the transport by applying the appropriate transport-specific prefix to the server address that you are passing to BaseURL:

  • kmip:// for plain TCP (e.g. kmip://10.0.1.110:5696)
  • kmips:// for TLS (e.g. kmips://kmip.server.com:25696)
  • http:// for HTTP (e.g. http://kmip.server.com:80)
  • https:// for HTTPS (e.g. https://10.0.1.110:5697)

KMIP servers accessible over HTTP(S) may reside either at a root (/) or a deeper-level web server endpoint (for example, /services/kmip). Append this path to the network parameters as you would normally do when working with HTTP endpoints. Having done that, combine the transport prefix, the network parameters, and the HTTP path (if used) together to obtain the value to assign to BaseURL:

client.BaseURL = "https://kmip.server.com:25696/services/kmip"; // TLS-secured HTTP connection to kmip.server.com running on port 25696

The encoding type

KMIP offers three encoding types: TTLV ("tag, type, length, value"), JSON, and XML. Depending on configuration and scenarios used installation may prefer one over the others. Plain TCP and TLS KMIP setups normally use TTLV encoding. The client and server must use the same encoding to understand each other.

TLS configuration

TLS-protected connections require additional setup of the TLS parameters. Those are not part of KMIP, but, rather, are intended to supply expected security configuration. The principal security setting here concerns the way the server's TLS certificate is validated. You will find more details about configuring TLS on the client side in the Validating TLS Certificates article.

Once the connection and protocol parameters are configured, you can go ahead and start making requests to the KMIP server. A KMIP server can serve requests which generally fall into one of the two categories:

  • Key management requests - such as importing a certificate, generating a keypair, or obtaining a list of keys stored on the server.
  • Cryptographic operation requests - such as signing or encrypting data.
Depending on your specific setup, the server may support a subset of operations from one or both categories.

Managing keys and certificates

The common key management operations are:

Importing a keypair or certificate to the server

Use AddKey to import an asymmetric keypair or its part, or a secret symmetric key, to the KMIP server. Use Add to import a certificate. Both methods return a unique object identifier that you can use to identify the object on the server.

Listing server objects

Use List to request a criteria-based list of objects from the server. The objects returned by the server will be published in the Objects collection.

Reading object properties

KMIPClient offers a few methods to read object properties. You can choose the method that fits your scenario best. Use Read and ReadKey methods to read certificates and keys directly into the Certificate and Key properties. You can then pass the received objects to other components that support them (such as CertificateManager). Use ReadObject to read the object into the Objects list. Use ReadAttribute to read a specific attribute of an object.

Generating server-side objects

KMIP supports server-side object generation, which allows for secure cryptographic material setup. Among objects you can generate are certificates (Generate) and generic keys (GenerateKey).

Making cryptographic calls

The common cryptographic calls are:

Signing data

Use the Sign method to sign the data using a server-side private key.

Encrypting and decrypting data

Use the Encrypt and Decrypt methods to encrypt or decrypt data using a server-side key. This method can be used with both symmetric and asymmetric keys.

Providing data for the operations

You can provide input for the cryptographic operations in one of the following forms:

  • as a byte array - use InputBytes property.
  • as a stream - use InputStream.
  • in a file - use InputFile.
The processed (e.g. signed) data can be retrieved from an equivalent set of output properties (OutputBytes, OutputStream, OutputFile). You can mix and match input and output data sources as you need: for example, you can provide the input in a file, but read the output as a byte array from OutputBytes.

Note that the OutputBytes is only populated if neither of OutputFile and OutputStream is set.

Referencing server objects

Every object residing on a KMIP server is referenced by its unique object identifier. Your code is expected to pass the identifier of the object that you want to use or read to the relevant method, such as Sign or ReadObject. If you do not know the identifier of the object that you need to use, use the List method to solicit the list of the server-side objects first. Locate the required object in the list and pass its unique identifier to the needed method.

Property List


The following is the full list of the properties of the module with short descriptions. Click on the links for further details.

AuthTypesDefines allowed HTTP authentication types.
AuxResultContains the auxiliary result of the last performed operation.
BaseURLSpecifies the url of the KMIP server.
BlockedCertificatesThe certificates that must be rejected as trust anchors.
CertificateThe certificate or request object to perform operations on.
ConnectionInfoReturns the details of the underlying network connection.
DataBytesUse this property to pass the secondary input to the module in the byte array form.
DataFileUse this property to pass the secondary input to the module from a file.
EncodingSpecifies the KMIP encoding type.
ExternalCryptoProvides access to external signing and DC parameters.
FIPSModeReserved.
InputBytesUse this property to pass the input to module in byte array form.
InputFileA path to the file containing the data to be passed as input to a cryptographic operation.
KeyThe key to perform the operations on.
KnownCertificatesAdditional certificates for chain validation.
KnownCRLsAdditional CRLs for chain validation.
KnownOCSPsAdditional OCSP responses for chain validation.
ObjectsA list of objects returned by List .
OutputBytesUse this property to read the output the module object has produced.
OutputFileSpecifies the file where the signed, encrypted, or decrypted data should be saved.
PasswordSpecifies a password to authenticate to the KMIP server.
ProxyThe proxy server settings.
SignatureValidationResultThe signature validation result.
SocketSettingsManages network connection settings.
TLSClientChainThe TLS client certificate chain.
TLSServerChainThe TLS server's certificate chain.
TLSSettingsManages TLS layer settings.
TrustedCertificatesA list of trusted certificates for chain validation.
UsernameThe username to authenticate to the KMIP server.

Method List


The following is the full list of the methods of the module with short descriptions. Click on the links for further details.

ActivateActivates the specified server object.
AddImports a certificate to the KMIP server.
AddKeyImports a key or keypair to the KMIP server.
ConfigSets or retrieves a configuration setting.
CustomRequestPerforms a custom request to the server.
DeactivateDeactivates the specified server object.
DecryptDecrypts the provided data using a key stored on the KMIP server.
DoActionPerforms an additional action.
EncryptEncrypts the provided data using a key stored on the KMIP server.
GenerateGenerates a new certificate on the KMIP server.
GenerateKeyGenerates a symmetric key or an asymmetric key pair on the KMIP server.
ListRetrieves the list of objects of selected types from the server.
ReadDownloads a certificate from the KMIP server.
ReadAttributeRequests an attribute from an object.
ReadKeyDownloads a key object from the KMIP server.
ReadObjectRequests object information from the KMIP server.
RemoveRemoves the specified object from the server.
ResetResets the module settings.
SetAttributeSets an attribute of an existing server-side object.
SetRequestBytesReplaces the data that has been prepared for sending out.
SetResponseBytesAlters the data received from the server in a response.
SignSigns the data using a key on the KMIP server.
VerifyVerifies digitally signed data.

Event List


The following is the full list of the events fired by the module with short descriptions. Click on the links for further details.

ErrorProvides information about errors during KMIP operations.
ExternalSignHandles remote or external signing initiated by the SignExternal method or other source.
NotificationThis event notifies the application about an underlying control flow event.
RequestKMIPClient fires this event to notify the user about the request being sent to the KMIP server.
ResponseKMIPClient uses this event to notify the user about the response being received.
TLSCertNeededFires when a remote TLS party requests a client certificate.
TLSCertValidateThis event is fired upon receipt of the TLS server's certificate, allowing the user to control its acceptance.
TLSEstablishedFires when a TLS handshake with Host successfully completes.
TLSHandshakeFires when a new TLS handshake is initiated, before the handshake commences.
TLSPSKNotifies the application about the PSK key exchange.
TLSShutdownReports the graceful closure of a TLS connection.

Config Settings


The following is a list of config settings for the module with short descriptions. Click on the links for further details.

BlockSizeBlock size of data for encrypting, decrypting or signing.
IgnoreSystemTrustWhether trusted Windows Certificate Stores should be treated as trusted.
MajorProtocolVersionMajor protocol version of the KMIP server.
MinorProtocolVersionMinor protocol version of the KMIP server.
StaticDNSSpecifies whether static DNS rules should be used.
StaticIPAddress[domain]Gets or sets an IP address for the specified domain name.
StaticIPAddressesGets or sets all the static DNS rules.
TempPathPath for storing temporary files.
TLSExtensionsTBD.
TLSPeerExtensionsTBD.
TLSSessionGroupSpecifies the group name of TLS sessions to be used for session resumption.
TLSSessionLifetimeSpecifies lifetime in seconds of the cached TLS session.
TLSSessionPurgeIntervalSpecifies how often the session cache should remove the expired TLS sessions.
TolerateMinorChainIssuesWhether to tolerate minor chain issues.
UseMicrosoftCTLEnables or disables the automatic use of the Microsoft online certificate trust list.
UseSystemCertificatesEnables or disables the use of the system certificates.
ASN1UseGlobalTagCacheControls whether ASN.1 module should use a global object cache.
AssignSystemSmartCardPinsSpecifies whether CSP-level PINs should be assigned to CNG keys.
CheckKeyIntegrityBeforeUseEnables or disable private key integrity check before use.
CookieCachingSpecifies whether a cookie cache should be used for HTTP(S) transports.
CookiesGets or sets local cookies for the module.
DefDeriveKeyIterationsSpecifies the default key derivation algorithm iteration count.
DNSLocalSuffixThe suffix to assign for TLD names.
EnableClientSideSSLFFDHEEnables or disables finite field DHE key exchange support in TLS clients.
GlobalCookiesGets or sets global cookies for all the HTTP transports.
HardwareCryptoUsePolicyThe hardware crypto usage policy.
HttpUserAgentSpecifies the user agent name to be used by all HTTP clients.
HttpVersionThe HTTP version to use in any inner HTTP client modules created.
IgnoreExpiredMSCTLSigningCertWhether to tolerate the expired Windows Update signing certificate.
ListDelimiterThe delimiter character for multi-element lists.
LogDestinationSpecifies the debug log destination.
LogDetailsSpecifies the debug log details to dump.
LogFileSpecifies the debug log filename.
LogFiltersSpecifies the debug log filters.
LogFlushModeSpecifies the log flush mode.
LogLevelSpecifies the debug log level.
LogMaxEventCountSpecifies the maximum number of events to cache before further action is taken.
LogRotationModeSpecifies the log rotation mode.
MaxASN1BufferLengthSpecifies the maximal allowed length for ASN.1 primitive tag data.
MaxASN1TreeDepthSpecifies the maximal depth for processed ASN.1 trees.
OCSPHashAlgorithmSpecifies the hash algorithm to be used to identify certificates in OCSP requests.
OldClientSideRSAFallbackSpecifies whether the SSH client should use a SHA1 fallback.
ProductVersionReturns the version of the SecureBlackbox library.
ServerSSLDHKeyLengthSets the size of the TLS DHE key exchange group.
StaticDNSSpecifies whether static DNS rules should be used.
StaticIPAddress[domain]Gets or sets an IP address for the specified domain name.
StaticIPAddressesGets or sets all the static DNS rules.
TagAllows to store any custom data.
TLSSessionGroupSpecifies the group name of TLS sessions to be used for session resumption.
TLSSessionLifetimeSpecifies lifetime in seconds of the cached TLS session.
TLSSessionPurgeIntervalSpecifies how often the session cache should remove the expired TLS sessions.
UseInternalRandomSwitches between SecureBlackbox-own and platform PRNGs.
UseLegacyAdESValidationEnables legacy AdES validation mode.
UseOwnDNSResolverSpecifies whether the client modules should use own DNS resolver.
UseSharedSystemStoragesSpecifies whether the validation engine should use a global per-process copy of the system certificate stores.
UseSystemNativeSizeCalculationAn internal CryptoAPI access tweak.
UseSystemOAEPAndPSSEnforces or disables the use of system-driven RSA OAEP and PSS computations.
UseSystemRandomEnables or disables the use of the OS PRNG.

AuthTypes Property (KMIPClient Module)

Defines allowed HTTP authentication types.

Syntax

public var authTypes: Int32 {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=authTypes,setter=setAuthTypes:) int authTypes;

- (int)authTypes;
- (void)setAuthTypes :(int)newAuthTypes;

Default Value

0

Remarks

Use this property to define which authentication types the component should support or attempt to use by enabling the relevant bitmask flags:

haBasic0x01Basic authentication

haDigest0x02Digest authentication (RFC 2617)

haNTLM0x04Windows NTLM authentication

haKerberos0x08Kerberos (Negotiate) authentication

haOAuth20x10OAuth2 authentication

AuxResult Property (KMIPClient Module)

Contains the auxiliary result of the last performed operation.

Syntax

public var auxResult: String {
  get {...}
}

@property (nonatomic,readonly,assign,getter=auxResult) NSString* auxResult;

- (NSString*)auxResult;

Default Value

""

Remarks

Use this property to obtain an auxiliary result of the last performed operation. One of such results is the new Counter/Nonce value after an encryption operation.

This property is read-only.

BaseURL Property (KMIPClient Module)

Specifies the url of the KMIP server.

Syntax

public var baseURL: String {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=baseURL,setter=setBaseURL:) NSString* baseURL;

- (NSString*)baseURL;
- (void)setBaseURL :(NSString*)newBaseURL;

Default Value

""

Remarks

Use this property to specify the address of the KMIP server.

The address to assign to this property needs to be in the standard URI-like notation:

protocol://username:password@address:port/path

The protocol token must be based on the transport that you want to use (which is largely defined by the server setup) and can be one of the following:

  • kmip:// - KMIP over TCP (unencrypted)
  • kmips:// - KMIP over TLS (encrypted)
  • http:// - KMIP over HTTP (unencrypted)
  • https:// - KMIP over HTTPS (encrypted)

The address and port are network credentials that the server can be accessed at, such as 192.168.5.101:5696 for a server residing in a local network, or kmip.server.com:25696 for a server residing on the Internet. The path part can be used for KMIP servers accessible via HTTP(S) endpoints.

Examples

  • kmip://10.25.0.61:5696
  • kmips://10.0.1.10:11111
  • kmips://kmip.server.com:11111
  • http://user:password123@www.server.com:3128/services/kmip
  • https://kmip.server.com:19991

Note that you need to take extra steps to prepare the component for secure connections when using TLS-enabled endpoints. One factor to be considered is the need to validate the server's TLS certificates. This article provides insights into the validation routine: Validating TLS Certificates.

The credentials used within the HTTP and HTTPS values are used for HTTP basic or digest authentication only. If your KMIP server expects you to use KMIP-level authentication, use Username and Password properties to provide your credentials.

BlockedCertificates Property (KMIPClient Module)

The certificates that must be rejected as trust anchors.

Syntax

public var blockedCertificates: Array<Certificate> {
  get {...}
}

@property (nonatomic,readwrite,assign,getter=blockedCertCount,setter=setBlockedCertCount:) int blockedCertCount;

- (int)blockedCertCount;
- (void)setBlockedCertCount :(int)newBlockedCertCount;

- (NSData*)blockedCertBytes:(int)blockedCertIndex;

- (long long)blockedCertHandle:(int)blockedCertIndex;
- (void)setBlockedCertHandle:(int)blockedCertIndex :(long long)newBlockedCertHandle;

Default Value

""

Remarks

Use this property to provide a list of compromised or blocked certificates. Any chain containing a blocked certificate will fail validation.

Certificate Property (KMIPClient Module)

The certificate or request object to perform operations on.

Syntax

public var certificate: Certificate {
  get {...}
  set {...}
}

@property (nonatomic,readonly,assign,getter=certificateBytes) NSData* certificateBytes;

- (NSData*)certificateBytes;

@property (nonatomic,readwrite,assign,getter=certificateHandle,setter=setCertificateHandle:) long long certificateHandle;

- (long long)certificateHandle;
- (void)setCertificateHandle :(long long)newCertificateHandle;

 

Default Value

""

Remarks

Use this property to provide the certificate or CSR object on which a subsequent operation (such as Add or Generate) should be performed.

ConnectionInfo Property (KMIPClient Module)

Returns the details of the underlying network connection.

Syntax

public var connectionInfo: TLSConnectionInfo {
  get {...}
}

@property (nonatomic,readonly,assign,getter=connInfoAEADCipher) BOOL connInfoAEADCipher;

- (BOOL)connInfoAEADCipher;

@property (nonatomic,readonly,assign,getter=connInfoChainValidationDetails) int connInfoChainValidationDetails;

- (int)connInfoChainValidationDetails;

@property (nonatomic,readonly,assign,getter=connInfoChainValidationResult) int connInfoChainValidationResult;

- (int)connInfoChainValidationResult;

@property (nonatomic,readonly,assign,getter=connInfoCiphersuite) NSString* connInfoCiphersuite;

- (NSString*)connInfoCiphersuite;

@property (nonatomic,readonly,assign,getter=connInfoClientAuthenticated) BOOL connInfoClientAuthenticated;

- (BOOL)connInfoClientAuthenticated;

@property (nonatomic,readonly,assign,getter=connInfoClientAuthRequested) BOOL connInfoClientAuthRequested;

- (BOOL)connInfoClientAuthRequested;

@property (nonatomic,readonly,assign,getter=connInfoConnectionEstablished) BOOL connInfoConnectionEstablished;

- (BOOL)connInfoConnectionEstablished;

@property (nonatomic,readonly,assign,getter=connInfoConnectionID) NSData* connInfoConnectionID;

- (NSData*)connInfoConnectionID;

@property (nonatomic,readonly,assign,getter=connInfoDigestAlgorithm) NSString* connInfoDigestAlgorithm;

- (NSString*)connInfoDigestAlgorithm;

@property (nonatomic,readonly,assign,getter=connInfoEncryptionAlgorithm) NSString* connInfoEncryptionAlgorithm;

- (NSString*)connInfoEncryptionAlgorithm;

@property (nonatomic,readonly,assign,getter=connInfoExportable) BOOL connInfoExportable;

- (BOOL)connInfoExportable;

@property (nonatomic,readonly,assign,getter=connInfoID) long long connInfoID;

- (long long)connInfoID;

@property (nonatomic,readonly,assign,getter=connInfoKeyExchangeAlgorithm) NSString* connInfoKeyExchangeAlgorithm;

- (NSString*)connInfoKeyExchangeAlgorithm;

@property (nonatomic,readonly,assign,getter=connInfoKeyExchangeKeyBits) int connInfoKeyExchangeKeyBits;

- (int)connInfoKeyExchangeKeyBits;

@property (nonatomic,readonly,assign,getter=connInfoNamedECCurve) NSString* connInfoNamedECCurve;

- (NSString*)connInfoNamedECCurve;

@property (nonatomic,readonly,assign,getter=connInfoPFSCipher) BOOL connInfoPFSCipher;

- (BOOL)connInfoPFSCipher;

@property (nonatomic,readonly,assign,getter=connInfoPreSharedIdentity) NSString* connInfoPreSharedIdentity;

- (NSString*)connInfoPreSharedIdentity;

@property (nonatomic,readonly,assign,getter=connInfoPreSharedIdentityHint) NSString* connInfoPreSharedIdentityHint;

- (NSString*)connInfoPreSharedIdentityHint;

@property (nonatomic,readonly,assign,getter=connInfoPublicKeyBits) int connInfoPublicKeyBits;

- (int)connInfoPublicKeyBits;

@property (nonatomic,readonly,assign,getter=connInfoRemoteAddress) NSString* connInfoRemoteAddress;

- (NSString*)connInfoRemoteAddress;

@property (nonatomic,readonly,assign,getter=connInfoRemotePort) int connInfoRemotePort;

- (int)connInfoRemotePort;

@property (nonatomic,readonly,assign,getter=connInfoResumedSession) BOOL connInfoResumedSession;

- (BOOL)connInfoResumedSession;

@property (nonatomic,readonly,assign,getter=connInfoSecureConnection) BOOL connInfoSecureConnection;

- (BOOL)connInfoSecureConnection;

@property (nonatomic,readonly,assign,getter=connInfoServerAuthenticated) BOOL connInfoServerAuthenticated;

- (BOOL)connInfoServerAuthenticated;

@property (nonatomic,readonly,assign,getter=connInfoSignatureAlgorithm) NSString* connInfoSignatureAlgorithm;

- (NSString*)connInfoSignatureAlgorithm;

@property (nonatomic,readonly,assign,getter=connInfoSymmetricBlockSize) int connInfoSymmetricBlockSize;

- (int)connInfoSymmetricBlockSize;

@property (nonatomic,readonly,assign,getter=connInfoSymmetricKeyBits) int connInfoSymmetricKeyBits;

- (int)connInfoSymmetricKeyBits;

@property (nonatomic,readonly,assign,getter=connInfoTotalBytesReceived) long long connInfoTotalBytesReceived;

- (long long)connInfoTotalBytesReceived;

@property (nonatomic,readonly,assign,getter=connInfoTotalBytesSent) long long connInfoTotalBytesSent;

- (long long)connInfoTotalBytesSent;

@property (nonatomic,readonly,assign,getter=connInfoValidationLog) NSString* connInfoValidationLog;

- (NSString*)connInfoValidationLog;

@property (nonatomic,readonly,assign,getter=connInfoVersion) NSString* connInfoVersion;

- (NSString*)connInfoVersion;

 

Default Value

""

Remarks

Use this property to learn about the connection setup, such as the protocol security details and amounts of data transferred each way.

