MessageDecryptor Class
Properties Methods Events Config Settings Errors
The MessageDecryptor class decrypts data that is stored in the PKCS#7 format.
Syntax
class secureblackbox.MessageDecryptor
Remarks
PKCS#7 (Public Key Cryptography Standard #7) is a common format used to store encrypted and signed data. It is used by a variety of protocols, including S/MIME and CMS.
MessageDecryptor is capable of decrypting encrypted PKCS#7 data stored in EnvelopedData (asymmetric encryption) and EncryptedData (symmetric encryption) subformats. RSA and ECDH key wrapping and all popular symmetric encryption algorithms are supported.
Setting up and using MessageDecryptor is easy:
- Set up your source and destination via input_file (input_bytes) and output_file (output_bytes) properties.
- For certificate-based (asymmetric) encryption, put the decryption certificate (with its private key included) to the certificates collection.
- For key-based (symmetric) encryption, assign the symmetric key to key property. Note: you can find out whether asymmetric or symmetric encryption was used on the input message using the check_encryption_type method.
- Call decrypt to execute the operation.
Note that MessageDecryptor only works with binary PKCS#7-compliant encrypted messages. For processing encrypted S/MIME emails, see MailReader. For decrypting PGP messages, see PGPReader. For raw symmetric encryption, see SymmetricCrypto. For processing XML-ENC messages, see XMLDecryptor.
MessageDecryptor decryptor = new MessageDecryptor();
// Select the file which contains the message that will be decrypted
decryptor.setInputFile("encryptedMessage.bin");
// Select the file where the decrypted message will be written
decryptor.setOutputFile("decryptedMessage.txt");
// Providing the certificate with its private key to decrypt data
CertificateList certificateList = new CertificateList();
certificateList.add(new Certificate("cert.pfx","password"));
decryptor.setCertificates(certificateList);
decryptor.decrypt(); // Decrypt
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
certificate_index | The index of certificate that was used to decrypt the message. |
cert_count | The number of records in the Cert arrays. |
cert_bytes | Returns the raw certificate data in DER format. |
cert_handle | Allows to get or set a 'handle', a unique identifier of the underlying property object. |
encryption_algorithm | The symmetric cipher that was used to encrypt the data. |
encryption_type | Specifies the kind of encrypted message to create. |
external_crypto_async_document_id | Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls. |
external_crypto_custom_params | Custom parameters to be passed to the signing service (uninterpreted). |
external_crypto_data | Additional data to be included in the async state and mirrored back by the requestor. |
external_crypto_external_hash_calculation | Specifies whether the message hash is to be calculated at the external endpoint. |
external_crypto_hash_algorithm | Specifies the request's signature hash algorithm. |
external_crypto_key_id | The ID of the pre-shared key used for DC request authentication. |
external_crypto_key_secret | The pre-shared key used for DC request authentication. |
external_crypto_method | Specifies the asynchronous signing method. |
external_crypto_mode | Specifies the external cryptography mode. |
external_crypto_public_key_algorithm | Provide the public key algorithm here if the certificate is not available on the pre-signing stage. |
fips_mode | Reserved. |
input_bytes | Use this property to pass the input to class in byte array form. |
input_file | Path to the file containing the encrypted message. |
key | The symmetric key to use for decryption. |
output_bytes | Use this property to read the output the class object has produced. |
output_file | Path to the file to save the decrypted data to. |
signed_attribute_count | The number of records in the SignedAttribute arrays. |
signed_attribute_oid | The object identifier of the attribute. |
signed_attribute_value | The value of the attribute. |
unsigned_attribute_count | The number of records in the UnsignedAttribute arrays. |
unsigned_attribute_oid | The object identifier of the attribute. |
unsigned_attribute_value | The value of the attribute. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
check_encryption_type | Determines the type of encrypted message in the supplied file. |
config | Sets or retrieves a configuration setting. |
decrypt | Attempts to decrypt an encrypted PKCS#7 message. |
do_action | Performs an additional action. |
reset | Resets the class settings. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
on_error | Information about errors during PKCS#7 message decryption. |
on_external_decrypt | Handles remote or external decryption. |
on_notification | This event notifies the application about an underlying control flow event. |
on_recipient_found | Fires to report a message addressee parameters. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
NoOuterContentInfo | Whether the message has outer content. |
OAEPHashAlgorithm | Hash algorithm to be used in RSA-OAEP. |
TempPath | Path for storing temporary files. |
ASN1UseGlobalTagCache | Controls whether ASN.1 module should use a global object cache. |
AssignSystemSmartCardPins | Specifies whether CSP-level PINs should be assigned to CNG keys. |
CheckKeyIntegrityBeforeUse | Enables or disable private key integrity check before use. |
CookieCaching | Specifies whether a cookie cache should be used for HTTP(S) transports. |
Cookies | Gets or sets local cookies for the class. |
DefDeriveKeyIterations | Specifies the default key derivation algorithm iteration count. |
DNSLocalSuffix | The suffix to assign for TLD names. |
EnableClientSideSSLFFDHE | Enables or disables finite field DHE key exchange support in TLS clients. |
GlobalCookies | Gets or sets global cookies for all the HTTP transports. |
HardwareCryptoUsePolicy | The hardware crypto usage policy. |
HttpUserAgent | Specifies the user agent name to be used by all HTTP clients. |
HttpVersion | The HTTP version to use in any inner HTTP client classes created. |
IgnoreExpiredMSCTLSigningCert | Whether to tolerate the expired Windows Update signing certificate. |
ListDelimiter | The delimiter character for multi-element lists. |
LogDestination | Specifies the debug log destination. |
