KMIPClient Class
Properties Methods Events Config Settings Errors
The KMIPClient class provides client-side functionality for KMIP protocol.
Syntax
class secureblackbox.KMIPClient
Remarks
The KMIPClient component implements the client-side counterpart of the KMIP environment. KMIP, or the Key Management Interoperability Protocol, is an OASIS standard of communication between applications that need to use or manage cryptographic keys over the network. A typical example of a KMIP client is an application that needs to access a remotely stored cryptographic key (shared by a KMIP server) - for example, to solicit a digital signature or decrypt an encrypted document.
Capabilities
KMIPClient supports the majority of the features defined by the KMIP specification, both on the key management and cryptographic operations fronts. While the KMIP version implemented in KMIPClient is 1.3, the KMIP approach to version sequencing allows KMIPClient to communicate equally efficiently with implementations supporting earlier and newer protocol versions. All the three encoding types (TTLV, JSON, and XML) are supported, which can be used over TCP, TLS, or HTTP(S) transports.
Working with KMIPClient
Setting up the component
KMIP servers can come in a variety of configurations, many of which cannot be detected or applied automatically. That's why the first stage is about configuring the component in such way that it knows how to talk to a specific server that you need to work with. Below are the key settings that you need to tune up. You can get most or all of this information from the administrator of the KMIP server:
Network access parameters
This is the network address and port that the KMIP server is listening on - for example, 10.0.1.110:5696 or kmip.server.com:25696.
The transport type
This could be one of TCP (unencrypted low-level connection), TLS (encrypted low-level connection), HTTP (unencrypted HTTP), HTTPS (encrypted HTTP). Transport type is not negotiable: the client must use exactly the same transport as the server expects. You specify the transport by applying the appropriate transport-specific prefix to the server address that you are passing to base_url:
- kmip:// for plain TCP (e.g. kmip://10.0.1.110:5696)
- kmips:// for TLS (e.g. kmips://kmip.server.com:25696)
- http:// for HTTP (e.g. http://kmip.server.com:80)
- https:// for HTTPS (e.g. https://10.0.1.110:5697)
KMIP servers accessible over HTTP(S) may reside either at a root (/) or a deeper-level web server endpoint (for example, /services/kmip). Append this path to the network parameters as you would normally do when working with HTTP endpoints. Having done that, combine the transport prefix, the network parameters, and the HTTP path (if used) together to obtain the value to assign to base_url:
client.BaseURL = "https://kmip.server.com:25696/services/kmip"; // TLS-secured HTTP connection to kmip.server.com running on port 25696
The encoding type
KMIP offers three encoding types: TTLV ("tag, type, length, value"), JSON, and XML. Depending on configuration and scenarios used installation may prefer one over the others. Plain TCP and TLS KMIP setups normally use TTLV encoding. The client and server must use the same encoding to understand each other.
TLS configuration
TLS-protected connections require additional setup of the TLS parameters. Those are not part of KMIP, but, rather, are intended to supply expected security configuration. The principal security setting here concerns the way the server's TLS certificate is validated. You will find more details about configuring TLS on the client side in the Validating TLS Certificates article.
Once the connection and protocol parameters are configured, you can go ahead and start making requests to the KMIP server. A KMIP server can serve requests which generally fall into one of the two categories:
- Key management requests - such as importing a certificate, generating a keypair, or obtaining a list of keys stored on the server.
- Cryptographic operation requests - such as signing or encrypting data.
Managing keys and certificates
The common key management operations are:
Importing a keypair or certificate to the server
Use add_key to import an asymmetric keypair or its part, or a secret symmetric key, to the KMIP server. Use add to import a certificate. Both methods return a unique object identifier that you can use to identify the object on the server.
Listing server objects
Use list to request a criteria-based list of objects from the server. The objects returned by the server will be published in the objects collection.
Reading object properties
KMIPClient offers a few methods to read object properties. You can choose the method that fits your scenario best. Use read and read_key methods to read certificates and keys directly into the certificate and key properties. You can then pass the received objects to other components that support them (such as CertificateManager). Use read_object to read the object into the objects list. Use read_attribute to read a specific attribute of an object.
Generating server-side objects
KMIP supports server-side object generation, which allows for secure cryptographic material setup. Among objects you can generate are certificates (generate) and generic keys (generate_key).
Making cryptographic calls
The common cryptographic calls are:
Signing data
Use the sign method to sign the data using a server-side private key.
Encrypting and decrypting data
Use the encrypt and decrypt methods to encrypt or decrypt data using a server-side key. This method can be used with both symmetric and asymmetric keys.
Providing data for the operations
You can provide input for the cryptographic operations in one of the following forms:
- as a byte array - use input_bytes property.
- as a stream - use input_stream.
- in a file - use input_file.
Note that the output_bytes is only populated if neither of output_file and output_stream is set.
Referencing server objects
Every object residing on a KMIP server is referenced by its unique object identifier. Your code is expected to pass the identifier of the object that you want to use or read to the relevant method, such as sign or read_object. If you do not know the identifier of the object that you need to use, use the list method to solicit the list of the server-side objects first. Locate the required object in the list and pass its unique identifier to the needed method.
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
auth_types | Defines allowed HTTP authentication types. |
aux_result | Contains the auxiliary result of the last performed operation. |
base_url | Specifies the url of the KMIP server. |
blocked_cert_count | The number of records in the BlockedCert arrays. |
blocked_cert_bytes | Returns the raw certificate data in DER format. |
blocked_cert_handle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
certificate_bytes | Returns the raw certificate data in DER format. |
certificate_handle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
conn_info_aead_cipher | Indicates whether the encryption algorithm used is an AEAD cipher. |
conn_info_chain_validation_details | The details of a certificate chain validation outcome. |
conn_info_chain_validation_result | The outcome of a certificate chain validation routine. |
conn_info_ciphersuite | The cipher suite employed by this connection. |
conn_info_client_authenticated | Specifies whether client authentication was performed during this connection. |
conn_info_client_auth_requested | Specifies whether client authentication was requested during this connection. |
conn_info_connection_established | Indicates whether the connection has been established fully. |
conn_info_connection_id | The unique identifier assigned to this connection. |
conn_info_digest_algorithm | The digest algorithm used in a TLS-enabled connection. |
conn_info_encryption_algorithm | The symmetric encryption algorithm used in a TLS-enabled connection. |
conn_info_exportable | Indicates whether a TLS connection uses a reduced-strength exportable cipher. |
conn_info_id | The client connection's unique identifier. |
conn_info_key_exchange_algorithm | The key exchange algorithm used in a TLS-enabled connection. |
conn_info_key_exchange_key_bits | The length of the key exchange key of a TLS-enabled connection. |
conn_info_named_ec_curve | The elliptic curve used in this connection. |
conn_info_pfs_cipher | Indicates whether the chosen ciphersuite provides perfect forward secrecy (PFS). |
conn_info_pre_shared_identity | Specifies the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated. |
conn_info_pre_shared_identity_hint | A hint professed by the server to help the client select the PSK identity to use. |
conn_info_public_key_bits | The length of the public key. |
conn_info_remote_address | The client's IP address. |
conn_info_remote_port | The remote port of the client connection. |
conn_info_resumed_session | Indicates whether a TLS-enabled connection was spawned from another TLS connection. |
conn_info_secure_connection | Indicates whether TLS or SSL is enabled for this connection. |
conn_info_server_authenticated | Indicates whether server authentication was performed during a TLS-enabled connection. |
conn_info_signature_algorithm | The signature algorithm used in a TLS handshake. |
conn_info_symmetric_block_size | The block size of the symmetric algorithm used. |
conn_info_symmetric_key_bits | The key length of the symmetric algorithm used. |
conn_info_total_bytes_received | The total number of bytes received over this connection. |
conn_info_total_bytes_sent | The total number of bytes sent over this connection. |
conn_info_validation_log | Contains the server certificate's chain validation log. |
conn_info_version | Indicates the version of SSL/TLS protocol negotiated during this connection. |
data_bytes | Use this property to pass the secondary input to the class in the byte array form. |
data_file | Use this property to pass the secondary input to the class from a file. |
encoding | Specifies the KMIP encoding type. |
external_crypto_async_document_id | Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls. |
external_crypto_custom_params | Custom parameters to be passed to the signing service (uninterpreted). |
external_crypto_data | Additional data to be included in the async state and mirrored back by the requestor. |
external_crypto_external_hash_calculation | Specifies whether the message hash is to be calculated at the external endpoint. |
external_crypto_hash_algorithm | Specifies the request's signature hash algorithm. |
external_crypto_key_id | The ID of the pre-shared key used for DC request authentication. |
external_crypto_key_secret | The pre-shared key used for DC request authentication. |
external_crypto_method | Specifies the asynchronous signing method. |
external_crypto_mode | Specifies the external cryptography mode. |
external_crypto_public_key_algorithm | Provide the public key algorithm here if the certificate is not available on the pre-signing stage. |
fips_mode | Reserved. |
input_bytes | Use this property to pass the input to class in byte array form. |
input_file | A path to the file containing the data to be passed as input to a cryptographic operation. |
key_algorithm | The algorithm of the cryptographic key. |
key_bits | The length of the key in bits. |
key_handle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
key_subject | Returns the key subject. |
known_cert_count | The number of records in the KnownCert arrays. |
known_cert_bytes | Returns the raw certificate data in DER format. |
known_cert_handle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
known_crl_count | The number of records in the KnownCRL arrays. |
known_crl_bytes | Returns the raw CRL data in DER format. |
known_crl_handle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
known_ocsp_count | The number of records in the KnownOCSP arrays. |
known_ocsp_bytes | A buffer containing the raw OCSP response data. |
known_ocsp_handle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
object_count | The number of records in the Object arrays. |
object_bytes | This property is an accessor to the object's binary representation (the certificate body, the key data, the data object contents). |
object_extractable | Specifies the extractable attribute of the object. |
object_fingerprint | Returns or sets the fingerprint attribute of the object. |
object_key_algorithm | Specifies the cryptographic algorithm of the object. |
object_key_bits | Returns or sets the length of the cryptographic key, in bits. |
object_key_usage | Returns or sets the key usage flags of the certificate or key object. |
object_object_group | Specifies the object group identifier. |
object_object_id | ObjectId is a unique identifier of the object assigned by the server-side key management system. |
object_object_type | The type of this object. |
object_sensitive | Contains the Sensitive attribute of this object. |
object_size | Returns the amount of memory or space that this object occupies on the server. |
object_subject | Specifies the subject attribute of the object. |
object_timestamp | Returns the time value associated with this object. |
output_bytes | Use this property to read the output the class object has produced. |
output_file | Specifies the file where the signed, encrypted, or decrypted data should be saved. |
password | Specifies a password to authenticate to the KMIP server. |
proxy_address | The IP address of the proxy server. |
proxy_authentication | The authentication type used by the proxy server. |
proxy_password | The password to authenticate to the proxy server. |
proxy_port | The port on the proxy server to connect to. |
proxy_proxy_type | The type of the proxy server. |
proxy_request_headers | Contains HTTP request headers for WebTunnel and HTTP proxy. |
proxy_response_body | Contains the HTTP or HTTPS (WebTunnel) proxy response body. |
proxy_response_headers | Contains response headers received from an HTTP or HTTPS (WebTunnel) proxy server. |
proxy_use_ipv6 | Specifies whether IPv6 should be used when connecting through the proxy. |
proxy_username | Specifies the username credential for proxy authentication. |
signature_validation_result | The signature validation result. |
socket_dns_mode | Selects the DNS resolver to use: the class's (secure) built-in one, or the one provided by the system. |
socket_dns_port | Specifies the port number to be used for sending queries to the DNS server. |
socket_dns_query_timeout | The timeout (in milliseconds) for each DNS query. |
socket_dns_servers | The addresses of DNS servers to use for address resolution, separated by commas or semicolons. |
socket_dns_total_timeout | The timeout (in milliseconds) for the whole resolution process. |
socket_incoming_speed_limit | The maximum number of bytes to read from the socket, per second. |
socket_local_address | The local network interface to bind the socket to. |
socket_local_port | The local port number to bind the socket to. |
socket_outgoing_speed_limit | The maximum number of bytes to write to the socket, per second. |
socket_timeout | The maximum period of waiting, in milliseconds, after which the socket operation is considered unsuccessful. |
socket_use_ipv6 | Enables or disables IP protocol version 6. |
tls_client_cert_count | The number of records in the TLSClientCert arrays. |
tls_client_cert_bytes | Returns the raw certificate data in DER format. |
tls_client_cert_handle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
tls_server_cert_count | The number of records in the TLSServerCert arrays. |
tls_server_cert_bytes | Returns the raw certificate data in DER format. |
tls_server_cert_fingerprint | Contains the fingerprint (a hash imprint) of this certificate. |
tls_server_cert_handle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
tls_server_cert_issuer | The common name of the certificate issuer (CA), typically a company name. |
tls_server_cert_issuer_rdn | A list of Property=Value pairs that uniquely identify the certificate issuer. |
tls_server_cert_key_algorithm | Specifies the public key algorithm of this certificate. |
tls_server_cert_key_bits | Returns the length of the public key in bits. |
tls_server_cert_key_usage | Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set. |
tls_server_cert_self_signed | Indicates whether the certificate is self-signed (root) or signed by an external CA. |
tls_server_cert_serial_number | Returns the certificate's serial number. |
tls_server_cert_sig_algorithm | Indicates the algorithm that was used by the CA to sign this certificate. |
tls_server_cert_subject | The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name. |
tls_server_cert_subject_rdn | A list of Property=Value pairs that uniquely identify the certificate holder (subject). |
tls_server_cert_valid_from | The time point at which the certificate becomes valid, in UTC. |
tls_server_cert_valid_to | The time point at which the certificate expires, in UTC. |
tls_auto_validate_certificates | Specifies whether server-side TLS certificates should be validated automatically using internal validation rules. |
tls_base_configuration | Selects the base configuration for the TLS settings. |
tls_ciphersuites | A list of ciphersuites separated with commas or semicolons. |
tls_client_auth | Enables or disables certificate-based client authentication. |
tls_ec_curves | Defines the elliptic curves to enable. |
tls_extensions | Provides access to TLS extensions. |
tls_force_resume_if_destination_changes | Whether to force TLS session resumption when the destination address changes. |
tls_pre_shared_identity | Defines the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated. |
tls_pre_shared_key | Contains the pre-shared key for the PSK (Pre-Shared Key) key-exchange mechanism, encoded with base16. |
tls_pre_shared_key_ciphersuite | Defines the ciphersuite used for PSK (Pre-Shared Key) negotiation. |
tls_renegotiation_attack_prevention_mode | Selects the renegotiation attack prevention mechanism. |
tls_revocation_check | Specifies the kind(s) of revocation check to perform. |
tls_ssl_options | Various SSL (TLS) protocol options, set of cssloExpectShutdownMessage 0x001 Wait for the close-notify message when shutting down the connection cssloOpenSSLDTLSWorkaround 0x002 (DEPRECATED) Use a DTLS version workaround when talking to very old OpenSSL versions cssloDisableKexLengthAlignment 0x004 Do not align the client-side PMS by the RSA modulus size. |
tls_tls_mode | Specifies the TLS mode to use. |
tls_use_extended_master_secret | Enables the Extended Master Secret Extension, as defined in RFC 7627. |
tls_use_session_resumption | Enables or disables the TLS session resumption capability. |
tls_versions | The SSL/TLS versions to enable by default. |
trusted_cert_count | The number of records in the TrustedCert arrays. |
trusted_cert_bytes | Returns the raw certificate data in DER format. |
trusted_cert_handle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