DataBytes Property (KMIPClient Module)

Use this property to pass the secondary input to the module in the byte array form.

Syntax

public var dataBytes: Data {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=dataBytes,setter=setDataBytes:) NSData* dataBytes;

- (NSData*)dataBytes;
- (void)setDataBytes :(NSData*)newDataBytes;

Remarks

Some cryptographic operations require more than one inputs. One example is the Verify operation, which expects you to provide the signature and the data being authenticated as separate data pieces. This property lets you provide that secondary data piece (the data being authenticated). The primary data piece (the signature in this case) should be provided via one of the Input* properties, such as InputBytes.

This property is one of three ways in which you can provide the data to the component. The other two are DataFile and DataStream. Choose the data source type that fits your circumstances best.

DataFile Property (KMIPClient Module)

Use this property to pass the secondary input to the module from a file.

Syntax

public var dataFile: String {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=dataFile,setter=setDataFile:) NSString* dataFile;

- (NSString*)dataFile;
- (void)setDataFile :(NSString*)newDataFile;

Default Value

""

Remarks

Some cryptographic operations require more than one inputs. One example is the Verify operation, which expects you to provide the signature and the data being authenticated as separate data pieces. This property lets you provide that secondary data piece (the data being authenticated). The primary data piece (the signature in this case) should be provided via one of the Input* properties, such as InputFile.

This property is one of three ways in which you can provide the data to the component. The other two are DataBytes and DataStream. Choose the data source type that fits your circumstances best.

Encoding Property (KMIPClient Module)

Specifies the KMIP encoding type.

Syntax

public var encoding: KMIPClientEncodings {
  get {...}
  set {...}
}

public enum KMIPClientEncodings: Int32 { case etTTLV = 0 case etXML = 1 case etJSON = 2 }

@property (nonatomic,readwrite,assign,getter=encoding,setter=setEncoding:) int encoding;

- (int)encoding;
- (void)setEncoding :(int)newEncoding;

Default Value

0

Remarks

Use this property to specify the KMIP message encoding to be used in the communications with the server.

The following encodings are available:

etTTLV0
etXML1
etJSON2

You need to know the right encoding for your KMIP server before accessing it. This is something you can get from the administrator of the server. KMIP servers accessible via plain TCP or TLS transports typically use the TTLV encoding.

ExternalCrypto Property (KMIPClient Module)

Provides access to external signing and DC parameters.

Syntax

public var externalCrypto: ExternalCrypto {
  get {...}
}

@property (nonatomic,readwrite,assign,getter=externalCryptoAsyncDocumentID,setter=setExternalCryptoAsyncDocumentID:) NSString* externalCryptoAsyncDocumentID;

- (NSString*)externalCryptoAsyncDocumentID;
- (void)setExternalCryptoAsyncDocumentID :(NSString*)newExternalCryptoAsyncDocumentID;

@property (nonatomic,readwrite,assign,getter=externalCryptoCustomParams,setter=setExternalCryptoCustomParams:) NSString* externalCryptoCustomParams;

- (NSString*)externalCryptoCustomParams;
- (void)setExternalCryptoCustomParams :(NSString*)newExternalCryptoCustomParams;

@property (nonatomic,readwrite,assign,getter=externalCryptoData,setter=setExternalCryptoData:) NSString* externalCryptoData;

- (NSString*)externalCryptoData;
- (void)setExternalCryptoData :(NSString*)newExternalCryptoData;

@property (nonatomic,readwrite,assign,getter=externalCryptoExternalHashCalculation,setter=setExternalCryptoExternalHashCalculation:) BOOL externalCryptoExternalHashCalculation;

- (BOOL)externalCryptoExternalHashCalculation;
- (void)setExternalCryptoExternalHashCalculation :(BOOL)newExternalCryptoExternalHashCalculation;

@property (nonatomic,readwrite,assign,getter=externalCryptoHashAlgorithm,setter=setExternalCryptoHashAlgorithm:) NSString* externalCryptoHashAlgorithm;

- (NSString*)externalCryptoHashAlgorithm;
- (void)setExternalCryptoHashAlgorithm :(NSString*)newExternalCryptoHashAlgorithm;

@property (nonatomic,readwrite,assign,getter=externalCryptoKeyID,setter=setExternalCryptoKeyID:) NSString* externalCryptoKeyID;

- (NSString*)externalCryptoKeyID;
- (void)setExternalCryptoKeyID :(NSString*)newExternalCryptoKeyID;

@property (nonatomic,readwrite,assign,getter=externalCryptoKeySecret,setter=setExternalCryptoKeySecret:) NSString* externalCryptoKeySecret;

- (NSString*)externalCryptoKeySecret;
- (void)setExternalCryptoKeySecret :(NSString*)newExternalCryptoKeySecret;

@property (nonatomic,readwrite,assign,getter=externalCryptoMethod,setter=setExternalCryptoMethod:) int externalCryptoMethod;

- (int)externalCryptoMethod;
- (void)setExternalCryptoMethod :(int)newExternalCryptoMethod;

@property (nonatomic,readwrite,assign,getter=externalCryptoMode,setter=setExternalCryptoMode:) int externalCryptoMode;

- (int)externalCryptoMode;
- (void)setExternalCryptoMode :(int)newExternalCryptoMode;

@property (nonatomic,readwrite,assign,getter=externalCryptoPublicKeyAlgorithm,setter=setExternalCryptoPublicKeyAlgorithm:) NSString* externalCryptoPublicKeyAlgorithm;

- (NSString*)externalCryptoPublicKeyAlgorithm;
- (void)setExternalCryptoPublicKeyAlgorithm :(NSString*)newExternalCryptoPublicKeyAlgorithm;

 

Default Value

""

Remarks

Use this property to tune-up remote cryptography settings. SecureBlackbox supports two independent types of external cryptography: synchronous (based on the ExternalSign event) and asynchronous (based on the DC protocol and the DCAuth signing component).

FIPSMode Property (KMIPClient Module)

Reserved.

Syntax

public var fipsMode: Bool {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=FIPSMode,setter=setFIPSMode:) BOOL FIPSMode;

- (BOOL)FIPSMode;
- (void)setFIPSMode :(BOOL)newFIPSMode;

Default Value

False

Remarks

This property is reserved for future use.

InputBytes Property (KMIPClient Module)

Use this property to pass the input to module in byte array form.

Syntax

public var inputBytes: Data {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=inputBytes,setter=setInputBytes:) NSData* inputBytes;

- (NSData*)inputBytes;
- (void)setInputBytes :(NSData*)newInputBytes;

Remarks

Assign a byte array containing the data to be processed to this property.

InputFile Property (KMIPClient Module)

A path to the file containing the data to be passed as input to a cryptographic operation.

Syntax

public var inputFile: String {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=inputFile,setter=setInputFile:) NSString* inputFile;

- (NSString*)inputFile;
- (void)setInputFile :(NSString*)newInputFile;

Default Value

""

Remarks

Provide the full path to the file containing data to be signed, verified, encrypted or decrypted.

This property is one of the three ways that you can provide the input data to KMIPClient, with InputBytes and InputStream being the other two.

Key Property (KMIPClient Module)

The key to perform the operations on.

Syntax

public var key: CryptoKey {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=keyAlgorithm,setter=setKeyAlgorithm:) NSString* keyAlgorithm;

- (NSString*)keyAlgorithm;
- (void)setKeyAlgorithm :(NSString*)newKeyAlgorithm;

@property (nonatomic,readonly,assign,getter=keyBits) int keyBits;

- (int)keyBits;

@property (nonatomic,readwrite,assign,getter=keyHandle,setter=setKeyHandle:) long long keyHandle;

- (long long)keyHandle;
- (void)setKeyHandle :(long long)newKeyHandle;

@property (nonatomic,readwrite,assign,getter=keySubject,setter=setKeySubject:) NSData* keySubject;

- (NSData*)keySubject;
- (void)setKeySubject :(NSData*)newKeySubject;

 

Default Value

""

Remarks

Use this property to provide the key object on which a subsequent operation - such as AddKey - should be performed.

KnownCertificates Property (KMIPClient Module)

Additional certificates for chain validation.

Syntax

public var knownCertificates: Array<Certificate> {
  get {...}
}

@property (nonatomic,readwrite,assign,getter=knownCertCount,setter=setKnownCertCount:) int knownCertCount;

- (int)knownCertCount;
- (void)setKnownCertCount :(int)newKnownCertCount;

- (NSData*)knownCertBytes:(int)knownCertIndex;

- (long long)knownCertHandle:(int)knownCertIndex;
- (void)setKnownCertHandle:(int)knownCertIndex :(long long)newKnownCertHandle;

Default Value

""

Remarks

Use this property to supply a list of additional certificates that might be needed for chain validation. An example of a scenario where you might want to do that is when intermediary CA certificates are absent from the standard system locations (or when there are no standard system locations), and therefore should be supplied to the class manually.

The purpose of the certificates to be added to this collection is roughly equivalent to that of the Intermediate Certification Authorities system store in Windows.

Do not add trust anchors or root certificates to this collection: add them to TrustedCertificates instead.

KnownCRLs Property (KMIPClient Module)

Additional CRLs for chain validation.

Syntax

public var knownCRLs: Array<CRL> {
  get {...}
}

@property (nonatomic,readwrite,assign,getter=knownCRLCount,setter=setKnownCRLCount:) int knownCRLCount;

- (int)knownCRLCount;
- (void)setKnownCRLCount :(int)newKnownCRLCount;

- (NSData*)knownCRLBytes:(int)knownCRLIndex;

- (long long)knownCRLHandle:(int)knownCRLIndex;
- (void)setKnownCRLHandle:(int)knownCRLIndex :(long long)newKnownCRLHandle;

Default Value

""

Remarks

Use this property to supply additional CRLs that might be needed for chain validation. This property may be helpful when a chain is validated in offline mode, and the associated CRLs are stored separately from the signed message or document.

KnownOCSPs Property (KMIPClient Module)

Additional OCSP responses for chain validation.

Syntax

public var knownOCSPs: Array<OCSPResponse> {
  get {...}
}

@property (nonatomic,readwrite,assign,getter=knownOCSPCount,setter=setKnownOCSPCount:) int knownOCSPCount;

- (int)knownOCSPCount;
- (void)setKnownOCSPCount :(int)newKnownOCSPCount;

- (NSData*)knownOCSPBytes:(int)knownOCSPIndex;

- (long long)knownOCSPHandle:(int)knownOCSPIndex;
- (void)setKnownOCSPHandle:(int)knownOCSPIndex :(long long)newKnownOCSPHandle;

Default Value

""

Remarks

Use this property to supply additional OCSP responses that might be needed for chain validation. This property may be helpful when a chain is validated in offline mode, and the associated OCSP responses are stored separately from the signed message or document.

Objects Property (KMIPClient Module)

A list of objects returned by List .

Syntax

public var objects: Array<KMIPObject> {
  get {...}
}

@property (nonatomic,readonly,assign,getter=objectCount) int objectCount;

- (int)objectCount;

- (NSData*)objectBytes:(int)objectIndex;

- (BOOL)objectExtractable:(int)objectIndex;

- (NSData*)objectFingerprint:(int)objectIndex;

- (NSString*)objectKeyAlgorithm:(int)objectIndex;

- (int)objectKeyBits:(int)objectIndex;

- (int)objectKeyUsage:(int)objectIndex;

- (NSString*)objectObjectGroup:(int)objectIndex;

- (NSString*)objectObjectId:(int)objectIndex;

- (int)objectObjectType:(int)objectIndex;

- (BOOL)objectSensitive:(int)objectIndex;

- (int)objectSize:(int)objectIndex;

- (NSString*)objectSubject:(int)objectIndex;

- (NSString*)objectTimestamp:(int)objectIndex;

Default Value

""

Remarks

This property provides access to the list of objects returned by List.

All, some, or just the ObjectType property of each object will be populated, depending on the value of the Filter parameter that was passed to the List call.

OutputBytes Property (KMIPClient Module)

Use this property to read the output the module object has produced.

Syntax

public var outputBytes: Data {
  get {...}
}

@property (nonatomic,readonly,assign,getter=outputBytes) NSData* outputBytes;

- (NSData*)outputBytes;

Remarks

Read the contents of this property after the operation has completed to read the produced output. This property will only be set if the OutputFile and OutputStream properties had not been assigned.

This property is read-only.

OutputFile Property (KMIPClient Module)

Specifies the file where the signed, encrypted, or decrypted data should be saved.

Syntax

public var outputFile: String {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=outputFile,setter=setOutputFile:) NSString* outputFile;

- (NSString*)outputFile;
- (void)setOutputFile :(NSString*)newOutputFile;

Default Value

""

Remarks

Provide a full path to the file where the signed, encrypted, or decrypted data should be saved.

This property is one of the three ways that you can receive the output data from KMIPClient, with OutputBytes and OutputStream being the other two.

Password Property (KMIPClient Module)

Specifies a password to authenticate to the KMIP server.

Syntax

public var password: String {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=password,setter=setPassword:) NSString* password;

- (NSString*)password;
- (void)setPassword :(NSString*)newPassword;

Default Value

""

Remarks

Use this property to provide a password for authentication on the KMIP server.

The value assigned to this property is used for built-in user authentication provided by KMIP. If the KMIP server you are connecting to expects you to use HTTP basic or digest authentication, provide the credentials via the BaseURL property.

Proxy Property (KMIPClient Module)

The proxy server settings.

Syntax

public var proxy: ProxySettings {
  get {...}
}

@property (nonatomic,readwrite,assign,getter=proxyAddress,setter=setProxyAddress:) NSString* proxyAddress;

- (NSString*)proxyAddress;
- (void)setProxyAddress :(NSString*)newProxyAddress;

@property (nonatomic,readwrite,assign,getter=proxyAuthentication,setter=setProxyAuthentication:) int proxyAuthentication;

- (int)proxyAuthentication;
- (void)setProxyAuthentication :(int)newProxyAuthentication;

@property (nonatomic,readwrite,assign,getter=proxyPassword,setter=setProxyPassword:) NSString* proxyPassword;

- (NSString*)proxyPassword;
- (void)setProxyPassword :(NSString*)newProxyPassword;

@property (nonatomic,readwrite,assign,getter=proxyPort,setter=setProxyPort:) int proxyPort;

- (int)proxyPort;
- (void)setProxyPort :(int)newProxyPort;

@property (nonatomic,readwrite,assign,getter=proxyProxyType,setter=setProxyProxyType:) int proxyProxyType;

- (int)proxyProxyType;
- (void)setProxyProxyType :(int)newProxyProxyType;

@property (nonatomic,readwrite,assign,getter=proxyRequestHeaders,setter=setProxyRequestHeaders:) NSString* proxyRequestHeaders;

- (NSString*)proxyRequestHeaders;
- (void)setProxyRequestHeaders :(NSString*)newProxyRequestHeaders;

@property (nonatomic,readwrite,assign,getter=proxyResponseBody,setter=setProxyResponseBody:) NSString* proxyResponseBody;

- (NSString*)proxyResponseBody;
- (void)setProxyResponseBody :(NSString*)newProxyResponseBody;

@property (nonatomic,readwrite,assign,getter=proxyResponseHeaders,setter=setProxyResponseHeaders:) NSString* proxyResponseHeaders;

- (NSString*)proxyResponseHeaders;
- (void)setProxyResponseHeaders :(NSString*)newProxyResponseHeaders;

@property (nonatomic,readwrite,assign,getter=proxyUseIPv6,setter=setProxyUseIPv6:) BOOL proxyUseIPv6;

- (BOOL)proxyUseIPv6;
- (void)setProxyUseIPv6 :(BOOL)newProxyUseIPv6;

@property (nonatomic,readwrite,assign,getter=proxyUsername,setter=setProxyUsername:) NSString* proxyUsername;

- (NSString*)proxyUsername;
- (void)setProxyUsername :(NSString*)newProxyUsername;

 

Default Value

""

Remarks

Use this property to tune up the proxy server settings.

SignatureValidationResult Property (KMIPClient Module)

The signature validation result.

Syntax

public var signatureValidationResult: KMIPClientSignatureValidationResults {
  get {...}
}

public enum KMIPClientSignatureValidationResults: Int32 { case svtValid = 0 case svtUnknown = 1 case svtCorrupted = 2 case svtSignerNotFound = 3 case svtFailure = 4 case svtReferenceCorrupted = 5 }

@property (nonatomic,readonly,assign,getter=signatureValidationResult) int signatureValidationResult;

- (int)signatureValidationResult;

Default Value

0

Remarks

Use this property to check the result of the most recent signature validation.

svtValid0The signature is valid

svtUnknown1Signature validity is unknown

svtCorrupted2The signature is corrupted

svtSignerNotFound3Failed to acquire the signing certificate. The signature cannot be validated.

svtFailure4General failure

svtReferenceCorrupted5Reference corrupted (XML-based signatures only)

This property is read-only.

SocketSettings Property (KMIPClient Module)

Manages network connection settings.

