CryptoKeyManager Class
Properties Methods Events Config Settings Errors
The CryptoKeyManager class provides a simple way to load, generate and manage generic cryptographic keys.
Syntax
class secureblackbox.CryptoKeyManager
Remarks
CryptoKeyManager allows you to load, save, generate, import, and export low-level cryptographic keys. Two examples of such keys are raw RSA keys stored in PKCS1 format or AES256 keys. CryptoKeyManager supports asymmetric, symmetric, and HMAC keys.
CryptoKeyManager is a typical companion for low-level cryptography classes, such as PublicKeyCrypto, SymmetricCrypto, and HashFunction. It can also be used to provide external key material to certificate objects, and to derive cryptographic keys from passwords.
Use import_bytes or import_from_file method to load the key material from a buffer or file. Use import_from_cert
(and remember to assign the certificate object to the certificate property before calling it) to import a key
from an X.509 certificate. Once loaded, the key will be available in the key property.
// Loading an AES key and setting its IV
CryptoKeyManager.ImportBytes(Key, kffDER, "AES256", "", "", ktSecret, "");
CryptoKeyManager.Key.IV = IV;
// Loading an ECDSA private key from a file
CryptoKeyManager.ImportFromFile("ec-secp256k1-priv-key.pem", kffAuto, "ECDSA", "NISTP256", "", ktSecret, "");
// Loading an ECDSA public key from a file
CryptoKeyManager.ImportFromFile("ec-secp256k1-pub-key.pem", kffAuto, "ECDSA", "NISTP256", "", ktPublic, "");
// Importing a private key from a certificate object
CertMgr.ImportFromFile("cert.pfx", "password");
CryptoKeyManager.Certificate = CertMgr.Certificate;
CryptoKeyManager.ImportFromCert();
To generate a new key or keypair use generate method. You can export the generated key using export_bytes or export_to_file method.
You can attach the generated or loaded key to an external certificate object using the export_to_cert method.
// Generating an EdDSA Curve25519 keypair
CryptoKeyManager.Generate("EDDSA", "CURVE25519", "", 256);
// Generating an ECDSA NIST P256 curve keypair
CryptoKeyManager.Generate("ECDSA", "NISTP256", "", 256);
// Generating an RSA 2048 bit keypair
CryptoKeyManager.Generate("RSA", "", "", 2048);
// Generating a symmetric AES256 key
CryptoKeyManager.Generate("AES256", "", "", 256);
Use derive_key to derive a strong cryptographic key from a password using one of supported key derivation functions (KDFs):
CryptoKeyManager.DerivationAlgorithm = "PKCS5";
CryptoKeyManager.HMACAlgorithm = "SHA256";
CryptoKeyManager.DeriveIterations = 10000;
CryptoKeyManager.DeriveKey(256, "password", "hex:41424344");
Key = CryptoKeyManager.Key.Key;
CryptoKeyManager supports the majority of modern cryptographic algorithms:
- Asymmetric: RSA, ECDSA, EdDSA, ElGamal, DSS, Diffie-Hellman
- Symmetric: AES, Blowfish, Camellia, CAST5, ChaCha20, DES, 3DES-EDE, IDEA, RC2, RC4, Serpent, Twofish.
- KDFs: PKCS5, PBKDF2 (an alias to PKCS5), BCrypt, SCrypt, Argon2d, Argon2i, Argon2id.
See the "Supported Algorithms" section in the FAQ for the complete list.
Note: CryptoKeyManager can only work with one cryptographic key at a time. Use CryptoKeyStorage to access media containing more than one key.
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
cert_bytes | Returns the raw certificate data in DER format. |
cert_ca | Indicates whether the certificate has a CA capability. |
cert_ca_key_id | A unique identifier (fingerprint) of the CA certificate's cryptographic key. |
cert_cert_type | Returns the type of the entity contained in the Certificate object. |
cert_crl_distribution_points | Contains a list of locations of CRL distribution points used to check this certificate's validity. |
cert_curve | Specifies the elliptic curve associated with the certificate's public key. |
cert_fingerprint | Contains the fingerprint (a hash imprint) of this certificate. |
cert_friendly_name | Contains an associated alias (friendly name) of the certificate. |
cert_handle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
cert_hash_algorithm | Provides means to set the hash algorithm to be used in the subsequent operation on the certificate (such as generation or key signing). |
cert_issuer | The common name of the certificate issuer (CA), typically a company name. |
cert_issuer_rdn | A list of Property=Value pairs that uniquely identify the certificate issuer. |
cert_key_algorithm | Specifies the public key algorithm of this certificate. |
cert_key_bits | Returns the length of the public key in bits. |
cert_key_fingerprint | Returns a SHA1 fingerprint of the public key contained in the certificate. |
cert_key_usage | Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set. |
cert_key_valid | Returns True if the certificate's key is cryptographically valid, and False otherwise. |
cert_ocsp_locations | Locations of OCSP services that can be used to check this certificate's validity in real time, as recorded by the CA. |
cert_ocsp_no_check | Accessor to the value of the certificate's ocsp-no-check extension. |
cert_origin | Returns the location that the certificate was taken or loaded from. |
cert_policy_i_ds | Contains identifiers (OIDs) of the applicable certificate policies. |
cert_private_key_bytes | Returns the certificate's private key in DER-encoded format. |
cert_private_key_exists | Indicates whether the certificate has a usable private key associated with it. |
cert_private_key_extractable | Indicates whether the private key is extractable (exportable). |
cert_public_key_bytes | Contains the certificate's public key in DER format. |
cert_qualified | Indicates whether the certificate is qualified. |
cert_qualified_statements | Returns a simplified qualified status of the certificate. |
cert_qualifiers | A list of qualifiers. |
cert_self_signed | Indicates whether the certificate is self-signed (root) or signed by an external CA. |
cert_serial_number | Returns the certificate's serial number. |
cert_sig_algorithm | Indicates the algorithm that was used by the CA to sign this certificate. |
cert_source | Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response. |
cert_subject | The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name. |
cert_subject_alternative_name | Returns or sets the value of the Subject Alternative Name extension of the certificate. |
cert_subject_key_id | Contains a unique identifier of the certificate's cryptographic key. |
cert_subject_rdn | A list of Property=Value pairs that uniquely identify the certificate holder (subject). |
cert_valid | Indicates whether or not the signature over the certificate or the request is valid and matches the public key contained in the CA certificate/request. |
cert_valid_from | The time point at which the certificate becomes valid, in UTC. |
cert_valid_to | The time point at which the certificate expires, in UTC. |
derivation_algorithm | Specifies the algorithm to use for key derivation. |
derive_iterations | Specifies the number of iterations to use as part of key derivation routine. |
fips_mode | Reserved. |
hmac_algorithm | Specifies the HMAC algorithm to use with the key derivation algorithm. |
key_algorithm | The algorithm of the cryptographic key. |
key_bits | The length of the key in bits. |
key_curve | This property specifies the name of the curve the EC key is built on. |
key_exportable | Returns True if the key is exportable (can be serialized into an array of bytes), and False otherwise. |
key_fingerprint | Contains the fingerprint (a hash imprint) of this key. |
key_handle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
key_id | Provides access to a storage-specific key identifier. |
key_iv | The initialization vector (IV) of a symmetric key. |
key_key | The byte array representation of the key. |
key_nonce | A nonce value associated with a key. |
key_private | Returns True if the object hosts a private key, and False otherwise. |
key_public | Returns True if the object hosts a public key, and False otherwise. |
key_subject | Returns the key subject. |
key_symmetric | Returns True if the object contains a symmetric key, and False otherwise. |
key_valid | Returns True if this key is valid. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
config | Sets or retrieves a configuration setting. |
create_new | Creates a template for a new keypair. |
derive_key | Generates a strong cryptographic key from a password. |
do_action | Performs an additional action. |
export_bytes | Exports the key to a byte array. |
export_to_cert | Exports the key to a certificate. |
export_to_file | Exports the key to a file. |
generate | Generates a new crypto key. |
get_key_param | Returns a binary algorithm-specific key parameter. |