LogDetails | Specifies the debug log details to dump. |
LogFile | Specifies the debug log filename. |
LogFilters | Specifies the debug log filters. |
LogFlushMode | Specifies the log flush mode. |
LogLevel | Specifies the debug log level. |
LogMaxEventCount | Specifies the maximum number of events to cache before further action is taken. |
LogRotationMode | Specifies the log rotation mode. |
MaxASN1BufferLength | Specifies the maximal allowed length for ASN.1 primitive tag data. |
MaxASN1TreeDepth | Specifies the maximal depth for processed ASN.1 trees. |
OCSPHashAlgorithm | Specifies the hash algorithm to be used to identify certificates in OCSP requests. |
OldClientSideRSAFallback | Specifies whether the SSH client should use a SHA1 fallback. |
PKICache | Specifies which PKI elements (certificates, CRLs, OCSP responses) should be cached. |
PKICachePath | Specifies the file system path where cached PKI data is stored. |
ProductVersion | Returns the version of the SecureBlackbox library. |
ServerSSLDHKeyLength | Sets the size of the TLS DHE key exchange group. |
StaticDNS | Specifies whether static DNS rules should be used. |
StaticIPAddress[domain] | Gets or sets an IP address for the specified domain name. |
StaticIPAddresses | Gets or sets all the static DNS rules. |
Tag | Allows to store any custom data. |
TLSSessionGroup | Specifies the group name of TLS sessions to be used for session resumption. |
TLSSessionLifetime | Specifies lifetime in seconds of the cached TLS session. |
TLSSessionPurgeInterval | Specifies how often the session cache should remove the expired TLS sessions. |
UseCRLObjectCaching | Specifies whether reuse of loaded CRL objects is enabled. |
UseInternalRandom | Switches between SecureBlackbox-own and platform PRNGs. |
UseLegacyAdESValidation | Enables legacy AdES validation mode. |
UseOCSPResponseObjectCaching | Specifies whether reuse of loaded OCSP response objects is enabled. |
UseOwnDNSResolver | Specifies whether the client classes should use own DNS resolver. |
UseSharedSystemStorages | Specifies whether the validation engine should use a global per-process copy of the system certificate stores. |
UseSystemNativeSizeCalculation | An internal CryptoAPI access tweak. |
UseSystemOAEPAndPSS | Enforces or disables the use of system-driven RSA OAEP and PSS computations. |
UseSystemRandom | Enables or disables the use of the OS PRNG. |
XMLRDNDescriptorName[OID] | Defines an OID mapping to descriptor names for the certificate's IssuerRDN or SubjectRDN. |
XMLRDNDescriptorPriority[OID] | Specifies the priority of descriptor names associated with a specific OID. |
XMLRDNDescriptorReverseOrder | Specifies whether to reverse the order of descriptors in RDN. |
XMLRDNDescriptorSeparator | Specifies the separator used between descriptors in RDN. |
certificate_index Property
The index of certificate that was used to decrypt the message.
Syntax
def get_certificate_index() -> int: ...
certificate_index = property(get_certificate_index, None)
Default Value
-1
Remarks
This property contains the index of certificate (one of those residing in certificates collection) that was used to decrypt the message.
This property is read-only.
cert_count Property
The number of records in the Cert arrays.
Syntax
def get_cert_count() -> int: ... def set_cert_count(value: int) -> None: ...
cert_count = property(get_cert_count, set_cert_count)
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at cert_count - 1.
cert_bytes Property
Returns the raw certificate data in DER format.
Syntax
def get_cert_bytes(cert_index: int) -> bytes: ...
Remarks
Returns the raw certificate data in DER format.
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
This property is read-only.
cert_handle Property
Allows to get or set a 'handle', a unique identifier of the underlying property object.
Syntax
def get_cert_handle(cert_index: int) -> int: ... def set_cert_handle(cert_index: int, value: int) -> None: ...
Default Value
0
Remarks
Allows to get or set a 'handle', a unique identifier of the underlying property object. Use this property to assign objects of the same type in a quicker manner, without copying them fieldwise.
When you pass a handle of one object to another, the source object is copied to the destination rather than assigned. It is safe to get rid of the original object after such operation.
pdfSigner.setSigningCertHandle(certMgr.getCertHandle());
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
encryption_algorithm Property
The symmetric cipher that was used to encrypt the data.
Syntax
def get_encryption_algorithm() -> str: ...
encryption_algorithm = property(get_encryption_algorithm, None)
Default Value
""
Remarks
This property contains the symmetric algorithm that the creator had used to encrypt the message.
This property is read-only.
encryption_type Property
Specifies the kind of encrypted message to create.
Syntax
def get_encryption_type() -> int: ...
encryption_type = property(get_encryption_type, None)
Possible Values
0 # Unknown
1 # CertEncrypted
2 # KeyEncrypted
3 # CertEncryptedAndAuthenticated
Default Value
0
Remarks
Possible values:
metUnknown | 0 | Unknown or unsupported encryption type |
metCertEncrypted | 1 | Certificate-based encryption |
metKeyEncrypted | 2 | Symmetric key-based encryption |
metCertEncryptedAndAuthenticated | 3 | Certificate-based encryption with authentication (AEAD) |
This property is read-only.
external_crypto_async_document_id Property
Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.
Syntax
def get_external_crypto_async_document_id() -> str: ... def set_external_crypto_async_document_id(value: str) -> None: ...
external_crypto_async_document_id = property(get_external_crypto_async_document_id, set_external_crypto_async_document_id)
Default Value
""
Remarks
Specifies an optional document ID for SignAsyncBegin() and SignAsyncEnd() calls.
Use this property when working with multi-signature DCAuth requests and responses to uniquely identify documents signed within a larger batch. On the completion stage, this value helps the signing component identify the correct signature in the returned batch of responses.
If using batched requests, make sure to set this property to the same value on both the pre-signing (SignAsyncBegin) and completion (SignAsyncEnd) stages.
external_crypto_custom_params Property
Custom parameters to be passed to the signing service (uninterpreted).