Syntax

public var socketSettings: SocketSettings {
  get {...}
}

@property (nonatomic,readwrite,assign,getter=socketDNSMode,setter=setSocketDNSMode:) int socketDNSMode;

- (int)socketDNSMode;
- (void)setSocketDNSMode :(int)newSocketDNSMode;

@property (nonatomic,readwrite,assign,getter=socketDNSPort,setter=setSocketDNSPort:) int socketDNSPort;

- (int)socketDNSPort;
- (void)setSocketDNSPort :(int)newSocketDNSPort;

@property (nonatomic,readwrite,assign,getter=socketDNSQueryTimeout,setter=setSocketDNSQueryTimeout:) int socketDNSQueryTimeout;

- (int)socketDNSQueryTimeout;
- (void)setSocketDNSQueryTimeout :(int)newSocketDNSQueryTimeout;

@property (nonatomic,readwrite,assign,getter=socketDNSServers,setter=setSocketDNSServers:) NSString* socketDNSServers;

- (NSString*)socketDNSServers;
- (void)setSocketDNSServers :(NSString*)newSocketDNSServers;

@property (nonatomic,readwrite,assign,getter=socketDNSTotalTimeout,setter=setSocketDNSTotalTimeout:) int socketDNSTotalTimeout;

- (int)socketDNSTotalTimeout;
- (void)setSocketDNSTotalTimeout :(int)newSocketDNSTotalTimeout;

@property (nonatomic,readwrite,assign,getter=socketIncomingSpeedLimit,setter=setSocketIncomingSpeedLimit:) int socketIncomingSpeedLimit;

- (int)socketIncomingSpeedLimit;
- (void)setSocketIncomingSpeedLimit :(int)newSocketIncomingSpeedLimit;

@property (nonatomic,readwrite,assign,getter=socketLocalAddress,setter=setSocketLocalAddress:) NSString* socketLocalAddress;

- (NSString*)socketLocalAddress;
- (void)setSocketLocalAddress :(NSString*)newSocketLocalAddress;

@property (nonatomic,readwrite,assign,getter=socketLocalPort,setter=setSocketLocalPort:) int socketLocalPort;

- (int)socketLocalPort;
- (void)setSocketLocalPort :(int)newSocketLocalPort;

@property (nonatomic,readwrite,assign,getter=socketOutgoingSpeedLimit,setter=setSocketOutgoingSpeedLimit:) int socketOutgoingSpeedLimit;

- (int)socketOutgoingSpeedLimit;
- (void)setSocketOutgoingSpeedLimit :(int)newSocketOutgoingSpeedLimit;

@property (nonatomic,readwrite,assign,getter=socketTimeout,setter=setSocketTimeout:) int socketTimeout;

- (int)socketTimeout;
- (void)setSocketTimeout :(int)newSocketTimeout;

@property (nonatomic,readwrite,assign,getter=socketUseIPv6,setter=setSocketUseIPv6:) BOOL socketUseIPv6;

- (BOOL)socketUseIPv6;
- (void)setSocketUseIPv6 :(BOOL)newSocketUseIPv6;

 

Default Value

""

Remarks

Use this property to tune up network connection parameters.

TLSClientChain Property (KMIPClient Module)

The TLS client certificate chain.

Syntax

public var tlsClientChain: Array<Certificate> {
  get {...}
}

@property (nonatomic,readwrite,assign,getter=TLSClientCertCount,setter=setTLSClientCertCount:) int TLSClientCertCount;

- (int)TLSClientCertCount;
- (void)setTLSClientCertCount :(int)newTLSClientCertCount;

- (NSData*)TLSClientCertBytes:(int)tLSClientCertIndex;

- (long long)TLSClientCertHandle:(int)tLSClientCertIndex;
- (void)setTLSClientCertHandle:(int)tLSClientCertIndex :(long long)newTLSClientCertHandle;

Default Value

""

Remarks

Assign a certificate chain to this property to enable TLS client authentication in the class. Note that the client's end-entity certificate should have a private key associated with it.

Use the CertificateStorage or CertificateManager components to import the certificate from a file, system store, or PKCS11 device.

TLSServerChain Property (KMIPClient Module)

The TLS server's certificate chain.

Syntax

public var tlsServerChain: Array<Certificate> {
  get {...}
}

@property (nonatomic,readonly,assign,getter=TLSServerCertCount) int TLSServerCertCount;

- (int)TLSServerCertCount;

- (NSData*)TLSServerCertBytes:(int)tLSServerCertIndex;

- (NSString*)TLSServerCertFingerprint:(int)tLSServerCertIndex;

- (long long)TLSServerCertHandle:(int)tLSServerCertIndex;

- (NSString*)TLSServerCertIssuer:(int)tLSServerCertIndex;

- (NSString*)TLSServerCertIssuerRDN:(int)tLSServerCertIndex;

- (NSString*)TLSServerCertKeyAlgorithm:(int)tLSServerCertIndex;

- (int)TLSServerCertKeyBits:(int)tLSServerCertIndex;

- (int)TLSServerCertKeyUsage:(int)tLSServerCertIndex;

- (BOOL)TLSServerCertSelfSigned:(int)tLSServerCertIndex;

- (NSData*)TLSServerCertSerialNumber:(int)tLSServerCertIndex;

- (NSString*)TLSServerCertSigAlgorithm:(int)tLSServerCertIndex;

- (NSString*)TLSServerCertSubject:(int)tLSServerCertIndex;

- (NSString*)TLSServerCertSubjectRDN:(int)tLSServerCertIndex;

- (NSString*)TLSServerCertValidFrom:(int)tLSServerCertIndex;

- (NSString*)TLSServerCertValidTo:(int)tLSServerCertIndex;

Default Value

""

Remarks

Use this property to access the certificate chain sent by the TLS server. This property is ready to read when the TLSCertValidate event is fired by the client component.

TLSSettings Property (KMIPClient Module)

Manages TLS layer settings.

Syntax

public var tlsSettings: TLSSettings {
  get {...}
}

@property (nonatomic,readwrite,assign,getter=TLSAutoValidateCertificates,setter=setTLSAutoValidateCertificates:) BOOL TLSAutoValidateCertificates;

- (BOOL)TLSAutoValidateCertificates;
- (void)setTLSAutoValidateCertificates :(BOOL)newTLSAutoValidateCertificates;

@property (nonatomic,readwrite,assign,getter=TLSBaseConfiguration,setter=setTLSBaseConfiguration:) int TLSBaseConfiguration;

- (int)TLSBaseConfiguration;
- (void)setTLSBaseConfiguration :(int)newTLSBaseConfiguration;

@property (nonatomic,readwrite,assign,getter=TLSCiphersuites,setter=setTLSCiphersuites:) NSString* TLSCiphersuites;

- (NSString*)TLSCiphersuites;
- (void)setTLSCiphersuites :(NSString*)newTLSCiphersuites;

@property (nonatomic,readwrite,assign,getter=TLSClientAuth,setter=setTLSClientAuth:) int TLSClientAuth;

- (int)TLSClientAuth;
- (void)setTLSClientAuth :(int)newTLSClientAuth;

@property (nonatomic,readwrite,assign,getter=TLSECCurves,setter=setTLSECCurves:) NSString* TLSECCurves;

- (NSString*)TLSECCurves;
- (void)setTLSECCurves :(NSString*)newTLSECCurves;

@property (nonatomic,readwrite,assign,getter=TLSExtensions,setter=setTLSExtensions:) NSString* TLSExtensions;

- (NSString*)TLSExtensions;
- (void)setTLSExtensions :(NSString*)newTLSExtensions;

@property (nonatomic,readwrite,assign,getter=TLSForceResumeIfDestinationChanges,setter=setTLSForceResumeIfDestinationChanges:) BOOL TLSForceResumeIfDestinationChanges;

- (BOOL)TLSForceResumeIfDestinationChanges;
- (void)setTLSForceResumeIfDestinationChanges :(BOOL)newTLSForceResumeIfDestinationChanges;

@property (nonatomic,readwrite,assign,getter=TLSPreSharedIdentity,setter=setTLSPreSharedIdentity:) NSString* TLSPreSharedIdentity;

- (NSString*)TLSPreSharedIdentity;
- (void)setTLSPreSharedIdentity :(NSString*)newTLSPreSharedIdentity;

@property (nonatomic,readwrite,assign,getter=TLSPreSharedKey,setter=setTLSPreSharedKey:) NSString* TLSPreSharedKey;

- (NSString*)TLSPreSharedKey;
- (void)setTLSPreSharedKey :(NSString*)newTLSPreSharedKey;

@property (nonatomic,readwrite,assign,getter=TLSPreSharedKeyCiphersuite,setter=setTLSPreSharedKeyCiphersuite:) NSString* TLSPreSharedKeyCiphersuite;

- (NSString*)TLSPreSharedKeyCiphersuite;
- (void)setTLSPreSharedKeyCiphersuite :(NSString*)newTLSPreSharedKeyCiphersuite;

@property (nonatomic,readwrite,assign,getter=TLSRenegotiationAttackPreventionMode,setter=setTLSRenegotiationAttackPreventionMode:) int TLSRenegotiationAttackPreventionMode;

- (int)TLSRenegotiationAttackPreventionMode;
- (void)setTLSRenegotiationAttackPreventionMode :(int)newTLSRenegotiationAttackPreventionMode;

@property (nonatomic,readwrite,assign,getter=TLSRevocationCheck,setter=setTLSRevocationCheck:) int TLSRevocationCheck;

- (int)TLSRevocationCheck;
- (void)setTLSRevocationCheck :(int)newTLSRevocationCheck;

@property (nonatomic,readwrite,assign,getter=TLSSSLOptions,setter=setTLSSSLOptions:) int TLSSSLOptions;

- (int)TLSSSLOptions;
- (void)setTLSSSLOptions :(int)newTLSSSLOptions;

@property (nonatomic,readwrite,assign,getter=TLSTLSMode,setter=setTLSTLSMode:) int TLSTLSMode;

- (int)TLSTLSMode;
- (void)setTLSTLSMode :(int)newTLSTLSMode;

@property (nonatomic,readwrite,assign,getter=TLSUseExtendedMasterSecret,setter=setTLSUseExtendedMasterSecret:) BOOL TLSUseExtendedMasterSecret;

- (BOOL)TLSUseExtendedMasterSecret;
- (void)setTLSUseExtendedMasterSecret :(BOOL)newTLSUseExtendedMasterSecret;

@property (nonatomic,readwrite,assign,getter=TLSUseSessionResumption,setter=setTLSUseSessionResumption:) BOOL TLSUseSessionResumption;

- (BOOL)TLSUseSessionResumption;
- (void)setTLSUseSessionResumption :(BOOL)newTLSUseSessionResumption;

@property (nonatomic,readwrite,assign,getter=TLSVersions,setter=setTLSVersions:) int TLSVersions;

- (int)TLSVersions;
- (void)setTLSVersions :(int)newTLSVersions;

 

Default Value

""

Remarks

Use this property to tune up the TLS layer parameters.

TrustedCertificates Property (KMIPClient Module)

A list of trusted certificates for chain validation.

Syntax

public var trustedCertificates: Array<Certificate> {
  get {...}
}

@property (nonatomic,readwrite,assign,getter=trustedCertCount,setter=setTrustedCertCount:) int trustedCertCount;

- (int)trustedCertCount;
- (void)setTrustedCertCount :(int)newTrustedCertCount;

- (NSData*)trustedCertBytes:(int)trustedCertIndex;

- (long long)trustedCertHandle:(int)trustedCertIndex;
- (void)setTrustedCertHandle:(int)trustedCertIndex :(long long)newTrustedCertHandle;

Default Value

""

Remarks

Use this property to supply a list of trusted certificates that might be needed for chain validation. An example of a scenario where you might want to do that is when root CA certificates are absent from the standard system locations (or when there are no standard system locations), and therefore should be supplied to the component manually.

The purpose of this certificate collection is largely the same as that of the Windows Trusted Root Certification Authorities system store.

Use this property with extreme care as it directly affects chain verifiability; a wrong certificate added to the trusted list may result in bad chains being accepted, and forfeited signatures being recognized as genuine. Only add certificates that originate from the parties that you know and trust.

Username Property (KMIPClient Module)

The username to authenticate to the KMIP server.

Syntax

public var username: String {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=username,setter=setUsername:) NSString* username;

- (NSString*)username;
- (void)setUsername :(NSString*)newUsername;

Default Value

""

Remarks

Use this property to provide a username for authentication on the KMIP server.

The value assigned to this property is used for built-in user authentication provided by KMIP. If the KMIP server you are connecting to expects you to use HTTP basic or digest authentication, provide the credentials via the BaseURL property.

Activate Method (KMIPClient Module)

Activates the specified server object.

Syntax

public func activate(objectId: String) throws -> Void
- (void)activate:(NSString*)objectId;

Remarks

Use this method to activate the object using its ObjectId. Activating the object makes it available for cryptographic operations.

This method is complementary to Deactivate that can be used to disable server-side objects.

Add Method (KMIPClient Module)

Imports a certificate to the KMIP server.

Syntax

public func add(addPrivateKey: Bool, group: String, activate: Bool) throws -> String
- (NSString*)add:(BOOL)addPrivateKey :(NSString*)group :(BOOL)activate;

Remarks

Call this method to import a certificate to the KMIP server. Provide the certificate via Certificate property.

Use the Group parameter to supply a unique identifier for objects associated with this certificate. A typical KMIP server would store two or three objects per certificate - the certificate, its public key, and, if provided, its private key. The shared group identifier will make it easy to establish correspondence between the objects.

Set the AddPrivateKey parameter to true to import the private key (and create a corresponding KMIP object) together with the certificate. Use the Activate parameter to instruct the server to activate the new certificate-related objects immediately.

The method returns the unique identifier of the created certificate object. Check the AuxResult property to read the ID of the associated key object.

AddKey Method (KMIPClient Module)

Imports a key or keypair to the KMIP server.

Syntax

public func addKey(group: String, activate: Bool) throws -> String
- (NSString*)addKey:(NSString*)group :(BOOL)activate;

Remarks

Use this method to import a key or an asymmetric keypair to the KMIP server. Provide the key via the Key property.

Use the Group parameter to supply a unique identifier for objects associated with this key. Import of an asymmetric keypair may result in two objects being created on the server - the public key and the private key. The shared group identifier will make it easy to establish correspondence between the objects.

Use the Activate parameter to instruct the server to activate the new key objects immediately.

The method returns the unique identifier of the created key object. Check the AuxResult property to read the ID of the second object key component object, if expected.

Config Method (KMIPClient Module)

Sets or retrieves a configuration setting.

Syntax

public func config(configurationString: String) throws -> String
- (NSString*)config:(NSString*)configurationString;

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

CustomRequest Method (KMIPClient Module)

Performs a custom request to the server.

Syntax

public func customRequest(data: Data) throws -> Data
- (NSData*)customRequest:(NSData*)data;

Remarks

Use this method to send a custom request to the KMIP server. Pass the serialized KMIP request data to the Data parameter. Any response returned back by the server is passed back to the application via the result of this method.

This method can be handy if you need to make a request of the kind that KMIPClient does not support at the moment.

Deactivate Method (KMIPClient Module)

Deactivates the specified server object.

Syntax

public func deactivate(objectId: String) throws -> Void
- (void)deactivate:(NSString*)objectId;

Remarks

Use this method to deactivate the object using its ObjectId. Deactivated objects remain on the server but cannot be used for cryptographic operations. Use Remove method to delete objects from the server permanently.

This method is complementary to Activate that lets you enable ('activate') server objects.

Decrypt Method (KMIPClient Module)

Decrypts the provided data using a key stored on the KMIP server.

Syntax

public func decrypt(objectId: String, algorithm: String, iv: Data, blockMode: String, paddingMethod: String, tagLength: Int32) throws -> Void
- (void)decrypt:(NSString*)objectId :(NSString*)algorithm :(NSData*)IV :(NSString*)blockMode :(NSString*)paddingMethod :(int)tagLength;

Remarks

Use this method to decrypt data using the key with the specified ObjectId.

Provide the encrypted data via one of the Input* properties (InputFile, InputStream, or InputBytes). The decrypted data will be saved to one of the output properties.

Use the Algorithm, IV, BlockMode, PaddingMethod, and TagLength parameters to provide adjustments to the decryption algorithm. Not every call will require all of the adjustments. Asymmetric decryption calls (such as RSA) do not typically require parameters.

DoAction Method (KMIPClient Module)

Performs an additional action.

Syntax

public func doAction(actionID: String, actionParams: String) throws -> String
- (NSString*)doAction:(NSString*)actionID :(NSString*)actionParams;

Remarks

DoAction is a generic method available in every class. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.

The unique identifier (case insensitive) of the action is provided in the ActionID parameter.

ActionParams contains the value of a single parameter, or a list of multiple parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....

Encrypt Method (KMIPClient Module)

Encrypts the provided data using a key stored on the KMIP server.

Syntax

public func encrypt(objectId: String, algorithm: String, iv: Data, blockMode: String, paddingMethod: String, tagLength: Int32) throws -> Void
- (void)encrypt:(NSString*)objectId :(NSString*)algorithm :(NSData*)IV :(NSString*)blockMode :(NSString*)paddingMethod :(int)tagLength;

Remarks

Use this method to encrypt data using the key with the specified ObjectId. Provide the data to be encrypted via InputFile or InputStream. The encrypted data will be saved to OutputFile (or OutputStream).

Use optional Algorithm, IV, BlockMode, Padding, and TagLength parameters to adjust encryption flow. The values to be passed as these parameters depend on the encryption algorithm being used. Public key algorithms typically do not require these parameters.

Generate Method (KMIPClient Module)

Generates a new certificate on the KMIP server.

Syntax

public func generate(publicKeyId: String, activate: Bool) throws -> String
- (NSString*)generate:(NSString*)publicKeyId :(BOOL)activate;

Remarks

Use this method to generate a new certificate on the server. Set up the needed parameters of the certificate in the Certificate property. This property may contain a prepared certificate request.

An optional PublicKeyId parameter specifies the ID of the server-side public key object to base the certificate on.

The method returns a unique ID assigned to the new certificate object. Note that the certificate itself is not populated in the Certificate property: use Read to request it from the server.

GenerateKey Method (KMIPClient Module)

Generates a symmetric key or an asymmetric key pair on the KMIP server.

Syntax

public func generateKey(keyAlgorithm: String, scheme: String, schemeParams: String, keyBits: Int32, group: String, activate: Bool) throws -> String
- (NSString*)generateKey:(NSString*)keyAlgorithm :(NSString*)scheme :(NSString*)schemeParams :(int)keyBits :(NSString*)group :(BOOL)activate;

Remarks

Use KeyAlgorithm and KeyBits to indicate the desired algorithm and key length. Provide an group name of the new key via the Group parameter.

The method returns the ID assigned by the server to the new key object. This may differ from the one you supplied.

Note that the key itself is not populated in the Key property: use ReadKey to request it from the server.

List Method (KMIPClient Module)

Retrieves the list of objects of selected types from the server.