get_key_param_str | Returns a string algorithm-specific key parameter. |
import_bytes | Loads a key from a byte array. |
import_from_cert | Loads a key from a certificate. |
import_from_file | Loads a key from a file. |
reset | Resets the class settings. |
set_key_param | Sets an algorithm-specific key parameter. |
set_key_param_str | Sets a string-based algorithm-specific key parameter. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
on_error | Informs about an error during an operation. |
on_notification | This event notifies the application about an underlying control flow event. |
on_password_needed | This event is fired when a decryption password is needed. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
Argon2MemoryCost | Sets the memory cost parameter of Argon2 key derivation algorithm. |
Argon2Parallelism | Sets the parallelism parameter of Argon2 key derivation algorithm. |
DerivationAlgorithm | The algorithm to use for key derivation. |
DeriveIterations | The number of iterations to use as part of key derivation routine. |
HMACAlgorithm | Specifies the HMAC algorithm to use with the key derivation algorithm. |
TempPath | Path for storing temporary files. |
ASN1UseGlobalTagCache | Controls whether ASN.1 module should use a global object cache. |
AssignSystemSmartCardPins | Specifies whether CSP-level PINs should be assigned to CNG keys. |
CheckKeyIntegrityBeforeUse | Enables or disable private key integrity check before use. |
CookieCaching | Specifies whether a cookie cache should be used for HTTP(S) transports. |
Cookies | Gets or sets local cookies for the class. |
DefDeriveKeyIterations | Specifies the default key derivation algorithm iteration count. |
DNSLocalSuffix | The suffix to assign for TLD names. |
EnableClientSideSSLFFDHE | Enables or disables finite field DHE key exchange support in TLS clients. |
GlobalCookies | Gets or sets global cookies for all the HTTP transports. |
HardwareCryptoUsePolicy | The hardware crypto usage policy. |
HttpUserAgent | Specifies the user agent name to be used by all HTTP clients. |
HttpVersion | The HTTP version to use in any inner HTTP client classes created. |
IgnoreExpiredMSCTLSigningCert | Whether to tolerate the expired Windows Update signing certificate. |
ListDelimiter | The delimiter character for multi-element lists. |
LogDestination | Specifies the debug log destination. |
LogDetails | Specifies the debug log details to dump. |
LogFile | Specifies the debug log filename. |
LogFilters | Specifies the debug log filters. |
LogFlushMode | Specifies the log flush mode. |
LogLevel | Specifies the debug log level. |
LogMaxEventCount | Specifies the maximum number of events to cache before further action is taken. |
LogRotationMode | Specifies the log rotation mode. |
MaxASN1BufferLength | Specifies the maximal allowed length for ASN.1 primitive tag data. |
MaxASN1TreeDepth | Specifies the maximal depth for processed ASN.1 trees. |
OCSPHashAlgorithm | Specifies the hash algorithm to be used to identify certificates in OCSP requests. |
OldClientSideRSAFallback | Specifies whether the SSH client should use a SHA1 fallback. |
PKICache | Specifies which PKI elements (certificates, CRLs, OCSP responses) should be cached. |
PKICachePath | Specifies the file system path where cached PKI data is stored. |
ProductVersion | Returns the version of the SecureBlackbox library. |
ServerSSLDHKeyLength | Sets the size of the TLS DHE key exchange group. |
StaticDNS | Specifies whether static DNS rules should be used. |
StaticIPAddress[domain] | Gets or sets an IP address for the specified domain name. |
StaticIPAddresses | Gets or sets all the static DNS rules. |
Tag | Allows to store any custom data. |
TLSSessionGroup | Specifies the group name of TLS sessions to be used for session resumption. |
TLSSessionLifetime | Specifies lifetime in seconds of the cached TLS session. |
TLSSessionPurgeInterval | Specifies how often the session cache should remove the expired TLS sessions. |
UseCRLObjectCaching | Specifies whether reuse of loaded CRL objects is enabled. |
UseInternalRandom | Switches between SecureBlackbox-own and platform PRNGs. |
UseLegacyAdESValidation | Enables legacy AdES validation mode. |
UseOCSPResponseObjectCaching | Specifies whether reuse of loaded OCSP response objects is enabled. |
UseOwnDNSResolver | Specifies whether the client classes should use own DNS resolver. |
UseSharedSystemStorages | Specifies whether the validation engine should use a global per-process copy of the system certificate stores. |
UseSystemNativeSizeCalculation | An internal CryptoAPI access tweak. |
UseSystemOAEPAndPSS | Enforces or disables the use of system-driven RSA OAEP and PSS computations. |
UseSystemRandom | Enables or disables the use of the OS PRNG. |
XMLRDNDescriptorName[OID] | Defines an OID mapping to descriptor names for the certificate's IssuerRDN or SubjectRDN. |
XMLRDNDescriptorPriority[OID] | Specifies the priority of descriptor names associated with a specific OID. |
XMLRDNDescriptorReverseOrder | Specifies whether to reverse the order of descriptors in RDN. |
XMLRDNDescriptorSeparator | Specifies the separator used between descriptors in RDN. |
cert_bytes Property
Returns the raw certificate data in DER format.
Syntax
def get_cert_bytes() -> bytes: ...
cert_bytes = property(get_cert_bytes, None)
Remarks
Returns the raw certificate data in DER format.
This property is read-only.
cert_ca Property
Indicates whether the certificate has a CA capability.
Syntax
def get_cert_ca() -> bool: ... def set_cert_ca(value: bool) -> None: ...
cert_ca = property(get_cert_ca, set_cert_ca)
Default Value
FALSE
Remarks
Indicates whether the certificate has a CA capability. For the certificate to be considered a CA, it must have its Basic Constraints extension set with the CA indicator enabled.
Set this property when generating a new certificate to have its Basic Constraints extension generated automatically.
cert_ca_key_id Property
A unique identifier (fingerprint) of the CA certificate's cryptographic key.
Syntax
def get_cert_ca_key_id() -> bytes: ...
cert_ca_key_id = property(get_cert_ca_key_id, None)
Remarks
A unique identifier (fingerprint) of the CA certificate's cryptographic key.
Authority Key Identifier is a certificate extension which allows identification of certificates belonging to the same issuer, but with different public keys. It is a de-facto standard to include this extension in all certificates to facilitate chain building.
This setting cannot be set when generating a certificate as it always derives from another certificate property. CertificateManager generates this setting automatically if enough information is available to it: for self-signed certificates, this value is copied from the cert_subject_key_id setting, and for lower-level certificates, from the parent certificate's subject key ID extension.
This property is read-only.
cert_cert_type Property
Returns the type of the entity contained in the Certificate object.
Syntax
def get_cert_cert_type() -> int: ...
cert_cert_type = property(get_cert_cert_type, None)
Default Value
0
Remarks
Returns the type of the entity contained in the Certificate object.
A Certificate object can contain two types of cryptographic objects: a ready-to-use X.509 certificate, or a certificate request ("an unsigned certificate"). Certificate requests can be upgraded to full certificates by signing them with a CA certificate.
Use the CertificateManager class to load or create new certificate and certificate requests objects.
This property is read-only.
cert_crl_distribution_points Property
Contains a list of locations of CRL distribution points used to check this certificate's validity.
Syntax
def get_cert_crl_distribution_points() -> str: ... def set_cert_crl_distribution_points(value: str) -> None: ...
cert_crl_distribution_points = property(get_cert_crl_distribution_points, set_cert_crl_distribution_points)
Default Value
""
Remarks
Contains a list of locations of CRL distribution points used to check this certificate's validity. The list is taken from the respective certificate extension.
Use this property when generating a certificate to provide a list of CRL endpoints that should be made part of the new certificate.
The endpoints are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.
cert_curve Property
Specifies the elliptic curve associated with the certificate's public key.
Syntax
def get_cert_curve() -> str: ... def set_cert_curve(value: str) -> None: ...
cert_curve = property(get_cert_curve, set_cert_curve)
Default Value
""
Remarks
Specifies the elliptic curve associated with the certificate's public key. This setting only applies to certificates containing EC keys.