username | The username to authenticate to the KMIP server. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
activate | Activates the specified server object. |
add | Imports a certificate to the KMIP server. |
add_key | Imports a key or keypair to the KMIP server. |
config | Sets or retrieves a configuration setting. |
custom_request | Performs a custom request to the server. |
deactivate | Deactivates the specified server object. |
decrypt | Decrypts the provided data using a key stored on the KMIP server. |
do_action | Performs an additional action. |
encrypt | Encrypts the provided data using a key stored on the KMIP server. |
generate | Generates a new certificate on the KMIP server. |
generate_key | Generates a symmetric key or an asymmetric key pair on the KMIP server. |
list | Retrieves the list of objects of selected types from the server. |
read | Downloads a certificate from the KMIP server. |
read_attribute | Requests an attribute from an object. |
read_key | Downloads a key object from the KMIP server. |
read_object | Requests object information from the KMIP server. |
remove | Removes the specified object from the server. |
reset | Resets the class settings. |
set_attribute | Sets an attribute of an existing server-side object. |
set_request_bytes | Replaces the data that has been prepared for sending out. |
set_response_bytes | Alters the data received from the server in a response. |
sign | Signs the data using a key on the KMIP server. |
verify | Verifies digitally signed data. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
on_error | Provides information about errors during KMIP operations. |
on_external_sign | Handles remote or external signing initiated by the SignExternal method or other source. |
on_notification | This event notifies the application about an underlying control flow event. |
on_request | KMIPClient fires this event to notify the user about the request being sent to the KMIP server. |
on_response | KMIPClient uses this event to notify the user about the response being received. |
on_tls_cert_needed | Fires when a remote TLS party requests a client certificate. |
on_tls_cert_validate | This event is fired upon receipt of the TLS server's certificate, allowing the user to control its acceptance. |
on_tls_established | Fires when a TLS handshake with Host successfully completes. |
on_tls_handshake | Fires when a new TLS handshake is initiated, before the handshake commences. |
on_tls_psk | Notifies the application about the PSK key exchange. |
on_tls_shutdown | Reports the graceful closure of a TLS connection. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
BlockSize | Block size of data for encrypting, decrypting or signing. |
IgnoreSystemTrust | Whether trusted Windows Certificate Stores should be treated as trusted. |
MajorProtocolVersion | Major protocol version of the KMIP server. |
MinorProtocolVersion | Minor protocol version of the KMIP server. |
StaticDNS | Specifies whether static DNS rules should be used. |
StaticIPAddress[domain] | Gets or sets an IP address for the specified domain name. |
StaticIPAddresses | Gets or sets all the static DNS rules. |
TempPath | Path for storing temporary files. |
TLSExtensions | TBD. |
TLSPeerExtensions | TBD. |
TLSSessionGroup | Specifies the group name of TLS sessions to be used for session resumption. |
TLSSessionLifetime | Specifies lifetime in seconds of the cached TLS session. |
TLSSessionPurgeInterval | Specifies how often the session cache should remove the expired TLS sessions. |
TolerateMinorChainIssues | Whether to tolerate minor chain issues. |
UseMicrosoftCTL | Enables or disables the automatic use of the Microsoft online certificate trust list. |
UseSystemCertificates | Enables or disables the use of the system certificates. |
ASN1UseGlobalTagCache | Controls whether ASN.1 module should use a global object cache. |
AssignSystemSmartCardPins | Specifies whether CSP-level PINs should be assigned to CNG keys. |
CheckKeyIntegrityBeforeUse | Enables or disable private key integrity check before use. |
CookieCaching | Specifies whether a cookie cache should be used for HTTP(S) transports. |
Cookies | Gets or sets local cookies for the class. |
DefDeriveKeyIterations | Specifies the default key derivation algorithm iteration count. |
DNSLocalSuffix | The suffix to assign for TLD names. |
EnableClientSideSSLFFDHE | Enables or disables finite field DHE key exchange support in TLS clients. |
GlobalCookies | Gets or sets global cookies for all the HTTP transports. |
HardwareCryptoUsePolicy | The hardware crypto usage policy. |
HttpUserAgent | Specifies the user agent name to be used by all HTTP clients. |
HttpVersion | The HTTP version to use in any inner HTTP client classes created. |
IgnoreExpiredMSCTLSigningCert | Whether to tolerate the expired Windows Update signing certificate. |
ListDelimiter | The delimiter character for multi-element lists. |
LogDestination | Specifies the debug log destination. |
LogDetails | Specifies the debug log details to dump. |
LogFile | Specifies the debug log filename. |
LogFilters | Specifies the debug log filters. |
LogFlushMode | Specifies the log flush mode. |
LogLevel | Specifies the debug log level. |
LogMaxEventCount | Specifies the maximum number of events to cache before further action is taken. |
LogRotationMode | Specifies the log rotation mode. |
MaxASN1BufferLength | Specifies the maximal allowed length for ASN.1 primitive tag data. |
MaxASN1TreeDepth | Specifies the maximal depth for processed ASN.1 trees. |
OCSPHashAlgorithm | Specifies the hash algorithm to be used to identify certificates in OCSP requests. |
OldClientSideRSAFallback | Specifies whether the SSH client should use a SHA1 fallback. |
ProductVersion | Returns the version of the SecureBlackbox library. |
ServerSSLDHKeyLength | Sets the size of the TLS DHE key exchange group. |
StaticDNS | Specifies whether static DNS rules should be used. |
StaticIPAddress[domain] | Gets or sets an IP address for the specified domain name. |
StaticIPAddresses | Gets or sets all the static DNS rules. |
Tag | Allows to store any custom data. |
TLSSessionGroup | Specifies the group name of TLS sessions to be used for session resumption. |
TLSSessionLifetime | Specifies lifetime in seconds of the cached TLS session. |
TLSSessionPurgeInterval | Specifies how often the session cache should remove the expired TLS sessions. |
UseInternalRandom | Switches between SecureBlackbox-own and platform PRNGs. |
UseLegacyAdESValidation | Enables legacy AdES validation mode. |
UseOwnDNSResolver | Specifies whether the client classes should use own DNS resolver. |
UseSharedSystemStorages | Specifies whether the validation engine should use a global per-process copy of the system certificate stores. |
UseSystemNativeSizeCalculation | An internal CryptoAPI access tweak. |
UseSystemOAEPAndPSS | Enforces or disables the use of system-driven RSA OAEP and PSS computations. |
UseSystemRandom | Enables or disables the use of the OS PRNG. |
auth_types Property
Defines allowed HTTP authentication types.
Syntax
def get_auth_types() -> int: ... def set_auth_types(value: int) -> None: ...
auth_types = property(get_auth_types, set_auth_types)
Default Value
0
Remarks
Use this property to define which authentication types the component should support or attempt to use by enabling the relevant bitmask flags:
haBasic | 0x01 | Basic authentication |
haDigest | 0x02 | Digest authentication (RFC 2617) |
haNTLM | 0x04 | Windows NTLM authentication |
haKerberos | 0x08 | Kerberos (Negotiate) authentication |
haOAuth2 | 0x10 | OAuth2 authentication |
aux_result Property
Contains the auxiliary result of the last performed operation.
Syntax
def get_aux_result() -> str: ...
aux_result = property(get_aux_result, None)
Default Value
""
Remarks
Use this property to obtain an auxiliary result of the last performed operation. One of such results is the new Counter/Nonce value after an encryption operation.
This property is read-only.
base_url Property
Specifies the url of the KMIP server.
Syntax
def get_base_url() -> str: ... def set_base_url(value: str) -> None: ...
base_url = property(get_base_url, set_base_url)
Default Value
""
Remarks
Use this property to specify the address of the KMIP server.
The address to assign to this property needs to be in the standard URI-like notation:
protocol://username:password@address:port/path
The protocol token must be based on the transport that you want to use (which is largely defined by the server setup) and can be one of the following:
- kmip:// - KMIP over TCP (unencrypted)
- kmips:// - KMIP over TLS (encrypted)
- http:// - KMIP over HTTP (unencrypted)
- https:// - KMIP over HTTPS (encrypted)
The address and port are network credentials that the server can be accessed at, such as 192.168.5.101:5696 for a server residing in a local network, or kmip.server.com:25696 for a server residing on the Internet. The path part can be used for KMIP servers accessible via HTTP(S) endpoints.
Examples
- kmip://10.25.0.61:5696
- kmips://10.0.1.10:11111
- kmips://kmip.server.com:11111
- http://user:password123@www.server.com:3128/services/kmip
- https://kmip.server.com:19991
Note that you need to take extra steps to prepare the component for secure connections when using TLS-enabled endpoints. One factor to be considered is the need to validate the server's TLS certificates. This article provides insights into the validation routine: Validating TLS Certificates.
The credentials used within the HTTP and HTTPS values are used for HTTP basic or digest authentication only. If your KMIP server expects you to use KMIP-level authentication, use username and password properties to provide your credentials.
blocked_cert_count Property
The number of records in the BlockedCert arrays.
Syntax
def get_blocked_cert_count() -> int: ... def set_blocked_cert_count(value: int) -> None: ...
blocked_cert_count = property(get_blocked_cert_count, set_blocked_cert_count)
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at blocked_cert_count - 1.blocked_cert_bytes Property
Returns the raw certificate data in DER format.
Syntax
def get_blocked_cert_bytes(blocked_cert_index: int) -> bytes: ...
Remarks
Returns the raw certificate data in DER format.
The blocked_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the blocked_cert_count property.
This property is read-only.
blocked_cert_handle Property
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
def get_blocked_cert_handle(blocked_cert_index: int) -> int: ... def set_blocked_cert_handle(blocked_cert_index: int, value: int) -> None: ...
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The blocked_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the blocked_cert_count property.
certificate_bytes Property
Returns the raw certificate data in DER format.
Syntax
def get_certificate_bytes() -> bytes: ...
certificate_bytes = property(get_certificate_bytes, None)
Remarks
Returns the raw certificate data in DER format.
This property is read-only.
certificate_handle Property
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
def get_certificate_handle() -> int: ... def set_certificate_handle(value: int) -> None: ...
certificate_handle = property(get_certificate_handle, set_certificate_handle)
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
conn_info_aead_cipher Property
Indicates whether the encryption algorithm used is an AEAD cipher.
Syntax
def get_conn_info_aead_cipher() -> bool: ...
conn_info_aead_cipher = property(get_conn_info_aead_cipher, None)
Default Value
FALSE
Remarks
Indicates whether the encryption algorithm used is an AEAD cipher.
This property is read-only.
conn_info_chain_validation_details Property
The details of a certificate chain validation outcome.
Syntax
def get_conn_info_chain_validation_details() -> int: ...
conn_info_chain_validation_details = property(get_conn_info_chain_validation_details, None)
Default Value
0
Remarks
The details of a certificate chain validation outcome. They may often suggest the reasons that contributed to the overall validation result.
Returns a bit mask of the following options:
cvrBadData | 0x0001 | One or more certificates in the validation path are malformed |
cvrRevoked | 0x0002 | One or more certificates are revoked |
cvrNotYetValid | 0x0004 | One or more certificates are not yet valid |
cvrExpired | 0x0008 | One or more certificates are expired |
cvrInvalidSignature | 0x0010 | A certificate contains a non-valid digital signature |
cvrUnknownCA | 0x0020 | A CA certificate for one or more certificates has not been found (chain incomplete) |
cvrCAUnauthorized | 0x0040 | One of the CA certificates are not authorized to act as CA |
cvrCRLNotVerified | 0x0080 | One or more CRLs could not be verified |
cvrOCSPNotVerified | 0x0100 | One or more OCSP responses could not be verified |
cvrIdentityMismatch | 0x0200 | The identity protected by the certificate (a TLS endpoint or an e-mail addressee) does not match what is recorded in the certificate |
cvrNoKeyUsage | 0x0400 | A mandatory key usage is not enabled in one of the chain certificates |
cvrBlocked | 0x0800 | One or more certificates are blocked |
cvrFailure | 0x1000 | General validation failure |
cvrChainLoop | 0x2000 | Chain loop: one of the CA certificates recursively signs itself |
cvrWeakAlgorithm | 0x4000 | A weak algorithm is used in one of certificates or revocation elements |
cvrUserEnforced | 0x8000 | The chain was considered invalid following intervention from a user code |
This property is read-only.
conn_info_chain_validation_result Property
The outcome of a certificate chain validation routine.
Syntax
def get_conn_info_chain_validation_result() -> int: ...
conn_info_chain_validation_result = property(get_conn_info_chain_validation_result, None)
Default Value
0
Remarks
The outcome of a certificate chain validation routine.
Available options:
cvtValid | 0 | The chain is valid |
cvtValidButUntrusted | 1 | The chain is valid, but the root certificate is not trusted |
cvtInvalid | 2 | The chain is not valid (some of certificates are revoked, expired, or contain an invalid signature) |
cvtCantBeEstablished | 3 | The validity of the chain cannot be established because of missing or unavailable validation information (certificates, CRLs, or OCSP responses) |
Use the ValidationLog property to access the detailed validation log.
This property is read-only.
conn_info_ciphersuite Property
The cipher suite employed by this connection.
Syntax
def get_conn_info_ciphersuite() -> str: ...
conn_info_ciphersuite = property(get_conn_info_ciphersuite, None)
Default Value
""
Remarks
The cipher suite employed by this connection.
For TLS connections, this property returns the ciphersuite that was/is employed by the connection.
This property is read-only.
conn_info_client_authenticated Property
Specifies whether client authentication was performed during this connection.
Syntax
def get_conn_info_client_authenticated() -> bool: ...
conn_info_client_authenticated = property(get_conn_info_client_authenticated, None)
Default Value
FALSE
Remarks
Specifies whether client authentication was performed during this connection.
This property is read-only.
conn_info_client_auth_requested Property
Specifies whether client authentication was requested during this connection.
Syntax
def get_conn_info_client_auth_requested() -> bool: ...
conn_info_client_auth_requested = property(get_conn_info_client_auth_requested, None)
Default Value
FALSE
Remarks
Specifies whether client authentication was requested during this connection.
This property is read-only.
conn_info_connection_established Property
Indicates whether the connection has been established fully.
Syntax
def get_conn_info_connection_established() -> bool: ...
conn_info_connection_established = property(get_conn_info_connection_established, None)
Default Value
FALSE
Remarks
Indicates whether the connection has been established fully.
This property is read-only.
conn_info_connection_id Property
The unique identifier assigned to this connection.
Syntax
def get_conn_info_connection_id() -> bytes: ...
conn_info_connection_id = property(get_conn_info_connection_id, None)
Remarks
The unique identifier assigned to this connection.
This property is read-only.
conn_info_digest_algorithm Property
The digest algorithm used in a TLS-enabled connection.
Syntax
def get_conn_info_digest_algorithm() -> str: ...
conn_info_digest_algorithm = property(get_conn_info_digest_algorithm, None)
Default Value
""
Remarks
The digest algorithm used in a TLS-enabled connection.
This property is read-only.
conn_info_encryption_algorithm Property
The symmetric encryption algorithm used in a TLS-enabled connection.
Syntax
def get_conn_info_encryption_algorithm() -> str: ...
conn_info_encryption_algorithm = property(get_conn_info_encryption_algorithm, None)
Default Value
""
Remarks
The symmetric encryption algorithm used in a TLS-enabled connection.
This property is read-only.
conn_info_exportable Property
Indicates whether a TLS connection uses a reduced-strength exportable cipher.
Syntax
def get_conn_info_exportable() -> bool: ...
conn_info_exportable = property(get_conn_info_exportable, None)
Default Value
FALSE
Remarks
Indicates whether a TLS connection uses a reduced-strength exportable cipher.
This property is read-only.
conn_info_id Property
The client connection's unique identifier.
Syntax
def get_conn_info_id() -> int: ...
conn_info_id = property(get_conn_info_id, None)
Default Value
-1
Remarks
The client connection's unique identifier. This value is used throughout to refer to a particular client connection.
This property is read-only.
conn_info_key_exchange_algorithm Property
The key exchange algorithm used in a TLS-enabled connection.
Syntax
def get_conn_info_key_exchange_algorithm() -> str: ...
conn_info_key_exchange_algorithm = property(get_conn_info_key_exchange_algorithm, None)
Default Value
""
Remarks
The key exchange algorithm used in a TLS-enabled connection.
This property is read-only.
conn_info_key_exchange_key_bits Property
The length of the key exchange key of a TLS-enabled connection.
Syntax
def get_conn_info_key_exchange_key_bits() -> int: ...
conn_info_key_exchange_key_bits = property(get_conn_info_key_exchange_key_bits, None)
Default Value
0
Remarks
The length of the key exchange key of a TLS-enabled connection.
This property is read-only.
conn_info_named_ec_curve Property
The elliptic curve used in this connection.
Syntax
def get_conn_info_named_ec_curve() -> str: ...
conn_info_named_ec_curve = property(get_conn_info_named_ec_curve, None)
Default Value
""
Remarks
The elliptic curve used in this connection.
This property is read-only.
conn_info_pfs_cipher Property
Indicates whether the chosen ciphersuite provides perfect forward secrecy (PFS).
Syntax
def get_conn_info_pfs_cipher() -> bool: ...
conn_info_pfs_cipher = property(get_conn_info_pfs_cipher, None)
Default Value
FALSE
Remarks
Indicates whether the chosen ciphersuite provides perfect forward secrecy (PFS).
This property is read-only.
conn_info_pre_shared_identity Property
Specifies the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.