Syntax

public func list(objectTypes: Int32, filter: String, offsetItems: Int32, maximumItems: Int32, freshOnly: Bool) throws -> Void
- (void)list:(int)objectTypes :(NSString*)filter :(int)offsetItems :(int)maximumItems :(BOOL)freshOnly;

Remarks

ObjectTypes is expected to contain a bit mask according to which objects of one or more types can be selected. The ObjectTypes of 0 implies that there is no mask, and all objects should be returned. Possible values:

otUnknown0x00
otCertificate0x01
otSymmetricKey0x02
otPublicKey0x04
otPrivateKey0x08

Use OffsetItems and MaximumItems to narrow down your search. Use Filter to specify the object properties that you would like to be requested: an empty value or an asterisk tells the client to request all the properties of the listed objects, whereas the objectid filter only results in the object IDs being returned.

Read Method (KMIPClient Module)

Downloads a certificate from the KMIP server.

Syntax

public func read(objectId: String) throws -> Void
- (void)read:(NSString*)objectId;

Remarks

Use this method to download a certificate object from the server. Specify the ID of the certificate object via the ObjectId parameter.

Upon completion, the certificate is populated in the Certificate property.

ReadAttribute Method (KMIPClient Module)

Requests an attribute from an object.

Syntax

public func readAttribute(objectId: String, name: String) throws -> String
- (NSString*)readAttribute:(NSString*)objectId :(NSString*)name;

Remarks

Use this method to request an attribute defined by the Name parameter for a server-side object indicated by its ObjectId.

The list of attributes supported by KMIP is available here: KMIP v1.3, paragraph 3

ReadKey Method (KMIPClient Module)

Downloads a key object from the KMIP server.

Syntax

public func readKey(objectId: String) throws -> Void
- (void)readKey:(NSString*)objectId;

Remarks

Use this method to retrieve a key object from the server. Public, private, and secret key IDs can be passed to this method, but only non-sensitive parameters of the private and secret keys will be returned.

The key data is populated in the Key property.

ReadObject Method (KMIPClient Module)

Requests object information from the KMIP server.

Syntax

public func readObject(objectId: String) throws -> Void
- (void)readObject:(NSString*)objectId;

Remarks

Use this method to request information about a server-side object by its unique ObjectId.

If ObjectId represents a valid certificate or key, the details of the object are populated in Certificate or Key object respectively.

Remove Method (KMIPClient Module)

Removes the specified object from the server.

Syntax

public func remove(objectId: String) throws -> Void
- (void)remove:(NSString*)objectId;

Remarks

Use this method to delete the object specified by its ObjectId from the KMIP server permanently.

If you would like to disable the object but keep it on the server permanently, use Deactivate method instead.

Reset Method (KMIPClient Module)

Resets the component settings.

Syntax

public func reset() throws -> Void
- (void)reset;

Remarks

Reset is a generic method available in every class.

SetAttribute Method (KMIPClient Module)

Sets an attribute of an existing server-side object.

Syntax

public func setAttribute(objectId: String, name: String, value: String, delete_: Bool) throws -> Void
- (void)setAttribute:(NSString*)objectId :(NSString*)name :(NSString*)value :(BOOL)delete;

Remarks

Use this method to set an attribute of a server-side object.

The list of attributes supported by KMIP is available here: KMIP v1.3, paragraph 3

Set Delete parameter to true to delete the attribute instead of setting it.

SetRequestBytes Method (KMIPClient Module)

Replaces the data that has been prepared for sending out.

Syntax

public func setRequestBytes(value: Data) throws -> Void
- (void)setRequestBytes:(NSData*)value;

Remarks

Call this method from your Request event handler to alter the request data being sent to the server. This method method may be handy if you need to adjust the request data that the client has prepared manually before sending it out.

SetResponseBytes Method (KMIPClient Module)

Alters the data received from the server in a response.

Syntax

public func setResponseBytes(value: Data) throws -> Void
- (void)setResponseBytes:(NSData*)value;

Remarks

Call this method from your Response event handler to alter the data received from the server before passing it for processing. This method may be handy if you would like to adjust data received from the server - for example, to fix an error in the server's response.

Sign Method (KMIPClient Module)

Signs the data using a key on the KMIP server.

Syntax

public func sign(objectId: String, algorithm: String, paddingMethod: String, hashAlgorithm: String, inputIsHash: Bool) throws -> Void
- (void)sign:(NSString*)objectId :(NSString*)algorithm :(NSString*)paddingMethod :(NSString*)hashAlgorithm :(BOOL)inputIsHash;

Remarks

Use this method to sign the data using the key with the specified ObjectId. Pass the data to be signed via InputFile (or InputStream) property. The resulting signed data will be written to OutputFile (or OutputStream).

The Algorithm and HashAlgorithm parameters should specify the algorithms to be used for the cryptographic signing. Set InputIsHash to true to indicate that you are passing the hash of the data instead of the actual data.

If any of Algorithm or HashAlgorithm are omitted, the server will use the default algorithm associated with the key. Note that this is not always possible, so make sure your requests carry as much details as possible.

The following key algorithms are supported: RSA, EC, ECDSA, ECDH, EDDSA, DSA, ELGAMAL, DH, SRP.

The following hash algorithms are supported: SHA1, SHA256, SHA384, SHA512, SHA224, WHIRLPOOL, POLY1305, SHA3_224, SHA3_256, SHA3_384, SHA3_512. Note that servers may not support all of these algorithms.

Verify Method (KMIPClient Module)

Verifies digitally signed data.

Syntax

public func verify(objectId: String, algorithm: String, paddingMethod: String, hashAlgorithm: String, inputIsHash: Bool) throws -> Void
- (void)verify:(NSString*)objectId :(NSString*)algorithm :(NSString*)paddingMethod :(NSString*)hashAlgorithm :(BOOL)inputIsHash;

Remarks

Use this method to verify the integrity of the signature using a server-side key.

Please provide the signature via InputFile (or InputStream / InputBytes) property. For detached signatures, please also provide the data that was signed via DataFile (or DataStream / DataBytes) property.

Provide additional parameters of the operation:

  • Algorithm: the signature algorithm (e.g. sha256WithRSAEncryption).
  • PaddingMethod: the padding method used (e.g. PSS).
  • HashAlgorithm: the hash algorithm to use for signature verification (e.g. SHA256).
  • InputIsHash: specifies whether the data provided via DataFile or similar property contains the data or its message digest.

Error Event (KMIPClient Module)

Provides information about errors during KMIP operations.

Syntax

func onError(errorCode: Int32, description: String)
- (void)onError:(int)errorCode :(NSString*)description;

Remarks

This event is fired in case of exceptional conditions occured during KMIP operations.

ErrorCode contains an error code and Description contains a textual description of the error.

ExternalSign Event (KMIPClient Module)

Handles remote or external signing initiated by the SignExternal method or other source.

Syntax

func onExternalSign(operationId: String, hashAlgorithm: String, pars: String, data: String, signedData: inout String)
- (void)onExternalSign:(NSString*)operationId :(NSString*)hashAlgorithm :(NSString*)pars :(NSString*)data :(NSString**)signedData;

Remarks

Assign a handler to this event if you need to delegate a low-level signing operation to an external, remote, or custom signing engine. Depending on the settings, the handler will receive a hashed or unhashed value to be signed.

The event handler must pass the value of Data to the signer, obtain the signature, and pass it back to the class via the SignedData parameter.

OperationId provides a comment about the operation and its origin. It depends on the exact class being used, and may be empty. HashAlgorithm specifies the hash algorithm being used for the operation, and Pars contains algorithm-dependent parameters.

The class uses base16 (hex) encoding for the Data, SignedData, and Pars parameters. If your signing engine uses a different input and output encoding, you may need to decode and/or encode the data before and/or after the signing.

A sample MD5 hash encoded in base16: a0dee2a0382afbb09120ffa7ccd8a152 - lower case base16 A0DEE2A0382AFBB09120FFA7CCD8A152 - upper case base16

A sample event handler that uses the .NET RSACryptoServiceProvider class may look like the following: signer.OnExternalSign += (s, e) => { var cert = new X509Certificate2("cert.pfx", "", X509KeyStorageFlags.Exportable); var key = (RSACryptoServiceProvider)cert.PrivateKey; var dataToSign = e.Data.FromBase16String(); var signedData = key.SignHash(dataToSign, "2.16.840.1.101.3.4.2.1"); e.SignedData = signedData.ToBase16String(); };

Notification Event (KMIPClient Module)

This event notifies the application about an underlying control flow event.

Syntax

func onNotification(eventID: String, eventParam: String)
- (void)onNotification:(NSString*)eventID :(NSString*)eventParam;

Remarks

The class fires this event to let the application know about some event, occurrence, or milestone in the class. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.

The unique identifier of the event is provided in the EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the class, the exact action it is performing, or the document being processed, one or both may be omitted.

This class can fire this event with the following EventID values:

TLSExtensions.CertificateStatusTBD
TLSExtensions.PreSharedIdentityHintTBD

Request Event (KMIPClient Module)

KMIPClient fires this event to notify the user about the request being sent to the KMIP server.

Syntax

func onRequest(requestData: Data)
- (void)onRequest:(NSData*)requestData;

Remarks

Subscribe to this event to be notified about individual requests sent by the KMIP client to the server.

The RequestData parameter contains the encoded KMIP request. You can alter what is being sent by providing custom request bytes via the SetRequestBytes method.

Response Event (KMIPClient Module)

KMIPClient uses this event to notify the user about the response being received.

Syntax

func onResponse(responseData: Data)
- (void)onResponse:(NSData*)responseData;

Remarks

Subscribe to this event to be notified about KMIP protocol responses that the KMIP client receives from the server.

The ResponseData parameter contains the encoded body of the response. Use SetResponseBytes to alter the response data received before it is processed by the client.

TLSCertNeeded Event (KMIPClient Module)

Fires when a remote TLS party requests a client certificate.

Syntax

func onTLSCertNeeded(host: String, caNames: String)
- (void)onTLSCertNeeded:(NSString*)host :(NSString*)CANames;

Remarks

This event fires to notify the implementation that a remote TLS server has requested a client certificate. The Host parameter identifies the host that makes a request, and the CANames parameter (optional, according to the TLS spec) advises on the accepted issuing CAs.

Use the TLSClientChain property in response to this event to provide the requested certificate. Please make sure the client certificate includes the associated private key. Note that you may set the certificates before the connection without waiting for this event to fire.

This event is preceded by the TLSHandshake event for the given host and, if the certificate was accepted, succeeded by the TLSEstablished event.

TLSCertValidate Event (KMIPClient Module)

This event is fired upon receipt of the TLS server's certificate, allowing the user to control its acceptance.

Syntax

func onTLSCertValidate(serverHost: String, serverIP: String, accept: inout Bool)
- (void)onTLSCertValidate:(NSString*)serverHost :(NSString*)serverIP :(int*)accept;

Remarks

This event is fired during a TLS handshake. Use the TLSServerChain property to access the certificate chain. In general, classes may contact a number of TLS endpoints during their work, depending on their configuration.

Accept is assigned in accordance with the outcome of the internal validation check performed by the class, and can be adjusted if needed.

TLSEstablished Event (KMIPClient Module)

Fires when a TLS handshake with Host successfully completes.

Syntax

func onTLSEstablished(host: String, version: String, ciphersuite: String, connectionId: Data, abort: inout Bool)
- (void)onTLSEstablished:(NSString*)host :(NSString*)version :(NSString*)ciphersuite :(NSData*)connectionId :(int*)abort;

Remarks

The class uses this event to notify the application about a successful completion of a TLS handshake.

The Version, Ciphersuite, and ConnectionId parameters indicate the security parameters of the new connection. Use the Abort parameter if you need to terminate the connection at this stage.

TLSHandshake Event (KMIPClient Module)

Fires when a new TLS handshake is initiated, before the handshake commences.

Syntax

func onTLSHandshake(host: String, abort: inout Bool)
- (void)onTLSHandshake:(NSString*)host :(int*)abort;

Remarks

The class uses this event to notify the application about the start of a new TLS handshake to Host. If the handshake is successful, this event will be followed by the TLSEstablished event. If the server chooses to request a client certificate, the TLSCertNeeded event will also be fired.

TLSPSK Event (KMIPClient Module)

Notifies the application about the PSK key exchange.

Syntax

func onTLSPSK(host: String, hint: String)
- (void)onTLSPSK:(NSString*)host :(NSString*)hint;

Remarks

The class fires this event to notify the application about the beginning of TLS-PSK key exchange with Host. The Hint parameter may be used by the server to identify the key or service to use. Use the PreSharedKey field of TLSSettings to provide the pre-shared key to the component.

TLSShutdown Event (KMIPClient Module)

Reports the graceful closure of a TLS connection.

Syntax

func onTLSShutdown(host: String)
- (void)onTLSShutdown:(NSString*)host;

Remarks

This event notifies the application about the closure of an earlier established TLS connection. Note that only graceful connection closures are reported.

Certificate Type

Encapsulates an individual X.509 certificate.

Remarks

This type keeps and provides access to X.509 certificate details.

The following fields are available:

Fields

bytes
Data (read-only)

Default Value: ""

Returns the raw certificate data in DER format.

ca
Bool

Default Value: False

Indicates whether the certificate has a CA capability. For the certificate to be considered a CA, it must have its Basic Constraints extension set with the CA indicator enabled.

Set this property when generating a new certificate to have its Basic Constraints extension generated automatically.

caKeyID
Data (read-only)

Default Value: ""

A unique identifier (fingerprint) of the CA certificate's cryptographic key.

Authority Key Identifier is a certificate extension which allows identification of certificates belonging to the same issuer, but with different public keys. It is a de-facto standard to include this extension in all certificates to facilitate chain building.

This setting cannot be set when generating a certificate as it always derives from another certificate property. CertificateManager generates this setting automatically if enough information is available to it: for self-signed certificates, this value is copied from the setting, and for lower-level certificates, from the parent certificate's subject key ID extension.

certType
CertTypes (read-only)

Default Value: 0

Returns the type of the entity contained in the Certificate object.

A Certificate object can contain two types of cryptographic objects: a ready-to-use X.509 certificate, or a certificate request ("an unsigned certificate"). Certificate requests can be upgraded to full certificates by signing them with a CA certificate.

Use the CertificateManager class to load or create new certificate and certificate requests objects.

crlDistributionPoints
String

Default Value: ""

Contains a list of locations of CRL distribution points used to check this certificate's validity. The list is taken from the respective certificate extension.

Use this property when generating a certificate to provide a list of CRL endpoints that should be made part of the new certificate.

The endpoints are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.

curve
String

Default Value: ""

Specifies the elliptic curve associated with the certificate's public key. This setting only applies to certificates containing EC keys.

SB_EC_SECP112R1SECP112R1
SB_EC_SECP112R2SECP112R2
SB_EC_SECP128R1SECP128R1
SB_EC_SECP128R2SECP128R2
SB_EC_SECP160K1SECP160K1
SB_EC_SECP160R1SECP160R1
SB_EC_SECP160R2SECP160R2
SB_EC_SECP192K1SECP192K1
SB_EC_SECP192R1SECP192R1
SB_EC_SECP224K1SECP224K1
SB_EC_SECP224R1SECP224R1
SB_EC_SECP256K1SECP256K1
SB_EC_SECP256R1SECP256R1
SB_EC_SECP384R1SECP384R1
SB_EC_SECP521R1SECP521R1
SB_EC_SECT113R1SECT113R1
SB_EC_SECT113R2SECT113R2
SB_EC_SECT131R1SECT131R1
SB_EC_SECT131R2SECT131R2
SB_EC_SECT163K1SECT163K1
SB_EC_SECT163R1SECT163R1
SB_EC_SECT163R2SECT163R2
SB_EC_SECT193R1SECT193R1
SB_EC_SECT193R2SECT193R2
SB_EC_SECT233K1SECT233K1
SB_EC_SECT233R1SECT233R1
SB_EC_SECT239K1SECT239K1
SB_EC_SECT283K1SECT283K1
SB_EC_SECT283R1SECT283R1
SB_EC_SECT409K1SECT409K1
SB_EC_SECT409R1SECT409R1
SB_EC_SECT571K1SECT571K1
SB_EC_SECT571R1SECT571R1
SB_EC_PRIME192V1PRIME192V1
SB_EC_PRIME192V2PRIME192V2
SB_EC_PRIME192V3PRIME192V3
SB_EC_PRIME239V1PRIME239V1
SB_EC_PRIME239V2PRIME239V2
SB_EC_PRIME239V3PRIME239V3
SB_EC_PRIME256V1PRIME256V1
SB_EC_C2PNB163V1C2PNB163V1
SB_EC_C2PNB163V2C2PNB163V2
SB_EC_C2PNB163V3C2PNB163V3
SB_EC_C2PNB176W1C2PNB176W1
SB_EC_C2TNB191V1C2TNB191V1
SB_EC_C2TNB191V2C2TNB191V2
SB_EC_C2TNB191V3C2TNB191V3
SB_EC_C2ONB191V4C2ONB191V4
SB_EC_C2ONB191V5C2ONB191V5
SB_EC_C2PNB208W1C2PNB208W1
SB_EC_C2TNB239V1C2TNB239V1
SB_EC_C2TNB239V2C2TNB239V2
SB_EC_C2TNB239V3C2TNB239V3
SB_EC_C2ONB239V4C2ONB239V4
SB_EC_C2ONB239V5C2ONB239V5
SB_EC_C2PNB272W1C2PNB272W1
SB_EC_C2PNB304W1C2PNB304W1
SB_EC_C2TNB359V1C2TNB359V1
SB_EC_C2PNB368W1C2PNB368W1
SB_EC_C2TNB431R1C2TNB431R1
SB_EC_NISTP192NISTP192
SB_EC_NISTP224NISTP224
SB_EC_NISTP256NISTP256
SB_EC_NISTP384NISTP384
SB_EC_NISTP521NISTP521
SB_EC_NISTB163NISTB163
SB_EC_NISTB233NISTB233
SB_EC_NISTB283NISTB283
SB_EC_NISTB409NISTB409
SB_EC_NISTB571NISTB571
SB_EC_NISTK163NISTK163
SB_EC_NISTK233NISTK233
SB_EC_NISTK283NISTK283
SB_EC_NISTK409NISTK409
SB_EC_NISTK571NISTK571
SB_EC_GOSTCPTESTGOSTCPTEST
SB_EC_GOSTCPAGOSTCPA
SB_EC_GOSTCPBGOSTCPB
SB_EC_GOSTCPCGOSTCPC
SB_EC_GOSTCPXCHAGOSTCPXCHA
SB_EC_GOSTCPXCHBGOSTCPXCHB
SB_EC_BRAINPOOLP160R1BRAINPOOLP160R1
SB_EC_BRAINPOOLP160T1BRAINPOOLP160T1
SB_EC_BRAINPOOLP192R1BRAINPOOLP192R1
SB_EC_BRAINPOOLP192T1BRAINPOOLP192T1
SB_EC_BRAINPOOLP224R1BRAINPOOLP224R1
SB_EC_BRAINPOOLP224T1BRAINPOOLP224T1
SB_EC_BRAINPOOLP256R1BRAINPOOLP256R1
SB_EC_BRAINPOOLP256T1BRAINPOOLP256T1
SB_EC_BRAINPOOLP320R1BRAINPOOLP320R1
SB_EC_BRAINPOOLP320T1BRAINPOOLP320T1
SB_EC_BRAINPOOLP384R1BRAINPOOLP384R1
SB_EC_BRAINPOOLP384T1BRAINPOOLP384T1
SB_EC_BRAINPOOLP512R1BRAINPOOLP512R1
SB_EC_BRAINPOOLP512T1BRAINPOOLP512T1
SB_EC_CURVE25519CURVE25519
SB_EC_CURVE448CURVE448

fingerprint
String (read-only)

Default Value: ""

Contains the fingerprint (a hash imprint) of this certificate.