SB_EC_SECP112R1 | SECP112R1 | |
SB_EC_SECP112R2 | SECP112R2 | |
SB_EC_SECP128R1 | SECP128R1 | |
SB_EC_SECP128R2 | SECP128R2 | |
SB_EC_SECP160K1 | SECP160K1 | |
SB_EC_SECP160R1 | SECP160R1 | |
SB_EC_SECP160R2 | SECP160R2 | |
SB_EC_SECP192K1 | SECP192K1 | |
SB_EC_SECP192R1 | SECP192R1 | |
SB_EC_SECP224K1 | SECP224K1 | |
SB_EC_SECP224R1 | SECP224R1 | |
SB_EC_SECP256K1 | SECP256K1 | |
SB_EC_SECP256R1 | SECP256R1 | |
SB_EC_SECP384R1 | SECP384R1 | |
SB_EC_SECP521R1 | SECP521R1 | |
SB_EC_SECT113R1 | SECT113R1 | |
SB_EC_SECT113R2 | SECT113R2 | |
SB_EC_SECT131R1 | SECT131R1 | |
SB_EC_SECT131R2 | SECT131R2 | |
SB_EC_SECT163K1 | SECT163K1 | |
SB_EC_SECT163R1 | SECT163R1 | |
SB_EC_SECT163R2 | SECT163R2 | |
SB_EC_SECT193R1 | SECT193R1 | |
SB_EC_SECT193R2 | SECT193R2 | |
SB_EC_SECT233K1 | SECT233K1 | |
SB_EC_SECT233R1 | SECT233R1 | |
SB_EC_SECT239K1 | SECT239K1 | |
SB_EC_SECT283K1 | SECT283K1 | |
SB_EC_SECT283R1 | SECT283R1 | |
SB_EC_SECT409K1 | SECT409K1 | |
SB_EC_SECT409R1 | SECT409R1 | |
SB_EC_SECT571K1 | SECT571K1 | |
SB_EC_SECT571R1 | SECT571R1 | |
SB_EC_PRIME192V1 | PRIME192V1 | |
SB_EC_PRIME192V2 | PRIME192V2 | |
SB_EC_PRIME192V3 | PRIME192V3 | |
SB_EC_PRIME239V1 | PRIME239V1 | |
SB_EC_PRIME239V2 | PRIME239V2 | |
SB_EC_PRIME239V3 | PRIME239V3 | |
SB_EC_PRIME256V1 | PRIME256V1 | |
SB_EC_C2PNB163V1 | C2PNB163V1 | |
SB_EC_C2PNB163V2 | C2PNB163V2 | |
SB_EC_C2PNB163V3 | C2PNB163V3 | |
SB_EC_C2PNB176W1 | C2PNB176W1 | |
SB_EC_C2TNB191V1 | C2TNB191V1 | |
SB_EC_C2TNB191V2 | C2TNB191V2 | |
SB_EC_C2TNB191V3 | C2TNB191V3 | |
SB_EC_C2ONB191V4 | C2ONB191V4 | |
SB_EC_C2ONB191V5 | C2ONB191V5 | |
SB_EC_C2PNB208W1 | C2PNB208W1 | |
SB_EC_C2TNB239V1 | C2TNB239V1 | |
SB_EC_C2TNB239V2 | C2TNB239V2 | |
SB_EC_C2TNB239V3 | C2TNB239V3 | |
SB_EC_C2ONB239V4 | C2ONB239V4 | |
SB_EC_C2ONB239V5 | C2ONB239V5 | |
SB_EC_C2PNB272W1 | C2PNB272W1 | |
SB_EC_C2PNB304W1 | C2PNB304W1 | |
SB_EC_C2TNB359V1 | C2TNB359V1 | |
SB_EC_C2PNB368W1 | C2PNB368W1 | |
SB_EC_C2TNB431R1 | C2TNB431R1 | |
SB_EC_NISTP192 | NISTP192 | |
SB_EC_NISTP224 | NISTP224 | |
SB_EC_NISTP256 | NISTP256 | |
SB_EC_NISTP384 | NISTP384 | |
SB_EC_NISTP521 | NISTP521 | |
SB_EC_NISTB163 | NISTB163 | |
SB_EC_NISTB233 | NISTB233 | |
SB_EC_NISTB283 | NISTB283 | |
SB_EC_NISTB409 | NISTB409 | |
SB_EC_NISTB571 | NISTB571 | |
SB_EC_NISTK163 | NISTK163 | |
SB_EC_NISTK233 | NISTK233 | |
SB_EC_NISTK283 | NISTK283 | |
SB_EC_NISTK409 | NISTK409 | |
SB_EC_NISTK571 | NISTK571 | |
SB_EC_GOSTCPTEST | GOSTCPTEST | |
SB_EC_GOSTCPA | GOSTCPA | |
SB_EC_GOSTCPB | GOSTCPB | |
SB_EC_GOSTCPC | GOSTCPC | |
SB_EC_GOSTCPXCHA | GOSTCPXCHA | |
SB_EC_GOSTCPXCHB | GOSTCPXCHB | |
SB_EC_BRAINPOOLP160R1 | BRAINPOOLP160R1 | |
SB_EC_BRAINPOOLP160T1 | BRAINPOOLP160T1 | |
SB_EC_BRAINPOOLP192R1 | BRAINPOOLP192R1 | |
SB_EC_BRAINPOOLP192T1 | BRAINPOOLP192T1 | |
SB_EC_BRAINPOOLP224R1 | BRAINPOOLP224R1 | |
SB_EC_BRAINPOOLP224T1 | BRAINPOOLP224T1 | |
SB_EC_BRAINPOOLP256R1 | BRAINPOOLP256R1 | |
SB_EC_BRAINPOOLP256T1 | BRAINPOOLP256T1 | |
SB_EC_BRAINPOOLP320R1 | BRAINPOOLP320R1 | |
SB_EC_BRAINPOOLP320T1 | BRAINPOOLP320T1 | |
SB_EC_BRAINPOOLP384R1 | BRAINPOOLP384R1 | |
SB_EC_BRAINPOOLP384T1 | BRAINPOOLP384T1 | |
SB_EC_BRAINPOOLP512R1 | BRAINPOOLP512R1 | |
SB_EC_BRAINPOOLP512T1 | BRAINPOOLP512T1 | |
SB_EC_CURVE25519 | CURVE25519 | |
SB_EC_CURVE448 | CURVE448 |
cert_fingerprint Property
Contains the fingerprint (a hash imprint) of this certificate.
Syntax
def get_cert_fingerprint() -> str: ...
cert_fingerprint = property(get_cert_fingerprint, None)
Default Value
""
Remarks
Contains the fingerprint (a hash imprint) of this certificate.
While there is no formal standard defining what a fingerprint is, a SHA1 hash of the certificate's DER-encoded body is typically used.
This property is read-only.
cert_friendly_name Property
Contains an associated alias (friendly name) of the certificate.
Syntax
def get_cert_friendly_name() -> str: ...
cert_friendly_name = property(get_cert_friendly_name, None)
Default Value
""
Remarks
Contains an associated alias (friendly name) of the certificate. The friendly name is not a property of a certificate: it is maintained by the certificate media rather than being included in its DER representation. Windows certificate stores are one example of media that does support friendly names.
This property is read-only.
cert_handle Property
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
def get_cert_handle() -> int: ... def set_cert_handle(value: int) -> None: ...
cert_handle = property(get_cert_handle, set_cert_handle)
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
cert_hash_algorithm Property
Provides means to set the hash algorithm to be used in the subsequent operation on the certificate (such as generation or key signing).
Syntax
def get_cert_hash_algorithm() -> str: ... def set_cert_hash_algorithm(value: str) -> None: ...
cert_hash_algorithm = property(get_cert_hash_algorithm, set_cert_hash_algorithm)
Default Value
""
Remarks
Provides means to set the hash algorithm to be used in the subsequent operation on the certificate (such as generation or key signing). It is not a property of a certificate; use cert_sig_algorithm to find out the hash algorithm that is part of the certificate signature.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
cert_issuer Property
The common name of the certificate issuer (CA), typically a company name.
Syntax
def get_cert_issuer() -> str: ...
cert_issuer = property(get_cert_issuer, None)
Default Value
""
Remarks
The common name of the certificate issuer (CA), typically a company name. This is part of a larger set of credentials available via cert_issuer_rdn.
This property is read-only.
cert_issuer_rdn Property
A list of Property=Value pairs that uniquely identify the certificate issuer.
Syntax
def get_cert_issuer_rdn() -> str: ... def set_cert_issuer_rdn(value: str) -> None: ...
cert_issuer_rdn = property(get_cert_issuer_rdn, set_cert_issuer_rdn)
Default Value
""
Remarks
A list of Property=Value pairs that uniquely identify the certificate issuer.
Example: /C=US/O=Nationwide CA/CN=Web Certification Authority
cert_key_algorithm Property
Specifies the public key algorithm of this certificate.
Syntax
def get_cert_key_algorithm() -> str: ... def set_cert_key_algorithm(value: str) -> None: ...
cert_key_algorithm = property(get_cert_key_algorithm, set_cert_key_algorithm)
Default Value
"0"
Remarks
Specifies the public key algorithm of this certificate.