Syntax
def get_conn_info_pre_shared_identity() -> str: ...
conn_info_pre_shared_identity = property(get_conn_info_pre_shared_identity, None)
Default Value
""
Remarks
Specifies the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.
This property is read-only.
conn_info_pre_shared_identity_hint Property
A hint professed by the server to help the client select the PSK identity to use.
Syntax
def get_conn_info_pre_shared_identity_hint() -> str: ...
conn_info_pre_shared_identity_hint = property(get_conn_info_pre_shared_identity_hint, None)
Default Value
""
Remarks
A hint professed by the server to help the client select the PSK identity to use.
This property is read-only.
conn_info_public_key_bits Property
The length of the public key.
Syntax
def get_conn_info_public_key_bits() -> int: ...
conn_info_public_key_bits = property(get_conn_info_public_key_bits, None)
Default Value
0
Remarks
The length of the public key.
This property is read-only.
conn_info_remote_address Property
The client's IP address.
Syntax
def get_conn_info_remote_address() -> str: ...
conn_info_remote_address = property(get_conn_info_remote_address, None)
Default Value
""
Remarks
The client's IP address.
This property is read-only.
conn_info_remote_port Property
The remote port of the client connection.
Syntax
def get_conn_info_remote_port() -> int: ...
conn_info_remote_port = property(get_conn_info_remote_port, None)
Default Value
0
Remarks
The remote port of the client connection.
This property is read-only.
conn_info_resumed_session Property
Indicates whether a TLS-enabled connection was spawned from another TLS connection.
Syntax
def get_conn_info_resumed_session() -> bool: ...
conn_info_resumed_session = property(get_conn_info_resumed_session, None)
Default Value
FALSE
Remarks
Indicates whether a TLS-enabled connection was spawned from another TLS connection
This property is read-only.
conn_info_secure_connection Property
Indicates whether TLS or SSL is enabled for this connection.
Syntax
def get_conn_info_secure_connection() -> bool: ...
conn_info_secure_connection = property(get_conn_info_secure_connection, None)
Default Value
FALSE
Remarks
Indicates whether TLS or SSL is enabled for this connection.
This property is read-only.
conn_info_server_authenticated Property
Indicates whether server authentication was performed during a TLS-enabled connection.
Syntax
def get_conn_info_server_authenticated() -> bool: ...
conn_info_server_authenticated = property(get_conn_info_server_authenticated, None)
Default Value
FALSE
Remarks
Indicates whether server authentication was performed during a TLS-enabled connection.
This property is read-only.
conn_info_signature_algorithm Property
The signature algorithm used in a TLS handshake.
Syntax
def get_conn_info_signature_algorithm() -> str: ...
conn_info_signature_algorithm = property(get_conn_info_signature_algorithm, None)
Default Value
""
Remarks
The signature algorithm used in a TLS handshake.
This property is read-only.
conn_info_symmetric_block_size Property
The block size of the symmetric algorithm used.
Syntax
def get_conn_info_symmetric_block_size() -> int: ...
conn_info_symmetric_block_size = property(get_conn_info_symmetric_block_size, None)
Default Value
0
Remarks
The block size of the symmetric algorithm used.
This property is read-only.
conn_info_symmetric_key_bits Property
The key length of the symmetric algorithm used.
Syntax
def get_conn_info_symmetric_key_bits() -> int: ...
conn_info_symmetric_key_bits = property(get_conn_info_symmetric_key_bits, None)
Default Value
0
Remarks
The key length of the symmetric algorithm used.
This property is read-only.
conn_info_total_bytes_received Property
The total number of bytes received over this connection.
Syntax
def get_conn_info_total_bytes_received() -> int: ...
conn_info_total_bytes_received = property(get_conn_info_total_bytes_received, None)
Default Value
0
Remarks
The total number of bytes received over this connection.
This property is read-only.
conn_info_total_bytes_sent Property
The total number of bytes sent over this connection.
Syntax
def get_conn_info_total_bytes_sent() -> int: ...
conn_info_total_bytes_sent = property(get_conn_info_total_bytes_sent, None)
Default Value
0
Remarks
The total number of bytes sent over this connection.
This property is read-only.
conn_info_validation_log Property
Contains the server certificate's chain validation log.
Syntax
def get_conn_info_validation_log() -> str: ...
conn_info_validation_log = property(get_conn_info_validation_log, None)
Default Value
""
Remarks
Contains the server certificate's chain validation log. This information may be very useful in investigating chain validation failures.
This property is read-only.
conn_info_version Property
Indicates the version of SSL/TLS protocol negotiated during this connection.
Syntax
def get_conn_info_version() -> str: ...
conn_info_version = property(get_conn_info_version, None)
Default Value
""
Remarks
Indicates the version of SSL/TLS protocol negotiated during this connection.
This property is read-only.
data_bytes Property
Use this property to pass the secondary input to the class in the byte array form.
Syntax
def get_data_bytes() -> bytes: ... def set_data_bytes(value: bytes) -> None: ...
data_bytes = property(get_data_bytes, set_data_bytes)
Remarks
Some cryptographic operations require more than one inputs. One example is the verify operation, which expects you to provide the signature and the data being authenticated as separate data pieces. This property lets you provide that secondary data piece (the data being authenticated). The primary data piece (the signature in this case) should be provided via one of the Input* properties, such as input_bytes.
This property is one of three ways in which you can provide the data to the component. The other two are data_file and data_stream. Choose the data source type that fits your circumstances best.
data_file Property
Use this property to pass the secondary input to the class from a file.
Syntax
def get_data_file() -> str: ... def set_data_file(value: str) -> None: ...
data_file = property(get_data_file, set_data_file)
Default Value
""
Remarks
Some cryptographic operations require more than one inputs. One example is the verify operation, which expects you to provide the signature and the data being authenticated as separate data pieces. This property lets you provide that secondary data piece (the data being authenticated). The primary data piece (the signature in this case) should be provided via one of the Input* properties, such as input_file.
This property is one of three ways in which you can provide the data to the component. The other two are data_bytes and data_stream. Choose the data source type that fits your circumstances best.
encoding Property
Specifies the KMIP encoding type.
Syntax
def get_encoding() -> int: ... def set_encoding(value: int) -> None: ...
encoding = property(get_encoding, set_encoding)
Default Value
0
Remarks
Use this property to specify the KMIP message encoding to be used in the communications with the server.
The following encodings are available:
etTTLV | 0 |
etXML | 1 |
etJSON | 2 |
You need to know the right encoding for your KMIP server before accessing it. This is something you can get from the administrator of the server. KMIP servers accessible via plain TCP or TLS transports typically use the TTLV encoding.
external_crypto_async_document_id Property
Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.
Syntax
def get_external_crypto_async_document_id() -> str: ... def set_external_crypto_async_document_id(value: str) -> None: ...
external_crypto_async_document_id = property(get_external_crypto_async_document_id, set_external_crypto_async_document_id)
Default Value
""
Remarks
Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.
Use this property when working with multi-signature DCAuth requests and responses to uniquely identify documents signed within a larger batch. On the completion stage, this value helps the signing component identify the correct signature in the returned batch of responses.
If using batched requests, make sure to set this property to the same value on both the pre-signing (SignAsyncBegin) and completion (SignAsyncEnd) stages.
external_crypto_custom_params Property
Custom parameters to be passed to the signing service (uninterpreted).
Syntax
def get_external_crypto_custom_params() -> str: ... def set_external_crypto_custom_params(value: str) -> None: ...
external_crypto_custom_params = property(get_external_crypto_custom_params, set_external_crypto_custom_params)
Default Value
""
Remarks
Custom parameters to be passed to the signing service (uninterpreted).
external_crypto_data Property
Additional data to be included in the async state and mirrored back by the requestor.
Syntax
def get_external_crypto_data() -> str: ... def set_external_crypto_data(value: str) -> None: ...
external_crypto_data = property(get_external_crypto_data, set_external_crypto_data)
Default Value
""
Remarks
Additional data to be included in the async state and mirrored back by the requestor.
external_crypto_external_hash_calculation Property
Specifies whether the message hash is to be calculated at the external endpoint.
Syntax
def get_external_crypto_external_hash_calculation() -> bool: ... def set_external_crypto_external_hash_calculation(value: bool) -> None: ...
external_crypto_external_hash_calculation = property(get_external_crypto_external_hash_calculation, set_external_crypto_external_hash_calculation)
Default Value
FALSE
Remarks
Specifies whether the message hash is to be calculated at the external endpoint. Please note that this mode is not supported by the DCAuth class.
If set to true, the class will pass a few kilobytes of to-be-signed data from the document to the OnExternalSign event. This only applies when SignExternal() is called.
external_crypto_hash_algorithm Property
Specifies the request's signature hash algorithm.
Syntax
def get_external_crypto_hash_algorithm() -> str: ... def set_external_crypto_hash_algorithm(value: str) -> None: ...
external_crypto_hash_algorithm = property(get_external_crypto_hash_algorithm, set_external_crypto_hash_algorithm)
Default Value
"SHA256"
Remarks
Specifies the request's signature hash algorithm.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
external_crypto_key_id Property
The ID of the pre-shared key used for DC request authentication.
Syntax
def get_external_crypto_key_id() -> str: ... def set_external_crypto_key_id(value: str) -> None: ...
external_crypto_key_id = property(get_external_crypto_key_id, set_external_crypto_key_id)
Default Value
""
Remarks
The ID of the pre-shared key used for DC request authentication.
Asynchronous DCAuth-driven communication requires that parties authenticate each other with a secret pre-shared cryptographic key. This provides an extra protection layer for the protocol and diminishes the risk of the private key becoming abused by foreign parties. Use this property to provide the pre-shared key identifier, and use external_crypto_key_secret to pass the key itself.
The same KeyID/KeySecret pair should be used on the DCAuth side for the signing requests to be accepted.
Note: The KeyID/KeySecret scheme is very similar to the AuthKey scheme used in various Cloud service providers to authenticate users.
Example:
signer.ExternalCrypto.KeyID = "MainSigningKey";
signer.ExternalCrypto.KeySecret = "abcdef0123456789";
external_crypto_key_secret Property
The pre-shared key used for DC request authentication.
Syntax
def get_external_crypto_key_secret() -> str: ... def set_external_crypto_key_secret(value: str) -> None: ...
external_crypto_key_secret = property(get_external_crypto_key_secret, set_external_crypto_key_secret)
Default Value
""
Remarks
The pre-shared key used for DC request authentication. This key must be set and match the key used by the DCAuth counterpart for the scheme to work.
Read more about configuring authentication in the external_crypto_key_id topic.
external_crypto_method Property
Specifies the asynchronous signing method.
Syntax
def get_external_crypto_method() -> int: ... def set_external_crypto_method(value: int) -> None: ...
external_crypto_method = property(get_external_crypto_method, set_external_crypto_method)
Default Value
0
Remarks
Specifies the asynchronous signing method. This is typically defined by the DC server capabilities and setup.
Available options:
asmdPKCS1 | 0 |
asmdPKCS7 | 1 |
external_crypto_mode Property
Specifies the external cryptography mode.
Syntax
def get_external_crypto_mode() -> int: ... def set_external_crypto_mode(value: int) -> None: ...
external_crypto_mode = property(get_external_crypto_mode, set_external_crypto_mode)
Default Value
0
Remarks
Specifies the external cryptography mode.
Available options:
ecmDefault | The default value (0) |
ecmDisabled | Do not use DC or external signing (1) |
ecmGeneric | Generic external signing with the OnExternalSign event (2) |
ecmDCAuth | DCAuth signing (3) |
ecmDCAuthJSON | DCAuth signing in JSON format (4) |
external_crypto_public_key_algorithm Property
Provide the public key algorithm here if the certificate is not available on the pre-signing stage.
Syntax
def get_external_crypto_public_key_algorithm() -> str: ... def set_external_crypto_public_key_algorithm(value: str) -> None: ...
external_crypto_public_key_algorithm = property(get_external_crypto_public_key_algorithm, set_external_crypto_public_key_algorithm)
Default Value
""
Remarks
Provide the public key algorithm here if the certificate is not available on the pre-signing stage.
SB_CERT_ALGORITHM_ID_RSA_ENCRYPTION | rsaEncryption | |
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTION | md2withRSAEncryption | |
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTION | md5withRSAEncryption | |
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTION | sha1withRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA | id-dsa | |
SB_CERT_ALGORITHM_ID_DSA_SHA1 | id-dsa-with-sha1 | |
SB_CERT_ALGORITHM_DH_PUBLIC | dhpublicnumber | |
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTION | sha224WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTION | sha256WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTION | sha384WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTION | sha512WithRSAEncryption | |
SB_CERT_ALGORITHM_ID_RSAPSS | id-RSASSA-PSS | |
SB_CERT_ALGORITHM_ID_RSAOAEP | id-RSAES-OAEP | |
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160 | ripemd160withRSA | |
SB_CERT_ALGORITHM_ID_ELGAMAL | elGamal | |
SB_CERT_ALGORITHM_SHA1_ECDSA | ecdsa-with-SHA1 | |
SB_CERT_ALGORITHM_RECOMMENDED_ECDSA | ecdsa-recommended | |
SB_CERT_ALGORITHM_SHA224_ECDSA | ecdsa-with-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA | ecdsa-with-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA | ecdsa-with-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA | ecdsa-with-SHA512 | |
SB_CERT_ALGORITHM_EC | id-ecPublicKey | |
SB_CERT_ALGORITHM_SPECIFIED_ECDSA | ecdsa-specified | |
SB_CERT_ALGORITHM_GOST_R3410_1994 | id-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3410_2001 | id-GostR3410-2001 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994 | id-GostR3411-94-with-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001 | id-GostR3411-94-with-GostR3410-2001 | |
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAIN | ecdsa-plain-SHA1 | |
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAIN | ecdsa-plain-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAIN | ecdsa-plain-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAIN | ecdsa-plain-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAIN | ecdsa-plain-SHA512 | |
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAIN | ecdsa-plain-RIPEMD160 | |
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTION | whirlpoolWithRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA_SHA224 | id-dsa-with-sha224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA256 | id-dsa-with-sha256 | |
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA | id-ecdsa-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA | id-ecdsa-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA | id-ecdsa-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA | id-ecdsa-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-512 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_224 | id-dsa-with-sha3-224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_256 | id-dsa-with-sha3-256 | |
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA | id-ecdsa-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA | id-ecdsa-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA | id-ecdsa-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA | id-ecdsa-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA | id-ecdsa-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA | id-ecdsa-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA | id-ecdsa-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA | id-ecdsa-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b512 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224 | id-dsa-with-blake2s224 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256 | id-dsa-with-blake2s256 | |
SB_CERT_ALGORITHM_EDDSA_ED25519 | id-Ed25519 | |
SB_CERT_ALGORITHM_EDDSA_ED448 | id-Ed448 | |
SB_CERT_ALGORITHM_EDDSA_ED25519_PH | id-Ed25519ph | |
SB_CERT_ALGORITHM_EDDSA_ED448_PH | id-Ed448ph | |
SB_CERT_ALGORITHM_EDDSA | id-EdDSA | |
SB_CERT_ALGORITHM_EDDSA_SIGNATURE | id-EdDSA-sig |
fips_mode Property
Reserved.
Syntax
def get_fips_mode() -> bool: ... def set_fips_mode(value: bool) -> None: ...
fips_mode = property(get_fips_mode, set_fips_mode)
Default Value
FALSE
Remarks
This property is reserved for future use.
input_bytes Property
Use this property to pass the input to class in byte array form.
Syntax
def get_input_bytes() -> bytes: ... def set_input_bytes(value: bytes) -> None: ...
input_bytes = property(get_input_bytes, set_input_bytes)
Remarks
Assign a byte array containing the data to be processed to this property.
input_file Property
A path to the file containing the data to be passed as input to a cryptographic operation.
Syntax
def get_input_file() -> str: ... def set_input_file(value: str) -> None: ...
input_file = property(get_input_file, set_input_file)
Default Value
""
Remarks
Provide the full path to the file containing data to be signed, verified, encrypted or decrypted.
This property is one of the three ways that you can provide the input data to KMIPClient, with input_bytes and input_stream being the other two.
key_algorithm Property
The algorithm of the cryptographic key.
Syntax
def get_key_algorithm() -> str: ... def set_key_algorithm(value: str) -> None: ...
key_algorithm = property(get_key_algorithm, set_key_algorithm)
Default Value
""
Remarks
The algorithm of the cryptographic key. A cryptokey object may hold either symmetric, MAC, or public key. Public key algorithms: RSA, ECDSA, Elgamal, DH.