While there is no formal standard defining what a fingerprint is, a SHA1 hash of the certificate's DER-encoded body is typically used.

friendlyName
String (read-only)

Default Value: ""

Contains an associated alias (friendly name) of the certificate. The friendly name is not a property of a certificate: it is maintained by the certificate media rather than being included in its DER representation. Windows certificate stores are one example of media that does support friendly names.

handle
Int64

Default Value: 0

Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.

When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object after such operation. pdfSigner.setSigningCertHandle(certMgr.getCertHandle());

hashAlgorithm
String

Default Value: ""

Provides means to set the hash algorithm to be used in the subsequent operation on the certificate (such as generation or key signing). It is not a property of a certificate; use to find out the hash algorithm that is part of the certificate signature.

SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_MD2MD2
SB_HASH_ALGORITHM_MD4MD4
SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_CRC32CRC32
SB_HASH_ALGORITHM_SSL3SSL3
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_POLY1305POLY1305
SB_HASH_ALGORITHM_SHA3_224SHA3_224
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512
SB_HASH_ALGORITHM_BLAKE2S_128BLAKE2S_128
SB_HASH_ALGORITHM_BLAKE2S_160BLAKE2S_160
SB_HASH_ALGORITHM_BLAKE2S_224BLAKE2S_224
SB_HASH_ALGORITHM_BLAKE2S_256BLAKE2S_256
SB_HASH_ALGORITHM_BLAKE2B_160BLAKE2B_160
SB_HASH_ALGORITHM_BLAKE2B_256BLAKE2B_256
SB_HASH_ALGORITHM_BLAKE2B_384BLAKE2B_384
SB_HASH_ALGORITHM_BLAKE2B_512BLAKE2B_512
SB_HASH_ALGORITHM_SHAKE_128SHAKE_128
SB_HASH_ALGORITHM_SHAKE_256SHAKE_256
SB_HASH_ALGORITHM_SHAKE_128_LENSHAKE_128_LEN
SB_HASH_ALGORITHM_SHAKE_256_LENSHAKE_256_LEN

issuer
String (read-only)

Default Value: ""

The common name of the certificate issuer (CA), typically a company name. This is part of a larger set of credentials available via .

issuerRDN
String

Default Value: ""

A list of Property=Value pairs that uniquely identify the certificate issuer.

Example: /C=US/O=Nationwide CA/CN=Web Certification Authority

keyAlgorithm
String

Default Value: "0"

Specifies the public key algorithm of this certificate.

SB_CERT_ALGORITHM_ID_RSA_ENCRYPTIONrsaEncryption
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTIONmd2withRSAEncryption
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTIONmd5withRSAEncryption
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTIONsha1withRSAEncryption
SB_CERT_ALGORITHM_ID_DSAid-dsa
SB_CERT_ALGORITHM_ID_DSA_SHA1id-dsa-with-sha1
SB_CERT_ALGORITHM_DH_PUBLICdhpublicnumber
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTIONsha224WithRSAEncryption
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTIONsha256WithRSAEncryption
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTIONsha384WithRSAEncryption
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTIONsha512WithRSAEncryption
SB_CERT_ALGORITHM_ID_RSAPSSid-RSASSA-PSS
SB_CERT_ALGORITHM_ID_RSAOAEPid-RSAES-OAEP
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160ripemd160withRSA
SB_CERT_ALGORITHM_ID_ELGAMALelGamal
SB_CERT_ALGORITHM_SHA1_ECDSAecdsa-with-SHA1
SB_CERT_ALGORITHM_RECOMMENDED_ECDSAecdsa-recommended
SB_CERT_ALGORITHM_SHA224_ECDSAecdsa-with-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSAecdsa-with-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSAecdsa-with-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSAecdsa-with-SHA512
SB_CERT_ALGORITHM_ECid-ecPublicKey
SB_CERT_ALGORITHM_SPECIFIED_ECDSAecdsa-specified
SB_CERT_ALGORITHM_GOST_R3410_1994id-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3410_2001id-GostR3410-2001
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994id-GostR3411-94-with-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001id-GostR3411-94-with-GostR3410-2001
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAINecdsa-plain-SHA1
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAINecdsa-plain-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAINecdsa-plain-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAINecdsa-plain-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAINecdsa-plain-SHA512
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAINecdsa-plain-RIPEMD160
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTIONwhirlpoolWithRSAEncryption
SB_CERT_ALGORITHM_ID_DSA_SHA224id-dsa-with-sha224
SB_CERT_ALGORITHM_ID_DSA_SHA256id-dsa-with-sha256
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSAid-ecdsa-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSAid-ecdsa-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSAid-ecdsa-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSAid-ecdsa-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAINid-ecdsa-plain-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAINid-ecdsa-plain-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAINid-ecdsa-plain-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAINid-ecdsa-plain-with-sha3-512
SB_CERT_ALGORITHM_ID_DSA_SHA3_224id-dsa-with-sha3-224
SB_CERT_ALGORITHM_ID_DSA_SHA3_256id-dsa-with-sha3-256
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSAid-ecdsa-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSAid-ecdsa-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSAid-ecdsa-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSAid-ecdsa-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSAid-ecdsa-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSAid-ecdsa-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSAid-ecdsa-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSAid-ecdsa-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAINid-ecdsa-plain-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAINid-ecdsa-plain-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAINid-ecdsa-plain-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAINid-ecdsa-plain-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAINid-ecdsa-plain-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAINid-ecdsa-plain-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAINid-ecdsa-plain-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAINid-ecdsa-plain-with-blake2b512
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224id-dsa-with-blake2s224
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256id-dsa-with-blake2s256
SB_CERT_ALGORITHM_EDDSA_ED25519id-Ed25519
SB_CERT_ALGORITHM_EDDSA_ED448id-Ed448
SB_CERT_ALGORITHM_EDDSA_ED25519_PHid-Ed25519ph
SB_CERT_ALGORITHM_EDDSA_ED448_PHid-Ed448ph
SB_CERT_ALGORITHM_EDDSAid-EdDSA
SB_CERT_ALGORITHM_EDDSA_SIGNATUREid-EdDSA-sig

Use the , , and properties to get more details about the key the certificate contains.

keyBits
Int32 (read-only)

Default Value: 0

Returns the length of the public key in bits.

This value indicates the length of the principal cryptographic parameter of the key, such as the length of the RSA modulus or ECDSA field. The key data returned by the or property would typically contain auxiliary values, and therefore be longer.

keyFingerprint
String (read-only)

Default Value: ""

Returns a SHA1 fingerprint of the public key contained in the certificate.

Note that the key fingerprint is different from the certificate fingerprint accessible via the property. The key fingeprint uniquely identifies the public key, and so can be the same for multiple certificates containing the same key.

keyUsage
Int32

Default Value: 0

Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.

This value is a bit mask of the following values:

ckuUnknown0x00000Unknown key usage

ckuDigitalSignature0x00001Digital signature

ckuNonRepudiation0x00002Non-repudiation

ckuKeyEncipherment0x00004Key encipherment

ckuDataEncipherment0x00008Data encipherment

ckuKeyAgreement0x00010Key agreement

ckuKeyCertSign0x00020Certificate signing

ckuCRLSign0x00040Revocation signing

ckuEncipherOnly0x00080Encipher only

ckuDecipherOnly0x00100Decipher only

ckuServerAuthentication0x00200Server authentication

ckuClientAuthentication0x00400Client authentication

ckuCodeSigning0x00800Code signing

ckuEmailProtection0x01000Email protection

ckuTimeStamping0x02000Timestamping

ckuOCSPSigning0x04000OCSP signing

ckuSmartCardLogon0x08000Smartcard logon

ckuKeyPurposeClientAuth0x10000Kerberos - client authentication

ckuKeyPurposeKDC0x20000Kerberos - KDC

Set this property before generating the certificate to propagate the key usage flags to the new certificate.

keyValid
Bool (read-only)

Default Value: False

Returns True if the certificate's key is cryptographically valid, and False otherwise.

ocspLocations
String

Default Value: ""

Locations of OCSP services that can be used to check this certificate's validity in real time, as recorded by the CA.

Set this property before calling the certificate manager's Generate method to propagate it to the new certificate.

The OCSP locations are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.

ocspNoCheck
Bool

Default Value: False

Accessor to the value of the certificate's ocsp-no-check extension.

origin
Int32 (read-only)

Default Value: 0

Returns the location that the certificate was taken or loaded from.

policyIDs
String

Default Value: ""

Contains identifiers (OIDs) of the applicable certificate policies.

The Certificate Policies extension identifies a sequence of policies under which the certificate has been issued, and which regulate its usage.

Set this property when generating a certificate to propagate the policies information to the new certificate.

The policies are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the policy element separator.

privateKeyBytes
Data (read-only)

Default Value: ""

Returns the certificate's private key in DER-encoded format. It is normal for this property to be empty if the private key is non-exportable, which, for example, is typical for certificates originating from hardware security devices.

privateKeyExists
Bool (read-only)

Default Value: False

Indicates whether the certificate has a usable private key associated with it. If it is set to True, the certificate can be used for private key operations, such as signing or decryption.

This property is independent from , and can be set to True even if the former is empty. This would imply that the private key is non-exportable, but still can be used for cryptographic operations.

privateKeyExtractable
Bool (read-only)

Default Value: False

Indicates whether the private key is extractable (exportable).

publicKeyBytes
Data (read-only)

Default Value: ""

Contains the certificate's public key in DER format.

This typically would contain an ASN.1-encoded public key value. The exact format depends on the type of the public key contained in the certificate.

qualified
Bool (read-only)

Default Value: False

Indicates whether the certificate is qualified.

This property is set to True if the certificate is confirmed by a Trusted List to be qualified.

qualifiedStatements
QualifiedStatementsTypes

Default Value: 0

Returns a simplified qualified status of the certificate.

qualifiers
String (read-only)

Default Value: ""

A list of qualifiers.

Contains a comma-separated list of qualifier aliases for the certificate, for example QCP-n-qscd,QCWithSSCD.

selfSigned
Bool (read-only)

Default Value: False

Indicates whether the certificate is self-signed (root) or signed by an external CA.

serialNumber
Data

Default Value: ""

Returns the certificate's serial number.

The serial number is a binary string that uniquely identifies a certificate among others issued by the same CA. According to the X.509 standard, the (issuer, serial number) pair should be globally unique to facilitate chain building.

sigAlgorithm
String (read-only)

Default Value: ""

Indicates the algorithm that was used by the CA to sign this certificate.

A signature algorithm typically combines hash and public key algorithms together, such as sha256WithRSAEncryption or ecdsa-with-SHA256.

source
PKISources (read-only)

Default Value: 0

Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.

subject
String (read-only)

Default Value: ""

The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name. This is part of a larger set of credentials available via .

subjectAlternativeName
String

Default Value: ""

Returns or sets the value of the Subject Alternative Name extension of the certificate.

Subject alternative names are used to provide additional names that are impractical to store in the main field. For example, it is often used to store all the domain names that a TLS certificate is authorized to protect.

The alternative names are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the element separator.

subjectKeyID
Data

Default Value: ""

Contains a unique identifier of the certificate's cryptographic key.

Subject Key Identifier is a certificate extension which allows a specific public key to be associated with a certificate holder. Typically, subject key identifiers of CA certificates are recorded as respective CA key identifiers in the subordinate certificates that they issue, which facilitates chain building.

The and properties of self-signed certificates typically contain identical values, as in that specific case, the issuer and the subject are the same entity.

subjectRDN
String

Default Value: ""

A list of Property=Value pairs that uniquely identify the certificate holder (subject).

Depending on the purpose of the certificate and the policies of the CA that issued it, the values included in the subject record may differ drastically and contain business or personal names, web URLs, email addresses, and other data.

Example: /C=US/O=Oranges and Apples, Inc./OU=Accounts Receivable/1.2.3.4.5=Value with unknown OID/CN=Margaret Watkins.

valid
Bool (read-only)

Default Value: False

Indicates whether or not the signature over the certificate or the request is valid and matches the public key contained in the CA certificate/request.

validFrom
String

Default Value: ""

The time point at which the certificate becomes valid, in UTC.

validTo
String

Default Value: ""

The time point at which the certificate expires, in UTC.

Constructors

public init(stream: )

Loads the X.509 certificate from a stream. Stream is a stream containing the certificate data.

public init()

Creates a new object with default field values.

CRL Type

Represents a Certificate Revocation List.

Remarks

CRLs store information about revoked certificates, i.e., certificates that have been identified as invalid by their issuing certificate authority (CA) for any number of reasons.

Each CRL object lists certificates from a single CA and identifies them by their serial numbers. A CA may or may not publish a CRL, may publish several CRLs, or may publish the same CRL in multiple locations.

Unlike OCSP responses, CRLs only list certificates that have been revoked. They do not list certificates that are still valid.

The following fields are available:

Fields

bytes
Data (read-only)

Default Value: ""

Returns the raw CRL data in DER format.

caKeyID
Data

Default Value: ""

A unique identifier (fingerprint) of the CA certificate's private key, if present in the CRL.

entryCount
Int32 (read-only)

Default Value: 0

Returns the number of certificate status entries in the CRL.

handle
Int64

Default Value: 0

Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.

When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object after such operation. pdfSigner.setSigningCertHandle(certMgr.getCertHandle());

issuer
String (read-only)

Default Value: ""

The common name of the CRL issuer (CA), typically a company name.

issuerRDN
String (read-only)

Default Value: ""

A collection of information, in the form of [OID, Value] pairs, uniquely identifying the CRL issuer.

location
String (read-only)

Default Value: ""

The URL that the CRL was downloaded from.

nextUpdate
String

Default Value: ""

The planned time and date of the next version of this CRL to be published.

sigAlgorithm
String

Default Value: "0"

The public key algorithm that was used by the CA to sign this CRL.

source
PKISources (read-only)

Default Value: 0

Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.

tbs
Data (read-only)

Default Value: ""

The to-be-signed part of the CRL (the CRL without the signature part).

thisUpdate
String

Default Value: ""

The date and time at which this version of the CRL was published.

Constructors

public init()

Creates an empty CRL object.

CryptoKey Type

This container represents a cryptographic key.

Remarks

This type is a universal placeholder for cryptographic keys.

The following fields are available:

Fields

algorithm
String

Default Value: ""

The algorithm of the cryptographic key. A cryptokey object may hold either symmetric, MAC, or public key. Public key algorithms: RSA, ECDSA, Elgamal, DH.

SB_SYMMETRIC_ALGORITHM_RC4RC4
SB_SYMMETRIC_ALGORITHM_DESDES
SB_SYMMETRIC_ALGORITHM_3DES3DES
SB_SYMMETRIC_ALGORITHM_RC2RC2
SB_SYMMETRIC_ALGORITHM_AES128AES128
SB_SYMMETRIC_ALGORITHM_AES192AES192
SB_SYMMETRIC_ALGORITHM_AES256AES256
SB_SYMMETRIC_ALGORITHM_IDENTITYIdentity
SB_SYMMETRIC_ALGORITHM_BLOWFISHBlowfish
SB_SYMMETRIC_ALGORITHM_CAST128CAST128
SB_SYMMETRIC_ALGORITHM_IDEAIDEA
SB_SYMMETRIC_ALGORITHM_TWOFISHTwofish
SB_SYMMETRIC_ALGORITHM_TWOFISH128Twofish128
SB_SYMMETRIC_ALGORITHM_TWOFISH192Twofish192
SB_SYMMETRIC_ALGORITHM_TWOFISH256Twofish256
SB_SYMMETRIC_ALGORITHM_CAMELLIACamellia
SB_SYMMETRIC_ALGORITHM_CAMELLIA128Camellia128
SB_SYMMETRIC_ALGORITHM_CAMELLIA192Camellia192
SB_SYMMETRIC_ALGORITHM_CAMELLIA256Camellia256
SB_SYMMETRIC_ALGORITHM_SERPENTSerpent
SB_SYMMETRIC_ALGORITHM_SERPENT128Serpent128
SB_SYMMETRIC_ALGORITHM_SERPENT192Serpent192
SB_SYMMETRIC_ALGORITHM_SERPENT256Serpent256
SB_SYMMETRIC_ALGORITHM_SEEDSEED
SB_SYMMETRIC_ALGORITHM_RABBITRabbit
SB_SYMMETRIC_ALGORITHM_SYMMETRICGeneric
SB_SYMMETRIC_ALGORITHM_GOST_28147_1989GOST-28147-1989
SB_SYMMETRIC_ALGORITHM_CHACHA20ChaCha20
SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_MD2MD2
SB_HASH_ALGORITHM_MD4MD4
SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_CRC32CRC32
SB_HASH_ALGORITHM_SSL3SSL3
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_POLY1305POLY1305
SB_HASH_ALGORITHM_SHA3_224SHA3_224
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512
SB_HASH_ALGORITHM_BLAKE2S_128BLAKE2S_128
SB_HASH_ALGORITHM_BLAKE2S_160BLAKE2S_160
SB_HASH_ALGORITHM_BLAKE2S_224BLAKE2S_224
SB_HASH_ALGORITHM_BLAKE2S_256BLAKE2S_256
SB_HASH_ALGORITHM_BLAKE2B_160BLAKE2B_160
SB_HASH_ALGORITHM_BLAKE2B_256BLAKE2B_256
SB_HASH_ALGORITHM_BLAKE2B_384BLAKE2B_384
SB_HASH_ALGORITHM_BLAKE2B_512BLAKE2B_512
SB_HASH_ALGORITHM_SHAKE_128SHAKE_128
SB_HASH_ALGORITHM_SHAKE_256SHAKE_256
SB_HASH_ALGORITHM_SHAKE_128_LENSHAKE_128_LEN
SB_HASH_ALGORITHM_SHAKE_256_LENSHAKE_256_LEN

bits
Int32 (read-only)

Default Value: 0

The length of the key in bits.

curve
String

Default Value: ""

This property specifies the name of the curve the EC key is built on.

exportable
Bool (read-only)

Default Value: False

Returns True if the key is exportable (can be serialized into an array of bytes), and False otherwise.

fingerprint
String (read-only)

Default Value: ""

Contains the fingerprint (a hash imprint) of this key.

handle
Int64

Default Value: 0

Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.