Syntax
def get_external_crypto_custom_params() -> str: ... def set_external_crypto_custom_params(value: str) -> None: ...
external_crypto_custom_params = property(get_external_crypto_custom_params, set_external_crypto_custom_params)
Default Value
""
Remarks
Custom parameters to be passed to the signing service (uninterpreted).
external_crypto_data Property
Additional data to be included in the async state and mirrored back by the requestor.
Syntax
def get_external_crypto_data() -> str: ... def set_external_crypto_data(value: str) -> None: ...
external_crypto_data = property(get_external_crypto_data, set_external_crypto_data)
Default Value
""
Remarks
Additional data to be included in the async state and mirrored back by the requestor.
external_crypto_external_hash_calculation Property
Specifies whether the message hash is to be calculated at the external endpoint.
Syntax
def get_external_crypto_external_hash_calculation() -> bool: ... def set_external_crypto_external_hash_calculation(value: bool) -> None: ...
external_crypto_external_hash_calculation = property(get_external_crypto_external_hash_calculation, set_external_crypto_external_hash_calculation)
Default Value
FALSE
Remarks
Specifies whether the message hash is to be calculated at the external endpoint. Please note that this mode is not supported by the DCAuth class.
If set to true, the class will pass a few kilobytes of to-be-signed data from the document to the OnExternalSign event. This only applies when SignExternal() is called.
external_crypto_hash_algorithm Property
Specifies the request's signature hash algorithm.
Syntax
def get_external_crypto_hash_algorithm() -> str: ... def set_external_crypto_hash_algorithm(value: str) -> None: ...
external_crypto_hash_algorithm = property(get_external_crypto_hash_algorithm, set_external_crypto_hash_algorithm)
Default Value
"SHA256"
Remarks
Specifies the request's signature hash algorithm.
SB_HASH_ALGORITHM_SHA1 | SHA1 | |
SB_HASH_ALGORITHM_SHA224 | SHA224 | |
SB_HASH_ALGORITHM_SHA256 | SHA256 | |
SB_HASH_ALGORITHM_SHA384 | SHA384 | |
SB_HASH_ALGORITHM_SHA512 | SHA512 | |
SB_HASH_ALGORITHM_MD2 | MD2 | |
SB_HASH_ALGORITHM_MD4 | MD4 | |
SB_HASH_ALGORITHM_MD5 | MD5 | |
SB_HASH_ALGORITHM_RIPEMD160 | RIPEMD160 | |
SB_HASH_ALGORITHM_CRC32 | CRC32 | |
SB_HASH_ALGORITHM_SSL3 | SSL3 | |
SB_HASH_ALGORITHM_GOST_R3411_1994 | GOST1994 | |
SB_HASH_ALGORITHM_WHIRLPOOL | WHIRLPOOL | |
SB_HASH_ALGORITHM_POLY1305 | POLY1305 | |
SB_HASH_ALGORITHM_SHA3_224 | SHA3_224 | |
SB_HASH_ALGORITHM_SHA3_256 | SHA3_256 | |
SB_HASH_ALGORITHM_SHA3_384 | SHA3_384 | |
SB_HASH_ALGORITHM_SHA3_512 | SHA3_512 | |
SB_HASH_ALGORITHM_BLAKE2S_128 | BLAKE2S_128 | |
SB_HASH_ALGORITHM_BLAKE2S_160 | BLAKE2S_160 | |
SB_HASH_ALGORITHM_BLAKE2S_224 | BLAKE2S_224 | |
SB_HASH_ALGORITHM_BLAKE2S_256 | BLAKE2S_256 | |
SB_HASH_ALGORITHM_BLAKE2B_160 | BLAKE2B_160 | |
SB_HASH_ALGORITHM_BLAKE2B_256 | BLAKE2B_256 | |
SB_HASH_ALGORITHM_BLAKE2B_384 | BLAKE2B_384 | |
SB_HASH_ALGORITHM_BLAKE2B_512 | BLAKE2B_512 | |
SB_HASH_ALGORITHM_SHAKE_128 | SHAKE_128 | |
SB_HASH_ALGORITHM_SHAKE_256 | SHAKE_256 | |
SB_HASH_ALGORITHM_SHAKE_128_LEN | SHAKE_128_LEN | |
SB_HASH_ALGORITHM_SHAKE_256_LEN | SHAKE_256_LEN |
external_crypto_key_id Property
The ID of the pre-shared key used for DC request authentication.
Syntax
def get_external_crypto_key_id() -> str: ... def set_external_crypto_key_id(value: str) -> None: ...
external_crypto_key_id = property(get_external_crypto_key_id, set_external_crypto_key_id)
Default Value
""
Remarks
The ID of the pre-shared key used for DC request authentication.
Asynchronous DCAuth-driven communication requires that parties authenticate each other with a secret pre-shared cryptographic key. This provides an extra protection layer for the protocol and diminishes the risk of the private key becoming abused by foreign parties. Use this property to provide the pre-shared key identifier, and use external_crypto_key_secret to pass the key itself.
The same KeyID/KeySecret pair should be used on the DCAuth side for the signing requests to be accepted.
Note: The KeyID/KeySecret scheme is very similar to the AuthKey scheme used in various Cloud service providers to authenticate users.
Example:
signer.ExternalCrypto.KeyID = "MainSigningKey";
signer.ExternalCrypto.KeySecret = "abcdef0123456789";
external_crypto_key_secret Property
The pre-shared key used for DC request authentication.
Syntax
def get_external_crypto_key_secret() -> str: ... def set_external_crypto_key_secret(value: str) -> None: ...
external_crypto_key_secret = property(get_external_crypto_key_secret, set_external_crypto_key_secret)
Default Value
""
Remarks
The pre-shared key used for DC request authentication. This key must be set and match the key used by the DCAuth counterpart for the scheme to work.