SB_CERT_ALGORITHM_ID_RSA_ENCRYPTION | rsaEncryption | |
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTION | md2withRSAEncryption | |
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTION | md5withRSAEncryption | |
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTION | sha1withRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA | id-dsa | |
SB_CERT_ALGORITHM_ID_DSA_SHA1 | id-dsa-with-sha1 | |
SB_CERT_ALGORITHM_DH_PUBLIC | dhpublicnumber | |
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTION | sha224WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTION | sha256WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTION | sha384WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTION | sha512WithRSAEncryption | |
SB_CERT_ALGORITHM_ID_RSAPSS | id-RSASSA-PSS | |
SB_CERT_ALGORITHM_ID_RSAOAEP | id-RSAES-OAEP | |
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160 | ripemd160withRSA | |
SB_CERT_ALGORITHM_ID_ELGAMAL | elGamal | |
SB_CERT_ALGORITHM_SHA1_ECDSA | ecdsa-with-SHA1 | |
SB_CERT_ALGORITHM_RECOMMENDED_ECDSA | ecdsa-recommended | |
SB_CERT_ALGORITHM_SHA224_ECDSA | ecdsa-with-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA | ecdsa-with-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA | ecdsa-with-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA | ecdsa-with-SHA512 | |
SB_CERT_ALGORITHM_EC | id-ecPublicKey | |
SB_CERT_ALGORITHM_SPECIFIED_ECDSA | ecdsa-specified | |
SB_CERT_ALGORITHM_GOST_R3410_1994 | id-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3410_2001 | id-GostR3410-2001 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994 | id-GostR3411-94-with-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001 | id-GostR3411-94-with-GostR3410-2001 | |
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAIN | ecdsa-plain-SHA1 | |
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAIN | ecdsa-plain-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAIN | ecdsa-plain-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAIN | ecdsa-plain-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAIN | ecdsa-plain-SHA512 | |
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAIN | ecdsa-plain-RIPEMD160 | |
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTION | whirlpoolWithRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA_SHA224 | id-dsa-with-sha224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA256 | id-dsa-with-sha256 | |
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA | id-ecdsa-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA | id-ecdsa-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA | id-ecdsa-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA | id-ecdsa-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-512 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_224 | id-dsa-with-sha3-224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_256 | id-dsa-with-sha3-256 | |
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA | id-ecdsa-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA | id-ecdsa-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA | id-ecdsa-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA | id-ecdsa-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA | id-ecdsa-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA | id-ecdsa-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA | id-ecdsa-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA | id-ecdsa-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b512 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224 | id-dsa-with-blake2s224 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256 | id-dsa-with-blake2s256 | |
SB_CERT_ALGORITHM_EDDSA_ED25519 | id-Ed25519 | |
SB_CERT_ALGORITHM_EDDSA_ED448 | id-Ed448 | |
SB_CERT_ALGORITHM_EDDSA_ED25519_PH | id-Ed25519ph | |
SB_CERT_ALGORITHM_EDDSA_ED448_PH | id-Ed448ph | |
SB_CERT_ALGORITHM_EDDSA | id-EdDSA | |
SB_CERT_ALGORITHM_EDDSA_SIGNATURE | id-EdDSA-sig |
Use the cert_key_bits, cert_curve, and cert_public_key_bytes properties to get more details about the key the certificate contains.
cert_key_bits Property
Returns the length of the public key in bits.
Syntax
def get_cert_key_bits() -> int: ...
cert_key_bits = property(get_cert_key_bits, None)
Default Value
0
Remarks
Returns the length of the public key in bits.
This value indicates the length of the principal cryptographic parameter of the key, such as the length of the RSA modulus or ECDSA field. The key data returned by the cert_public_key_bytes or cert_private_key_bytes property would typically contain auxiliary values, and therefore be longer.
This property is read-only.
cert_key_fingerprint Property
Returns a SHA1 fingerprint of the public key contained in the certificate.
Syntax
def get_cert_key_fingerprint() -> str: ...
cert_key_fingerprint = property(get_cert_key_fingerprint, None)
Default Value
""
Remarks
Returns a SHA1 fingerprint of the public key contained in the certificate.
Note that the key fingerprint is different from the certificate fingerprint accessible via the cert_fingerprint property. The key fingeprint uniquely identifies the public key, and so can be the same for multiple certificates containing the same key.
This property is read-only.
cert_key_usage Property
Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.
Syntax
def get_cert_key_usage() -> int: ... def set_cert_key_usage(value: int) -> None: ...
cert_key_usage = property(get_cert_key_usage, set_cert_key_usage)
Default Value
0
Remarks
Indicates the purposes of the key contained in the certificate, in the form of an OR'ed flag set.
This value is a bit mask of the following values:
ckuUnknown | 0x00000 | Unknown key usage |
ckuDigitalSignature | 0x00001 | Digital signature |
ckuNonRepudiation | 0x00002 | Non-repudiation |
ckuKeyEncipherment | 0x00004 | Key encipherment |
ckuDataEncipherment | 0x00008 | Data encipherment |
ckuKeyAgreement | 0x00010 | Key agreement |
ckuKeyCertSign | 0x00020 | Certificate signing |
ckuCRLSign | 0x00040 | Revocation signing |
ckuEncipherOnly | 0x00080 | Encipher only |
ckuDecipherOnly | 0x00100 | Decipher only |
ckuServerAuthentication | 0x00200 | Server authentication |
ckuClientAuthentication | 0x00400 | Client authentication |
ckuCodeSigning | 0x00800 | Code signing |
ckuEmailProtection | 0x01000 | Email protection |
ckuTimeStamping | 0x02000 | Timestamping |
ckuOCSPSigning | 0x04000 | OCSP signing |
ckuSmartCardLogon | 0x08000 | Smartcard logon |
ckuKeyPurposeClientAuth | 0x10000 | Kerberos - client authentication |
ckuKeyPurposeKDC | 0x20000 | Kerberos - KDC |
Set this property before generating the certificate to propagate the key usage flags to the new certificate.
cert_key_valid Property
Returns True if the certificate's key is cryptographically valid, and False otherwise.
Syntax
def get_cert_key_valid() -> bool: ...
cert_key_valid = property(get_cert_key_valid, None)
Default Value
FALSE
Remarks
Returns True if the certificate's key is cryptographically valid, and False otherwise.
This property is read-only.
cert_ocsp_locations Property
Locations of OCSP services that can be used to check this certificate's validity in real time, as recorded by the CA.
Syntax
def get_cert_ocsp_locations() -> str: ... def set_cert_ocsp_locations(value: str) -> None: ...
cert_ocsp_locations = property(get_cert_ocsp_locations, set_cert_ocsp_locations)
Default Value
""
Remarks
Locations of OCSP services that can be used to check this certificate's validity in real time, as recorded by the CA.
Set this property before calling the certificate manager's generate method to propagate it to the new certificate.
The OCSP locations are provided as a list of CRLF-separated URLs. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the location separator.
cert_ocsp_no_check Property
Accessor to the value of the certificate's ocsp-no-check extension.
Syntax
def get_cert_ocsp_no_check() -> bool: ... def set_cert_ocsp_no_check(value: bool) -> None: ...
cert_ocsp_no_check = property(get_cert_ocsp_no_check, set_cert_ocsp_no_check)
Default Value
FALSE
Remarks
Accessor to the value of the certificate's ocsp-no-check extension.
cert_origin Property
Returns the location that the certificate was taken or loaded from.
Syntax
def get_cert_origin() -> int: ...
cert_origin = property(get_cert_origin, None)
Default Value
0
Remarks
Returns the location that the certificate was taken or loaded from.
This property is read-only.
cert_policy_i_ds Property
Contains identifiers (OIDs) of the applicable certificate policies.
Syntax
def get_cert_policy_i_ds() -> str: ... def set_cert_policy_i_ds(value: str) -> None: ...
cert_policy_i_ds = property(get_cert_policy_i_ds, set_cert_policy_i_ds)
Default Value
""
Remarks
Contains identifiers (OIDs) of the applicable certificate policies.
The Certificate Policies extension identifies a sequence of policies under which the certificate has been issued, and which regulate its usage.
Set this property when generating a certificate to propagate the policies information to the new certificate.
The policies are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the policy element separator.
cert_private_key_bytes Property
Returns the certificate's private key in DER-encoded format.
Syntax
def get_cert_private_key_bytes() -> bytes: ...
cert_private_key_bytes = property(get_cert_private_key_bytes, None)
Remarks
Returns the certificate's private key in DER-encoded format. It is normal for this property to be empty if the private key is non-exportable, which, for example, is typical for certificates originating from hardware security devices.
This property is read-only.
cert_private_key_exists Property
Indicates whether the certificate has a usable private key associated with it.
Syntax
def get_cert_private_key_exists() -> bool: ...
cert_private_key_exists = property(get_cert_private_key_exists, None)
Default Value
FALSE
Remarks
Indicates whether the certificate has a usable private key associated with it. If it is set to True, the certificate can be used for private key operations, such as signing or decryption.
This property is independent from cert_private_key_bytes, and can be set to True even if the former is empty. This would imply that the private key is non-exportable, but still can be used for cryptographic operations.