When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object after such operation. pdfSigner.setSigningCertHandle(certMgr.getCertHandle());

id
Data

Default Value: ""

Provides access to a storage-specific key identifier. Key identifiers are used by cryptographic providers to refer to a particular key and/or distinguish between different keys. They are typically unique within a storage, but there is no guarantee that a particular cryptoprovider will conform to that (or will assign any key IDs at all).

iv
Data

Default Value: ""

The initialization vector (IV) of a symmetric key. This is normally a public part of a symmetric key, the idea of which is to introduce randomness to the encrypted data and/or serve as a first block in chaining ciphers.

key
Data (read-only)

Default Value: ""

The byte array representation of the key. This may not be available for non- keys.

nonce
Data

Default Value: ""

A nonce value associated with a key. It is similar to IV, but its only purpose is to introduce randomness.

private_
Bool (read-only)

Default Value: False

Returns True if the object hosts a private key, and False otherwise.

public_
Bool (read-only)

Default Value: False

Returns True if the object hosts a public key, and False otherwise.

subject
Data

Default Value: ""

Returns the key subject. This is a cryptoprovider-dependent value, which normally aims to provide some user-friendly insight into the key owner.

symmetric
Bool (read-only)

Default Value: False

Returns True if the object contains a symmetric key, and False otherwise.

valid
Bool (read-only)

Default Value: False

Returns True if this key is valid. The term Valid highly depends on the kind of the key being stored. A symmetric key is considered valid if its length fits the algorithm being set. The validity of an RSA key also ensures that the RSA key elements (primes, exponents, and modulus) are consistent.

Constructors

public init()

Creates an empty crypto key object.

ExternalCrypto Type

Specifies the parameters of external cryptographic calls.

Remarks

External cryptocalls are used in a Distributed Cryptography (DC) subsystem, which allows the delegation of security operations to the remote agent. For instance, it can be used to compute the signature value on the server, while retaining the client's private key locally.

The following fields are available:

Fields

asyncDocumentID
String

Default Value: ""

Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.

Use this property when working with multi-signature DCAuth requests and responses to uniquely identify documents signed within a larger batch. On the completion stage, this value helps the signing component identify the correct signature in the returned batch of responses.

If using batched requests, make sure to set this property to the same value on both the pre-signing (SignAsyncBegin) and completion (SignAsyncEnd) stages.

customParams
String

Default Value: ""

Custom parameters to be passed to the signing service (uninterpreted).

data
String

Default Value: ""

Additional data to be included in the async state and mirrored back by the requestor.

externalHashCalculation
Bool

Default Value: False

Specifies whether the message hash is to be calculated at the external endpoint. Please note that this mode is not supported by the DCAuth class.

If set to true, the class will pass a few kilobytes of to-be-signed data from the document to the OnExternalSign event. This only applies when SignExternal() is called.

hashAlgorithm
String

Default Value: "SHA256"

Specifies the request's signature hash algorithm.

SB_HASH_ALGORITHM_SHA1SHA1
SB_HASH_ALGORITHM_SHA224SHA224
SB_HASH_ALGORITHM_SHA256SHA256
SB_HASH_ALGORITHM_SHA384SHA384
SB_HASH_ALGORITHM_SHA512SHA512
SB_HASH_ALGORITHM_MD2MD2
SB_HASH_ALGORITHM_MD4MD4
SB_HASH_ALGORITHM_MD5MD5
SB_HASH_ALGORITHM_RIPEMD160RIPEMD160
SB_HASH_ALGORITHM_CRC32CRC32
SB_HASH_ALGORITHM_SSL3SSL3
SB_HASH_ALGORITHM_GOST_R3411_1994GOST1994
SB_HASH_ALGORITHM_WHIRLPOOLWHIRLPOOL
SB_HASH_ALGORITHM_POLY1305POLY1305
SB_HASH_ALGORITHM_SHA3_224SHA3_224
SB_HASH_ALGORITHM_SHA3_256SHA3_256
SB_HASH_ALGORITHM_SHA3_384SHA3_384
SB_HASH_ALGORITHM_SHA3_512SHA3_512
SB_HASH_ALGORITHM_BLAKE2S_128BLAKE2S_128
SB_HASH_ALGORITHM_BLAKE2S_160BLAKE2S_160
SB_HASH_ALGORITHM_BLAKE2S_224BLAKE2S_224
SB_HASH_ALGORITHM_BLAKE2S_256BLAKE2S_256
SB_HASH_ALGORITHM_BLAKE2B_160BLAKE2B_160
SB_HASH_ALGORITHM_BLAKE2B_256BLAKE2B_256
SB_HASH_ALGORITHM_BLAKE2B_384BLAKE2B_384
SB_HASH_ALGORITHM_BLAKE2B_512BLAKE2B_512
SB_HASH_ALGORITHM_SHAKE_128SHAKE_128
SB_HASH_ALGORITHM_SHAKE_256SHAKE_256
SB_HASH_ALGORITHM_SHAKE_128_LENSHAKE_128_LEN
SB_HASH_ALGORITHM_SHAKE_256_LENSHAKE_256_LEN

keyID
String

Default Value: ""

The ID of the pre-shared key used for DC request authentication.

Asynchronous DCAuth-driven communication requires that parties authenticate each other with a secret pre-shared cryptographic key. This provides an extra protection layer for the protocol and diminishes the risk of the private key becoming abused by foreign parties. Use this property to provide the pre-shared key identifier, and use to pass the key itself.

The same KeyID/KeySecret pair should be used on the DCAuth side for the signing requests to be accepted.

Note: The KeyID/KeySecret scheme is very similar to the AuthKey scheme used in various Cloud service providers to authenticate users.

Example: signer.ExternalCrypto.KeyID = "MainSigningKey"; signer.ExternalCrypto.KeySecret = "abcdef0123456789";

keySecret
String

Default Value: ""

The pre-shared key used for DC request authentication. This key must be set and match the key used by the DCAuth counterpart for the scheme to work.

Read more about configuring authentication in the topic.

method
AsyncSignMethods

Default Value: 0

Specifies the asynchronous signing method. This is typically defined by the DC server capabilities and setup.

Available options:

asmdPKCS10
asmdPKCS71

mode
ExternalCryptoModes

Default Value: 0

Specifies the external cryptography mode.

Available options:

ecmDefaultThe default value (0)
ecmDisabledDo not use DC or external signing (1)
ecmGenericGeneric external signing with the OnExternalSign event (2)
ecmDCAuthDCAuth signing (3)
ecmDCAuthJSONDCAuth signing in JSON format (4)

publicKeyAlgorithm
String

Default Value: ""

Provide the public key algorithm here if the certificate is not available on the pre-signing stage.

SB_CERT_ALGORITHM_ID_RSA_ENCRYPTIONrsaEncryption
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTIONmd2withRSAEncryption
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTIONmd5withRSAEncryption
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTIONsha1withRSAEncryption
SB_CERT_ALGORITHM_ID_DSAid-dsa
SB_CERT_ALGORITHM_ID_DSA_SHA1id-dsa-with-sha1
SB_CERT_ALGORITHM_DH_PUBLICdhpublicnumber
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTIONsha224WithRSAEncryption
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTIONsha256WithRSAEncryption
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTIONsha384WithRSAEncryption
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTIONsha512WithRSAEncryption
SB_CERT_ALGORITHM_ID_RSAPSSid-RSASSA-PSS
SB_CERT_ALGORITHM_ID_RSAOAEPid-RSAES-OAEP
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160ripemd160withRSA
SB_CERT_ALGORITHM_ID_ELGAMALelGamal
SB_CERT_ALGORITHM_SHA1_ECDSAecdsa-with-SHA1
SB_CERT_ALGORITHM_RECOMMENDED_ECDSAecdsa-recommended
SB_CERT_ALGORITHM_SHA224_ECDSAecdsa-with-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSAecdsa-with-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSAecdsa-with-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSAecdsa-with-SHA512
SB_CERT_ALGORITHM_ECid-ecPublicKey
SB_CERT_ALGORITHM_SPECIFIED_ECDSAecdsa-specified
SB_CERT_ALGORITHM_GOST_R3410_1994id-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3410_2001id-GostR3410-2001
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994id-GostR3411-94-with-GostR3410-94
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001id-GostR3411-94-with-GostR3410-2001
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAINecdsa-plain-SHA1
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAINecdsa-plain-SHA224
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAINecdsa-plain-SHA256
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAINecdsa-plain-SHA384
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAINecdsa-plain-SHA512
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAINecdsa-plain-RIPEMD160
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTIONwhirlpoolWithRSAEncryption
SB_CERT_ALGORITHM_ID_DSA_SHA224id-dsa-with-sha224
SB_CERT_ALGORITHM_ID_DSA_SHA256id-dsa-with-sha256
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSAid-ecdsa-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSAid-ecdsa-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSAid-ecdsa-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSAid-ecdsa-with-sha3-512
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAINid-ecdsa-plain-with-sha3-224
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAINid-ecdsa-plain-with-sha3-256
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAINid-ecdsa-plain-with-sha3-384
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAINid-ecdsa-plain-with-sha3-512
SB_CERT_ALGORITHM_ID_DSA_SHA3_224id-dsa-with-sha3-224
SB_CERT_ALGORITHM_ID_DSA_SHA3_256id-dsa-with-sha3-256
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTIONid-rsassa-pkcs1-v1_5-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSAid-ecdsa-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSAid-ecdsa-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSAid-ecdsa-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSAid-ecdsa-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSAid-ecdsa-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSAid-ecdsa-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSAid-ecdsa-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSAid-ecdsa-with-blake2b512
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAINid-ecdsa-plain-with-blake2s128
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAINid-ecdsa-plain-with-blake2s160
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAINid-ecdsa-plain-with-blake2s224
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAINid-ecdsa-plain-with-blake2s256
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAINid-ecdsa-plain-with-blake2b160
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAINid-ecdsa-plain-with-blake2b256
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAINid-ecdsa-plain-with-blake2b384
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAINid-ecdsa-plain-with-blake2b512
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224id-dsa-with-blake2s224
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256id-dsa-with-blake2s256
SB_CERT_ALGORITHM_EDDSA_ED25519id-Ed25519
SB_CERT_ALGORITHM_EDDSA_ED448id-Ed448
SB_CERT_ALGORITHM_EDDSA_ED25519_PHid-Ed25519ph
SB_CERT_ALGORITHM_EDDSA_ED448_PHid-Ed448ph
SB_CERT_ALGORITHM_EDDSAid-EdDSA
SB_CERT_ALGORITHM_EDDSA_SIGNATUREid-EdDSA-sig

Constructors

public init()

Creates a new ExternalCrypto object with default field values.

KMIPObject Type

A container representing a KMIP object.

Remarks

KMIPObject represents an object before it is committed to the KMIP server or after it has been read from there. Certificates, certificate requests, keys, and data objects are examples of KMIP objects.

The following fields are available:

Fields

bytes
Data

Default Value: ""

This property is an accessor to the object's binary representation (the certificate body, the key data, the data object contents).

Use this setting to access the object data after reading it from the server or set it before committing the object to the server.

extractable
Bool

Default Value: False

Specifies the extractable attribute of the object.

Check this property after retrieving an object from the server or before committing an object to the server.

fingerprint
Data

Default Value: ""

Returns or sets the fingerprint attribute of the object.

Check this property after retrieving an object from the KMIP server or before sending it to the server.

keyAlgorithm
String

Default Value: ""

Specifies the cryptographic algorithm of the object.

Check or set the algorithm after receiving the object from the server or before uploading it.

The following algorithms are supported: RSA, DSA, EC, ECDSA, DH, ECDH, DES, 3DES, AES, RC2, RC4, Idea, Blowfish, Camellia, Twofish. Note that only key objects support this attribute.

keyBits
Int32 (read-only)

Default Value: 0

Returns or sets the length of the cryptographic key, in bits.

Please note that not all types of objects support this attribute.

keyUsage
Int32

Default Value: 0

Returns or sets the key usage flags of the certificate or key object. Please note only certain objects support this attribute.

Key usage flags

kuSign0x00001The object can be used for signing

kuVerify0x00002The object can be used for verifying signatures

kuEncrypt0x00004The object has an encryption capability

kuDecrypt0x00008The object has a decryption capability

kuWrapKey0x00010The object supports key wrapping

kuUnwrapKey0x00020The object supports key unwrapping

kuExport0x00040The object supports exports

kuMacGenerate0x00080The object can be used for generating MAC imprints

kuMacVerify0x00100The object can be used for verifying MAC imprints

kuDeriveKey0x00200The object supports key derivation

kuContentCommitment0x00400The object has content commitment capability

kuKeyAgreement0x00800The object can be used for key agreement

kuCertificateSign0x01000The object can be used for signing certificates

kuCrlSign0x02000The object can be used for signing CRLs

kuGenerateCryptogram0x04000The object can be used for generating cryptograms

kuValidateCryptogram0x08000The object can be used for validation of cryptograms

kuTranslateEncrypt0x10000The object supports encryption key translation

kuTranslateDecrypt0x20000The object supports decryption key translation

kuTranslateWrap0x40000The object supports wrapping key translation

kuTranslateUnwrap0x80000The object supports unwrapping key translation

objectGroup
String

Default Value: ""

Specifies the object group identifier. Object groups are used to match related objects, such as certificates and their public and private key, to each other.

objectId
String (read-only)

Default Value: ""

ObjectId is a unique identifier of the object assigned by the server-side key management system.

KMIP objects are addressed and accessed by their IDs. The identifier is required to be unique within the specific server.

objectType
KMIPObjectTypes

Default Value: 0

The type of this object.

otUnknown0x00
otCertificate0x01
otSymmetricKey0x02
otPublicKey0x04
otPrivateKey0x08

sensitive
Bool

Default Value: False

Contains the Sensitive attribute of this object.

Check or set this property to learn or apply the value to the Sensitive attribute.

size
Int32 (read-only)

Default Value: 0

Returns the amount of memory or space that this object occupies on the server.

Check this property to find out the amount of bytes this object consumes.

subject
String

Default Value: ""

Specifies the subject attribute of the object.

Use this object to get or set the subject (owner) attribute of a KMIP object.

timestamp
String (read-only)

Default Value: ""

Returns the time value associated with this object.

Use this setting to learn the time value associated with this object.

Constructors

public init()

Creates a new KMIP object with the default field values.

OCSPResponse Type

Represents a single OCSP response originating from an OCSP responder.

Remarks

OCSP is a protocol that allows verification of certificate status in real-time, and is an alternative to Certificate Revocation Lists (CRLs).

An OCSP response is a snapshot of the certificate status at a given time.

The following fields are available:

Fields

bytes
Data (read-only)

Default Value: ""

A buffer containing the raw OCSP response data.

entryCount
Int32 (read-only)

Default Value: 0

The number of SingleResponse elements contained in this OCSP response. Each SingleResponse element corresponds to a certificate status.

handle
Int64

Default Value: 0

Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.

When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object after such operation. pdfSigner.setSigningCertHandle(certMgr.getCertHandle());

issuer
String (read-only)

Default Value: ""

Indicates the issuer of this response (a CA or its authorized representative).

issuerRDN
String (read-only)

Default Value: ""

Indicates the RDN of the issuer of this response (a CA or its authorized representative).

location
String (read-only)

Default Value: ""

The location of the OCSP responder.

producedAt
String

Default Value: ""

Specifies the time when the response was produced, in UTC.

sigAlgorithm
String

Default Value: "0"

The public key algorithm that was used by the CA to sign this OCSP response.

source
PKISources (read-only)

Default Value: 0

Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.

Constructors

public init()

Creates an empty OCSP response object.

ProxySettings Type

A container for proxy server settings.

Remarks

This type exposes a collection of properties for tuning up the proxy server configuration.

The following fields are available:

Fields

address
String

Default Value: ""

The IP address of the proxy server.

authentication
ProxyAuthTypes

Default Value: 0

The authentication type used by the proxy server.

patNoAuthentication0
patBasic1
patDigest2
patNTLM3

password
String

Default Value: ""

The password to authenticate to the proxy server.

port
Int32

Default Value: 0

The port on the proxy server to connect to.

proxyType
ProxyTypes

Default Value: 0

The type of the proxy server.

cptNone0
cptSocks41
cptSocks52
cptWebTunnel3
cptHTTP4

requestHeaders
String

Default Value: ""

Contains HTTP request headers for WebTunnel and HTTP proxy.

responseBody
String

Default Value: ""

Contains the HTTP or HTTPS (WebTunnel) proxy response body.

responseHeaders
String

Default Value: ""

Contains response headers received from an HTTP or HTTPS (WebTunnel) proxy server.

useIPv6
Bool

Default Value: False

Specifies whether IPv6 should be used when connecting through the proxy.

username
String

Default Value: ""

Specifies the username credential for proxy authentication.

Constructors

public init()

Creates a new ProxySettings object.

SocketSettings Type

A container for the socket settings.

Remarks

This type is a container for socket-layer parameters.

The following fields are available:

Fields

dnsMode
DNSResolveModes

Default Value: 0

Selects the DNS resolver to use: the component's (secure) built-in one, or the one provided by the system.

dmAuto0
dmPlatform1
dmOwn2
dmOwnSecure3

dnsPort
Int32

Default Value: 0

Specifies the port number to be used for sending queries to the DNS server.

dnsQueryTimeout
Int32

Default Value: 0

The timeout (in milliseconds) for each DNS query. The value of 0 indicates an infinite timeout.

dnsServers
String

Default Value: ""

The addresses of DNS servers to use for address resolution, separated by commas or semicolons.

dnsTotalTimeout
Int32

Default Value: 0

The timeout (in milliseconds) for the whole resolution process. The value of 0 indicates an infinite timeout.

incomingSpeedLimit
Int32

Default Value: 0

The maximum number of bytes to read from the socket, per second.

localAddress
String

Default Value: ""

The local network interface to bind the socket to.

localPort
Int32

Default Value: 0

The local port number to bind the socket to.

outgoingSpeedLimit
Int32

Default Value: 0

The maximum number of bytes to write to the socket, per second.

timeout
Int32

Default Value: 60000

The maximum period of waiting, in milliseconds, after which the socket operation is considered unsuccessful.

If Timeout is set to 0, a socket operation will expire after the system-default timeout (2 hrs 8 min for TCP stack).

useIPv6
Bool

Default Value: False

Enables or disables IP protocol version 6.

Constructors

public init()

Creates a new SocketSettings object.

TLSConnectionInfo Type

Contains information about a network connection.

Remarks

Use this property to check various details of the network connection. These include the total amounts of data transferred, the availability of TLS, and its parameters.

The following fields are available:

Fields

aeadCipher
Bool (read-only)

Default Value: False

Indicates whether the encryption algorithm used is an AEAD cipher.

chainValidationDetails
Int32 (read-only)

Default Value: 0

The details of a certificate chain validation outcome. They may often suggest the reasons that contributed to the overall validation result.