Read more about configuring authentication in the external_crypto_key_id topic.
external_crypto_method Property
Specifies the asynchronous signing method.
Syntax
def get_external_crypto_method() -> int: ... def set_external_crypto_method(value: int) -> None: ...
external_crypto_method = property(get_external_crypto_method, set_external_crypto_method)
Possible Values
0 # PKCS1
1 # PKCS7
Default Value
0
Remarks
Specifies the asynchronous signing method. This is typically defined by the DC server capabilities and setup.
Available options:
asmdPKCS1 | 0 |
asmdPKCS7 | 1 |
external_crypto_mode Property
Specifies the external cryptography mode.
Syntax
def get_external_crypto_mode() -> int: ... def set_external_crypto_mode(value: int) -> None: ...
external_crypto_mode = property(get_external_crypto_mode, set_external_crypto_mode)
Possible Values
0 # Default
1 # Disabled
2 # Generic
3 # DCAuth
4 # DCAuthJSON
Default Value
0
Remarks
Specifies the external cryptography mode.
Available options:
ecmDefault | The default value (0) |
ecmDisabled | Do not use DC or external signing (1) |
ecmGeneric | Generic external signing with the OnExternalSign event (2) |
ecmDCAuth | DCAuth signing (3) |
ecmDCAuthJSON | DCAuth signing in JSON format (4) |
external_crypto_public_key_algorithm Property
Provide the public key algorithm here if the certificate is not available on the pre-signing stage.
Syntax
def get_external_crypto_public_key_algorithm() -> str: ... def set_external_crypto_public_key_algorithm(value: str) -> None: ...
external_crypto_public_key_algorithm = property(get_external_crypto_public_key_algorithm, set_external_crypto_public_key_algorithm)
Default Value
""
Remarks
Provide the public key algorithm here if the certificate is not available on the pre-signing stage.
SB_CERT_ALGORITHM_ID_RSA_ENCRYPTION | rsaEncryption | |
SB_CERT_ALGORITHM_MD2_RSA_ENCRYPTION | md2withRSAEncryption | |
SB_CERT_ALGORITHM_MD5_RSA_ENCRYPTION | md5withRSAEncryption | |
SB_CERT_ALGORITHM_SHA1_RSA_ENCRYPTION | sha1withRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA | id-dsa | |
SB_CERT_ALGORITHM_ID_DSA_SHA1 | id-dsa-with-sha1 | |
SB_CERT_ALGORITHM_DH_PUBLIC | dhpublicnumber | |
SB_CERT_ALGORITHM_SHA224_RSA_ENCRYPTION | sha224WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA256_RSA_ENCRYPTION | sha256WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA384_RSA_ENCRYPTION | sha384WithRSAEncryption | |
SB_CERT_ALGORITHM_SHA512_RSA_ENCRYPTION | sha512WithRSAEncryption | |
SB_CERT_ALGORITHM_ID_RSAPSS | id-RSASSA-PSS | |
SB_CERT_ALGORITHM_ID_RSAOAEP | id-RSAES-OAEP | |
SB_CERT_ALGORITHM_RSASIGNATURE_RIPEMD160 | ripemd160withRSA | |
SB_CERT_ALGORITHM_ID_ELGAMAL | elGamal | |
SB_CERT_ALGORITHM_SHA1_ECDSA | ecdsa-with-SHA1 | |
SB_CERT_ALGORITHM_RECOMMENDED_ECDSA | ecdsa-recommended | |
SB_CERT_ALGORITHM_SHA224_ECDSA | ecdsa-with-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA | ecdsa-with-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA | ecdsa-with-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA | ecdsa-with-SHA512 | |
SB_CERT_ALGORITHM_EC | id-ecPublicKey | |
SB_CERT_ALGORITHM_SPECIFIED_ECDSA | ecdsa-specified | |
SB_CERT_ALGORITHM_GOST_R3410_1994 | id-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3410_2001 | id-GostR3410-2001 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_1994 | id-GostR3411-94-with-GostR3410-94 | |
SB_CERT_ALGORITHM_GOST_R3411_WITH_R3410_2001 | id-GostR3411-94-with-GostR3410-2001 | |
SB_CERT_ALGORITHM_SHA1_ECDSA_PLAIN | ecdsa-plain-SHA1 | |
SB_CERT_ALGORITHM_SHA224_ECDSA_PLAIN | ecdsa-plain-SHA224 | |
SB_CERT_ALGORITHM_SHA256_ECDSA_PLAIN | ecdsa-plain-SHA256 | |
SB_CERT_ALGORITHM_SHA384_ECDSA_PLAIN | ecdsa-plain-SHA384 | |
SB_CERT_ALGORITHM_SHA512_ECDSA_PLAIN | ecdsa-plain-SHA512 | |
SB_CERT_ALGORITHM_RIPEMD160_ECDSA_PLAIN | ecdsa-plain-RIPEMD160 | |
SB_CERT_ALGORITHM_WHIRLPOOL_RSA_ENCRYPTION | whirlpoolWithRSAEncryption | |
SB_CERT_ALGORITHM_ID_DSA_SHA224 | id-dsa-with-sha224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA256 | id-dsa-with-sha256 | |
SB_CERT_ALGORITHM_SHA3_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA | id-ecdsa-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA | id-ecdsa-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA | id-ecdsa-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA | id-ecdsa-with-sha3-512 | |
SB_CERT_ALGORITHM_SHA3_224_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-224 | |
SB_CERT_ALGORITHM_SHA3_256_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-256 | |
SB_CERT_ALGORITHM_SHA3_384_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-384 | |
SB_CERT_ALGORITHM_SHA3_512_ECDSA_PLAIN | id-ecdsa-plain-with-sha3-512 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_224 | id-dsa-with-sha3-224 | |
SB_CERT_ALGORITHM_ID_DSA_SHA3_256 | id-dsa-with-sha3-256 | |
SB_CERT_ALGORITHM_BLAKE2S_128_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_RSA_ENCRYPTION | id-rsassa-pkcs1-v1_5-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA | id-ecdsa-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA | id-ecdsa-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA | id-ecdsa-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA | id-ecdsa-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA | id-ecdsa-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA | id-ecdsa-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA | id-ecdsa-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA | id-ecdsa-with-blake2b512 | |