This property is read-only.
cert_private_key_extractable Property
Indicates whether the private key is extractable (exportable).
Syntax
def get_cert_private_key_extractable() -> bool: ...
cert_private_key_extractable = property(get_cert_private_key_extractable, None)
Default Value
FALSE
Remarks
Indicates whether the private key is extractable (exportable).
This property is read-only.
cert_public_key_bytes Property
Contains the certificate's public key in DER format.
Syntax
def get_cert_public_key_bytes() -> bytes: ...
cert_public_key_bytes = property(get_cert_public_key_bytes, None)
Remarks
Contains the certificate's public key in DER format.
This typically would contain an ASN.1-encoded public key value. The exact format depends on the type of the public key contained in the certificate.
This property is read-only.
cert_qualified Property
Indicates whether the certificate is qualified.
Syntax
def get_cert_qualified() -> bool: ...
cert_qualified = property(get_cert_qualified, None)
Default Value
FALSE
Remarks
Indicates whether the certificate is qualified.
This property is set to True if the certificate is confirmed by a Trusted List to be qualified.
This property is read-only.
cert_qualified_statements Property
Returns a simplified qualified status of the certificate.
Syntax
def get_cert_qualified_statements() -> int: ... def set_cert_qualified_statements(value: int) -> None: ...
cert_qualified_statements = property(get_cert_qualified_statements, set_cert_qualified_statements)
Default Value
0
Remarks
Returns a simplified qualified status of the certificate.
cert_qualifiers Property
A list of qualifiers.
Syntax
def get_cert_qualifiers() -> str: ...
cert_qualifiers = property(get_cert_qualifiers, None)
Default Value
""
Remarks
A list of qualifiers.
Contains a comma-separated list of qualifier aliases for the certificate, for example QCP-n-qscd,QCWithSSCD.
This property is read-only.
cert_self_signed Property
Indicates whether the certificate is self-signed (root) or signed by an external CA.
Syntax
def get_cert_self_signed() -> bool: ...
cert_self_signed = property(get_cert_self_signed, None)
Default Value
FALSE
Remarks
Indicates whether the certificate is self-signed (root) or signed by an external CA.
This property is read-only.
cert_serial_number Property
Returns the certificate's serial number.
Syntax
def get_cert_serial_number() -> bytes: ... def set_cert_serial_number(value: bytes) -> None: ...
cert_serial_number = property(get_cert_serial_number, set_cert_serial_number)
Remarks
Returns the certificate's serial number.
The serial number is a binary string that uniquely identifies a certificate among others issued by the same CA. According to the X.509 standard, the (issuer, serial number) pair should be globally unique to facilitate chain building.
cert_sig_algorithm Property
Indicates the algorithm that was used by the CA to sign this certificate.
Syntax
def get_cert_sig_algorithm() -> str: ...
cert_sig_algorithm = property(get_cert_sig_algorithm, None)
Default Value
""
Remarks
Indicates the algorithm that was used by the CA to sign this certificate.
A signature algorithm typically combines hash and public key algorithms together, such as sha256WithRSAEncryption or ecdsa-with-SHA256.
This property is read-only.
cert_source Property
Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.
Syntax
def get_cert_source() -> int: ...
cert_source = property(get_cert_source, None)
Default Value
0
Remarks
Returns the source (location or disposition) of a cryptographic primitive entity, such as a certificate, CRL, or OCSP response.
This property is read-only.
cert_subject Property
The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name.
Syntax
def get_cert_subject() -> str: ...
cert_subject = property(get_cert_subject, None)
Default Value
""
Remarks
The common name of the certificate holder, typically an individual's name, a URL, an e-mail address, or a company name. This is part of a larger set of credentials available via cert_subject_rdn.
This property is read-only.
cert_subject_alternative_name Property
Returns or sets the value of the Subject Alternative Name extension of the certificate.
Syntax
def get_cert_subject_alternative_name() -> str: ... def set_cert_subject_alternative_name(value: str) -> None: ...
cert_subject_alternative_name = property(get_cert_subject_alternative_name, set_cert_subject_alternative_name)
Default Value
""
Remarks
Returns or sets the value of the Subject Alternative Name extension of the certificate.
Subject alternative names are used to provide additional names that are impractical to store in the main cert_subject_rdn field. For example, it is often used to store all the domain names that a TLS certificate is authorized to protect.
The alternative names are provided as a list of CRLF-separated entries. Note that this differs from the behaviour used in earlier product versions, where the "|" character was used as the element separator.
cert_subject_key_id Property
Contains a unique identifier of the certificate's cryptographic key.
Syntax
def get_cert_subject_key_id() -> bytes: ... def set_cert_subject_key_id(value: bytes) -> None: ...
cert_subject_key_id = property(get_cert_subject_key_id, set_cert_subject_key_id)
Remarks
Contains a unique identifier of the certificate's cryptographic key.
Subject Key Identifier is a certificate extension which allows a specific public key to be associated with a certificate holder. Typically, subject key identifiers of CA certificates are recorded as respective CA key identifiers in the subordinate certificates that they issue, which facilitates chain building.
The cert_subject_key_id and cert_ca_key_id properties of self-signed certificates typically contain identical values, as in that specific case, the issuer and the subject are the same entity.
cert_subject_rdn Property
A list of Property=Value pairs that uniquely identify the certificate holder (subject).
Syntax
def get_cert_subject_rdn() -> str: ... def set_cert_subject_rdn(value: str) -> None: ...
cert_subject_rdn = property(get_cert_subject_rdn, set_cert_subject_rdn)
Default Value
""
Remarks
A list of Property=Value pairs that uniquely identify the certificate holder (subject).
Depending on the purpose of the certificate and the policies of the CA that issued it, the values included in the subject record may differ drastically and contain business or personal names, web URLs, email addresses, and other data.
Example: /C=US/O=Oranges and Apples, Inc./OU=Accounts Receivable/1.2.3.4.5=Value with unknown OID/CN=Margaret Watkins.
cert_valid Property
Indicates whether or not the signature over the certificate or the request is valid and matches the public key contained in the CA certificate/request.
Syntax
def get_cert_valid() -> bool: ...
cert_valid = property(get_cert_valid, None)
Default Value
FALSE
Remarks
Indicates whether or not the signature over the certificate or the request is valid and matches the public key contained in the CA certificate/request.
This property is read-only.
cert_valid_from Property
The time point at which the certificate becomes valid, in UTC.
Syntax
def get_cert_valid_from() -> str: ... def set_cert_valid_from(value: str) -> None: ...
cert_valid_from = property(get_cert_valid_from, set_cert_valid_from)
Default Value
""
Remarks
The time point at which the certificate becomes valid, in UTC.
cert_valid_to Property
The time point at which the certificate expires, in UTC.
Syntax
def get_cert_valid_to() -> str: ... def set_cert_valid_to(value: str) -> None: ...
cert_valid_to = property(get_cert_valid_to, set_cert_valid_to)
Default Value
""
Remarks
The time point at which the certificate expires, in UTC.
derivation_algorithm Property
Specifies the algorithm to use for key derivation.
Syntax
def get_derivation_algorithm() -> str: ... def set_derivation_algorithm(value: str) -> None: ...
derivation_algorithm = property(get_derivation_algorithm, set_derivation_algorithm)
Default Value
"PKCS5"
Remarks
Use this property to specify the key derivation algorithm to use.
Class supports the following algorithms: PKCS5, PBKDF2 (an alias to PKCS5), BCrypt, SCrypt, Argon2d, Argon2i, Argon2id.
derive_iterations Property
Specifies the number of iterations to use as part of key derivation routine.
Syntax
def get_derive_iterations() -> int: ... def set_derive_iterations(value: int) -> None: ...
derive_iterations = property(get_derive_iterations, set_derive_iterations)
Default Value
2048
Remarks
Use this property to adjust the number of hash algorithm iterations to employ as part of key derivation function.
fips_mode Property
Reserved.
Syntax
def get_fips_mode() -> bool: ... def set_fips_mode(value: bool) -> None: ...
fips_mode = property(get_fips_mode, set_fips_mode)
Default Value
FALSE
Remarks
This property is reserved for future use.
hmac_algorithm Property
Specifies the HMAC algorithm to use with the key derivation algorithm.
Syntax
def get_hmac_algorithm() -> str: ... def set_hmac_algorithm(value: str) -> None: ...
hmac_algorithm = property(get_hmac_algorithm, set_hmac_algorithm)
Default Value
"SHA1"
Remarks
Use this property to specify the HMAC algorithm to use with the chosen key derivation algorithm.