SB_SYMMETRIC_ALGORITHM_RC4 | RC4 | |
SB_SYMMETRIC_ALGORITHM_DES | DES | |
SB_SYMMETRIC_ALGORITHM_3DES | 3DES | |
SB_SYMMETRIC_ALGORITHM_RC2 | RC2 | |
SB_SYMMETRIC_ALGORITHM_AES128 | AES128 | |
SB_SYMMETRIC_ALGORITHM_AES192 | AES192 | |
SB_SYMMETRIC_ALGORITHM_AES256 | AES256 | |
SB_SYMMETRIC_ALGORITHM_IDENTITY | Identity | |
SB_SYMMETRIC_ALGORITHM_BLOWFISH | Blowfish | |
SB_SYMMETRIC_ALGORITHM_CAST128 | CAST128 | |
SB_SYMMETRIC_ALGORITHM_IDEA | IDEA | |
SB_SYMMETRIC_ALGORITHM_TWOFISH | Twofish | |
SB_SYMMETRIC_ALGORITHM_TWOFISH128 | Twofish128 | |
SB_SYMMETRIC_ALGORITHM_TWOFISH192 | Twofish192 | |
SB_SYMMETRIC_ALGORITHM_TWOFISH256 | Twofish256 | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA | Camellia | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA128 | Camellia128 | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA192 | Camellia192 | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA256 | Camellia256 | |
SB_SYMMETRIC_ALGORITHM_SERPENT | Serpent | |
SB_SYMMETRIC_ALGORITHM_SERPENT128 | Serpent128 | |
SB_SYMMETRIC_ALGORITHM_SERPENT192 | Serpent192 | |
SB_SYMMETRIC_ALGORITHM_SERPENT256 | Serpent256 | |
SB_SYMMETRIC_ALGORITHM_SEED | SEED | |
SB_SYMMETRIC_ALGORITHM_RABBIT | Rabbit | |
SB_SYMMETRIC_ALGORITHM_SYMMETRIC | Generic | |
SB_SYMMETRIC_ALGORITHM_GOST_28147_1989 | GOST-28147-1989 | |
SB_SYMMETRIC_ALGORITHM_CHACHA20 | ChaCha20 |
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
key_bits Property
The length of the key in bits.
Syntax
def get_key_bits() -> int: ...
key_bits = property(get_key_bits, None)
Default Value
0
Remarks
The length of the key in bits.
This property is read-only.
key_handle Property
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
def get_key_handle() -> int: ... def set_key_handle(value: int) -> None: ...
key_handle = property(get_key_handle, set_key_handle)
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
key_subject Property
Returns the key subject.
Syntax
def get_key_subject() -> bytes: ... def set_key_subject(value: bytes) -> None: ...
key_subject = property(get_key_subject, set_key_subject)
Remarks
Returns the key subject. This is a cryptoprovider-dependent value, which normally aims to provide some user-friendly insight into the key owner.
known_cert_count Property
The number of records in the KnownCert arrays.
Syntax
def get_known_cert_count() -> int: ... def set_known_cert_count(value: int) -> None: ...
known_cert_count = property(get_known_cert_count, set_known_cert_count)
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at known_cert_count - 1.known_cert_bytes Property
Returns the raw certificate data in DER format.
Syntax
def get_known_cert_bytes(known_cert_index: int) -> bytes: ...
Remarks
Returns the raw certificate data in DER format.
The known_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the known_cert_count property.
This property is read-only.
known_cert_handle Property
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
def get_known_cert_handle(known_cert_index: int) -> int: ... def set_known_cert_handle(known_cert_index: int, value: int) -> None: ...
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The known_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the known_cert_count property.
known_crl_count Property
The number of records in the KnownCRL arrays.
Syntax
def get_known_crl_count() -> int: ... def set_known_crl_count(value: int) -> None: ...
known_crl_count = property(get_known_crl_count, set_known_crl_count)
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at known_crl_count - 1.known_crl_bytes Property
Returns the raw CRL data in DER format.
Syntax
def get_known_crl_bytes(known_crl_index: int) -> bytes: ...
Remarks
Returns the raw CRL data in DER format.
The known_crl_index parameter specifies the index of the item in the array. The size of the array is controlled by the known_crl_count property.
This property is read-only.
known_crl_handle Property
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
def get_known_crl_handle(known_crl_index: int) -> int: ... def set_known_crl_handle(known_crl_index: int, value: int) -> None: ...
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The known_crl_index parameter specifies the index of the item in the array. The size of the array is controlled by the known_crl_count property.
known_ocsp_count Property
The number of records in the KnownOCSP arrays.
Syntax
def get_known_ocsp_count() -> int: ... def set_known_ocsp_count(value: int) -> None: ...
known_ocsp_count = property(get_known_ocsp_count, set_known_ocsp_count)
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at known_ocsp_count - 1.known_ocsp_bytes Property
A buffer containing the raw OCSP response data.
Syntax
def get_known_ocsp_bytes(known_ocsp_index: int) -> bytes: ...
Remarks
A buffer containing the raw OCSP response data.
The known_ocsp_index parameter specifies the index of the item in the array. The size of the array is controlled by the known_ocsp_count property.
This property is read-only.
known_ocsp_handle Property
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
def get_known_ocsp_handle(known_ocsp_index: int) -> int: ... def set_known_ocsp_handle(known_ocsp_index: int, value: int) -> None: ...
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The known_ocsp_index parameter specifies the index of the item in the array. The size of the array is controlled by the known_ocsp_count property.
object_count Property
The number of records in the Object arrays.
Syntax
def get_object_count() -> int: ...
object_count = property(get_object_count, None)
Default Value
0
Remarks
This property controls the size of the following arrays:
- object_bytes
- object_extractable
- object_fingerprint
- object_key_algorithm
- object_key_bits
- object_key_usage
- object_object_group
- object_object_id
- object_object_type
- object_sensitive
- object_size
- object_subject
- object_timestamp
This property is read-only.
object_bytes Property
This property is an accessor to the object's binary representation (the certificate body, the key data, the data object contents).
Syntax
def get_object_bytes(object_index: int) -> bytes: ...
Remarks
This property is an accessor to the object's binary representation (the certificate body, the key data, the data object contents).
Use this setting to access the object data after reading it from the server or set it before committing the object to the server.
The object_index parameter specifies the index of the item in the array. The size of the array is controlled by the object_count property.
This property is read-only.
object_extractable Property
Specifies the extractable attribute of the object.
Syntax
def get_object_extractable(object_index: int) -> bool: ...
Default Value
FALSE
Remarks
Specifies the extractable attribute of the object.
Check this property after retrieving an object from the server or before committing an object to the server.
The object_index parameter specifies the index of the item in the array. The size of the array is controlled by the object_count property.
This property is read-only.
object_fingerprint Property
Returns or sets the fingerprint attribute of the object.
Syntax
def get_object_fingerprint(object_index: int) -> bytes: ...
Remarks
Returns or sets the fingerprint attribute of the object.
Check this property after retrieving an object from the KMIP server or before sending it to the server.
The object_index parameter specifies the index of the item in the array. The size of the array is controlled by the object_count property.
This property is read-only.
object_key_algorithm Property
Specifies the cryptographic algorithm of the object.
Syntax
def get_object_key_algorithm(object_index: int) -> str: ...
Default Value
""
Remarks
Specifies the cryptographic algorithm of the object.
Check or set the algorithm after receiving the object from the server or before uploading it.
The following algorithms are supported: RSA, DSA, EC, ECDSA, DH, ECDH, DES, 3DES, AES, RC2, RC4, Idea, Blowfish, Camellia, Twofish. Note that only key objects support this attribute.
The object_index parameter specifies the index of the item in the array. The size of the array is controlled by the object_count property.
This property is read-only.
object_key_bits Property
Returns or sets the length of the cryptographic key, in bits.
Syntax
def get_object_key_bits(object_index: int) -> int: ...
Default Value
0
Remarks
Returns or sets the length of the cryptographic key, in bits.
Please note that not all types of objects support this attribute.
The object_index parameter specifies the index of the item in the array. The size of the array is controlled by the object_count property.
This property is read-only.
object_key_usage Property
Returns or sets the key usage flags of the certificate or key object.
Syntax
def get_object_key_usage(object_index: int) -> int: ...
Default Value
0
Remarks
Returns or sets the key usage flags of the certificate or key object. Please note only certain objects support this attribute.
Key usage flags
kuSign | 0x00001 | The object can be used for signing |
kuVerify | 0x00002 | The object can be used for verifying signatures |
kuEncrypt | 0x00004 | The object has an encryption capability |
kuDecrypt | 0x00008 | The object has a decryption capability |
kuWrapKey | 0x00010 | The object supports key wrapping |
kuUnwrapKey | 0x00020 | The object supports key unwrapping |
kuExport | 0x00040 | The object supports exports |
kuMacGenerate | 0x00080 | The object can be used for generating MAC imprints |
kuMacVerify | 0x00100 | The object can be used for verifying MAC imprints |
kuDeriveKey | 0x00200 | The object supports key derivation |
kuContentCommitment | 0x00400 | The object has content commitment capability |
kuKeyAgreement | 0x00800 | The object can be used for key agreement |
kuCertificateSign | 0x01000 | The object can be used for signing certificates |
kuCrlSign | 0x02000 | The object can be used for signing CRLs |
kuGenerateCryptogram | 0x04000 | The object can be used for generating cryptograms |
kuValidateCryptogram | 0x08000 | The object can be used for validation of cryptograms |
kuTranslateEncrypt | 0x10000 | The object supports encryption key translation |
kuTranslateDecrypt | 0x20000 | The object supports decryption key translation |
kuTranslateWrap | 0x40000 | The object supports wrapping key translation |
kuTranslateUnwrap | 0x80000 | The object supports unwrapping key translation |
The object_index parameter specifies the index of the item in the array. The size of the array is controlled by the object_count property.
This property is read-only.
object_object_group Property
Specifies the object group identifier.
Syntax
def get_object_object_group(object_index: int) -> str: ...
Default Value
""
Remarks
Specifies the object group identifier. Object groups are used to match related objects, such as certificates and their public and private key, to each other.
The object_index parameter specifies the index of the item in the array. The size of the array is controlled by the object_count property.
This property is read-only.
object_object_id Property
ObjectId is a unique identifier of the object assigned by the server-side key management system.
Syntax
def get_object_object_id(object_index: int) -> str: ...
Default Value
""
Remarks
ObjectId is a unique identifier of the object assigned by the server-side key management system.
KMIP objects are addressed and accessed by their IDs. The identifier is required to be unique within the specific server.
The object_index parameter specifies the index of the item in the array. The size of the array is controlled by the object_count property.
This property is read-only.
object_object_type Property
The type of this object.
Syntax
def get_object_object_type(object_index: int) -> int: ...
Default Value
0
Remarks
The type of this object.
otUnknown | 0x00 | |
otCertificate | 0x01 | |
otSymmetricKey | 0x02 | |
otPublicKey | 0x04 | |
otPrivateKey | 0x08 |
The object_index parameter specifies the index of the item in the array. The size of the array is controlled by the object_count property.
This property is read-only.
object_sensitive Property
Contains the Sensitive attribute of this object.
Syntax
def get_object_sensitive(object_index: int) -> bool: ...
Default Value
FALSE
Remarks
Contains the Sensitive attribute of this object.
Check or set this property to learn or apply the value to the Sensitive attribute.
The object_index parameter specifies the index of the item in the array. The size of the array is controlled by the object_count property.
This property is read-only.
object_size Property
Returns the amount of memory or space that this object occupies on the server.
Syntax
def get_object_size(object_index: int) -> int: ...
Default Value
0
Remarks
Returns the amount of memory or space that this object occupies on the server.
Check this property to find out the amount of bytes this object consumes.
The object_index parameter specifies the index of the item in the array. The size of the array is controlled by the object_count property.
This property is read-only.
object_subject Property
Specifies the subject attribute of the object.
Syntax
def get_object_subject(object_index: int) -> str: ...
Default Value
""
Remarks
Specifies the subject attribute of the object.
Use this object to get or set the subject (owner) attribute of a KMIP object.
The object_index parameter specifies the index of the item in the array. The size of the array is controlled by the object_count property.
This property is read-only.
object_timestamp Property
Returns the time value associated with this object.
Syntax
def get_object_timestamp(object_index: int) -> str: ...
Default Value
""
Remarks
Returns the time value associated with this object.
Use this setting to learn the time value associated with this object.
The object_index parameter specifies the index of the item in the array. The size of the array is controlled by the object_count property.
This property is read-only.
output_bytes Property
Use this property to read the output the class object has produced.
Syntax
def get_output_bytes() -> bytes: ...
output_bytes = property(get_output_bytes, None)
Remarks
Read the contents of this property after the operation has completed to read the produced output. This property will only be set if the output_file and output_stream properties had not been assigned.
This property is read-only.
output_file Property
Specifies the file where the signed, encrypted, or decrypted data should be saved.
Syntax
def get_output_file() -> str: ... def set_output_file(value: str) -> None: ...
output_file = property(get_output_file, set_output_file)
Default Value
""
Remarks
Provide a full path to the file where the signed, encrypted, or decrypted data should be saved.
This property is one of the three ways that you can receive the output data from KMIPClient, with output_bytes and output_stream being the other two.
password Property
Specifies a password to authenticate to the KMIP server.
Syntax
def get_password() -> str: ... def set_password(value: str) -> None: ...
password = property(get_password, set_password)
Default Value
""
Remarks
Use this property to provide a password for authentication on the KMIP server.
The value assigned to this property is used for built-in user authentication provided by KMIP. If the KMIP server you are connecting to expects you to use HTTP basic or digest authentication, provide the credentials via the base_url property.
proxy_address Property
The IP address of the proxy server.
Syntax
def get_proxy_address() -> str: ... def set_proxy_address(value: str) -> None: ...
proxy_address = property(get_proxy_address, set_proxy_address)
Default Value
""
Remarks
The IP address of the proxy server.
proxy_authentication Property
The authentication type used by the proxy server.
Syntax
def get_proxy_authentication() -> int: ... def set_proxy_authentication(value: int) -> None: ...
proxy_authentication = property(get_proxy_authentication, set_proxy_authentication)
Default Value
0
Remarks
The authentication type used by the proxy server.
patNoAuthentication | 0 |
patBasic | 1 |
patDigest | 2 |
patNTLM | 3 |
proxy_password Property
The password to authenticate to the proxy server.
Syntax
def get_proxy_password() -> str: ... def set_proxy_password(value: str) -> None: ...
proxy_password = property(get_proxy_password, set_proxy_password)
Default Value
""
Remarks
The password to authenticate to the proxy server.
proxy_port Property
The port on the proxy server to connect to.
Syntax
def get_proxy_port() -> int: ... def set_proxy_port(value: int) -> None: ...
proxy_port = property(get_proxy_port, set_proxy_port)
Default Value
0
Remarks
The port on the proxy server to connect to.
proxy_proxy_type Property
The type of the proxy server.
Syntax
def get_proxy_proxy_type() -> int: ... def set_proxy_proxy_type(value: int) -> None: ...
proxy_proxy_type = property(get_proxy_proxy_type, set_proxy_proxy_type)
Default Value
0
Remarks
The type of the proxy server.
cptNone | 0 |
cptSocks4 | 1 |
cptSocks5 | 2 |
cptWebTunnel | 3 |
cptHTTP | 4 |
proxy_request_headers Property
Contains HTTP request headers for WebTunnel and HTTP proxy.
Syntax
def get_proxy_request_headers() -> str: ... def set_proxy_request_headers(value: str) -> None: ...
proxy_request_headers = property(get_proxy_request_headers, set_proxy_request_headers)
Default Value
""
Remarks
Contains HTTP request headers for WebTunnel and HTTP proxy.
proxy_response_body Property
Contains the HTTP or HTTPS (WebTunnel) proxy response body.
Syntax
def get_proxy_response_body() -> str: ... def set_proxy_response_body(value: str) -> None: ...
proxy_response_body = property(get_proxy_response_body, set_proxy_response_body)
Default Value
""
Remarks
Contains the HTTP or HTTPS (WebTunnel) proxy response body.
proxy_response_headers Property
Contains response headers received from an HTTP or HTTPS (WebTunnel) proxy server.
Syntax
def get_proxy_response_headers() -> str: ... def set_proxy_response_headers(value: str) -> None: ...
proxy_response_headers = property(get_proxy_response_headers, set_proxy_response_headers)
Default Value
""
Remarks
Contains response headers received from an HTTP or HTTPS (WebTunnel) proxy server.
proxy_use_ipv6 Property
Specifies whether IPv6 should be used when connecting through the proxy.