SB_CERT_ALGORITHM_BLAKE2S_128_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s128 | |
SB_CERT_ALGORITHM_BLAKE2S_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s160 | |
SB_CERT_ALGORITHM_BLAKE2S_224_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s224 | |
SB_CERT_ALGORITHM_BLAKE2S_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2s256 | |
SB_CERT_ALGORITHM_BLAKE2B_160_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b160 | |
SB_CERT_ALGORITHM_BLAKE2B_256_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b256 | |
SB_CERT_ALGORITHM_BLAKE2B_384_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b384 | |
SB_CERT_ALGORITHM_BLAKE2B_512_ECDSA_PLAIN | id-ecdsa-plain-with-blake2b512 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_224 | id-dsa-with-blake2s224 | |
SB_CERT_ALGORITHM_ID_DSA_BLAKE2S_256 | id-dsa-with-blake2s256 | |
SB_CERT_ALGORITHM_EDDSA_ED25519 | id-Ed25519 | |
SB_CERT_ALGORITHM_EDDSA_ED448 | id-Ed448 | |
SB_CERT_ALGORITHM_EDDSA_ED25519_PH | id-Ed25519ph | |
SB_CERT_ALGORITHM_EDDSA_ED448_PH | id-Ed448ph | |
SB_CERT_ALGORITHM_EDDSA | id-EdDSA | |
SB_CERT_ALGORITHM_EDDSA_SIGNATURE | id-EdDSA-sig |
fips_mode Property
Reserved.
Syntax
def get_fips_mode() -> bool: ... def set_fips_mode(value: bool) -> None: ...
fips_mode = property(get_fips_mode, set_fips_mode)
Default Value
FALSE
Remarks
This property is reserved for future use.
input_bytes Property
Use this property to pass the input to class in byte array form.
Syntax
def get_input_bytes() -> bytes: ... def set_input_bytes(value: bytes) -> None: ...
input_bytes = property(get_input_bytes, set_input_bytes)
Remarks
Assign a byte array containing the data to be processed to this property.
input_file Property
Path to the file containing the encrypted message.
Syntax
def get_input_file() -> str: ... def set_input_file(value: str) -> None: ...
input_file = property(get_input_file, set_input_file)
Default Value
""
Remarks
Use this property to provide a file containing the encrypted data.
key Property
The symmetric key to use for decryption.
Syntax
def get_key() -> bytes: ... def set_key(value: bytes) -> None: ...
key = property(get_key, set_key)
Remarks
Use this property to provide the symmetric key to decrypt the data. This property is only applicable for processing data of EncryptedData subtype.
Assign this property before calling decrypt.
output_bytes Property
Use this property to read the output the class object has produced.
Syntax
def get_output_bytes() -> bytes: ...
output_bytes = property(get_output_bytes, None)
Remarks
Read the contents of this property after the operation has completed to read the produced output. This property will only be set if the output_file and output_stream properties had not been assigned.
This property is read-only.
output_file Property
Path to the file to save the decrypted data to.
Syntax
def get_output_file() -> str: ... def set_output_file(value: str) -> None: ...
output_file = property(get_output_file, set_output_file)
Default Value
""
Remarks
Use this property to specify the output file where the decrypted message should be saved.
signed_attribute_count Property
The number of records in the SignedAttribute arrays.
Syntax
def get_signed_attribute_count() -> int: ...
signed_attribute_count = property(get_signed_attribute_count, None)
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at signed_attribute_count - 1.
This property is read-only.
signed_attribute_oid Property
The object identifier of the attribute.
Syntax
def get_signed_attribute_oid(signed_attribute_index: int) -> str: ...
Default Value
""
Remarks
The object identifier of the attribute.
The signed_attribute_index parameter specifies the index of the item in the array. The size of the array is controlled by the signed_attribute_count property.
This property is read-only.
signed_attribute_value Property
The value of the attribute.
Syntax
def get_signed_attribute_value(signed_attribute_index: int) -> bytes: ...
Remarks
The value of the attribute.
The signed_attribute_index parameter specifies the index of the item in the array. The size of the array is controlled by the signed_attribute_count property.
This property is read-only.
unsigned_attribute_count Property
The number of records in the UnsignedAttribute arrays.
Syntax
def get_unsigned_attribute_count() -> int: ...
unsigned_attribute_count = property(get_unsigned_attribute_count, None)
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at unsigned_attribute_count - 1.
This property is read-only.
unsigned_attribute_oid Property
The object identifier of the attribute.
Syntax
def get_unsigned_attribute_oid(unsigned_attribute_index: int) -> str: ...
Default Value
""
Remarks
The object identifier of the attribute.
The unsigned_attribute_index parameter specifies the index of the item in the array. The size of the array is controlled by the unsigned_attribute_count property.
This property is read-only.
unsigned_attribute_value Property
The value of the attribute.
Syntax
def get_unsigned_attribute_value(unsigned_attribute_index: int) -> bytes: ...
Remarks
The value of the attribute.
The unsigned_attribute_index parameter specifies the index of the item in the array. The size of the array is controlled by the unsigned_attribute_count property.