Class supports the following algorithms: SHA1, SHA224, SHA256, SHA384, SHA512, MD5, RIPEMD, HMAC.
key_algorithm Property
The algorithm of the cryptographic key.
Syntax
def get_key_algorithm() -> str: ... def set_key_algorithm(value: str) -> None: ...
key_algorithm = property(get_key_algorithm, set_key_algorithm)
Default Value
""
Remarks
The algorithm of the cryptographic key. A cryptokey object may hold either symmetric, MAC, or public key. Public key algorithms: RSA, ECDSA, Elgamal, DH.
SB_SYMMETRIC_ALGORITHM_RC4 | RC4 | |
SB_SYMMETRIC_ALGORITHM_DES | DES | |
SB_SYMMETRIC_ALGORITHM_3DES | 3DES | |
SB_SYMMETRIC_ALGORITHM_RC2 | RC2 | |
SB_SYMMETRIC_ALGORITHM_AES128 | AES128 | |
SB_SYMMETRIC_ALGORITHM_AES192 | AES192 | |
SB_SYMMETRIC_ALGORITHM_AES256 | AES256 | |
SB_SYMMETRIC_ALGORITHM_IDENTITY | Identity | |
SB_SYMMETRIC_ALGORITHM_BLOWFISH | Blowfish | |
SB_SYMMETRIC_ALGORITHM_CAST128 | CAST128 | |
SB_SYMMETRIC_ALGORITHM_IDEA | IDEA | |
SB_SYMMETRIC_ALGORITHM_TWOFISH | Twofish | |
SB_SYMMETRIC_ALGORITHM_TWOFISH128 | Twofish128 | |
SB_SYMMETRIC_ALGORITHM_TWOFISH192 | Twofish192 | |
SB_SYMMETRIC_ALGORITHM_TWOFISH256 | Twofish256 | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA | Camellia | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA128 | Camellia128 | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA192 | Camellia192 | |
SB_SYMMETRIC_ALGORITHM_CAMELLIA256 | Camellia256 | |
SB_SYMMETRIC_ALGORITHM_SERPENT | Serpent | |
SB_SYMMETRIC_ALGORITHM_SERPENT128 | Serpent128 | |
SB_SYMMETRIC_ALGORITHM_SERPENT192 | Serpent192 | |
SB_SYMMETRIC_ALGORITHM_SERPENT256 | Serpent256 | |
SB_SYMMETRIC_ALGORITHM_SEED | SEED | |
SB_SYMMETRIC_ALGORITHM_RABBIT | Rabbit | |
SB_SYMMETRIC_ALGORITHM_SYMMETRIC | Generic | |
SB_SYMMETRIC_ALGORITHM_GOST_28147_1989 | GOST-28147-1989 | |
SB_SYMMETRIC_ALGORITHM_CHACHA20 | ChaCha20 |
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
key_bits Property
The length of the key in bits.
Syntax
def get_key_bits() -> int: ...
key_bits = property(get_key_bits, None)
Default Value
0
Remarks
The length of the key in bits.
This property is read-only.
key_curve Property
This property specifies the name of the curve the EC key is built on.
Syntax
def get_key_curve() -> str: ... def set_key_curve(value: str) -> None: ...
key_curve = property(get_key_curve, set_key_curve)
Default Value
""
Remarks
This property specifies the name of the curve the EC key is built on.
key_exportable Property
Returns True if the key is exportable (can be serialized into an array of bytes), and False otherwise.
Syntax
def get_key_exportable() -> bool: ...
key_exportable = property(get_key_exportable, None)
Default Value
FALSE
Remarks
Returns True if the key is exportable (can be serialized into an array of bytes), and False otherwise.
This property is read-only.
key_fingerprint Property
Contains the fingerprint (a hash imprint) of this key.
Syntax
def get_key_fingerprint() -> str: ...
key_fingerprint = property(get_key_fingerprint, None)
Default Value
""
Remarks
Contains the fingerprint (a hash imprint) of this key.
This property is read-only.
key_handle Property
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
def get_key_handle() -> int: ... def set_key_handle(value: int) -> None: ...
key_handle = property(get_key_handle, set_key_handle)
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object
after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
key_id Property
Provides access to a storage-specific key identifier.
Syntax
def get_key_id() -> bytes: ... def set_key_id(value: bytes) -> None: ...
key_id = property(get_key_id, set_key_id)
Remarks
Provides access to a storage-specific key identifier. Key identifiers are used by cryptographic providers to refer to a particular key and/or distinguish between different keys. They are typically unique within a storage, but there is no guarantee that a particular cryptoprovider will conform to that (or will assign any key IDs at all).
key_iv Property
The initialization vector (IV) of a symmetric key.
Syntax
def get_key_iv() -> bytes: ... def set_key_iv(value: bytes) -> None: ...
key_iv = property(get_key_iv, set_key_iv)
Remarks
The initialization vector (IV) of a symmetric key. This is normally a public part of a symmetric key, the idea of which is to introduce randomness to the encrypted data and/or serve as a first block in chaining ciphers.
key_key Property
The byte array representation of the key.
Syntax
def get_key_key() -> bytes: ...
key_key = property(get_key_key, None)
Remarks
The byte array representation of the key. This may not be available for non-key_exportable keys.
This property is read-only.
key_nonce Property
A nonce value associated with a key.
Syntax
def get_key_nonce() -> bytes: ... def set_key_nonce(value: bytes) -> None: ...
key_nonce = property(get_key_nonce, set_key_nonce)
Remarks
A nonce value associated with a key. It is similar to IV, but its only purpose is to introduce randomness.
key_private Property
Returns True if the object hosts a private key, and False otherwise.
Syntax
def get_key_private() -> bool: ...
key_private = property(get_key_private, None)
Default Value
FALSE
Remarks
Returns True if the object hosts a private key, and False otherwise.
This property is read-only.
key_public Property
Returns True if the object hosts a public key, and False otherwise.
Syntax
def get_key_public() -> bool: ...
key_public = property(get_key_public, None)
Default Value
FALSE
Remarks
Returns True if the object hosts a public key, and False otherwise.
This property is read-only.
key_subject Property
Returns the key subject.
Syntax
def get_key_subject() -> bytes: ... def set_key_subject(value: bytes) -> None: ...
key_subject = property(get_key_subject, set_key_subject)
Remarks
Returns the key subject. This is a cryptoprovider-dependent value, which normally aims to provide some user-friendly insight into the key owner.
key_symmetric Property
Returns True if the object contains a symmetric key, and False otherwise.
Syntax
def get_key_symmetric() -> bool: ...
key_symmetric = property(get_key_symmetric, None)
Default Value
FALSE
Remarks
Returns True if the object contains a symmetric key, and False otherwise.
This property is read-only.
key_valid Property
Returns True if this key is valid.
Syntax
def get_key_valid() -> bool: ...
key_valid = property(get_key_valid, None)
Default Value
FALSE
Remarks
Returns True if this key is valid. The term Valid highly depends on the kind of the key being stored. A symmetric key is considered valid if its length fits the algorithm being set. The validity of an RSA key also ensures that the RSA key elements (primes, exponents, and modulus) are consistent.
This property is read-only.
config Method
Sets or retrieves a configuration setting.
Syntax
def config(configuration_string: str) -> str: ...
Remarks
config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
create_new Method
Creates a template for a new keypair.
Syntax
def create_new() -> None: ...
Remarks
This method pre-generates a template for a new key.
Adjust the properties of the key object and call generate to complete the generation.
derive_key Method
Generates a strong cryptographic key from a password.
Syntax
def derive_key(key_bits: int, password: str, salt: str) -> None: ...
Remarks
Use this method to generate a cryptographically strong key of a needed length from a password.
This method uses the key derivation function specified in derivation_algorithm, the HMAC algorithm provided in hmac_algorithm, over derive_iterations iterations, to generate a cryptographic key of the needed length from a password and salt.
Salt is expected to contain a human-readable text string. To provide a binary salt, use the hex prefix with base16-encoded salt value: hex:01AB8F20004F10FE.
CryptoKeyManager.DerivationAlgorithm = "PKCS5";
CryptoKeyManager.HMACAlgorithm = "SHA256";
CryptoKeyManager.DeriveIterations = 10000;
CryptoKeyManager.DeriveKey(256, "password", "hex:41424344");
Key = CryptoKeyManager.Key.Key;
do_action Method
Performs an additional action.
Syntax
def do_action(action_id: str, action_params: str) -> str: ...
Remarks
do_action is a generic method available in every class. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.
The unique identifier (case insensitive) of the action is provided in the ActionID parameter.
ActionParams contains the value of a single parameter, or a list of multiple parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....