Returns a bit mask of the following options:

cvrBadData0x0001One or more certificates in the validation path are malformed

cvrRevoked0x0002One or more certificates are revoked

cvrNotYetValid0x0004One or more certificates are not yet valid

cvrExpired0x0008One or more certificates are expired

cvrInvalidSignature0x0010A certificate contains a non-valid digital signature

cvrUnknownCA0x0020A CA certificate for one or more certificates has not been found (chain incomplete)

cvrCAUnauthorized0x0040One of the CA certificates are not authorized to act as CA

cvrCRLNotVerified0x0080One or more CRLs could not be verified

cvrOCSPNotVerified0x0100One or more OCSP responses could not be verified

cvrIdentityMismatch0x0200The identity protected by the certificate (a TLS endpoint or an e-mail addressee) does not match what is recorded in the certificate

cvrNoKeyUsage0x0400A mandatory key usage is not enabled in one of the chain certificates

cvrBlocked0x0800One or more certificates are blocked

cvrFailure0x1000General validation failure

cvrChainLoop0x2000Chain loop: one of the CA certificates recursively signs itself

cvrWeakAlgorithm0x4000A weak algorithm is used in one of certificates or revocation elements

cvrUserEnforced0x8000The chain was considered invalid following intervention from a user code

chainValidationResult
ChainValidities (read-only)

Default Value: 0

The outcome of a certificate chain validation routine.

Available options:

cvtValid0The chain is valid

cvtValidButUntrusted1The chain is valid, but the root certificate is not trusted

cvtInvalid2The chain is not valid (some of certificates are revoked, expired, or contain an invalid signature)

cvtCantBeEstablished3The validity of the chain cannot be established because of missing or unavailable validation information (certificates, CRLs, or OCSP responses)

Use the ValidationLog property to access the detailed validation log.

ciphersuite
String (read-only)

Default Value: ""

The cipher suite employed by this connection.

For TLS connections, this property returns the ciphersuite that was/is employed by the connection.

clientAuthenticated
Bool (read-only)

Default Value: False

Specifies whether client authentication was performed during this connection.

clientAuthRequested
Bool (read-only)

Default Value: False

Specifies whether client authentication was requested during this connection.

connectionEstablished
Bool (read-only)

Default Value: False

Indicates whether the connection has been established fully.

connectionID
Data (read-only)

Default Value: ""

The unique identifier assigned to this connection.

digestAlgorithm
String (read-only)

Default Value: ""

The digest algorithm used in a TLS-enabled connection.

encryptionAlgorithm
String (read-only)

Default Value: ""

The symmetric encryption algorithm used in a TLS-enabled connection.

exportable
Bool (read-only)

Default Value: False

Indicates whether a TLS connection uses a reduced-strength exportable cipher.

id
Int64 (read-only)

Default Value: -1

The client connection's unique identifier. This value is used throughout to refer to a particular client connection.

keyExchangeAlgorithm
String (read-only)

Default Value: ""

The key exchange algorithm used in a TLS-enabled connection.

keyExchangeKeyBits
Int32 (read-only)

Default Value: 0

The length of the key exchange key of a TLS-enabled connection.

namedECCurve
String (read-only)

Default Value: ""

The elliptic curve used in this connection.

pfsCipher
Bool (read-only)

Default Value: False

Indicates whether the chosen ciphersuite provides perfect forward secrecy (PFS).

preSharedIdentity
String

Default Value: ""

Specifies the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.

preSharedIdentityHint
String (read-only)

Default Value: ""

A hint professed by the server to help the client select the PSK identity to use.

publicKeyBits
Int32 (read-only)

Default Value: 0

The length of the public key.

remoteAddress
String (read-only)

Default Value: ""

The client's IP address.

remotePort
Int32 (read-only)

Default Value: 0

The remote port of the client connection.

resumedSession
Bool (read-only)

Default Value: False

Indicates whether a TLS-enabled connection was spawned from another TLS connection

secureConnection
Bool (read-only)

Default Value: False

Indicates whether TLS or SSL is enabled for this connection.

serverAuthenticated
Bool (read-only)

Default Value: False

Indicates whether server authentication was performed during a TLS-enabled connection.

signatureAlgorithm
String (read-only)

Default Value: ""

The signature algorithm used in a TLS handshake.

symmetricBlockSize
Int32 (read-only)

Default Value: 0

The block size of the symmetric algorithm used.

symmetricKeyBits
Int32 (read-only)

Default Value: 0

The key length of the symmetric algorithm used.

totalBytesReceived
Int64 (read-only)

Default Value: 0

The total number of bytes received over this connection.

totalBytesSent
Int64 (read-only)

Default Value: 0

The total number of bytes sent over this connection.

validationLog
String (read-only)

Default Value: ""

Contains the server certificate's chain validation log. This information may be very useful in investigating chain validation failures.

version
String (read-only)

Default Value: ""

Indicates the version of SSL/TLS protocol negotiated during this connection.

Constructors

public init()

Creates a new TLSConnectionInfo object.

TLSSettings Type

A container for TLS connection settings.

Remarks

The TLS (Transport Layer Security) protocol provides security for information exchanged over insecure connections such as TCP/IP.

The following fields are available:

Fields

autoValidateCertificates
Bool

Default Value: True

Specifies whether server-side TLS certificates should be validated automatically using internal validation rules.

baseConfiguration
SecureTransportPredefinedConfigurations

Default Value: 0

Selects the base configuration for the TLS settings. Several profiles are offered and tuned up for different purposes, such as high security or higher compatibility.

stpcDefault0
stpcCompatible1
stpcComprehensiveInsecure2
stpcHighlySecure3

ciphersuites
String

Default Value: ""

A list of ciphersuites separated with commas or semicolons. Each ciphersuite in the list may be prefixed with a minus sign (-) to indicate that the ciphersuite should be disabled rather than enabled. Besides the specific ciphersuite modifiers, this property supports the all (and -all) aliases, allowing all ciphersuites to be blanketly enabled or disabled at once.

Note: the list of ciphersuites provided to this property alters the baseline list of ciphersuites as defined by . Remember to start your ciphersuite string with -all; if you need to only enable a specific fixed set of ciphersuites. The list of supported ciphersuites is provided below:

  • NULL_NULL_NULL
  • RSA_NULL_MD5
  • RSA_NULL_SHA
  • RSA_RC4_MD5
  • RSA_RC4_SHA
  • RSA_RC2_MD5
  • RSA_IDEA_MD5
  • RSA_IDEA_SHA
  • RSA_DES_MD5
  • RSA_DES_SHA
  • RSA_3DES_MD5
  • RSA_3DES_SHA
  • RSA_AES128_SHA
  • RSA_AES256_SHA
  • DH_DSS_DES_SHA
  • DH_DSS_3DES_SHA
  • DH_DSS_AES128_SHA
  • DH_DSS_AES256_SHA
  • DH_RSA_DES_SHA
  • DH_RSA_3DES_SHA
  • DH_RSA_AES128_SHA
  • DH_RSA_AES256_SHA
  • DHE_DSS_DES_SHA
  • DHE_DSS_3DES_SHA
  • DHE_DSS_AES128_SHA
  • DHE_DSS_AES256_SHA
  • DHE_RSA_DES_SHA
  • DHE_RSA_3DES_SHA
  • DHE_RSA_AES128_SHA
  • DHE_RSA_AES256_SHA
  • DH_ANON_RC4_MD5
  • DH_ANON_DES_SHA
  • DH_ANON_3DES_SHA
  • DH_ANON_AES128_SHA
  • DH_ANON_AES256_SHA
  • RSA_RC2_MD5_EXPORT
  • RSA_RC4_MD5_EXPORT
  • RSA_DES_SHA_EXPORT
  • DH_DSS_DES_SHA_EXPORT
  • DH_RSA_DES_SHA_EXPORT
  • DHE_DSS_DES_SHA_EXPORT
  • DHE_RSA_DES_SHA_EXPORT
  • DH_ANON_RC4_MD5_EXPORT
  • DH_ANON_DES_SHA_EXPORT
  • RSA_CAMELLIA128_SHA
  • DH_DSS_CAMELLIA128_SHA
  • DH_RSA_CAMELLIA128_SHA
  • DHE_DSS_CAMELLIA128_SHA
  • DHE_RSA_CAMELLIA128_SHA
  • DH_ANON_CAMELLIA128_SHA
  • RSA_CAMELLIA256_SHA
  • DH_DSS_CAMELLIA256_SHA
  • DH_RSA_CAMELLIA256_SHA
  • DHE_DSS_CAMELLIA256_SHA
  • DHE_RSA_CAMELLIA256_SHA
  • DH_ANON_CAMELLIA256_SHA
  • PSK_RC4_SHA
  • PSK_3DES_SHA
  • PSK_AES128_SHA
  • PSK_AES256_SHA
  • DHE_PSK_RC4_SHA
  • DHE_PSK_3DES_SHA
  • DHE_PSK_AES128_SHA
  • DHE_PSK_AES256_SHA
  • RSA_PSK_RC4_SHA
  • RSA_PSK_3DES_SHA
  • RSA_PSK_AES128_SHA
  • RSA_PSK_AES256_SHA
  • RSA_SEED_SHA
  • DH_DSS_SEED_SHA
  • DH_RSA_SEED_SHA
  • DHE_DSS_SEED_SHA
  • DHE_RSA_SEED_SHA
  • DH_ANON_SEED_SHA
  • SRP_SHA_3DES_SHA
  • SRP_SHA_RSA_3DES_SHA
  • SRP_SHA_DSS_3DES_SHA
  • SRP_SHA_AES128_SHA
  • SRP_SHA_RSA_AES128_SHA
  • SRP_SHA_DSS_AES128_SHA
  • SRP_SHA_AES256_SHA
  • SRP_SHA_RSA_AES256_SHA
  • SRP_SHA_DSS_AES256_SHA
  • ECDH_ECDSA_NULL_SHA
  • ECDH_ECDSA_RC4_SHA
  • ECDH_ECDSA_3DES_SHA
  • ECDH_ECDSA_AES128_SHA
  • ECDH_ECDSA_AES256_SHA
  • ECDHE_ECDSA_NULL_SHA
  • ECDHE_ECDSA_RC4_SHA
  • ECDHE_ECDSA_3DES_SHA
  • ECDHE_ECDSA_AES128_SHA
  • ECDHE_ECDSA_AES256_SHA
  • ECDH_RSA_NULL_SHA
  • ECDH_RSA_RC4_SHA
  • ECDH_RSA_3DES_SHA
  • ECDH_RSA_AES128_SHA
  • ECDH_RSA_AES256_SHA
  • ECDHE_RSA_NULL_SHA
  • ECDHE_RSA_RC4_SHA
  • ECDHE_RSA_3DES_SHA
  • ECDHE_RSA_AES128_SHA
  • ECDHE_RSA_AES256_SHA
  • ECDH_ANON_NULL_SHA
  • ECDH_ANON_RC4_SHA
  • ECDH_ANON_3DES_SHA
  • ECDH_ANON_AES128_SHA
  • ECDH_ANON_AES256_SHA
  • RSA_NULL_SHA256
  • RSA_AES128_SHA256
  • RSA_AES256_SHA256
  • DH_DSS_AES128_SHA256
  • DH_RSA_AES128_SHA256
  • DHE_DSS_AES128_SHA256
  • DHE_RSA_AES128_SHA256
  • DH_DSS_AES256_SHA256
  • DH_RSA_AES256_SHA256
  • DHE_DSS_AES256_SHA256
  • DHE_RSA_AES256_SHA256
  • DH_ANON_AES128_SHA256
  • DH_ANON_AES256_SHA256
  • RSA_AES128_GCM_SHA256
  • RSA_AES256_GCM_SHA384
  • DHE_RSA_AES128_GCM_SHA256
  • DHE_RSA_AES256_GCM_SHA384
  • DH_RSA_AES128_GCM_SHA256
  • DH_RSA_AES256_GCM_SHA384
  • DHE_DSS_AES128_GCM_SHA256
  • DHE_DSS_AES256_GCM_SHA384
  • DH_DSS_AES128_GCM_SHA256
  • DH_DSS_AES256_GCM_SHA384
  • DH_ANON_AES128_GCM_SHA256
  • DH_ANON_AES256_GCM_SHA384
  • ECDHE_ECDSA_AES128_SHA256
  • ECDHE_ECDSA_AES256_SHA384
  • ECDH_ECDSA_AES128_SHA256
  • ECDH_ECDSA_AES256_SHA384
  • ECDHE_RSA_AES128_SHA256
  • ECDHE_RSA_AES256_SHA384
  • ECDH_RSA_AES128_SHA256
  • ECDH_RSA_AES256_SHA384
  • ECDHE_ECDSA_AES128_GCM_SHA256
  • ECDHE_ECDSA_AES256_GCM_SHA384
  • ECDH_ECDSA_AES128_GCM_SHA256
  • ECDH_ECDSA_AES256_GCM_SHA384
  • ECDHE_RSA_AES128_GCM_SHA256
  • ECDHE_RSA_AES256_GCM_SHA384
  • ECDH_RSA_AES128_GCM_SHA256
  • ECDH_RSA_AES256_GCM_SHA384
  • PSK_AES128_GCM_SHA256
  • PSK_AES256_GCM_SHA384
  • DHE_PSK_AES128_GCM_SHA256
  • DHE_PSK_AES256_GCM_SHA384
  • RSA_PSK_AES128_GCM_SHA256
  • RSA_PSK_AES256_GCM_SHA384
  • PSK_AES128_SHA256
  • PSK_AES256_SHA384
  • PSK_NULL_SHA256
  • PSK_NULL_SHA384
  • DHE_PSK_AES128_SHA256
  • DHE_PSK_AES256_SHA384
  • DHE_PSK_NULL_SHA256
  • DHE_PSK_NULL_SHA384
  • RSA_PSK_AES128_SHA256
  • RSA_PSK_AES256_SHA384
  • RSA_PSK_NULL_SHA256
  • RSA_PSK_NULL_SHA384
  • RSA_CAMELLIA128_SHA256
  • DH_DSS_CAMELLIA128_SHA256
  • DH_RSA_CAMELLIA128_SHA256
  • DHE_DSS_CAMELLIA128_SHA256
  • DHE_RSA_CAMELLIA128_SHA256
  • DH_ANON_CAMELLIA128_SHA256
  • RSA_CAMELLIA256_SHA256
  • DH_DSS_CAMELLIA256_SHA256
  • DH_RSA_CAMELLIA256_SHA256
  • DHE_DSS_CAMELLIA256_SHA256
  • DHE_RSA_CAMELLIA256_SHA256
  • DH_ANON_CAMELLIA256_SHA256
  • ECDHE_ECDSA_CAMELLIA128_SHA256
  • ECDHE_ECDSA_CAMELLIA256_SHA384
  • ECDH_ECDSA_CAMELLIA128_SHA256
  • ECDH_ECDSA_CAMELLIA256_SHA384
  • ECDHE_RSA_CAMELLIA128_SHA256
  • ECDHE_RSA_CAMELLIA256_SHA384
  • ECDH_RSA_CAMELLIA128_SHA256
  • ECDH_RSA_CAMELLIA256_SHA384
  • RSA_CAMELLIA128_GCM_SHA256
  • RSA_CAMELLIA256_GCM_SHA384
  • DHE_RSA_CAMELLIA128_GCM_SHA256
  • DHE_RSA_CAMELLIA256_GCM_SHA384
  • DH_RSA_CAMELLIA128_GCM_SHA256
  • DH_RSA_CAMELLIA256_GCM_SHA384
  • DHE_DSS_CAMELLIA128_GCM_SHA256
  • DHE_DSS_CAMELLIA256_GCM_SHA384
  • DH_DSS_CAMELLIA128_GCM_SHA256
  • DH_DSS_CAMELLIA256_GCM_SHA384
  • DH_anon_CAMELLIA128_GCM_SHA256
  • DH_anon_CAMELLIA256_GCM_SHA384
  • ECDHE_ECDSA_CAMELLIA128_GCM_SHA256
  • ECDHE_ECDSA_CAMELLIA256_GCM_SHA384
  • ECDH_ECDSA_CAMELLIA128_GCM_SHA256
  • ECDH_ECDSA_CAMELLIA256_GCM_SHA384
  • ECDHE_RSA_CAMELLIA128_GCM_SHA256
  • ECDHE_RSA_CAMELLIA256_GCM_SHA384
  • ECDH_RSA_CAMELLIA128_GCM_SHA256
  • ECDH_RSA_CAMELLIA256_GCM_SHA384
  • PSK_CAMELLIA128_GCM_SHA256
  • PSK_CAMELLIA256_GCM_SHA384
  • DHE_PSK_CAMELLIA128_GCM_SHA256
  • DHE_PSK_CAMELLIA256_GCM_SHA384
  • RSA_PSK_CAMELLIA128_GCM_SHA256
  • RSA_PSK_CAMELLIA256_GCM_SHA384
  • PSK_CAMELLIA128_SHA256
  • PSK_CAMELLIA256_SHA384
  • DHE_PSK_CAMELLIA128_SHA256
  • DHE_PSK_CAMELLIA256_SHA384
  • RSA_PSK_CAMELLIA128_SHA256
  • RSA_PSK_CAMELLIA256_SHA384
  • ECDHE_PSK_CAMELLIA128_SHA256
  • ECDHE_PSK_CAMELLIA256_SHA384
  • ECDHE_PSK_RC4_SHA
  • ECDHE_PSK_3DES_SHA
  • ECDHE_PSK_AES128_SHA
  • ECDHE_PSK_AES256_SHA
  • ECDHE_PSK_AES128_SHA256
  • ECDHE_PSK_AES256_SHA384
  • ECDHE_PSK_NULL_SHA
  • ECDHE_PSK_NULL_SHA256
  • ECDHE_PSK_NULL_SHA384
  • ECDHE_RSA_CHACHA20_POLY1305_SHA256
  • ECDHE_ECDSA_CHACHA20_POLY1305_SHA256
  • DHE_RSA_CHACHA20_POLY1305_SHA256
  • PSK_CHACHA20_POLY1305_SHA256
  • ECDHE_PSK_CHACHA20_POLY1305_SHA256
  • DHE_PSK_CHACHA20_POLY1305_SHA256
  • RSA_PSK_CHACHA20_POLY1305_SHA256
  • AES128_GCM_SHA256
  • AES256_GCM_SHA384
  • CHACHA20_POLY1305_SHA256
  • AES128_CCM_SHA256
  • AES128_CCM8_SHA256

clientAuth
ClientAuthTypes

Default Value: 0

Enables or disables certificate-based client authentication.

Set this property to true to tune up the client authentication type:

ccatNoAuth0
ccatRequestCert1
ccatRequireCert2

ecCurves
String

Default Value: ""

Defines the elliptic curves to enable.

extensions
String

Default Value: ""

Provides access to TLS extensions.

forceResumeIfDestinationChanges
Bool

Default Value: False

Whether to force TLS session resumption when the destination address changes.

preSharedIdentity
String

Default Value: ""

Defines the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.

preSharedKey
String

Default Value: ""

Contains the pre-shared key for the PSK (Pre-Shared Key) key-exchange mechanism, encoded with base16.

preSharedKeyCiphersuite
String

Default Value: ""

Defines the ciphersuite used for PSK (Pre-Shared Key) negotiation.

renegotiationAttackPreventionMode
RenegotiationAttackPreventionModes

Default Value: 2

Selects the renegotiation attack prevention mechanism.