Syntax
def get_proxy_use_ipv6() -> bool: ... def set_proxy_use_ipv6(value: bool) -> None: ...
proxy_use_ipv6 = property(get_proxy_use_ipv6, set_proxy_use_ipv6)
Default Value
FALSE
Remarks
Specifies whether IPv6 should be used when connecting through the proxy.
proxy_username Property
Specifies the username credential for proxy authentication.
Syntax
def get_proxy_username() -> str: ... def set_proxy_username(value: str) -> None: ...
proxy_username = property(get_proxy_username, set_proxy_username)
Default Value
""
Remarks
Specifies the username credential for proxy authentication.
signature_validation_result Property
The signature validation result.
Syntax
def get_signature_validation_result() -> int: ...
signature_validation_result = property(get_signature_validation_result, None)
Default Value
0
Remarks
Use this property to check the result of the most recent signature validation.
svtValid | 0 | The signature is valid |
svtUnknown | 1 | Signature validity is unknown |
svtCorrupted | 2 | The signature is corrupted |
svtSignerNotFound | 3 | Failed to acquire the signing certificate. The signature cannot be validated. |
svtFailure | 4 | General failure |
svtReferenceCorrupted | 5 | Reference corrupted (XML-based signatures only) |
This property is read-only.
socket_dns_mode Property
Selects the DNS resolver to use: the class's (secure) built-in one, or the one provided by the system.
Syntax
def get_socket_dns_mode() -> int: ... def set_socket_dns_mode(value: int) -> None: ...
socket_dns_mode = property(get_socket_dns_mode, set_socket_dns_mode)
Default Value
0
Remarks
Selects the DNS resolver to use: the component's (secure) built-in one, or the one provided by the system.
dmAuto | 0 |
dmPlatform | 1 |
dmOwn | 2 |
dmOwnSecure | 3 |
socket_dns_port Property
Specifies the port number to be used for sending queries to the DNS server.
Syntax
def get_socket_dns_port() -> int: ... def set_socket_dns_port(value: int) -> None: ...
socket_dns_port = property(get_socket_dns_port, set_socket_dns_port)
Default Value
0
Remarks
Specifies the port number to be used for sending queries to the DNS server.
socket_dns_query_timeout Property
The timeout (in milliseconds) for each DNS query.
Syntax
def get_socket_dns_query_timeout() -> int: ... def set_socket_dns_query_timeout(value: int) -> None: ...
socket_dns_query_timeout = property(get_socket_dns_query_timeout, set_socket_dns_query_timeout)
Default Value
0
Remarks
The timeout (in milliseconds) for each DNS query. The value of 0 indicates an infinite timeout.
socket_dns_servers Property
The addresses of DNS servers to use for address resolution, separated by commas or semicolons.
Syntax
def get_socket_dns_servers() -> str: ... def set_socket_dns_servers(value: str) -> None: ...
socket_dns_servers = property(get_socket_dns_servers, set_socket_dns_servers)
Default Value
""
Remarks
The addresses of DNS servers to use for address resolution, separated by commas or semicolons.
socket_dns_total_timeout Property
The timeout (in milliseconds) for the whole resolution process.
Syntax
def get_socket_dns_total_timeout() -> int: ... def set_socket_dns_total_timeout(value: int) -> None: ...
socket_dns_total_timeout = property(get_socket_dns_total_timeout, set_socket_dns_total_timeout)
Default Value
0
Remarks
The timeout (in milliseconds) for the whole resolution process. The value of 0 indicates an infinite timeout.
socket_incoming_speed_limit Property
The maximum number of bytes to read from the socket, per second.
Syntax
def get_socket_incoming_speed_limit() -> int: ... def set_socket_incoming_speed_limit(value: int) -> None: ...
socket_incoming_speed_limit = property(get_socket_incoming_speed_limit, set_socket_incoming_speed_limit)
Default Value
0
Remarks
The maximum number of bytes to read from the socket, per second.
socket_local_address Property
The local network interface to bind the socket to.
Syntax
def get_socket_local_address() -> str: ... def set_socket_local_address(value: str) -> None: ...
socket_local_address = property(get_socket_local_address, set_socket_local_address)
Default Value
""
Remarks
The local network interface to bind the socket to.
socket_local_port Property
The local port number to bind the socket to.
Syntax
def get_socket_local_port() -> int: ... def set_socket_local_port(value: int) -> None: ...
socket_local_port = property(get_socket_local_port, set_socket_local_port)
Default Value
0
Remarks
The local port number to bind the socket to.
socket_outgoing_speed_limit Property
The maximum number of bytes to write to the socket, per second.
Syntax
def get_socket_outgoing_speed_limit() -> int: ... def set_socket_outgoing_speed_limit(value: int) -> None: ...
socket_outgoing_speed_limit = property(get_socket_outgoing_speed_limit, set_socket_outgoing_speed_limit)
Default Value
0
Remarks
The maximum number of bytes to write to the socket, per second.
socket_timeout Property
The maximum period of waiting, in milliseconds, after which the socket operation is considered unsuccessful.
Syntax
def get_socket_timeout() -> int: ... def set_socket_timeout(value: int) -> None: ...
socket_timeout = property(get_socket_timeout, set_socket_timeout)
Default Value
60000
Remarks
The maximum period of waiting, in milliseconds, after which the socket operation is considered unsuccessful.
If Timeout is set to 0, a socket operation will expire after the system-default timeout (2 hrs 8 min for TCP stack).
socket_use_ipv6 Property
Enables or disables IP protocol version 6.
Syntax
def get_socket_use_ipv6() -> bool: ... def set_socket_use_ipv6(value: bool) -> None: ...
socket_use_ipv6 = property(get_socket_use_ipv6, set_socket_use_ipv6)
Default Value
FALSE
Remarks
Enables or disables IP protocol version 6.
tls_client_cert_count Property
The number of records in the TLSClientCert arrays.
Syntax
def get_tls_client_cert_count() -> int: ... def set_tls_client_cert_count(value: int) -> None: ...
tls_client_cert_count = property(get_tls_client_cert_count, set_tls_client_cert_count)
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at tls_client_cert_count - 1.tls_client_cert_bytes Property
Returns the raw certificate data in DER format.
Syntax
def get_tls_client_cert_bytes(tls_client_cert_index: int) -> bytes: ...
Remarks
Returns the raw certificate data in DER format.
The tls_client_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the tls_client_cert_count property.
This property is read-only.
tls_client_cert_handle Property
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
def get_tls_client_cert_handle(tls_client_cert_index: int) -> int: ... def set_tls_client_cert_handle(tls_client_cert_index: int, value: int) -> None: ...
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The tls_client_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the tls_client_cert_count property.
tls_server_cert_count Property
The number of records in the TLSServerCert arrays.
Syntax
def get_tls_server_cert_count() -> int: ...
tls_server_cert_count = property(get_tls_server_cert_count, None)
Default Value
0
Remarks
This property controls the size of the following arrays:
- tls_server_cert_bytes
- tls_server_cert_fingerprint
- tls_server_cert_handle
- tls_server_cert_issuer
- tls_server_cert_issuer_rdn
- tls_server_cert_key_algorithm
- tls_server_cert_key_bits
- tls_server_cert_key_usage
- tls_server_cert_self_signed
- tls_server_cert_serial_number
- tls_server_cert_sig_algorithm
- tls_server_cert_subject
- tls_server_cert_subject_rdn
- tls_server_cert_valid_from
- tls_server_cert_valid_to
This property is read-only.
tls_server_cert_bytes Property
Returns the raw certificate data in DER format.
Syntax
def get_tls_server_cert_bytes(tls_server_cert_index: int) -> bytes: ...
Remarks
Returns the raw certificate data in DER format.
The tls_server_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the tls_server_cert_count property.
This property is read-only.
tls_server_cert_fingerprint Property
Contains the fingerprint (a hash imprint) of this certificate.
Syntax
def get_tls_server_cert_fingerprint(tls_server_cert_index: int) -> str: ...
Default Value
""
Remarks
Contains the fingerprint (a hash imprint) of this certificate.
While there is no formal standard defining what a fingerprint is, a SHA1 hash of the certificate's DER-encoded body is typically used.
The tls_server_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the tls_server_cert_count property.
This property is read-only.
tls_server_cert_handle Property
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
def get_tls_server_cert_handle(tls_server_cert_index: int) -> int: ...
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The tls_server_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the tls_server_cert_count property.
This property is read-only.
tls_server_cert_issuer Property
The common name of the certificate issuer (CA), typically a company name.
Syntax
def get_tls_server_cert_issuer(tls_server_cert_index: int) -> str: ...
Default Value
""
Remarks
The common name of the certificate issuer (CA), typically a company name. This is part of a larger set of credentials available via tls_issuer_rdn.
The tls_server_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the tls_server_cert_count property.
This property is read-only.
tls_server_cert_issuer_rdn Property
A list of Property=Value pairs that uniquely identify the certificate issuer.
Syntax
def get_tls_server_cert_issuer_rdn(tls_server_cert_index: int) -> str: ...
Default Value
""
Remarks
A list of Property=Value pairs that uniquely identify the certificate issuer.
Example: /C=US/O=Nationwide CA/CN=Web Certification Authority
The tls_server_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the tls_server_cert_count property.
This property is read-only.
tls_server_cert_key_algorithm Property
Specifies the public key algorithm of this certificate.
Syntax
def get_tls_server_cert_key_algorithm(tls_server_cert_index: int) -> str: ...
Default Value
"0"
Remarks
Specifies the public key algorithm of this certificate.
SB_CERT_ALGORITHM_ID_RSA_ENCRYPTION | rsaEncryption | |
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTION | md2withRSAEncryption | |
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTION | md5withRSAEncryption | |
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTION | sha1withRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA | id-dsa | |
SB_CERT_ALGORITHM_ID_DSA_SHA1 | id-dsa-with-sha1 | |
SB_CERT_ALGORITHM_DH_PUBLIC | dhpublicnumber | |
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTION | sha224WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTION | sha256WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTION | sha384WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTION | sha512WithRSAEncryption | |
SB_CERT_ALGORITHM_ID_RSAPSS | id-RSASSA-PSS | |
SB_CERT_ALGORITHM_ID_RSAOAEP | id-RSAES-OAEP | |
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160 | ripemd160withRSA | |
SB_CERT_ALGORITHM_ID_ELGAMAL | elGamal | |
SB_CERT_ALGORITHM_SHA1_ECDSA | ecdsa-with-SHA1 | |
SB_CERT_ALGORITHM_RECOMMENDED_ECDSA | ecdsa-recommended | |
SB_CERT_ALGORITHM_SHA224_ECDSA | ecdsa-with-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA | ecdsa-with-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA | ecdsa-with-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA | ecdsa-with-SHA512 | |
SB_CERT_ALGORITHM_EC | id-ecPublicKey | |
SB_CERT_ALGORITHM_SPECIFIED_ECDSA | ecdsa-specified | |
SB_CERT_ALGORITHM_GOST_R3410_1994 | id-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3410_2001 | id-GostR3410-2001 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994 | id-GostR3411-94-with-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001 | id-GostR3411-94-with-GostR3410-2001 | |
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAIN | ecdsa-plain-SHA1 | |
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAIN | ecdsa-plain-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAIN | ecdsa-plain-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAIN | ecdsa-plain-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAIN | ecdsa-plain-SHA512 | |
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAIN | ecdsa-plain-RIPEMD160 | |
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTION | whirlpoolWithRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA_SHA224 | id-dsa-with-sha224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA256 | id-dsa-with-sha256 | |
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA | id-ecdsa-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA | id-ecdsa-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA | id-ecdsa-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA | id-ecdsa-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-512 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_224 | id-dsa-with-sha3-224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_256 | id-dsa-with-sha3-256 | |
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA | id-ecdsa-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA | id-ecdsa-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA | id-ecdsa-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA | id-ecdsa-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA | id-ecdsa-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA | id-ecdsa-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA | id-ecdsa-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA | id-ecdsa-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b512 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224 | id-dsa-with-blake2s224 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256 | id-dsa-with-blake2s256 | |
SB_CERT_ALGORITHM_EDDSA_ED25519 | id-Ed25519 | |
SB_CERT_ALGORITHM_EDDSA_ED448 | id-Ed448 | |
SB_CERT_ALGORITHM_EDDSA_ED25519_PH | id-Ed25519ph | |
SB_CERT_ALGORITHM_EDDSA_ED448_PH | id-Ed448ph | |
SB_CERT_ALGORITHM_EDDSA | id-EdDSA | |
SB_CERT_ALGORITHM_EDDSA_SIGNATURE | id-EdDSA-sig |
Use the tls_key_bits, tls_curve, and tls_public_key_bytes properties to get more details about the key the certificate contains.
The tls_server_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the tls_server_cert_count property.
This property is read-only.
tls_server_cert_key_bits Property
Returns the length of the public key in bits.
Syntax
def get_tls_server_cert_key_bits(tls_server_cert_index: int) -> int: ...
Default Value
0
Remarks
Returns the length of the public key in bits.
This value indicates the length of the principal cryptographic parameter of the key, such as the length of the RSA modulus or ECDSA field. The key data returned by the tls_public_key_bytes or tls_private_key_bytes property would typically contain auxiliary values, and therefore be longer.
The tls_server_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the tls_server_cert_count property.
This property is read-only.
tls_server_cert_key_usage Property
Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.
Syntax
def get_tls_server_cert_key_usage(tls_server_cert_index: int) -> int: ...
Default Value
0
Remarks
Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.
This value is a bit mask of the following values:
ckuUnknown | 0x00000 | Unknown key usage |
ckuDigitalSignature | 0x00001 | Digital signature |
ckuNonRepudiation | 0x00002 | Non-repudiation |
ckuKeyEncipherment | 0x00004 | Key encipherment |
ckuDataEncipherment | 0x00008 | Data encipherment |
ckuKeyAgreement | 0x00010 | Key agreement |
ckuKeyCertSign | 0x00020 | Certificate signing |
ckuCRLSign | 0x00040 | Revocation signing |
ckuEncipherOnly | 0x00080 | Encipher only |
ckuDecipherOnly | 0x00100 | Decipher only |
ckuServerAuthentication | 0x00200 | Server authentication |
ckuClientAuthentication | 0x00400 | Client authentication |
ckuCodeSigning | 0x00800 | Code signing |
ckuEmailProtection | 0x01000 | Email protection |
ckuTimeStamping | 0x02000 | Timestamping |
ckuOCSPSigning | 0x04000 | OCSP signing |
ckuSmartCardLogon | 0x08000 | Smartcard logon |
ckuKeyPurposeClientAuth | 0x10000 | Kerberos - client authentication |
ckuKeyPurposeKDC | 0x20000 | Kerberos - KDC |
Set this property before generating the certificate to propagate the key usage flags to the new certificate.
The tls_server_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the tls_server_cert_count property.
This property is read-only.
tls_server_cert_self_signed Property
Indicates whether the certificate is self-signed (root) or signed by an external CA.
Syntax
def get_tls_server_cert_self_signed(tls_server_cert_index: int) -> bool: ...
Default Value
FALSE
Remarks
Indicates whether the certificate is self-signed (root) or signed by an external CA.
The tls_server_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the tls_server_cert_count property.
This property is read-only.
tls_server_cert_serial_number Property
Returns the certificate's serial number.
Syntax
def get_tls_server_cert_serial_number(tls_server_cert_index: int) -> bytes: ...
Remarks
Returns the certificate's serial number.
The serial number is a binary string that uniquely identifies a certificate among others issued by the same CA. According to the X.509 standard, the (issuer, serial number) pair should be globally unique to facilitate chain building.
The tls_server_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the tls_server_cert_count property.
This property is read-only.
tls_server_cert_sig_algorithm Property
Indicates the algorithm that was used by the CA to sign this certificate.
Syntax
def get_tls_server_cert_sig_algorithm(tls_server_cert_index: int) -> str: ...
Default Value
""
Remarks
Indicates the algorithm that was used by the CA to sign this certificate.
A signature algorithm typically combines hash and public key algorithms together, such as sha256WithRSAEncryption or ecdsa-with-SHA256.
The tls_server_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the tls_server_cert_count property.
This property is read-only.
tls_server_cert_subject Property
The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name.
Syntax
def get_tls_server_cert_subject(tls_server_cert_index: int) -> str: ...
Default Value
""
Remarks
The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name. This is part of a larger set of credentials available via tls_subject_rdn.
The tls_server_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the tls_server_cert_count property.