Common ActionIDs:
Action | Parameters | Returned value | Description |
ResetTrustedListCache | none | none | Clears the cached list of trusted lists. |
ResetCertificateCache | none | none | Clears the cached certificates. |
ResetCRLCache | none | none | Clears the cached CRLs. |
ResetOCSPResponseCache | none | none | Clears the cached OCSP responses. |
export_bytes Method
Exports the key to a byte array.
Syntax
def export_bytes(format: int, key_type: int, password: str) -> bytes: ...
Remarks
Use this method to save the key (both the public and secret parts) to a byte array.
kffUnknown | 0 | The key format was not recognized as one of the known formats. |
kffAuto | 1 | The default format in current circumstances. This depends on the key being loaded or saved. |
kffDER | 2 | DER (binary) format |
kffPEM | 3 | PEM format (base64-encoded with headers) |
kffJSON | 4 | JSON key format |
ktAuto | 0 | The default key type in current circumstances. This depends on the operation, the file content, and the storage type. |
ktPublic | 1 | The operation should be performed on a public key. |
ktSecret | 2 | The operation should be performed on a private or secret key |
export_to_cert Method
Exports the key to a certificate.
Syntax
def export_to_cert() -> None: ...
Remarks
Use this method to save the key (both the public and secret parts) to the certificate specified in certificate.
export_to_file Method
Exports the key to a file.
Syntax
def export_to_file(file_name: str, format: int, key_type: int, password: str) -> None: ...
Remarks
Use this method to save the key (both the public and secret parts) to the file passed via the FileName parameter.
kffUnknown | 0 | The key format was not recognized as one of the known formats. |
kffAuto | 1 | The default format in current circumstances. This depends on the key being loaded or saved. |
kffDER | 2 | DER (binary) format |
kffPEM | 3 | PEM format (base64-encoded with headers) |
kffJSON | 4 | JSON key format |
ktAuto | 0 | The default key type in current circumstances. This depends on the operation, the file content, and the storage type. |
ktPublic | 1 | The operation should be performed on a public key. |
ktSecret | 2 | The operation should be performed on a private or secret key |
generate Method
Generates a new crypto key.
Syntax
def generate(key_algorithm: str, scheme: str, scheme_params: str, key_bits: int) -> None: ...
Remarks
Call this method to generate a new key or keypair with the desired KeyAlgorithm and KeyBits of length.
The generated key will be populated in the key property.
// Generating an EdDSA Curve25519 keypair
CryptoKeyManager.Generate("EDDSA", "CURVE25519", "", 256);
// Generating an ECDSA NIST P256 curve keypair
CryptoKeyManager.Generate("ECDSA", "NISTP256", "", 256);
// Generating an RSA 2048 bit keypair
CryptoKeyManager.Generate("RSA", "", "", 2048);
// Generating a symmetric AES256 key
CryptoKeyManager.Generate("AES256", "", "", 256);
get_key_param Method
Returns a binary algorithm-specific key parameter.
Syntax
def get_key_param(name: str) -> bytes: ...
Remarks
Use this method to retrieve a binary algorithm-specific key parameter.
The following parameters are currently supported:
Handle | The PKCS#11 key object handle | |
PubHandle | The PKCS#11 public key object handle | |
Label | The PKCS#11 key object label | |
PublicModulus | RSA public modulus (big endian) | |
PublicExponent | RSA public exponent | |
PrivateExponent | RSA private exponent (private keys only) | |
PublicShare | EdDSA public share | |
SecretShare | EdDSA secret share | |
P | DSA, Elgamal, or DH P value | |
Q | DSA Q value | |
G | DSA, Elgamal, or DH G value | |
X | DSA, Elgamal, or DH X value | |
Y | DSA, Elgamal, or DH Y value | |
PeerY | The other party's DH Y value | |
D | ECDSA D value | |
N | ECDSA N value | |
A | ECDSA A value | |
B | ECDSA B value | |
X | ECDSA X value | |
Y | ECDSA Y value | |
Q | ECDSA Q value | |
QX | ECDSA QX value | |
QY | ECDSA QY value | |
Base | ECDSA Base value | |
P | ECDSA P value | |
CurveOID | Curve object identifier (ASN.1 notation) | |
IV | The symmetric key initialization vector | |
Nonce | The HMAC key nonce |
get_key_param_str Method
Returns a string algorithm-specific key parameter.
Syntax
def get_key_param_str(name: str) -> str: ...
Remarks
Use this method to get an human-readable algorithm-specific key parameter.
The following parameters are currently supported:
ProviderName | The CryptoAPI provider name of the key container. | |
CNGKeyHandle | The CryptoAPI key handle. | |
Handle | The PKCS#11 key object handle | |
PubHandle | The PKCS#11 public key object handle | |
Label | The PKCS#11 key object label | |
PublicModulus | RSA public modulus (big endian, hex-encoded) | |
PublicExponent | RSA public exponent | |
PrivateExponent | RSA private exponent (private keys only) | |
StrLabel | RSA-PSS/OAEP StrLabel value | |
SaltSize | RSA-PSS/OAEP salt size | |
MGFAlgorithm | RSA-PSS/OAEP MGF algorithm | |
TrailerField | RSA-PSS/OAEP trailer field | |
PublicShare | EdDSA public share | |
SecretShare | EdDSA secret share | |
P | DSA, Elgamal, or DH P value | |
Q | DSA Q value | |
G | DSA, Elgamal, or DH G value | |
X | DSA, Elgamal, or DH X value | |
Y | DSA, Elgamal, or DH Y value | |
PeerY | The other party's DH Y value | |
D | ECDSA D value | |
N | ECDSA N value | |
A | ECDSA A value | |
B | ECDSA B value | |
X | ECDSA X value | |
Y | ECDSA Y value | |
Q | ECDSA Q value | |
QX | ECDSA QX value | |
QY | ECDSA QY value | |
Base | ECDSA Base value | |
P | ECDSA P value | |
CurveOID | Curve object identifier | |
Curve | The human-readable name of the EC curve, or dotted object identifier if not known | |
CurveOID | Curve object identifier | |
CurveOID | Curve object identifier | |
CurveOID | Curve object identifier | |
CurveOID | Curve object identifier | |
IV | The symmetric key initialization vector | |
Nonce | The HMAC key nonce |
import_bytes Method
Loads a key from a byte array.
Syntax
def import_bytes(value: bytes, format: int, key_algorithm: str, scheme: str, scheme_params: str, key_type: int, password: str) -> None: ...
Remarks
Use this method to load a key, either public or secret, from a byte array.
kffUnknown | 0 | The key format was not recognized as one of the known formats. |
kffAuto | 1 | The default format in current circumstances. This depends on the key being loaded or saved. |
kffDER | 2 | DER (binary) format |
kffPEM | 3 | PEM format (base64-encoded with headers) |
kffJSON | 4 | JSON key format |
ktAuto | 0 | The default key type in current circumstances. This depends on the operation, the file content, and the storage type. |
ktPublic | 1 | The operation should be performed on a public key. |
ktSecret | 2 | The operation should be performed on a private or secret key |
Mgr.ImportBytes(ThirtyTwoKeyBytes, kffDER, "AES256", "", "", ktSecret)
import_from_cert Method
Loads a key from a certificate.
Syntax
def import_from_cert() -> None: ...
Remarks
Use this method to load a key, either public or secret, from a certificate.
import_from_file Method
Loads a key from a file.
Syntax
def import_from_file(file_name: str, format: int, key_algorithm: str, scheme: str, scheme_params: str, key_type: int, password: str) -> None: ...
Remarks
Use this method to load a key, either public or secret, from a file.
kffUnknown | 0 | The key format was not recognized as one of the known formats. |
kffAuto | 1 | The default format in current circumstances. This depends on the key being loaded or saved. |
kffDER | 2 | DER (binary) format |
kffPEM | 3 | PEM format (base64-encoded with headers) |
kffJSON | 4 | JSON key format |
ktAuto | 0 | The default key type in current circumstances. This depends on the operation, the file content, and the storage type. |
ktPublic | 1 | The operation should be performed on a public key. |
ktSecret | 2 | The operation should be performed on a private or secret key |
reset Method
Resets the class settings.
Syntax
def reset() -> None: ...
Remarks
reset is a generic method available in every class.
set_key_param Method
Sets an algorithm-specific key parameter.
Syntax
def set_key_param(name: str, value: bytes) -> None: ...
Remarks
Use this method to set an algorithm-specific key parameter.