This property is read-only.
check_encryption_type Method
Determines the type of encrypted message in the supplied file.
Syntax
def check_encryption_type() -> int: ...
Remarks
Use this method to determine the kind of the signature stored in input_file (input_stream).
metUnknown | 0 | Unknown or unsupported encryption type |
metCertEncrypted | 1 | Certificate-based encryption |
metKeyEncrypted | 2 | Symmetric key-based encryption |
metCertEncryptedAndAuthenticated | 3 | Certificate-based encryption with authentication (AEAD) |
config Method
Sets or retrieves a configuration setting.
Syntax
def config(configuration_string: str) -> str: ...
Remarks
config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
decrypt Method
Attempts to decrypt an encrypted PKCS#7 message.
Syntax
def decrypt() -> None: ...
Remarks
Call this method to attempt to decrypt the PKCS#7 encrypted data. This call supports EnvelopedData and EncryptedData subtypes on input.
Use input_file or input_stream property to provide the data, and either certificates or key to supply the decryption key material.
When processing enveloped data, the class may fire on_recipient_found event to report recipient information.
do_action Method
Performs an additional action.
Syntax
def do_action(action_id: str, action_params: str) -> str: ...
Remarks
do_action is a generic method available in every class. It is used to perform an additional action introduced after the product major release. The list of actions is not fixed, and may be flexibly extended over time.
The unique identifier (case insensitive) of the action is provided in the ActionID parameter.
ActionParams contains the value of a single parameter, or a list of multiple parameters for the action in the form of PARAM1=VALUE1;PARAM2=VALUE2;....
Common ActionIDs:
Action | Parameters | Returned value | Description |
ResetTrustedListCache | none | none | Clears the cached list of trusted lists. |
ResetCertificateCache | none | none | Clears the cached certificates. |
ResetCRLCache | none | none | Clears the cached CRLs. |
ResetOCSPResponseCache | none | none | Clears the cached OCSP responses. |
reset Method
Resets the class settings.
Syntax
def reset() -> None: ...
Remarks
reset is a generic method available in every class.
on_error Event
Information about errors during PKCS#7 message decryption.
Syntax
class MessageDecryptorErrorEventParams(object): @property def error_code() -> int: ... @property def description() -> str: ... # In class MessageDecryptor: @property def on_error() -> Callable[[MessageDecryptorErrorEventParams], None]: ... @on_error.setter def on_error(event_hook: Callable[[MessageDecryptorErrorEventParams], None]) -> None: ...
Remarks
The event is fired in case of exceptional conditions during message processing.
ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Messages section.
on_external_decrypt Event
Handles remote or external decryption.
Syntax
class MessageDecryptorExternalDecryptEventParams(object): @property def operation_id() -> str: ... @property def algorithm() -> str: ... @property def pars() -> str: ... @property def encrypted_data() -> str: ... @property def data() -> str: ... @data.setter def data(value) -> None: ... # In class MessageDecryptor: @property def on_external_decrypt() -> Callable[[MessageDecryptorExternalDecryptEventParams], None]: ... @on_external_decrypt.setter def on_external_decrypt(event_hook: Callable[[MessageDecryptorExternalDecryptEventParams], None]) -> None: ...
Remarks
Assign a handler to this event if you need to delegate a low-level decryption operation to an external, remote, or custom decryption engine. The handler receives an encrypted value in the EncryptedData parameter, and is expected to decrypt it and place the decrypted value into the Data parameter.
OperationId provides a comment about the operation and its origin. It depends on the exact class being used, and may be empty. Algorithm specifies the encryption algorithm being used, and Pars contains algorithm-dependent parameters.
The class uses base16 (hex) encoding for the EncryptedData, Data, and Pars parameters. If your decryption engine uses a different input and output encoding, you may need to decode and/or encode the data before and/or after the decryption.
Sample data encoded in base16: a0dee2a0382afbb09120ffa7ccd8a152 - lower case base16 A0DEE2A0382AFBB09120FFA7CCD8A152 - upper case base16
on_notification Event
This event notifies the application about an underlying control flow event.
Syntax
class MessageDecryptorNotificationEventParams(object): @property def event_id() -> str: ... @property def event_param() -> str: ... # In class MessageDecryptor: @property def on_notification() -> Callable[[MessageDecryptorNotificationEventParams], None]: ... @on_notification.setter def on_notification(event_hook: Callable[[MessageDecryptorNotificationEventParams], None]) -> None: ...
Remarks
The class fires this event to let the application know about some event, occurrence, or milestone in the class. For example, it may fire to report completion of the document processing. The list of events being reported is not fixed, and may be flexibly extended over time.
The unique identifier of the event is provided in the EventID parameter. EventParam contains any parameters accompanying the occurrence. Depending on the type of the class, the exact action it is performing, or the document being processed, one or both may be omitted.
on_recipient_found Event
Fires to report a message addressee parameters.
Syntax
class MessageDecryptorRecipientFoundEventParams(object): @property def issuer_rdn() -> str: ... @property def serial_number() -> bytes: ... @property def subject_key_id() -> bytes: ... @property def cert_found() -> bool: ... # In class MessageDecryptor: @property def on_recipient_found() -> Callable[[MessageDecryptorRecipientFoundEventParams], None]: ... @on_recipient_found.setter def on_recipient_found(event_hook: Callable[[MessageDecryptorRecipientFoundEventParams], None]) -> None: ...
Remarks
This event is fired for each addressee the message is encrypted for. It may fire several times in a row if the message is encrypted for more than one recipient.
The IssuerRDN, SerialNumber, and SubjectKeyID parameters to identify the recipient's certificate. CertFound indicates if the specified certificate has been located in certificates collection. If it wasn't, you might want to look up the certificate manually, and add it to the collection inside the event handler.