This property is read-only.
tls_server_cert_subject_rdn Property
A list of Property=Value pairs that uniquely identify the certificate holder (subject).
Syntax
def get_tls_server_cert_subject_rdn(tls_server_cert_index: int) -> str: ...
Default Value
""
Remarks
A list of Property=Value pairs that uniquely identify the certificate holder (subject).
Depending on the purpose of the certificate and the policies of the CA that issued it, the values included in the subject record may differ drastically and contain business or personal names, web URLs, email addresses, and other data.
Example: /C=US/O=Oranges and Apples, Inc./OU=Accounts Receivable/1.2.3.4.5=Value with unknown OID/CN=Margaret Watkins.
The tls_server_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the tls_server_cert_count property.
This property is read-only.
tls_server_cert_valid_from Property
The time point at which the certificate becomes valid, in UTC.
Syntax
def get_tls_server_cert_valid_from(tls_server_cert_index: int) -> str: ...
Default Value
""
Remarks
The time point at which the certificate becomes valid, in UTC.
The tls_server_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the tls_server_cert_count property.
This property is read-only.
tls_server_cert_valid_to Property
The time point at which the certificate expires, in UTC.
Syntax
def get_tls_server_cert_valid_to(tls_server_cert_index: int) -> str: ...
Default Value
""
Remarks
The time point at which the certificate expires, in UTC.
The tls_server_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the tls_server_cert_count property.
This property is read-only.
tls_auto_validate_certificates Property
Specifies whether server-side TLS certificates should be validated automatically using internal validation rules.
Syntax
def get_tls_auto_validate_certificates() -> bool: ... def set_tls_auto_validate_certificates(value: bool) -> None: ...
tls_auto_validate_certificates = property(get_tls_auto_validate_certificates, set_tls_auto_validate_certificates)
Default Value
TRUE
Remarks
Specifies whether server-side TLS certificates should be validated automatically using internal validation rules.
tls_base_configuration Property
Selects the base configuration for the TLS settings.
Syntax
def get_tls_base_configuration() -> int: ... def set_tls_base_configuration(value: int) -> None: ...
tls_base_configuration = property(get_tls_base_configuration, set_tls_base_configuration)
Default Value
0
Remarks
Selects the base configuration for the TLS settings. Several profiles are offered and tuned up for different purposes, such as high security or higher compatibility.
stpcDefault | 0 | |
stpcCompatible | 1 | |
stpcComprehensiveInsecure | 2 | |
stpcHighlySecure | 3 |
tls_ciphersuites Property
A list of ciphersuites separated with commas or semicolons.
Syntax
def get_tls_ciphersuites() -> str: ... def set_tls_ciphersuites(value: str) -> None: ...
tls_ciphersuites = property(get_tls_ciphersuites, set_tls_ciphersuites)
Default Value
""
Remarks
A list of ciphersuites separated with commas or semicolons. Each ciphersuite in the list may be prefixed with a minus sign (-) to indicate that the ciphersuite should be disabled rather than enabled. Besides the specific ciphersuite modifiers, this property supports the all (and -all) aliases, allowing all ciphersuites to be blanketly enabled or disabled at once.
Note: the list of ciphersuites provided to this property alters the baseline list of ciphersuites as defined by tls_base_configuration. Remember to start your ciphersuite string with -all; if you need to only enable a specific fixed set of ciphersuites. The list of supported ciphersuites is provided below:
- NULL_NULL_NULL
- RSA_NULL_MD5
- RSA_NULL_SHA
- RSA_RC4_MD5
- RSA_RC4_SHA
- RSA_RC2_MD5
- RSA_IDEA_MD5
- RSA_IDEA_SHA
- RSA_DES_MD5
- RSA_DES_SHA
- RSA_3DES_MD5
- RSA_3DES_SHA
- RSA_AES128_SHA
- RSA_AES256_SHA
- DH_DSS_DES_SHA
- DH_DSS_3DES_SHA
- DH_DSS_AES128_SHA
- DH_DSS_AES256_SHA
- DH_RSA_DES_SHA
- DH_RSA_3DES_SHA
- DH_RSA_AES128_SHA
- DH_RSA_AES256_SHA
- DHE_DSS_DES_SHA
- DHE_DSS_3DES_SHA
- DHE_DSS_AES128_SHA
- DHE_DSS_AES256_SHA
- DHE_RSA_DES_SHA
- DHE_RSA_3DES_SHA
- DHE_RSA_AES128_SHA
- DHE_RSA_AES256_SHA
- DH_ANON_RC4_MD5
- DH_ANON_DES_SHA
- DH_ANON_3DES_SHA
- DH_ANON_AES128_SHA
- DH_ANON_AES256_SHA
- RSA_RC2_MD5_EXPORT
- RSA_RC4_MD5_EXPORT
- RSA_DES_SHA_EXPORT
- DH_DSS_DES_SHA_EXPORT
- DH_RSA_DES_SHA_EXPORT
- DHE_DSS_DES_SHA_EXPORT
- DHE_RSA_DES_SHA_EXPORT
- DH_ANON_RC4_MD5_EXPORT
- DH_ANON_DES_SHA_EXPORT
- RSA_CAMELLIA128_SHA
- DH_DSS_CAMELLIA128_SHA
- DH_RSA_CAMELLIA128_SHA
- DHE_DSS_CAMELLIA128_SHA
- DHE_RSA_CAMELLIA128_SHA
- DH_ANON_CAMELLIA128_SHA
- RSA_CAMELLIA256_SHA
- DH_DSS_CAMELLIA256_SHA
- DH_RSA_CAMELLIA256_SHA
- DHE_DSS_CAMELLIA256_SHA
- DHE_RSA_CAMELLIA256_SHA
- DH_ANON_CAMELLIA256_SHA
- PSK_RC4_SHA
- PSK_3DES_SHA
- PSK_AES128_SHA
- PSK_AES256_SHA
- DHE_PSK_RC4_SHA
- DHE_PSK_3DES_SHA
- DHE_PSK_AES128_SHA
- DHE_PSK_AES256_SHA
- RSA_PSK_RC4_SHA
- RSA_PSK_3DES_SHA
- RSA_PSK_AES128_SHA
- RSA_PSK_AES256_SHA
- RSA_SEED_SHA
- DH_DSS_SEED_SHA
- DH_RSA_SEED_SHA
- DHE_DSS_SEED_SHA
- DHE_RSA_SEED_SHA
- DH_ANON_SEED_SHA
- SRP_SHA_3DES_SHA
- SRP_SHA_RSA_3DES_SHA
- SRP_SHA_DSS_3DES_SHA
- SRP_SHA_AES128_SHA
- SRP_SHA_RSA_AES128_SHA
- SRP_SHA_DSS_AES128_SHA
- SRP_SHA_AES256_SHA
- SRP_SHA_RSA_AES256_SHA
- SRP_SHA_DSS_AES256_SHA
- ECDH_ECDSA_NULL_SHA
- ECDH_ECDSA_RC4_SHA
- ECDH_ECDSA_3DES_SHA
- ECDH_ECDSA_AES128_SHA
- ECDH_ECDSA_AES256_SHA
- ECDHE_ECDSA_NULL_SHA
- ECDHE_ECDSA_RC4_SHA
- ECDHE_ECDSA_3DES_SHA
- ECDHE_ECDSA_AES128_SHA
- ECDHE_ECDSA_AES256_SHA
- ECDH_RSA_NULL_SHA
- ECDH_RSA_RC4_SHA
- ECDH_RSA_3DES_SHA
- ECDH_RSA_AES128_SHA
- ECDH_RSA_AES256_SHA
- ECDHE_RSA_NULL_SHA
- ECDHE_RSA_RC4_SHA
- ECDHE_RSA_3DES_SHA
- ECDHE_RSA_AES128_SHA
- ECDHE_RSA_AES256_SHA
- ECDH_ANON_NULL_SHA
- ECDH_ANON_RC4_SHA
- ECDH_ANON_3DES_SHA
- ECDH_ANON_AES128_SHA
- ECDH_ANON_AES256_SHA
- RSA_NULL_SHA256
- RSA_AES128_SHA256
- RSA_AES256_SHA256
- DH_DSS_AES128_SHA256
- DH_RSA_AES128_SHA256
- DHE_DSS_AES128_SHA256
- DHE_RSA_AES128_SHA256
- DH_DSS_AES256_SHA256
- DH_RSA_AES256_SHA256
- DHE_DSS_AES256_SHA256
- DHE_RSA_AES256_SHA256
- DH_ANON_AES128_SHA256
- DH_ANON_AES256_SHA256
- RSA_AES128_GCM_SHA256
- RSA_AES256_GCM_SHA384
- DHE_RSA_AES128_GCM_SHA256
- DHE_RSA_AES256_GCM_SHA384
- DH_RSA_AES128_GCM_SHA256
- DH_RSA_AES256_GCM_SHA384
- DHE_DSS_AES128_GCM_SHA256
- DHE_DSS_AES256_GCM_SHA384
- DH_DSS_AES128_GCM_SHA256
- DH_DSS_AES256_GCM_SHA384
- DH_ANON_AES128_GCM_SHA256
- DH_ANON_AES256_GCM_SHA384
- ECDHE_ECDSA_AES128_SHA256
- ECDHE_ECDSA_AES256_SHA384
- ECDH_ECDSA_AES128_SHA256
- ECDH_ECDSA_AES256_SHA384
- ECDHE_RSA_AES128_SHA256
- ECDHE_RSA_AES256_SHA384
- ECDH_RSA_AES128_SHA256
- ECDH_RSA_AES256_SHA384
- ECDHE_ECDSA_AES128_GCM_SHA256
- ECDHE_ECDSA_AES256_GCM_SHA384
- ECDH_ECDSA_AES128_GCM_SHA256
- ECDH_ECDSA_AES256_GCM_SHA384
- ECDHE_RSA_AES128_GCM_SHA256
- ECDHE_RSA_AES256_GCM_SHA384
- ECDH_RSA_AES128_GCM_SHA256
- ECDH_RSA_AES256_GCM_SHA384
- PSK_AES128_GCM_SHA256
- PSK_AES256_GCM_SHA384
- DHE_PSK_AES128_GCM_SHA256
- DHE_PSK_AES256_GCM_SHA384
- RSA_PSK_AES128_GCM_SHA256
- RSA_PSK_AES256_GCM_SHA384
- PSK_AES128_SHA256
- PSK_AES256_SHA384
- PSK_NULL_SHA256
- PSK_NULL_SHA384
- DHE_PSK_AES128_SHA256
- DHE_PSK_AES256_SHA384
- DHE_PSK_NULL_SHA256
- DHE_PSK_NULL_SHA384
- RSA_PSK_AES128_SHA256
- RSA_PSK_AES256_SHA384
- RSA_PSK_NULL_SHA256
- RSA_PSK_NULL_SHA384
- RSA_CAMELLIA128_SHA256
- DH_DSS_CAMELLIA128_SHA256
- DH_RSA_CAMELLIA128_SHA256
- DHE_DSS_CAMELLIA128_SHA256
- DHE_RSA_CAMELLIA128_SHA256
- DH_ANON_CAMELLIA128_SHA256
- RSA_CAMELLIA256_SHA256
- DH_DSS_CAMELLIA256_SHA256
- DH_RSA_CAMELLIA256_SHA256
- DHE_DSS_CAMELLIA256_SHA256
- DHE_RSA_CAMELLIA256_SHA256
- DH_ANON_CAMELLIA256_SHA256
- ECDHE_ECDSA_CAMELLIA128_SHA256
- ECDHE_ECDSA_CAMELLIA256_SHA384
- ECDH_ECDSA_CAMELLIA128_SHA256
- ECDH_ECDSA_CAMELLIA256_SHA384
- ECDHE_RSA_CAMELLIA128_SHA256
- ECDHE_RSA_CAMELLIA256_SHA384
- ECDH_RSA_CAMELLIA128_SHA256
- ECDH_RSA_CAMELLIA256_SHA384
- RSA_CAMELLIA128_GCM_SHA256
- RSA_CAMELLIA256_GCM_SHA384
- DHE_RSA_CAMELLIA128_GCM_SHA256
- DHE_RSA_CAMELLIA256_GCM_SHA384
- DH_RSA_CAMELLIA128_GCM_SHA256
- DH_RSA_CAMELLIA256_GCM_SHA384
- DHE_DSS_CAMELLIA128_GCM_SHA256
- DHE_DSS_CAMELLIA256_GCM_SHA384
- DH_DSS_CAMELLIA128_GCM_SHA256
- DH_DSS_CAMELLIA256_GCM_SHA384
- DH_anon_CAMELLIA128_GCM_SHA256
- DH_anon_CAMELLIA256_GCM_SHA384
- ECDHE_ECDSA_CAMELLIA128_GCM_SHA256
- ECDHE_ECDSA_CAMELLIA256_GCM_SHA384
- ECDH_ECDSA_CAMELLIA128_GCM_SHA256
- ECDH_ECDSA_CAMELLIA256_GCM_SHA384
- ECDHE_RSA_CAMELLIA128_GCM_SHA256
- ECDHE_RSA_CAMELLIA256_GCM_SHA384
- ECDH_RSA_CAMELLIA128_GCM_SHA256
- ECDH_RSA_CAMELLIA256_GCM_SHA384
- PSK_CAMELLIA128_GCM_SHA256
- PSK_CAMELLIA256_GCM_SHA384
- DHE_PSK_CAMELLIA128_GCM_SHA256
- DHE_PSK_CAMELLIA256_GCM_SHA384
- RSA_PSK_CAMELLIA128_GCM_SHA256
- RSA_PSK_CAMELLIA256_GCM_SHA384
- PSK_CAMELLIA128_SHA256
- PSK_CAMELLIA256_SHA384
- DHE_PSK_CAMELLIA128_SHA256
- DHE_PSK_CAMELLIA256_SHA384
- RSA_PSK_CAMELLIA128_SHA256
- RSA_PSK_CAMELLIA256_SHA384
- ECDHE_PSK_CAMELLIA128_SHA256
- ECDHE_PSK_CAMELLIA256_SHA384
- ECDHE_PSK_RC4_SHA
- ECDHE_PSK_3DES_SHA
- ECDHE_PSK_AES128_SHA
- ECDHE_PSK_AES256_SHA
- ECDHE_PSK_AES128_SHA256
- ECDHE_PSK_AES256_SHA384
- ECDHE_PSK_NULL_SHA
- ECDHE_PSK_NULL_SHA256
- ECDHE_PSK_NULL_SHA384
- ECDHE_RSA_CHACHA20_POLY1305_SHA256
- ECDHE_ECDSA_CHACHA20_POLY1305_SHA256
- DHE_RSA_CHACHA20_POLY1305_SHA256
- PSK_CHACHA20_POLY1305_SHA256
- ECDHE_PSK_CHACHA20_POLY1305_SHA256
- DHE_PSK_CHACHA20_POLY1305_SHA256
- RSA_PSK_CHACHA20_POLY1305_SHA256
- AES128_GCM_SHA256
- AES256_GCM_SHA384
- CHACHA20_POLY1305_SHA256
- AES128_CCM_SHA256
- AES128_CCM8_SHA256
tls_client_auth Property
Enables or disables certificate-based client authentication.
Syntax
def get_tls_client_auth() -> int: ... def set_tls_client_auth(value: int) -> None: ...
tls_client_auth = property(get_tls_client_auth, set_tls_client_auth)
Default Value
0
Remarks
Enables or disables certificate-based client authentication.
Set this property to true to tune up the client authentication type:
ccatNoAuth | 0 | |
ccatRequestCert | 1 | |
ccatRequireCert | 2 |
tls_ec_curves Property
Defines the elliptic curves to enable.
Syntax
def get_tls_ec_curves() -> str: ... def set_tls_ec_curves(value: str) -> None: ...
tls_ec_curves = property(get_tls_ec_curves, set_tls_ec_curves)
Default Value
""
Remarks
Defines the elliptic curves to enable.
tls_extensions Property
Provides access to TLS extensions.
Syntax
def get_tls_extensions() -> str: ... def set_tls_extensions(value: str) -> None: ...
tls_extensions = property(get_tls_extensions, set_tls_extensions)
Default Value
""
Remarks
Provides access to TLS extensions.
tls_force_resume_if_destination_changes Property
Whether to force TLS session resumption when the destination address changes.
Syntax
def get_tls_force_resume_if_destination_changes() -> bool: ... def set_tls_force_resume_if_destination_changes(value: bool) -> None: ...
tls_force_resume_if_destination_changes = property(get_tls_force_resume_if_destination_changes, set_tls_force_resume_if_destination_changes)
Default Value
FALSE
Remarks
Whether to force TLS session resumption when the destination address changes.
tls_pre_shared_identity Property
Defines the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.