The following options are available:

crapmCompatible0TLS 1.0 and 1.1 compatibility mode (renegotiation indication extension is disabled).
crapmStrict1Renegotiation attack prevention is enabled and enforced.
crapmAuto2Automatically choose whether to enable or disable renegotiation attack prevention.

revocationCheck
RevocationCheckKinds

Default Value: 1

Specifies the kind(s) of revocation check to perform.

Revocation checking is necessary to ensure the integrity of the chain and obtain up-to-date certificate validity and trustworthiness information.

crcNone0No revocation checking.
crcAuto1Automatic mode selection. Currently this maps to crcAnyOCSPOrCRL, but it may change in the future.
crcAllCRL2All provided CRL endpoints will be checked, and all checks must succeed.
crcAllOCSP3All provided OCSP endpoints will be checked, and all checks must succeed.
crcAllCRLAndOCSP4All provided CRL and OCSP endpoints will be checked, and all checks must succeed.
crcAnyCRL5All provided CRL endpoints will be checked, and at least one check must succeed.
crcAnyOCSP6All provided OCSP endpoints will be checked, and at least one check must succeed.
crcAnyCRLOrOCSP7All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. CRL endpoints are checked first.
crcAnyOCSPOrCRL8All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. OCSP endpoints are checked first.

This setting controls the way the revocation checks are performed for every certificate in the chain. Typically certificates come with two types of revocation information sources: CRL (certificate revocation lists) and OCSP responders. CRLs are static objects periodically published by the CA at some online location. OCSP responders are active online services maintained by the CA that can provide up-to-date information on certificate statuses in near real time.

There are some conceptual differences between the two. CRLs are normally larger in size. Their use involves some latency because there is normally some delay between the time when a certificate was revoked and the time the subsequent CRL mentioning that is published. The benefits of CRL is that the same object can provide statuses for all certificates issued by a particular CA, and that the whole technology is much simpler than OCSP (and thus is supported by more CAs).

This setting lets you adjust the validation course by including or excluding certain types of revocation sources from the validation process. The crcAnyOCSPOrCRL setting (give preference to the faster OCSP route and only demand one source to succeed) is a good choice for most typical validation environments. The "crcAll*" modes are much stricter, and may be used in scenarios where bulletproof validity information is essential.

Note: If no CRL or OCSP endpoints are provided by the CA, the revocation check will be considered successful. This is because the CA chose not to supply revocation information for its certificates, meaning they are considered irrevocable.

Note: Within each of the above settings, if any retrieved CRL or OCSP response indicates that the certificate has been revoked, the revocation check fails.

sslOptions
Int32

Default Value: 16

Various SSL (TLS) protocol options, set of

cssloExpectShutdownMessage0x001Wait for the close-notify message when shutting down the connection

cssloOpenSSLDTLSWorkaround0x002(DEPRECATED) Use a DTLS version workaround when talking to very old OpenSSL versions

cssloDisableKexLengthAlignment0x004Do not align the client-side PMS by the RSA modulus size. It is unlikely that you will ever need to adjust it.

cssloForceUseOfClientCertHashAlg0x008Enforce the use of the client certificate hash algorithm. It is unlikely that you will ever need to adjust it.

cssloAutoAddServerNameExtension0x010Automatically add the server name extension when known

cssloAcceptTrustedSRPPrimesOnly0x020Accept trusted SRP primes only

cssloDisableSignatureAlgorithmsExtension0x040Disable (do not send) the signature algorithms extension. It is unlikely that you will ever need to adjust it.

cssloIntolerateHigherProtocolVersions0x080(server option) Do not allow fallback from TLS versions higher than currently enabled

cssloStickToPrefCertHashAlg0x100Stick to preferred certificate hash algorithms

cssloNoImplicitTLS12Fallback0x200Disable implicit TLS 1.3 to 1.2 fallbacks

cssloUseHandshakeBatches0x400Send the handshake message as large batches rather than individually

tlsMode
SSLModes

Default Value: 0

Specifies the TLS mode to use.

smDefault0
smNoTLS1Do not use TLS
smExplicitTLS2Connect to the server without any encryption and then request an SSL session.
smImplicitTLS3Connect to the specified port, and establish the SSL session at once.
smMixedTLS4Connect to the specified port, and establish the SSL session at once, but allow plain data.

useExtendedMasterSecret
Bool

Default Value: False

Enables the Extended Master Secret Extension, as defined in RFC 7627.

useSessionResumption
Bool

Default Value: False

Enables or disables the TLS session resumption capability.

versions
Int32

Default Value: 16

The SSL/TLS versions to enable by default.

csbSSL20x01SSL 2

csbSSL30x02SSL 3

csbTLS10x04TLS 1.0

csbTLS110x08TLS 1.1

csbTLS120x10TLS 1.2

csbTLS130x20TLS 1.3

Constructors

public init()

Creates a new TLSSettings object.

Config Settings (KMIPClient Module)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

KMIPClient Config Settings

BlockSize:   Block size of data for encrypting, decrypting or signing.

Use this property to specify the Block size in bytes of data to use for send on encrypting, decrypting or signing.

IgnoreSystemTrust:   Whether trusted Windows Certificate Stores should be treated as trusted.

Specifies whether, during chain validation, the class should respect the trust to CA certificates as configured in the operating system. In Windows this effectively defines whether the class should trust the certificates residing in the Trusted Root Certification Authorities store.

If IgnoreSystemTrust is True, certificates residing in the trusted root store are treated as if they are known, rather than trusted. Only certificates provided via other means (such as the TrustedCertificates property) are considered trusted.

MajorProtocolVersion:   Major protocol version of the KMIP server.

Use this property to specify the major protocol version of the KMIP server.

MinorProtocolVersion:   Minor protocol version of the KMIP server.

Use this property to specify the minor protocol version of the KMIP server.

StaticDNS:   Specifies whether static DNS rules should be used.

Set this property to enable or disable static DNS rules for the class. Works only if UseOwnDNSResolver is set to true.

Supported values are:

noneNo static DNS rules (default)
localLocal static DNS rules
globalGlobal static DNS rules

StaticIPAddress[domain]:   Gets or sets an IP address for the specified domain name.

Use this property to get or set an IP address for the specified domain name in the internal (of the class) or global DNS rules storage depending on the StaticDNS value. The type of the IP address (IPv4 or IPv6) is determined automatically. If both addresses are available, they are devided by the | (pipe) character.

StaticIPAddresses:   Gets or sets all the static DNS rules.

Use this property to get static DNS rules from the current rules storage or restore them back between application sessions. If StaticDNS of the class is set to "local", the property returns/restores the rules from/to the internal storage of the class. If StaticDNS of the class is set to "global", the property returns/restores the rules from/to the GLOBAL storage. The rules list is returned and accepted in JSON format.

TempPath:   Path for storing temporary files.

This setting specifies an absolute path to the location on disk where temporary files are stored.

TLSExtensions:   TBD.

TBD

TLSPeerExtensions:   TBD.

TBD

TLSSessionGroup:   Specifies the group name of TLS sessions to be used for session resumption.

Use this property to limit the search of chached TLS sessions to the specified group. Sessions from other groups will be ignored. By default, all sessions are cached with an empty group name and available to all the classes.

TLSSessionLifetime:   Specifies lifetime in seconds of the cached TLS session.

Use this property to specify how much time the TLS session should be kept in the session cache. After this time, the session expires and will be automatically removed from the cache. Default value is 300 seconds (5 minutes).

TLSSessionPurgeInterval:   Specifies how often the session cache should remove the expired TLS sessions.

Use this property to specify the time interval of purging the expired TLS sessions from the session cache. Default value is 60 seconds (1 minute).

TolerateMinorChainIssues:   Whether to tolerate minor chain issues.

This parameter controls whether the chain validator should tolerate minor technical issues when validating the chain. Those are:

  • CA, revocation source, TLS key usage requirements are not mandated
  • Violation of OCSP issuer requirements are ignored
  • The AuthorityKeyID extension in CRL- and certificate-issuing CAs are ignored (helps with incorrectly renewed certificates)
  • Basic constraints and name constraints of CA certificates are ignored
  • Some weaker algorithms are tolerated
UseMicrosoftCTL:   Enables or disables the automatic use of the Microsoft online certificate trust list.

Enable this property to make the chain validation module automatically look up missing CA certificates in the public Windows Update repository.

UseSystemCertificates:   Enables or disables the use of the system certificates.

Use this property to tell the chain validation module to automatically look up missing CA certificates in the system certificates. In many cases it is beneficial to switch this property on, as the operating system certificate configuration provides a representative trust framework.

Base Config Settings

ASN1UseGlobalTagCache:   Controls whether ASN.1 module should use a global object cache.

This is a performance setting. It is unlikely that you will ever need to adjust it.

AssignSystemSmartCardPins:   Specifies whether CSP-level PINs should be assigned to CNG keys.

This is a low-level tweak for certain cryptographic providers. It is unlikely that you will ever need to adjust it.

CheckKeyIntegrityBeforeUse:   Enables or disable private key integrity check before use.

This global property enables or disables private key material check before each signing operation. This slows down performance a bit, but prevents a selection of attacks on RSA keys where keys with unknown origins are used.

You can switch this property off to improve performance if your project only uses known, good private keys.

CookieCaching:   Specifies whether a cookie cache should be used for HTTP(S) transports.

Set this property to enable or disable cookies caching for the class.

Supported values are:

offNo caching (default)
localLocal caching
globalGlobal caching

Cookies:   Gets or sets local cookies for the class.

Use this property to get cookies from the internal cookie storage of the class and/or restore them back between application sessions.

DefDeriveKeyIterations:   Specifies the default key derivation algorithm iteration count.

This global property sets the default number of iterations for all supported key derivation algorithms. Note that you can provide the required number of iterations by using properties of the relevant key generation component; this global setting is used in scenarios where specific iteration count is not or cannot be provided.

DNSLocalSuffix:   The suffix to assign for TLD names.

Use this global setting to adjust the default suffix to assign to top-level domain names. The default is .local.

EnableClientSideSSLFFDHE:   Enables or disables finite field DHE key exchange support in TLS clients.

This global property enables or disables support for finite field DHE key exchange methods in TLS clients. FF DHE is a slower algorithm if compared to EC DHE; enabling it may result in slower connections.

This setting only applies to sessions negotiated with TLS version 1.3.

GlobalCookies:   Gets or sets global cookies for all the HTTP transports.

Use this property to get cookies from the GLOBAL cookie storage or restore them back between application sessions. These cookies will be used by all the classes that have its CookieCaching property set to "global".

HardwareCryptoUsePolicy:   The hardware crypto usage policy.

This global setting controls the hardware cryptography usage policy: auto, enable, or disable.

HttpUserAgent:   Specifies the user agent name to be used by all HTTP clients.

This global setting defines the User-Agent field of the HTTP request provides information about the software that initiates the request. This value will be used by all the HTTP clients including the ones used internally in other classes.

HttpVersion:   The HTTP version to use in any inner HTTP client components created.

Set this property to 1.0 or 1.1 to indicate the HTTP version that any internal HTTP clients should use.

IgnoreExpiredMSCTLSigningCert:   Whether to tolerate the expired Windows Update signing certificate.

It is not uncommon for Microsoft Windows Update Certificate Trust List to be signed with an expired Microsoft certificate. Setting this global property to true makes SBB ignore the expired factor and take the Trust List into account.

ListDelimiter:   The delimiter character for multi-element lists.

Allows to set the delimiter for any multi-entry values returned by the component as a string object, such as file lists. For most of the components, this property is set to a newline sequence.

LogDestination:   Specifies the debug log destination.

Contains a comma-separated list of values that specifies where debug log should be dumped.

Supported values are:

fileFile
consoleConsole
systemlogSystem Log (supported for Android only)
debuggerDebugger (supported for VCL for Windows and .Net)

LogDetails:   Specifies the debug log details to dump.

Contains a comma-separated list of values that specifies which debug log details to dump.

Supported values are:

timeCurrent time
levelLevel
packagePackage name
moduleModule name
classClass name
methodMethod name
threadidThread Id
contenttypeContent type
contentContent
allAll details

LogFile:   Specifies the debug log filename.

Use this property to provide a path to the log file.

LogFilters:   Specifies the debug log filters.

Contains a comma-separated list of value pairs ("name:value") that describe filters.

Supported filter names are:

exclude-packageExclude a package specified in the value
exclude-moduleExclude a module specified in the value
exclude-classExclude a class specified in the value
exclude-methodExclude a method specified in the value
include-packageInclude a package specified in the value
include-moduleInclude a module specified in the value
include-classInclude a class specified in the value
include-methodInclude a method specified in the value

LogFlushMode:   Specifies the log flush mode.

Use this property to set the log flush mode. The following values are defined:

noneNo flush (caching only)
immediateImmediate flush (real-time logging)
maxcountFlush cached entries upon reaching LogMaxEventCount entries in the cache.

LogLevel:   Specifies the debug log level.

Use this property to provide the desired debug log level.

Supported values are:

noneNone (by default)
fatalSevere errors that cause premature termination.
errorOther runtime errors or unexpected conditions.
warningUse of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong".
infoInteresting runtime events (startup/shutdown).
debugDetailed information on flow of through the system.
traceMore detailed information.

LogMaxEventCount:   Specifies the maximum number of events to cache before further action is taken.

Use this property to specify the log event number threshold. This threshold may have different effects, depending on the rotation setting and/or the flush mode.

The default value of this setting is 100.

LogRotationMode:   Specifies the log rotation mode.

Use this property to set the log rotation mode. The following values are defined:

noneNo rotation
deleteolderDelete older entries from the cache upon reaching LogMaxEventCount
keepolderKeep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded)

MaxASN1BufferLength:   Specifies the maximal allowed length for ASN.1 primitive tag data.

This global property limits the maximal allowed length for ASN.1 tag data for non-content-carrying structures, such as certificates, CRLs, or timestamps. It does not affect structures that can carry content, such as CMS/CAdES messages. This is a security property aiming at preventing DoS attacks.

MaxASN1TreeDepth:   Specifies the maximal depth for processed ASN.1 trees.

This global property limits the maximal depth of ASN.1 trees that the component can handle without throwing an error. This is a security property aiming at preventing DoS attacks.

OCSPHashAlgorithm:   Specifies the hash algorithm to be used to identify certificates in OCSP requests.

This global setting defines the hash algorithm to use in OCSP requests during chain validation. Some OCSP responders can only use older algorithms, in which case setting this property to SHA1 may be helpful.

OldClientSideRSAFallback:   Specifies whether the SSH client should use a SHA1 fallback.

Tells the SSH client to use a legacy ssh-rsa authentication even if the server indicates support for newer algorithms, such as rsa-sha-256. This is a backward-compatibility tweak.

ProductVersion:   Returns the version of the SecureBlackbox library.

This property returns the long version string of the SecureBlackbox library being used (major.minor.build.revision).

ServerSSLDHKeyLength:   Sets the size of the TLS DHE key exchange group.

Use this property to adjust the length, in bits, of the DHE prime to be used by the TLS server.

StaticDNS:   Specifies whether static DNS rules should be used.

Set this property to enable or disable static DNS rules for the class. Works only if UseOwnDNSResolver is set to true.

Supported values are:

noneNo static DNS rules (default)
localLocal static DNS rules
globalGlobal static DNS rules

StaticIPAddress[domain]:   Gets or sets an IP address for the specified domain name.

Use this property to get or set an IP address for the specified domain name in the internal (of the class) or global DNS rules storage depending on the StaticDNS value. The type of the IP address (IPv4 or IPv6) is determined automatically. If both addresses are available, they are devided by the | (pipe) character.

StaticIPAddresses:   Gets or sets all the static DNS rules.

Use this property to get static DNS rules from the current rules storage or restore them back between application sessions. If StaticDNS of the class is set to "local", the property returns/restores the rules from/to the internal storage of the class. If StaticDNS of the class is set to "global", the property returns/restores the rules from/to the GLOBAL storage. The rules list is returned and accepted in JSON format.

Tag:   Allows to store any custom data.

Use this config property to store any custom data.

TLSSessionGroup:   Specifies the group name of TLS sessions to be used for session resumption.

Use this property to limit the search of chached TLS sessions to the specified group. Sessions from other groups will be ignored. By default, all sessions are cached with an empty group name and available to all the classes.

TLSSessionLifetime:   Specifies lifetime in seconds of the cached TLS session.

Use this property to specify how much time the TLS session should be kept in the session cache. After this time, the session expires and will be automatically removed from the cache. Default value is 300 seconds (5 minutes).

TLSSessionPurgeInterval:   Specifies how often the session cache should remove the expired TLS sessions.

Use this property to specify the time interval of purging the expired TLS sessions from the session cache. Default value is 60 seconds (1 minute).

UseInternalRandom:   Switches between SecureBlackbox-own and platform PRNGs.

Allows to switch between internal/native PRNG implementation and the one provided by the platform.

UseLegacyAdESValidation:   Enables legacy AdES validation mode.

Use this setting to switch the AdES component to the validation approach that was used in SBB 2020/SBB 2022 (less attention to temporal details).

UseOwnDNSResolver:   Specifies whether the client components should use own DNS resolver.

Set this global property to false to force all the client components to use the DNS resolver provided by the target OS instead of using own one.

UseSharedSystemStorages:   Specifies whether the validation engine should use a global per-process copy of the system certificate stores.

Set this global property to false to make each validation run use its own copy of system certificate stores.

UseSystemNativeSizeCalculation:   An internal CryptoAPI access tweak.

This is an internal setting. Please do not use it unless instructed by the support team.

UseSystemOAEPAndPSS:   Enforces or disables the use of system-driven RSA OAEP and PSS computations.

This global setting defines who is responsible for performing RSA-OAEP and RSA-PSS computations where the private key is stored in a Windows system store and is exportable. If set to true, SBB will delegate the computations to Windows via a CryptoAPI call. Otherwise, it will export the key material and perform the computations using its own OAEP/PSS implementation.

This setting only applies to certificates originating from a Windows system store.

UseSystemRandom:   Enables or disables the use of the OS PRNG.

Use this global property to enable or disable the use of operating system-driven pseudorandom number generation.

Trappable Errors (KMIPClient Module)

KMIPClient Errors

1048577   Invalid parameter (SB_ERROR_INVALID_PARAMETER)
1048578   Invalid configuration (SB_ERROR_INVALID_SETUP)
1048579   Invalid state (SB_ERROR_INVALID_STATE)
1048580   Invalid value (SB_ERROR_INVALID_VALUE)
1048581   Private key not found (SB_ERROR_NO_PRIVATE_KEY)
1048582   Cancelled by the user (SB_ERROR_CANCELLED_BY_USER)
1048583   The file was not found (SB_ERROR_NO_SUCH_FILE)
1048584   Unsupported feature or operation (SB_ERROR_UNSUPPORTED_FEATURE)
1048585   General error (SB_ERROR_GENERAL_ERROR)
20971521   KMIP request failed (SB_ERROR_KMIP_REQUEST_FAILED)
20971522   The input file does not exist (SB_ERROR_KMIP_INPUTFILE_NOT_EXISTS)
20971523   Unsupported key algorithm (SB_ERROR_KMIP_UNSUPPORTED_KEY_ALGORITHM)
20971524   Invalid key (SB_ERROR_KMIP_INVALID_KEY)