MessageDecryptor Config Settings
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.MessageDecryptor Config Settings
Tells the component whether the message to be decrypted has any outer content.
Defines which hash algorithm should be used in RSA-OAEP scheme.
This setting specifies an absolute path to the location on disk where temporary files are stored. This setting is supported only in the Java edition for all applicable signing components except PDFSigner, where this limitation does not apply.
Base Config Settings
This is a performance setting. It is unlikely that you will ever need to adjust it.
This is a low-level tweak for certain cryptographic providers. It is unlikely that you will ever need to adjust it.
This global property enables or disables private key material check before each signing operation. This slows down performance a bit, but prevents a selection of attacks on RSA keys where keys with unknown origins are used.
You can switch this property off to improve performance if your project only uses known, good private keys.
Set this property to enable or disable cookies caching for the class.
Supported values are:
off | No caching (default) | |
local | Local caching | |
global | Global caching |
Use this property to get cookies from the internal cookie storage of the class and/or restore them back between application sessions.
This global property sets the default number of iterations for all supported key derivation algorithms. Note that you can provide the required number of iterations by using properties of the relevant key generation component; this global setting is used in scenarios where specific iteration count is not or cannot be provided.
Use this global setting to adjust the default suffix to assign to top-level domain names. The default is .local.
This global property enables or disables support for finite field DHE key exchange methods in TLS clients. FF DHE is a slower algorithm if compared to EC DHE; enabling it may result in slower connections.
This setting only applies to sessions negotiated with TLS version 1.3.
Use this property to get cookies from the GLOBAL cookie storage or restore them back between application sessions. These cookies will be used by all the classes that have its CookieCaching property set to "global".
This global setting controls the hardware cryptography usage policy: auto, enable, or disable.
This global setting defines the User-Agent field of the HTTP request provides information about the software that initiates the request. This value will be used by all the HTTP clients including the ones used internally in other classes.
Set this property to 1.0 or 1.1 to indicate the HTTP version that any internal HTTP clients should use.
It is not uncommon for Microsoft Windows Update Certificate Trust List to be signed with an expired Microsoft certificate. Setting this global property to true makes SBB ignore the expired factor and take the Trust List into account.
Allows to set the delimiter for any multi-entry values returned by the component as a string object, such as file lists. For most of the components, this property is set to a newline sequence.
Contains a comma-separated list of values that specifies where debug log should be dumped.
Supported values are:
file | File | |
console | Console | |
systemlog | System Log (supported for Android only) | |
debugger | Debugger (supported for VCL for Windows and .Net) |
Contains a comma-separated list of values that specifies which debug log details to dump.
Supported values are:
time | Current time | |
level | Level | |
package | Package name | |
module | Module name | |
class | Class name | |
method | Method name | |
threadid | Thread Id | |
contenttype | Content type | |
content | Content | |
all | All details |
Use this property to provide a path to the log file.
Contains a comma-separated list of value pairs ("name:value") that describe filters.
Supported filter names are:
exclude-package | Exclude a package specified in the value | |
exclude-module | Exclude a module specified in the value | |
exclude-class | Exclude a class specified in the value | |
exclude-method | Exclude a method specified in the value | |
include-package | Include a package specified in the value | |
include-module | Include a module specified in the value | |
include-class | Include a class specified in the value | |
include-method | Include a method specified in the value |
Use this property to set the log flush mode. The following values are defined:
none | No flush (caching only) | |
immediate | Immediate flush (real-time logging) | |
maxcount | Flush cached entries upon reaching LogMaxEventCount entries in the cache. |
Use this property to provide the desired debug log level.
Supported values are:
none | None (by default) | |
fatal | Severe errors that cause premature termination. | |
error | Other runtime errors or unexpected conditions. | |
warning | Use of deprecated APIs, poor use of API, 'almost' errors, other runtime situations that are undesirable or unexpected, but not necessarily "wrong". | |
info | Interesting runtime events (startup/shutdown). | |
debug | Detailed information on flow of through the system. | |
trace | More detailed information. |
Use this property to specify the log event number threshold. This threshold may have different effects, depending on the rotation setting and/or the flush mode.
The default value of this setting is 100.
Use this property to set the log rotation mode. The following values are defined:
none | No rotation | |
deleteolder | Delete older entries from the cache upon reaching LogMaxEventCount | |
keepolder | Keep older entries in the cache upon reaching LogMaxEventCount (newer entries are discarded) |
This global property limits the maximal allowed length for ASN.1 tag data for non-content-carrying structures, such as certificates, CRLs, or timestamps. It does not affect structures that can carry content, such as CMS/CAdES messages. This is a security property aiming at preventing DoS attacks.
This global property limits the maximal depth of ASN.1 trees that the component can handle without throwing an error. This is a security property aiming at preventing DoS attacks.
This global setting defines the hash algorithm to use in OCSP requests during chain validation. Some OCSP responders can only use older algorithms, in which case setting this property to SHA1 may be helpful.
Tells the SSH client to use a legacy ssh-rsa authentication even if the server indicates support for newer algorithms, such as rsa-sha-256. This is a backward-compatibility tweak.
The PKICache setting specifies which Public Key Infrastructure (PKI) elements should be cached to optimize performance and reduce retrieval times. It supports comma-separated values to indicate the specific types of PKI data that should be cached.
Supported Values:
certificate | Enables caching of certificates. |
crl | Enables caching of Certificate Revocation Lists (CRLs). |
ocsp | Enables caching of OCSP (Online Certificate Status Protocol) responses. |
Example (default value):
PKICache=certificate,crl,ocsp
In this example, the component caches certificates, CRLs, and OCSP responses.
The PKICachePath setting defines the file system path where cached PKI data (e.g., certificates, CRLs, OCSP responses and Trusted Lists) will be stored. This allows the system to persistently save and retrieve PKI cache data, even across application restarts.