Syntax
def get_tls_pre_shared_identity() -> str: ... def set_tls_pre_shared_identity(value: str) -> None: ...
tls_pre_shared_identity = property(get_tls_pre_shared_identity, set_tls_pre_shared_identity)
Default Value
""
Remarks
Defines the identity used when the PSK (Pre-Shared Key) key-exchange mechanism is negotiated.
tls_pre_shared_key Property
Contains the pre-shared key for the PSK (Pre-Shared Key) key-exchange mechanism, encoded with base16.
Syntax
def get_tls_pre_shared_key() -> str: ... def set_tls_pre_shared_key(value: str) -> None: ...
tls_pre_shared_key = property(get_tls_pre_shared_key, set_tls_pre_shared_key)
Default Value
""
Remarks
Contains the pre-shared key for the PSK (Pre-Shared Key) key-exchange mechanism, encoded with base16.
tls_pre_shared_key_ciphersuite Property
Defines the ciphersuite used for PSK (Pre-Shared Key) negotiation.
Syntax
def get_tls_pre_shared_key_ciphersuite() -> str: ... def set_tls_pre_shared_key_ciphersuite(value: str) -> None: ...
tls_pre_shared_key_ciphersuite = property(get_tls_pre_shared_key_ciphersuite, set_tls_pre_shared_key_ciphersuite)
Default Value
""
Remarks
Defines the ciphersuite used for PSK (Pre-Shared Key) negotiation.
tls_renegotiation_attack_prevention_mode Property
Selects the renegotiation attack prevention mechanism.
Syntax
def get_tls_renegotiation_attack_prevention_mode() -> int: ... def set_tls_renegotiation_attack_prevention_mode(value: int) -> None: ...
tls_renegotiation_attack_prevention_mode = property(get_tls_renegotiation_attack_prevention_mode, set_tls_renegotiation_attack_prevention_mode)
Default Value
2
Remarks
Selects the renegotiation attack prevention mechanism.
The following options are available:
crapmCompatible | 0 | TLS 1.0 and 1.1 compatibility mode (renegotiation indication extension is disabled). |
crapmStrict | 1 | Renegotiation attack prevention is enabled and enforced. |
crapmAuto | 2 | Automatically choose whether to enable or disable renegotiation attack prevention. |
tls_revocation_check Property
Specifies the kind(s) of revocation check to perform.
Syntax
def get_tls_revocation_check() -> int: ... def set_tls_revocation_check(value: int) -> None: ...
tls_revocation_check = property(get_tls_revocation_check, set_tls_revocation_check)
Default Value
1
Remarks
Specifies the kind(s) of revocation check to perform.
Revocation checking is necessary to ensure the integrity of the chain and obtain up-to-date certificate validity and trustworthiness information.
crcNone | 0 | No revocation checking. |
crcAuto | 1 | Automatic mode selection. Currently this maps to crcAnyOCSPOrCRL, but it may change in the future. |
crcAllCRL | 2 | All provided CRL endpoints will be checked, and all checks must succeed. |
crcAllOCSP | 3 | All provided OCSP endpoints will be checked, and all checks must succeed. |
crcAllCRLAndOCSP | 4 | All provided CRL and OCSP endpoints will be checked, and all checks must succeed. |
crcAnyCRL | 5 | All provided CRL endpoints will be checked, and at least one check must succeed. |
crcAnyOCSP | 6 | All provided OCSP endpoints will be checked, and at least one check must succeed. |
crcAnyCRLOrOCSP | 7 | All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. CRL endpoints are checked first. |
crcAnyOCSPOrCRL | 8 | All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. OCSP endpoints are checked first. |
This setting controls the way the revocation checks are performed for every certificate in the chain. Typically certificates come with two types of revocation information sources: CRL (certificate revocation lists) and OCSP responders. CRLs are static objects periodically published by the CA at some online location. OCSP responders are active online services maintained by the CA that can provide up-to-date information on certificate statuses in near real time.
There are some conceptual differences between the two. CRLs are normally larger in size. Their use involves some latency because there is normally some delay between the time when a certificate was revoked and the time the subsequent CRL mentioning that is published. The benefits of CRL is that the same object can provide statuses for all certificates issued by a particular CA, and that the whole technology is much simpler than OCSP (and thus is supported by more CAs).
This setting lets you adjust the validation course by including or excluding certain types of revocation sources from the validation process. The crcAnyOCSPOrCRL setting (give preference to the faster OCSP route and only demand one source to succeed) is a good choice for most typical validation environments. The "crcAll*" modes are much stricter, and may be used in scenarios where bulletproof validity information is essential.
Note: If no CRL or OCSP endpoints are provided by the CA, the revocation check will be considered successful. This is because the CA chose not to supply revocation information for its certificates, meaning they are considered irrevocable.
Note: Within each of the above settings, if any retrieved CRL or OCSP response indicates that the certificate has been revoked, the revocation check fails.
tls_ssl_options Property
Various SSL (TLS) protocol options, set of cssloExpectShutdownMessage 0x001 Wait for the close-notify message when shutting down the connection cssloOpenSSLDTLSWorkaround 0x002 (DEPRECATED) Use a DTLS version workaround when talking to very old OpenSSL versions cssloDisableKexLengthAlignment 0x004 Do not align the client-side PMS by the RSA modulus size.
Syntax
def get_tls_ssl_options() -> int: ... def set_tls_ssl_options(value: int) -> None: ...
tls_ssl_options = property(get_tls_ssl_options, set_tls_ssl_options)
Default Value
16
Remarks
Various SSL (TLS) protocol options, set of
cssloExpectShutdownMessage | 0x001 | Wait for the close-notify message when shutting down the connection |
cssloOpenSSLDTLSWorkaround | 0x002 | (DEPRECATED) Use a DTLS version workaround when talking to very old OpenSSL versions |
cssloDisableKexLengthAlignment | 0x004 | Do not align the client-side PMS by the RSA modulus size. It is unlikely that you will ever need to adjust it. |
cssloForceUseOfClientCertHashAlg | 0x008 | Enforce the use of the client certificate hash algorithm. It is unlikely that you will ever need to adjust it. |
cssloAutoAddServerNameExtension | 0x010 | Automatically add the server name extension when known |
cssloAcceptTrustedSRPPrimesOnly | 0x020 | Accept trusted SRP primes only |
cssloDisableSignatureAlgorithmsExtension | 0x040 | Disable (do not send) the signature algorithms extension. It is unlikely that you will ever need to adjust it. |
cssloIntolerateHigherProtocolVersions | 0x080 | (server option) Do not allow fallback from TLS versions higher than currently enabled |
cssloStickToPrefCertHashAlg | 0x100 | Stick to preferred certificate hash algorithms |
cssloNoImplicitTLS12Fallback | 0x200 | Disable implicit TLS 1.3 to 1.2 fallbacks |
cssloUseHandshakeBatches | 0x400 | Send the handshake message as large batches rather than individually |
tls_tls_mode Property
Specifies the TLS mode to use.
Syntax
def get_tls_tls_mode() -> int: ... def set_tls_tls_mode(value: int) -> None: ...
tls_tls_mode = property(get_tls_tls_mode, set_tls_tls_mode)
Default Value
0
Remarks
Specifies the TLS mode to use.
smDefault | 0 | |
smNoTLS | 1 | Do not use TLS |
smExplicitTLS | 2 | Connect to the server without any encryption and then request an SSL session. |
smImplicitTLS | 3 | Connect to the specified port, and establish the SSL session at once. |
smMixedTLS | 4 | Connect to the specified port, and establish the SSL session at once, but allow plain data. |
tls_use_extended_master_secret Property
Enables the Extended Master Secret Extension, as defined in RFC 7627.
Syntax
def get_tls_use_extended_master_secret() -> bool: ... def set_tls_use_extended_master_secret(value: bool) -> None: ...
tls_use_extended_master_secret = property(get_tls_use_extended_master_secret, set_tls_use_extended_master_secret)
Default Value
FALSE
Remarks
Enables the Extended Master Secret Extension, as defined in RFC 7627.
tls_use_session_resumption Property
Enables or disables the TLS session resumption capability.
Syntax
def get_tls_use_session_resumption() -> bool: ... def set_tls_use_session_resumption(value: bool) -> None: ...
tls_use_session_resumption = property(get_tls_use_session_resumption, set_tls_use_session_resumption)
Default Value
FALSE
Remarks
Enables or disables the TLS session resumption capability.
tls_versions Property
The SSL/TLS versions to enable by default.
Syntax
def get_tls_versions() -> int: ... def set_tls_versions(value: int) -> None: ...
tls_versions = property(get_tls_versions, set_tls_versions)
Default Value
16
Remarks
The SSL/TLS versions to enable by default.
csbSSL2 | 0x01 | SSL 2 |
csbSSL3 | 0x02 | SSL 3 |
csbTLS1 | 0x04 | TLS 1.0 |
csbTLS11 | 0x08 | TLS 1.1 |
csbTLS12 | 0x10 | TLS 1.2 |
csbTLS13 | 0x20 | TLS 1.3 |
trusted_cert_count Property
The number of records in the TrustedCert arrays.
Syntax
def get_trusted_cert_count() -> int: ... def set_trusted_cert_count(value: int) -> None: ...
trusted_cert_count = property(get_trusted_cert_count, set_trusted_cert_count)
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at trusted_cert_count - 1.trusted_cert_bytes Property
Returns the raw certificate data in DER format.
Syntax
def get_trusted_cert_bytes(trusted_cert_index: int) -> bytes: ...
Remarks
Returns the raw certificate data in DER format.
The trusted_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the trusted_cert_count property.
This property is read-only.
trusted_cert_handle Property
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
def get_trusted_cert_handle(trusted_cert_index: int) -> int: ... def set_trusted_cert_handle(trusted_cert_index: int, value: int) -> None: ...
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The trusted_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the trusted_cert_count property.
username Property
The username to authenticate to the KMIP server.
Syntax
def get_username() -> str: ... def set_username(value: str) -> None: ...
username = property(get_username, set_username)
Default Value
""
Remarks
Use this property to provide a username for authentication on the KMIP server.
The value assigned to this property is used for built-in user authentication provided by KMIP. If the KMIP server you are connecting to expects you to use HTTP basic or digest authentication, provide the credentials via the base_url property.
activate Method
Activates the specified server object.
Syntax
def activate(object_id: str) -> None: ...
Remarks
Use this method to activate the object using its ObjectId. Activating the object makes it available for cryptographic operations.
This method is complementary to deactivate that can be used to disable server-side objects.
add Method
Imports a certificate to the KMIP server.
Syntax
def add(add_private_key: bool, group: str, activate: bool) -> str: ...
Remarks
Call this method to import a certificate to the KMIP server. Provide the certificate via certificate property.
Use the Group parameter to supply a unique identifier for objects associated with this certificate. A typical KMIP server would store two or three objects per certificate - the certificate, its public key, and, if provided, its private key. The shared group identifier will make it easy to establish correspondence between the objects.
Set the AddPrivateKey parameter to true to import the private key (and create a corresponding KMIP object) together with the certificate. Use the Activate parameter to instruct the server to activate the new certificate-related objects immediately.
The method returns the unique identifier of the created certificate object. Check the AuxResult property to read the ID of the associated key object.
add_key Method
Imports a key or keypair to the KMIP server.
Syntax
def add_key(group: str, activate: bool) -> str: ...
Remarks
Use this method to import a key or an asymmetric keypair to the KMIP server. Provide the key via the key property.
Use the Group parameter to supply a unique identifier for objects associated with this key. Import of an asymmetric keypair may result in two objects being created on the server - the public key and the private key. The shared group identifier will make it easy to establish correspondence between the objects.
Use the Activate parameter to instruct the server to activate the new key objects immediately.
The method returns the unique identifier of the created key object. Check the AuxResult property to read the ID of the second object key component object, if expected.
config Method
Sets or retrieves a configuration setting.
Syntax
def config(configuration_string: str) -> str: ...
Remarks
config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
custom_request Method
Performs a custom request to the server.
Syntax
def custom_request(data: bytes) -> bytes: ...
Remarks
Use this method to send a custom request to the KMIP server. Pass the serialized KMIP request data to the Data parameter. Any response returned back by the server is passed back to the application via the result of this method.
This method can be handy if you need to make a request of the kind that KMIPClient does not support at the moment.
deactivate Method
Deactivates the specified server object.
Syntax
def deactivate(object_id: str) -> None: ...
Remarks
Use this method to deactivate the object using its ObjectId. Deactivated objects remain on the server but cannot be used for cryptographic operations. Use remove method to delete objects from the server permanently.
This method is complementary to activate that lets you enable ('activate') server objects.
decrypt Method
Decrypts the provided data using a key stored on the KMIP server.
Syntax
def decrypt(object_id: str, algorithm: str, iv: bytes, block_mode: str, padding_method: str, tag_length: int) -> None: ...
Remarks
Use this method to decrypt data using the key with the specified ObjectId.
Provide the encrypted data via one of the Input* properties (input_file, input_stream, or input_bytes). The decrypted data will be saved to one of the output properties.
Use the Algorithm, IV, BlockMode, PaddingMethod, and TagLength parameters to provide adjustments to the decryption algorithm. Not every call will require all of the adjustments. Asymmetric decryption calls (such as RSA) do not typically require parameters.
do_action Method
Performs an additional action.
Syntax
def do_action(action_id: str, action_params: str) -> str: ...
Remarks
do_action is a generic method available in every class. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.
The unique identifier (case insensitive) of the action is provided in the ActionID parameter.
ActionParams contains the value of a single parameter, or a list of multiple parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....
encrypt Method
Encrypts the provided data using a key stored on the KMIP server.
Syntax
def encrypt(object_id: str, algorithm: str, iv: bytes, block_mode: str, padding_method: str, tag_length: int) -> None: ...
Remarks
Use this method to encrypt data using the key with the specified ObjectId. Provide the data to be encrypted via input_file or input_stream. The encrypted data will be saved to output_file (or output_stream).
Use optional Algorithm, IV, BlockMode, Padding, and TagLength parameters to adjust encryption flow. The values to be passed as these parameters depend on the encryption algorithm being used. Public key algorithms typically do not require these parameters.
generate Method
Generates a new certificate on the KMIP server.
Syntax
def generate(public_key_id: str, activate: bool) -> str: ...
Remarks
Use this method to generate a new certificate on the server. Set up the needed parameters of the certificate in the certificate property. This property may contain a prepared certificate request.
An optional PublicKeyId parameter specifies the ID of the server-side public key object to base the certificate on.
The method returns a unique ID assigned to the new certificate object. Note that the certificate itself is not populated in the certificate property: use read to request it from the server.
generate_key Method
Generates a symmetric key or an asymmetric key pair on the KMIP server.
Syntax
def generate_key(key_algorithm: str, scheme: str, scheme_params: str, key_bits: int, group: str, activate: bool) -> str: ...
Remarks
Use KeyAlgorithm and KeyBits to indicate the desired algorithm and key length. Provide an group name of the new key via the Group parameter.
The method returns the ID assigned by the server to the new key object. This may differ from the one you supplied.
Note that the key itself is not populated in the key property: use read_key to request it from the server.
list Method
Retrieves the list of objects of selected types from the server.
Syntax
def list(object_types: int, filter: str, offset_items: int, maximum_items: int, fresh_only: bool) -> None: ...
Remarks
ObjectTypes is expected to contain a bit mask according to which objects of one or more types can be selected. The ObjectTypes of 0 implies that there is no mask, and all objects should be returned. Possible values:
otUnknown | 0x00 | |
otCertificate | 0x01 | |
otSymmetricKey | 0x02 | |
otPublicKey | 0x04 | |
otPrivateKey | 0x08 |
Use OffsetItems and MaximumItems to narrow down your search. Use Filter to specify the object properties that you would like to be requested: an empty value or an asterisk tells the client to request all the properties of the listed objects, whereas the objectid filter only results in the object IDs being returned.
read Method
Downloads a certificate from the KMIP server.
Syntax
def read(object_id: str) -> None: ...
Remarks
Use this method to download a certificate object from the server. Specify the ID of the certificate object via the ObjectId parameter.
Upon completion, the certificate is populated in the certificate property.
read_attribute Method
Requests an attribute from an object.
Syntax
def read_attribute(object_id: str, name: str) -> str: ...
Remarks
Use this method to request an attribute defined by the Name parameter for a server-side object indicated by its ObjectId.