The following parameters are currently supported:
PublicShare | EdDSA public share | |
SecretShare | EdDSA secret share | |
P | DSA, Elgamal, or DH P value | |
Q | DSA Q value | |
G | DSA, Elgamal, or DH G value | |
X | DSA, Elgamal, or DH X value | |
Y | DSA, Elgamal, or DH Y value | |
PeerY | The other party's DH Y value | |
D | ECDSA D value | |
N | ECDSA N value | |
A | ECDSA A value | |
B | ECDSA B value | |
X | ECDSA X value | |
Y | ECDSA Y value | |
Q | ECDSA Q value | |
QX | ECDSA QX value | |
QY | ECDSA QY value | |
Base | ECDSA Base value | |
P | ECDSA P value | |
CurveOID | Curve object identifier | |
IV | The symmetric key initialization vector | |
Nonce | The HMAC key nonce |
set_key_param_str Method
Sets a string-based algorithm-specific key parameter.
Syntax
def set_key_param_str(name: str, value_str: str) -> None: ...
Remarks
Use this method to set a string-based algorithm-specific key parameter.
CNGKeyHandle | The CryptoAPI key handle. | |
StrLabel | RSA-PSS/OAEP StrLabel value | |
SaltSize | RSA-PSS/OAEP salt size | |
MGFAlgorithm | RSA-PSS/OAEP MGF algorithm | |
TrailerField | RSA-PSS/OAEP trailer field | |
PublicShare | EdDSA public share | |
SecretShare | EdDSA secret share | |
P | DSA, Elgamal, or DH P value | |
Q | DSA Q value | |
G | DSA, Elgamal, or DH G value | |
X | DSA, Elgamal, or DH X value | |
Y | DSA, Elgamal, or DH Y value | |
PeerY | The other party's DH Y value | |
D | ECDSA D value | |
N | ECDSA N value | |
A | ECDSA A value | |
B | ECDSA B value | |
X | ECDSA X value | |
Y | ECDSA Y value | |
Q | ECDSA Q value | |
QX | ECDSA QX value | |
QY | ECDSA QY value | |
Base | ECDSA Base value | |
P | ECDSA P value | |
CurveOID | Curve object identifier | |
Curve | The human-readable name of the EC curve, or dotted object identifier if not known | |
CurveOID | Curve object identifier | |
CurveOID | Curve object identifier | |
CurveOID | Curve object identifier | |
CurveOID | Curve object identifier | |
IV | The symmetric key initialization vector | |
Nonce | The HMAC key nonce |
on_error Event
Informs about an error during an operation.
Syntax
class CryptoKeyManagerErrorEventParams(object): @property def error_code() -> int: ... @property def description() -> str: ... # In class CryptoKeyManager: @property def on_error() -> Callable[[CryptoKeyManagerErrorEventParams], None]: ... @on_error.setter def on_error(event_hook: Callable[[CryptoKeyManagerErrorEventParams], None]) -> None: ...
Remarks
The event is fired when an error happens in the middle of the class's work.
ErrorCode contains an error code and Description contains a textual description of the error.
on_notification Event
This event notifies the application about an underlying control flow event.
Syntax
class CryptoKeyManagerNotificationEventParams(object): @property def event_id() -> str: ... @property def event_param() -> str: ... # In class CryptoKeyManager: @property def on_notification() -> Callable[[CryptoKeyManagerNotificationEventParams], None]: ... @on_notification.setter def on_notification(event_hook: Callable[[CryptoKeyManagerNotificationEventParams], None]) -> None: ...
Remarks
The class fires this event to let the application know about some event, occurrence, or milestone in the class. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.
The unique identifier of the event is provided in the EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the class, the exact action it is performing, or the document being processed, one or both may be omitted.
on_password_needed Event
This event is fired when a decryption password is needed.
Syntax
class CryptoKeyManagerPasswordNeededEventParams(object): @property def needed_for() -> str: ... @property def password() -> str: ... @password.setter def password(value) -> None: ... @property def cancel() -> bool: ... @cancel.setter def cancel(value) -> None: ... # In class CryptoKeyManager: @property def on_password_needed() -> Callable[[CryptoKeyManagerPasswordNeededEventParams], None]: ... @on_password_needed.setter def on_password_needed(event_hook: Callable[[CryptoKeyManagerPasswordNeededEventParams], None]) -> None: ...
Remarks
The class fires this event when a password is needed to decrypt a certificate or a private key.
In the handler of this event, assign the password to the Password parameter, or set Cancel to true to abort the operation.
The NeededFor parameter identifies the certificate for which the password is requested.
CryptoKeyManager Config Settings
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.CryptoKeyManager Config Settings
The following values are supported: PKCS5 (the default setting), BCrypt, SCrypt, Argon2d, Argon2i, Argon2id.
Use normal hash algorithm constants with this property: SHA1, SHA224, SHA256, SHA384, SHA512, RIPEMD.
Base Config Settings
You can switch this property off to improve performance if your project only uses known, good private keys.
Supported values are:
off | No caching (default) | |
local | Local caching | |
global | Global caching |
This setting only applies to sessions negotiated with TLS version 1.3.
Supported values are:
file | File | |
console | Console | |
systemlog | System Log (supported for Android only) | |
debugger | Debugger (supported for VCL for Windows and .Net) |
Supported values are:
time | Current time | |
level | Level | |
package | Package name | |
module | Module name | |
class | Class name | |
method | Method name | |
threadid | Thread Id | |
contenttype | Content type | |
content | Content | |
all | All details |
Supported filter names are:
exclude-package | Exclude a package specified in the value | |
exclude-module | Exclude a module specified in the value | |
exclude-class | Exclude a class specified in the value | |
exclude-method | Exclude a method specified in the value | |
include-package | Include a package specified in the value | |
include-module | Include a module specified in the value | |
include-class | Include a class specified in the value | |
include-method | Include a method specified in the value |
none | No flush (caching only) | |
immediate | Immediate flush (real-time logging) | |
maxcount | Flush cached entries upon reaching LogMaxEventCount entries in the cache. |
Supported values are:
none | None (by default) | |
fatal | Severe errors that cause premature termination. | |
error | Other runtime errors or unexpected conditions. | |
warning | Use of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong". | |
info | Interesting runtime events (startup/shutdown). | |
debug | Detailed information on flow of through the system. | |
trace | More detailed information. |
The default value of this setting is 100.
none | No rotation | |
deleteolder | Delete older entries from the cache upon reaching LogMaxEventCount | |
keepolder | Keep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded) |
Supported Values:
certificate | Enables caching of certificates. |
crl | Enables caching of Certificate Revocation Lists (CRLs). |
ocsp | Enables caching of OCSP (Online Certificate Status Protocol) responses. |
Example (default value):
PKICache=certificate,crl,ocsp
In this example, the component caches certificates, CRLs, and OCSP responses.
The default value is an empty string - no cached PKI data is stored on disk.
Example:
PKICachePath=C:\Temp\cache
In this example, the cached PKI data is stored in the C:\Temp\cache directory.
Supported values are:
none | No static DNS rules (default) | |
local | Local static DNS rules | |
global | Global static DNS rules |
This setting only applies to certificates originating from a Windows system store.
The property accepts comma-separated values where the first descriptor name is used when the OID is mapped, and subsequent values act as aliases for parsing.
Syntax:
Config("XMLRDNDescriptorName[OID]=PrimaryName,Alias1,Alias2");
Where:
OID: The Object Identifier from the certificate's IssuerRDN or SubjectRDN that you want to map.
PrimaryName: The main descriptor name used in the XML signature when the OID is encountered.
Alias1, Alias2, ...: Optional alternative names recognized during parsing.
Usage Examples:
Map OID 2.5.4.5 to SERIALNUMBER:
Config("XMLRDNDescriptorName[2.5.4.5]=SERIALNUMBER");
Map OID 1.2.840.113549.1.9.1 to E, with aliases EMAIL and EMAILADDRESS:
Config("XMLRDNDescriptorName[1.2.840.113549.1.9.1]=E,EMAIL,EMAILADDRESS");
CryptoKeyManager Errors
CryptoKeyManager Errors
1048577 | Invalid parameter (SB_ERROR_INVALID_PARAMETER) |
1048578 | Invalid configuration (SB_ERROR_INVALID_SETUP) |
1048579 | Invalid state (SB_ERROR_INVALID_STATE) |
1048580 | Invalid value (SB_ERROR_INVALID_VALUE) |
1048581 | Private key not found (SB_ERROR_NO_PRIVATE_KEY) |
1048582 | Cancelled by the user (SB_ERROR_CANCELLED_BY_USER) |
1048583 | The file was not found (SB_ERROR_NO_SUCH_FILE) |
1048584 | Unsupported feature or operation (SB_ERROR_UNSUPPORTED_FEATURE) |
1048585 | General error (SB_ERROR_GENERAL_ERROR) |