The default value is an empty string - no cached PKI data is stored on disk.
Example:
PKICachePath=C:\Temp\cache
In this example, the cached PKI data is stored in the C:\Temp\cache directory.
This property returns the long version string of the SecureBlackbox library being used (major.minor.build.revision).
Use this property to adjust the length, in bits, of the DHE prime to be used by the TLS server.
Set this property to enable or disable static DNS rules for the class. Works only if UseOwnDNSResolver is set to true.
Supported values are:
none | No static DNS rules (default) | |
local | Local static DNS rules | |
global | Global static DNS rules |
Use this property to get or set an IP address for the specified domain name in the internal (of the class) or global DNS rules storage depending on the StaticDNS value. The type of the IP address (IPv4 or IPv6) is determined automatically. If both addresses are available, they are devided by the | (pipe) character.
Use this property to get static DNS rules from the current rules storage or restore them back between application sessions. If StaticDNS of the class is set to "local", the property returns/restores the rules from/to the internal storage of the class. If StaticDNS of the class is set to "global", the property returns/restores the rules from/to the GLOBAL storage. The rules list is returned and accepted in JSON format.
Use this config property to store any custom data.
Use this property to limit the search of chached TLS sessions to the specified group. Sessions from other groups will be ignored. By default, all sessions are cached with an empty group name and available to all the classes.
Use this property to specify how much time the TLS session should be kept in the session cache. After this time, the session expires and will be automatically removed from the cache. Default value is 300 seconds (5 minutes).
Use this property to specify the time interval of purging the expired TLS sessions from the session cache. Default value is 60 seconds (1 minute).
This setting enables or disables the caching of CRL objects. When set to true (the default value), the system checks if a CRL object is already loaded in memory before attempting to load a new instance. If the object is found, the existing instance is reused, and its reference count is incremented to track its usage. When the reference count reaches zero, indicating that no references to the object remain, the system will free the object from memory. This setting enhances performance by minimizing unnecessary object instantiation and promotes efficient memory management, particularly in scenarios where CRL objects are frequently used.
Allows to switch between internal/native PRNG implementation and the one provided by the platform.
Use this setting to switch the AdES component to the validation approach that was used in SBB 2020/SBB 2022 (less attention to temporal details).
This setting enables or disables the caching of OCSP response objects. When set to true (the default value), the system checks if a OCSP response object is already loaded in memory before attempting to load a new instance. If the object is found, the existing instance is reused, and its reference count is incremented to track its usage. When the reference count reaches zero, indicating that no references to the object remain, the system will free the object from memory. This setting enhances performance by minimizing unnecessary object instantiation and promotes efficient memory management, particularly in scenarios where OCSP response objects are frequently used.
Set this global property to false to force all the client components to use the DNS resolver provided by the target OS instead of using own one.
Set this global property to false to make each validation run use its own copy of system certificate stores.
This is an internal setting. Please do not use it unless instructed by the support team.
This global setting defines who is responsible for performing RSA-OAEP and RSA-PSS computations where the private key is stored in a Windows system store and is exportable. If set to true, SBB will delegate the computations to Windows via a CryptoAPI call. Otherwise, it will export the key material and perform the computations using its own OAEP/PSS implementation.
This setting only applies to certificates originating from a Windows system store.
Use this global property to enable or disable the use of operating system-driven pseudorandom number generation.
This property defines custom mappings between Object Identifiers (OIDs) and descriptor names. This mapping specifies how the certificate's issuer and subject information (ds:IssuerRDN and ds:SubjectRDN elements respectively) are represented in XML signatures.
The property accepts comma-separated values where the first descriptor name is used when the OID is mapped, and subsequent values act as aliases for parsing.
Syntax:
Config("XMLRDNDescriptorName[OID]=PrimaryName,Alias1,Alias2");
Where:
OID: The Object Identifier from the certificate's IssuerRDN or SubjectRDN that you want to map.
PrimaryName: The main descriptor name used in the XML signature when the OID is encountered.
Alias1, Alias2, ...: Optional alternative names recognized during parsing.
Usage Examples:
Map OID 2.5.4.5 to SERIALNUMBER:
Config("XMLRDNDescriptorName[2.5.4.5]=SERIALNUMBER");
Map OID 1.2.840.113549.1.9.1 to E, with aliases EMAIL and EMAILADDRESS:
Config("XMLRDNDescriptorName[1.2.840.113549.1.9.1]=E,EMAIL,EMAILADDRESS");
This property specifies the priority of descriptor names associated with a specific OID that allows to reorder descriptors in the ds:IssuerRDN and ds:SubjectRDN elements during signing.
Specifies whether to reverse the order of descriptors in the ds:IssuerRDN and ds:SubjectRDN elements during XML signing. By default, this property is set to true (as specified in RFC 2253, 2.1).
Specifies the separator used between descriptors in the ds:IssuerRDN and ds:SubjectRDN elements during XML signing. By default, this property is set to ", " value.
MessageDecryptor Errors
MessageDecryptor Errors
1048577 | Invalid parameter (SB_ERROR_INVALID_PARAMETER) |
1048578 | Invalid configuration (SB_ERROR_INVALID_SETUP) |
1048579 | Invalid state (SB_ERROR_INVALID_STATE) |
1048580 | Invalid value (SB_ERROR_INVALID_VALUE) |
1048581 | Private key not found (SB_ERROR_NO_PRIVATE_KEY) |
1048582 | Cancelled by the user (SB_ERROR_CANCELLED_BY_USER) |
1048583 | The file was not found (SB_ERROR_NO_SUCH_FILE) |
1048584 | Unsupported feature or operation (SB_ERROR_UNSUPPORTED_FEATURE) |
1048585 | General error (SB_ERROR_GENERAL_ERROR) |