The list of attributes supported by KMIP is available here: KMIP v1.3, paragraph 3
read_key Method
Downloads a key object from the KMIP server.
Syntax
def read_key(object_id: str) -> None: ...
Remarks
Use this method to retrieve a key object from the server. Public, private, and secret key IDs can be passed to this method, but only non-sensitive parameters of the private and secret keys will be returned.
The key data is populated in the key property.
read_object Method
Requests object information from the KMIP server.
Syntax
def read_object(object_id: str) -> None: ...
Remarks
Use this method to request information about a server-side object by its unique ObjectId.
If ObjectId represents a valid certificate or key, the details of the object are populated in certificate or key object respectively.
remove Method
Removes the specified object from the server.
Syntax
def remove(object_id: str) -> None: ...
Remarks
Use this method to delete the object specified by its ObjectId from the KMIP server permanently.
If you would like to disable the object but keep it on the server permanently, use deactivate method instead.
reset Method
Resets the class settings.
Syntax
def reset() -> None: ...
Remarks
reset is a generic method available in every class.
set_attribute Method
Sets an attribute of an existing server-side object.
Syntax
def set_attribute(object_id: str, name: str, value: str, delete: bool) -> None: ...
Remarks
Use this method to set an attribute of a server-side object.
The list of attributes supported by KMIP is available here: KMIP v1.3, paragraph 3
Set Delete parameter to true to delete the attribute instead of setting it.
set_request_bytes Method
Replaces the data that has been prepared for sending out.
Syntax
def set_request_bytes(value: bytes) -> None: ...
Remarks
Call this method from your on_request event handler to alter the request data being sent to the server. This method method may be handy if you need to adjust the request data that the client has prepared manually before sending it out.
set_response_bytes Method
Alters the data received from the server in a response.
Syntax
def set_response_bytes(value: bytes) -> None: ...
Remarks
Call this method from your on_response event handler to alter the data received from the server before passing it for processing. This method may be handy if you would like to adjust data received from the server - for example, to fix an error in the server's response.
sign Method
Signs the data using a key on the KMIP server.
Syntax
def sign(object_id: str, algorithm: str, padding_method: str, hash_algorithm: str, input_is_hash: bool) -> None: ...
Remarks
Use this method to sign the data using the key with the specified ObjectId. Pass the data to be signed via input_file (or input_stream) property. The resulting signed data will be written to output_file (or output_stream).
The Algorithm and HashAlgorithm parameters should specify the algorithms to be used for the cryptographic signing. Set InputIsHash to true to indicate that you are passing the hash of the data instead of the actual data.
If any of Algorithm or HashAlgorithm are omitted, the server will use the default algorithm associated with the key. Note that this is not always possible, so make sure your requests carry as much details as possible.
The following key algorithms are supported: RSA, EC, ECDSA, ECDH, EDDSA, DSA, ELGAMAL, DH, SRP.
The following hash algorithms are supported: SHA1, SHA256, SHA384, SHA512, SHA224, WHIRLPOOL, POLY1305, SHA3_224, SHA3_256, SHA3_384, SHA3_512. Note that servers may not support all of these algorithms.
verify Method
Verifies digitally signed data.
Syntax
def verify(object_id: str, algorithm: str, padding_method: str, hash_algorithm: str, input_is_hash: bool) -> None: ...
Remarks
Use this method to verify the integrity of the signature using a server-side key.
Please provide the signature via input_file (or input_stream / input_bytes) property. For detached signatures, please also provide the data that was signed via data_file (or data_stream / data_bytes) property.
Provide additional parameters of the operation:
- Algorithm: the signature algorithm (e.g. sha256WithRSAEncryption).
- PaddingMethod: the padding method used (e.g. PSS).
- HashAlgorithm: the hash algorithm to use for signature verification (e.g. SHA256).
- InputIsHash: specifies whether the data provided via data_file or similar property contains the data or its message digest.
on_error Event
Provides information about errors during KMIP operations.
Syntax
class KMIPClientErrorEventParams(object): @property def error_code() -> int: ... @property def description() -> str: ... # In class KMIPClient: @property def on_error() -> Callable[[KMIPClientErrorEventParams], None]: ... @on_error.setter def on_error(event_hook: Callable[[KMIPClientErrorEventParams], None]) -> None: ...
Remarks
This event is fired in case of exceptional conditions occured during KMIP operations.
ErrorCode contains an error code and Description contains a textual description of the error.
on_external_sign Event
Handles remote or external signing initiated by the SignExternal method or other source.
Syntax
class KMIPClientExternalSignEventParams(object): @property def operation_id() -> str: ... @property def hash_algorithm() -> str: ... @property def pars() -> str: ... @property def data() -> str: ... @property def signed_data() -> str: ... @signed_data.setter def signed_data(value) -> None: ... # In class KMIPClient: @property def on_external_sign() -> Callable[[KMIPClientExternalSignEventParams], None]: ... @on_external_sign.setter def on_external_sign(event_hook: Callable[[KMIPClientExternalSignEventParams], None]) -> None: ...
Remarks
Assign a handler to this event if you need to delegate a low-level signing operation to an external, remote, or custom signing engine. Depending on the settings, the handler will receive a hashed or unhashed value to be signed.
The event handler must pass the value of Data to the signer, obtain the signature, and pass it back to the class via the SignedData parameter.
OperationId provides a comment about the operation and its origin. It depends on the exact class being used, and may be empty. HashAlgorithm specifies the hash algorithm being used for the operation, and Pars contains algorithm-dependent parameters.
The class uses base16 (hex) encoding for the Data, SignedData, and Pars parameters. If your signing engine uses a different input and output encoding, you may need to decode and/or encode the data before and/or after the signing.
A sample MD5 hash encoded in base16: a0dee2a0382afbb09120ffa7ccd8a152 - lower case base16 A0DEE2A0382AFBB09120FFA7CCD8A152 - upper case base16
A sample event handler that uses the .NET RSACryptoServiceProvider class may look like the following:
signer.OnExternalSign += (s, e) =>
{
var cert = new X509Certificate2("cert.pfx", "", X509KeyStorageFlags.Exportable);
var key = (RSACryptoServiceProvider)cert.PrivateKey;
var dataToSign = e.Data.FromBase16String();
var signedData = key.SignHash(dataToSign, "2.16.840.1.101.3.4.2.1");
e.SignedData = signedData.ToBase16String();
};
on_notification Event
This event notifies the application about an underlying control flow event.
Syntax
class KMIPClientNotificationEventParams(object): @property def event_id() -> str: ... @property def event_param() -> str: ... # In class KMIPClient: @property def on_notification() -> Callable[[KMIPClientNotificationEventParams], None]: ... @on_notification.setter def on_notification(event_hook: Callable[[KMIPClientNotificationEventParams], None]) -> None: ...
Remarks
The class fires this event to let the application know about some event, occurrence, or milestone in the class. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.
The unique identifier of the event is provided in the EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the class, the exact action it is performing, or the document being processed, one or both may be omitted.
This class can fire this event with the following EventID values:
TLSExtensions.CertificateStatus | TBD |
TLSExtensions.PreSharedIdentityHint | TBD |
on_request Event
KMIPClient fires this event to notify the user about the request being sent to the KMIP server.
Syntax
class KMIPClientRequestEventParams(object): @property def request_data() -> bytes: ... # In class KMIPClient: @property def on_request() -> Callable[[KMIPClientRequestEventParams], None]: ... @on_request.setter def on_request(event_hook: Callable[[KMIPClientRequestEventParams], None]) -> None: ...
Remarks
Subscribe to this event to be notified about individual requests sent by the KMIP client to the server.
The RequestData parameter contains the encoded KMIP request. You can alter what is being sent by providing custom request bytes via the set_request_bytes method.
on_response Event
KMIPClient uses this event to notify the user about the response being received.
Syntax
class KMIPClientResponseEventParams(object): @property def response_data() -> bytes: ... # In class KMIPClient: @property def on_response() -> Callable[[KMIPClientResponseEventParams], None]: ... @on_response.setter def on_response(event_hook: Callable[[KMIPClientResponseEventParams], None]) -> None: ...
Remarks
Subscribe to this event to be notified about KMIP protocol responses that the KMIP client receives from the server.
The ResponseData parameter contains the encoded body of the response. Use set_response_bytes to alter the response data received before it is processed by the client.
on_tls_cert_needed Event
Fires when a remote TLS party requests a client certificate.
Syntax
class KMIPClientTLSCertNeededEventParams(object): @property def host() -> str: ... @property def ca_names() -> str: ... # In class KMIPClient: @property def on_tls_cert_needed() -> Callable[[KMIPClientTLSCertNeededEventParams], None]: ... @on_tls_cert_needed.setter def on_tls_cert_needed(event_hook: Callable[[KMIPClientTLSCertNeededEventParams], None]) -> None: ...
Remarks
This event fires to notify the implementation that a remote TLS server has requested a client certificate. The Host parameter identifies the host that makes a request, and the CANames parameter (optional, according to the TLS spec) advises on the accepted issuing CAs.
Use the tls_client_chain property in response to this event to provide the requested certificate. Please make sure the client certificate includes the associated private key. Note that you may set the certificates before the connection without waiting for this event to fire.
This event is preceded by the on_tls_handshake event for the given host and, if the certificate was accepted, succeeded by the on_tls_established event.
on_tls_cert_validate Event
This event is fired upon receipt of the TLS server's certificate, allowing the user to control its acceptance.
Syntax
class KMIPClientTLSCertValidateEventParams(object): @property def server_host() -> str: ... @property def server_ip() -> str: ... @property def accept() -> bool: ... @accept.setter def accept(value) -> None: ... # In class KMIPClient: @property def on_tls_cert_validate() -> Callable[[KMIPClientTLSCertValidateEventParams], None]: ... @on_tls_cert_validate.setter def on_tls_cert_validate(event_hook: Callable[[KMIPClientTLSCertValidateEventParams], None]) -> None: ...
Remarks
This event is fired during a TLS handshake. Use the tls_server_chain property to access the certificate chain. In general, classes may contact a number of TLS endpoints during their work, depending on their configuration.
Accept is assigned in accordance with the outcome of the internal validation check performed by the class, and can be adjusted if needed.
on_tls_established Event
Fires when a TLS handshake with Host successfully completes.
Syntax
class KMIPClientTLSEstablishedEventParams(object): @property def host() -> str: ... @property def version() -> str: ... @property def ciphersuite() -> str: ... @property def connection_id() -> bytes: ... @property def abort() -> bool: ... @abort.setter def abort(value) -> None: ... # In class KMIPClient: @property def on_tls_established() -> Callable[[KMIPClientTLSEstablishedEventParams], None]: ... @on_tls_established.setter def on_tls_established(event_hook: Callable[[KMIPClientTLSEstablishedEventParams], None]) -> None: ...
Remarks
The class uses this event to notify the application about a successful completion of a TLS handshake.
The Version, Ciphersuite, and ConnectionId parameters indicate the security parameters of the new connection. Use the Abort parameter if you need to terminate the connection at this stage.
on_tls_handshake Event
Fires when a new TLS handshake is initiated, before the handshake commences.
Syntax
class KMIPClientTLSHandshakeEventParams(object): @property def host() -> str: ... @property def abort() -> bool: ... @abort.setter def abort(value) -> None: ... # In class KMIPClient: @property def on_tls_handshake() -> Callable[[KMIPClientTLSHandshakeEventParams], None]: ... @on_tls_handshake.setter def on_tls_handshake(event_hook: Callable[[KMIPClientTLSHandshakeEventParams], None]) -> None: ...
Remarks
The class uses this event to notify the application about the start of a new TLS handshake to Host. If the handshake is successful, this event will be followed by the on_tls_established event. If the server chooses to request a client certificate, the on_tls_cert_needed event will also be fired.
on_tls_psk Event
Notifies the application about the PSK key exchange.
Syntax
class KMIPClientTLSPSKEventParams(object): @property def host() -> str: ... @property def hint() -> str: ... # In class KMIPClient: @property def on_tls_psk() -> Callable[[KMIPClientTLSPSKEventParams], None]: ... @on_tls_psk.setter def on_tls_psk(event_hook: Callable[[KMIPClientTLSPSKEventParams], None]) -> None: ...
Remarks
The class fires this event to notify the application about the beginning of TLS-PSK key exchange with Host. The Hint parameter may be used by the server to identify the key or service to use. Use the PreSharedKey field of tls_settings to provide the pre-shared key to the component.
on_tls_shutdown Event
Reports the graceful closure of a TLS connection.
Syntax
class KMIPClientTLSShutdownEventParams(object): @property def host() -> str: ... # In class KMIPClient: @property def on_tls_shutdown() -> Callable[[KMIPClientTLSShutdownEventParams], None]: ... @on_tls_shutdown.setter def on_tls_shutdown(event_hook: Callable[[KMIPClientTLSShutdownEventParams], None]) -> None: ...
Remarks
This event notifies the application about the closure of an earlier established TLS connection. Note that only graceful connection closures are reported.
KMIPClient Config Settings
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.KMIPClient Config Settings
If IgnoreSystemTrust is True, certificates residing in the trusted root store are treated as if they are known, rather than trusted. Only certificates provided via other means (such as the trusted_certificates property) are considered trusted.
Supported values are:
none | No static DNS rules (default) | |
local | Local static DNS rules | |
global | Global static DNS rules |
- CA, revocation source, TLS key usage requirements are not mandated
- Violation of OCSP issuer requirements are ignored
- The AuthorityKeyID extension in CRL- and certificate-issuing CAs are ignored (helps with incorrectly renewed certificates)
- Basic constraints and name constraints of CA certificates are ignored
- Some weaker algorithms are tolerated
Base Config Settings
You can switch this property off to improve performance if your project only uses known, good private keys.
Supported values are:
off | No caching (default) | |
local | Local caching | |
global | Global caching |
This setting only applies to sessions negotiated with TLS version 1.3.
Supported values are:
file | File | |
console | Console | |
systemlog | System Log (supported for Android only) | |
debugger | Debugger (supported for VCL for Windows and .Net) |
Supported values are:
time | Current time | |
level | Level | |
package | Package name | |
module | Module name | |
class | Class name | |
method | Method name | |
threadid | Thread Id | |
contenttype | Content type | |
content | Content | |
all | All details |
Supported filter names are:
exclude-package | Exclude a package specified in the value | |
exclude-module | Exclude a module specified in the value | |
exclude-class | Exclude a class specified in the value | |
exclude-method | Exclude a method specified in the value | |
include-package | Include a package specified in the value | |
include-module | Include a module specified in the value | |
include-class | Include a class specified in the value | |
include-method | Include a method specified in the value |
none | No flush (caching only) | |
immediate | Immediate flush (real-time logging) | |
maxcount | Flush cached entries upon reaching LogMaxEventCount entries in the cache. |
Supported values are:
none | None (by default) | |
fatal | Severe errors that cause premature termination. | |
error | Other runtime errors or unexpected conditions. | |
warning | Use of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong". | |
info | Interesting runtime events (startup/shutdown). | |
debug | Detailed information on flow of through the system. | |
trace | More detailed information. |
The default value of this setting is 100.
none | No rotation | |
deleteolder | Delete older entries from the cache upon reaching LogMaxEventCount | |
keepolder | Keep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded) |
Supported values are:
none | No static DNS rules (default) | |
local | Local static DNS rules | |
global | Global static DNS rules |
This setting only applies to certificates originating from a Windows system store.
KMIPClient Errors
KMIPClient Errors
1048577 | Invalid parameter (SB_ERROR_INVALID_PARAMETER) |
1048578 | Invalid configuration (SB_ERROR_INVALID_SETUP) |
1048579 | Invalid state (SB_ERROR_INVALID_STATE) |
1048580 | Invalid value (SB_ERROR_INVALID_VALUE) |
1048581 | Private key not found (SB_ERROR_NO_PRIVATE_KEY) |
1048582 | Cancelled by the user (SB_ERROR_CANCELLED_BY_USER) |
1048583 | The file was not found (SB_ERROR_NO_SUCH_FILE) |
1048584 | Unsupported feature or operation (SB_ERROR_UNSUPPORTED_FEATURE) |
1048585 | General error (SB_ERROR_GENERAL_ERROR) |
20971521 | KMIP request failed (SB_ERROR_KMIP_REQUEST_FAILED) |
20971522 | The input file does not exist (SB_ERROR_KMIP_INPUTFILE_NOT_EXISTS) |
20971523 | Unsupported key algorithm (SB_ERROR_KMIP_UNSUPPORTED_KEY_ALGORITHM) |
20971524 | Invalid key (SB_ERROR_KMIP_INVALID_KEY) |